Use it to quickly find a topic you are not sure about. Significant English Terminology summarized well.Descripción completa
Use it to quickly find a topic you are not sure about. Significant English Terminology summarized well.Full description
Cheat Sheet for all the formulas in Shigleys engineering designFull description
Postpartum Assessment Sheet
DnD Fifth Edition Cheat Sheet/DM Screen Sheets. contains some valuable rules that can be found quickly on first glance.
Crystallography Cheat Sheet
Mixing Cheat SheetFull description
electrical cheat sheet for high school and collegeFull description
Full description
Basic outline, plot, and analysis of 1984 by George Orwell.Full description
Full description
All shortcut to learn Optics chapter, its cheat sheet,Descripción completa
Evidence Law cheat sheet for law school students.Full description
boudoir photo guide posing sheet
Lists operating, financing investing and activities.Full description
electrical cheat sheet for high school and college
Descrição completa
electrical cheat sheet for high school and collegeFull description
Unofficial Cheat Sheet for Forecasting Forecasting Step 1: Identify stationary or nonstationary Determine trend and seasonality in the t ime series
Has neither trend nor seasonality stationary
Has either trend or seasonality nonstationary
Identify trend: 1. 2. 3. 4. 5.
a time series plot that is trending up, down, or in a deterministic fashion a highly significant ACF, PACF, and IACF at lag 1 an ACF with many significant lags decaying slowly from lag 1 an ACF with few significant values after first differencing is applied unit root tests that are not significant but become significant when a first difference is applied
Identify seasonality: 1. 2. 3. 4. 5.
a time series plot that has repetitive behavior every S time units significant ACF, PACF, and IACF values at lag S an ACF with significant values at lags that are multiples of S an ACF without a significant value at lag S after a difference of o f order S has been applied seasonal unit root tests that are not significant but become significant when a difference of order S is applied
Step 2: Identify values of p and q: Step 2a: If stationary, identify p and q: 1. Find q such that ACF(q) falls outside confidence limits and ACF(k) falls inside confidence limits for all k>q 2. Find p such that PACF(p) falls outside confidence limits and PACF(k) falls inside confidence limits for all k>p. 3. Determine all ordered pairs (j,k) such that 0≤ j≤p and 0≤k≤q
Step 2b: If nonstationary, detrend and deseasonality: 1. Diagnose trend and seasonality. se asonality. 2. Determine appropriate trend and/or seasonal components to use for modeling. 3. Obtain the residuals (prediction errors) after applying the trend and/or seasonal components. 4. Verify that the residuals appear to be stationary. 5. Use the methods of the previous step 2a to determine an appropriate ARMA model for the residual series. NOTE:
This can also be realized by applying first/seasonal difference
1
Step 3: Intervention & Regressors:
Regressors: Based on the domain knowledge
Intervention: Identify abnormalities (dips or spikes) in data
Step 4: Combine all the components together (if any)
ARMA
Trend: e.g. Linear model, Quadratic, I=1
Seasonal: e.g. Seasonal dummies
Trend + Seasonal: e.g. Linear + seasonal dummies, ARIMA
Interventions and regressors
Step 5: Evaluate models Basically, you are supposed to evaluate and explain the following factors (trade-off): 1. 2. 3. 4. 5.
Whether the model passes all the tests (white noise test, unit root test, seasonal root test) Whether the model has acceptable error (e.g. RMSE) Whether the parameters are significant Whether the model is too complex Whether the forecast is reasonable