LAPORAN KERJA PRAKTEK PT. INDO-BHARAT RAYON PURWAKARTA-JAWA BARAT
TUGAS KHUSUS
SP I NN I N G MA M A C H I NE NERACA MASSA DAN ENERGI SPI
Disusun oleh : Hendro
(2013620071)
Jovita Elviana
(2013620103)
Melia Soetjiamto
(2013620122)
Pembimbing : Prof. Dr. Ign. Suharto, APU
JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS KATOLIK PARAHYANGAN BANDUNG 2016
BAB I PENDAHULUAN
1.1
Latar belakang
Proses pembuatan staple fibre rayon rayon terdiri dari dua proses utama yaitu pembuatan larutan viscose viscose dan regenerasi larutan viscose menjadi filamen oleh larutan spinbath larutan spinbath.. Regenerasi larutan viscose tersebut viscose tersebut terjadi di spinning di spinning machine. Larutan viscose dan larutan spinbath spinbath akan bereaksi dan menjadi selulosa yang berbentuk filamen-filamen. Filamen-filamen yang berkumpul disebut tow. tow. Larutan viscose viscose dipompakan ke spinning machine machine dengan menggunakan pump shaft . Kemudian viscose viscose dipompa kembali oleh individual gear pump ke penyaringan candle filter dan dan diteruskan melalui goose melalui goose neck ke ke unit jet unit jet dan dan keluar dari lubang spinneret . Spinneret berbentuk bulat yang terdiri t erdiri dari 45 mata. Pada setiap mata terdapat lubang-lubang dengan ukuran ± 50µm. Jumlah lubang pada setiap mata spinneret mata spinneret adalah adalah 1900 lubang. Larutan viscose disemprotkan dari arah bawah ke larutan spinbath. spinbath. Larutan viscose viscose mengalami regenerasi menjadi selulosa dalam bentuk filamen. PT Indo Bharat Rayon memiliki 5 buah spinning machine machine yang masih bekerja yaitu, M/C 3,4,5,6 dan 7 untuk produksi staple fibre rayon dan rayon dan dijalankan secara otomatis menggunakan DCS. Mesin spinning Mesin spinning M/C M/C 1 dan 2 tidak digunakan lagi karena kerja mesin sudah tidak efektif.
1.2
Tujuan
Tujuan dari pengerjaan tugas khusus ini adalah untuk menghitung jumlah teoritis tow yang tow yang dihasilkan dari reaksi larutan viscose dengan larutan spinbath larutan spinbath di di spinning machine dan machine dan menghitung waktu reaksi antara larutan viscose dan larutan spinbath. spinbath.
1.3
Ruang lingkup pelaksanaan tugas khusus
Ruang lingkup dari tugas khusus ini antara lain adalah sebagai berikut.
BAB I PENDAHULUAN
1.1
Latar belakang
Proses pembuatan staple fibre rayon rayon terdiri dari dua proses utama yaitu pembuatan larutan viscose viscose dan regenerasi larutan viscose menjadi filamen oleh larutan spinbath larutan spinbath.. Regenerasi larutan viscose tersebut viscose tersebut terjadi di spinning di spinning machine. Larutan viscose dan larutan spinbath spinbath akan bereaksi dan menjadi selulosa yang berbentuk filamen-filamen. Filamen-filamen yang berkumpul disebut tow. tow. Larutan viscose viscose dipompakan ke spinning machine machine dengan menggunakan pump shaft . Kemudian viscose viscose dipompa kembali oleh individual gear pump ke penyaringan candle filter dan dan diteruskan melalui goose melalui goose neck ke ke unit jet unit jet dan dan keluar dari lubang spinneret . Spinneret berbentuk bulat yang terdiri t erdiri dari 45 mata. Pada setiap mata terdapat lubang-lubang dengan ukuran ± 50µm. Jumlah lubang pada setiap mata spinneret mata spinneret adalah adalah 1900 lubang. Larutan viscose disemprotkan dari arah bawah ke larutan spinbath. spinbath. Larutan viscose viscose mengalami regenerasi menjadi selulosa dalam bentuk filamen. PT Indo Bharat Rayon memiliki 5 buah spinning machine machine yang masih bekerja yaitu, M/C 3,4,5,6 dan 7 untuk produksi staple fibre rayon dan rayon dan dijalankan secara otomatis menggunakan DCS. Mesin spinning Mesin spinning M/C M/C 1 dan 2 tidak digunakan lagi karena kerja mesin sudah tidak efektif.
1.2
Tujuan
Tujuan dari pengerjaan tugas khusus ini adalah untuk menghitung jumlah teoritis tow yang tow yang dihasilkan dari reaksi larutan viscose dengan larutan spinbath larutan spinbath di di spinning machine dan machine dan menghitung waktu reaksi antara larutan viscose dan larutan spinbath. spinbath.
1.3
Ruang lingkup pelaksanaan tugas khusus
Ruang lingkup dari tugas khusus ini antara lain adalah sebagai berikut.
142
1.
Data yang digunakan adalah data spinning data spinning machine M/C 4.
2.
Asumsi yang digunakan adalah konversi 100% pada reaksi yang terjadi. terjadi .
BAB II TINJAUAN PUSTAKA
2.1
Spinning machine Spinning machine merupakan tempat mereaksikan larutan viscose dengan
larutan spinbath dengan mesin berjumlah 7 buah. Mesin ini terdiri dari mesin IVIII namun mesin yang masih digunakan berjumlah 5 buah, yaitu mesin III-VII karena mesin I dan mesin II tidak dioperasikan lagi. Suhu operasi pada spinning machine tergantung pada suhu pengoperasian spinbath, yaitu 48-49°C. Tekanan operasi spinning machine adalah 10-11 kg/cm2. Pada spinning machine ini dihasilkan produk tow yang setiap mesinnya memiliki produksi yang berbeda beda. Berikut ini produsi tow pada beberapa mesin: 1. Mesin III
: 90 ton/hari
2. Mesin IV
: 95 ton/hari
3. Mesin V
: 102 ton/hari
4. Mesin VI
: 120 ton/hari
5. Mesin VII : 185 ton/hari
Gambar 5.1 Spinning Machine
PT Indo-Bharat Rayon memiliki 5 buah mesin spinning , yaitu mesin IIIVII dengan dua sisi mesin
pada
setiap unit. Mesin spinning memiliki spesifikasi
sebagai berikut: 1. Mesin III mempunyai 162 posisi spinneret dengan masing-masing side terdapat 81 spinneret .
144
2. Mesin IV mempunyai 152 posisi spinneret dengan masing-masing side terdapat 76 spinneret . 3. Mesin V mempunyai 156 posisi spinneret dengan masing-masing side terdapat 78 spinneret . 4. Mesin VI mempunyai 160 posisi spinneret dengan masing-masing side terdapat 80 spinneret . 5. Mesin VII mempunyai posisi 176 spinneret dengan masing-masing side terdapat 86 spinneret . Laju alir
viscose pada
beberapa
mesin berbeda-beda
tergantung
kapasitasnya. Berikut ini spesifikasi laju alir viscose pada spinning machine: 1. Mesin III
: 35 m3/jam
2. Mesin IV
: 31 m 3/jam
3. Mesin V
: 38 m /jam
4. Mesin VI
: 44 m /jam
3 3 3
5. Mesin VII : 46 m /jam Laju alir spinbath pada beberapa mesin berbeda-beda yang disesuaikan dengan kapasitas mesin. Berikut ini spesifikasi laju alir spinbath pada spinning machine: 3
1. Mesin III
: 368 m /jam
2. Mesin IV
: 365 m3/jam
3. Mesin V
: 365 m /jam
4. Mesin VI
: 400 m /jam
3 3
5. Mesin VII : 410 m3/jam Pada spinneret di setiap mesin terdapat sejumlah eye yang berfungsi untuk mengeluarkan larutan viscose yang bereaksi dengan larutan spinbath. Setiap eye terdiri atas ribuan lubang dengan jumlah yang berbeda dengan spesifikasi sebagai berikut: 1. Mesin III
: 39 eye x 1264 lubang = 49296 lubang
2. Mesin IV
: 30 eye x 1900 lubang = 57000 lubang
3. Mesin V
: 30 eye x 1900 lubang = 57000 lubang
4. Mesin VI
: 39 eye x 1900 lubang = 39858 lubang
145
5. Mesin VII : 30 eye x 1900 lubang = 57000 lubang
Gambar 5.2 Spinneret
2.2
Proses pada spinning machine
Spinning machine merupakan unit tempat terjadinya reaksi antara larutan viscose dan larutan spinbath menjadi selulosa berbentuk filamen. Larutan spinbath mengandung H 2SO4 132 g/L, ZnSO 4 11 g/L, dan Na 2SO4 300 g/L, dan 3
air. Larutan ini memiliki berat jenis 1.312-1.325 ton/m . Larutan spinbath yang digunakan harus memiliki suhu 48-50°C. Reaksi yang terjadi adalah sebagai berikut: 2 (C6H9O4OCS2 Na)n + nH2SO4
2 (C6H9O4OCS2H)n + nNa2SO4
alkcell xanthat (C6H9O4OCS2H)n
(C6H9O4OH)n + nCS2 tow
Setelah larutan viscose bereaksi dengan larutan spinbath maka terbentuk filamen-filamen. Filamen-filamen yang berkumpul disebut tow. Larutan viscose dipompakan ke spinning machine dengan menggunakan pump shaft . Kemudian viscose dipompa kembali oleh individual gear pump ke penyaringan candle filter dan diteruskan melalui goose neck ke unit jet dan keluar dari lubang spinneret . Spinneret berbentuk bulat yang terdiri dari 45 mata. Pada setiap mata terdapat lubang-lubang dengan ukuran ± 50µm. Jumlah lubang pada setiap mata spinneret adalah 1900 lubang. Spinneret terbuat dari logam mulia atau campuran platinarhodium agar tahan terhadap sifat korosif asam sulfat.
146
Larutan viscose disemprotkan dari arah bawah ke larutan spinbath. Larutan viscose mengalami regenerasi menjadi selulosa dalam bentuk filamen. Filamen tersebut kemudian ditarik oleh guide roller yang terbuat dari keramik dan godet yang kemudian dikumpulkan oleh roller stretch yang arah putarannya berlawanan arah dengan arah putaran godet . Dari roller stretch, tow diregangkan oleh idle roller dan feed roller. Selama pemberian tegangan, tow dibersihkan dengan soft water untuk menghilangkan kandungan asam sulfat. Pada spinning machine, selain terjadi reaksi regenerasi terjadi penentuan denier (ukuran filamen), tenacity (kekuatan tarik), dan stretching (kelenturan). Denier ditentukan oleh perbedaan spin dari pump shaft dan stretching . Pada spinning machine selain terjadi proses utama yaitu pembentukan filament, terjadi juga reaksi samping dengan produknya air dan natrium sulfat. Kandungan NaOH pada larutan viscose bereaksi dengan H2SO4 pada larutan spinbath sehingga terjadi pembentukan Natrium Sulfat yang mengakibatkan meningkatnya kadar Natrium Sulfat dalam larutan spinbath. Reaksi samping yang terjadi sebagai berikut: 2NaOH + H2SO4
Na2SO4 + 2H2O
Hasil samping tersebut kemudian ikut menngalir ke dalam larutan koagulan yang menyebabkan larutan koagulan menjadi encer dan perlu di make up. Larutan spinbath sisa pemakaian dialirkan ke seksi spinbath untuk diolah kembali hingga komposisinya sesuai dengan limit yang telah ditentukan.
2.3
Neraca massa
Di dalam suatu proses, neraca massa merupakan salah satu elemen yang sangat penting. Neraca massa berfungsi ntuk mengetahui komposisi serta laju alir massa setiap komponen di dalam sistem, baik komponen masuk maupun komponen yang keluar dari sistem. Neraca massa akan mempermudah dalam menentukan jumlah umpan agar terjadi optimasi pada proses. Perhitungan neraca massa dilakukan berdasarkan hukum kekekalan massa yang menyatakan bahwa massa yang masuk ke dalam sistem akan sama besarnya dengan massa yang
147
keluar dari sistem apabila tidak terjadi akumulasi massa di dalamsuatu sistem. Secara matematis, hukum kekekalan massa dapat dinyatakan sebagai berikut:
̇ ̇ ̇ 2.5
Neraca energi
Neraca energi merupakan elemen penting lan dalam perancangan proses kimia. Nereaca energi berfungsi untuk mengetahui kesetimbangan aliran energi dalam suatu sistem. Perhitungan neraca energi dilakukan berdasarkan hukum I Termodinamika yang menyatakan kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan atau dimusnahkan, tetapi hanya dapat diubah dari suatu bentuk energi ke bentuk energi lainnya. Secara matematis, neraca energi dapat dinyatakan sebagai berikut:
Energi yang ada di dalam sistem bisa berupa panas. Panas tersebut bisa berupa panas reaksi, panas sensibel, panas penguapan, dan lain-lain. Panas sensibel dari suatu senyawa dapat dihitung dengan persamaan berikut:
̇
BAB III METODE PELAKSANAAN TUGAS KHUSUS
Langkah awal yang dilakukan adalah mengumpulkan data-data operasi pada spinning machine. Data-data dalam perhitungan ini diperoleh dengan studi lapangan dan studi literatur.
3.1.
Studi lapangan
Studi lapangan dilakukan dengan pengambilan data di Distributed Control System (DCS) dan quality control (QC). Data yang diambil antara lain : 1. Laju alir volumetrik masukan larutan viscose 2. Laju alir volumetrik masukan larutan spinbath 3. Massa jenis larutan viscose 4. Massa jenis larutan spinbath 5. Suhu masukan dan keluaran larutan viscose 6. Suhu masukan dan keluaran larutan spinbath 7. Diameter spinneret 8. Jumlah eye spinning machine IV 9. Tinggi jet
3.2
Studi literatur
Studi literatur dilakukan untuk memperoleh teori pendukung dan data-data sekunder yang diperlukan untuk membuat neraca massa dan energi pada spinning machine. Data yang diambil antara lain : 1. Massa molekul tiap senyawa 2. Kapasitas panas (Cp) tiap senyawa 3. Kalor pembentukan tiap senyawa
BAB IV HASIL TUGAS KHUSUS
4.1
Neraca molar Aliran
Input (kmol/jam)
C6H9O4OCS2 Na
150,7692
(Spinbath) H2SO4
484,1837
150,7692
CS2
150,7692
Na2SO4
75,38462 634,9529
785,7221
Aliran
Input (kg/jam)
Output (kg/jam)
C6H9O4OCS2 Na
39200
(Spinbath) H2SO4
47450
Neraca massa
40062,31
C6H10O5
24424,62
CS2
11458,46
Na2SO4
10704,62
Total
4.3
408,7991
C6H10O5
Total
4.2
Output (kmol/jam)
86650
86650
Waktu reaksi
Waktu reaksi yang diperoleh dari perhitungan adalah 0,027 detik
BAB V PEMBAHASAN
Spinning machine merupakan unit tempat terjadinya reaksi antara larutan viscose dan larutan spinbath menjadi selulosa berbentuk filamen. Filamen-filamen yang berkumpul disebut tow. Reaksi yang terjadi dalam pembentukan filamenfilamen tersebut adalah sebagai berikut : 2(C6H9O4O-CS-NaS) + H2SO4 larutan viscose
larutan spinbath
2(C6H10O5) + 2CS2 + Na2SO4 tow
Dari reaksi tersebut dapat dilihat bahwa kandungan dalam larutan spinbath yang bereaksi dengan larutan viscose hanya H2SO4, sedangkan ZnSO4 dan Na 2SO4 yang terkandung dalam larutan spinbath tidak ikut bereaksi dengan larutan viscose. Dari hasil perhitungan neraca massa, jumlah tow yang diperoleh adalah 24424,62 kg/jam. Jumlah tow yang didapat tersebut tidak dipengaruhi oleh laju alir larutan spinbath dan hanya dipengaruhi laju alir larutan viscose. Larutan spinbath tidak habis bereaksi dengan larutan viscose dengan laju alir keluaran sebesar 40062,31 kg/jam. Larutan spinbath yang bereaksi dengan larutan viscose adalah sebesar 7387.69 kg/jam. Sisa dari larutan spinbath yang tidak bereaksi tersebut kemudian dikirim ke auxilarry department untuk diregenerasi sehingga dapat digunakan kembali. Pada perhitungan neraca massa digunakan asumsi konversi 100% pada reaksi yang terjadi. Waktu reaksi yang diperoleh dari perhitungan adalah 0,027 detik. Waktu reaksi tersebut diperoleh dengan membagi volume jet dengan laju alir volumetrik larutan viscose. Waktu reaksi yang antara larutan viscose dengan larutan spinbath akan mempengaruhi kualitas dari tow yang dihasilkan. Untuk penyusunan neraca energi di spinning machine tidak dapat dilakukan karena beberapa data operasi tidak dapat diperoleh.
BAB VI KESIMPULAN DAN SARAN
6.1
Kesimpulan
1.
Jumlah tow yang diperoleh dari perhitungan adalah 24424,62 kg/jam.
2.
Waktu reaksi yang diperoleh dari perhitungan adalah 0,027 detik.
6.2
Saran
1.
Perlu adanya perlakuan khusus untuk spinning machine untuk menjaga laju produksi mengingat umur pabrik yang sudah tua.
LAMPIRAN CONTOH PERHITUNGAN 1. Perhitungan neraca molar di spinning machine
Spinbath (H2SO4)
1
C6H9O4O-CS-NaS
3
Spinning 2
Na2SO4
Machine
Persamaan reaksi : 2(C6H9O4O-CS-NaS) + H2SO4
H2SO4
C6H9O4O 2(C6H10O5) + 2CS2 +
Na2SO4 A
+ B
C
+D
+E
Data operasi : Laju volumetrik 1 (Q 1) = 365 m 3/jam Laju volumetrik 2 (Q 2) = 35 m 3/jam Massa jenis H2SO4 = 130 kg/m 3 Massa jenis C6H9O4O-CS-NaS = 1120 kg/m 3 F1= laju volumetrik massa jenis = 365 m3/jam 130 kg/m 3 = 47450 kg/jam 2
3
3
F = laju volumetrik massa jenis = 35 m /jam 1120 kg/m = 39200 kg/jam N1= 2
N =
Neraca Mol Total : N3 = N1 + N2 + r 3
N = 484,1837 kmol/jam + 150,7692 kmol/jam + 2r N3 = 484,1837 kmol/jam + 150,7692 kmol/jam + 150,7692 kmol/jam N3 = 785,7221 kmol/jam Neraca Mol Komponen : A:0=N
2
– 2r 2
2r = N
r = 75,38462 kmol/jam
153
B : N3B = N1 – r 3
N
B=
484,1837 kmol/jam – 75,38462 kmol/jam
N3B = 408,7991 kmol/jam
98 kg/kmol
3
F B = 40062,31 kg/jam C : N3C = 2r 3
N C = 150,7692 kmol/jam 3 C=
F
162 kg/kmol
24424,62 kg/jam
D : N3D = 2r N3D = 150,7692 kmol/jam 3 D=
F
76 kg/kmol
11458,46 kg/jam
E : N3E = r 3
N E = 75,38462 kmol/jam
142 kg/kmol
F3E = 10704,62 kg/jam 2. Perhitungan waktu reaksi diameter spinnerret (m) jumlah eye mesin IV (buah) tinggi jet (m) 3 flow viscose mesin IV (m /h) 3
Volume jet (m ) =
0,016 30 0,043 35
=
= 0,000259 m 3 Waktu reaksi
=
3. Perhitungan neraca energi di spinning machine
̅ ̅ ) ( ̅ ̅ ) ̅ ̅ (
154
[ ] [ ] [ ]
Untuk menghitung kalor diperlukan data laju alir mol (N), kapasitas panas (Cp), dan temperatur. Data laju alir mol didapatkan dari perhitungan neraca massa. Sedangkan data kapasitas panas (Cp) dan temperatur didapatkan dari studi lapangan. Pengukuran temperatur menggunakan termokopel, sedangkan data kapasitas panas (Cp) didapatkan dengan menggunakan kalorimeter.
LAPORAN KERJA PRAKTEK PT. INDO-BHARAT RAYON PURWAKARTA-JAWA BARAT
TUGAS KHUSUS MENGANALISIS JUMLAH UAP DAN KEBUTUHAN STE AM PADA UNIT HEATER
Disusun oleh : Hendro
(2013620071)
Jovita Elviana
(2013620103)
Melia Soetjiamto
(2013620122)
Pembimbing : Prof. Dr. Ign. Suharto, APU
JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS KATOLIK PARAHYANGAN BANDUNG 2016
BAB I PENDAHULUAN
1.1 Latar Belakang
Evaporator
merupakan
alat
yang
digunakan
untuk
memekatkan
konsentrasi suatu larutan dengan mengubah fasa sebuah larutan menjadi fasa uap. Evaporator terdiri dari dua prinsip, yaitu penukar panas dan pemisahan uap yang terbentuk dari larutannya. Penguapan atau evaporasi merupakan perubahan wujud zat cair menjadi uap. Penguapan ini bertujuan memisahkan pelarut atau solvent dari larutan sehingga menghasilkan larutan yang lebih pekat. Pada proses penguapan tersebut diperlukan energi berupa panas (kalor) untuk mengubah wujud fasa cair ke fasa uap. Energi panas didapat dari pertukaran panas dengan fluida lain (seperti steam) yang memiliki suhu yang lebih tinggi sehingga menghasilkan kalor untuk menguap. Ada tiga jenis evaporator yang biasanya digunakan dalam industri, yaitu Submerged combustion evaporator , Direct fired evaporator, Steam heated evaporator .
Submerged
combustion
evaporator
adalah
evaporator
yang
dipanaskan oleh api yang menyala dibawah permukaan cairan dengan gas yang panas bergelembung melewati cairan. Direct fired evaporator adalah evaporator dengan pengapian langsung yang api dan pembakaran gas dipisahkan dari cairan mendidih lewat dinding besi atau permukaan untuk memanaskan. Steam heated evaporator adalah evaporator dengan menggunakan pemanasan steam sebagai media penukar panas dan panas ditransmisi lewat dinding menuju cairan. PT Indo-Bharat Rayon menggunakan heater yang termasuk jenis steam heated evaporator untuk mengakomodasikan keperluan proses pada pembuatan rayon. Melalui tugas khusus ini, tim penulis akan melakukan perhitungan jumlah uap dan kebutuhan steam secara teori serta membandingkannya dengan data aktual yang ada di lapangan. Hal ini diharapkan dapat menghitung efisiensi kebutuhan steam yang terpakai dan jumlah uap yang dihasilkan sehingga dapat meminimalkan biaya produksi pada departemen auxiliary. 1.2 Tujuan
157
Tujuan dari pelaksanaan tugas khusus ini adalah melakukan analisa berupa perhitungan jumlah uap yang dihasilkan dan kebutuhan steam pada unit heater secara teori serta membandingkannya dengan jumlah uap dan kebutuhan steam aktual yang ada di lapangan.
1.3 Ruang Lingkup Pelaksanaan Tugas Khusus
Tugas khusus ini dilaksanakan dengan melakukan analisa berupa perhitungan jumlah uap yang dihasilkan dan kebutuhan steam unit heater dengan satu unit heater dengan jenis steam heated evaporator . Asumsi-asumsi yang digunakan adalah tidak ada kalor yang hilang selama evaporasi, komponen yang menguap pada heater adalah air, dan operasi pada evaporator adalah single effect evaporator .
BAB II TINJAUAN PUSTAKA
2.1 Evaporator
Evaporasi adalah proses yang dilakukan untuk memekatkan atau menaikkan konsentrasi suatu komponen tertentu. Larutan yang pekat adalah produk yang diinginkan dan cairan yang diuapkan adalah yang tidak diinginkan. Pemekatan dilakukan dengan penguapan air yang terdapat dalam produk. Kecepatan evaporasi dipengaruhi oleh kecepatan perpindahan panas dari media pemanas menuju produk yang ingin dipekatkan, jumlah kalor yang diperlukan untuk penguapan cairan, suhu maksimal yang diperbolehkan untuk setiap cairan, tekanan dalam tangki evaporasi, dan perubahan-perubahan yang dapat terjadi dalam cairan selama proses evaporasi berlangsung.
2.1.1 Klasifikasi Evaporator
Secara umum, evaporator terdiri dari beberapa macam berdasarkan bentuknya, yaitu evaporator film jatuh ( Falling Film Evaporator ), evaporator film naik ( Rising Film Evaporator ), evaporator plat ( Plate Evaporator ), evaporator pemampatan kembali uap (Thermal and Mechanical Vapor Revompression), evaporator sirkulasi paksa ( Forced Circulation Evaporator ).
2.1.1.1 Evaporator Film Jatuh ( F alling F ilm E vaporator )
Evaporator jenis ini berbentuk tabung dengan panjang 4-8 meter yang dilapisi dengan jaket uap ( steam jacket ). Larutan masuk dan memperoleh gaya gerak karena arah larutan yang menurun. Kecepatan gerakan larutan akan mempengaruhi karakteristik medium pemanas yang juga mengalir menurun. Tipe evaporator ini cocok untuk larutan kental dan sering digunakan dalam industri kimia, makanan dan fermentasi.
2.1.1.2 Evaporator Film Naik ( Rising F ilm E vaporator )
159
Evaporator jenis ini terjadi pendidihan berlangsung di dalam tabung dengan sumber panas berasal dari luar tabung (biasanya uap). Buih air akan timbul dan menimbulkan sirkulasi.
2.1.1.3 Evaporator Plat ( Plate E vaporator )
Evaporator jenis ini mempunyai luas permukaan yang besar berupa plat yang biasanya tidak rata dan ditopang oleh bingkai ( frame). Uap mengalir melalui ruang-ruang diantara plat tersebut. Uap mengalir secara co-current dan counter current terhadap larutan. Larutan dan uap masuk ke separasi yang disalurkan ke kondensor. Evaporator jenis ini digunakan dalam industri susu dan fermentasi dan tidak cocok untuk larutan kental.
2.1.1.4 Evaporator Pemampatan Kembali Uap ( Thermal and Mechanical
Vapor R evompression) Evaporator jenis ini disebut juga evaporator tipe tekanan tinggi yang melibatkan pemanasan tinggi suatu produk di atas titik didih normalnya dengan cara menambahkan tekanan. Proses ini dikenal sebagai prinsip pemanasan dan kilat.
2.1.1.5 Evaporator Sirkulasi Paksa ( F orced Circulation E vaporator )
Evaporator
jenis
ini
banyak
digunakan
ketika
fluida
memiliki
kecenderungan mengotori permukaan-permukaan pemanasan sehingga perlu disirkulasi ulang secara cepat melalui pipa-pipa. Evaporasi pada jenis evaporator ini ditambahkan peralatan pompa untuk meningkatkan tekanan sehingga proses evaporasi lebih efisien. Tekanan yang meningkat mengakibatkan meningkatnya kecepatan fluida dalam pipa-pipa pemanas sehingga mencegah pendidihan dalam pipa dan mengurangi waktu kontak dengan permukaan perpindahan panas selama proses pengendapan atau kristalisasi ketika cairan naik konsentrasinya. Evaporator sirkulasi panas terdiri dari dua macam prosesnya, yaitu evaporator efek tunggal, dan evaporator bertingkat banyak. Evaporator dengan efek tunggal digunakan satu evaporator dan uap dari fluida cair yang mendidih
160
dikondensasi dan dibuang. Proses evaporasi dengan evaporator efek tunggal tidak efektif dalam penggunaan uap yang membutuhkan banyak kalor (panas). Evaporator bertingkat banyak dirancang untuk menghemat energi kalor. Uap air dari evaporator tingkat satu masuk ke dalam ruangan atau rongga uap ( stean chest ) penukar panas evaporator film tingkat kedua, sehingga dimanfaatkan panas dari evaporator tingkat pertama. Kalor yang diberikan oleh kondensasi dalam tingkat satu digunakan untuk menyediakan panas bagi tingkat ber ikutnya.
2.2 Perpindahan Panas pada Evaporator
Evaporator adalah alat yang digunakan untuk memekatkan suatu fluida cair dengan cara penguapan. Proses evaporasi membutuhkan kalor atau panas sebagai suatu energi untuk perubahan wujud dari fasa cair menuju fasa uap (gas). Energi atau panas tersebut didapatkan dari steam dengan suhu yang tinggi sehingga terjadi pertukaran panas dengan produk. Perhitungan neraca massa dan neraca energi pada unit Heater didasarkan pada asumsi evaporator jenis single effect evaporator . Berikut ini disajikan persamaan neraca massa dan neraca energi dari unit evaporator efek tunggal:
Gambar 2.1 Evaporator
161
Keterangan : F
= laju alir massa umpan
xf
= fraksi massa umpan
hf
= entalpi umpan
L
= laju alir massa cairan keluaran evaporator
xl
= fraksi massa cairan keluaran evaporator
hl
= entalpi cairan keluaran evaporator
V
= laju alir massa uap keluaran evaporator
yv
= fraksi massa uap keluaran evaporator
Hv
= entalpi uap keluaran evaporator
Λ
= Hs-hs
Perpindahan panas pada unit Heater terjadi antara steam dengan umpan yang masuk melalui dinding tube. Sehingga, persamaan yang dapat disusun sebagai berikut :
Keterangan: S
= laju alir massa steam
Hs
= entalpi umpan steam
hs
= entalpi keluaran steam
cp
= kapasitas panas umpan
BAB III METODE PELAKSANAAN TUGAS KHUSUS
3.1 Metode Pelaksanaan Tugas Khusus
Metode yang digunakan untuk menyelesaikan tugas khusus mengenai perhitungan jumlah uap dan kebutuhan steam pada unit heater disajikan pada gambar 3.1 dibawah ini. Start
Studi Literatur
Pengambilan data konsentrasi masingmasing komponen masukan dan keluaran melalui uji lab
Pengambilan asumsi laju alir cairan atau kondensat keluaran evaporator
Perhitungan laju alir komponen masukan dan keluaran
Pengambilan data spesific gravity (spgr) dari masukan dan keluaran umpan melalui uji lab
Perhitungan jumlah uap (V) melalui neraca massa
Perhitungan kebutuhan steam melalui persamaan pindah panas antara steam dengan umpan yang masuk melalui tube
Analisis hasil
Selesai
Gambar 3.1 Diagram Tahapan Penyelesaian Tugas Khusus
Tahapan-tahapan yang dilaksanakan untuk menyelesaikan tugas khusus ini adalah sebagai berikut: 1. Pengumpulan pustaka mengenai heater yang merupakan bagian evaporator. Lalu dilakukan penyusunan neraca massa dan neraca energi evaporator. 2. Perhitungan laju alir komponen masukan (umpan) dan keluaran. Perhitungan laju dengan mengalikan laju alir voulmetrik umpan dengan specific gravity larutan umpan. Specific gravity larutan umpan didapat dari hasil uji
163
laboratorium. Sama halnya dengan specific gravity, data konsentrasi masingmasing komponen didapat dari hasil uji laboratorium. 3. Jumlah uap keluaran evaporator dihitung dengan persamaan neraca massa evaporator. Pengambilan asumsi laju alir cairan atau kondensat keluaran evaporator penting dilakukan agar persamaan neraca massa dapat diselesaikan. 4. Selanjutnya, kebutuhan steam dapat dihitung melalui persamaan perpindahan panas (q) antara steam dengan umpan yang masuk melalui tube. Akhirnya, kebutuhan steam pada unit heater didapatkan. 5. Analisa berupa perbandingan jumlah uap yang dihitung secara teori dengan jumlah uap yang nyata di lapangan. Hal yang sama dilakukan pada kebutuhan steam yang didapatkan dari hasil perhitungan secara teori dengan kebutuhan steam nyata di lapangan. Selanjutnya, dapat dihitung performa heater , yaitu keekonomisan dan kapasitas. Keekonomisan didapatkan dari perbandingan massa uap yang dihasilkan terhadap kebutuhan steam yang digunakan, sedangkan kapasitas merupakan massa uap yang dihasilkan tiap satuan waktu.
3.2 Asumsi-Asumsi yang Digunakan
Asumsi yang digunakan dalam melakukan perhitungan jumlah uap dan kebutuhan steam pada unit heater , yaitu: 1. Heater merupakan bagian evaporator jenis steam heated evaporator yang diasumsikan pengoperasiannya dengan evaporator efek tunggal ( single effect evaporator ) sehingga memudahkan untuk perhitungan neraca massa dan neraca energi. 2. Keluaran heater hanya berupa uap air namun komponen-komponen lain tetap dan tidak menguap.
BAB IV HASIL-HASIL TUGAS KHUSUS
4.1 Hasil Perhitungan Jumlah Uap yang Keluar dari Unit H eater Vapour: H2O
Feed: H2SO4 ZnSO4 Na2SO4 H2O steam
Evaporator steam
Kondensat: H2SO4 ZnSO4 Na2SO4 H2O
Data : Steam Flow (ton/jam)
5,8
Flow feed (m3/jam)
159
Flow circ. feed (m3/jam)
210
Konsentrasi Umpan spgr (kg/m3)
1298
H2SO4 (g/L)
122,5
ZnSO4 (g/L)
8,62
Na2SO4 (g/L)
305
Konsentrasi Kondensat spgr (kg/m3)
1354
H2SO4 (g/L)
158,76
ZnSO4 (g/L)
10,85
Asumsi : L= 100000 kg/jam 3
Laju volumetik L= 73,855 m /jam Dengan menggunakan Neraca Massa Komponen Air (H2O) dapat dicari V
Feed (F) Condensate (L) Vapour (V) Volumetrik Vapour (m3/jam)
Total (kg/jam) H2SO4 (kg/jam) ZnSO4 (kg/jam) Na2SO4 (kg/jam) H2O (kg/jam) H2SO4 (%-w/w) ZnSO4 (%-w/w) Na2SO4 (%-w/w) H2O (%-w/w) 272580 25725 1810,2 64050 180994,8 0,094375963 0,006640986 0,234976888 0,664006163 228107,5965 26745,61569 1827,871792 63003,31816 136522,3965 0,11725 0,0080132 0,2762 0,5985 44472,40349 1 32,84520198 3
Jadi, didapatkan jumlah uap (vapour ) yang dihasilkan adalah 32, 8452 m /jam
4.2 Hasil Perhitungan Kebutuhan Steam:
Data: cp spinbath (kJ/kg C) Ps (kPa) °
in out
3,0833 P evaporasi (kPa) 220 Tsteam (Ts) Tfeed (Tf) 175 60 93
7,7 Tvapour (T1) 108
Hs (kJ/kg)
hs (kJ/kg)
2818,48
251,1
λs (kJ/kg) 2567,38
λv (Hv-Hl)
S (kg/jam) Ekonomi Capacity 4910,33221 9,056903196 44472,40349
2404,959701
165
166
Dengan menggunakan Neraca energi perpindahan panas antara steam dengan aliran umpan didapatkan kebutuhan steam
Jadi, didapatkan kebutuhan steam yang dipasok adalah 4,910 ton/jam
166
Dengan menggunakan Neraca energi perpindahan panas antara steam dengan aliran umpan didapatkan kebutuhan steam
Jadi, didapatkan kebutuhan steam yang dipasok adalah 4,910 ton/jam
BAB V PEMBAHASAN
Dari hasil perhitungan jumlah uap (vapour ) yang keluar dari unit heater yaitu 3
32,845 m /jam. Hal ini tidak sesuai dengan kondisi aktual jumlah uap yang keluar 3
dari unit heater , yaitu sebesar 32 m /jam. Terjadi penurunan jumlah uap yang keluar sebesar 2,5%. Jumlah uap yang keluar dari unit heater tidak sesuai dengan kondisi aktual dapat disebabkan kepada masalah transfer panas yang kurang baik, kemungkinan terdapat kebocoran pada unit heater , dan penguapan yang tidak sempurna. Transfer panas atau heat transfer yang kurang baik dapat ditimbulkan oleh beberapa hal, yaitu laju alir umpan yang terlalu besar, laju alir steam kurang, dan terjadi hot spot pada unit heater . Laju alir umpan yang terlalu besar menyebabkan kalor yang digunakan untuk penguapan juga besar sehingga hal ini harus diimbangi dengan laju alir steam yang besar. Laju alir steam yang kurang berdampak pada berkurangnya jumlah uap yang dihasilkan dari unit heater . Selain itu, jika laju alir steam yang kurang maka temperatur masukkan steam harus lebih besar. Kebocoran pada unit heater akan menyebabkan kalor yang seharusnya digunakan untuk memanaskan aliran umpan terbuang percuma ke lingkungan. Akibatnya kalor yang dibutuhkan lebih besar. Kebocoran pada unit heater menyebabkan kebutuhan steam meningkat. Penguapan yang tidak sempurna dapat terjadi karena laju alir steam yang kurang menyebabkan penguapan tidak berjalan sempurna. Penguapan yang tidak sempurna dapat terjadi karena pada unit heater terdapat kerak yang lama-kelamaan terbentuk karat, hal ini dapat menghambat proses penguapan. Selain itu, penguapan yang tidak sempurna karena laju alir umpan yang terlalu besar akibatnya ada komponen yang tidak mengalami penguapan.
167
168
Dari hasil perhitungan kebutuhan steam pada unit heater sebesar 4,910 ton/jam. Hal ini tidak sesuai dengan kondisi aktual kebutuhan steam unit heater , yaitu sebesar 5 ton/jam. Jumlah uap yang keluar dari unit heater secara perhitungan lebih kecil dengan kondisi aktual kebutuhan steam yang ada di lapangan. Tujuan kebutuhan steam yang ada di lapangan lebih besar dibandingkan dengan kebutuhan steam secara perhitungan adalah memberikan kalor penguapan yang lebih sehingga penguapan dapat berlangsung baik.
BAB VI KESIMPULAN DAN SARAN
6.1 Kesimpulan
Kesimpulan yang dapat diambil dari pembahasan dan hasil perhitungan diatas, yaitu: 3
1. Jumlah uap yang keluar dari unit heater adalah 32,845 m /jam. 2. Terjadi penurunan jumlah uap dengan kondisi aktual sebesar 2,5%. 3. Kebutuhan steam yang dihasilkan sebesar 4,910 ton/jam.
6.2 Saran
1. Perlu dilakukan analisa lebih lanjut faktor-faktor yang menyebabkan penurunan jumlah uap yang keluar dari unit heater . 2. Sebaiknya dilakukan pemeriksaan dan pemeliharaan secara rutin terhadap unit heater agar tidak terjadi kebocoran pada unit ini. 3. Kebutuhan steam yang dipasok harus diimbangi dengan laju alir umpan yang masuk dengan tujuan agar penguapan terjadi sempurna.
169
DAFTAR PUSTAKA th
Perry, R.H & Green, D., Perry’s Chemical Engineering Handbook, 6 ed., Mc Graw-Hill Inc., 1984 Reklaitis, G.V., Introduction to Material and Energy Balance, John Wiley & Sons Inc., New York, 1983 Smith, J.M. & Van Ness, H.C., Introduction to Chemical Engineering th
Thermodynamics, 4 ed., Mc Graw-Hill Inc., New York, 1987, hal 123
170
LAMPIRAN CONTOH PERHITUNGAN
1. Menghitung Jumlah Uap yang Keluar dari Unit H eater
F= spgr × Q 3
3
= 1298 kg/m × 210 m /jam F = 272580 kg/jam 3
3
FH2SO4 =122,5 kg/m × 210 m /jam FH2SO4 =25725 kg/jam 3
3
FZnSO4 = 8,62 kg/m × 210 m /jam FZnSO4 = 1810,2 kg/jam 3
3
F Na2SO4= 305 kg/m × 210 m /jam F Na2SO4 = 64050 kg/jam = ×100%
%-wH2SO4 =
%-wH2SO4 = 9,4375% =
%-wZnSO4 =
%-wZnSO4 = 0,06640% Asumsi: L=100000 kg/jam F= L+V L=F-V.................................................................................... (1) Neraca Massa Komponen H2O:
.................................................(2) Subtitusikan (1) ke persamaan (2) sehingga didapatkan persamaan:
171