BASIC STATISTICAL PROCEDURES and TABLES Tenth Edition © 2001
P. Cabilio and J. Masaro
BASIC STATISTICAL PROCEDURES and TABLES
by Paul Cabilio and Joe Masaro Department of Mathematics and Statistics ACADIA UNIVERSITY
Tenth Edition 2001
i
ii
Basic Statistical Procedures and Tables
INTRODUCTION
This booklet is a summary of those fundamental statistical methods and associated tables that a student is likely to see in a general statistics course. While not a textbook, it may be used in conjunction with any textbook or set of notes that an instructor might select for such a course. In addition, it may serve as a useful reference handbook for any user of statistical methods. We have developed this handbook o ver many years of teaching introductory statistics to students in various disciplines and at various levels. In the experience of the authors it has proved to be a very efficient way of encapsulating the large variety of techniques available to the student. Every attempt has been made to make this booklet as convenient as possible for the user. On each page of the first part, headed Statistical Inference, the reader will find step-by -step instructions on how to conduct a particular statistical procedure. The layout in general is as follows.
• • • • • • • •
TITLE of the page names the procedure, and below it appears a table with various subheadings. ASSUMPTION lists the assumptions. TEST STATISTIC details the variable to be calculated. HYPOTHESIS gives the alternative (research) hypothesis and, when clarity requires it, the null hypothesis. The α-level rejection region and the P-value, if appropriate. In each case, the reader is referred to the appropriate table in the second part of the booklet. 100(1-α)% confidence interval, where appropriate. NOTES following each procedure provide additional useful information such as when a normal approximation can be used, to sample size requirements for confidence intervals. MINITAB commands when available for the procedure.
The second part of the booklet contains the tables. These were selected with “ease of use” in mind; and in order to increase their usefulness as a reference, tables not usually found in undergraduate textbooks have also been included.
Paul Cabilio Joe Masaro
iii
Basic Statistical Procedures and Tables
iv
Basic Statistical Procedures and Tables
CONTENTS INFERENCE CONCERNING THE LOCATION OF A POPULATION One Sample T-test for the Population Mean µ ........................................................................ One Sample Sign Test for the Population Median M............................................................... One Sample Wilcoxon Signed Rank Test (WSRT) for the Population Median M....................
3 4 5
INFERENCE CONCERNING SYMMETRY AND NORMALITY Sk-test for Asymmetry.............................................................................................................. Normal Scores Test for Non-Normality.................................................................................... Procedure for Determining the Proper Test of Location and/or the Associated Confidence Interval..............................................................................
6 6 7
INFERENCE CONCERNING THE LOCATION OF TWO POPULATIONS PAIRED SAMPLE DESIGN Paired T-test for the Population Mean µd................................................................................. Paired Sign Test for the Population Median Md....................................................................... Paired Wilcoxon Signed Rank Test (WSRT) for the Population Median Md............................
8 9 10
INDEPENDENT SAMPLE DESIGN Two Sample Pooled T-test for µX - µY...................................................................................... Two Sample Unpooled T-test for µX - µY.................................................................................. Two Sample Approximate Z-test for µX - µY............................................................................. Mann-Whitney-Wilcoxon Test (MWWT) for M X - MY................................................................
11 12 13 14
INFERENCE CONCERNING POPULATION VARIANCES 2
Test about a Population Varianceσ ...................................................................................... 2
2
Test Comparing Two Population Variances σ X and σ Y .......................................................
15 16
INFERENCE CONCERNING POPULATION PROPORTIONS Test about a Population Proportion p...................................................................................... Approximate Z-test Comparing Two Independent Population Proportions pX and pY.............. Fisher's Exact Test Comparing Two Independent Population Proportions pX and pY..............
17 18 19
ANALYSIS OF CATEGORICAL DATA Chi-Square Test for Goodness of Fit....................................................................................... Chi-Square Test for Independence.......................................................................................... Chi-Square Test for Homogeneity...........................................................................................
20 21 22
COMPLETELY RANDOMIZED DESIGN One-Way ANOVA: Fixed Effects, Normal Model..................................................................... Multiple Comparison Confidence Intervals for µi - µ j based on the One-Way ANOVA for a Completely Randomized Design, Fixed Effects Normal Model.......................... Newman-Keuls Multiple Range Procedure for the Comparison of k means µ1, µ2, ..., µk........ Kruskal-Wallis Test (KW-test).................................................................................................. Multiple Comparison Procedures based on the Kruskal-Wallis Test.......................................
v
23 24 25 26 27
Basic Statistical Procedures and Tables
CONTENTS (continued) RANDOMIZED COMPLETE BLOCK DESIGN Randomized Complete Block Design for the Comparison of k Treatments within b Blocks of Size k: Fixed Effects, Normal Model........................................................... 28 Multiple Comparison Confidence Intervals for µi. - µ j. based on the Two-Way ANOVA 29 for a Randomized Complete Block Design, Fixed Effects, Normal Model............................... Friedman Test.......................................................................................................................... 30 Multiple Comparison Procedures based on the Friedman Test............................................... 31 TWO-FACTOR FACTORIAL DESIGN: EQUAL NUMBERS PER CELL Two-Factor Factorial Design: Equal Numbers per Cell, Fixed Effects, Normal Model............ Multiple Pairwise Comparison Confidence Intervals based on the Two-Way ANOVA for a Two-Factor Factorial Design: Equal Numbers per Cell, Fixed Effects, Normal Model....
32 33
SIMPLE LINEAR REGRESSION AND CORRELATION Simple Linear Regression........................................................................................................ Test about the Population Correlation Coefficient: ρ Procedure for Testing H a: ρ < 0, ρ > 0, ρ ≠ 0........................................................................... Test about the Population Correlation Coefficient: ρ Procedure for Testing H a: ρ < ρ0, ρ > ρ0, ρ ≠ ρ0 where ρ0 ≠ 0.................................................. Kendall's Rank Correlation Coefficient: τ................................................................................. Spearman's Rank Correlation Coefficient: ρS..........................................................................
34 35 36 37 38
TABLES Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25
Cumulative Binomial Probabilities: P(X ≤ x)............................................................ Cumulative Poisson Probabilities: P(X ≤ x)............................................................. Standard Normal: P(X ≤ x)...................................................................................... Upper Critical Values of Student's T-distribution..................................................... Exact Confidence Intervals for a Population Proportion p...................................... Distribution of the Sign Test Statistic: P(X ≤ x), X ~ Bin(n, .5)............................... Wilcoxon Signed-Rank Distribution: P(V ≤ v).......................................................... Mann-Whitney-Wilcoxon Distribution: P(W ≤ w)..................................................... Upper Critical Values of the Chi-Square Distribution.............................................. Upper Critical Values of the F-distribution with (ν1, ν2) df....................................... Critical Values for the Sk-test for Asymmetry......................................................... Critical Values for the Normal Scores Test for Non-Normality................................ Upper Critical Values for the Kruskal Wallis Test................................................... Upper Critical Values for the Friedman Test........................................................... Bonferroni Critical Values....................................................................................... Upper Critical Values for the Studentized Range: qα(r, ν)...................................... Critical Values dα for Multiple Comparisons based on the Kruskal-Wallis Test...... Critical Values eα for Multiple Comparisons based on the Friedman Test.............. ) Upper Critical Values for Kendall's Rank Correlation Coefficient τ ....................... Upper Critical Values for Spearman's Rank Correlation Coefficient RS.................. Sample Size for the T-test...................................................................................... Sample Size for the Pooled T-test.......................................................................... Sample Size for the One-Way ANOVA, Fixed Effects, Normal Model.................... Table of Pseudo-random Permutations of Size 9................................................... Table of Pseudo-random Digits..............................................................................
Acknowledgements..................................................................................................................
vi
41 47 48 52 53 56 57 61 65 66 70 70 71 73 74 77 80 81 82 83 84 86 88 90 91 93
Basic Statistical Procedures and Tables
STATISTICAL INFERENCE
1
Basic Statistical Procedures and Tables
2
Basic Statistical Procedures and Tables
One Sample T-test for the Population Mean
Assumption
A simple random sample of size n is chosen from a normal distribution; if n is large the normality assumption is not required.
T =
Test Statistic
X − µ 0 SE
, SE =
s n
; df = n − 1
t0 is the observed value of T
Ha
µ < µ0
µ > µ0
µ ≠ µ0
Reject H0 if (Table 4)
t0 ≤ -tα
t0 ≥ tα
|t0| ≥ tα/2
P(T ≤ t0)
P(T ≥ t0)
2P(T ≥ |t0|)
P-value
= P(T ≥ -t0)
100(1- )% CI for Notes:
X
±
t α / 2 SE
(a) For df > 100 use df = ∞, tα = zα and replace T by Z to calculate the approximate P-value from Table 3. (b) To estimate µ with Error Bound E and Confidence Level (Reliability) 100(1 - α)% use
z σ ˆ n = α /2 E
2
rounded up to the next whole number
where σˆ is a prior estimate of σ. Minitab:
Place the sample in column c1. For the T-test and/or CI, click Stat > Basic Statistics > 1-Sample t... Insert c1 in the Variables box then type in the appropriate Test mean ( µ0). Then click the Options... button and select the desired options.
3
Basic Statistical Procedures and Tables
One Sample Sign Test for the Population Median M
Assumption
Test Statistic
Ha
P-value (Table 6)
Notes:
A simple random sample is chosen from an arbitrary distribution
X x+ xn'
= = = = =
the number of xi > M0 the observed value of X the observed number of xi < M0 x+ + xn - (the observed number of xi = M0)
M < M0
M ≠ M0
M > M0
P(X ≤ x+)
P(X ≥ x+)
2P(X ≤ a)
= P(X ≤ x-)
a = min(x+, x-)
(a) For n' not in Table 6 (i.e. n' > 30) use the normal approximation to find the P-value.
P ( X ≤ x) ≈ P Z ≤
x + .5 − n' (.5) n' (.25)
(b) For values of x exceeding those in Table 6 use P ( X ≤ x) = 1 − P ( X ≤ n' − x − 1)
Minitab:
Place the sample in column c1. For the Sign Test and/or CI, click Stat > Nonparametrics > 1-Sample Sign... Insert c1 in the Variables box then type in the appropriate Test median (M 0) and select the Alternative. For a CI, select the Confidence interval option.
4
Basic Statistical Procedures and Tables
One Sample Wilcoxon Signed Rank Test (WSRT) for the Population Median M
Assumption
A simple random sample is chosen from a symmetric distribution
Let di = xi - M0 and n' = the number of non-zero di Test Statistic
Ha
V = the sum of the ranks of |di| for which d i > 0 v+ = the observed value of V v- = the sum of the ranks of |di| for which d i < 0 = n'(n'+1)/2 - v+
M < M0
P-value (Table 7)
Notes:
After throwing out all di = 0, let
M ≠ M0
M > M0
P(V ≤ v+)
P(V ≥ v+)
2P(V ≤ a)
= P(V ≤ v-)
a = min(v+, v-)
(a) Even for normal data when the T-test is superior, the performance of the WSRT is almost as good, and may be much better when the population is not normal. (b) For n' not in Table 7 (i.e. n' > 20) use the normal approximation to calculate the P-value.
P (V ≤ v) ≈ P Z ≤ (c)
4 n' ( n' + 1)(2n' + 1) 24
v + .5 −
For values of v exceeding those in Table 7 use
P (V ≤ v) = 1 - P V ≤
Minitab:
n' (n' + 1)
n ′ ( n ′ + 1) 2
-v -1
Place the sample in column c1. For the Wilcoxon Test and/or CI, click Stat > Nonparametrics > 1-Sample Wilcoxon... Insert c1 in the Variables box then type in the appropriate Test median (M0) and select the Alternative. For a CI, select the Confidence interval option.
5
Basic Statistical Procedures and Tables
Sk-test for Asymmetry
Assumption
Test Statistic
A simple random sample is chosen from an arbitrary distribution
Sk =
X − m SE
, SE =
s n
sk0 is the observed value of Sk
H0: SCFSD (the Sample Comes From a Symmetric Distribution) Ha: SDNCFSD (the Sample Does NOT Come From a Symmetric Distribution)
Reject H0 if (Table 11)
|sk0| ≥ skα/2
P-value
2P(Sk ≥ |sk0|)
Note:
For n > 30, one may use critical values for n = ∞. In this case the test will be conservative i.e. the exact significance level will be lower than the nominal level.
Normal Scores Test for Non-Normality
Assumption
A simple random sample is chosen from an arbitrary distribution
H0: SCFND (the Sample Comes From a Normal Distribution) Ha: SDNCFND (the Sample Does NOT Come From a Normal Distribution)
1. Place the sample in column c1 2. Click Stats > Basic Statistics > Normality Test... 3. Insert c1 in the Variable Box and under Tests for Normality click Ryan-Joiner 4. Click OK and use the P-value obtained from the output to conduct the test Alternatively, one may place the normal scores in column c2 (MTB > nsco c1 c2), calculate the correlation coefficient r (MTB > corr c1 c2), then Reject Ho if r r , where r α is obtained from Table 12.
6
Basic Statistical Procedures and Tables
Procedure for Determining the Proper Test of Location and/or the Associated Confidence Interval
T1: Sk-Test for Asymmetry [ H 0: SCFSD, H a: SDNCFSD;
α = .10 ]
∗
T2: Normal Scores Test for Non-Normality [ H0: SCFND, H a: SDNCFND;
α = .10 ]
STEP I NEITHER test is significant (i.e. neither rejects H 0 )
T1 rejects H0 OR T2 rejects H0
Inconclusive
The T-test is NOT appropriate
Examine the
Examine the
FIRST INDICATION
i) boxplot ii) histogram iii) stem and leaf plot
STEP II
Draw the appropriate conclusion from the choices below
CONCLUSION
SELECTED TEST/CI
i) boxplot ii) histogram iii) stem and leaf plot
Draw the appropriate conclusion from the choices below
SCF a Bell-Shaped probably Normal Distribution
SCF a Symmetric, not BellShaped Non-Normal Distribution
SCF a NonSymmetric Distribution
SCF a NonSymmetric Distribution
SCF a Symmetric Non-Normal Distribution (possibly BellShaped)
T-test / CI
WSRT / CI
Sign Test / CI
Sign Test / CI
WSRT / CI
∗
The nominal level of significance (in this case α = .10) for the Sk-Test for Asymmetry is approximate. The test maintains the nominal level of significance quite well over a wide selection of distributions including the normal distribution. However for some symmetric distributions (notably the Uniform, others in the Beta family, and the Cauchy) the nominal significance level underestimates the true significance level. For this reason, when the Sk-Test rejects H0, the procedure above views this as sufficient evidence to conclude the sample is not normally distributed ("FIRST INDICATION") but suspends judgement on the symmetry of the sample until "STEP II" has been completed.
7
Basic Statistical Procedures and Tables
Paired T-test for the Population Mean
Assumption
d
A simple random sample of paired observations (xi,yi), i = 1,2, . . . n is chosen whose differences di = xi - yi form a simple random sample from a normal distribution; if n is large the normality assumption is not required.
T =
d − D0 SE
Test Statistic
, SE =
s d
; df = n − 1
n
t0 is the observed value of T Ha
µd < D0
µd > D0
µd ≠ D0
Reject H0 if (Table 4)
t0 ≤ -tα
t0 ≥ tα
|t0| ≥ tα/2
P(T ≥ t0)
2 P(T ≥ |t0|)
P-value
P(T ≤ t0) = P(T ≥ -t0)
100(1- )% CI for d
d
±
t α / 2 SE
Note:
For df > 100 use df = ∞, tα = zα and replace T by Z to calculate the approximate P-value from Table 3.
Minitab:
Place the x-values in column c1 and the corresponding y-values in column c2. Then put the differences di = xi - yi in column c3: MTB > let c3 = c1 - c2 For the Paired T-test and/or CI, click Stat > Basic Statistics > 1-Sample t... Insert c3 in the Variables Variables box then type in the appropriate Test mean (D mean (D0). Then click the Options... button Options... button and select the desired options.
8
Basic Statistical Procedures and Tables
Paired Sign Test for the Population Population Median Md
Assumption
A simple random sample of paired observations (xi,yi), i = 1,2, . . . n is chosen whose differences di = xi - yi form a simple random sample from an arbitrary distribution Let di = xi - yi
Test Statistic
Ha
P-value (Table 6)
Notes:
X x+ xn'
= = = = =
the number of di > D0 the observed value of X the observed number of di < D0 x+ + xn - (the observed number number of di = D0)
Md < D0
Md > D0
Md ≠ D0
P(X ≤ x+)
P(X ≥ x+)
2P(X ≤ a)
= P(X ≤ x-)
a = min(x+, x-)
(a) For n' not in Table 6 (i.e. n' > 30) use the normal approximation to find the P-value.
P ( X ≤ x ) ≈ P Z ≤
x + .5 − n' (.5) n' (.25)
(b) For values of x exceeding those in Table 6 use P ( X ≤ x ) = 1 − P ( X ≤ n' − x − 1)
Minitab:
Place the x-values in column c1 and the corresponding y-values in column c2. Then put the differences di = xi - yi in column c3: MTB > let c3 = c1 - c2 For the Paired Sign Test and/or CI, click Stat > Basic Statistics > 1-Sample Sign... Insert c3 in the Variables Variables box then type in the appropriate Test median (D0) and select the Alternative. Alternative. For a CI, select the Confidence interval option. option.
9
Basic Statistical Procedures and Tables
Paired Wilcoxon Signed Rank Test (WSRT) for the Population Median Md
Assumption
A simple random sample of paired observations (xi,yi), i = 1,2, . . . n is chosen whose whose differences di = xi - yi form a simple random sample from a symmetric distribution Let di = (xi - yi) - D0 and n' = the number of non-zero di After throwing out all di = 0,
Test Statistic
V = the sum of the ranks of |di| for which d i > 0 v+ = the observed value of V v- = the sum of the ranks of |di| for which d i < 0 = n'(n'+1)/2 - v+
Ha
P-value (Table 7)
Notes:
Md < D0
Md > D0
P(V ≤ v+)
P(V ≥ v+)
2P(V ≤ a)
= P(V ≤ v-)
(a)
(b)
a = min(v+, v-)
For n' not in Table Table 7 (i.e. n' > 20) use the normal approximation to calculate the P-value.
P (V ≤ v) ≈ P Z ≤
4 n' ( n' + 1)(2n' + 1) 24
v + .5 −
n' ( n' + 1)
For values of v exceeding those those in Table 7 use
P (V ≤ v) = 1 - P V ≤
Minitab:
Md ≠ D0
n ′ ( n ′ + 1) 2
-v -1
Place the x-values in column c1 and the corresponding y-values in column c2. Then put the differences di = xi - yi in column c3: MTB > let c3 = c1 - c2 For the Paired WSRT and/or CI, click Stat > Nonparametrics > 1-Sample Wilcoxon... Insert c3 in the Variables box Variables box then type in the appropriate Test median (D0) and select the Alternative. Alternative. For a CI, select the Confidence interval option. option.
10
Basic Statistical Procedures and Tables
Two Sample Pooled T-test for
Assumption
Y
Two independent simple random samples are chosen from normal distributions with equal variances σ 2X = σ 2Y
T =
Test Statistic
X -
s p2
( X − Y ) − D0
=
SE p
( n X
,
SE p
=
s p2
2 − 1) s X + (nY − 1) sY 2 n X + nY − 2
1
n X
;
+
1
nY
df = n X
+ nY − 2
t0 is the observed value of T Ha
µX - µY < D0
µX - µY > D0
µX - µY ≠ D0
Reject H0 if (Table 4)
t0 ≤ -tα
t0 ≥ tα
|t0| ≥ tα/2
P(T ≤ t0)
P(T ≥ t0)
2P(T ≥ |t0|)
P-value
= P(T ≥ -t0)
100(1 - )% CI for X - Y
Minitab:
X − Y
±
t α / 2 SE p
Place both the x- and y-samples in column c1 with subscripts in c2 OR place the x-sample in column c1 and the y-sample in column c2. For the Pooled T-test and/or CI, click Stat > Basic Statistics > 2-sample t... Select Samples in one column OR Samples in different columns whichever is appropriate and insert c1 and c2 in the appropriate boxes. Select the Assume equal variances option. Click the Options... button, type in the appropriate Test mean (D0) if conducting a test, and select the desired options.
11
Basic Statistical Procedures and Tables
Two Sample Unpooled T-test for
Assumption
Y
Two independent simple random samples are chosen from normal distributions (no assumptions regarding
T =
Test Statistic
X -
( X − Y ) − D0
df =
SE
(
2 s X / n X
(
2 s X / n X
n X
,
2 s X
SE =
n X
+ sY 2 / nY )
)
2
−1
2
( s +
2 Y
/ nY
nY
)
2
;
2 X and
σ
+
2 Y
σ
are required)
2 s Y
nY
Rounded DOWN to a whole number
−1
t0 is the observed value of T Ha
µX - µY < D0
µX - µY > D0
µX - µY ≠ D0
Reject H0 if (Table 4)
t0 ≤ -tα
t0 ≥ tα
|t0| ≥ tα/2
P(T ≤ t0)
P(T ≥ t0)
2P(T ≥ |t0|)
P-value (Table 4)
= P(T ≥ -t0)
100(1 - )% CI for X - Y
X − Y
±
t α / 2 SE
Note:
The nominal level of significance for this test is approximate.
Minitab:
Place both the x- and y-samples in column c1 with subscripts in c2 OR place the x-sample in column c1 and the y-sample in column c2. For the Unpooled T-test and/or CI, click Stat > Basic Statistics > 2-sample t... Select Samples in one column OR Samples in different columns whichever is appropriate and insert c1 and c2 in the appropriate boxes. Make sure the Assume equal variances option is disabled. Click the Options... button, type in the appropriate Test mean (D0) if conducting a test, and select the desired options.
12
Basic Statistical Procedures and Tables
Two Sample Approximate Z-test for
Assumption
X -
Y
Two independent simple random samples are chosen from arbitrary distributions and both nX > 30 and nY > 30
Z =
Test Statistic
( X − Y ) − D0 SE
,
SE =
2 s X
n X
+
2 s Y
nY
z0 is the observed value of Z Ha
µX - µY < D0
µX - µY > D0
µX - µY ≠ D0
Reject H0 if (Table 4 at df = )
z0 ≤ -zα
z0 ≥ zα
|z0| ≥ zα/2
P(Z ≤ z0)
P(Z ≥ z0)
2 P(Z ≤ -|z0|)
P-value (Table 3)
= 1 - P(Z ≤ z0)
100(1 - )% CI for X - Y Minitab:
[ X − Y ] ± z α / 2 SE
The same commands used for the Two Sample Unpooled T-test will give a reasonable approximation of the Two Sample Approximate Z-test. Place both the x- and y-samples in column c1 with subscripts in c2 OR place the x-sample in column c1 and the y-sample in column c2. For the Two Sample Approximate Z-test and/or CI, click Stat > Basic Statistics > 2-sample t... Select Samples in one column OR Samples in different columns whichever is appropriate and insert c1 and c2 in the appropriate boxes. Make sure the Assume equal variances option is disabled. Click the Options... button, type in the appropriate Test mean (D0) if conducting a test, and select the desired options.
13
Basic Statistical Procedures and Tables
Mann-Whitney-Wilcoxon Test (MWWT) for MX - M Y
Assumption
Two independent simple random samples are chosen from distributions of the same shape Let:
Test Statistic
(xi) be the sample with the fewest observations (yi) be the sample with the most observations y'i = yi + D0
Rank the combined x- and y'-samples and let W = the sum of the ranks of the x-sample wX = the observed value of W wX* = nX(nX + nY + 1) - w X
Ha
MX - MY < D0
P-value (Table 8)
Notes:
MX - MY ≠ D0
MX - MY > D0
P(W ≤ wX)
P(W ≥ wX) = P(W ≤ wX*)
2 P(W ≤ a), a = min(wX, wX*)
(a) Even for normal data when the Pooled T-test is superior, the performance of the MWWT is almost as good, and may be much better when the populations are not normal. (b) For nX and nY not in Table 8 and both nX and nY > 10 use the normal approximation to calculate the P-value.
P (W ≤ w) ≈ P Z ≤
+ nY + 1) 2 n X nY ( n X + nY + 1) 12
w + .5 −
n X ( n X
(c) For values of w exceeding those in Table 8 use P (W ≤ w) = 1 − P (W ≤ n X (n X
Minitab:
+ nY + 1) − w − 1)
Place the x-sample in column c1, the y-sample in column c2, and the y'-sample in c3: MTB > let c3 = c2 + D0 For the Mann-Whitney-Wilcoxon Test and/or CI, click Stat > Nonparametrics > Mann-Whitney... For the test, use columns c1 and c3 as the First and Second Samples; for the CI use columns c1 and c2. Then select the Alternative and Confidence level .
14
Basic Statistical Procedures and Tables
Test about a Population Variance
Assumption
σ
2
A simple random sample is chosen from a normal distribution
χ
Test Statistic
2
=
(n − 1) S 2 σ 02
df = n − 1
,
2
χ 0 is the observed value of χ
σ 2 < σ 02
Ha
σ 2 > σ 02
2
σ 2 ≠ σ 02 2
Reject H0 if (Table 9)
P-value
2 χ 0
≤
χ 12− α
2 χ 0
≥
χ 0
2 χ α
or χ 02
PL = P( χ 2
≤ χ 02 )
PU = P( χ 2 ≥ χ 02 )
(n − 1)S 2 χ α 2 / 2
Notes:
,
(n − 1) S 2 χ 12− α / 2
(a) To calculate P( χ 2 ≤ x) for 'a' df on Minitab use: MTB > cdf x; SUBC > chis a. (b) To calculate χ α 2 for 'a' df on Minitab use: MTB > invcdf 1- ; SUBC > chis a.
15
≥ χ α 2 / 2
2 min(PL, PU)
= 1 - PL
100(1 - )% CI for σ 2
≤ χ 12− α
Basic Statistical Procedures and Tables
Test Comparing Two Population Variances
Assumption
2 Y
σ
Two independent simple random samples are chosen from normal distributions
Test Statistic
F =
2
Ha
2 S X
S Y 2
F0 is the observed value of F
,
2
2
σ X < σ Y
Reject H0 if (Table 10)
2 X and
σ
F 0
≤
1 F α (nY
− 1, n X − 1)
σ X ≠ σ Y
2
2
σ X > σ Y
F 0 F 0
≥ F α ( n X − 1, nY − 1)
≤
1 F α / 2 (nY
P-value
PU = P(F ≥ F0)
df = (nX - 1, nY - 1)
= 1 - PL
− 1, n X − 1) or
F 0 ≥ F α / 2 (n X
PL = P(F ≤ F0)
2
− 1, nY − 1)
2 min(PL, PU)
df = (nX - 1, nY - 1)
100(1 - )% CI for
2 σX
Notes:
/
2 σ Y
2 S X 1 S 2 F α / 2 (n X − 1, nY − 1) , Y
2 S X 2
S Y
F α / 2 ( nY
− 1, n X − 1)
(a) To calculate P(F ≤ x) for df = (a,b) on Minitab use: MTB > cdf x; SUBC > f a b. (b) To calculate Fα , df = (a,b), on Minitab use: MTB > invcdf 1- ; SUBC > f a b.
Minitab:
Place both the x- and y-samples in c1 with subscripts in c2 OR place the x-sample in c1 and the y-sample in c2. For a two sided test, click Stat > Basic Statistics > 2 Variances..., select the appropriate data format. Then click the Options... button and select the desired options. Both the F-test and Levene's Test are conducted.
16
Basic Statistical Procedures and Tables
Test about a Population Proportion p
Assumption Test Statistic
X = the number of successes in the n trials x0 = the observed value of X p < p0
Ha
P-value (Table 1: n, po)
'Exact' 90%, 95%, 99% CI's for p
Approximate Large Sample 100(1 - )% CI for p Notes:
A binomial experiment with n trials and probability of success p (unknown) is performed
p ≠ p0
p > p0
PL = P(X ≤ x0)
PU = P(X ≥ x0)
2 min(PL, PU)
= 1 - P(X ≤ x0 -1)
Unless p0 = .5, this P-value is approximate
For 5 ≤ n ≤ 20, these can be found in Table 5
pˆ
± z α / 2 SE ;
SE =
pˆ qˆ n
, pˆ =
x 0 n
, qˆ = 1 − pˆ
(valid if both x0 ≥ 5 and n – x0 ≥ 5)
(a) For n or p0 not in Table 1 and such that both np0 ≥ 5 and nq0 ≥ 5, use the normal approximation to calculate the P-value.
P ( X ≤ x) ≈ P Z ≤
x + .5 − np 0 np 0 q 0
(c) To estimate p with Error Bound E and Confidence Level (Reliability) 100(1 - α)% use 2 ~ if a prior estimate p of p z α / 2 ~ ~ n = pq is available E
z n = (.25) α / 2 E
2
if no prior estimate of p is available
The value obtained is rounded up to the next whole number.
Minitab:
Click Stat > Basic Statistics > 1 Proportion..., select the appropriate data format and insert the required information. Then click the Options... button and select the desired options.
17
Basic Statistical Procedures and Tables
Approximate Z-test Comparing Two Independent Population Proportions pX and p Y
Independent Bin(nX, pX) and Bin(nY, pY) experiments are performed with nX and nY large enough so that the number of successes and failures in each experiment is at least 5
Assumption
Z = pˆ X
Test Statistic
pˆ X
− pˆ Y
SE p
=
X
;
, pˆ Y
n X
SE p
=
Y nY
=
1
pˆ (1 − pˆ )
n X
, pˆ =
+
1
nY
X + Y n X
+ nY
X and Y are the number of successes in each of the binomial experiments When pX = pY, pˆ is a "pooled" estimate for p X = pY z0 is the observed value of Z
Ha Reject H0 if (Table 4 at df =
)
P-value (Table 3)
pX - pY < 0
pX - pY > 0
pX - pY ≠ 0
z0 ≤ -zα
z0 ≥ zα
|z0| ≥ zα/2
P(Z ≤ z0)
P(Z ≥ z0)
2 P(Z ≤ -|z0|)
= 1 - P(Z ≤ z0)
Large Sample 100(1 - )% CI for pX - p Y Note:
( pˆ X − pˆ Y ) ± z α / 2 SE ;
SE =
pˆ X qˆ X n X
+
pˆ Y qˆ Y nY
One may also test: Ha : pX – pY < p0 , pX – pY > p0 or pX – pY ≠ p0 using the test statistic Z =
( pˆ X − pˆ Y ) − p 0 SE
;
SE =
pˆ X qˆ X n X
+
pˆ Y qˆ Y nY
and the same rejection rules as above. Minitab:
Click Stat > Basic Statistics > 2 Proportions..., select the appropriate data format and insert the required information. Then click the Options... button and select the desired options.
18
Basic Statistical Procedures and Tables
Fisher's Exact Test Comparing Two Independent Population Proportions pX and p Y
Assumption
Independent Bin(nX, pX) performed
and
Bin(nY, pY)
experiments are
x0 = the observed number of successes in the x-sample y0 = the observed number of successes in the y-sample n = nX,
M = x0 + y0,
N = nX + nY
Let H be the hypergeometric (n, M, N) random variable and use H to calculate the appropriate P-value as indicated below Conditional Test Statistic Remark : If X and Y are independent Bin(n X, p X) and Bin(nY, p Y) random variables then, under the null hypothesis pX = pY, the distribution of X given X + Y = M is hypergeometric (n, M, N). Thus P(H ≤ x0) and P(H ≥ x0) are the conditional (null) probabilities of observing outcomes as extreme or more extreme than what was actually observed (i.e. they are Pvalues). Ha
pX - pY < 0
pX - pY > 0
pX - pY ≠ 0
P-value
PL = P(H ≤ x0)
PU = P(H ≥ x0)
2 min(PL, PU) (approximately)
Calculation of the P-value using Minitab (a) PL = P(H x0) 1. Click Calc > Probability Distributions > Hypergeometric... 2. Choose Cumulative probability and enter the values for - Population size (N), - Successes in the population (M, which Minitab calls X), - Sample size (n) 3. Choose Input constant , enter the value of x0 and under Optional storage 4. Click OK and type the command MTB > prin k1 Then PL = k1.
(b) PU = P(H x0) Repeat steps 1. to 4. in (a) with x0 replaced by x0 - 1 in step 3. and obtain a new value for 'k1'. Then PU = 1 - k1.
19
Basic Statistical Procedures and Tables
Chi-Square Test for Goodness of Fit
Assumption
Test Statistic
A multinomial experiment is performed: a single random sample of size n is chosen from a single population and classified according to k categories
χ 2
=
∑
(Oi − E i )2 E i
, E i
= npio
2
2
χ 0 is the observed value of χ
p1 = p1o, p2 = p2o ,. . . . . . , p k = pko H0 [ p1o + p2o + . . . + p ko = 1 ] Ha
At least one value of pi in H0 is incorrect 2
Reject H0 if (Table 9)
χ 0
df = k - 1 - [the number of free parameters estimated] P( χ 2 ≥ χ 02 )
P-value
Notes:
≥ χ α 2
(a) The nominal level of significance for this test is approximate. The approximation will be adequate if all E i are ≥ 5. (b) If some Ei are < 5, categories (cells) can be combined (pooled) so that each of the new categories has E i ≥ 5.
20
Basic Statistical Procedures and Tables
Chi-Square Test for Independence
Assumption
Test Statistic
A multinomial experiment is performed: a simple random sample of size n is chosen from a single population and crossclassified according to 'r' row and 'c' column categories
χ
2
=
∑
(Oij − E ij )2 E ij
, E ij
2
=
χ 0 is the observed value of χ
n 2
H0
Row and column categories are independent
Ha
Row and column categories are dependent
Reject H0 if (Table 9)
2
χ 0
≥ χ α 2 , df = (r - 1)(c - 1) P( χ 2
P-value
Notes:
r i c j
≥ χ 02 )
(a) The nominal level of significance for this test is approximate. The approximation will be adequate if all Eij are ≥ 5. (b) If some Eij are < 5, categories (cells) can be combined (pooled) so that each of the new categories has E ij ≥ 5.
Minitab:
Place the column entries of the contingency table in columns c1, c2 ..., then click Stat > Tables > Chi-Square Test... Insert c1, c2, ... in the Columns containing the table box.
21
Basic Statistical Procedures and Tables
Chi-Square Test for Homogeneity
Assumption
Test Statistic
Several independent multinomial experiments are performed: simple random samples are chosen from each of 'c' independent populations and each sample is classified according to the same 'r' categories
χ
2
=
∑
(Oij − E ij )2 E ij
, E ij
2
=
χ 0 is the observed value of χ
n 2
H0
The populations are homogeneous with respect to each of the 'r' categories
Ha
The populations are not homogeneous with respect to the 'r' categories
Reject H0 if (Table 9)
2
χ 0
≥ χ α 2 , df = (r - 1)(c - 1) P( χ 2 ≥ χ 02 )
P-value
Notes:
r i c j
(a) The nominal level of significance for this test is approximate. The approximation will be adequate if all E ij are ≥ 5. (b) If some Eij are < 5, categories (cells) can be combined (pooled) so that each of the new categories has E ij ≥ 5.
Minitab:
Place the column entries of the contingency table in columns c1, c2 ..., then click Stat > Tables > Chi-Square Test... Insert c1, c2, ... in the Columns containing the table box.
22
Basic Statistical Procedures and Tables
One-Way ANOVA: Fixed Effects, Normal Model
The data arise as 'k' independent simple random samples from 'k' 2 normal distributions with equal variances σ Assumption
Yij =
µ + τi + εij = µi + εij th
th
Yij is the j observation from the i sample
µ is a constant , τi is the ith 'treatment effect', Σ τi = 0 µi = µ + τi is the mean of the ith distribution εij are independent N(0, σ2) , i = 1, 2, . . . , k; j = 1, 2, . . . , n i
Test Statistic
th
ni
= the size of the i sample
N
=
Σ ni th
y i. =
the mean of the i sample
y .. =
the grand mean
SSTr =
Σ ni ( y i. -
SSE
=
Σ (yij -
y i.)
SSTo =
Σ (yij -
y ..)
y ..)
2
2
2
Analysis of Variance Table Source of Variation
Null and Alternative Hypotheses
df
Sum of Squares
Treatments Error
k-1 N-k
SSTr SSE
Total
N-1
SSTo
H0:
Mean Square MS = SS/df MSTr MSE
F0 = MSTr/MSE
µ1 = µ2 = . . . = µk [or τ1 = τ2 = . . . = τk = 0]
Ha: not all
µi are equal [or not all τi = 0]
Reject H0 if (Table 10)
F0 ≥ Fα ; df = (k-1, N-k)
P-value
P(F ≥ F0)
Minitab:
F = MS/MSE
Place all the data values in column c1 and their corresponding treatment levels in column c2, then click Stat > ANOVA > Oneway... Insert c1 in the Response box and c2 in the Factor box.
23
Basic Statistical Procedures and Tables
Multiple Comparison Confidence Intervals for i - j based on the One-Way ANOVA for a Completely Randomized Design , Fixed Effects, Normal Model
Let: k = the number of groups (treatments) th ni = the sample size of the i group N = the combined sample size µi = the true ith treatment mean th
y i. = the sample mean for the i treatment
1 - α = the nominal family level of confidence
[ y i⋅ − y j⋅ ] ± B
1 ni +
MSE
Bonferroni Procedure
1
n j
B = t α / 2 g , df = N − k , is obtained from Table 15 g = the number of pairwise comparisons
[ yi⋅ − y j⋅ ] ±
1 ni +
T MSE
Tukey Procedure T = qα (k , N − k )
1
n j
2
qα (k , N − k ) is obtained from Table 16
Notes:
(a) If all k(k-1)/2 pairwise comparisons are of interest the Tukey CI's will be narrower than the Bonferroni CI's. If not all pairwise comparisons are of interest the Bonferroni CI's may be narrower. One may tell which is narrower by comparing the size of B and T. (b) "Data snooping" is allowed with the Tukey Procedure but not with the Bonferroni Procedure. (c) The true family level of confidence for the Tukey Procedure is exactly the nominal level if all sample sizes are equal and all pairwise comparisons are of interest; in any other case the true level of confidence is greater than the nominal level. The true family level of confidence for the Bonferroni Procedure is always at least the nominal level.
Minitab:
Place all the data values in column c1 and their corresponding treatment levels in column c2, then click Stat > ANOVA > Oneway... Insert c1 in the Response box and c2 in the Factor box and click the Comparisons button.
24
Basic Statistical Procedures and Tables
Newman-Keuls Multiple Range Procedure for the Comparison of k Means 1, 2,..., k
Assumption
The assumptions for the one way anova normal model hold and in addition each of the k samples have the same sample size n and the null hypothesis H0 has been rejected
1. For r = 2, 3, ..., k, tabulate Dα
Procedure (Table 16)
= qα (r , k (n − 1) )
r
2
3
.
.
.
.
k
Dα
-
-
-
-
-
-
-
MSE n
:
≤ y (2) ≤ . . . . . ≤ y (k )
2.
List the k ordered sample means : y (1)
3.
For each group of r consecutive ordered means r = k, k-1, . . ., 2, compare the group's Range to Dα (a) If Range < Dα
[no significance]
Draw a line under this group of sample means and stop testing subgroups of this group* (b) If Range ≥ Dα
[significance]
Draw no line and continue testing subgroups of this group
4.
Notes:
When step 3. is finished for all r = k, k-1, . . ., 2, only those population means whose estimates are not connected by a line underneath are judged to be significantly different
*(a) Whenever a group of means is underlined, there is no point in comparing the range of any subgroup. By the credo of multiple range tests no subgroup within this group can be significant, since it is contained in a larger nonsignificant group. (b) For the NK procedure the family Type I error rate is at most a
1 - (1 - α)
where 'a' is the greatest integer ≤ k/2.
25
Basic Statistical Procedures and Tables
Kruskal-Wallis Test (KW-test)
Assumption
The data arise as 'k' independent simple random samples chosen from distributions of the same shape Rank the combined samples Let:
Test Statistic
ni = N = Ri = Ri =
th
the size of the i sample the combined sample size th the sum of the ranks of the i sample th the average of the ranks for the i sample H =
=
12 N ( N + 1)
∑
N + 1 ni Ri − 2 Ri2
12 N ( N + 1)
∑n
−
2
3( N + 1)
i
h0 is the observed value of H Null and Alternative Hypotheses
H0 : M1 = M2 = . . . = Mk
Reject H0 if (Table 13)
h0 ≥ hα
P-value
P(H ≥ h0)
Notes:
Ha : not all Mi are equal
(a) When the number of samples k = 2, the Kruskal-Wallis Test is equivalent to the two-sided Mann-Whitney Test. (b) When Table 13 is not applicable and k = 3 with all group sizes above 5 or k > 3 with all group sizes above 4, one may use the approximation: 2 hα ≈ χ α , df = k -1
Minitab:
Place all the data values in column c1 and their corresponding treatment levels in column c2 then click Stat > Nonparametrics > Kruskal-Wallis... Insert c1 in the Response box and c2 in the Factor box.
26
Basic Statistical Procedures and Tables
Multiple Comparison Procedures based on the Kruskal-Wallis Test Let: Mi k ni N Ri Ri
= = = = = =
th
the i treatment median the number of samples (treatments) th the sample size of the i sample the combined sample size th the sum of the ranks for the i sample th the average of the ranks for the i sample
α
= the nominal family type I error rate (or 1 - α = the nominal family level of confidence) Procedure 1:
Equal Sample Sizes, n i = n If Ri
− R j ≥ d α and Ri > R j
, conclude M i
> M j
If Ri
− R j ≥ d α and Ri < R j
, conclude M i
< M j
where d α is obtained from Table 17 Procedure 2:
Large Sample Approximation, Equal Sample Sizes ni = n, n Large Replace d α in procedure 1 by qα ( k , ∞)
nN ( N + 1) 12
where qα ( k , ∞) is obtained from Table 16 Procedure 3:
Conservative Procedure (always applicable)
If Ri
− R j ≥
hα
N ( N + 1) 1
If Ri
− R j ≥
hα
N ( N + 1) 1
12
12
ni ni
+ +
1
and Ri
> R j
, conclude M i
> M j
1
and Ri
< R j
, conclude M i
< M j
n j n j
where hα is obtained from Table 13 Procedure 4:
Large Sample Approximation , Unequal Sample Sizes Replace
hα in procedure 3 by z α / 2 g where g =
27
k (k − 1) 2
Basic Statistical Procedures and Tables
Randomized Complete Block Design for the Comparison of k Treatments within b Blocks of Size k: Fixed Effects, Normal Model
Yij =
µ + τi + β j + εij , where th
th
Yij = the observation under the i treatment and the j block Assumption
τi = treatment effects , Σ τi = 0 ; β j = block effects , Σ β j = 0 εij are independent N(0, σ2) , i = 1, 2, . . ., k; j = 1, 2, . . ., b th
SSTr = b Σ ( y i. - y ..)
y . j = the j block mean
th
SSBl = k Σ ( y . j - y ..)
y .. = the grand mean
SSE
y i. = the i treatment mean
2
2
= SSTo - SSTr - SSBl
SSTo = Test Statistic
Analysis of Variance Table Source of Variation
Null and Alternative Hypotheses
Σ (yij - y ..)2
Sum of Squares
df
Treatments k -1 Blocks b –1 Error (k -1)(b -1)
SSTr SSBl SSE
Total
SSTo
kb - 1
Mean Square MS = SS/df F = MS/MSE MSTr MSBl MSE
H0: there are no treatment effects :
τ1 = τ2 = . . . = τk = 0
Ha: there is a treatment effect : not all τi are 0
Reject H0 if (Table 10)
F0 ≥ Fα ; df = [k-1, (k-1)(b-1)]
P-value
P(F ≥ F0)
Minitab:
F 0 = MSTr/MSE
Place all the data values in column c1, their corresponding treatment levels and block numbers in columns c2 and c3 respectively, then click Stat > ANOVA > Twoway... Insert c1 in the Response box, c2 in the Row factor box and c3 in the Column factor box.
28
Basic Statistical Procedures and Tables
Multiple Comparison Confidence Intervals for i. - j. based on the Two-Way ANOVA for a Randomized Complete Block Design, Fixed Effects, Normal Model
Let:
k = the number of treatments b = the number of blocks τi = the ith treatment effect µi. = µi. = µ + τi , the true ith treatment mean th
y i. = the sample mean for the i treatment
1 - α = the nominal family level of confidence
[ yi⋅ − y j⋅ ] ± B Bonferroni Procedure
2 MSE b
B = t α / 2 g is obtained from Table 15 df = (k − 1)(b − 1), g = the number of pairwise comparisons
[ y i⋅ − y j⋅ ] ± Tukey Procedure
T =
T
2 MSE b
qα (k , (k − 1)(b − 1) ) 2
qα (k , (k − 1)(b − 1) ) is obtained from Table 16 Notes:
(a)
µi. - µ j. = τi - τ j
(b) If all k(k-1)/2 pairwise comparisons are of interest the Tukey CI's will be narrower than the Bonferroni CI's. If not all pairwise comparisons are of interest the Bonferroni CI's may be narrower. One may tell which is narrower by comparing the size of B and T. (c) "Data snooping" is allowed with the Tukey Procedure but not with the Bonferroni Procedure.
29
Basic Statistical Procedures and Tables
Friedman Test
Assumption
The data arises from a randomized complete block design for the comparison of 'k' treatments within 'b' blocks of size 'k' Rank the observations within each block Let:
Ri = the sum of the ranks received by the th observations under the i treatment th
Test Statistic
Ri = the average of the ranks under the i treatment S =
=
12b k ( k + 1)
∑
k + 1 Ri − 2
R bk (k + 1) ∑ 12
2 i
−
2
3b( k + 1)
s0 is the observed value of S Null and Alternative Hypotheses
H0: There is no difference between treatments
Reject H0 if (Table 14)
s0 ≥ sα
P-value
P(S ≥ s0)
Notes:
Ha: There is a difference between treatments
(a) When k and b fall outside the range of Table 14, the critical values 2 of S may be approximated by those of a χ distribution with df = k -1. This approximation is not always accurate. (b) Do not use the Friedman test when k = 2 as it is equivalent to the two-sided sign test in this case.
Minitab:
Place all the data values in column c1, their corresponding treatment levels and block numbers in columns c2 and c3 respectively, then click Stat > Nonparametrics > Friedman... Insert c1 in the Response box, c2 in the Treatment box and c3 in the Blocks box.
30
Basic Statistical Procedures and Tables
Multiple Comparison Procedures based on the Friedman Test
Let:
τi = the ith treatment effect k = the number of treatments b = the number of blocks th Ri = the sum of the ranks for the i treatment α = the nominal family type I error rate (or 1 - α = the nominal family level of confidence)
Procedure:
If Ri
− R j ≥ eα and Ri > R j
, conclude τ i
> τ j
If Ri
− R j ≥ eα and Ri < R j
, conclude τ i
< τ j
where eα is obtained from Table 18 Large Sample Approximation: For b large and beyond those values in Table 18,
Replace eα by qα (k , ∞)
bk ( k + 1) 12
is obtained from Table 16
31
, where qα (k , ∞)
Basic Statistical Procedures and Tables
Two-Factor Factorial Design: Equal Numbers per Cell, Fixed Effects, Normal Model
µ + αi + β j + (αβ)ij + εijk , where
Yijk
=
Yijk
= the k observation when factor A is at the i level
th
th
th
and factor B is at the j level Assumption
Σ αi = Σ β j = Σi (αβ)ij = Σ j (αβ)ij = 0 εijk are independent N(0, σ2) i = 1, 2, . . ., a; j = 1, 2, . . ., b; k = 1, 2, . . ., n SSA
= nb Σ ( y i.. - y ...)
2
SSE
SSB
= na Σ ( y . j. - y ...)
2
SSTo =
SSAB = n Σ ( y ij. - y i.. - y . j. + y ...)
Test Statistic
Notes:
=
Σ (yijk - y ij.)2 Σ (yijk - y ...)2
2
Analysis of Variance Table Source of Sum of Variation df
Mean Square Squares MS = SS/dfF F = MS/MSE
A B AB Error
a-1 b-1 (a-1)(b-1) ab(n-1)
SSA SSB SSAB SSE
Total
abn - 1
SSTo
MSA MSB MSAB MSE
MSA/MSE MSB/MSE MSAB/MSE
(a) If n = 1 (i.e. one observation per cell), one cannot test for interaction effects and so the interaction terms should be omitted from the model. (b) If n > 1, test for interaction effects first. (1) if interaction effects are present, transform the data (2) if interactions are still present return to the original data and examine the factor effects jointly (3) if no interactions are present test for the main effects and if they are present examine them separately
Minitab:
Place all the data values in column c1, their corresponding factor A levels and factor B levels in columns c2 and c3 respectively, then click Stat > ANOVA > Twoway... Insert c1 in the Response box, c2 in the Row factor box and c3 in the Column factor box.
32
Basic Statistical Procedures and Tables
Multiple Pairwise Comparison Confidence Intervals based on the Two-Way ANOVA for a Two-Factor Factorial Design: Equal Numbers per Cell, Fixed Effects, Normal Model
Let:
a b n
= = = µi. = µ. j = µij =
the number of levels for factor A the number of levels for factor B the number of observations per cell th the true mean for the i level of factor A th the true mean for the j level of factor B th the true mean for the (i, j) treatment th
y i.. = the sample mean for the i level of factor A th
y . j. = the sample mean for the j level of factor B th
y ij. = the sample mean for the (i,j) treatment
g
= the number of pairwise comparisons of interest
1-α
CI's for i . - k. (αi - αk)
CI's for . j - .l ( j - l)
CI's for ij - kl
Note:
= the nominal family level of confidence
Bonferroni :
[ y i⋅⋅ − y k ⋅⋅ ] ± B
2 MSE
Tukey :
[ y i⋅⋅ − y k ⋅⋅ ] ±
2 MSE
T
bn bn
Bonferroni :
[ y⋅ j⋅ − y⋅l ⋅ ] ± B
2 MSE
Tukey :
[ y⋅ j⋅ − y⋅l ⋅ ] ±
2 MSE
Bonferroni :
[ y ij⋅ − y kl ⋅ ] ± B
2 MSE
Tukey :
[ y ij⋅ − y kl ⋅ ] ±
2 MSE
T
T
an an
n n
, B = t α / 2 g , df = (n − 1)ab , T =
qα (a, ( n − 1) ab ) 2
, B = t α / 2 g , df = ( n − 1) ab , T =
qα (b, ( n − 1) ab ) 2
, B = t α / 2 g , df = ( n − 1) ab , T =
qα (ab, ( n − 1)ab ) 2
If it is desired to have a family level of confidence coefficient 1 - α for a joint set of pairwise comparisons involving both factor A and factor B, the Bonferroni method can be used directly, with g representing the total number of pairwise comparisons in the joint set.
33
Basic Statistical Procedures and Tables
Simple Linear Regression Yi = β0 +
β1xi + εi , where the εi are independent and normally
Assumption distributed with mean 0 and standard deviation 2
2
= ∑ x i - (∑ xi ) / n,
SSXX
SSyy =
SSXY = ∑ xiyi - (∑ xi )(∑ yi ) / n,
∑ y2i - (∑ yi )2 / n 2
SSE = SS YY - (SSXY) / SSXX
Estimate of Slope ( β1):
b1 = SSXY / SSXX
Estimate of Intercept ( β0):
b0 = y - b1 x
Estimate of
σ2:
MSE = SSE / (n - 2) 2
Estimated Variance of b1:
Basic Calculations
σ, i = 1, 2, . . ., n
s (b1) = MSE / SSXX
Estimated Standard s (b1 ) = s 2 (b1 )
Deviation of b1:
yˆ = b0 + b1 x
Least Squares Line:
2
Estimated Variance of yˆ :
2
s ( yˆ ) = MSE [1/n + (x - x ) / SSXX ]
Estimated Standard s(yˆ ) =
Deviation of yˆ :
To test the alternatives Ha: β1 <, >, or =/ Test and CI for the Slope
1
T =
b1
− β 10
s (b1 )
100(1 -
β10, use the t-statistic
, df = n −2 , and the usual rejection regions
)% CI for
α
100(1 - )% CI for E(Y | x) 100(1 - )% PI for Ynew(x)
s 2 (yˆ )
β1 : yˆ
ˆ y
±
b1
±
±
t α / 2 s (b1 ) , df = n − 2
t α / 2 s ( yˆ ) , df = n − 2
ˆ ) + MSE , df = n − 2 t α / 2 s 2 ( y
Note:
The above test for slope, with β10 = 0, can also be used as a test about the population correlation coefficient ρ: i.e. a test of Ha: ρ <, >, or =/ 0
Minitab:
Place the x-values in column c1 and corresponding y-values in column c2, then click Stat > Regression > Regression... Insert c2 in the Response box and c1 in the Predictors box. To obtain a CI for E(Y | x) and a PI for Ynew(x), click the Options button.
34
Basic Statistical Procedures and Tables
Test about the Population Correlation Coefficient: Procedure for Testing Ha: < 0, > 0, or 0
Assumption
The data consists of a simple random sample (x1, y1), (x2, y2), ..., (xn, yn), from a bivariate normal distribution
r =
∑ ( x − x )( y − y ) ∑ ( x − x ) ∑ ( y − y ) i
i
2
i
Test Statistic
T = r
n−2 1 − r 2
2
i
,
df = n − 2
t0 is the observed value of T Ha
ρ < 0
ρ > 0
ρ ≠ 0
Reject H0 if (Table 4)
t0 ≤ -tα
t0 ≥ tα
|t0| ≥ tα/2
P(T ≤ t0)
P(T ≥ t0)
2 P(T ≥ |t0|)
P-value
= P(T ≥ -t0)
Note:
Pearson's r measures the strength of the linear relationship between X and Y. It estimates the population correlation coefficient ρ.
Minitab:
Place the x-values in column c1 and corresponding y-values in column c2. To calculate r and obtain the P-value for testing Ha: ρ ≠ 0, click Stat > Basic Statistics > Correlation... Insert c1 and c2 in the Variables box and select the Display p-values box. To obtain the observed test statistic to, click Stat > Regression > Regression... Insert c2 in the Response box and c1 in the Predictors box.
35
Basic Statistical Procedures and Tables
Test about the Population Correlation Coefficient: Procedure for Testing Ha: < 0, > 0, or 0, where
0
0
The data consists of a simple random sample (x1, y1), (x2, y2), . . ., (xn, yn), from a bivariate normal distribution with n 'large' (n > 25)
Assumption
∑ ( x − x )( y − y ) ∑ ( x − x ) ∑ ( y − y ) i
r =
i
2
2
i
V =
Test Statistic
v0
=
1 2
1 + r , (" Fisher' s Z") 1 − r
ln
1 2
Z =
i
1 + ρ 0 1 − ρ 0
ln
n − 3 (V − v 0 )
z0 is the observed value of Z Ha Reject H0 if (Table 4 at df =
P-value (Table 3)
Approximate 100(1 - )% CI for
Notes:
)
ρ < ρ0
ρ > ρ0
ρ ≠ ρ0
z0 ≤ -zα
z0 ≥ zα
|z0| ≥ zα/2
P(Z ≤ z0)
P(Z ≥ z0)
2 P(Z ≤ -|z0|)
= 1 - P(Z ≤ z0)
tanh v −
, n − 3
z α / 2
where tanh ( x ) =
e x e x
tanh v +
n − 3
z α / 2
− e − x + e − x
(a) One can use minitab to calculate r but then the rest of the test must be done by hand. (b) For n ≤ 25, 'exact' tests and confidence intervals for ρ can be obtained using "Tables of the Ordinates and Probability Integral of the Distribution of the Correlation Coefficient in Small Samples" by F. N. David (1938), Cambridge University Press, Cambridge, reprinted in "Biometrika rd Tablesfor Statisticians" (1966), Vol I, 3 Edition, Hartley, H. O. and Pearson, E. S.,Editors, Cambridge University Press, Cambridge.
36
Basic Statistical Procedures and Tables
Kendall's Rank Correlation Coefficient:
Assumption
The data consists of a bivariate sample (x1, y 1), (x2, y 2), . . . , (xn, yn) Let:
Nc = the number of concordant pairs Nd = the number of discordant pairs
Test Statistic
τ ˆ =
2( N c
− N d ) n(n − 1)
(estimator of τ )
τ ˆ0 is the observed value of τ ˆ
τ = 0 (there is neither concordance nor
H0
discordance between X and Y)
τ <0
Ha Reject H0 if (Table 19)
τ ˆ0
τ >0
≤ -τ α
τ ˆ0
P( τ ˆ ≤ τ ˆ0 ) P-value
Notes:
τ ≠ 0
≥τα
P( τ ˆ ≥ τ ˆ0 )
| τ ˆ0 | ≥ τ
α/2
2 P( τ ˆ ≥ | τ ˆ0 |)
= P( τ ˆ ≥ - τ ˆ0 )
(a) Kendall's coefficient τ is defined as Thus:
τ = 2 P[(Xi - X j)(Yi - Y j) > 0] - 1
τ > 0 implies P(Concordance) > .5 τ < 0 implies P(Concordance) < .5 τ = 0 implies P(Concordance) = .5
(b) Pairs of observations with ties between respective members are neither concordant nor discordant and therefore contribute nothing to the value of τ ˆ . (c) This test may also be used as a test for independence. (d) For values of n not in Table 19 (i.e. n > 60) one can conduct a large sample approximate test of the above hypotheses using the Z-Test Statistic Z = τ ˆ
9n( n − 1) 2( 2n + 5)
and the usual critical values and P-value formulas associated with any Z-test.
37
Basic Statistical Procedures and Tables
Spearman's Rank Correlation Coefficient:
Assumption
S
The data consists of a bivariate sample (x1, y1), (x2, y2), . . . ,(x n, yn) Rank the x-values: R(x i) and y-values: R(yi) separately
Test Statistic
RS = corr [R(Xi), R(Yi)] (estimator of r S
ρ S)
= the observed value of RS
ρS = 0
H0 Ha
ρS < 0
ρS > 0
ρS ≠ 0
Reject H0 if (Table 20)
r S ≤ -r S,α
r S ≥ r S,α
|r S| ≥ r S,α/2
P(RS ≤ r S)
P(RS ≥ r S)
2 P(RS ≥ |r S|)
P-value
Notes:
= P(RS ≥ -r S)
(a) The parameter ρS is the expected value of R S. Its precise interpretation is difficult, and is best left as another measure of similarity between the rankings of X and Y. (b) This test may also be used as a test for independence. (c) For values of n not in Table 20 (i.e. n > 60) one can conduct a large sample Z =
n − 1 R S
and the usual critical values and P-value formulas associated with any Z-test. Minitab:
Place the x-values in column c1 and the corresponding y-values in column c2. Rank the data in each column, placing the ranks in columns c3 and c4 respectively MTB > rank c1 c3 MTB > rank c2 c4 To calculate r S type MTB > corr c3 c4
38
Basic Statistical Procedures and Tables
TABLES
39
Basic Statistical Procedures and Tables
40
Basic Statistical Procedures and Tables
Table 1
Cumulative Binomial Probabilities: P(X x)
p n
x
.05
.10
.20
.30
.40
.50
2
0 1 2
0.9025 0.8100 0.6400 0.4900 0.3600 0.2500 0.1600 0.0900 0.0400 0.0100 0.0025 0.9975 0.9900 0.9600 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900 0.0975 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0 1 2
3
0 1 2 3
0.8574 0.9928 0.9999 1.0000
0.7290 0.9720 0.9990 1.0000
0.5120 0.8960 0.9920 1.0000
0.3430 0.7840 0.9730 1.0000
0.2160 0.6480 0.9360 1.0000
0.1250 0.5000 0.8750 1.0000
0.0640 0.3520 0.7840 1.0000
0.0270 0.2160 0.6570 1.0000
0.0080 0.1040 0.4880 1.0000
0.0010 0.0280 0.2710 1.0000
0.0001 0.0073 0.1426 1.0000
0 1 2 3
4
0 1 2 3 4
0.8145 0.9860 0.9995 1.0000 1.0000
0.6561 0.9477 0.9963 0.9999 1.0000
0.4096 0.8192 0.9728 0.9984 1.0000
0.2401 0.6517 0.9163 0.9919 1.0000
0.1296 0.4752 0.8208 0.9744 1.0000
0.0625 0.3125 0.6875 0.9375 1.0000
0.0256 0.1792 0.5248 0.8704 1.0000
0.0081 0.0837 0.3483 0.7599 1.0000
0.0016 0.0272 0.1808 0.5904 1.0000
0.0001 0.0037 0.0523 0.3439 1.0000
0.0000 0.0005 0.0140 0.1855 1.0000
0 1 2 3 4
5
0 1 2 3 4 5
0.7738 0.9774 0.9988 1.0000 1.0000 1.0000
0.5905 0.9185 0.9914 0.9995 1.0000 1.0000
0.3277 0.7373 0.9421 0.9933 0.9997 1.0000
0.1681 0.5282 0.8369 0.9692 0.9976 1.0000
0.0778 0.3370 0.6826 0.9130 0.9898 1.0000
0.0312 0.1875 0.5000 0.8125 0.9688 1.0000
0.0102 0.0870 0.3174 0.6630 0.9222 1.0000
0.0024 0.0308 0.1631 0.4718 0.8319 1.0000
0.0003 0.0067 0.0579 0.2627 0.6723 1.0000
0.0000 0.0005 0.0086 0.0815 0.4095 1.0000
0.0000 0.0000 0.0012 0.0226 0.2262 1.0000
0 1 2 3 4 5
6
0 1 2 3 4 5 6
0.7351 0.9672 0.9978 0.9999 1.0000 1.0000 1.0000
0.5314 0.8857 0.9842 0.9987 0.9999 1.0000 1.0000
0.2621 0.6554 0.9011 0.9830 0.9984 0.9999 1.0000
0.1176 0.4202 0.7443 0.9295 0.9891 0.9993 1.0000
0.0467 0.2333 0.5443 0.8208 0.9590 0.9959 1.0000
0.0156 0.1094 0.3438 0.6562 0.8906 0.9844 1.0000
0.0041 0.0410 0.1792 0.4557 0.7667 0.9533 1.0000
0.0007 0.0109 0.0705 0.2557 0.5798 0.8824 1.0000
0.0001 0.0016 0.0170 0.0989 0.3446 0.7379 1.0000
0.0000 0.0001 0.0013 0.0159 0.1143 0.4686 1.0000
0.0000 0.0000 0.0001 0.0022 0.0328 0.2649 1.0000
0 1 2 3 4 5 6
7
0 1 2 3 4 5 6 7
0.6983 0.9556 0.9962 0.9998 1.0000 1.0000 1.0000 1.0000
0.4783 0.8503 0.9743 0.9973 0.9998 1.0000 1.0000 1.0000
0.2097 0.5767 0.8520 0.9667 0.9953 0.9996 1.0000 1.0000
0.0824 0.3294 0.6471 0.8740 0.9712 0.9962 0.9998 1.0000
0.0280 0.1586 0.4199 0.7102 0.9037 0.9812 0.9984 1.0000
0.0078 0.0625 0.2266 0.5000 0.7734 0.9375 0.9922 1.0000
0.0016 0.0188 0.0963 0.2898 0.5801 0.8414 0.9720 1.0000
0.0002 0.0038 0.0288 0.1260 0.3529 0.6706 0.9176 1.0000
0.0000 0.0004 0.0047 0.0333 0.1480 0.4233 0.7903 1.0000
0.0000 0.0000 0.0002 0.0027 0.0257 0.1497 0.5217 1.0000
0.0000 0.0000 0.0000 0.0002 0.0038 0.0444 0.3017 1.0000
0 1 2 3 4 5 6 7
8
0 1 2 3 4 5 6 7 8
0.6634 0.9428 0.9942 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000
0.4305 0.8131 0.9619 0.9950 0.9996 1.0000 1.0000 1.0000 1.0000
0.1678 0.5033 0.7969 0.9437 0.9896 0.9988 0.9999 1.0000 1.0000
0.0576 0.2553 0.5518 0.8059 0.9420 0.9887 0.9987 0.9999 1.0000
0.0168 0.1064 0.3154 0.5941 0.8263 0.9502 0.9915 0.9993 1.0000
0.0039 0.0352 0.1445 0.3633 0.6367 0.8555 0.9648 0.9961 1.0000
0.0007 0.0085 0.0498 0.1737 0.4059 0.6846 0.8936 0.9832 1.0000
0.0001 0.0013 0.0113 0.0580 0.1941 0.4482 0.7447 0.9424 1.0000
0.0000 0.0001 0.0012 0.0104 0.0563 0.2031 0.4967 0.8322 1.0000
0.0000 0.0000 0.0000 0.0004 0.0050 0.0381 0.1869 0.5695 1.0000
0.0000 0.0000 0.0000 0.0000 0.0004 0.0058 0.0572 0.3366 1.0000
0 1 2 3 4 5 6 7 8
9
0 1 2 3 4 5 6 7 8 9
0.6302 0.9288 0.9916 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3874 0.7748 0.9470 0.9917 0.9991 0.9999 1.0000 1.0000 1.0000 1.0000
0.1342 0.4362 0.7382 0.9144 0.9804 0.9969 0.9997 1.0000 1.0000 1.0000
0.0404 0.1960 0.4628 0.7297 0.9012 0.9747 0.9957 0.9996 1.0000 1.0000
0.0101 0.0705 0.2318 0.4826 0.7334 0.9006 0.9750 0.9962 0.9997 1.0000
0.0020 0.0195 0.0898 0.2539 0.5000 0.7461 0.9102 0.9805 0.9980 1.0000
0.0003 0.0038 0.0250 0.0994 0.2666 0.5174 0.7682 0.9295 0.9899 1.0000
0.0000 0.0004 0.0043 0.0253 0.0988 0.2703 0.5372 0.8040 0.9596 1.0000
0.0000 0.0000 0.0003 0.0031 0.0196 0.0856 0.2618 0.5638 0.8658 1.0000
0.0000 0.0000 0.0000 0.0001 0.0009 0.0083 0.0530 0.2252 0.6126 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0084 0.0712 0.3698 1.0000
0 1 2 3 4 5 6 7 8 9
n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
X
41
.60
.70
.80
.90
.95
x
Basic Statistical Procedures and Tables
Table 1
Cumulative Binomial Probabilities: P(X x) (continued)
p n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
10
0 1 2 3 4 5 6 7 8 9 10
0.5987 0.9139 0.9885 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3487 0.7361 0.9298 0.9872 0.9984 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.1074 0.3758 0.6778 0.8791 0.9672 0.9936 0.9991 0.9999 1.0000 1.0000 1.0000
0.0282 0.1493 0.3828 0.6496 0.8497 0.9527 0.9894 0.9984 0.9999 1.0000 1.0000
0.0060 0.0464 0.1673 0.3823 0.6331 0.8338 0.9452 0.9877 0.9983 0.9999 1.0000
0.0010 0.0107 0.0547 0.1719 0.3770 0.6230 0.8281 0.9453 0.9893 0.9990 1.0000
0.0001 0.0017 0.0123 0.0548 0.1662 0.3669 0.6177 0.8327 0.9536 0.9940 1.0000
0.0000 0.0001 0.0016 0.0106 0.0473 0.1503 0.3504 0.6172 0.8507 0.9718 1.0000
0.0000 0.0000 0.0001 0.0009 0.0064 0.0328 0.1209 0.3222 0.6242 0.8926 1.0000
0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0128 0.0702 0.2639 0.6513 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0010 0.0115 0.0861 0.4013 1.0000
0 1 2 3 4 5 6 7 8 9 10
11
0 1 2 3 4 5 6 7 8 9 10 11
0.5688 0.8981 0.9848 0.9984 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3138 0.6974 0.9104 0.9815 0.9972 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0859 0.3221 0.6174 0.8389 0.9496 0.9883 0.9980 0.9998 1.0000 1.0000 1.0000 1.0000
0.0198 0.1130 0.3127 0.5696 0.7897 0.9218 0.9784 0.9957 0.9994 1.0000 1.0000 1.0000
0.0036 0.0302 0.1189 0.2963 0.5328 0.7535 0.9006 0.9707 0.9941 0.9993 1.0000 1.0000
0.0005 0.0059 0.0327 0.1133 0.2744 0.5000 0.7256 0.8867 0.9673 0.9941 0.9995 1.0000
0.0000 0.0007 0.0059 0.0293 0.0994 0.2465 0.4672 0.7037 0.8811 0.9698 0.9964 1.0000
0.0000 0.0000 0.0006 0.0043 0.0216 0.0782 0.2103 0.4304 0.6873 0.8870 0.9802 1.0000
0.0000 0.0000 0.0000 0.0002 0.0020 0.0117 0.0504 0.1611 0.3826 0.6779 0.9141 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0028 0.0185 0.0896 0.3026 0.6862 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0016 0.0152 0.1019 0.4312 1.0000
0 1 2 3 4 5 6 7 8 9 10 11
12
0 1 2 3 4 5 6 7 8 9 10 11 12
0.5404 0.8816 0.9804 0.9978 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2824 0.6590 0.8891 0.9744 0.9957 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0687 0.2749 0.5583 0.7946 0.9274 0.9806 0.9961 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000
0.0138 0.0850 0.2528 0.4925 0.7237 0.8822 0.9614 0.9905 0.9983 0.9998 1.0000 1.0000 1.0000
0.0022 0.0196 0.0834 0.2253 0.4382 0.6652 0.8418 0.9427 0.9847 0.9972 0.9997 1.0000 1.0000
0.0002 0.0032 0.0193 0.0730 0.1938 0.3872 0.6128 0.8062 0.9270 0.9807 0.9968 0.9998 1.0000
0.0000 0.0003 0.0028 0.0153 0.0573 0.1582 0.3348 0.5618 0.7747 0.9166 0.9804 0.9978 1.0000
0.0000 0.0000 0.0002 0.0017 0.0095 0.0386 0.1178 0.2763 0.5075 0.7472 0.9150 0.9862 1.0000
0.0000 0.0000 0.0000 0.0001 0.0006 0.0039 0.0194 0.0726 0.2054 0.4417 0.7251 0.9313 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0043 0.0256 0.1109 0.3410 0.7176 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0022 0.0196 0.1184 0.4596 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12
13
0 1 2 3 4 5 6 7 8 9 10 11 12 13
0.5133 0.8646 0.9755 0.9969 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2542 0.6213 0.8661 0.9658 0.9935 0.9991 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0550 0.2336 0.5017 0.7473 0.9009 0.9700 0.9930 0.9988 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000
0.0097 0.0637 0.2025 0.4206 0.6543 0.8346 0.9376 0.9818 0.9960 0.9993 0.9999 1.0000 1.0000 1.0000
0.0013 0.0126 0.0579 0.1686 0.3530 0.5744 0.7712 0.9023 0.9679 0.9922 0.9987 0.9999 1.0000 1.0000
0.0001 0.0017 0.0112 0.0461 0.1334 0.2905 0.5000 0.7095 0.8666 0.9539 0.9888 0.9983 0.9999 1.0000
0.0000 0.0001 0.0013 0.0078 0.0321 0.0977 0.2288 0.4256 0.6470 0.8314 0.9421 0.9874 0.9987 1.0000
0.0000 0.0000 0.0001 0.0007 0.0040 0.0182 0.0624 0.1654 0.3457 0.5794 0.7975 0.9363 0.9903 1.0000
0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0070 0.0300 0.0991 0.2527 0.4983 0.7664 0.9450 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.0065 0.0342 0.1339 0.3787 0.7458 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0031 0.0245 0.1354 0.4867 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13
n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
42
Basic Statistical Procedures and Tables
Table 1
Cumulative Binomial Probabilities: P(X x) (continued)
p n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.4877 0.8470 0.9699 0.9958 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2288 0.5846 0.8416 0.9559 0.9908 0.9985 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0440 0.1979 0.4481 0.6982 0.8702 0.9561 0.9884 0.9976 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0068 0.0475 0.1608 0.3552 0.5842 0.7805 0.9067 0.9685 0.9917 0.9983 0.9998 1.0000 1.0000 1.0000 1.0000
0.0008 0.0081 0.0398 0.1243 0.2793 0.4859 0.6925 0.8499 0.9417 0.9825 0.9961 0.9994 0.9999 1.0000 1.0000
0.0001 0.0009 0.0065 0.0287 0.0898 0.2120 0.3953 0.6047 0.7880 0.9102 0.9713 0.9935 0.9991 0.9999 1.0000
0.0000 0.0001 0.0006 0.0039 0.0175 0.0583 0.1501 0.3075 0.5141 0.7207 0.8757 0.9602 0.9919 0.9992 1.0000
0.0000 0.0000 0.0000 0.0002 0.0017 0.0083 0.0315 0.0933 0.2195 0.4158 0.6448 0.8392 0.9525 0.9932 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0024 0.0116 0.0439 0.1298 0.3018 0.5519 0.8021 0.9560 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0015 0.0092 0.0441 0.1584 0.4154 0.7712 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0042 0.0301 0.1530 0.5123 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.4633 0.8290 0.9638 0.9945 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2059 0.5490 0.8159 0.9444 0.9873 0.9978 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0352 0.1671 0.3980 0.6482 0.8358 0.9389 0.9819 0.9958 0.9992 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0047 0.0353 0.1268 0.2969 0.5155 0.7216 0.8689 0.9500 0.9848 0.9963 0.9993 0.9999 1.0000 1.0000 1.0000 1.0000
0.0005 0.0052 0.0271 0.0905 0.2173 0.4032 0.6098 0.7869 0.9050 0.9662 0.9907 0.9981 0.9997 1.0000 1.0000 1.0000
0.0000 0.0005 0.0037 0.0176 0.0592 0.1509 0.3036 0.5000 0.6964 0.8491 0.9408 0.9824 0.9963 0.9995 1.0000 1.0000
0.0000 0.0000 0.0003 0.0019 0.0093 0.0338 0.0950 0.2131 0.3902 0.5968 0.7827 0.9095 0.9729 0.9948 0.9995 1.0000
0.0000 0.0000 0.0000 0.0001 0.0007 0.0037 0.0152 0.0500 0.1311 0.2784 0.4845 0.7031 0.8732 0.9647 0.9953 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0042 0.0181 0.0611 0.1642 0.3518 0.6020 0.8329 0.9648 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0022 0.0127 0.0556 0.1841 0.4510 0.7941 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0055 0.0362 0.1710 0.5367 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.4401 0.8108 0.9571 0.9930 0.9991 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1853 0.5147 0.7892 0.9316 0.9830 0.9967 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0281 0.1407 0.3518 0.5981 0.7982 0.9183 0.9733 0.9930 0.9985 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0033 0.0261 0.0994 0.2459 0.4499 0.6598 0.8247 0.9256 0.9743 0.9929 0.9984 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000
0.0003 0.0033 0.0183 0.0651 0.1666 0.3288 0.5272 0.7161 0.8577 0.9417 0.9809 0.9951 0.9991 0.9999 1.0000 1.0000 1.0000
0.0000 0.0003 0.0021 0.0106 0.0384 0.1051 0.2272 0.4018 0.5982 0.7728 0.8949 0.9616 0.9894 0.9979 0.9997 1.0000 1.0000
0.0000 0.0000 0.0001 0.0009 0.0049 0.0191 0.0583 0.1423 0.2839 0.4728 0.6712 0.8334 0.9349 0.9817 0.9967 0.9997 1.0000
0.0000 0.0000 0.0000 0.0000 0.0003 0.0016 0.0071 0.0257 0.0744 0.1753 0.3402 0.5501 0.7541 0.9006 0.9739 0.9967 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0015 0.0070 0.0267 0.0817 0.2018 0.4019 0.6482 0.8593 0.9719 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0033 0.0170 0.0684 0.2108 0.4853 0.8147 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.0070 0.0429 0.1892 0.5599 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
43
Basic Statistical Procedures and Tables
Table 1
Cumulative Binomial Probabilities: P(X x) (continued)
p n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
17
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.4181 0.7922 0.9497 0.9912 0.9988 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1668 0.4818 0.7618 0.9174 0.9779 0.9953 0.9992 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0225 0.1182 0.3096 0.5489 0.7582 0.8943 0.9623 0.9891 0.9974 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0023 0.0193 0.0774 0.2019 0.3887 0.5968 0.7752 0.8954 0.9597 0.9873 0.9968 0.9993 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.0002 0.0021 0.0123 0.0464 0.1260 0.2639 0.4478 0.6405 0.8011 0.9081 0.9652 0.9894 0.9975 0.9995 0.9999 1.0000 1.0000 1.0000
0.0000 0.0001 0.0012 0.0064 0.0245 0.0717 0.1662 0.3145 0.5000 0.6855 0.8338 0.9283 0.9755 0.9936 0.9988 0.9999 1.0000 1.0000
0.0000 0.0000 0.0001 0.0005 0.0025 0.0106 0.0348 0.0919 0.1989 0.3595 0.5522 0.7361 0.8740 0.9536 0.9877 0.9979 0.9998 1.0000
0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0032 0.0127 0.0403 0.1046 0.2248 0.4032 0.6113 0.7981 0.9226 0.9807 0.9977 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0026 0.0109 0.0377 0.1057 0.2418 0.4511 0.6904 0.8818 0.9775 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0047 0.0221 0.0826 0.2382 0.5182 0.8332 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0012 0.0088 0.0503 0.2078 0.5819 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.3972 0.7735 0.9419 0.9891 0.9985 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1501 0.4503 0.7338 0.9018 0.9718 0.9936 0.9988 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0180 0.0991 0.2713 0.5010 0.7164 0.8671 0.9487 0.9837 0.9957 0.9991 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0016 0.0142 0.0600 0.1646 0.3327 0.5344 0.7217 0.8593 0.9404 0.9790 0.9939 0.9986 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0001 0.0013 0.0082 0.0328 0.0942 0.2088 0.3743 0.5634 0.7368 0.8653 0.9424 0.9797 0.9942 0.9987 0.9998 1.0000 1.0000 1.0000 1.0000
0.0000 0.0001 0.0007 0.0038 0.0154 0.0481 0.1189 0.2403 0.4073 0.5927 0.7597 0.8811 0.9519 0.9846 0.9962 0.9993 0.9999 1.0000 1.0000
0.0000 0.0000 0.0000 0.0002 0.0013 0.0058 0.0203 0.0576 0.1347 0.2632 0.4366 0.6257 0.7912 0.9058 0.9672 0.9918 0.9987 0.9999 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0014 0.0061 0.0210 0.0596 0.1407 0.2783 0.4656 0.6673 0.8354 0.9400 0.9858 0.9984 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0009 0.0043 0.0163 0.0513 0.1329 0.2836 0.4990 0.7287 0.9009 0.9820 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0064 0.0282 0.0982 0.2662 0.5497 0.8499 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0015 0.0109 0.0581 0.2265 0.6028 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0.3774 0.7547 0.9335 0.9868 0.9980 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1351 0.4203 0.7054 0.8850 0.9648 0.9914 0.9983 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0144 0.0829 0.2369 0.4551 0.6733 0.8369 0.9324 0.9767 0.9933 0.9984 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0011 0.0104 0.0462 0.1332 0.2822 0.4739 0.6655 0.8180 0.9161 0.9674 0.9895 0.9972 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0001 0.0008 0.0055 0.0230 0.0696 0.1629 0.3081 0.4878 0.6675 0.8139 0.9115 0.9648 0.9884 0.9969 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0004 0.0022 0.0096 0.0318 0.0835 0.1796 0.3238 0.5000 0.6762 0.8204 0.9165 0.9682 0.9904 0.9978 0.9996 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0001 0.0006 0.0031 0.0116 0.0352 0.0885 0.1861 0.3325 0.5122 0.6919 0.8371 0.9304 0.9770 0.9945 0.9992 0.9999 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0028 0.0105 0.0326 0.0839 0.1820 0.3345 0.5261 0.7178 0.8668 0.9538 0.9896 0.9989 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0016 0.0067 0.0233 0.0676 0.1631 0.3267 0.5449 0.7631 0.9171 0.9856 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0017 0.0086 0.0352 0.1150 0.2946 0.5797 0.8649 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0020 0.0132 0.0665 0.2453 0.6226 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
44
Basic Statistical Procedures and Tables
Table 1
Cumulative Binomial Probabilities: P(X x) (continued)
p n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
20
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.3585 0.7358 0.9245 0.9841 0.9974 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1216 0.3917 0.6769 0.8670 0.9568 0.9887 0.9976 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0115 0.0692 0.2061 0.4114 0.6296 0.8042 0.9133 0.9679 0.9900 0.9974 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0008 0.0076 0.0355 0.1071 0.2375 0.4164 0.6080 0.7723 0.8867 0.9520 0.9829 0.9949 0.9987 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0005 0.0036 0.0160 0.0510 0.1256 0.2500 0.4159 0.5956 0.7553 0.8725 0.9435 0.9790 0.9935 0.9984 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0002 0.0013 0.0059 0.0207 0.0577 0.1316 0.2517 0.4119 0.5881 0.7483 0.8684 0.9423 0.9793 0.9941 0.9987 0.9998 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0003 0.0016 0.0065 0.0210 0.0565 0.1275 0.2447 0.4044 0.5841 0.7500 0.8744 0.9490 0.9840 0.9964 0.9995 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0013 0.0051 0.0171 0.0480 0.1133 0.2277 0.3920 0.5836 0.7625 0.8929 0.9645 0.9924 0.9992 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0026 0.0100 0.0321 0.0867 0.1958 0.3704 0.5886 0.7939 0.9308 0.9885 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0024 0.0113 0.0432 0.1330 0.3231 0.6083 0.8784 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0026 0.0159 0.0755 0.2642 0.6415 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
25
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0.2774 0.6424 0.8729 0.9659 0.9928 0.9988 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0718 0.2712 0.5371 0.7636 0.9020 0.9666 0.9905 0.9977 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0038 0.0274 0.0982 0.2340 0.4207 0.6167 0.7800 0.8909 0.9532 0.9827 0.9944 0.9985 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0001 0.0016 0.0090 0.0332 0.0905 0.1935 0.3407 0.5118 0.6769 0.8106 0.9022 0.9558 0.9825 0.9940 0.9982 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0001 0.0004 0.0024 0.0095 0.0294 0.0736 0.1536 0.2735 0.4246 0.5858 0.7323 0.8462 0.9222 0.9656 0.9868 0.9957 0.9988 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0001 0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450 0.5000 0.6550 0.7878 0.8852 0.9461 0.9784 0.9927 0.9980 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0012 0.0043 0.0132 0.0344 0.0778 0.1538 0.2677 0.4142 0.5754 0.7265 0.8464 0.9264 0.9706 0.9905 0.9976 0.9996 0.9999 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0018 0.0060 0.0175 0.0442 0.0978 0.1894 0.3231 0.4882 0.6593 0.8065 0.9095 0.9668 0.9910 0.9984 0.9999 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0015 0.0056 0.0173 0.0468 0.1091 0.2200 0.3833 0.5793 0.7660 0.9018 0.9726 0.9962 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0023 0.0095 0.0334 0.0980 0.2364 0.4629 0.7288 0.9282 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0072 0.0341 0.1271 0.3576 0.7226 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
45
Basic Statistical Procedures and Tables
Table 1
Cumulative Binomial Probabilities: P(X x) (continued)
p n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
30
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.2146 0.5535 0.8122 0.9392 0.9984 0.9967 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0424 0.1837 0.4114 0.6474 0.8245 0.9268 0.9742 0.9922 0.9980 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0012 0.0105 0.0442 0.1227 0.2552 0.4275 0.6070 0.7608 0.8713 0.9389 0.9744 0.9905 0.9969 0.9991 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0003 0.0021 0.0093 0.0302 0.0766 0.1595 0.2814 0.4315 0.5888 0.7304 0.8407 0.9155 0.9599 0.9831 0.9936 0.9979 0.9994 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0003 0.0015 0.0057 0.0172 0.0435 0.0940 0.1763 0.2915 0.4311 0.5785 0.7145 0.8246 0.9029 0.9519 0.9788 0.9917 0.9971 0.9991 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0007 0.0026 0.0081 0.0214 0.0494 0.1002 0.1808 0.2923 0.4278 0.5722 0.7077 0.8192 0.8998 0.9506 0.9786 0.9919 0.9974 0.9993 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0009 0.0029 0.0083 0.0212 0.0481 0.0971 0.1754 0.2855 0.4215 0.5689 0.7085 0.8237 0.9060 0.9565 0.9828 0.9943 0.9985 0.9997 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0006 0.0021 0.0064 0.0169 0.0401 0.0845 0.1593 0.2696 0.4112 0.5685 0.7186 0.8405 0.9234 0.9698 0.9907 0.9979 0.9997 1.0000 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0009 0.0031 0.0095 0.0256 0.0611 0.1287 0.2392 0.3930 0.5725 0.7448 0.8773 0.9558 0.9895 0.9988 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0020 0.0078 0.0258 0.0732 0.1755 0.3526 0.5886 0.8163 0.9576 1.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0033 0.0156 0.0608 0.1878 0.4465 0.7854 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
n
x
.05
.10
.20
.30
.40
.50
.60
.70
.80
.90
.95
x
46
Basic Statistical Procedures and Tables
Table 2
Cumulative Poisson Probabilities: P(X x)
Value of x
.1
.2
.3
.4
.5
.6
.7
.8
.9
1.0
x
0 1 2 3 4 5 6 7 8
0.9048 0.9953 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.8187 0.9825 0.9989 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.7408 0.9631 0.9964 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000
0.6703 0.9384 0.9921 0.9992 0.9999 1.0000 1.0000 1.0000 1.0000
0.6065 0.9098 0.9856 0.9982 0.9998 1.0000 1.0000 1.0000 1.0000
0.5488 0.8781 0.9769 0.9966 0.9996 1.0000 1.0000 1.0000 1.0000
0.4966 0.8442 0.9659 0.9942 0.9992 0.9999 1.0000 1.0000 1.0000
0.4493 0.8088 0.9526 0.9909 0.9986 0.9998 1.0000 1.0000 1.0000
0.4066 0.7725 0.9371 0.9865 0.9977 0.9997 1.0000 1.0000 1.0000
0.3679 0.7358 0.9197 0.9810 0.9963 0.9994 0.9999 1.0000 1.0000
0 1 2 3 4 5 6 7 8
Value of x
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
15.0
x
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
0.1353 0.4060 0.6767 0.8571 0.9473 0.9834 0.9955 0.9989 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0498 0.1991 0.4232 0.6472 0.8153 0.9161 0.9665 0.9881 0.9962 0.9989 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0183 0.0916 0.2381 0.4335 0.6288 0.7851 0.8893 0.9489 0.9786 0.9919 0.9972 0.9991 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0067 0.0404 0.1247 0.2650 0.4405 0.6160 0.7622 0.8666 0.9319 0.9682 0.9863 0.9945 0.9980 0.9993 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0025 0.0174 0.0620 0.1512 0.2851 0.4457 0.6063 0.7440 0.8472 0.9161 0.9574 0.9799 0.9912 0.9964 0.9986 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0009 0.0073 0.0296 0.0818 0.1730 0.3007 0.4497 0.5987 0.7291 0.8305 0.9015 0.9467 0.9730 0.9872 0.9943 0.9976 0.9990 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0003 0.0030 0.0138 0.0424 0.0996 0.1912 0.3134 0.4530 0.5925 0.7166 0.8159 0.8881 0.9362 0.9658 0.9827 0.9918 0.9963 0.9984 0.9993 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0001 0.0012 0.0062 0.0212 0.0550 0.1157 0.2068 0.3239 0.4557 0.5874 0.7060 0.8030 0.8758 0.9261 0.9585 0.9780 0.9889 0.9947 0.9976 0.9989 0.9996 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0005 0.0028 0.0103 0.0293 0.0671 0.1301 0.2202 0.3328 0.4579 0.5830 0.6968 0.7916 0.8645 0.9165 0.9513 0.9730 0.9857 0.9928 0.9965 0.9984 0.9993 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.0000 0.0000 0.0000 0.0002 0.0009 0.0028 0.0076 0.0180 0.0374 0.0699 0.1185 0.1848 0.2676 0.3632 0.4657 0.5681 0.6641 0.7489 0.8195 0.8752 0.9170 0.9469 0.9673 0.9805 0.9888 0.9938 0.9967 0.9983 0.9991 0.9996 0.9998 0.9999 1.0000 1.0000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
47
Basic Statistical Procedures and Tables
Table 3
Standard Normal Probabilities
z
0
Area = P(Z ≤ z) z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
-4.00 -3.99 -3.98 -3.97 -3.96 -3.95 -3.94 -3.93 -3.92 -3.91 -3.90 -3.89 -3.88 -3.87 -3.86 -3.85 -3.84 -3.83 -3.82 -3.81 -3.80 -3.79 -3.78 -3.77 -3.76 -3.75 -3.74 -3.73 -3.72 -3.71 -3.70 -3.69 -3.68 -3.67 -3.66 -3.65 -3.64 -3.63 -3.62 -3.61 -3.60 -3.59 -3.58 -3.57 -3.56 -3.55 -3.54 -3.53 -3.52 -3.51
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
-3.50 -3.49 -3.48 -3.47 -3.46 -3.45 -3.44 -3.43 -3.42 -3.41 -3.40 -3.39 -3.38 -3.37 -3.36 -3.35 -3.34 -3.33 -3.32 -3.31 -3.30 -3.29 -3.28 -3.27 -3.26 -3.25 -3.24 -3.23 -3.22 -3.21 -3.20 -3.19 -3.18 -3.17 -3.16 -3.15 -3.14 -3.13 -3.12 -3.11 -3.10 -3.09 -3.08 -3.07 -3.06 -3.05 -3.04 -3.03 -3.02 -3.01
0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0007 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009 0.0010 0.0010 0.0010 0.0011 0.0011 0.0011 0.0012 0.0012 0.0013 0.0013
-3.00 -2.99 -2.98 -2.97 -2.96 -2.95 -2.94 -2.93 -2.92 -2.91 -2.90 -2.89 -2.88 -2.87 -2.86 -2.85 -2.84 -2.83 -2.82 -2.81 -2.80 -2.79 -2.78 -2.77 -2.76 -2.75 -2.74 -2.73 -2.72 -2.71 -2.70 -2.69 -2.68 -2.67 -2.66 -2.65 -2.64 -2.63 -2.62 -2.61 -2.60 -2.59 -2.58 -2.57 -2.56 -2.55 -2.54 -2.53 -2.52 -2.51
0.0013 0.0014 0.0014 0.0015 0.0015 0.0016 0.0016 0.0017 0.0018 0.0018 0.0019 0.0019 0.0020 0.0021 0.0021 0.0022 0.0023 0.0023 0.0024 0.0025 0.0026 0.0026 0.0027 0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 0.0039 0.0040 0.0041 0.0043 0.0044 0.0045 0.0047 0.0048 0.0049 0.0051 0.0052 0.0054 0.0055 0.0057 0.0059 0.0060
-2.50 -2.49 -2.48 -2.47 -2.46 -2.45 -2.44 -2.43 -2.42 -2.41 -2.40 -2.39 -2.38 -2.37 -2.36 -2.35 -2.34 -2.33 -2.32 -2.31 -2.30 -2.29 -2.28 -2.27 -2.26 -2.25 -2.24 -2.23 -2.22 -2.21 -2.20 -2.19 -2.18 -2.17 -2.16 -2.15 -2.14 -2.13 -2.12 -2.11 -2.10 -2.09 -2.08 -2.07 -2.06 -2.05 -2.04 -2.03 -2.02 -2.01
0.0062 0.0064 0.0066 0.0068 0.0069 0.0071 0.0073 0.0075 0.0078 0.0080 0.0082 0.0084 0.0087 0.0089 0.0091 0.0094 0.0096 0.0099 0.0102 0.0104 0.0107 0.0110 0.0113 0.0116 0.0119 0.0122 0.0125 0.0129 0.0132 0.0136 0.0139 0.0143 0.0146 0.0150 0.0154 0.0158 0.0162 0.0166 0.0170 0.0174 0.0179 0.0183 0.0188 0.0192 0.0197 0.0202 0.0207 0.0212 0.0217 0.0222
48
Basic Statistical Procedures and Tables
Table 3
Standard Normal Probabilities (continued)
z
0
Area = P(Z ≤ z) z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
-2.00 -1.99 -1.98 -1.97 -1.96 -1.95 -1.94 -1.93 -1.92 -1.91 -1.90 -1.89 -1.88 -1.87 -1.86 -1.85 -1.84 -1.83 -1.82 -1.81 -1.80 -1.79 -1.78 -1.77 -1.76 -1.75 -1.74 -1.73 -1.72 -1.71 -1.70 -1.69 -1.68 -1.67 -1.66 -1.65 -1 64 -1.63 -1.62 -1.61 -1.60 -1.59 -1.58 -1.57 -1.56 -1.55 -1.54 -1.53 -1.52 -1.51
0.0228 0.0233 0.0239 0.0244 0.0250 0.0256 0.0262 0.0268 0.0274 0.0281 0.0287 0.0294 0.0301 0.0307 0.0314 0.0322 0.0329 0.0336 0.0344 0.0351 0.0359 0.0367 0.0375 0.0384 0.0392 0.0401 0.0409 0.0418 0.0427 0.0436 0.0446 0.0455 0.0465 0.0475 0.0485 0.0495 0.0505 0.0516 0.0526 0.0537 0.0548 0.0559 0.0571 0.0582 0.0594 0.0606 0.0618 0.0630 0.0643 0.0655
-1.50 -1.49 -1.48 -1.47 -1.46 -1.45 -1.44 -1.43 -1.42 -1.41 -1.40 -1.39 -1.38 -1.37 -1.36 -1.35 -1.34 -1.33 -1.32 -1.31 -1.30 -1.29 -1.28 -1.27 -1.26 -1.25 -1.24 -1.23 -1.22 -1.21 -1.20 -1.19 -1.18 -1.17 -1.16 -1.15 -1.14 -1.13 -1.12 -1.11 -1.10 -1.09 -1.08 -1.07 -1.06 -1.05 -1.04 -1.03 -1.02 -1.01
0.0668 0.0681 0.0694 0.0708 0.0721 0.0735 0.0749 0.0764 0.0778 0.0793 0.0808 0.0823 0.0838 0.0853 0.0869 0.0885 0.0901 0.0918 0.0934 0.0951 0.0968 0.0985 0.1003 0.1020 0.1038 0.1056 0.1075 0.1093 0.1112 0.1131 0.1151 0.1170 0.1190 0.1210 0.1230 0.1251 0.1271 0.1292 0.1314 0.1335 0.1357 0.1379 0.1401 0.1423 0.1446 0.1469 0.1492 0.1515 0.1539 0.1562
-1.00 -0.99 -0 98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91 -0.90 -0.89 -0.88 -0.87 -0.86 -0.85 -0.84 -0.83 -0.82 -0.81 -0.80 -0.79 -0.78 -0.77 -0.76 -0.75 -0.74 -0.73 -0.72 -0.71 -0.70 -0.69 -0.68 -0.67 -0.66 -0.65 -0.64 -0.63 -0.62 -0.61 -0.60 -0.59 -0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52 -0.51
0.1587 0.1611 0.1635 0.1660 0.1685 0.1711 0.1736 0.1762 0.1788 0.1814 0.1841 0.1867 0.1894 0.1922 0.1949 0.1977 0.2005 0.2033 0.2061 0.2090 0.2119 0.2148 0.2177 0.2206 0.2236 0.2266 0.2296 0.2327 0.2358 0.2389 0.2420 0.2451 0.2483 0.2514 0.2546 0.2578 0.2611 0.2643 0.2676 0.2709 0.2743 0.2776 0.2810 0.2843 0.2877 0.2912 0.2946 0.2981 0.3015 0.3050
-0.50 -0.49 -0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41 -0.40 -0.39 -0.38 -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 -0.31 -0.30 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21 -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01
0.3085 0.3121 0.3156 0.3192 0.3228 0.3264 0.3300 0.3336 0.3372 0.3409 0.3446 0.3483 0.3520 0.3557 0.3594 0.3632 0.3669 0.3707 0.3745 0.3783 0.3821 0.3859 0.3897 0.3936 0.3974 0.4013 0.4052 0.4090 0.4129 0.4168 0.4207 0.4247 0.4286 0.4325 0.4364 0.4404 0.4443 0.4483 0.4522 0.4562 0.4602 0.4641 0.4681 0.4721 0.4761 0.4801 0.4840 0.4880 0.4920 0.4960
49
Basic Statistical Procedures and Tables
Table 3
Standard Normal Probabilities (continued)
0
z
Area = P(Z ≤ z) z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49
0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49
0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99
0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
50
Basic Statistical Procedures and Tables
Table 3
Standard Normal Probabilities (continued)
0
z
Area = P(Z ≤ z) z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
z
P(Z ≤ z)
2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49
0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99
0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 3.31 3.32 3.33 3.34 3.35 3.36 3.37 3.38 3.39 3.40 3.41 3.42 3.43 3.44 3.45 3.46 3.47 3.48 3.49
0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.50 3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58 3.59 3.60 3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69 3.70 3.71 3.72 3.73 3.74 3.75 3.76 3.77 3.78 3.79 3.80 3.81 3.82 3.83 3.84 3.85 3.86 3.87 3.88 3.89 3.90 3.91 3.92 3.93 3.94 3.95 3.96 3.97 3.98 3.99 4.00
0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
51
Basic Statistical Procedures and Tables
Table 4
Upper Critical Values of Student's T-distribution
t α
0
Tail Area
Tail Area
df
.10
.05
.025
.01
.005
df
.10
.05
.025
.01
.005
1 2 3 4 5
3.0777 1.8856 1.6377 1.5332 1.4759
6.3138 2.9200 2.3534 2.1318 2.0150
12.706 4.3027 3.1824 2.7764 2.5706
31.821 6.9646 4.5407 3.7469 3.3649
63.657 9.9248 5.8409 4.6041 4.0321
51 52 53 54 55
1.2984 1.2980 1.2977 1.2974 1.2971
1.6753 1.6747 1.6741 1.6736 1.6730
2.0076 2.0066 2.0057 2.0049 2.0040
2.4017 2.4002 2.3988 2.3974 2.3961
2.6757 2.6737 2.6718 2.6700 2.6682
6 7 8 9 10
1.4398 1.4149 1.3968 1.3830 1.3722
1.9432 1.8946 1.8595 1.8331 1.8125
2.4469 2.3646 2.3060 2.2622 2.2281
3.1427 2.9980 2.8965 2.8214 2.7638
3.7074 3.4995 3.3554 3.2498 3.1693
56 57 58 59 60
1.2969 1.2966 1.2963 1.2961 1.2958
1.6725 1.6720 1.6716 1.6711 1.6706
2.0032 2.0025 2.0017 2.0010 2.0003
2.3948 2.3936 2.3924 2.3912 2.3901
2.6665 2.6649 2.6633 2.6618 2.6603
11 12 13 14 15
1.3634 1.3562 1.3502 1.3450 1.3406
1.7959 1.7823 1.7709 1.7613 1.7531
2.2010 2.1788 2.1604 2.1448 2.1314
2.7181 2.6810 2.6503 2.6245 2.6025
3.1058 3.0545 3.0123 2.9768 2.9467
61 62 63 64 65
1.2956 1.2954 1.2951 1.2949 1.2947
1.6702 1.6698 1.6694 1.6690 1.6686
1.9996 1.9990 1.9983 1.9977 1.9971
2.3890 2.3880 2.3870 2.3860 2.3851
2.6589 2.6575 2.6561 2.6549 2.6536
16 17 18 19 20
1.3368 1.3334 1.3304 1.3277 1.3253
1.7459 1.7396 1.7341 1.7291 1.7247
2.1199 2.1098 2.1009 2.0930 2.0860
2.5835 2.5669 2.5524 2.5395 2.5280
2.9208 2.8982 2.8784 2.8609 2.8453
66 67 68 69 70
1.2945 1.2943 1.2941 1.2939 1.2938
1.6683 1.6679 1.6676 1.6672 1.6669
1.9966 1.9960 1.9955 1.9949 1.9944
2.3842 2.3833 2.3824 2.3816 2.3808
2.6524 2.6512 2.6501 2.6490 2.6479
21 22 23 24 25
1.3232 1.3212 1.3195 1.3178 1.3163
1.7207 1.7171 1.7139 1.7109 1.7081
2.0796 2.0739 2.0687 2.0639 2.0595
2.5176 2.5083 2.4999 2.4922 2.4851
2.8314 2.8188 2.8073 2.7969 2.7874
71 72 73 74 75
1.2936 1.2934 1.2933 1.2931 1.2929
1.6666 1.6663 1.6660 1.6657 1.6654
1.9939 1.9935 1.9930 1.9925 1.9921
2.3800 2.3793 2.3785 2.3778 2.3771
2.6469 2.6459 2.6449 2.6439 2.6430
26 27 28 29 30
1.3150 1.3137 1.3125 1.3114 1.3104
1.7056 1.7033 1.7011 1.6991 1.6973
2.0555 2.0518 2.0484 2.0452 2.0423
2.4786 2.4727 2.4671 2.4620 2.4573
2.7787 2.7707 2.7633 2.7564 2.7500
76 77 78 79 80
1.2928 1.2926 1.2925 1.2924 1.2922
1.6652 1.6649 1.6646 1.6644 1.6641
1.9917 1.9913 1.9908 1.9905 1.9901
2.3764 2.3758 2.3751 2.3745 2.3739
2.6421 2.6412 2.6403 2.6395 2.6387
31 32 33 34 35
1.3095 1.3086 1.3077 1.3070 1.3062
1.6955 1.6939 1.6924 1.6909 1.6896
2.0395 2.0369 2.0345 2.0322 2.0301
2.4528 2.4487 2.4448 2.4411 2.4377
2.7440 2.7385 2.7333 2.7284 2.7238
81 82 83 84 85
1.2921 1.2920 1.2918 1.2917 1.2916
1.6639 1.6636 1.6634 1.6632 1.6630
1.9897 1.9893 1.9890 1.9886 1.9883
2.3733 2.3727 2.3721 2.3716 2.3710
2.6379 2.6371 2.6364 2.6356 2.6349
36 37 38 39 40
1.3055 1.3049 1.3042 1.3036 1.3031
1.6883 1.6871 1.6860 1.6849 1.6839
2.0281 2.0262 2.0244 2.0227 2.0211
2.4345 2.4314 2.4286 2.4258 2.4233
2.7195 2.7154 2.7116 2.7079 2.7045
86 87 88 89 90
1.2915 1.2914 1.2912 1.2911 1.2910
1.6628 1.6626 1.6624 1.6622 1.6620
1.9879 1.9876 1.9873 1.9870 1.9867
2.3705 2.3700 2.3695 2.3690 2.3685
2.6342 2.6335 2.6329 2.6322 2.6316
41 42 43 44 45
1.3025 1.3020 1.3016 1.3011 1.3006
1.6829 1.6820 1.6811 1.6802 1.6794
2.0195 2.0181 2.0167 2.0154 2.0141
2.4208 2.4185 2.4163 2.4141 2.4121
2.7012 2.6981 2.6951 2.6923 2.6896
91 92 93 94 95
1.2909 1.2908 1.2907 1.2906 1.2905
1.6618 1.6616 1.6614 1.6612 1.6611
1.9864 1.9861 1.9858 1.9855 1.9853
2.3680 2.3676 2.3671 2.3667 2.3662
2.6309 2.6303 2.6297 2.6291 2.6286
46 47 48 49 50
1.3002 1.2998 1.2994 1.2991 1.2987
1.6787 1.6779 1.6772 1.6766 1.6759
2.0129 2.0117 2.0106 2.0096 2.0086
2.4102 2.4083 2.4066 2.4049 2.4033
2.6870 2.6846 2.6822 2.6800 2.6778
96 97 98 99 100
1.2904 1.2903 1.2902 1.2902 1.2901
1.6609 1.6607 1.6606 1.6604 1.6602
1.9850 1.9847 1.9845 1.9842 1.9840
2.3658 2.3654 2.3650 2.3646 2.3642
2.6280 2.6275 2.6269 2.6264 2.6259
1.2816
1.6449
1.9600
2.3263
2.5758
52
Basic Statistical Procedures and Tables
Table 5
Exact Confidence Intervals for a Population Proportion p
Exact 90% Confidence Interval for a Population Proportion p x 0 1 2 3 4 5 6 7 8
n=5 0.000 0.010 0.076 0.189 0.343 0.549
x 0 1 2 3 4 5 6 7 8 9 10 11 12 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n=6 0.451 0.657 0.811 0.924 0.990 1.000
n=9 0.000 0.006 0.041 0.098 0.169 0.251 0.345 0.450 0.571 0.717
0.283 0.429 0.550 0.655 0.749 0.831 0.902 0.959 0.994 1.000
0.206 0.316 0.410 0.495 0.573 0.645 0.713 0.776 0.834 0.887 0.934 0.972 0.996 1.000
n = 17 0.000 0.003 0.021 0.050 0.085 0.124 0.166 0.212 0.260 0.311 0.364 0.420 0.478 0.539 0.604 0.674 0.750 0.838
n=7 0.393 0.582 0.729 0.847 0.937 0.991 1.000
n = 10
n = 13 0.000 0.004 0.028 0.066 0.113 0.166 0.224 0.287 0.355 0.427 0.505 0.590 0.684 0.794
0.000 0.009 0.063 0.153 0.271 0.418 0.607
0.162 0.250 0.326 0.396 0.461 0.522 0.580 0.636 0.689 0.740 0.788 0.834 0.876 0.915 0.950 0.979 0.997 1.000
0.000 0.005 0.037 0.087 0.150 0.222 0.304 0.393 0.493 0.606 0.741
0.259 0.394 0.507 0.607 0.696 0.778 0.850 0.913 0.963 0.995 1.000
0.000 0.005 0.033 0.079 0.135 0.200 0.271 0.350 0.436 0.530 0.636 0.762
0.238 0.364 0.470 0.564 0.650 0.729 0.800 0.865 0.921 0.967 0.995 1.000
n = 15
0.193 0.297 0.385 0.466 0.540 0.610 0.675 0.736 0.794 0.847 0.896 0.939 0.974 0.996 1.000
n = 18 0.000 0.003 0.020 0.047 0.080 0.116 0.156 0.199 0.244 0.291 0.341 0.392 0.446 0.502 0.561 0.623 0.690 0.762 0.847
n=8 0.348 0.521 0.659 0.775 0.871 0.947 0.993 1.000
n = 11
n = 14 0.000 0.004 0.026 0.061 0.104 0.153 0.206 0.264 0.325 0.390 0.460 0.534 0.615 0.703 0.807
0.000 0.007 0.053 0.129 0.225 0.341 0.479 0.652
0.000 0.003 0.024 0.057 0.097 0.142 0.191 0.244 0.300 0.360 0.423 0.489 0.560 0.637 0.721 0.819
0.181 0.279 0.363 0.440 0.511 0.577 0.640 0.700 0.756 0.809 0.858 0.903 0.943 0.976 0.997 1.000
n = 19
0.153 0.238 0.310 0.377 0.439 0.498 0.554 0.608 0.659 0.709 0.756 0.801 0.844 0.884 0.920 0.953 0.980 0.997 1.000
53
0.000 0.003 0.019 0.044 0.075 0.110 0.147 0.188 0.230 0.274 0.320 0.368 0.418 0.470 0.524 0.581 0.641 0.704 0.774 0.854
0.146 0.226 0.296 0.359 0.419 0.476 0.530 0.582 0.632 0.680 0.726 0.770 0.812 0.853 0.890 0.925 0.956 0.981 0.997 1.000
0.000 0.006 0.046 0.111 0.193 0.289 0.400 0.529 0.688
0.312 0.471 0.600 0.711 0.807 0.889 0.954 0.994 1.000
n = 12 0.000 0.004 0.030 0.072 0.123 0.181 0.245 0.315 0.391 0.473 0.562 0.661 0.779
0.221 0.339 0.438 0.527 0.609 0.685 0.755 0.819 0.877 0.928 0.970 0.996 1.000
n = 16 0.000 0.003 0.023 0.053 0.090 0.132 0.178 0.227 0.279 0.333 0.391 0.452 0.516 0.583 0.656 0.736 0.829
0.171 0.264 0.344 0.417 0.484 0.548 0.609 0.667 0.721 0.773 0.822 0.868 0.910 0.947 0.977 0.997 1.000
n = 20 0.000 0.003 0.018 0.042 0.071 0.104 0.140 0.177 0.217 0.259 0.302 0.347 0.394 0.442 0.492 0.544 0.599 0.656 0.717 0.784 0.861
0.139 0.216 0.283 0.344 0.401 0.456 0.508 0.558 0.606 0.653 0.698 0.741 0.783 0.823 0.860 0.896 0.929 0.958 0.982 0.997 1.000
Basic Statistical Procedures and Tables
Table 5 (continued)
Exact 95% Confidence Interval for a Population Proportion p x 0 1 2 3 4 5 6 7 8
n=5 0.000 0.005 0.053 0.147 0.284 0.478
x 0 1 2 3 4 5 6 7 8 9 10 11 12 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n=6 0.522 0.716 0.853 0.947 0.995 1.000
n=9 0.000 0.003 0.028 0.075 0.137 0.212 0.299 0.400 0.518 0.664
0.336 0.482 0.600 0.701 0.788 0.863 0.925 0.972 0.997 1.000
0.247 0.360 0.454 0.538 0.614 0.684 0.749 0.808 0.861 0.909 0.950 0.981 0.998 1.000
n = 17 0.000 0.001 0.015 0.038 0.068 0.103 0.142 0.184 0.230 0.278 0.329 0.383 0.440 0.501 0.566 0.636 0.713 0.805
n=7 0.459 0.641 0.777 0.882 0.957 0.996 1.000
n = 10
n = 13 0.000 0.002 0.019 0.050 0.091 0.139 0.192 0.251 0.316 0.386 0.462 0.546 0.640 0.753
0.000 0.004 0.043 0.118 0.223 0.359 0.541
0.195 0.287 0.364 0.434 0.499 0.560 0.617 0.671 0.722 0.770 0.816 0.858 0.897 0.932 0.962 0.985 0.999 1.000
0.000 0.003 0.025 0.067 0.122 0.187 0.262 0.348 0.444 0.555 0.692
0.308 0.445 0.556 0.652 0.738 0.813 0.878 0.933 0.975 0.997 1.000
0.000 0.002 0.023 0.060 0.109 0.167 0.234 0.308 0.390 0.482 0.587 0.715
0.285 0.413 0.518 0.610 0.692 0.766 0.833 0.891 0.940 0.977 0.998 1.000
n = 15
0.232 0.339 0.428 0.508 0.581 0.649 0.711 0.770 0.823 0.872 0.916 0.953 0.982 0.998 1.000
n = 18 0.000 0.001 0.014 0.036 0.064 0.097 0.133 0.173 0.215 0.260 0.308 0.357 0.410 0.465 0.524 0.586 0.653 0.727 0.815
n=8 0.410 0.579 0.710 0.816 0.901 0.963 0.996 1.000
n = 11
n = 14 0.000 0.002 0.018 0.047 0.084 0.128 0.177 0.230 0.289 0.351 0.419 0.492 0.572 0.661 0.768
0.000 0.004 0.037 0.099 0.184 0.290 0.421 0.590
0.000 0.002 0.017 0.043 0.078 0.118 0.163 0.213 0.266 0.323 0.384 0.449 0.519 0.595 0.681 0.782
0.218 0.319 0.405 0.481 0.551 0.616 0.677 0.734 0.787 0.837 0.882 0.922 0.957 0.983 0.998 1.000
n = 19
0.185 0.273 0.347 0.414 0.476 0.535 0.590 0.643 0.692 0.740 0.785 0.827 0.867 0.903 0.936 0.964 0.986 0.999 1.000
54
0.000 0.001 0.013 0.034 0.061 0.091 0.126 0.163 0.203 0.244 0.289 0.335 0.384 0.434 0.488 0.544 0.604 0.669 0.740 0.824
0.176 0.260 0.331 0.396 0.456 0.512 0.566 0.616 0.665 0.711 0.756 0.797 0.837 0.874 0.909 0.939 0.966 0.987 0.999 1.000
0.000 0.003 0.032 0.085 0.157 0.245 0.349 0.473 0.631
0.369 0.527 0.651 0.755 0.843 0.915 0.968 0.997 1.000
n = 12 0.000 0.002 0.021 0.055 0.099 0.152 0.211 0.277 0.349 0.428 0.516 0.615 0.735
0.265 0.385 0.484 0.572 0.651 0.723 0.789 0.848 0.901 0.945 0.979 0.998 1.000
n = 16 0.000 0.002 0.016 0.040 0.073 0.110 0.152 0.198 0.247 0.299 0.354 0.413 0.476 0.544 0.617 0.698 0.794
0.206 0.302 0.383 0.456 0.524 0.587 0.646 0.701 0.753 0.802 0.848 0.890 0.927 0.960 0.984 0.998 1.000
n = 20 0.000 0.001 0.012 0.032 0.057 0.087 0.119 0.154 0.191 0.231 0.272 0.315 0.361 0.408 0.457 0.509 0.563 0.621 0.683 0.751 0.832
0.168 0.249 0.317 0.379 0.437 0.491 0.543 0.592 0.639 0.685 0.728 0.769 0.809 0.846 0.881 0.913 0.943 0.968 0.988 0.999 1.000
Basic Statistical Procedures and Tables
Table 5 (continued)
Exact 99% Confidence Interval for a Population Proportion p x 0 1 2 3 4 5 6 7 8
n=5 0.000 0.001 0.023 0.083 0.185 0.347
x 0 1 2 3 4 5 6 7 8 9 10 11 12 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n=6 0.653 0.815 0.917 0.977 0.999 1.000
n=9 0.000 0.001 0.012 0.042 0.087 0.146 0.219 0.307 0.415 0.555
0.445 0.585 0.693 0.781 0.854 0.913 0.958 0.988 0.999 1.000
0.335 0.449 0.541 0.621 0.691 0.755 0.811 0.862 0.906 0.943 0.972 0.992 1.000 1.000
n = 17 0.000 0.000 0.006 0.021 0.043 0.070 0.101 0.137 0.176 0.219 0.266 0.315 0.369 0.427 0.490 0.559 0.637 0.732
n=7 0.586 0.746 0.856 0.934 0.981 0.999 1.000
n = 10
n = 13 0.000 0.000 0.008 0.028 0.057 0.094 0.138 0.189 0.245 0.309 0.379 0.459 0.551 0.665
0.000 0.001 0.019 0.066 0.144 0.254 0.414
0.268 0.363 0.441 0.510 0.573 0.631 0.685 0.734 0.781 0.824 0.863 0.899 0.930 0.957 0.979 0.994 1.000 1.000
0.000 0.001 0.011 0.037 0.077 0.128 0.191 0.265 0.352 0.456 0.589
0.411 0.544 0.648 0.735 0.809 0.872 0.923 0.963 0.989 0.999 1.000
0.000 0.000 0.010 0.033 0.069 0.114 0.169 0.233 0.307 0.392 0.491 0.618
0.382 0.509 0.608 0.693 0.767 0.831 0.886 0.931 0.967 0.990 1.000 1.000
n = 15
0.315 0.424 0.512 0.589 0.658 0.720 0.777 0.828 0.873 0.913 0.947 0.974 0.992 1.000 1.000
n = 18 0.000 0.000 0.006 0.020 0.040 0.065 0.095 0.128 0.165 0.205 0.247 0.293 0.342 0.395 0.451 0.512 0.578 0.654 0.745
n=8 0.531 0.685 0.797 0.882 0.945 0.984 0.999 1.000
n = 11
n = 14 0.000 0.000 0.008 0.026 0.053 0.087 0.127 0.172 0.223 0.280 0.342 0.411 0.488 0.576 0.685
0.000 0.001 0.016 0.055 0.118 0.203 0.315 0.469
0.000 0.000 0.007 0.024 0.049 0.080 0.117 0.159 0.205 0.256 0.312 0.373 0.439 0.514 0.598 0.702
0.298 0.402 0.486 0.561 0.627 0.688 0.744 0.795 0.841 0.883 0.920 0.951 0.976 0.993 1.000 1.000
n = 19
0.255 0.346 0.422 0.488 0.549 0.605 0.658 0.707 0.753 0.795 0.835 0.872 0.905 0.935 0.960 0.980 0.994 1.000 1.000
55
0.000 0.000 0.006 0.019 0.038 0.062 0.090 0.121 0.155 0.192 0.232 0.274 0.319 0.367 0.418 0.473 0.532 0.596 0.669 0.757
0.243 0.331 0.404 0.468 0.527 0.582 0.633 0.681 0.726 0.768 0.808 0.845 0.879 0.910 0.938 0.962 0.981 0.994 1.000 1.000
0.000 0.001 0.014 0.047 0.100 0.170 0.258 0.368 0.516
0.484 0.632 0.742 0.830 0.900 0.953 0.986 0.999 1.000
n = 12 0.000 0.000 0.009 0.030 0.062 0.103 0.152 0.209 0.272 0.345 0.427 0.523 0.643
0.357 0.477 0.573 0.655 0.728 0.791 0.848 0.897 0.938 0.970 0.991 1.000 1.000
n = 16 0.000 0.000 0.007 0.022 0.045 0.075 0.109 0.147 0.190 0.236 0.287 0.342 0.401 0.466 0.537 0.619 0.718
0.282 0.381 0.463 0.534 0.599 0.658 0.713 0.764 0.810 0.853 0.891 0.925 0.955 0.978 0.993 1.000 1.000
n = 20 0.000 0.000 0.005 0.018 0.036 0.058 0.085 0.114 0.146 0.181 0.218 0.257 0.299 0.343 0.390 0.440 0.493 0.551 0.613 0.683 0.767
0.233 0.317 0.387 0.449 0.507 0.560 0.610 0.657 0.701 0.743 0.782 0.819 0.854 0.886 0.915 0.942 0.964 0.982 0.995 1.000 1.000
Basic Statistical Procedures and Tables
Table 6
Distribution of The Sign-Test Statistic: P(X x), X ~ Bin(n, .5)
n x
3
4
5
6
7
8
9
0 1 2 3 4
0.1250 0.5000 0.8750 1.0000
0.0625 0.3125 0.6875 0.9375 1.0000
0.0313 0.1875 0.5000 0.8125 0.9687
0.0156 0.1094 0.3438 0.6562 0.8906
0.0078 0.0625 0.2266 0.5000 0.7734
0.0039 0.0352 0.1445 0.3633 0.6367
0.0020 0.0195 0.0898 0.2539 0.5000
n x
10
11
12
13
14
15
16
0 1 2 3 4 5 6 7 8
0.0001 0.0107 0.0547 0.1719 0.3770 0.6230 0.8281 0.9453 0.9893
0.0005 0.0059 0.0327 0.1133 0.2744 0.5000 0.7256 0.8867 0.9673
0.0002 0.0032 0.0193 0.0730 0.1938 0.3872 0.6128 0.8062 0.9270
0.0001 0.0017 0.0112 0.0461 0.1334 0.2905 0.5000 0.7095 0.8666
0.0001 0.0009 0.0065 0.0287 0.0898 0.2120 0.3953 0.6047 0.7880
0.0000 0.0005 0.0037 0.0176 0.0592 0.1509 0.3036 0.5000 0.6964
0.0000 0.0003 0.0021 0.0106 0.0384 0.1051 0.2272 0.4018 0.5982
n x
17
18
19
20
21
22
23
0 1 2 3 4 5 6 7 8 9 10 11
0.0000 0.0001 0.0012 0.0064 0.0245 0.0717 0.1662 0.3145 0.5000 0.6855 0.8338 0.9283
0.0000 0.0001 0.0007 0.0038 0.0154 0.0481 0.1189 0.2403 0.4073 0.5927 0.7597 0.8811
0.0000 0.0000 0.0004 0.0022 0.0096 0.0318 0.0835 0.1796 0.3238 0.5000 0.6762 0.8204
0.0000 0.0000 0.0002 0.0013 0.0059 0.0207 0.0577 0.1316 0.2517 0.4119 0.5881 0.7483
0.0000 0.0000 0.0001 0.0007 0.0036 0.0133 0.0392 0.0946 0.1917 0.3318 0.5000 0.6682
0.0000 0.0000 0.0001 0.0004 0.0022 0.0085 0.0262 0.0669 0.1431 0.2617 0.4159 0.5841
0.0000 0.0000 0.0000 0.0002 0.0013 0.0053 0.0173 0.0466 0.1050 0.2024 0.3388 0.5000
n x
24
25
26
27
28
29
30
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0000 0.0000 0.0000 0.0001 0.0008 0.0033 0.0113 0.0320 0.0758 0.1537 0.2706 0.4194 0.5806 0.7294 0.8463 0.9242
0.0000 0.0000 0.0000 0.0001 0.0005 0.0020 0.0073 0.0216 0.0539 0.1148 0.2122 0.3450 0.5000 0.6550 0.7878 0.8852
0.0000 0.0000 0.0000 0.0000 0.0003 0.0012 0.0047 0.0145 0.0378 0.0843 0.1635 0.2786 0.4225 0.5775 0.7214 0.8365
0.0000 0.0000 0.0000 0.0000 0.0002 0.0008 0.0030 0.0096 0.0261 0.0610 0.1239 0.2210 0.3506 0.5000 0.6494 0.7790
0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0019 0.0063 0.0178 0.0436 0.0925 0.1725 0.2858 0.4253 0.5747 0.7142
0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0012 0.0041 0.0121 0.0307 0.0680 0.1325 0.2291 0.3555 0.5000 0.6445
0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0007 0.0026 0.0081 0.0214 0.0494 0.1002 0.1808 0.2923 0.4278 0.5722
56
Basic Statistical Procedures and Tables
Table 7
Wilcoxon Signed-Rank Distribution: P(V
v)
n v
1
2
3
4
5
6
7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0.5000 1.0000
0.2500 0.5000 0.7500 1.0000
0.1250 0.2500 0.3750 0.6250 0.7500 0.8750 1.0000
0.0625 0.1250 0.1875 0.3125 0.4375 0.5625 0.6875 0.8125 0.8750 0.9375 1.0000
0.0313 0.0625 0.0938 0.1563 0.2188 0.3125 0.4063 0.5000 0.5937 0.6875 0.7812 0.8437 0.9062 0.9375 0.9687 1.0000
0.0156 0.0313 0.0469 0.0781 0.1094 0.1563 0.2188 0.2813 0.3438 0.4219 0.5000 0.5781 0.6562 0.7187 0.7812 0.8437 0.8906 0.9219 0.9531 0.9687 0.9844 1.0000
0.0078 0.0156 0.0234 0.0391 0.0547 0.0781 0.1094 0.1484 0.1875 0.2344 0.2891 0.3438 0.4063 0.4688 0.5312 0.5937 0.6562 0.7109 0.7656 0.8125 0.8516 0.8906 0.9219 0.9453 0.9609 0.9766 0.9844 0.9922 1.0000
57
Basic Statistical Procedures and Tables
Table 7
Wilcoxon Signed-Rank Distribution: P(V v) (continued)
n v
8
9
10
11
12
13
14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
0.0039 0.0078 0.0117 0.0195 0.0273 0.0391 0.0547 0.0742 0.0977 0.1250 0.1563 0.1914 0.2305 0.2734 0.3203 0.3711 0.4219 0.4727 0.5273 0.5781 0.6289 0.6797 0.7266 0.7695 0.8086 0.8437 0.8750 0.9023 0.9258 0.9453 0.9609 0.9727 0.9805 0.9883 0.9922 0.9961 1.0000
0.0020 0.0039 0.0059 0.0098 0.0137 0.0195 0.0273 0.0371 0.0488 0.0645 0.0820 0.1016 0.1250 0.1504 0.1797 0.2129 0.2480 0.2852 0.3262 0.3672 0.4102 0.4551 0.5000 0.5449 0.5898 0.6328 0.6738 0.7148 0.7520 0.7871 0.8203 0.8496 0.8750 0.8984 0.9180 0.9355 0.9512 0.9629 0.9727 0.9805 0.9863 0.9902 0.9941 0.9961 0.9980 1.0000
0.0010 0.0020 0.0029 0.0049 0.0068 0.0098 0.0137 0.0186 0.0244 0.0322 0.0420 0.0527 0.0654 0.0801 0.0967 0.1162 0.1377 0.1611 0.1875 0.2158 0.2461 0.2783 0.3125 0.3477 0.3848 0.4229 0.4609 0.5000 0.5391 0.5771 0.6152 0.6523 0.6875 0.7217 0.7539 0.7842 0.8125 0.8389 0.8623 0.8838 0.9033 0.9199 0.9346 0.9473 0.9580 0.9678 0.9756 0.9814 0.9863 0.9902 0.9932 0.9951 0.9971
0.0005 0.0010 0.0015 0.0024 0.0034 0.0049 0.0068 0.0093 0.0122 0.0161 0.0210 0.0269 0.0337 0.0415 0.0508 0.0615 0.0737 0.0874 0.1030 0.1201 0.1392 0.1602 0.1826 0.2065 0.2324 0.2598 0.2886 0.3188 0.3501 0.3823 0.4155 0.4492 0.4829 0.5171 0.5508 0.5845 0.6177 0.6499 0.6812 0.7114 0.7402 0.7676 0.7935 0.8174 0.8398 0.8608 0.8799 0.8970 0.9126 0.9263 0.9385 0.9492 0.9585
0.0002 0.0005 0.0007 0.0012 0.0017 0.0024 0.0034 0.0046 0.0061 0.0081 0.0105 0.0134 0.0171 0.0212 0.0261 0.0320 0.0386 0.0461 0.0549 0.0647 0.0757 0.0881 0.1018 0.1167 0.1331 0.1506 0.1697 0.1902 0.2119 0.2349 0.2593 0.2847 0.3110 0.3386 0.3667 0.3955 0.4250 0.4548 0.4849 0.5151 0.5452 0.5750 0.6045 0.6333 0.6614 0.6890 0.7153 0.7407 0.7651 0.7881 0.8098 0.8303 0.8494
0.0001 0.0002 0.0004 0.0006 0.0009 0.0012 0.0017 0.0023 0.0031 0.0040 0.0052 0.0067 0.0085 0.0107 0.0133 0.0164 0.0199 0.0239 0.0287 0.0341 0.0402 0.0471 0.0549 0.0636 0.0732 0.0839 0.0955 0.1082 0.1219 0.1367 0.1527 0.1698 0.1879 0.2072 0.2274 0.2487 0.2709 0.2939 0.3177 0.3424 0.3677 0.3934 0.4197 0.4463 0.4730 0.5000 0.5270 0.5537 0.5803 0.6066 0.6323 0.6576 0.6823
0.0001 0.0001 0.0002 0.0003 0.0004 0.0006 0.0009 0.0012 0.0015 0.0020 0.0026 0.0034 0.0043 0.0054 0.0067 0.0083 0.0101 0.0123 0.0148 0.0176 0.0209 0.0247 0.0290 0.0338 0.0392 0.0453 0.0520 0.0594 0.0676 0.0765 0.0863 0.0969 0.1083 0.1206 0.1338 0.1479 0.1629 0.1788 0.1955 0.2131 0.2316 0.2508 0.2708 0.2915 0.3129 0.3349 0.3574 0.3804 0.4039 0.4276 0.4516 0.4758 0.5000
58
Basic Statistical Procedures and Tables
Table 7
Wilcoxon Signed-Rank Distribution: P(V v) (continued)
n v 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
15
16
17
18
19
20
0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0006 0.0008 0.0010 0.0013 0.0017 0.0021 0.0027 0.0034 0.0042 0.0051 0.0062 0.0075 0.0090 0.0108 0.0128 0.0151 0.0177 0.0206 0.0240 0.0277 0.0319 0.0365 0.0416 0.0473 0.0535 0.0603 0.0677 0.0757 0.0844 0.0938 0.1039 0.1147 0.1262 0.1384 0.1514 0.1651 0.1796 0.1947 0.2106 0.2271 0.2444 0.2622 0.2807 0.2997
0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0007 0.0008 0.0011 0.0013 0.0017 0.0021 0.0026 0.0031 0.0038 0.0046 0.0055 0.0065 0.0078 0.0091 0.0107 0.0125 0.0145 0.0168 0.0193 0.0222 0.0253 0.0288 0.0327 0.0370 0.0416 0.0467 0.0523 0.0583 0.0649 0.0719 0.0795 0.0877 0.0964 0.1057 0.1156 0.1261 0.1372 0.1489 0.1613 0.1742 0.1877
0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 0.0003 0.0004 0.0005 0.0007 0.0008 0.0010 0.0013 0.0016 0.0019 0.0023 0.0028 0.0033 0.0040 0.0047 0.0055 0.0064 0.0075 0.0087 0.0101 0.0116 0.0133 0.0153 0.0174 0.0198 0.0224 0.0253 0.0284 0.0319 0.0357 0.0398 0.0443 0.0492 0.0544 0.0601 0.0662 0.0727 0.0797 0.0871 0.0950 0.1034 0.1123
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0008 0.0010 0.0012 0.0014 0.0017 0.0020 0.0024 0.0028 0.0033 0.0038 0.0045 0.0052 0.0060 0.0069 0.0080 0.0091 0.0104 0.0118 0.0134 0.0152 0.0171 0.0192 0.0216 0.0241 0.0269 0.0300 0.0333 0.0368 0.0407 0.0449 0.0494 0.0542 0.0594 0.0649
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0010 0.0012 0.0014 0.0017 0.0020 0.0023 0.0027 0.0031 0.0036 0.0041 0.0047 0.0054 0.0062 0.0070 0.0080 0.0090 0.0102 0.0115 0.0129 0.0145 0.0162 0.0180 0.0201 0.0223 0.0247 0.0273 0.0301 0.0331 0.0364
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0004 0.0004 0.0005 0.0006 0.0007 0.0008 0.0010 0.0012 0.0014 0.0016 0.0018 0.0021 0.0024 0.0028 0.0032 0.0036 0.0042 0.0047 0.0053 0.0060 0.0068 0.0077 0.0086 0.0096 0.0107 0.0120 0.0133 0.0148 0.0164 0.0181 0.0200
59
Basic Statistical Procedures and Tables
Table 7
Wilcoxon Signed-Rank Distribution: P(V v) (continued)
n v 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
15
16
17
18
19
20
0.3193 0.3394 0.3599 0.3808 0.4020 0.4235 0.4452 0.4670 0.4890 0.5110 0.5330 0.5548 0.5765 0.5980 0.6192 0.6401 0.6606 0.6807 0.7003 0.7193 0.7378 0.7556 0.7729 0.7894 0.8053 0.8204 0.8349 0.8486 0.8616 0.8738 0.8853 0.8961 0.9062 0.9156 0.9243 0.9323 0.9397 0.9465 0.9527 0.9584 0.9635 0.9681 0.9723 0.9760 0.9794 0.9823 0.9849 0.9872 0.9892 0.9910 0.9925 0.9938 0.9949 0.9958 0.9966
0.2019 0.2166 0.2319 0.2477 0.2641 0.2809 0.2983 0.3161 0.3343 0.3529 0.3718 0.3910 0.4104 0.4301 0.4500 0.4699 0.4900 0.5100 0.5301 0.5500 0.5699 0.5896 0.6090 0.6282 0.6471 0.6657 0.6839 0.7017 0.7191 0.7359 0.7523 0.7681 0.7834 0.7981 0.8123 0.8258 0.8387 0.8511 0.8628 0.8739 0.8844 0.8943 0.9036 0.9123 0.9205 0.9281 0.9351 0.9417 0.9477 0.9533 0.9584 0.9630 0.9673 0.9712 0.9747
0.1217 0.1317 0.1421 0.1530 0.1645 0.1764 0.1889 0.2019 0.2153 0.2293 0.2437 0.2585 0.2738 0.2895 0.3056 0.3221 0.3389 0.3559 0.3733 0.3910 0.4088 0.4268 0.4450 0.4633 0.4816 0.5000 0.5184 0.5367 0.5550 0.5732 0.5912 0.6090 0.6267 0.6441 0.6611 0.6779 0.6944 0.7105 0.7262 0.7415 0.7563 0.7707 0.7847 0.7981 0.8111 0.8236 0.8355 0.8470 0.8579 0.8683 0.8783 0.8877 0.8966 0.9050 0.9129
0.0708 0.0770 0.0837 0.0907 0.0982 0.1061 0.1144 0.1231 0.1323 0.1419 0.1519 0.1624 0.1733 0.1846 0.1964 0.2086 0.2211 0.2341 0.2475 0.2613 0.2754 0.2899 0.3047 0.3198 0.3353 0.3509 0.3669 0.3830 0.3994 0.4159 0.4325 0.4493 0.4661 0.4831 0.5000 0.5169 0.5339 0.5507 0.5675 0.5841 0.6006 0.6170 0.6331 0.6491 0.6647 0.6802 0.6953 0.7101 0.7246 0.7387 0.7525 0.7659 0.7789 0.7914 0.8036
0.0399 0.0437 0.0478 0.0521 0.0567 0.0616 0.0668 0.0723 0.0782 0.0844 0.0909 0.0978 0.1051 0.1127 0.1206 0.1290 0.1377 0.1467 0.1562 0.1660 0.1762 0.1868 0.1977 0.2090 0.2207 0.2327 0.2450 0.2576 0.2706 0.2839 0.2974 0.3113 0.3254 0.3397 0.3543 0.3690 0.3840 0.3991 0.4144 0.4298 0.4453 0.4609 0.4765 0.4922 0.5078 0.5235 0.5391 0.5547 0.5702 0.5856 0.6009 0.6160 0.6310 0.6457 0.6603
0.0220 0.0242 0.0266 0.0291 0.0319 0.0348 0.0379 0.0413 0.0448 0.0487 0.0527 0.0570 0.0615 0.0664 0.0715 0.0768 0.0825 0.0884 0.0947 0.1012 0.1081 0.1153 0.1227 0.1305 0.1387 0.1471 0.1559 0.1650 0.1744 0.1841 0.1942 0.2045 0.2152 0.2262 0.2375 0.2490 0.2608 0.2729 0.2853 0.2979 0.3108 0.3238 0.3371 0.3506 0.3643 0.3781 0.3921 0.4062 0.4204 0.4347 0.4492 0.4636 0.4782 0.4927 0.5073
60
Basic Statistical Procedures and Tables
Table 8
Mann-Whitney-Wilcoxon Distribution: P(W
w)
Note: nX is the smaller sample size, n Y the larger sample size
nX = 2 n Y w
2
3
4
5
6
7
8
9
10
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0.1667 0.3333 0.6667 0.8333 1.0000
0.1000 0.2000 0.4000 0.6000 0.8000 0.9000 1.0000
0.0667 0.1333 0.2667 0.4000 0.6000 0.7333 0.8667 0.9333 1.0000
0.0476 0.0952 0.1905 0.2857 0.4286 0.5714 0.7143 0.8095 0.9048 0.9524 1.0000
0.0357 0.0714 0.1429 0.2143 0.3214 0.4286 0.5714 0.6786 0.7857 0.8571 0.9286 0.9643 1.0000
0.0278 0.0556 0.1111 0.1667 0.2500 0.3333 0.4444 0.5556 0.6667 0.7500 0.8333 0.8889 0.9444 0.9722 1.0000
0.0222 0.0444 0.0889 0.1333 0.2000 0.2667 0.3556 0.4444 0.5556 0.6444 0.7333 0.8000 0.8667 0.9111 0.9556 0.9778 1.0000
0.0182 0.0364 0.0727 0.1091 0.1636 0.2182 0.2909 0.3636 0.4545 0.5455 0.6364 0.7091 0.7818 0.8364 0.8909 0.9273 0.9636 0.9818 1.0000
0.0152 0.0303 0.0606 0.0909 0.1364 0.1818 0.2424 0.3030 0.3788 0.4545 0.5455 0.6212 0.6970 0.7576 0.8182 0.8636 0.9091 0.9394 0.9697 0.9848 1.0000
nX = 3 n Y w
3
4
5
6
7
8
9
10
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0.0500 0.1000 0.2000 0.3500 0.5000 0.6500 0.8000 0.9000 0.9500 1.0000
0.0286 0.0571 0.1143 0.2000 0.3143 0.4286 0.5714 0.6857 0.8000 0.8857 0.9429 0.9714 1.0000
0.0179 0.0357 0.0714 0.1250 0.1964 0.2857 0.3929 0.5000 0.6071 0.7143 0.8036 0.8750 0.9286 0.9643 0.9821 1.0000
0.0119 0.0238 0.0476 0.0833 0.1310 0.1905 0.2738 0.3571 0.4524 0.5476 0.6429 0.7262 0.8095 0.8690 0.9167 0.9524
0.0083 0.0167 0.0333 0.0583 0.0917 0.1333 0.1917 0.2583 0.3333 0.4167 0.5000 0.5833 0.6667 0.7417 0.8083 0.8667
0.0061 0.0121 0.0242 0.0424 0.0667 0.0970 0.1394 0.1879 0.2485 0.3152 0.3879 0.4606 0.5394 0.6121 0.6848 0.7515
0.0045 0.0091 0.0182 0.0318 0.0500 0.0727 0.1045 0.1409 0.1864 0.2409 0.3000 0.3636 0.4318 0.5000 0.5682 0.6364
0.0035 0.0070 0.0140 0.0245 0.0385 0.0559 0.0804 0.1084 0.1434 0.1853 0.2343 0.2867 0.3462 0.4056 0.4685 0.5315
61
Basic Statistical Procedures and Tables
Table 8
Mann-Whitney-Wilcoxon Distribution: P(W
w) (continued)
Note: nX is the smaller sample size, n Y the larger sample size
nX = 4 n Y w
4
5
6
7
8
9
10
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.0143 0.0286 0.0571 0.1000 0.1714 0.2429 0.3429 0.4429 0.5571 0.6571 0.7571 0.8286 0.9000 0.9429 0.9714 0.9857 1.0000
0.0079 0.0159 0.0317 0.0556 0.0952 0.1429 0.2063 0.2778 0.3651 0.4524 0.5476 0.6349 0.7222 0.7937 0.8571 0.9048 0.9444 0.9683 0.9841 0.9921 1.0000
0.0048 0.0095 0.0190 0.0333 0.0571 0.0857 0.1286 0.1762 0.2381 0.3048 0.3810 0.4571 0.5429 0.6190 0.6952 0.7619 0.8238 0.8714 0.9143 0.9429 0.9667
0.0030 0.0061 0.0121 0.0212 0.0364 0.0545 0.0818 0.1152 0.1576 0.2061 0.2636 0.3242 0.3939 0.4636 0.5364 0.6061 0.6758 0.7364 0.7939 0.8424 0.8848
0.0020 0.0040 0.0081 0.0141 0.0242 0.0364 0.0545 0.0768 0.1071 0.1414 0.1838 0.2303 0.2848 0.3414 0.4040 0.4667 0.5333 0.5960 0.6586 0.7152 0.7697
0.0014 0.0028 0.0056 0.0098 0.0168 0.0252 0.0378 0.0531 0.0741 0.0993 0.1301 0.1650 0.2070 0.2517 0.3021 0.3552 0.4126 0.4699 0.5301 0.5874 0.6448
0.0010 0.0020 0.0040 0.0070 0.0120 0.0180 0.0270 0.0380 0.0529 0.0709 0.0939 0.1199 0.1518 0.1868 0.2268 0.2697 0.3177 0.3666 0.4196 0.4725 0.5275
nX = 5 n Y w
5
6
7
8
9
10
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
0.0040 0.0079 0.0159 0.0278 0.0476 0.0754 0.1111 0.1548 0.2103 0.2738 0.3452 0.4206 0.5000 0.5794 0.6548 0.7262 0.7897 0.8452 0.8889 0.9246 0.9524 0.9722 0.9841 0.9921 0.9960 1.0000
0.0022 0.0043 0.0087 0.0152 0.0260 0.0411 0.0628 0.0887 0.1234 0.1645 0.2143 0.2684 0.3312 0.3961 0.4654 0.5346 0.6039 0.6688 0.7316 0.7857 0.8355 0.8766 0.9113 0.9372 0.9589 0.9740
0.0013 0.0025 0.0051 0.0088 0.0152 0.0240 0.0366 0.0530 0.0745 0.1010 0.1338 0.1717 0.2159 0.2652 0.3194 0.3775 0.4381 0.5000 0.5619 0.6225 0.6806 0.7348 0.7841 0.8283 0.8662 0.8990
0.0008 0.0016 0.0031 0.0054 0.0093 0.0148 0.0225 0.0326 0.0466 0.0637 0.0855 0.1111 0.1422 0.1772 0.2176 0.2618 0.3108 0.3621 0.4165 0.4716 0.5284 0.5835 0.6379 0.6892 0.7382 0.7824
0.0005 0.0010 0.0020 0.0035 0.0060 0.0095 0.0145 0.0210 0.0300 0.0415 0.0559 0.0734 0.0949 0.1199 0.1489 0.1818 0.2188 0.2592 0.3032 0.3497 0.3986 0.4491 0.5000 0.5509 0.6014 0.6503
0.0003 0.0007 0.0013 0.0023 0.0040 0.0063 0.0097 0.0140 0.0200 0.0276 0.0376 0.0496 0.0646 0.0823 0.1032 0.1272 0.1548 0.1855 0.2198 0.2567 0.2970 0.3393 0.3839 0.4296 0.4765 0.5235
62
Basic Statistical Procedures and Tables
Table 8
Mann-Whitney-Wilcoxon Distribution: P(W w) (continued) Note: nX is the smaller sample size, n Y the larger sample size
nX = 6
nX = 7
n Y
n Y
w
6
7
8
9
10
w
7
8
9
10
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
0.0011 0.0022 0.0043 0.0076 0.0130 0.0206 0.0325 0.0465 0.0660 0.0898 0.1201 0.1548 0.1970 0.2424 0.2944 0.3496 0.4091 0.4686 0.5314 0.5909 0.6504 0.7056 0.7576 0.8030 0.8452 0.8799 0.9102 0.9340 0.9535 0.9675 0.9794 0.9870 0.9924 0.9957 0.9978 0.9989 1.0000
0.0006 0.0012 0.0023 0.0041 0.0070 0.0111 0.0175 0.0256 0.0367 0.0507 0.0688 0.0903 0.1171 0.1474 0.1830 0.2226 0.2669 0.3141 0.3654 0.4178 0.4726 0.5274 0.5822 0.6346 0.6859 0.7331 0.7774 0.8170 0.8526 0.8829 0.9097 0.9312 0.9493 0.9633 0.9744 0.9825 0.9889 0.9930 0.9959 0.9977 0.9988 0.9994 1.0000
0.0003 0.0007 0.0013 0.0023 0.0040 0.0063 0.0100 0.0147 0.0213 0.0296 0.0406 0.0539 0.0709 0.0906 0.1142 0.1412 0.1725 0.2068 0.2454 0.2864 0.3310 0.3773 0.4259 0.4749 0.5251 0.5741 0.6227 0.6690 0.7136 0.7546 0.7932 0.8275 0.8588 0.8858 0.9094 0.9291 0.9461 0.9594 0.9704 0.9787 0.9853 0.9900 0.9937 0.9960 0.9977 0.9987 0.9993 0.9997 1.0000
0.0002 0.0004 0.0008 0.0014 0.0024 0.0038 0.0060 0.0088 0.0128 0.0180 0.0248 0.0332 0.0440 0.0567 0.0723 0.0905 0.1119 0.1361 0.1638 0.1942 0.2280 0.2643 0.3035 0.3445 0.3878 0.4320 0.4773 0.5227 0.5680 0.6122 0.6555 0.6965 0.7357 0.7720 0.8058 0.8362 0.8639 0.8881 0.9095 0.9277 0.9433 0.9560 0.9668 0.9752 0.9820 0.9872 0.9912 0.9940 0.9962 0.9976 0.9986
0.0001 0.0002 0.0005 0.0009 0.0015 0.0024 0.0037 0.0055 0.0080 0.0112 0.0156 0.0210 0.0280 0.0363 0.0467 0.0589 0.0736 0.0903 0.1099 0.1317 0.1566 0.1838 0.2139 0.2461 0.2811 0.3177 0.3564 0.3962 0.4374 0.4789 0.5211 0.5626 0.6038 0.6436 0.6823 0.7189 0.7539 0.7861 0.8162 0.8434 0.8683 0.8901 0.9097 0.9264 0.9411 0.9533 0.9637 0.9720 0.9790 0.9844 0.9888
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
0.0003 0.0006 0.0012 0.0020 0.0035 0.0055 0.0087 0.0131 0.0189 0.0265 0.0364 0.0487 0.0641 0.0825 0.1043 0.1297 0.1588 0.1914 0.2279 0.2675 0.3100 0.3552 0.4024 0.4508 0.5000 0.5492 0.5976 0.6448 0.6900 0.7325 0.7721 0.8086 0.8412 0.8703 0.8957 0.9175 0.9359 0.9513 0.9636 0.9735 0.9811 0.9869 0.9913 0.9945 0.9965 0.9980 0.9988 0.9994 0.9997 1.0000
0.0002 0.0003 0.0006 0.0011 0.0019 0.0030 0.0047 0.0070 0.0103 0.0145 0.0200 0.0270 0.0361 0.0469 0.0603 0.0760 0.0946 0.1159 0.1405 0.1678 0.1984 0.2317 0.2679 0.3063 0.3472 0.3894 0.4333 0.4775 0.5225 0.5667 0.6106 0.6528 0.6937 0.7321 0.7683 0.8016 0.8322 0.8595 0.8841 0.9054 0.9240 0.9397 0.9531 0.9639 0.9730 0.9800 0.9855 0.9897 0.9930 0.9953 0.9970
0.0001 0.0002 0.0003 0.0006 0.0010 0.0017 0.0026 0.0039 0.0058 0.0082 0.0115 0.0156 0.0209 0.0274 0.0356 0.0454 0.0571 0.0708 0.0869 0.1052 0.1261 0.1496 0.1755 0.2039 0.2349 0.2680 0.3032 0.3403 0.3788 0.4185 0.4591 0.5000 0.5409 0.5815 0.6212 0.6597 0.6968 0.7320 0.7651 0.7961 0.8245 0.8504 0.8739 0.8948 0.9131 0.9292 0.9429 0.9546 0.9644 0.9726 0.9791
0.0001 0.0001 0.0002 0.0004 0.0006 0.0010 0.0015 0.0023 0.0034 0.0048 0.0068 0.0093 0.0125 0.0165 0.0215 0.0277 0.0351 0.0439 0.0544 0.0665 0.0806 0.0966 0.1148 0.1349 0.1574 0.1819 0.2087 0.2374 0.2681 0.3004 0.3345 0.3698 0.4063 0.4434 0.4811 0.5189 0.5566 0.5937 0.6302 0.6655 0.6996 0.7319 0.7626 0.7913 0.8181 0.8426 0.8651 0.8852 0.9034 0.9194 0.9335
63
Basic Statistical Procedures and Tables
Table 8
Mann-Whitney-Wilcoxon Distribution: P(W w) (continued) Note: nX is the smaller sample size, n Y the larger sample size
nX = 8
nX = 9
nX = 10
n Y
n Y
n Y
w
8
9
10
w
9
10
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
0.0001 0.0002 0.0003 0.0005 0.0009 0.0015 0.0023 0.0035 0.0052 0.0074 0.0103 0.0141 0.0190 0.0249 0.0325 0.0415 0.0524 0.0652 0.0803 0.0974 0.1172 0.1393 0.1641 0.1911 0.2209 0.2527 0.2869 0.3227 0.3605 0.3992 0.4392 0.4796 0.5204 0.5608 0.6008 0.6395 0.6773 0.7131 0.7473 0.7791 0.8089 0.8359 0.8607 0.8828 0.9026 0.9197 0.9348 0.9476 0.9585 0.9675 0.9751
0.0000 0.0001 0.0002 0.0003 0.0005 0.0008 0.0012 0.0019 0.0028 0.0039 0.0056 0.0076 0.0103 0.0137 0.0180 0.0232 0.0296 0.0372 0.0464 0.0570 0.0694 0.0836 0.0998 0.1179 0.1383 0.1606 0.1852 0.2117 0.2404 0.2707 0.3029 0.3365 0.3715 0.4074 0.4442 0.4813 0.5187 0.5558 0.5926 0.6285 0.6635 0.6971 0.7293 0.7596 0.7883 0.8148 0.8394 0.8617 0.8821 0.9002 0.9164
0.0000 0.0000 0.0001 0.0002 0.0003 0.0004 0.0007 0.0010 0.0015 0.0022 0.0031 0.0043 0.0058 0.0078 0.0103 0.0133 0.0171 0.0217 0.0273 0.0338 0.0416 0.0506 0.0610 0.0729 0.0864 0.1015 0.1185 0.1371 0.1577 0.1800 0.2041 0.2299 0.2574 0.2863 0.3167 0.3482 0.3809 0.4143 0.4484 0.4827 0.5173 0.5516 0.5857 0.6191 0.6518 0.6833 0.7137 0.7426 0.7701 0.7959 0.8200
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 0.0006 0.0009 0.0014 0.0020 0.0028 0.0039 0.0053 0.0071 0.0094 0.0122 0.0157 0.0200 0.0252 0.0313 0.0385 0.0470 0.0567 0.0680 0.0807 0.0951 0.1112 0.1290 0.1487 0.1701 0.1933 0.2181 0.2447 0.2729 0.3024 0.3332 0.3652 0.3981 0.4317 0.4657 0.5000 0.5343 0.5683 0.6019 0.6348 0.6668 0.6976 0.7271 0.7553 0.7819 0.8067
0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0007 0.0011 0.0015 0.0021 0.0028 0.0038 0.0051 0.0066 0.0086 0.0110 0.0140 0.0175 0.0217 0.0267 0.0326 0.0394 0.0474 0.0564 0.0667 0.0782 0.0912 0.1055 0.1214 0.1388 0.1577 0.1781 0.2001 0.2235 0.2483 0.2745 0.3019 0.3304 0.3598 0.3901 0.4211 0.4524 0.4841 0.5159 0.5476 0.5789 0.6099 0.6402 0.6696
64
w 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
10 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0004 0.0005 0.0008 0.0010 0.0014 0.0019 0.0026 0.0034 0.0045 0.0057 0.0073 0.0093 0.0116 0.0144 0.0177 0.0216 0.0262 0.0315 0.0376 0.0446 0.0526 0.0615 0.0716 0.0827 0.0952 0.1088 0.1237 0.1399 0.1575 0.1763 0.1965 0.2179 0.2406 0.2644 0.2894 0.3153 0.3421 0.3697 0.3980 0.4267 0.4559 0.4853 0.5147
Basic Statistical Procedures and Tables
Table 9
0
Upper Critical Values of the Chi-Square Distribution
χ 12−α
χα2
0 Tail Area 1 -
Tail Area
df
.995
.99
.975
.95
.90
df
1 2 3 4 5
0.000 0.010 0.072 0.207 0.412
0.000 0.020 0.115 0.297 0.554
0.001 0.051 0.216 0.484 0.831
0.004 0.103 0.352 0.711 1.145
0.016 0.211 0.584 1.064 1.610
1 2 3 4 5
6 7 8 9 10
0.676 0.989 1.344 1.735 2.156
0.872 1.239 1.646 2.088 2.558
1.237 1.690 2.180 2.700 3.247
1.635 2.167 2.733 3.325 3.940
2.204 2.833 3.490 4.168 4.865
11 12 13 14 15
2.603 3.074 3.565 4.075 4.601
3.053 3.571 4.107 4.660 5.229
3.816 4.404 5.009 5.629 6.262
4.575 5.226 5.892 6.571 7.261
16 17 18 19 20
5.142 5.697 6.265 6.844 7.434
5.812 6.408 7.015 7.633 8.260
6.908 7.564 8.231 8.907 9.591
21 22 23 24 25
8.034 8.643 9.260 9.886 10.520
8.897 9.542 10.196 10.856 11.524
26 27 28 29 30
11.160 11.808 12.461 13.121 13.787
31 32 33 34 35
.05
.025
.01
.005
2.706 4.605 6.251 7.779 9.236
3.841 5.991 7.815 9.488 11.070
5.024 7.378 9.348 11.143 12.833
6.635 9.210 11.345 13.277 15.086
7.879 10.597 12.838 14.860 16.750
6 7 8 9 10
10.645 12.017 13.362 14.684 15.987
12.592 14.067 15.507 16.919 18.307
14.449 16.013 17.535 19.023 20.483
16.812 18.475 20.090 21.666 23.209
18.548 20.278 21.955 23.589 25.188
5.578 6.304 7.042 7.790 8.547
11 12 13 14 15
17.275 18.549 19.812 21.064 22.307
19.675 21.026 22.362 23.685 24.996
21.920 23.337 24.736 26.119 27.488
24.725 26.217 27.688 29.141 30.578
26.757 28.300 29.819 31.319 32.801
7.962 8.672 9.390 10.117 10.851
9.312 10.085 10.865 11.651 12.443
16 17 18 19 20
23.542 24.769 25.989 27.204 28.412
26.296 27.587 28.869 30.144 31.410
28.845 30.191 31.526 32.852 34.170
32.000 33.409 34.805 36.191 37.566
34.267 35.718 37.156 38.582 39.997
10.283 10.982 11.689 12.401 13.120
11.591 12.338 13.091 13.848 14.611
13.240 14.041 14.848 15.659 16.473
21 22 23 24 25
29.615 30.813 32.007 33.196 34.382
32.671 33.924 35.172 36.415 37.652
35.479 36.781 38.076 39.364 40.646
38.932 40.289 41.638 42.980 44.314
41.401 42.796 44.181 45.559 46.928
12.198 12.879 13.565 14.256 14.953
13.844 14.573 15.308 16.047 16.791
15.379 16.151 16.928 17.708 18.493
17.292 18.114 18.939 19.768 20.599
26 27 28 29 30
35.563 36.741 37.916 39.087 40.256
38.885 40.113 41.337 42.557 43.773
41.923 43.195 44.461 45.772 46.979
45.642 46.963 48.278 49.588 50.892
48.290 49.645 50.993 52.336 53.672
14.458 15.134 15.815 16.501 17.192
15.655 13.362 17.073 17.789 18.509
17.539 18.291 19.047 19.806 20.569
19.281 20.072 20.867 21.664 22.465
21.434 22.271 23.110 23.952 24.797
31 32 33 34 35
41.422 42.585 43.745 44.903 46.059
44.985 46.194 47.400 48.602 49.802
48.232 49.480 50.725 51.966 53.203
52.191 53.486 54.776 56.061 57.342
55.003 56.328 57.648 58.964 60.275
36 37 38 39 40
17.887 18.586 19.289 19.996 20.707
19.233 19.960 20.691 21.426 22.164
21.336 22.106 22.878 23.654 24.433
23.269 24.075 24.884 25.695 26.509
25.643 26.492 27.343 28.196 29.051
36 37 38 39 40
47.212 48.363 49.513 50.660 51.805
50.998 52.192 53.384 54.572 55.758
54.437 55.668 56.895 58.120 59.342
58.619 59.892 61.162 62.428 63.691
61.581 62.883 64.181 65.476 66.766
41 42 43 44 45
21.421 22.138 22.859 23.584 24.311
22.906 23.650 24.398 25.148 25.901
25.215 25.999 26.785 27.575 28.366
27.326 28.144 28.965 29.787 30.612
29.907 30.765 31.625 32.487 33.350
41 42 43 44 45
52.949 54.090 55.230 56.369 57.505
56.942 58.124 59.304 60.481 61.656
60.561 61.777 62.990 64.201 65.410
64.950 66.206 67.459 68.709 69.957
68.053 69.336 70.616 71.893 73.166
46 47 48 49 50
25.041 25.775 26.511 27.249 27.991
26.657 27.416 28.177 28.941 29.707
29.160 29.956 30.755 31.555 32.357
31.439 32.268 33.098 33.930 34.764
34.215 35.081 35.949 36.818 37.689
46 47 48 49 50
58.641 59.774 60.907 62.038 63.167
62.830 64.001 65.171 66.339 67.505
66.617 67.821 69.023 70.222 71.420
71.201 72.443 73.683 74.919 76.154
74.437 75.704 76.969 78.231 79.490
65
.10
Basic Statistical Procedures and Tables
Table 10
Upper Critical Values of the F-distribution with ( 1,
0
2)
df
Tail Area = α
Fα 1
2
1
2
3
4
5
6
7
8
9
1
.10 .05 .025 .01 .005
39.86 161.4 647.8 4052 16211
49.50 199.5 799.5 5000 20000
53.59 215.7 864.2 5403 20615
55.83 224.6 899.6 5625 22500
57.24 230.2 921.8 5764 23056
58.20 234.0 937.1 5859 23437
58.91 236.8 948.2 5928 23715
59.44 238.9 956.7 5981 23925
59.86 240.5 963.3 6022 24091
2
.10 .05 .025 .01 .005
8.53 18.51 38.51 98.50 198.5
9.00 19.00 39.00 99.00 199.0
9.16 19.16 39.17 99.17 199.2
9.24 19.25 39.25 99.25 199.2
9.29 19.30 39.30 99.30 199.3
9.33 19.33 39.33 99.33 199.3
9.35 19.35 39.36 99.36 199.4
9.37 19.37 39.37 99.37 199.4
9.38 19.38 39.39 99.39 199.4
3
.10 .05 .025 .01 .005
5.54 10.13 17.44 34.12 55.55
5.46 9.55 16.04 30.82 49.80
5.39 9.28 15.44 29.46 47.47
5.34 9.12 15.10 28.71 46.19
5.31 9.01 14.88 28.24 45.39
5.28 8.94 14.73 27.91 44.84
5.27 8.89 14.62 27.67 44.43
5.25 8.85 14.54 27.49 44.13
5.24 8.81 14.47 27.35 43.88
4
.10 .05 .025 .01 .005
4.54 7.71 12.22 21.20 31.33
4.32 6.94 10.65 18.00 26.28
4.19 6.59 9.98 16.69 24.26
4.11 6.39 9.60 15.98 23.15
4.05 6.26 9.36 15.52 22.46
4.01 6.16 9.20 15.21 21.97
3.98 6.09 9.07 14.98 21.62
3.95 6.04 8.98 14.80 21.35
3.94 6.00 8.90 14.66 21.14
5
.10 .05 .025 .01 .005
4.06 6.61 10.01 16.26 22.78
3.78 5.79 8.43 13.27 18.31
3.62 5.41 7.76 12.06 16.53
3.52 5.19 7.39 11.39 15.56
3.45 5.05 7.15 10.97 14.94
3.40 4.95 6.98 10.67 14.51
3.37 4.88 6.85 10.46 14.20
3.34 4.82 6.76 10.29 13.96
3.32 4.77 6.68 10.16 13.77
6
.10 .05 .025 .01 .005
3.78 5.99 8.81 13.75 18.63
3.46 5.14 7.26 10.92 14.54
3.29 4.76 6.60 9.78 12.92
3.18 4.53 6.23 9.15 12.03
3.11 4.39 5.99 8.75 11.46
3.05 4.28 5.82 8.47 11.07
3.01 4.21 5.70 8.26 10.79
2.98 4.15 5.60 8.10 10.57
2.96 4.10 5.52 7.98 10.39
7
.10 .05 .025 .01 .005
3.59 5.59 8.07 12.25 16.24
3.26 4.74 6.54 9.55 12.40
3.07 4.35 5.89 8.45 10.88
2.96 4.12 5.52 7.85 10.05
2.88 3.97 5.29 7.46 9.52
2.83 3.87 5.12 7.19 9.16
2.78 3.79 4.99 6.99 8.89
2.75 3.73 4.90 6.84 8.68
2.72 3.68 4.82 6.72 8.51
8
.10 .05 .025 .01 .005
3.46 5.32 7.57 11.26 14.69
3.11 4.46 6.06 8.65 11.04
2.92 4.07 5.42 7.59 9.60
2.81 3.84 5.05 7.01 8.81
2.73 3.69 4.82 6.63 8.30
2.67 3.58 4.65 6.37 7.95
2.62 3.50 4.53 6.18 7.69
2.59 3.44 4.43 6.03 7.50
2.56 3.39 4.36 5.91 7.34
9
.10 .05 .025 .01 .005
3.36 5.12 7.21 10.56 13.61
3.01 4.26 5.71 8.02 10.11
2.81 3.86 5.08 6.99 8.72
2.69 3.63 4.72 6.42 7.96
2.61 3.48 4.48 6.06 7.47
2.55 3.37 4.32 5.80 7.13
2.51 3.29 4.20 5.61 6.88
2.47 3.23 4.10 5.47 6.69
2.44 3.18 4.03 5.35 6.54
66
Basic Statistical Procedures and Tables
Table 10
Upper Critical Values of the F-distribution with ( 1,
0
2)
df (continued)
Tail Area = α
Fα 1
2
10
12
15
20
24
30
60
120
1
.10 .05 .025 .01 .005
60.19 241.9 968.6 6056 24224
60.71 243.9 976.7 6106 24426
61.22 245.9 984.9 6157 24630
61.74 248.0 993.1 6209 24836
62.00 249.1 997.2 6235 24940
62.26 250.1 1001 6261 25044
62.79 252.2 1010 6313 25253
63.06 253.3 1014 6339 25359
63.33 254.3 1018 6366 25465
2
.10 .05 .025 .01 .005
9.39 19.40 39.40 99.40 199.4
9.41 19.41 39.41 99.42 199.4
9.42 19.43 39.43 99.43 199.4
9.44 19.45 39.45 99.45 199.4
9.45 19.45 39.46 99.46 199.5
9.46 19.46 39.46 99.47 199.5
9.47 19.48 39.48 99.48 199.5
9.48 19.49 39.49 99.49 199.5
9.49 19.50 39.50 99.50 199.5
3
.10 .05 .025 .01 .005
5.23 8.79 14.42 27.23 43.69
5.22 8.74 14.34 27.05 43.39
5.20 8.70 14.25 26.87 43.08
5.18 8.66 14.17 26.69 42.78
5.18 8.64 14.12 26.60 42.62
5.17 8.62 14.08 26.50 42.47
5.15 8.57 13.99 26.32 42.15
5.14 8.55 13.95 26.22 41.99
5.13 8.53 13.90 26.13 41.83
4
.10 .05 .025 .01 .005
3.92 5.96 8.84 14.55 20.97
3.90 5.91 8.75 14.37 20.70
3.87 5.86 8.66 14.20 20.44
3.84 5.80 8.56 14.02 20.17
3.83 5.77 8.51 13.93 20.03
3.82 5.75 8.46 13.84 19.89
3.79 5.69 8.36 13.65 19.61
3.78 5.66 8.31 13.56 19.47
3.76 5.63 8.26 13.46 19.32
5
.10 .05 .025 .01 .005
3.30 4.74 6.62 10.05 13.62
3.27 4.68 6.52 9.89 13.38
3.24 4.62 6.43 9.72 13.15
3.21 4.56 6.33 9.55 12.90
3.19 4.53 6.28 9.47 12.78
3.17 4.50 6.23 9.38 12.66
3.14 4.43 6.12 9.20 12.40
3.12 4.40 6.07 9.11 12.27
3.10 4.36 6.02 9.02 12.14
6
.10 .05 .025 .01 .005
2.94 4.06 5.46 7.87 10.25
2.90 4.00 5.37 7.72 10.03
2.87 3.94 5.27 7.56 9.81
2.84 3.87 5.17 7.40 9.59
2.82 3.84 5.12 7.31 9.47
2.80 3.81 5.07 7.23 9.36
2.76 3.74 4.96 7.06 9.12
2.74 3.70 4.90 6.97 9.00
2.72 3.67 4.85 6.88 8.88
7
.10 .05 .025 .01 .005
2.70 3.64 4.76 6.62 8.38
2.67 3.57 4.67 6.47 8.18
2.63 3.51 4.57 6.31 7.97
2.59 3.44 4.47 6.16 7.75
2.58 3.41 4.42 6.07 7.65
2.56 3.38 4.36 5.99 7.53
2.51 3.30 4.25 5.82 7.31
2.49 3.27 4.20 5.74 7.19
2.47 3.23 4.14 5.65 7.08
8
.10 .05 .025 .01 .005
2.54 3.35 4.30 5.81 7.21
2.50 3.28 4.20 5.67 7.01
2.46 3.22 4.10 5.52 6.81
2.42 3.15 4.00 5.36 6.61
2.40 3.12 3.95 5.28 6.50
2.38 3.08 3.89 5.20 6.40
2.34 3.01 3.78 5.03 6.18
2.32 2.97 3.73 4.95 6.06
2.29 2.93 3.67 4.86 5.95
9
.10 .05 .025 .01 .005
2.42 3.14 3.96 5.26 6.42
2.38 3.07 3.87 5.11 6.23
2.34 3.01 3.77 4.96 6.03
2.30 2.94 3.67 4.81 5.83
2.28 2.90 3.61 4.73 5.73
2.25 2.86 3.56 4.65 5.62
2.21 2.79 3.45 4.48 5.41
2.18 2.75 3.39 4.40 5.30
2.16 2.71 3.33 4.31 5.19
67
Basic Statistical Procedures and Tables
Table 10
Upper Critical Values of the F-distribution with ( 1,
0
2)
df (continued)
Tail Area = α
Fα 1
2
1
2
3
4
5
6
7
8
9
10
.10 .05 .025 .01 .005
3.29 4.96 6.94 10.0 12.8
2.92 4.10 5.46 7.56 9.43
2.73 3.71 4.83 6.55 8.08
2.61 3.48 4.47 5.99 7.34
2.52 3.33 4.24 5.64 6.87
2.46 3.22 4.07 5.39 6.54
2.41 3.14 3.95 5.20 6.30
2.38 3.07 3.85 5.06 6.12
2.35 3.02 3.78 4.94 5.97
12
.10 .05 .025 .01 .005
3.18 4.75 6.55 9.33 11.8
2.81 3.89 5.10 6.93 8.51
2.61 3.49 4.47 5.95 7.23
2.48 3.26 4.12 5.41 6.52
2.39 3.11 3.89 5.06 6.07
2.33 3.00 3.73 4.82 5.76
2.28 2.91 3.61 4.64 5.52
2.24 2.85 3.51 4.50 5.35
2.21 2.80 3.44 4.39 5.20
15
.10 .05 .025 .01 .005
3.07 4.54 6.20 8.68 10.8
2.70 3.68 4.77 6.36 7.70
2.49 3.29 4.15 5.42 6.48
2.36 3.06 3.80 4.89 5.80
2.27 2.90 3.58 4.56 5.37
2.21 2.79 3.41 4.32 5.07
2.16 2.71 3.29 4.14 4.85
2.12 2.64 3.20 4.00 4.67
2.09 2.59 3.12 3.89 4.54
20
.10 .05 .025 .01 .005
2.97 4.35 5.87 8.10 9.94
2.59 3.49 4.46 5.85 6.99
2.38 3.10 3.86 4.94 5.82
2.25 2.87 3.51 4.43 5.17
2.16 2.71 3.29 4.10 4.76
2.09 2.60 3.13 3.87 4.47
2.04 2.51 3.01 3.70 4.26
2.00 2.45 2.91 3.56 4.09
1.96 2.39 2.84 3.46 3.96
24
.10 .05 .025 .01 .005
2.93 4.26 5.72 7.82 9.55
2.54 3.40 4.32 5.61 6.66
2.33 3.01 3.72 4.72 5.52
2.19 2.78 3.38 4.22 4.89
2.10 2.62 3.15 3.90 4.49
2.04 2.51 2.99 3.67 4.20
1.98 2.42 2.87 3.50 3.99
1.94 2.36 2.78 3.36 3.83
1.91 2.30 2.70 3.26 3.69
30
.10 .05 .025 .01 .005
2.88 4.17 5.57 7.56 9.18
2.49 3.32 4.18 5.39 6.35
2.28 2.92 3.59 4.51 5.24
2.14 2.69 3.25 4.02 4.62
2.05 2.53 3.03 3.70 4.23
1.98 2.42 2.87 3.47 3.95
1.93 2.33 2.75 3.30 3.74
1.88 2.27 2.65 3.17 3.58
1.85 2.21 2.57 3.07 3.45
60
.10 .05 .025 .01 .005
2.79 4.00 5.29 7.08 8.49
2.39 3.15 3.93 4.98 5.79
2.18 2.76 3.34 4.13 4.73
2.04 2.53 3.01 3.65 4.14
1.95 2.37 2.79 3.34 3.76
1.87 2.25 2.63 3.12 3.49
1.82 2.17 2.51 2.95 3.29
1.77 2.10 2.41 2.82 3.13
1.74 2.04 2.33 2.72 3.01
120
.10 .05 .025 .01 .005
2.75 3.92 5.15 6.85 8.18
2.35 3.07 3.80 4.79 5.54
2.13 2.68 3.23 3.95 4.50
1.99 2.45 2.89 3.48 3.92
1.90 2.29 2.67 3.17 3.55
1.82 2.18 2.52 2.96 3.28
1.77 2.09 2.39 2.79 3.09
1.72 2.02 2.30 2.66 2.93
1.68 1.96 2.22 2.56 2.81
.10 .05 .025 .01 .005
2.71 3.84 5.02 6.63 7.88
2.30 3.00 3.69 4.61 5.30
2.08 2.60 3.12 3.78 4.28
1.94 2.37 2.79 3.32 3.72
1.85 2.21 2.57 3.02 3.35
1.77 2.10 2.41 2.80 3.09
1.72 2.01 2.29 2.64 2.90
1.67 1.94 2.19 2.51 2.74
1.63 1.88 2.11 2.41 2.62
68
Basic Statistical Procedures and Tables
Table 10
Upper Critical Values of the F-distribution with ( 1,
0
2)
df (continued)
Tail Area = α
Fα 1
2
10
12
15
20
24
30
60
120
10
.10 .05 .025 .01 .005
2.32 2.98 3.72 4.85 5.85
2.28 2.91 3.62 4.71 5.66
2.24 2.85 3.52 4.56 5.47
2.20 2.77 3.42 4.41 5.27
2.18 2.74 3.37 4.33 5.17
2.16 2.70 3.31 4.25 5.07
2.11 2.62 3.20 4.08 4.86
2.08 2.58 3.14 4.00 4.75
2.06 2.54 3.08 3.91 4.64
12
.10 .05 .025 .01 .005
2.19 2.75 3.37 4.30 5.09
2.15 2.69 3.28 4.16 4.91
2.10 2.62 3.18 4.01 4.72
2.06 2.54 3.07 3.86 4.53
2.04 2.51 3.02 3.78 4.43
2.01 2.47 2.96 3.70 4.33
1.96 2.38 2.85 3.54 4.12
1.93 2.34 2.79 3.45 4.01
1.90 2.30 2.72 3.36 3.90
15
.10 .05 .025 .01 .005
2.06 2.54 3.06 3.80 4.42
2.02 2.48 2.96 3.67 4.25
1.97 2.40 2.86 3.52 4.07
1.92 2.33 2.76 3.37 3.88
1.90 2.29 2.70 3.29 3.79
1.87 2.25 2.64 3.21 3.69
1.82 2.16 2.52 3.05 3.48
1.79 2.11 2.46 2.96 3.37
1.76 2.07 2.40 2.87 3.26
20
.10 .05 .025 .01 .005
1.94 2.35 2.77 3.37 3.85
1.89 2.28 2.68 3.23 3.68
1.84 2.20 2.57 3.09 3.50
1.79 2.12 2.46 2.94 3.32
1.77 2.08 2.41 2.86 3.22
1.74 2.04 2.35 2.78 3.12
1.68 1.95 2.22 2.61 2.92
1.64 1.90 2.16 2.52 2.81
1.61 1.84 2.09 2.42 2.69
24
.10 .05 .025 .01 .005
1.88 2.25 2.64 3.17 3.59
1.83 2.18 2.54 3.03 3.42
1.78 2.11 2.44 2.89 3.25
1.73 2.03 2.33 2.74 3.06
1.70 1.98 2.27 2.66 2.97
1.67 1.94 2.21 2.58 2.87
1.61 1.84 2.08 2.40 2.66
1.57 1.79 2.01 2.31 2.55
1.53 1.73 1.94 2.21 2.43
30
.10 .05 .025 .01 .005
1.82 2.16 2.51 2.98 3.34
1.77 2.09 2.41 2.84 3.18
1.72 2.01 2.31 2.70 3.01
1.67 1.93 2.20 2.55 2.82
1.64 1.89 2.14 2.47 2.73
1.61 1.84 2.07 2.39 2.63
1.54 1.74 1.94 2.21 2.42
1.50 1.68 1.87 2.11 2.30
1.46 1.62 1.79 2.01 2.18
60
.10 .05 .025 .01 .005
1.71 1.99 2.27 2.63 2.90
1.66 1.92 2.17 2.50 2.74
1.60 1.84 2.06 2.35 2.57
1.54 1.75 1.94 2.20 2.39
1.51 1.70 1.88 2.12 2.29
1.48 1.65 1.82 2.03 2.19
1.40 1.53 1.67 1.84 1.96
1.35 1.47 1.58 1.73 1.83
1.29 1.39 1.48 1.60 1.69
120
.10 .05 .025 .01 .005
1.65 1.91 2.16 2.47 2.71
1.60 1.83 2.05 2.34 2.54
1.55 1.75 1.94 2.19 2.37
1.48 1.66 1.82 2.03 2.19
1.45 1.61 1.76 1.95 2.09
1.41 1.55 1.69 1.86 1.98
1.32 1.43 1.53 1.66 1.75
1.26 1.35 1.43 1.53 1.61
1.19 1.25 1.31 1.38 1.43
.10 .05 .025 .01 .005
1.60 1.83 2.05 2.32 2.52
1.55 1.75 1.94 2.18 2.36
1.49 1.67 1.83 2.04 2.19
1.42 1.57 1.71 1.88 2.00
1.38 1.52 1.64 1.79 1.90
1.34 1.46 1.57 1.70 1.79
1.24 1.32 1.39 1.47 1.53
1.17 1.22 1.27 1.32 1.36
1.00 1.00 1.00 1.00 1.00
69
Basic Statistical Procedures and Tables
Table 11
Critical Values for the Sk-test for Asymmetry
n
.10
.05
.025
n
.10
.05
.025
5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.88 0.71 0.91 0.77 0.92 0.81 0.93 0.83 0.93 0.85 0.94 0.86 0.94 0.87
1.07 0.88 1.13 0.96 1.15 1.01 1.17 1.05 1.18 1.08 1.19 1.10 1.19 1.11
1.21 1.02 1.30 1.13 1.35 1.19 1.37 1.24 1.39 1.27 1.41 1.30 1.41 1.32
19 20 21 22 23 24 25 26 27 28 29 30
0.94 0.88 0.95 0.89 0.95 0.89 0.95 0.90 0.95 0.90 0.95 0.91
1.20 1.12 1.20 1.13 1.21 1.14 1.21 1.15 1.21 1.15 1.21 1.16
1.42 1.33 1.43 1.35 1.43 1.36 1.44 1.37 1.44 1.37 1.44 1.38
0.97
1.24
1.48
Table 12
n
Critical Values for the Normal Scores Test for Non-Normality
.10
.05
.01
n
.10
.05
.01
0.972 0.972 0.973 0.974 0.974
0.965 0.966 0.967 0.968 0.969
0.950 0.950 0.951 0.953 0.954
3 4 5
0.891 0.894 0.903
0.879 0.868 0.880
0.869 0.824 0.826
31 32 33 34 35
6 7 8 9 10
0.910 0.918 0.924 0.930 0.934
0.888 0.898 0.906 0.912 0.918
0.838 0.850 0.861 0.871 0.879
36 37 38 39 40
0.975 0.976 0.976 0.977 0.977
0.969 0.970 0.971 0.971 0.972
0.955 0.956 0.957 0.958 0.959
11 12 13 14 15
0.938 0.942 0.945 0.948 0.951
0.923 0.928 0.932 0.935 0.939
0.886 0.892 0.899 0.905 0.910
41 42 43 44 45
0.977 0.978 0.978 0.979 0.979
0.973 0.973 0.974 0.974 0.974
0.960 0.961 0.961 0.962 0.963
16 17 18 19 20
0.953 0.954 0.957 0.958 0.960
0.941 0.944 0.946 0.949 0.951
0.913 0.917 0.920 0.924 0.926
46 47 48 49 50
0.980 0.980 0.980 0.981 0.981
0.975 0.976 0.976 0.976 0.977
0.963 0.965 0.965 0.966 0.966
21 22 23 24 25
0.961 0.963 0.964 0.965 0.966
0.952 0.954 0.956 0.957 0.959
0.930 0.933 0.935 0.937 0.939
55 60 65 70 75
0.982 0.984 0.985 0.986 0.987
0.979 0.980 0.981 0.983 0.984
0.969 0.971 0.973 0.975 0.976
26 27 28 29 30
0.967 0.968 0.969 0.970 0.971
0.960 0.961 0.962 0.963 0.964
0.941 0.943 0.944 0.946 0.947
80 85 90 95 100
0.987 0.988 0.988 0.989 0.989
0.985 0.985 0.986 0.987 0.987
0.978 0.979 0.980 0.981 0.982
70
Basic Statistical Procedures and Tables
Table 13
Upper Critical Values for the Kruskal-Wallis Test (k samples)
Notes: 1. In the table below, the critical values give significance levels as close as possible to, but not exceeding the nominal . The actual levels of significance are in brackets. 2. When the table below is not applicable and k = 3 with the three group sizes above 5 or k > 3 with all group sizes above 4, use the following approximation: h
2
≈ χ α , df = k – 1 Nominal
Group Sizes
.10
.05
.025
.01
222 321 322 331 332 333 421 422 431 432 433 441 442 443 444 521 522 531 532 533 541 542 543 544 551 552 553 554 555 611 621 622 631 632 633 641 642 643 644 651 652 653 654 655 661 662 663 664 665 666 777 888
4.571 (.06667) 4.286 (.10000) 4.500 (.06667) 4.571 (.10000) 4.556 (.10000) 4.622 (.10000) 4.500 (.07619) 4.458 (.10000) 4.056 (.09286) 4.511 (.09841) 4.709 (.09238) 4.167 (.08254) 4.555 (.09778) 4.545 (.09905) 4.654 (.09662) 4.200 (.09524) 4.373 (.08995) 4.018 (.09524) 4.651 (.09127) 4.533 (.09697) 3.987 (.09841) 4.541 (.09841) 4.549 (.09892) 4.668 (.09817) 4.109 (.08586) 4.623 (.09704) 4.545 (.09965) 4.523 (.09935) 4.560 (.09952) 4.200 (.09524) 4.545 (.08889) 3.909 (.09524) 4.682 (.08528) 4.590 (.09773) 4.038 (.09437) 4.494 (.09986) 4.604 (.09997) 4.595 (.09847) 4.128 (.09271) 4.596 (.09807) 4.535 (.09932) 4.522 (.09974) 4.547 (.09835) 4.000 (.09774) 4.438 (.09824) 4.558 (.09948) 4.548 (.09982) 4.542 (.09987) 4.643 (.09874) 4.594 (.09933) 4.595 (.09933)
4.714 (.04762) 5.143 (.04286) 5.361 (.03214) 5.600 (.05000) 5.333 (.03333) 5.208 (.05000) 5.444 (.04603) 5.791 (.04571) 4.967 (.04762) 5.455 (.04571) 5.598 (.04866) 5.692 (.04866) 5.000 (.04762) 5.160 (.03439) 4.960 (.04762) 5.251 (.04921) 5.648 (.04892) 4.985 (.04444) 5.273 (.04877) 5.656 (.04863) 5.657 (.04906) 5.127 (.04618) 5.338 (.04726) 5.705 (.04612) 5.666 (.04931) 5.780 (.04878) 4.822 (.04762) 5.345 (.03810) 4.855 (.05000) 5.348 (.04632) 5.615 (.04968) 4.947 (.04675) 5.340 (.04906) 5.610 (.04862) 5.681 (.04881) 4.990 (.04726) 5.338 (.04729) 5.602 (.04956) 5.661 (.04991) 5.729 (.04973) 4.945 (.04779) 5.410 (.04993) 5.625 (.04999) 5.724 (.04950) 5.765 (.04993) 5.801 (.04905) 5.819 (.04911) 5.805 (.04973)
5.556 (.02500) 5.956 (.02500) 5.500 (.02381) 5.833 (.02143) 6.000 (.02381) 6.155 (.02476) 6.167 (.02222) 6.327 (.02413) 6.394 (.02476) 6.615 (.02424) 6.000 (.01852) 6.044 (.01984) 6.004 (.02460) 6.315 (.02121) 5.858 (.02381) 6.068 (.02482) 6.410 (.02496) 6.673 (.02429) 6.000 (.02165) 6.346 (.02489) 6.549 (.02436) 6.760 (.02490) 6.740 (.02475) 5.600 (.02381) 5.745 (.02063) 5.945 (.02143) 6.136 (.02294) 6.436 (.02229) 5.856 (.02424) 6.186 (.02453) 6.538 (.02498) 6.667 (.02495) 5.951 (.02453) 6.196 (.02481) 6.667 (.02452) 6.750 (.02473) 6.788 (.02484) 5.923 (.02381) 6.210 (.02443) 6.725 (.02462) 6.812 (.02458) 6.848 (.02489) 6.889 (.02493) 6.954 (.02446) 6.995 (.02485)
7.200 (.00357) 6.444 (.00794) 6.745 (.01000) 6.667 (.00952) 7.036 (.00571) 7.144 (.00970) 7.654 (.00762) 6.533 (.00794) 6.909 (.00873) 7.079 (.00866) 6.955 (.00794) 7.205 (.00895) 7.445 (.00974) 7.760 (.00946) 7.309 (.00938) 7.338 (.00962) 7.578 (.00968) 7.823 (.00978) 8.000 (.00946) 6.655 (.00794) 6.873 (.00714) 6.970 (.00909) 7.410 (.00779) 7.106 (.00866) 7.340 (.00967) 7.500 (.00966) 7.795 (.00990) 7.182 (.00974) 7.376 (.00982) 7.590 (.00999) 7.936 (.00998) 8.028 (.00988) 7.121 (.00932) 7.467 (.00982) 7.725 (.00985) 8.000 (.00998) 8.124 (.00990) 8.222 (.00994) 8.378 (.00992) 8.465 (.00991)
71
Basic Statistical Procedures and Tables
Table 13
Upper Critical Values for the Kruskal-Wallis Test (continued)
Nominal Group Sizes 2211 2221 2222 3111 3211 3221 3222 3311 3321 3322 3331 3332 3333 4111 4211 4221 4222 4311 4321 4322 4331 4332 4333 4411 4421 4422 4431 4432 4433 4441 4442 4443 4444 22111 22211 22221 22222 31111 32111 32211 32221 32222 33111 33211 33221 33222 33311 33321 33322 33331 33332 33333
.10
.05
.025
5.357 (.06667) 5.667 (.07619) 5.143 (.08571) 5.556 (.07143) 5.644 (.10000) 5.333 (.09643) 5.689 (.08571) 5.745 (.09921) 5.655 (.09786) 5.879 (.09974) 6.026 (.09779) 5.250 (.09048) 5.533 (.09788) 5.755 (.09302) 5.067 (.09524) 5.591 (.09857) 5.750 (.09980) 5.689 (.09602) 5.872 (.09929) 6.016 (.09779) 5.182 (.09968) 5.568 (.09980) 5.808 (.09882) 5.692 (.09853) 5.901 (.09950) 6.019 (.09948) 5.654 (.09801) 5.914 (.09940) 6.042 (.09980) 6.088 (.09900) 5.786 (.09524) 6.250 (.08810) 6.600 (.08889) 6.982 (.09101) 6.139 (.10000) 6.511 (.10000) 6.709 (.09873) 6.955 (.09922) 6.311 (.09286) 6.600 (.09929) 6.788 (.09892) 7.026 (.09897) 6.788 (.09779) 6.910 (.09916) 7.121 (.09979) 7.077 (.09836) 7.210 (.09965) 7.333 (.09922)
5.679 (.03810) 6.167 (.03810) 5.833 (.04286) 6.333 (.04762) 6.333 (.02143) 6.244 (.04246) 6.527 (.04921) 6.600 (.04929) 6.727 (.04948) 7.000 (.04351) 5.833 (.04286) 6.133 (.04180) 6.545 (.04921) 6.178 (.04921) 6.309 (.04937) 6.621 (.04949) 6.545 (.04952) 6.795 (.04925) 6.984 (.04897) 5.945 (.04952) 6.386 (.04981) 6.731 (.04872) 6.635 (.04978) 6.874 (.04983) 7.038 (.04990) 6.725 (.04979) 6.957 (.04960) 7.142 (.04954) 7.235 (.04922) 6.750 (.02381) 7.133 (.04127) 7.418 (.04868) 6.583 (.03571) 6.800 (.04921) 7.309 (.04889) 7.682 (.04745) 7.111 (.04048) 7.200 (.05000) 7.591 (.04919) 7.910 (.04934) 7.576 (.04545) 7.769 (.04885) 8.044 (.04915) 8.000 (.04792) 8.200 (.04940) 8.333 (.04955)
72
6.667 (.00952) 6.250 (.02143) 6.978 (.01746) 6.333 (.02143) 6.689 (.01786) 7.055 (.02317) 7.036 (.02429) 7.515 (.02390) 7.667 (.02338) 6.533 (.02063) 7.064 (.02222) 6.711 (.01905) 6.955 (.02317) 7.326 (.02496) 7.326 (.02329) 7.564 (.02494) 7.775 (.02437) 6.955 (.02349) 7.159 (.02459) 7.538 (.02453) 7.500 (.02462) 7.747 (.02500) 7.929 (.02487) 7.648 (.02470) 7.914 (.02499) 8.079 (.02494) 8.228 (.02476) 6.750 (.02381) 7.333 (.02222) 7.964 (.02222) 7.200 (.02460) 7.745 (.02317) 8.182 (.02384) 7.467 (.01190) 7.618 (.02452) 8.121 (.02437) 8.538 (.02408) 8.061 (.02325) 8.449 (.02471) 8.813 (.02472) 8.703 (.02396) 9.038 (.02452) 9.200 (.02500)
.01 6.667 (.00952) 7.133 (.00794) 7.200 (.00595) 7.636 (.01000) 7.400 (.00857) 8.015 (.00961) 8.538 (.00838) 7.000 (.00952) 7.391 (.00889) 7.067 (.00952) 7.455 (.00984) 7.871 (.00999) 7.758 (.00974) 8.333 (.00985) 8.659 (.00990) 7.909 (.00381) 7.909 (.00906) 8.346 (.00941) 8.231 (.00955) 8.621 (.00999) 8.876 (.00974) 8.588 (.00986) 8.871 (.00987) 9.075 (.01000) 9.287 (.00999) 7.533 (.00952) 8.291 (.00952) 7.600 (.00794) 8.127 (.00937) 8.682 (.00958) 8.073 (.00738) 8.576 (.00984) 9.115 (.00996) 8.424 (.00909) 9.051 (.00976) 9.505 (.00999) 9.451 (.00997) 9.876 (.00966) 10.200 (.00986)
Basic Statistical Procedures and Tables
Table 14
Upper Critical Values for the Friedman Test (k treatments and b blocks)
Notes 1. In the table below, the critical values give significance levels as close as possible to, but not exceeding the nominal . 2. For values of k and b beyond the range of the table below, various approximations are a vailable. k=3
k=4
k=5
b
.05
.01
.05
.01
.05
2 3 4 5
6.000 6.500 6.400
8.000 8.400
6.000 7.400 7.800 7.800
9.000 9.600 9.960
7.600 8.533 8.800 8.960
6 7 8 9 10
7.000 7.143 6.250 6.222 6.200
9.000 8.857 9.000 9.556 9.600
7.600 7.800 7.650 7.667 7.680
10.200 10.543 10.500 10.73 10.68
9.067 9.143 9.200 9.244
11 12 13 14 15
6.545 6.500 6.615 6.143 6.400
9.455 9.500 9.385 9.143 8.933
7.691 7.700 7.800 7.714 7.720
10.75 10.80 10.85 10.89 10.92
16 17 18 19 20
6.500 6.118 6.333 6.421 6.300
9.375 9.294 9.000 9.579 9.300
7.800 7.800 7.733 7.863 7.800
10.95 11.05 10.93 11.02 11.10
21 22 23 24 25
6.095 6.091 6.348 6.250 6.080
9.238 9.091 9.391 9.250 8.960
7.800 7.800
11.06 11.07
26 27 28 29 30
6.077 6.000 6.500 6.276 6.200
9.308 9.407 9.214 9.172 9.267
31 32 33 34 35
6.000 6.063 6.061 6.059 6.171
9.290 9.250 9.152 9.176 9.314
36 37 38 39 40
6.167 6.054 6.158 6.000 6.050
9.389 9.243 9.053 9.282 9.150
41 42 43 44 45
6.195 6.143 6.186 6.318 6.178
9.366 9.190 9.256 9.136 9.244
46 47 48 49 50
6.043 6.128 6.167 6.041 6.040
9.435 9.319 9.125 9.184 9.160
73
k=6 .01
.05
.01
8.000 10.13 11.20 11.68
9.143 9.857 10.286 10.486
9.714 11.762 12.714 13.229
11.867 12.114 12.300 12.44
10.571
13.619
Basic Statistical Procedures and Tables
Table 15
Bonferroni Critical Values
Critical Values B = t /2g for Simultaneous 90% Confidence Intervals
Number of Intervals ( = g ) df
2
3
4
5
6
7
8
9
10
15
2 3 4 5
4.3027 3.1824 2.7764 2.5706
5.3393 3.7405 3.1863 2.9117
6.2053 4.1765 3.4954 3.1634
6.9646 4.5407 3.7469 3.3649
7.6488 4.8567 3.9608 3.5341
8.2767 5.1377 4.1478 3.6805
8.8602 5.3919 4.3147 3.8100
9.4076 5.6251 4.4657 3.9263
9.9248 5.8409 4.6041 4.0321
12.186 6.7411 5.1668 4.4558
6 7 8 9 10
2.4469 2.3646 2.3060 2.2622 2.2281
2.7491 2.6419 2.5660 2.5096 2.4660
2.9687 2.8412 2.7515 2.6850 2.6338
3.1427 2.9980 2.8965 2.8214 2.7638
3.2875 3.1276 3.0158 2.9333 2.8701
3.4119 3.2383 3.1174 3.0283 2.9601
3.5212 3.3353 3.2060 3.1109 3.0382
3.6190 3.4216 3.2846 3.1841 3.1073
3.7074 3.4995 3.3554 3.2498 3.1693
4.0579 3.8055 3.6319 3.5054 3.4093
11 12 13 14 15
2.2010 2.1788 2.1604 2.1448 2.1314
2.4313 2.4030 2.3796 2.3598 2.3429
2.5931 2.5600 2.5326 2.5096 2.4899
2.7181 2.6810 2.6503 2.6245 2.6025
2.8200 2.7795 2.7459 2.7178 2.6937
2.9062 2.8626 2.8265 2.7962 2.7705
2.9809 2.9345 2.8961 2.8640 2.8366
3.0468 2.9978 2.9575 2.9236 2.8948
3.1058 3.0545 3.0123 2.9768 2.9467
3.3338 3.2729 3.2229 3.1811 3.1456
16 17 18 19 20
2.1199 2.1098 2.1009 2.0930 2.0860
2.3283 2.3156 2.3043 2.2944 2.2855
2.4729 2.4581 2.4450 2.4334 2.4231
2.5835 2.5669 2.5524 2.5395 2.5280
2.6730 2.6550 2.6391 2.6251 2.6126
2.7482 2.7289 2.7119 2.6969 2.6834
2.8131 2.7925 2.7745 2.7586 2.7444
2.8700 2.8484 2.8295 2.8127 2.7978
2.9208 2.8982 2.8784 2.8609 2.8453
3.1150 3.0885 3.0653 3.0447 3.0264
21 22 23 24 25
2.0796 2.0739 2.0687 2.0639 2.0595
2.2775 2.2703 2.2637 2.2577 2.2523
2.4138 2.4055 2.3979 2.3909 2.3846
2.5176 2.5083 2.4999 2.4922 2.4851
2.6013 2.5912 2.5820 2.5736 2.5660
2.6714 2.6606 2.6507 2.6418 2.6336
2.7316 2.7201 2.7097 2.7002 2.6916
2.7844 2.7723 2.7614 2.7514 2.7423
2.8314 2.8188 2.8073 2.7969 2.7874
3.0101 2.9953 2.9820 2.9698 2.9587
26 27 28 29 30
2.0555 2.0518 2.0484 2.0452 2.0423
2.2472 2.2426 2.2383 2.2343 2.2306
2.3788 2.3734 2.3685 2.3638 2.3596
2.4786 2.4727 2.4671 2.4620 2.4573
2.5589 2.5525 2.5465 2.5409 2.5357
2.6260 2.6191 2.6127 2.6068 2.6012
2.6836 2.6763 2.6695 2.6632 2.6574
2.7340 2.7263 2.7191 2.7126 2.7064
2.7787 2.7707 2.7633 2.7564 2.7500
2.9485 2.9391 2.9305 2.9225 2.9150
35 40 45 50 55
2.0301 2.0211 2.0141 2.0086 2.0040
2.2154 2.2041 2.1954 2.1885 2.1829
2.3420 2.3289 2.3189 2.3109 2.3044
2.4377 2.4233 2.4121 2.4033 2.3961
2.5145 2.4989 2.4868 2.4772 2.4694
2.5786 2.5618 2.5489 2.5387 2.5304
2.6334 2.6157 2.6021 2.5913 2.5825
2.6813 2.6627 2.6485 2.6372 2.6280
2.7238 2.7045 2.6896 2.6778 2.6682
2.8845 2.8620 2.8447 2.8310 2.8199
60 70 80 90 100
2.0003 1.9944 1.9901 1.9867 1.9840
2.1782 2.1709 2.1654 2.1612 2.1579
2.2990 2.2906 2.2844 2.2795 2.2757
2.3901 2.3808 2.3739 2.3685 2.3642
2.4630 2.4529 2.4454 2.4395 2.4349
2.5235 2.5128 2.5047 2.4985 2.4936
2.5752 2.5639 2.5554 2.5489 2.5437
2.6203 2.6085 2.5996 2.5928 2.5873
2.6603 2.6479 2.6387 2.6316 2.6259
2.8107 2.7964 2.7857 2.7774 2.7709
110 120 250 500 1000
1.9818 1.9799 1.9695 1.9647 1.9623
2.1551 2.1528 2.1399 2.1339 2.1310
2.2725 2.2699 2.2550 2.2482 2.2448
2.3607 2.3578 2.3414 2.3338 2.3301
2.4311 2.4280 2.4102 2.4021 2.3980
2.4896 2.4862 2.4673 2.4586 2.4543
2.5394 2.5359 2.5159 2.5068 2.5022
2.5829 2.5792 2.5582 2.5487 2.5439
2.6213 2.6174 2.5956 2.5857 2.5808
2.7655 2.7611 2.7359 2.7244 2.7187
1.9600
2.1280
2.2414
2.3263
2.3940
2.4500
2.4977
2.5392
2.5758
2.7131
74
Basic Statistical Procedures and Tables
Table 15
Bonferroni Critical Values (continued)
Critical Values B = t /2g for Simultaneous 95% Confidence Intervals
Number of Intervals ( = g ) df
2
3
4
5
6
7
8
9
10
15
2 3 4 5
6.2053 4.1765 3.4954 3.1634
7.6488 4.8567 3.9608 3.5341
8.8602 5.3919 4.3147 3.8100
9.9248 5.8409 4.6041 4.0321
10.886 6.2315 4.8510 4.2193
11.769 6.5797 5.0675 4.3818
12.590 6.8952 5.2611 4.5257
13.360 7.1849 5.4366 4.6553
14.089 7.4533 5.5976 4.7733
17.277 8.5752 6.2541 5.2474
6 7 8 9 10
2.9687 2.8412 2.7515 2.6850 2.6338
3.2875 3.1276 3.0158 2.9333 2.8701
3.5212 3.3353 3.2060 3.1109 3.0382
3.7074 3.4995 3.3554 3.2498 3.1693
3.8630 3.6358 3.4789 3.3642 3.2768
3.9971 3.7527 3.5844 3.4616 3.3682
4.1152 3.8552 3.6766 3.5465 3.4477
4.2209 3.9467 3.7586 3.6219 3.5182
4.3168 4.0293 3.8325 3.6897 3.5814
4.6979 4.3553 4.1224 3.9542 3.8273
11 12 13 14 15
2.5931 2.5600 2.5326 2.5096 2.4899
2.8200 2.7795 2.7459 2.7178 2.6937
2.9809 2.9345 2.8961 2.8640 2.8366
3.1058 3.0545 3.0123 2.9768 2.9467
3.2081 3.1527 3.1070 3.0688 3.0363
3.2949 3.2357 3.1871 3.1464 3.1118
3.3702 3.3078 3.2565 3.2135 3.1771
3.4368 3.3714 3.3177 3.2727 3.2346
3.4966 3.4284 3.3725 3.3257 3.2860
3.7283 3.6489 3.5838 3.5296 3.4837
16 17 18 19 20
2.4729 2.4581 2.4450 2.4334 2.4231
2.6730 2.6550 2.6391 2.6251 2.6126
2.8131 2.7925 2.7745 2.7586 2.7444
2.9208 2.8982 2.8784 2.8609 2.8453
3.0083 2.9840 2.9627 2.9439 2.9271
3.0821 3.0563 3.0336 3.0136 2.9958
3.1458 3.1186 3.0948 3.0738 3.0550
3.2019 3.1735 3.1486 3.1266 3.1070
3.2520 3.2224 3.1966 3.1737 3.1534
3.4443 3.4102 3.3804 3.3540 3.3306
21 22 23 24 25
2.4138 2.4055 2.3979 2.3909 2.3846
2.6013 2.5912 2.5820 2.5736 2.5660
2.7316 2.7201 2.7097 2.7002 2.6916
2.8314 2.8188 2.8073 2.7969 2.7874
2.9121 2.8985 2.8863 2.8751 2.8649
2.9799 2.9655 2.9525 2.9406 2.9298
3.0382 3.0231 3.0095 2.9970 2.9856
3.0895 3.0737 3.0595 3.0465 3.0346
3.1352 3.1188 3.1040 3.0905 3.0782
3.3097 3.2909 3.2739 3.2584 3.2443
26 27 28 29 30
2.3788 2.3734 2.3685 2.3638 2.3596
2.5589 2.5525 2.5465 2.5409 2.5357
2.6836 2.6763 2.6695 2.6632 2.6574
2.7787 2.7707 2.7633 2.7564 2.7500
2.8555 2.8469 2.8389 2.8316 2.8247
2.9199 2.9107 2.9023 2.8945 2.8872
2.9752 2.9656 2.9567 2.9485 2.9409
3.0237 3.0137 3.0045 2.9959 2.9880
3.0669 3.0565 3.0469 3.0380 3.0298
3.2313 3.2194 3.2084 3.1982 3.1888
35 40 45 50 55
2.3420 2.3289 2.3189 2.3109 2.3044
2.5145 2.4989 2.4868 2.4772 2.4694
2.6334 2.6157 2.6021 2.5913 2.5825
2.7238 2.7045 2.6896 2.6778 2.6682
2.7966 2.7759 2.7599 2.7473 2.7370
2.8575 2.8355 2.8187 2.8053 2.7944
2.9097 2.8867 2.8690 2.8550 2.8436
2.9554 2.9314 2.9130 2.8984 2.8866
2.9960 2.9712 2.9521 2.9370 2.9247
3.1502 3.1218 3.1000 3.0828 3.0688
60 70 80 90 100
2.2990 2.2906 2.2844 2.2795 2.2757
2.4630 2.4529 2.4454 2.4395 2.4349
2.5752 2.5639 2.5554 2.5489 2.5437
2.6603 2.6479 2.6387 2.6316 2.6259
2.7286 2.7153 2.7054 2.6978 2.6918
2.7855 2.7715 2.7610 2.7530 2.7466
2.8342 2.8195 2.8086 2.8002 2.7935
2.8768 2.8615 2.8502 2.8414 2.8344
2.9146 2.8987 2.8870 2.8779 2.8707
3.0573 3.0393 3.0259 3.0156 3.0073
110 120 250 500 1000
2.2725 2.2699 2.2550 2.2482 2.2448
2.4311 2.4280 2.4102 2.4021 2.3980
2.5394 2.5359 2.5159 2.5068 2.5022
2.6213 2.6174 2.5956 2.5857 2.5808
2.6868 2.6827 2.6594 2.6488 2.6435
2.7414 2.7370 2.7124 2.7012 2.6957
2.7880 2.7835 2.7577 2.7460 2.7402
2.8287 2.8240 2.7972 2.7850 2.7790
2.8648 2.8599 2.8322 2.8195 2.8133
3.0007 2.9951 2.9637 2.9494 2.9423
2.2414
2.3940
2.4977
2.5758
2.6383
2.6901
2.7344
2.7729
2.8070
2.9352
75
Basic Statistical Procedures and Tables
Table 15
Bonferroni Critical Values (continued)
Critical Values B = t /2g for Simultaneous 99% Confidence Intervals
Number of Intervals ( = g ) df
2
3
4
5
6
7
8
9
10
15
2 3 4 5
14.089 7.4533 5.5976 4.7733
17.277 8.5752 6.2541 5.2474
19.962 9.4649 6.7583 5.6042
22.327 10.215 7.1732 5.8934
24.464 10.869 7.5287 6.1384
26.429 11.453 7.8414 6.3518
28.258 11.984 8.1216 6.5414
29.975 12.471 8.3763 6.7126
31.599 12.924 8.6103 6.8688
38.710 14.819 9.5679 7.4990
6 7 8 9 10
4.3168 4.0293 3.8325 3.6897 3.5814
4.6979 4.3553 4.1224 3.9542 3.8273
4.9807 4.5946 4.3335 4.1458 4.0045
5.2076 4.7853 4.5008 4.2968 4.1437
5.3982 4.9445 4.6398 4.4219 4.2586
5.5632 5.0815 4.7590 4.5288 4.3567
5.7090 5.2022 4.8636 4.6224 4.4423
5.8399 5.3101 4.9570 4.7058 4.5184
5.9588 5.4079 5.0413 4.7809 4.5869
6.4338 5.7954 5.3737 5.0757 4.8547
11 12 13 14 15
3.4966 3.4284 3.3725 3.3257 3.2860
3.7283 3.6489 3.5838 3.5296 3.4837
3.8945 3.8065 3.7345 3.6746 3.6239
4.0247 3.9296 3.8520 3.7874 3.7328
4.1319 4.0308 3.9484 3.8798 3.8220
4.2232 4.1169 4.0302 3.9582 3.8975
4.3028 4.1918 4.1013 4.0263 3.9630
4.3735 4.2582 4.1643 4.0865 4.0209
4.4370 4.3178 4.2208 4.1405 4.0728
4.6845 4.5496 4.4401 4.3495 4.2733
16 17 18 19 20
3.2520 3.2224 3.1966 3.1737 3.1534
3.4443 3.4102 3.3804 3.3540 3.3306
3.5805 3.5429 3.5101 3.4812 3.4554
3.6862 3.6458 3.6105 3.5794 3.5518
3.7725 3.7297 3.6924 3.6595 3.6303
3.8456 3.8007 3.7616 3.7271 3.6966
3.9089 3.8623 3.8215 3.7857 3.7539
3.9649 3.9165 3.8744 3.8373 3.8044
4.0150 3.9651 3.9216 3.8834 3.8495
4.2084 4.1525 4.1037 4.0609 4.0230
21 22 23 24 25
3.1352 3.1188 3.1040 3.0905 3.0782
3.3097 3.2909 3.2739 3.2584 3.2443
3.4325 3.4118 3.3931 3.3761 3.3606
3.5272 3.5050 3.4850 3.4668 3.4502
3.6043 3.5808 3.5597 3.5405 3.5230
3.6693 3.6448 3.6226 3.6025 3.5842
3.7255 3.7000 3.6770 3.6561 3.6371
3.7750 3.7487 3.7249 3.7033 3.6836
3.8193 3.7921 3.7676 3.7454 3.7251
3.9892 3.9589 3.9316 3.9068 3.8842
26 27 28 29 30
3.0669 3.0565 3.0469 3.0380 3.0298
3.2313 3.2194 3.2084 3.1982 3.1888
3.3464 3.3334 3.3214 3.3102 3.2999
3.4350 3.4210 3.4082 3.3962 3.3852
3.5069 3.4922 3.4786 3.4660 3.4544
3.5674 3.5520 3.5378 3.5247 3.5125
3.6197 3.6037 3.5889 3.5753 3.5626
3.6656 3.6491 3.6338 3.6198 3.6067
3.7066 3.6896 3.6739 3.6594 3.6460
3.8635 3.8446 3.8271 3.8110 3.7961
35 40 45 50 55
2.9960 2.9712 2.9521 2.9370 2.9247
3.1502 3.1218 3.1000 3.0828 3.0688
3.2577 3.2266 3.2028 3.1840 3.1688
3.3400 3.3069 3.2815 3.2614 3.2451
3.4068 3.3718 3.3451 3.3239 3.3068
3.4628 3.4263 3.3984 3.3763 3.3585
3.5110 3.4732 3.4442 3.4214 3.4029
3.5534 3.5143 3.4845 3.4609 3.4418
3.5911 3.5510 3.5203 3.4960 3.4764
3.7352 3.6906 3.6565 3.6297 3.6080
60 70 80 90 100
2.9146 2.8987 2.8870 2.8779 2.8707
3.0573 3.0393 3.0259 3.0156 3.0073
3.1562 3.1366 3.1220 3.1108 3.1018
3.2317 3.2108 3.1953 3.1833 3.1737
3.2927 3.2707 3.2543 3.2417 3.2317
3.3437 3.3208 3.3037 3.2906 3.2802
3.3876 3.3638 3.3462 3.3326 3.3218
3.4260 3.4015 3.3833 3.3693 3.3582
3.4602 3.4350 3.4163 3.4019 3.3905
3.5901 3.5622 3.5416 3.5257 3.5131
110 120 250 500 1000
2.8648 2.8599 2.8322 2.8195 2.8133
3.0007 2.9951 2.9637 2.9494 2.9423
3.0945 3.0885 3.0543 3.0387 3.0310
3.1660 3.1595 3.1232 3.1066 3.0984
3.2235 3.2168 3.1785 3.1612 3.1526
3.2717 3.2646 3.2248 3.2067 3.1977
3.3130 3.3057 3.2644 3.2457 3.2365
3.3491 3.3416 3.2991 3.2798 3.2703
3.3812 3.3735 3.3299 3.3101 3.3003
3.5028 3.4943 3.4462 3.4245 3.4137
2.8070
2.9352
3.0233
3.0902
3.1440
3.1888
3.2272
3.2608
3.2905
3.4029
76
Basic Statistical Procedures and Tables
Table 16
Upper Critical Values of the Studentized Range : q (r, )
= .10 r 2
3
4
5
6
7
8
9
10
1 2 3 4 5
8.929 4.130 3.328 3.015 2.850
13.44 5.733 4.467 3.976 3.717
16.36 6.773 5.199 4.586 4.264
18.49 7.538 5.738 5.035 4.664
20.15 8.139 6.162 5.388 4.979
21.51 8.633 6.511 5.679 5.238
22.64 9.049 6.806 5.926 5.458
23.62 9.409 7.062 6.139 5.648
24.48 9.725 7.287 6.327 5.816
6 7 8 9 10
2.748 2.680 2.630 2.592 2.563
3.559 3.451 3.374 3.316 3.270
4.065 3.931 3.834 3.761 3.704
4.435 4.280 4.169 4.084 4.018
4.726 4.555 4.431 4.337 4.264
4.966 4.780 4.646 4.545 4.465
5.168 4.972 4.829 4.721 4.636
5.344 5.137 4.987 4.873 4.783
5.499 5.283 5.126 5.007 4.913
11 12 13 14 15
2.540 2.521 2.505 2.491 2.479
3.234 3.204 3.179 3.158 3.140
3.658 3.621 3.589 3.563 3.540
3.965 3.922 3.885 3.854 3.828
4.205 4.156 4.116 4.081 4.052
4.401 4.349 4.305 4.267 4.235
4.568 4.511 4.464 4.424 4.390
4.711 4.652 4.602 4.560 4.524
4.838 4.776 4.724 4.680 4.641
16 17 18 19 20
2.469 2.460 2.452 2.445 2.439
3.124 3.110 3.098 3.087 3.078
3.520 3.503 3.488 3.474 3.462
3.804 3.784 3.767 3.751 3.736
4.026 4.004 3.984 3.966 3.950
4.207 4.183 4.161 4.142 4.124
4.360 4.334 4.311 4.290 4.271
4.492 4.464 4.440 4.418 4.398
4.608 4.579 4.554 4.531 4.510
24 30 40 60 120
2.420 2.400 2.381 2.363 2.344 2.326
3.047 3.017 2.988 2.959 2.930 2.902
3.423 3.386 3.349 3.312 3.276 3.240
3.692 3.648 3.605 3.562 3.520 3.478
3.900 3.851 3.803 3.755 3.707 3.661
4.070 4.016 3.963 3.911 3.859 3.808
4.213 4.155 4.099 4.042 3.987 3.931
4.336 4.275 4.215 4.155 4.096 4.037
4.445 4.381 4.317 4.254 4.191 4.129
r 11
12
13
14
15
16
17
18
19
20
1 2 3 4 5
25.24 10.01 7.487 6.495 5.966
25.92 10.26 7.667 6.645 6.101
26.54 10.49 7.832 6.783 6.223
27.10 10.70 7.982 6.909 6.336
27.62 10.89 8.120 7.025 6.440
28.10 11.07 8.249 7.133 6.536
28.54 11.24 8.368 7.233 6.626
28.96 11.39 8.479 7.327 6.710
29.35 11.54 8.584 7.414 6.789
29.71 11.68 8.683 7.497 6.863
6 7 8 9 10
5.637 5.413 5.250 5.127 5.029
5.762 5.530 5.362 5.234 5.134
5.875 5.637 5.464 5.333 5.229
5.979 5.735 5.558 5.423 5.317
6.075 5.826 5.644 5.506 5.397
6.164 5.910 5.724 5.583 5.472
6.247 5.988 5.799 5.655 5.542
6.325 6.061 5.869 5.723 5.607
6.398 6.130 5.935 5.786 5.668
6.467 6.195 5.997 5.846 5.726
11 12 13 14 15
4.951 4.886 4.832 4.786 4.746
5.053 4.986 4.930 4.882 4.841
5.146 5.077 5.019 4.970 4.927
5.231 5.160 5.100 5.050 5.006
5.309 5.236 5.176 5.124 5.079
5.382 5.308 5.245 5.192 5.147
5.450 5.374 5.311 5.256 5.209
5.514 5.436 5.372 5.316 5.269
5.573 5.495 5.429 5.373 5.324
5.630 5.550 5.483 5.426 5.376
16 17 18 19 20
4.712 4.682 4.655 4.631 4.609
4.805 4.774 4.746 4.721 4.699
4.890 4.858 4.829 4.803 4.780
4.968 4.935 4.905 4.879 4.855
5.040 5.005 4.975 4.948 4.924
5.107 5.071 5.040 5.012 4.987
5.169 5.133 5.101 5.073 5.047
5.227 5.190 5.158 5.129 5.103
5.282 5.244 5.211 5.182 5.155
5.333 5.295 5.262 5.232 5.205
24 30 40 60 120
4.541 4.474 4.408 4.342 4.276 4.211
4.628 4.559 4.490 4.421 4.353 4.285
4.708 4.635 4.564 4.493 4.422 4.351
4.780 4.706 4.632 4.558 4.485 4.412
4.847 4.770 4.695 4.619 4.543 4.468
4.909 4.830 4.752 4.675 4.597 4.519
4.966 4.886 4.807 4.727 4.647 4.568
5.021 4.939 4.857 4.775 4.694 4.612
5.071 4.988 4.905 4.821 4.738 4.654
5.119 5.034 4.949 4.864 4.779 4.694
77
Basic Statistical Procedures and Tables
Table 16
Upper Critical Values of the Studentized Range : q (r, ) (continued)
= .05 r 2
3
4
5
6
7
8
9
10
1 2 3 4 5
17.97 6.085 4.501 3.927 3.635
26.98 8.331 5.910 5.040 4.602
32.82 9.798 6.825 5.757 5.218
37.08 10.88 7.502 6.287 5.673
40.41 11.74 8.037 6.707 6.033
43.12 12.44 8.478 7.053 6.330
45.40 13.03 8.853 7.347 6.582
47.36 13.54 9.177 7.602 6.802
49.07 13.99 9.462 7.826 6.995
6 7 8 9 10
3.461 3.344 3.261 3.199 3.151
4.339 4.165 4.041 3.949 3.877
4.896 4.681 4.529 4.415 4.327
5.305 5.060 4.886 4.756 4.654
5.628 5.359 5.167 5.024 4.912
5.895 5.606 5.399 5.244 5.124
6.122 5.815 5.597 5.432 5.305
6.319 5.998 5.767 5.595 5.461
6.493 6.158 5.918 5.739 5.599
11 12 13 14 15
3.113 3.082 3.055 3.033 3.014
3.820 3.773 3.735 3.702 3.674
4.256 4.199 4.151 4.111 4.076
4.574 4.508 4.453 4.407 4.367
4.823 4.751 4.690 4.639 4.595
5.028 4.950 4.885 4.829 4.782
5.202 5.119 5.049 4.990 4.940
5.353 5.265 5.192 5.131 5.077
5.487 5.395 5.318 5.254 5.198
16 17 18 19 20
2.998 2.984 2.971 2.960 2.950
3.649 3.628 3.609 3.593 3.578
4.046 4.020 3.997 3.977 3.958
4.333 4.303 4.277 4.253 4.232
4.557 4.524 4.495 4.469 4.445
4.741 4.705 4.673 4.645 4.620
4.897 4.858 4.824 4.794 4.768
5.031 4.991 4.956 4.924 4.896
5.150 5.108 5.071 5.038 5.008
24 30 40 60 120
2.919 2.888 2.858 2.829 2.800 2.772
3.532 3.486 3.442 3.399 3.356 3.314
3.901 3.845 3.791 3.737 3.685 3.633
4.166 4.102 4.039 3.977 3.917 3.858
4.373 4.302 4.232 4.163 4.096 4.030
4.541 4.464 4.389 4.314 4.241 4.170
4.684 4.602 4.521 4.441 4.363 4.286
4.807 4.720 4.635 4.550 4.468 4.387
4.915 4.824 4.735 4.646 4.560 4.474
r 11
12
13
14
15
16
17
18
19
20
1 2 3 4 5
50.59 14.39 9.717 8.027 7.168
51.96 14.75 9.946 8.208 7.324
53.20 15.08 10.15 8.373 7.466
54.33 15.38 10.35 8.525 7.596
55.36 15.65 10.53 8.664 7.717
56.32 15.91 10.69 8.794 7.828
57.22 16.14 10.84 8.914 7.932
58.04 16.37 10.98 9.028 8.030
58.83 16.57 11.11 9.134 8.122
59.56 16.77 11.24 9.233 8.208
6 7 8 9 10
6.649 6.302 6.054 5.867 5.722
6.789 6.431 6.175 5.983 5.833
6.917 6.550 6.287 6.089 5.935
7.034 6.658 6.389 6.186 6.028
7.143 6.759 6.483 6.276 6.114
7.244 6.852 6.571 6.359 6.194
7.338 6.939 6.653 6.437 6.269
7.426 7.020 6.729 6.510 6.339
7.508 7.097 6.802 6.579 6.405
7.587 7.170 6.870 6.644 6.467
11 12 13 14 15
5.605 5.511 5.431 5.364 5.306
5.713 5.615 5.533 5.463 5.404
5.811 5.710 5.625 5.554 5.493
5.901 5.798 5.711 5.637 5.574
5.984 5.878 5.789 5.714 5.649
6.062 5.953 5.862 5.786 5.720
6.134 6.023 5.931 5.852 5.785
6.202 6.089 5.995 5.915 5.846
6.265 6.151 6.055 5.974 5.904
6.326 6.209 6.112 6.029 5.958
16 17 18 19 20
5.256 5.212 5.174 5.140 5.108
5.352 5.307 5.267 5.231 5.199
5.439 5.392 5.352 5.315 5.282
5.520 5.471 5.429 5.391 5.357
5.593 5.544 5.501 5.462 5.427
5.662 5.612 5.568 5.528 5.493
5.727 5.675 5.630 5.589 5.553
5.786 5.734 5.688 5.647 5.610
5.843 5.790 5.743 5.701 5.663
5.897 5.842 5.794 5.752 5.714
24 30 40 60 120
5.012 4.917 4.824 4.732 4.641 4.552
5.099 5.001 4.904 4.808 4.714 4.622
5.179 5.077 4.977 4.878 4.781 4.685
5.251 5.147 5.044 4.942 4.842 4.743
5.319 5.211 5.106 5.001 4.898 4.796
5.381 5.271 5.163 5.056 4.950 4.845
5.439 5.327 5.216 5.107 4.998 4.891
5.494 5.379 5.266 5.154 5.044 4.934
5.545 5.429 5.313 5.199 5.086 4.974
5.594 5.475 5.358 5.241 5.126 5.012
78
Basic Statistical Procedures and Tables
Table 16
Upper Critical Values of the Studentized Range : q (r, ) (continued)
= .01 r 2
3
4
5
6
7
8
9
10
1 2 3 4 5
90.03 14.04 8.261 6.512 5.702
135.0 19.02 10.62 8.120 6.976
164.3 22.29 12.17 9.173 7.804
185.6 24.72 13.33 9.958 8.421
202.2 26.63 14.24 10.58 8.913
215.8 28.20 15.00 11.10 9.321
227.2 29.53 15.64 11.55 9.669
237.0 30.68 16.20 11.93 9.972
245.6 31.69 16.69 12.27 10.24
6 7 8 9 10
5.243 4.949 4.746 4.596 4.482
6.331 5.919 5.635 5.428 5.270
7.033 6.543 6.204 5.957 5.769
7.556 7.005 6.625 6.348 6.136
7.973 7.373 6.960 6.658 6.428
8.318 7.679 7.237 6.915 6.669
8.613 7.939 7.474 7.134 6.875
8.869 8.166 7.681 7.325 7.055
9.097 8.368 7.863 7.495 7.213
11 12 13 14 15
4.392 4.320 4.260 4.210 4.168
5.146 5.046 4.964 4.895 4.836
5.621 5.502 5.404 5.322 5.252
5.970 5.836 5.727 5.634 5.556
6.247 6.101 5.981 5.881 5.796
6.476 6.321 6.192 6.085 5.994
6.672 6.507 6.372 6.258 6.162
6.842 6.670 6.528 6.409 6.309
6.992 6.814 6.667 6.543 6.439
16 17 18 19 20
4.131 4.099 4.071 4.046 4.024
4.786 4.742 4.703 4.670 4.639
5.192 5.140 5.094 5.054 5.018
5.489 5.430 5.379 5.334 5.294
5.722 5.659 5.603 5.554 5.510
5.915 5.847 5.788 5.735 5.688
6.079 6.007 5.944 5.889 5.839
6.222 6.147 6.081 6.022 5.970
6.349 6.270 6.201 6.141 6.087
24 30 40 60 120
3.956 3.889 3.825 3.762 3.702 3.643
4.546 4.455 4.367 4.282 4.200 4.120
4.907 4.799 4.696 4.595 4.497 4.403
5.168 5.048 4.931 4.818 4.709 4.603
5.374 5.242 5.114 4.991 4.872 4.757
5.542 5.401 5.265 5.133 5.005 4.882
5.685 5.536 5.392 5.253 5.118 4.987
5.809 5.653 5.502 5.356 5.214 5.078
5.919 5.756 5.599 5.447 5.299 5.157
r 11
12
13
14
15
16
17
18
19
20
1 2 3 4 5
253.2 32.59 17.13 12.57 10.48
260.0 33.40 17.53 12.84 10.70
266.2 34.13 17.89 13.09 10.89
271.8 34.81 18.22 13.32 11.08
277.0 35.43 18.52 13.53 11.24
281.8 36.00 18.81 13.73 11.40
286.3 36.53 19.07 13.91 11.55
290.4 37.03 19.32 14.08 11.68
294.3 37.50 19.55 14.24 11.81
298.0 37.95 19.77 14.40 11.93
6 7 8 9 10
9.301 8.548 8.027 7.647 7.356
9.485 8.711 8.176 7.784 7.485
9.653 8.860 8.312 7.910 7.603
9.808 8.997 8.436 8.025 7.712
9.951 9.124 8.552 8.132 7.812
10.08 9.242 8.659 8.232 7.906
10.21 9.353 8.760 8.325 7.993
10.32 9.456 8.854 8.412 8.076
10.43 9.554 8.943 8.495 8.153
10.54 9.646 9.027 8.573 8.226
11 12 13 14 15
7.128 6.943 6.791 6.664 6.555
7.250 7.060 6.903 6.772 6.660
7.362 7.167 7.006 6.871 6.757
7.465 7.265 7.101 6.962 6.845
7.560 7.356 7.188 7.047 6.927
7.649 7.441 7.269 7.126 7.003
7.732 7.520 7.345 7.199 7.074
7.809 7.594 7.417 7.268 7.142
7.883 7.665 7.485 7.333 7.204
7.952 7.731 7.548 7.395 7.264
16 17 18 19 20
6.462 6.381 6.310 6.247 6.191
6.564 6.480 6.407 6.342 6.285
6.658 6.572 6.497 6.430 6.371
6.744 6.656 6.579 6.510 6.450
6.823 6.734 6.655 6.585 6.523
6.898 6.806 6.725 6.654 6.591
6.967 6.873 6.792 6.719 6.654
7.032 6.937 6.854 6.780 6.714
7.093 6.997 6.912 6.837 6.771
7.152 7.053 6.968 6.891 6.823
24 30 40 60 120
6.017 5.849 5.686 5.528 5.375 5.227
6.106 5.932 5.764 5.601 5.443 5.290
6.186 6.008 5.835 5.667 5.505 5.348
6.261 6.078 5.900 5.728 5.562 5.400
6.330 6.143 5.961 5.785 5.614 5.448
6.394 6.203 6.017 5.837 5.662 5.493
6.453 6.259 6.069 5.886 5.708 5.535
6.510 6.311 6.119 5.931 5.750 5.574
6.563 6.361 6.165 5.974 5.790 5.611
6.612 6.407 6.209 6.015 5.827 5.645
79
Basic Statistical Procedures and Tables
Table 17
Critical Values d for Multiple Comparisons based on the Kruskal-Wallis Test k = the number of groups (treatments) n = the common sample size of each group
Nominal Family Type I Error Rate (more accurate significance levels are in brackets) k
n
.10
.05
.03
.01
3 3 3 3 3
2 3 4 5 6
- 14 (.111) 21 (.106) 29 (.106) 38 (.103)
8 (.067) 15 (.064) 24 (.045) 33 (.048) 43 (.049)
8 (.067) 16 (.029) 25 (.031) 35 (.031) 46 (.030)
8 (.067) 17 (.011) 27 (.011) 39 (.009) 51 (.011)
4 4 4
2 3 4
11 (.086) 20 (.108) 31 (.097)
12 (.029) 22 (.043) 34 (.049)
12 (.029) 23 (.023) 36 (.026)
12 (.029) 24 (.012) 38 (.012)
5 5 5
2 3 4
14 (.121) 27 (.084) - -
15 (.048) 28 (.060) 44 (.056)
16 (.016) 30 (.023) 46 (.033)
16 (.016) 32 (.007) 50 (.010)
6 6
2 3
-
-
19 (.030) 35 (.055)
19 (.030) 37 (.024)
20 (.010) 39 (.009)
7 7
2 3
-
-
22 (.056) 42 (.054)
23 (.021) 44 (.026)
24 (.007) 46 (.012)
8 8
2 3
-
-
26 (.041) 49 (.055)
26 (.041) 51 (.029)
28 (.005) 54 (.010)
9 10 11 12 13 14 15
2 2 2 2 2 2 2
-
-
29 (.063) 33 (.050) 37 (.040) 40 (.062) 44 (.052) 48 (.044) 52 (.038)
30 (.031) 34 (.025) 38 (.020) 41 (.033) 45 (.028) 49 (.024) 52 (.038)
31 (.012) 35 (.009) 39 (.008) 43 (.006) 46 (.014) 50 (.012) 54 (.010)
80
Basic Statistical Procedures and Tables
Table 18
Critical Values e for Multiple Comparisons based on the Friedman Test
k = the number of treatments , b = the number of blocks
Nominal Family Type I Error Rate (more accurate significance levels are in brackets) k
b
.10
.05
.03
.01
3
3 4 5 6 7 8 9 10 11 12 13 14 15
6 (.028) 6 (.125) 7 (.093) 8 (.072) 8 (.112) 9 (.079) - - - - - - - -
6 (.028) 7 (.042) 8 (.039) 9 (.029) 9 (.051) 10 (.039) 10 (.048) 11 (.037) 11 (.049) 12 (.038) 12 (.049) 13 (.038) 13 (.047)
6 (.028) 7 (.042) 8 (.039) 9 (.029) 10 (.023) 11 (.018) 11 (.026) 12 (.019) 12 (.028) 13 (.022) 13 (.030) 14 (.023) 14 (.028)
6 (.028) 8 (.005) 9 (.008) 10 (.009) 11 (.008) 12 (.007) 12 (.013) 13 (.010) 14 (.008) 14 (.012) 15 (.009) 16 (.007) 16 (.010)
4
2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 (.083) 8 (.049) 9 (.078) 10 (.082) 11 (.078) 11 (.126) 12 (.111) - - - - - - - -
6 (.083) 8 (.049) 10 (.026) 11 (.037) 12 (.037) 13 (.037) 14 (.034) 15 (.032) 15 (.046) 16 (.041) 17 (.038) 18 (.032) 18 (.042) 19 (.037)
6 (.083) 8 (.049) 10 (.026) 11 (.037) 13 (.018) 14 (.020) 15 (.019) 15 (.032) 16 (.029) 17 (.026) 18 (.023) 19 (.021) 19 (.028) 20 (.024)
6 (.083) 9 (.007) 11 (.005) 12 (.013) 14 (.006) 15 (.008) 16 (.009) 17 (.010) 18 (.010) 19 (.009) 20 (.008) 21 (.008) 21 (.011) 22 (.010)
5
2 3 4 5 6 7 8 9 10 11 12 13 14 15
8 (.050) 10 (.067) 11 (.116) 13 (.076) 14 (.088) 15 (.093) 16 (.094) - - - - - - - -
8 (.050) 10 (.067) 12 (.054) 14 (.040) 15 (.049) 16 (.052) 18 (.036) 19 (.037) 20 (.038) 21 (.038) 22 (.038) 23 (.035) 24 (.034) 24 (.045)
8 (.050) 11 (.018) 13 (.020) 14 (.040) 16 (.028) 17 (.033) 19 (.022) 20 (.024) 21 (.025) 22 (.025) 23 (.025) 24 (.024) 25 (.024) 26 (.022)
8 (.050) 12 (.002) 14 (.006) 16 (.006) 17 (.013) 19 (.009) 20 (.012) 22 (.008) 23 (.009) 24 (.010) 25 (.011) 26 (.011) 27 (.011) 28 (.010)
6
2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 (.150) 12 (.084) 14 (.088) 16 (.075) 7 (.098) - - - - - - - - - -
10 (.033) 13 (.030) 15 (.047) 17 (.047) 19 (.040) 20 (.049) 22 (.039) 23 (.043) 24 (.047) 26 (.036) 27 (.039) 28 (.039) 29 (.040) 30 (.040)
10 (.033) 13 (.030) 16 (.018) 18 (.022) 20 (.021) 21 (.032) 23 (.026) 24 (.030) 26 (.023) 27 (.026) 28 (.028) 29 (.028) 30 (.030) 32 (.023)
10 (.033) 14 (.008) 17 (.006) 19 (.010) 21 (.010) 23 (.010) 25 (.008) 26 (.012) 28 (.009) 29 (.012) 31 (.009) 32 (.010) 33 (.011) 34 (.012)
81
Basic Statistical Procedures and Tables
Table 19
Upper Critical Values for Kendall's Rank Correlation Coefficient τˆ
Note: In the table below, the critical values give significance levels as close as possible to, but not exceeding the nominal . Nominal n
.10
.05
.025
.01
.005
.001
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1.000 0.800 0.600 0.524 0.429 0.389 0.378 0.345 0.303 0.308 0.275 0.276 0.250 0.250 0.242 0.228 0.221 0.210 0.203 0.202 0.196 0.193 0.188 0.179 0.180 0.172 0.172 0.166 0.165 0.163 0.159 0.156 0.152 0.150 0.149 0.147 0.144 0.141 0.141 0.138 0.137 0.135 0.132 0.132 0.129 0.129 0.127 0.126 0.124 0.123 0.122 0.121 0.119 0.118 0.117 0.116 0.115
1.000 0.800 0.733 0.619 0.571 0.500 0.467 0.418 0.394 0.359 0.363 0.333 0.317 0.309 0.294 0.287 0.274 0.267 0.264 0.257 0.246 0.240 0.237 0.231 0.228 0.222 0.218 0.213 0.210 0.205 0.201 0.197 0.194 0.192 0.189 0.188 0.185 0.180 0.178 0.176 0.173 0.172 0.169 0.167 0.167 0.163 0.162 0.161 0.158 0.157 0.156 0.154 0.152 0.152 0.149 0.148 0.147
1.000 0.867 0.714 0.643 0.556 0.511 0.491 0.455 0.436 0.407 0.390 0.383 0.368 0.346 0.333 0.326 0.314 0.307 0.296 0.290 0.287 0.280 0.271 0.265 0.261 0.255 0.252 0.246 0.242 0.237 0.234 0.232 0.228 0.223 0.220 0.218 0.215 0.213 0.209 0.207 0.204 0.202 0.199 0.197 0.196 0.192 0.191 0.189 0.187 0.185 0.182 0.181 0.179 0.177 0.176 0.174
1.000 0.867 0.810 0.714 0.667 0.600 0.564 0.545 0.513 0.473 0.467 0.433 0.426 0.412 0.392 0.379 0.371 0.359 0.352 0.341 0.333 0.329 0.322 0.312 0.310 0.301 0.295 0.290 0.288 0.280 0.277 0.273 0.267 0.263 0.260 0.256 0.254 0.250 0.247 0.243 0.240 0.239 0.236 0.232 0.230 0.228 0.225 0.223 0.221 0.219 0.216 0.214 0.212 0.210 0.209 0.207
1.000 0.905 0.786 0.722 0.644 0.600 0.576 0.564 0.516 0.505 0.483 0.471 0.451 0.439 0.421 0.410 0.394 0.391 0.377 0.367 0.360 0.356 0.344 0.340 0.333 0.325 0.323 0.314 0.312 0.304 0.302 0.297 0.292 0.287 0.285 0.280 0.275 0.274 0.268 0.267 0.264 0.260 0.257 0.253 0.251 0.249 0.246 0.244 0.241 0.239 0.236 0.234 0.232 0.230 0.228
1.000 0.857 0.833 0.778 0.709 0.667 0.641 0.604 0.581 0.567 0.544 0.529 0.509 0.495 0.486 0.472 0.455 0.449 0.440 0.428 0.419 0.413 0.404 0.393 0.389 0.379 0.375 0.369 0.361 0.359 0.351 0.346 0.341 0.338 0.334 0.329 0.324 0.321 0.317 0.314 0.310 0.307 0.303 0.300 0.297 0.294 0.290 0.287 0.285 0.282 0.279 0.276 0.274 0.272
82
Basic Statistical Procedures and Tables
Table 20
Upper Critical Values of Spearman's Rank Correlation Coefficient Rs
Note: In the table below, the critical values give significance levels as close as possible to, but not exceeding the nominal .
Nominal n
.10
.05
.025
.01
.005
.001
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
1.000 0.800 0.657 0.571 0.524 0.483 0.455 0.427 0.406 0.385 0.367 0.354 0.341 0.328 0.317 0.309 0.299 0.292 0.284 0.278 0.271 0.265 0.259 0.255 0.250 0.245 0.240 0.236 0.232 0.229 0.225 0.222 0.219 0.215 0.212 0.210 0.207 0.204 0.202 0.199 0.197 0.194 0.192 0.190 0.188 0.186 0.184 0.182 0.180 0.179 0.177 0.175 0.174 0.172 0.171 0.169 0.168
1.000 0.900 0.829 0.714 0.643 0.600 0.564 0.536 0.503 0.484 0.464 0.446 0.429 0.414 0.401 0.391 0.380 0.370 0.361 0.353 0.344 0.337 0.331 0.324 0.318 0.312 0.306 0.301 0.296 0.291 0.287 0.283 0.279 0.275 0.271 0.267 0.264 0.261 0.257 0.254 0.251 0.248 0.246 0.243 0.240 0.238 0.235 0.233 0.231 0.228 0.226 0.224 0.222 0.220 0.218 0.216 0.214
1.000 0.886 0.786 0.738 0.700 0.648 0.618 0.587 0.560 0.538 0.521 0.503 0.488 0.472 0.460 0.447 0.436 0.425 0.416 0.407 0.398 0.390 0.383 0.375 0.368 0.362 0.356 0.350 0.345 0.340 0.335 0.330 0.325 0.321 0.317 0.313 0.309 0.305 0.301 0.298 0.294 0.291 0.288 0.285 0.282 0.279 0.276 0.274 0.271 0.268 0.266 0.264 0.261 0.259 0.257 0.255
1.000 0.943 0.893 0.833 0.783 0.745 0.709 0.678 0.648 0.626 0.604 0.582 0.566 0.550 0.535 0.522 0.509 0.497 0.486 0.476 0.466 0.457 0.449 0.441 0.433 0.425 0.419 0.412 0.405 0.400 0.394 0.388 0.383 0.378 0.373 0.368 0.364 0.359 0.355 0.351 0.347 0.343 0.340 0.336 0.333 0.329 0.326 0.323 0.320 0.317 0.314 0.311 0.308 0.306 0.303 0.301
1.000 0.929 0.881 0.833 0.794 0.755 0.727 0.703 0.679 0.654 0.635 0.618 0.600 0.584 0.570 0.556 0.544 0.532 0.521 0.511 0.501 0.492 0.483 0.475 0.467 0.459 0.452 0.446 0.439 0.433 0.427 0.421 0.415 0.410 0.405 0.400 0.396 0.391 0.386 0.382 0.378 0.374 0.370 0.366 0.363 0.359 0.356 0.352 0.349 0.346 0.343 0.340 0.337 0.334 0.331
1.000 0.952 0.917 0.879 0.845 0.818 0.791 0.771 0.750 0.729 0.711 0.692 0.675 0.662 0.647 0.633 0.621 0.609 0.597 0.586 0.576 0.567 0.558 0.549 0.540 0.532 0.525 0.517 0.510 0.503 0.497 0.491 0.485 0.479 0.473 0.468 0.462 0.457 0.452 0.448 0.443 0.439 0.434 0.430 0.426 0.422 0.418 0.414 0.411 0.407 0.404 0.400 0.397 0.394
83
Basic Statistical Procedures and Tables
Table 21
Sample Size for the T-test
Sample size n required to achieve power K(d) for d
=
µ − µ 0
(standard deviations from µ0). σ These are approximate n for the two-sided test.
One-sided
= .005
(Two-sided
= .01)
One-sided
Power K(d) = 1 -
= .01
(Two-sided
= .02)
Power K(d) = 1 -
d
.99
.95
.90
.80
d
.99
.95
.90
.80
d
0.25
389
290
243
191
0.25
350
256
212
164
0.25
0.30 0.35 0.40 0.45 0.50
272 201 155 123 100
202 150 115 92 75
170 125 97 77 63
134 99 77 62 51
0.30 0.35 0.40 0.45 0.50
244 180 139 110 90
179 132 101 81 66
148 109 85 68 55
115 85 66 53 43
0.30 0.35 0.40 0.45 0.50
0.55 0.60 0.65 0.70 0.75
83 71 61 53 47
63 53 46 40 36
53 45 39 34 30
42 36 31 28 25
0.55 0.60 0.65 0.70 0.75
75 63 55 47 42
55 47 41 35 31
46 39 34 30 27
36 31 27 24 21
0.55 0.60 0.65 0.70 0.75
0.80 0.85 0.90 0.95 1.00
41 37 34 31 28
32 29 26 24 22
27 24 22 20 19
22 20 18 17 16
0.80 0.85 0.90 0.95 1.00
37 33 29 27 25
28 25 23 21 19
24 21 19 18 16
19 17 16 14 13
0.80 0.85 0.90 0.95 1.00
1.10 1.20 1.30 1.40 1.50
24 21 18 16 15
19 16 15 13 12
16 14 13 12 11
14 12 11 10 9
1.10 1.20 1.30 1.40 1.50
21 18 16 14 13
16 14 13 11 10
14 12 11 10 9
12 10 9 9 8
1.10 1.20 1.30 1.40 1.50
1.60 1.70 1.80 1.90 2.00
13 12 12 11 10
11 10 10 9 8
10 9 9 8 8
8 8 8 7 7
1.60 1.70 1.80 1.90 2.00
12 11 10 10 9
10 9 8 8 7
9 8 7 7 7
7 7 7 6 6
1.60 1.70 1.80 1.90 2.00
84
Basic Statistical Procedures and Tables
Table 21
Sample Size for the T-test (continued)
Sample size n required to achieve power K(d) for d =
µ − µ 0
(standard deviations from µ0). σ These are approximate n for the two-sided test.
One-sided
= .025
(Two-sided
= .05)
One-sided
Power K(d) = 1 -
= .05
(Two-sided
= .1)
Power K(d) = 1 -
d
.99
.95
.90
.80
d
.99
.95
.90
.80
d
0.25
296
210
171
128
0.25
255
176
139
101
0.25
0.30 0.35 0.40 0.45 0.50
207 152 117 93 76
147 109 84 67 54
119 88 68 54 44
90 67 51 41 34
0.30 0.35 0.40 0.45 0.50
178 131 101 80 65
122 90 70 55 45
97 72 55 44 36
71 52 40 33 27
0.30 0.35 0.40 0.45 0.50
0.55 0.60 0.65 0.70 0.75
63 53 46 40 35
45 38 33 29 26
37 32 27 24 21
28 24 21 19 16
0.55 0.60 0.65 0.70 0.75
54 46 39 34 30
38 32 28 24 21
30 26 22 19 17
22 19 17 15 13
0.55 0.60 0.65 0.70 0.75
0.80 0.85 0.90 0.95 1.00
31 28 25 23 21
22 21 19 17 16
19 17 16 14 13
15 13 12 11 10
0.80 0.85 0.90 0.95 1.00
27 24 21 19 18
19 17 15 14 13
15 14 13 11 11
12 11 10 9 8
0.80 0.85 0.90 0.95 1.00
1.10 1.20 1.30 1.40 1.50
18 15 14 12 11
13 12 10 9 8
11 10 9 8 7
9 8 7 7 6
1.10 1.20 1.30 1.40 1.50
15 13 11 10 9
11 10 8 8 7
9 8 7 7 6
7 6 6 5 5
1.10 1.20 1.30 1.40 1.50
1.60 1.70 1.80 1.90 2.00
10 9 8 8 7
8 7 7 6 6
7 6 6 6 5
6 5 5 5 5
1.60 1.70 1.80 1.90 2.00
8 8 7 7 6
6 6 6 5 5
6 5 5 5 4
5 4 4 4 4
1.60 1.70 1.80 1.90 2.00
85
Basic Statistical Procedures and Tables
Table 22
Sample Size for the Pooled T-test
Sample size n X = n Y required to achieve power K(d) for d = These are approximate nX and n Y
One-sided
= .005
(Two-sided
= .01)
µ X
−
µ Y
(standard deviations apart). σ for the two-sided test.
One-sided
Power K(d) = 1 -
= .01
(Two-sided
= .02)
Power K(d) = 1 -
d
.99
.95
.90
.80
d
.99
.95
.90
.80
d
0.35 0.40 0.45 0.50
395 303 240 195
293 225 178 145
245 188 149 122
193 148 118 96
0.35 0.40 0.45 0.50
356 273 216 176
260 200 158 129
215 165 131 106
166 128 101 82
0.35 0.40 0.45 0.50
0.55 0.60 0.65 0.70 0.75
161 136 116 100 88
120 101 87 75 66
101 85 73 63 55
79 67 57 50 44
0.55 0.60 0.65 0.70 0.75
146 123 104 90 79
106 90 77 66 58
88 74 64 55 48
68 58 49 43 38
0.55 0.60 0.65 0.70 0.75
0.80 0.85 0.90 0.95 1.00
77 69 62 55 50
58 51 46 42 38
49 43 39 35 32
39 35 31 28 26
0.80 0.85 0.90 0.95 1.00
70 62 55 50 45
51 46 41 37 33
43 38 34 31 28
33 30 27 24 22
0.80 0.85 0.90 0.95 1.00
1.10 1.20 1.30 1.40 1.50
42 36 31 27 24
32 27 23 20 18
27 23 20 17 15
22 18 16 14 13
1.10 1.20 1.30 1.40 1.50
38 32 28 24 21
28 24 21 18 16
23 20 17 15 14
19 16 14 12 11
1.10 1.20 1.30 1.40 1.50
1.60 1.70 1.80 1.90 2.00
21 19 17 16 14
16 15 13 12 11
14 13 11 11 10
11 10 10 9 8
1.60 1.70 1.80 1.90 2.00
19 17 15 14 13
14 13 12 11 10
12 11 10 9 9
10 9 8 8 7
1.60 1.70 1.80 1.90 2.00
86
Basic Statistical Procedures and Tables
Table 22
Sample Size for the Pooled T-test (continued)
Sample size nX = n Y required to achieve power K(d) for d = These are approximate nX and n Y
One-sided
= .025
(Two-sided
= .05)
µ X
−
µ Y
(standard deviations apart). σ for the two-sided test.
One-sided
Power K(d) = 1 -
= .05
(Two-sided
= .10)
Power K(d) = 1 -
d
.99
.95
.90
.80
d
.99
.95
.90
.80
d
0.35 0.40 0.45 0.50
301 231 183 148
214 164 130 106
173 133 105 86
130 100 79 64
0.35 0.40 0.45 0.50
259 199 157 128
178 137 108 88
141 108 86 70
102 78 62 51
0.35 0.40 0.45 0.50
0.55 0.60 0.65 0.70 0.75
123 104 88 76 67
87 74 63 55 48
71 60 51 44 39
53 45 39 34 29
0.55 0.60 0.65 0.70 0.75
112 89 76 66 57
73 61 52 45 40
58 49 42 36 32
42 36 30 26 23
0.55 0.60 0.65 0.70 0.75
0.80 0.85 0.90 0.95 1.00
59 52 47 42 38
42 37 34 30 27
34 31 27 25 23
26 23 21 19 17
0.80 0.85 0.90 0.95 1.00
50 45 40 36 33
35 31 28 25 23
28 25 22 20 18
21 18 16 15 14
0.80 0.85 0.90 0.95 1.00
1.10 1.20 1.30 1.40 1.50
32 27 23 20 18
23 20 17 15 13
19 16 14 12 11
14 12 11 10 9
1.10 1.20 1.30 1.40 1.50
27 23 20 17 15
19 16 14 12 11
15 13 11 10 9
12 10 9 8 7
1.10 1.20 1.30 1.40 1.50
1.60 1.70 1.80 1.90 2.00
16 14 13 12 11
12 11 10 9 8
10 9 8 7 7
8 7 6 6 6
1.60 1.70 1.80 1.90 2.00
14 12 11 10 9
10 9 8 7 7
8 7 7 6 6
6 6 5 5 4
1.60 1.70 1.80 1.90 2.00
87
Basic Statistical Procedures and Tables
Table 23
Sample Size for One-Way ANOVA, Fixed Effects, Normal Model
Sample size n (for each group) required to achieve power K(d) for d
=
max ( µ i )
− min( µ i )
(standard deviations apart).
σ
( k = the number of gr oups )
K(d) = 1 – (d) = .70
K(d) = 1 – (d) = .80
d
=
max ( µ i )
− min ( µ i ) σ
k
1.00
1.25
1.50
1.75
2.00
2.50
3.00
1.00
1.25
1.50
1.75
2.00
2.50
3.00
.01
3 4 5 6 7 8 9 10
25 28 30 32 34 35 37 38
17 19 20 21 22 23 24 25
12 13 14 15 16 17 17 18
10 10 11 12 12 13 13 14
8 8 9 9 10 10 10 11
6 6 6 7 7 7 7 7
5 5 5 5 5 5 6 6
30 33 35 38 39 41 43 44
20 22 23 25 26 27 28 29
14 16 17 18 18 19 20 21
11 12 13 13 14 15 15 16
9 10 10 11 11 12 12 12
7 7 7 8 8 8 8 8
5 5 6 6 6 6 6 6
.05
3 4 5 6 7 8 9 10
17 19 21 22 24 25 26 27
11 13 14 15 16 16 17 18
8 9 10 11 11 12 12 13
7 7 8 8 9 9 9 10
5 6 6 7 7 7 8 8
4 4 5 5 5 5 5 6
3 4 4 4 4 4 4 4
21 23 25 27 29 30 31 33
14 15 17 18 19 20 21 21
10 11 12 13 14 14 15 15
8 9 9 10 10 11 11 12
6 7 7 8 8 9 9 9
5 5 5 6 6 6 6 6
4 4 4 4 5 5 5 5
.10
3 4 5 6 7 8 9 10
13 15 17 18 19 20 21 22
9 10 11 12 13 13 14 14
7 7 8 9 9 10 10 10
5 6 6 7 7 7 8 8
4 5 5 5 6 6 6 6
3 4 4 4 4 4 4 5
3 3 3 3 3 3 4 4
17 19 21 22 24 25 26 27
11 13 14 15 16 16 17 18
8 9 10 11 11 12 12 13
6 7 8 8 9 9 9 10
5 6 6 7 7 7 7 8
4 4 4 5 5 5 5 5
3 3 4 4 4 4 4 4
.20
3 4 5 6 7 8 9 10
9 11 12 13 14 15 15 16
6 7 8 9 9 10 10 11
5 5 6 6 7 7 7 8
4 4 5 5 5 6 6 6
3 4 4 4 4 5 5 5
3 3 3 3 3 3 3 4
2 2 3 3 3 3 3 3
12 14 16 17 18 19 20 21
8 9 10 11 12 12 13 14
6 7 8 8 9 9 9 10
5 5 6 6 7 7 7 8
4 4 5 5 5 6 6 6
3 3 4 4 4 4 4 4
3 3 3 3 3 3 3 3
88
Basic Statistical Procedures and Tables
Table 23
Sample Size for One-Way ANOVA, Fixed Effects, Normal Model (continued)
Sample size n (for each group) required to achieve power K(d) for d =
max ( µ i )
− min( µ i )
(standard deviations apart).
σ
( k = the number of groups )
K(d) = 1 - (d) = .90
K(d) = 1 - (d) = .95
d
=
max ( µ i )
− min ( µ i ) σ
k
1.00
1.25
1.50
1.75
2.00
2.50
3.00
1.00
1.25
1.50
1.75
2.00
2.50
3.00
.01
3 4 5 6 7 8 9 10
37 40 43 46 48 50 52 54
24 27 28 30 31 33 34 35
18 19 20 21 22 23 24 25
13 15 15 16 17 17 18 19
11 12 12 13 13 14 14 15
8 8 9 9 9 9 10 10
6 6 7 7 7 7 7 7
43 47 51 53 56 58 60 62
29 31 33 35 36 38 39 40
20 22 23 25 26 27 28 29
16 17 18 19 19 20 21 21
12 13 14 15 15 16 16 17
9 9 10 10 10 11 11 11
7 7 7 8 8 8 8 8
.05
3 4 5 6 7 8 9 10
27 30 32 34 36 38 40 41
18 20 21 23 24 25 26 27
13 14 15 16 17 18 18 19
10 11 12 12 13 13 14 14
8 9 9 10 10 11 11 11
6 6 6 7 7 7 8 8
5 5 5 5 5 6 6 6
32 36 39 41 43 45 47 48
21 23 25 27 28 29 30 31
15 17 18 19 20 21 22 22
12 13 14 14 15 16 16 17
9 10 11 11 12 12 13 13
7 7 7 8 8 8 9 9
5 5 6 6 6 6 6 7
.10
3 4 5 6 7 8 9 10
22 25 27 29 31 32 33 35
15 16 18 19 20 21 22 23
11 12 13 14 14 15 16 16
8 9 10 10 11 11 12 12
7 7 8 8 9 9 9 10
5 5 5 6 6 6 6 7
4 4 4 4 5 5 5 5
27 30 33 35 37 39 40 42
18 20 22 23 24 25 26 27
13 14 15 16 17 18 19 19
10 11 12 12 13 14 14 15
8 9 9 10 10 11 11 11
6 6 6 7 7 7 8 8
4 5 5 5 5 5 6 6
.20
3 4 5 6 7 8 9 10
17 20 21 22 24 26 27 28
11 13 14 15 16 17 17 18
8 9 10 11 11 12 13 13
6 7 8 8 9 9 9 10
5 6 6 7 7 7 8 8
4 4 4 5 5 5 5 5
3 3 4 4 4 4 4 4
22 25 27 29 30 32 33 34
14 16 18 19 20 21 22 22
10 12 13 13 14 15 15 16
8 9 10 10 11 11 12 12
6 7 8 8 8 9 9 9
5 5 5 6 6 6 6 6
4 4 4 4 4 5 5 5
89
Basic Statistical Procedures and Tables
Table 24
Table of Pseudo-random Permutations of Size 9
Column Row
1-5
6 - 10
1 - 15
16 - 20
21 - 25
26 - 30
1
6 4 8 7 5 3 2 9 1
7 1 9 6 8 3 5 2 4
9 2 4 1 7 5 8 3 6
2 3 7 1 9 8 4 5 6
5 7 6 8 3 9 4 1 2
3 4 1 6 5 2 9 7 8
9 4 1 5 2 6 8 7 3
8 6 5 4 2 3 9 7 1
9 4 7 3 5 1 8 2 6
9 2 7 3 1 5 8 4 6
2 1 6 5 4 7 9 8 3
3 4 7 1 6 9 5 8 2
1 4 8 3 5 9 6 7 2
1 6 7 9 8 3 5 4 2
8 9 3 7 1 6 5 2 4
1 8 5 3 4 2 6 9 7
4 8 1 5 6 3 7 9 2
1 6 4 5 8 7 2 3 9
8 3 2 5 4 6 1 9 7
9 7 5 8 6 4 2 1 3
6 5 8 1 4 7 2 3 9
7 6 3 9 5 8 4 2 1
5 7 2 4 9 1 8 3 6
9 4 6 5 7 8 3 1 2
2 4 3 7 9 8 5 1 6
6 5 9 3 8 7 1 4 2
8 2 3 4 1 7 9 6 5
7 5 4 1 8 6 9 2 3
3 2 4 8 9 1 5 6 7
7 3 9 5 4 2 6 8 1
2
6 7 1 2 5 4 9 3 8
6 1 9 4 2 5 8 3 7
9 3 7 1 4 5 6 2 8
6 5 4 1 3 7 2 8 9
3 6 7 2 5 8 1 4 9
5 6 3 9 1 2 4 7 8
9 3 2 4 5 6 7 8 1
4 1 3 8 2 7 5 9 6
9 5 4 6 3 7 1 2 8
3 9 7 2 5 6 1 8 4
5 4 6 7 1 8 2 3 9
3 6 9 4 7 2 1 5 8
8 7 5 9 6 1 4 3 2
7 6 1 8 3 4 5 2 9
1 3 8 7 4 6 5 9 2
8 7 1 3 5 4 9 2 6
9 4 6 2 3 1 7 8 5
4 2 3 7 9 8 1 6 5
2 6 5 9 3 1 7 4 8
7 8 6 9 5 3 2 1 4
6 7 2 9 5 3 4 1 8
3 6 9 5 1 8 4 7 2
1 4 8 3 7 2 5 6 9
9 8 2 7 6 3 4 1 5
1 4 5 8 9 2 7 3 6
2 4 6 3 5 7 9 8 1
2 7 1 6 3 4 9 5 8
1 3 2 7 8 9 6 4 5
3 2 5 9 7 4 8 1 6
1 2 5 3 4 7 9 6 8
3
9 3 4 2 8 6 1 5 7
9 2 7 1 3 4 8 6 5
7 6 8 5 3 1 9 2 4
3 8 4 2 6 5 7 9 1
4 3 5 1 6 2 9 8 7
5 4 9 3 7 2 1 6 8
1 6 4 5 9 3 8 7 2
5 2 3 8 4 9 1 6 7
1 2 6 8 5 7 3 4 9
2 6 8 1 4 5 9 7 3
6 3 4 8 2 7 9 1 5
6 7 2 1 4 3 9 8 5
9 2 5 1 7 3 8 6 4
7 9 5 2 6 1 8 3 4
2 6 5 8 1 4 3 7 9
3 5 7 2 4 9 6 8 1
3 4 7 1 5 9 2 6 8
8 9 6 3 1 4 2 7 5
3 2 6 5 8 7 1 9 4
2 8 1 9 6 5 4 3 7
6 4 8 1 7 2 3 9 5
2 9 3 1 5 7 4 6 8
3 7 4 9 8 1 5 6 2
6 8 1 9 3 2 7 4 5
9 6 8 4 5 3 2 1 7
2 6 4 9 5 8 7 3 1
3 5 6 7 4 1 9 8 2
3 2 7 5 8 6 1 9 4
9 7 6 3 4 5 1 8 2
6 1 5 3 9 4 7 8 2
4
9 4 3 5 2 8 1 7 6
8 6 2 5 1 4 7 9 3
3 5 1 2 8 4 6 7 9
7 6 3 8 4 9 5 1 2
9 8 2 3 6 7 4 5 1
8 1 3 2 5 9 4 7 6
6 5 8 3 1 9 7 2 4
3 5 4 8 1 6 9 2 7
2 7 5 9 1 8 4 6 3
5 7 2 3 1 4 9 8 6
2 8 4 6 7 9 1 3 5
1 7 9 2 3 4 6 5 8
3 5 1 4 9 6 7 2 8
5 1 4 8 9 2 7 6 3
5 4 1 9 6 7 8 2 3
2 6 7 5 9 3 4 8 1
3 9 8 2 6 4 7 5 1
3 8 4 7 2 9 6 1 5
1 9 5 6 4 8 7 2 3
4 8 1 2 5 3 6 9 7
8 6 3 7 5 1 2 9 4
6 5 9 3 7 2 8 4 1
1 4 7 3 9 6 5 8 2
3 8 9 4 2 5 7 1 6
5 1 4 6 7 2 8 9 3
7 5 4 1 3 6 9 2 8
7 9 6 5 4 2 8 3 1
3 5 7 8 4 9 6 1 2
2 3 8 4 7 9 1 5 6
7 2 4 8 9 6 1 3 5
5
7 8 2 3 1 4 6 5 9
8 6 3 4 2 7 1 9 5
4 3 8 2 5 1 7 9 6
6 8 3 4 9 7 5 2 1
4 9 5 8 6 2 3 7 1
1 8 7 5 6 4 2 3 9
8 6 3 5 7 4 1 2 9
3 8 2 4 7 6 1 9 5
8 7 1 2 3 4 6 9 5
6 9 2 3 4 1 8 7 5
5 3 7 6 8 4 2 1 9
5 8 7 6 3 1 4 9 2
2 5 1 4 6 7 9 3 8
7 8 5 2 1 9 4 3 6
7 6 5 1 3 4 9 8 2
6 9 8 4 3 1 7 2 5
6 4 3 8 5 2 7 9 1
5 6 7 3 4 1 2 9 8
9 3 7 6 8 5 2 1 4
5 8 9 1 3 7 4 6 2
4 8 1 3 7 2 9 5 6
3 4 8 7 2 6 1 9 5
4 3 6 7 2 8 9 5 1
7 4 2 9 6 5 1 3 8
2 8 5 6 7 3 4 1 9
9 3 6 4 1 2 8 7 5
3 5 1 2 7 4 9 8 6
7 4 6 9 5 8 1 2 3
6 8 7 4 3 1 5 9 2
5 2 7 6 4 1 8 9 3
6
7 4 8 3 5 6 1 9 2
7 1 6 8 2 9 3 5 4
9 4 6 3 1 7 8 5 2
6 3 9 1 8 7 5 2 4
1 5 8 6 4 7 9 2 3
6 3 2 9 8 4 1 5 7
2 8 3 7 6 9 5 4 1
6 5 7 8 4 2 3 9 1
2 1 9 7 3 8 4 5 6
8 5 2 7 4 1 3 6 9
4 3 6 9 5 1 8 7 2
3 8 6 7 2 5 4 1 9
1 4 5 3 7 8 9 2 6
3 8 1 4 5 2 6 9 7
8 1 2 5 7 3 6 4 9
2 6 3 1 5 9 7 8 4
1 3 9 5 7 8 2 4 6
7 4 8 5 3 9 1 6 2
8 2 1 7 6 9 5 4 3
1 3 8 4 5 6 2 7 9
8 7 5 4 3 9 2 6 1
7 9 3 1 2 5 8 4 6
5 6 2 7 8 1 4 3 9
4 3 6 8 5 1 7 9 2
3 5 4 6 7 8 1 2 9
6 8 5 7 3 2 1 9 4
7 9 1 5 2 4 8 6 3
1 4 7 9 2 6 3 5 8
3 2 6 4 5 8 9 7 1
9 2 7 8 3 1 4 6 5
90
Basic Statistical Procedures and Tables
Table 25
Table of Pseudo-random Digits
Column Line
1-5
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50
1 2 3 4 5
08025 43025 58121 72630 99141
89354 77001 23577 20838 19701
66119 02272 36517 00723 25161
12852 89797 64643 12788 01414
61345 66588 17939 18794 17377
06509 39793 70833 68202 93195
02701 29896 93099 03931 09454
79607 44604 94744 72078 02719
80234 85341 91332 30915 24297
19263 92320 48159 65350 97428
6 7 8 9 10
61248 86046 92019 30784 80938
09975 50522 07352 55302 38097
46169 74470 93315 32329 53567
17215 30125 69852 40934 13720
34288 95272 07395 52882 36450
01118 65600 92103 85483 89775
14681 85604 08348 68921 08951
99216 28241 76089 27908 27155
85172 31735 55143 68489 27759
59198 15291 15496 19321 23319
11 12 13 14 15
18881 19610 77620 72537 51886
60759 77947 59682 17153 61216
71055 72653 58917 23011 82211
62716 47772 72290 02602 44246
97314 57484 72917 70210 55572
60851 48855 74614 45615 52746
26428 57222 41046 28454 44254
84725 13081 65690 32116 44267
66137 21690 45455 31278 10302
74139 28187 19840 97910 55859
16 17 18 19 20
05650 42153 71336 14063 45594
84958 38890 65235 55790 45992
74972 78980 56208 96174 25431
19326 10323 82491 79234 06642
36808 38457 69220 88520 94686
15344 85522 33615 08859 65565
05039 94858 07848 72512 23940
06076 26063 11847 88798 64499
23302 02393 72427 31954 34013
55065 83151 82828 44967 81164
21 22 23 24 25
54338 88713 23615 86160 97640
13992 83287 73976 06090 98709
94521 29349 21076 91947 22933
39220 99464 23476 43277 89872
20355 95499 09987 39543 16271
11344 92499 23591 32532 22821
32881 33074 58266 54269 17688
01038 27496 94120 14948 20347
42038 16658 40624 16269 35989
23483 14281 94174 56600 05584
26 27 28 29 30
06946 90210 84529 11644 35483
45370 59549 66423 41528 55588
50945 31365 78040 90086 23051
48067 80765 26211 02595 85364
44892 58726 32685 85984 05871
67609 71099 23461 13908 90463
01998 64022 56782 18227 51042
16973 96701 96864 63685 28996
29628 00752 35006 57142 07757
50044 24962 49181 77014 62484
31 32 33 34 35
49976 62819 62714 16347 89107
17369 48093 26321 54320 23856
59115 86554 44330 40744 92270
16680 46644 50378 47838 03999
10735 27786 10788 05193 87388
45136 28694 55520 94386 29279
66690 07566 69743 30284 44757
36683 42762 22297 47898 56034
20723 25516 17304 52647 69813
79252 99507 83174 42887 92039
36 37 38 39 40
70833 51177 70376 50686 95135
42469 86088 02710 25769 83236
63483 31614 13186 56334 90950
51138 23778 05649 09464 27914
95099 86117 18534 76655 20376
79174 89430 12061 92663 92565
33444 45737 29313 26480 48109
25899 88533 90739 43425 78847
38456 44982 01809 62041 62391
64150 40705 17546 49220 84305
41 42 43 44 45
86418 56531 68642 61921 10852
45001 43586 82406 51815 33613
47466 32988 43975 65068 38873
28022 98735 87638 70294 78795
84482 66483 68109 22748 85872
68299 47607 15218 62150 54927
34866 25798 11123 63238 04235
41402 49431 92261 67770 63069
28045 97092 75650 53421 18209
68438 04877 78929 08217 13667
46 47 48 49 50
44645 50604 58564 91656 13840
95861 64568 50497 11778 46431
12068 44880 01322 27049 63082
99406 94258 15771 47254 81615
96019 14329 94224 86342 05334
32551 16618 52629 44802 81525
73231 54920 71269 28823 41660
70296 37843 79096 35996 92580
63774 21385 73844 69714 81693
66304 77860 45855 92375 85560
91
Basic Statistical Procedures and Tables
92
Basic Statistical Procedures and Tables
Acknowledgements
Table 11:
From "A simple test of symmetry about an unknown median", by Paul Cabilio and Joe Masaro, Canadian Journal of Statistics, 24 (1996).
Table 12:
Adapted from "Use of the Correlation Coefficient with Normal Probability Plots" The American Statistician, 39 (1985) with permission of the authors, Stephen W. Looney and Thomas R. Gulledge.
Table 13:
Adapted from "Exact probability levels for the Kruskall-Wallis Test" by Ronald L. Iman, Dana Quade and Douglas A. Alexander, in Selected Tables in Mathematical Statistics, Volume 3, 1975, edited by H. L. Harter and D. B. Owen for the IMS, with permission of Ronald L. Iman and Dana Quade.
Table 14:
Adapted from "Technical Report #SW 16/72" of the Mathematical Centre, Amsterdam, with permission of the author Dana Quade.
Table 16:
Adapted from "Tables of range and studentized range", by H. Leon Harter, Ann. Math. Statist., 31 (1960) with permission of the author H. Leon Harter.
Tables 17-18:
Adapted from "Rank sum multiple comparisons in one- and two-way classifications", Biometrika, 54 (1967) with permission of the authors B. J. MacDonald and W. A. Thompson Jr.
Table 23:
Adapted from "Tables of sample sizes in the analysis of variance" by T. L. Bratcher, M. A. Moran and W. J. Zimmer, Journal of Quality Technology , 2 (1970), with permission of Tom Bratcher and W. J. Zimmer.
Tables 1-11, 15, 19, 20, 24, 25 were generated with the aid of honour students Steven Astels and Kathy Swinamer. Tables 21 and 22 were generated using an approximation found in "Introduction to Statistical Analysis" by Wilfred J. Dixon and Frank J. Massey. Jr.. 5th edition, McGraw-Hill, 1983. The values obtained were checked and corrected using the software package Statable by C.R. Mehta and N.R. Patel. Special thanks to Kathy Swinamer and Julia MacCluskey for typing of the manuscript.
93