Design of Two-Way Slab (S1) 1.0 Design Criteria This calculation is for the design of the slab S1 of the proposed two-storey residential unit
1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total)
= = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
20.7
Mpa
1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength
f'c
=
1.3.2 Steel Rebar Diameter
db
=
12
mm
fy
=
275
Mpa
=
20
mm
Reinforcing bar Yield strength 1.3.3 Concrete Cover
2.0 Computation of Slab Thickness 2.1 Moment Coefficients for Two Way Slab 2.2 Slab Thickness Consider Panel F as Critical Panel Short Span Long Span Min t = [2 * (S + L)] / 180
S L
= =
4.56 m 5.00 m Min t = 0.106222 mm Min t must not be less than 90 mm try t = 125 mm
3.0 Load Computations (consider 1 m strip) 3.1 Weight of slab
=
tS * Unit Wt. Concrete * 1.4
Thickness of slab
1
WS
=
3.42
tS
=
0.125
kN/m2 m
Grade 40
3.2 Dead Load SDL =
SDL * 1.4
LL =
LL * 1.7
=
2.450
kN/m2
=
3.400
kN/m2
WT
=
9.270
kN/m2
MU
=
13.686
kN-m
SDL
3.3 Live Load LL
3.2 Total Loads W T = S of Loads 4.0 Analysis 4.1 Maximum Moment Computation MU = CMAX * W T * SMAX2 * 1 m 4.3 Check t considering flexure Design Constants Ultimate Moment Conc. Comp. Strength Rebar Yield Strength Reduction factor
MU f'c fy f b1
= = = = =
13.6857237 20.7 275 0.90 0.85
b t d d
= = = =
1000 125 99.0 87.0
Width Thickness Effective depth
4.3.1 Computation of w MU = fbd2f'cw(1-0.59w) w - 0.59w2 = w = w =
mm mm mm mm use w
0.097055 1.591558 0.103357
2
kN-m Mpa Mpa Grade 40 (for flexure)
=
0.103357
4.3.2 Computation of rREQ rMIN = 1.4 / fy
rMIN
=
0.005091
rREQ = w * f'c / fy
rREQ
=
0.00778
rMAX = f*[0.85 * b1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.027969
SAFE
t = 125mm is safe for Flexure 4.4 Check for Shear Design Constants Total Weight Conc. Comp. Strength Rebar Yield Strength Reduction factor
W f'c fy f
= = = =
9.270 20.7 275 0.85
kN/m2 Mpa Mpa Grade 40 (for shear)
Width Height Effective depth
b h dS
= = =
1000 125 99.0
mm mm mm
dL
=
87.0
mm
Consider Short Span 4.4.1 Computation of VS Vs = W * S / 3 * 1 m 4.4.2 Computation of Actual V Actual VC = VS / (.85 * b * d)
Vs
=
14.0904 kN
Actual VC
=
0.167444 Mpa
Allow VC
=
0.773453
4.4.3 Allowable VC Allow VC = .17 * √ f'c
Actual V is less than allowable V, t = 125 mm is safe for shear Consider Long Span 4.4.1 Computation of VS Vs = W * S / 3 * [(3 - m2) / 2] * 1m 4.4.2 Computation of Actual V Actual VC = VS / (.85 * b * d)
Vs
=
15.2758 kN
Actual VC
=
0.206569 Mpa
Allow VC
=
0.773453
4.4.3 Allowable VC Allow VC = .17 * √ f'c
Actual V is less than allowable V, t = 125 mm is safe for shear Prepared By:
Engr. Jose J. Oriola, Jr. Civil Engineer - Lic. No.
3
5.0 Computation for Spacing Design Constants : Total Load Conc. Comp. Strength f'c Rebar Yield Strength, fy Reduction Factor F Reduction Factor b1 One-meter strip, b Slab Thickness, tS
9.27 20.7 275 0.90 0.85 1000 125
Using 12mm dia. Bar, AS
113.10
kN/m2 Mpa Mpa for flexure mm mm mm2
PANEL A
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.057
10.9871303
0.0624758
0.004702725
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.028
5.397186816
0.0300929
0.002265176
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.288536896
0.0466792
0.003513669
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.445076928
0.0698609
0.005258621
0.00509 0.02796919
0.005258621
457.500047
225
0.24720727
0.24
S
=
4.56
0.025
4.8189168
0.0348925
0.002626453
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.131996864
0.0521845
0.003928068
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL B
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.252320256
0.0522848
0.00393562
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.024
4.626160128
0.0257265
0.0019365
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.939240192
0.0388966
0.002927852
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.903023552
0.0580326
0.004368276
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.56
0.021
4.047890112
0.0292097
0.002198694
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.975456832
0.043492
0.003273761
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL C
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.048
9.252320256
0.0522848
0.00393562
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.024
4.626160128
0.0257265
0.0019365
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.939240192
0.0388966
0.002927852
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.903023552
0.0580326
0.004368276
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.56
0.021
4.047890112
0.0292097
0.002198694
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.975456832
0.043492
0.003273761
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL D
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.057
10.9871303
0.0624758
0.004702725
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.028
5.397186816
0.0300929
0.002265176
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.288536896
0.0466792
0.003513669
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.445076928
0.0698609
0.005258621
0.00509 0.02796919
0.005258621
457.500047
225
0.24720727
0.24
S
=
4.56
0.025
4.8189168
0.0348925
0.002626453
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.131996864
0.0521845
0.003928068
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL E
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL F
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.025
4.925174175
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.047432
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.0356788
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL G
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
Adopted S in m
USE
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL H
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL I
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.048
9.456334416
0.0534765
0.004025321
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL J
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
PANEL K
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
=
99
Long Span S
=
4.61
dL
=
87
Adopted S in m
USE
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
dS
0.375
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL L
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.048
9.456334416
0.0534765
0.004025321
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL M
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL N
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL O
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.025
4.925174175
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.047432
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.0356788
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL P
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL Q
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
8.8113204
0.0497149
0.003742179
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.45
0.024
4.4056602
0.024482
0.001842826
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.6084903
0.0370003
0.00278511
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.526336175
0.0551701
0.004152805
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.45
0.021
3.854952675
0.0277938
0.002092118
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.690644425
0.0413657
0.003113713
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL R
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.342767
0.0412162
0.003102456
0.030
5.50707525
0.0307171
0.033
6.057782775
0.025
4.589229375
S
=
4.45
dS
=
99
Long Span S
=
4.45
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002312163
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.0441076
0.003320103
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.0331955
0.002498712
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL S
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.342767
0.0412162
0.003102456
0.030
5.50707525
0.0307171
0.033
6.057782775
0.0441076
0.025
4.589229375
0.0331955
S
=
4.45
dS
=
99
Long Span S
=
4.45
dL
=
87
Adopted S in m
USE
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002312163
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003320103
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002498712
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL T
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
8.8113204
0.0497149
0.003742179
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.45
0.024
4.4056602
0.024482
0.001842826
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.6084903
0.0370003
0.00278511
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.526336175
0.0551701
0.004152805
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.45
0.021
3.854952675
0.0277938
0.002092118
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.690644425
0.0413657
0.003113713
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL U
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.057
11.42511278
0.0650697
0.004897974
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.028
5.6123361
0.0313155
0.002357204
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.618944725
0.0485965
0.00365799
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.821588175
0.0727764
0.005478075
0.00509 0.02796919
0.005478075
476.5925113
225
0.23730406
0.23
S
=
4.65
0.025
5.011014375
0.0363145
0.002733494
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.416301275
0.0543359
0.00409001
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL V
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.6211476
0.0544405
0.004097885
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.024
4.8105738
0.0267687
0.002014954
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.2158607
0.040486
0.00304749
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.218063575
0.0604347
0.004549085
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.65
0.021
4.209252075
0.0303957
0.00228797
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.213657825
0.0452746
0.003407943
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL W
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.6211476
0.0544405
0.004097885
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.024
4.8105738
0.0267687
0.002014954
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.2158607
0.040486
0.00304749
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.218063575
0.0604347
0.004549085
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.65
0.021
4.209252075
0.0303957
0.00228797
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.213657825
0.0452746
0.003407943
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL X
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.057
11.42511278
0.0650697
0.004897974
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.028
5.6123361
0.0313155
0.002357204
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.618944725
0.0485965
0.00365799
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.821588175
0.0727764
0.005478075
0.00509 0.02796919
0.005478075
476.5925113
225
0.23730406
0.23
S
=
4.65
0.025
5.011014375
0.0363145
0.002733494
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.416301275
0.0543359
0.00409001
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
Design of Two-Way Slab (S1) 1.0 Design Criteria This calculation is for the design of the slab S1 of the proposed two-storey residential unit
1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total)
= = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
20.7
Mpa
1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength
f'c
=
1.3.2 Steel Rebar Diameter
db
=
12
mm
fy
=
275
Mpa
=
20
mm
Reinforcing bar Yield strength 1.3.3 Concrete Cover
2.0 Computation of Slab Thickness 2.1 Moment Coefficients for Two Way Slab 2.2 Slab Thickness Consider Panel F as Critical Panel Short Span Long Span Min t = [2 * (S + L)] / 180
S L
= =
5.00 m 6.91 m Min t = 0.132333 mm Min t must not be less than 90 mm try t = 125 mm
3.0 Load Computations (consider 1 m strip) 3.1 Weight of slab
=
tS * Unit Wt. Concrete * 1.4
Thickness of slab
1
WS
=
3.42
tS
=
0.125
kN/m2 m
Grade 40
3.2 Dead Load SDL =
SDL * 1.4
LL =
LL * 1.7
=
2.450
kN/m2
=
3.400
kN/m2
WT
=
9.270
kN/m2
MU
=
16.454
kN-m
SDL
3.3 Live Load LL
3.2 Total Loads W T = S of Loads 4.0 Analysis 4.1 Maximum Moment Computation MU = CMAX * W T * SMAX2 * 1 m 4.3 Check t considering flexure Design Constants Ultimate Moment Conc. Comp. Strength Rebar Yield Strength Reduction factor
MU f'c fy f b1
= = = = =
16.45425 20.7 275 0.90 0.85
b t d d
= = = =
1000 125 99.0 87.0
Width Thickness Effective depth
4.3.1 Computation of w MU = fbd2f'cw(1-0.59w) w - 0.59w2 = w = w =
kN-m Mpa Mpa Grade 40 (for flexure)
mm mm mm mm use w
0.116688 1.568851 0.126065
2
=
0.126065
4.3.2 Computation of rREQ rMIN = 1.4 / fy
rMIN
=
0.005091
rREQ = w * f'c / fy
rREQ
=
0.009489
rMAX = f*[0.85 * b1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.027969
SAFE
t = 125mm is safe for Flexure 4.4 Check for Shear Design Constants Total Weight Conc. Comp. Strength Rebar Yield Strength Reduction factor
W f'c fy f
= = = =
9.270 20.7 275 0.85
kN/m2 Mpa Mpa Grade 40 (for shear)
Width Height Effective depth
b h dS
= = =
1000 125 99.0
mm mm mm
dL
=
87.0
mm
Consider Short Span 4.4.1 Computation of VS Vs = W * S / 3 * 1 m 4.4.2 Computation of Actual V Actual VC = VS / (.85 * b * d)
Vs
=
15.45
kN
Actual VC
=
0.183601 Mpa
Allow VC
=
0.773453
4.4.3 Allowable VC Allow VC = .17 * √ f'c
Actual V is less than allowable V, t = 125 mm is safe for shear Consider Long Span 4.4.1 Computation of VS Vs = W * S / 3 * [(3 - m2) / 2] * 1m 4.4.2 Computation of Actual V Actual VC = VS / (.85 * b * d)
Vs
=
19.13034 kN
Actual VC
=
0.258693 Mpa
Allow VC
=
0.773453
4.4.3 Allowable VC Allow VC = .17 * √ f'c
Actual V is less than allowable V, t = 125 mm is safe for shear Prepared By:
Engr. Jose J. Oriola, Jr. Civil Engineer - Lic. No.
3
5.0 Computation for Spacing Design Constants : Total Load Conc. Comp. Strength f'c Rebar Yield Strength, fy Reduction Factor F Reduction Factor b1 One-meter strip, b Slab Thickness, tS
9.27 20.7 275 0.90 0.85 1000 125
Using 12mm dia. Bar, AS
113.10
kN/m2 Mpa Mpa for flexure mm mm mm2
PANEL A
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.057
10.9871303
0.0624758
0.004702725
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.028
5.397186816
0.0300929
0.002265176
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.288536896
0.0466792
0.003513669
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.445076928
0.0698609
0.005258621
0.00509 0.02796919
0.005258621
457.500047
225
0.24720727
0.24
S
=
4.56
0.025
4.8189168
0.0348925
0.002626453
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.131996864
0.0521845
0.003928068
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL B
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.252320256
0.0522848
0.00393562
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.024
4.626160128
0.0257265
0.0019365
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.939240192
0.0388966
0.002927852
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.903023552
0.0580326
0.004368276
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.56
0.021
4.047890112
0.0292097
0.002198694
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.975456832
0.043492
0.003273761
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL C
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.048
9.252320256
0.0522848
0.00393562
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.024
4.626160128
0.0257265
0.0019365
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.939240192
0.0388966
0.002927852
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.903023552
0.0580326
0.004368276
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.56
0.021
4.047890112
0.0292097
0.002198694
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.975456832
0.043492
0.003273761
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL D
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.057
10.9871303
0.0624758
0.004702725
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.56
0.028
5.397186816
0.0300929
0.002265176
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.288536896
0.0466792
0.003513669
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.445076928
0.0698609
0.005258621
0.00509 0.02796919
0.005258621
457.500047
225
0.24720727
0.24
S
=
4.56
0.025
4.8189168
0.0348925
0.002626453
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.131996864
0.0521845
0.003928068
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL E
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL F
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.025
4.925174175
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.047432
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.0356788
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL G
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
Adopted S in m
USE
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL H
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL I
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.048
9.456334416
0.0534765
0.004025321
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL J
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
PANEL K
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
=
99
Long Span S
=
4.61
dL
=
87
Adopted S in m
USE
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
dS
0.375
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL L
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.048
9.456334416
0.0534765
0.004025321
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL M
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL N
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.047432
0.025
4.925174175
0.0356788
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL O
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.88027868
0.0443164
0.003335819
0.030
5.91020901
0.0330112
0.033
6.501229911
0.025
4.925174175
S
=
4.61
dS
=
99
Long Span S
=
4.61
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002484845
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.047432
0.003570334
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.0356788
0.002685639
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL P
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.456334416
0.0534765
0.004025321
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.61
0.024
4.728167208
0.0263028
0.001979884
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.092250812
0.0397754
0.002994
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.077285647
0.0593604
0.004468221
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.61
0.021
4.137146307
0.0298655
0.00224806
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.107215977
0.0444775
0.003347946
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL Q
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
8.8113204
0.0497149
0.003742179
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.45
0.024
4.4056602
0.024482
0.001842826
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.6084903
0.0370003
0.00278511
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.526336175
0.0551701
0.004152805
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.45
0.021
3.854952675
0.0277938
0.002092118
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.690644425
0.0413657
0.003113713
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL R
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.342767
0.0412162
0.003102456
0.030
5.50707525
0.0307171
0.033
6.057782775
0.025
4.589229375
S
=
4.45
dS
=
99
Long Span S
=
4.45
dL
=
87
rMIN = 1.4 / fy
rMAX
ASMIN = Computed S in m .0018 * b * t
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002312163
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.0441076
0.003320103
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.0331955
0.002498712
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL S
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.040
7.342767
0.0412162
0.003102456
0.030
5.50707525
0.0307171
0.033
6.057782775
0.0441076
0.025
4.589229375
0.0331955
S
=
4.45
dS
=
99
Long Span S
=
4.45
dL
=
87
Adopted S in m
USE
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.002312163
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
0.003320103
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
0.002498712
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL T
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
8.8113204
0.0497149
0.003742179
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.45
0.024
4.4056602
0.024482
0.001842826
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
6.6084903
0.0370003
0.00278511
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
7.526336175
0.0551701
0.004152805
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.45
0.021
3.854952675
0.0277938
0.002092118
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
5.690644425
0.0413657
0.003113713
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL U
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.057
11.42511278
0.0650697
0.004897974
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.028
5.6123361
0.0313155
0.002357204
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.618944725
0.0485965
0.00365799
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.821588175
0.0727764
0.005478075
0.00509 0.02796919
0.005478075
476.5925113
225
0.23730406
0.23
S
=
4.65
0.025
5.011014375
0.0363145
0.002733494
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.416301275
0.0543359
0.00409001
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL V
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.6211476
0.0544405
0.004097885
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.024
4.8105738
0.0267687
0.002014954
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.2158607
0.040486
0.00304749
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.218063575
0.0604347
0.004549085
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.65
0.021
4.209252075
0.0303957
0.00228797
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.213657825
0.0452746
0.003407943
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C. PANEL W
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
0.048
9.6211476
0.0544405
0.004097885
rMIN = 1.4 / fy
rMAX
0.375
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
USE
AREQ = r * b * d
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.024
4.8105738
0.0267687
0.002014954
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.036
7.2158607
0.040486
0.00304749
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.041
8.218063575
0.0604347
0.004549085
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
S
=
4.65
0.021
4.209252075
0.0303957
0.00228797
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.031
6.213657825
0.0452746
0.003407943
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
PANEL X
C
MU = C * W * S2 * 1
w
rREQ = w * f'c / fy
Short Span
rMIN = 1.4 / fy
rMAX
USE
AREQ = r * b * d
ASMIN = Computed S in m .0018 * b * t
Adopted S in m
0.057
11.42511278
0.0650697
0.004897974
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
S
=
4.65
0.028
5.6123361
0.0313155
0.002357204
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
dS
=
99
0.043
8.618944725
0.0485965
0.00365799
0.00509 0.02796919
0.005090909
504
225
0.22439948
0.22
Long Span
0.049
9.821588175
0.0727764
0.005478075
0.00509 0.02796919
0.005478075
476.5925113
225
0.23730406
0.23
S
=
4.65
0.025
5.011014375
0.0363145
0.002733494
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
dL
=
87
0.037
7.416301275
0.0543359
0.00409001
0.00509 0.02796919
0.005090909
442.9090909
225
0.25535113
0.25
SMAX = 3 * tS SMAX = Use 10 mm dia. At 125 mm O.C.
0.375
Design of Continuous Beam B-1 (250 mm x 400 mm) 1.0 Design Criteria This calculation is for the design of the slab B1 of the proposed two-storey residential unit
1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads = = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
f'c
=
20.7
Mpa
db
=
16
mm
fy
=
275
Mpa
ES
=
Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total) 1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength 1.3.2 Steel Rebar Diameter Reinforcing bar Yield strength Modulus of Elasticity 1.3.3 Concrete Cover
200,000 Mpa
=
40
mm
WL
=
17.15
kN/m
tL S L wL
= = = =
0.125 5.12 5.17 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
WL
=
16.84
kN/m
tL S
= =
0.125 4.550
m m
2.0 Load Computations 2.2 Span 13
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3
2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span
1
Grade 40
Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4
L wL
= =
5.120 4.20
m 2 kN/m
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m
W
=
10.05
kN/m
Wb
=
2.31
kN/m
LS b h d
= = = =
5.12 0.250 0.400 0.275
m m m m
WT
=
36.307
kN/m
WL
=
17.20
kN/m
tL S L wL
= = = =
0.125 3.17 5.24 4.20
m m m 2 kN/m
Dead Load = DL * 1.4
wDL
=
6.30
kN/m2
Live Load
wLL
=
5.78
kN/m2
W
=
16.28
kN/m
WL
=
10.51
kN/m
tL S L wL
= = = =
0.125 2.900 3.170 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
WT
=
27.710
kN/m
2.1 Span 46 2.1.1 Load P due to PC-1 Distance of P from 3 Distance of P from 6
PPC1 a b
= = =
162.41 2.520 4.040
kN m m
2.1.1 Load P due to 2B-4 Distance of P from 3
P2B-4 a
= =
87.83 3.880
kN m
= LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.3 Weight of beam Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span 13
2 2
W T = S of Loads 2.2 Span 34
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3
2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.4 Total Weight Carried by Span 13 W T = S of Loads
2
2
2
Distance of P from 6
b
=
2.660
m
WL
=
13.00
kN/m
tL S L wL
= = = =
0.125 3.880 5.170 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m
W
=
10.05
kN/m
WL
=
13.62
kN/m
tL S L wL
= = = =
0.125 2.900 6.560 4.20
m m m 2 kN/m
Dead Load = DL * 1.4
wDL
=
2.45
kN/m
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
WT
=
26.621
kN/m
WL
=
12.92
kN/m
tL S L wL
= = = =
0.125 2.900 4.970 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
WL
=
13.87
kN/m
tL S L wL
= = = =
0.120 3.100 5.820 4.03
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
9.88
kN/m2
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3 2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.4 Total Weight Carried by Span 36 W T = S of Loads
2 2
2
2.1 Span 68
2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2} 2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
3
2.1.3 Weight of beam
Wb
=
2.31
kN/m
LS b h d
= = = =
4.97 0.250 0.400 0.275
m m m m
WT
=
29.097
kN/m
Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span 68 W T = S of Loads
3.0 Analysis A
C
170.10 4.65 m
37.49 kN/m 1
5.12
m
B
90.95
1.4 m
E
G
2.67 m
29.88 kN/m 3
3.17
6.56
30.04 kN/m m
6
D
4.97 m
F
3.1 Maximum Shear Computation See FEM Computation
Moment Due to Earthquake MD = (MV + MEQ) * .75
H
VMAX
=
85.58
kN
134.91
kN-m
3.2 Maximum Moment Computation Negative Moment Moment Due to Loads
MV
=
MEQ
=
kN-m
MD
=
101.1852 kN-m
MU
=
Positive Moment
135.96
3.3 Negative Steel Reinforcement Design Constants Ultimate Moment Conc. Comp. Strength Rebar Yield Strength Reduction factor
Width Height Effective depth
MU f'c fy f b1
= = = = =
134.91 20.7 275 0.90 0.85
kN-m Mpa Mpa Grade 40 (for flexure)
b h d
= = =
250 400 352.0
mm mm mm
3.3.1 Computation of w
w
MU = fbd2f'cw(1-0.59w) w - 0.59w2 = 0.233786 w = 1.414853 w = 0.280062 3.3.2 Computation of rREQ
4
=
8
0.280062
kN-m
USE
rMIN = 1.4 / fy
rMIN
=
0.0051
rREQ = w * f'c / fy
rREQ
=
0.0211
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
1855.131 mm2
As = p * db2 / 4
As
=
201.0619 mm2
n = AREQ / As
n
=
10
Use
10 nos.
Singly Reinforced
3.3.3 Computation No. of Steel Bars AREQ = r * b * d
of 16 mm dia.
3.4 Positive Steel Reinforcement Design Constants Ultimate Moment Conc. Comp. Strength Rebar Yield Strength Reduction factor
Width Height Effective depth
MU f'c fy Ø b1
= = = = =
135.96 20.7 275 0.90 0.85
kN-m Mpa Mpa Grade 40 (for flexure)
b h d
= = =
250 400 352.0
mm mm mm
3.4.1 Computation of w
w
=
0.282777
rMIN = 1.4 / fy
rMIN
=
0.0051
rREQ = w * f'c / fy
rREQ
=
0.0213
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
1873.113 mm2
As = p * db2 / 4
As
=
201.0619 mm2
n = AREQ / As
n
=
10
Use
10 nos.
MU = Øbd2f'cw(1-0.59w) w - 0.59w2 = 0.235599 w = 1.412139 w = 0.282777 3.4.2 Computation of rREQ
Singly Reinforced
3.3.3 Computation No. of Steel Bars AREQ = r * b * d
5
of 16 mm dia.
3.5 Check for Shear Design Constants Maximum Shear Conc. Comp. Strength Rebar Yield Strength Reduction factor
VMAX f'c fy f
= = = =
85.58 20.7 275 0.85
b h d Ø Av
= = = = =
250 400 352.0 10.0 78.5398163
Width Height Effective depth Stirrups
kN Mpa Mpa Grade 40 (for shear) mm mm mm mm mm2
3.5.1 Computation of VU VU = VMAX - (W T * d)
VU
=
75.33778 KN
Actual VC
=
1.00719 Mpa
Allow VC
=
0.773453 Mpa
SACTUAL
=
739.2415 mm
SALLOWABLE
=
3.5.2 Computation of Actual V Actual VC = VU / (.85 * b * d) 3.5.3 Allowable VC Allow VC = .17 * √ f'c 3.5.4 Computation for Stirrups SACTUAL = Av * fy / ((VC - V) * b) SALLOWABLE = d / 2
176
mm
"Use 10mmØ Stirrups @ 200 mm O.C."
6
Design of Steel Beam SB-2 1.0 Design Criteria This calculation is for the design of the continuous beam SB-3 of the 2nd Floor for the proposed 2-Storey Residence with Penthouse 1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total)
= = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
=
248.4
Mpa
1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Steel I-Beam Minimum Yield Stress of I-Beam
Fy
2.0 Analysis A
C
170.10 4.65 m
37.49 kN/m 1
5.12 m
B
90.95
1.4 m
E 2.67 m
29.88 kN/m 3
3.17
6.56
G
30.04 kN/m m
6
D
4.97 m
F
3.1 Maximum Moment Computation Negative Moment
MU
=
3.2 Design of Beam Design Constants Ultimate Moment
MU
=
Allowable Stress
Fb
=
3.2.1 Computation of SXREQ'D
1
93.3944923 kN-m 163.944 Mpa
93.39449232 kN-m
8
H
SXREQ'D = M / Fb
SXREQ'D
=
569,673.13 mm3
=
629,000.00 mm3
3.2.2 Try Steel Member SXSUPP = SX of W16 x 26 Fbactual = M / SXSUPP
Fbactual
=
148.4809
Mpa
SECTION IS SAFE
2
FIXED END MOMENT COMPUTATIONS FOR CONTINUOUS BEAM B-1 1.0 Compute K = 1 / L Span Length 13 Span Length 34 Span Length 46 Span Length 68 1.1
K13 = K31 = I / L Base of Beam Depth of Beam
= = = =
b d
5.12 3.17 6.56 4.97
m m m m
= = =
0.000208 0.200 m 0.400 m
1.2
K34 = K43 = I / L
=
0.315457
1.3
K46 = K64 = I / L
=
0.152439
1.3
K68 = K86 = I / L Base of Beam Depth of Beam
b d
= = =
0.000215 0.200 m 0.400 m
KC1(GROUND TO 2ND) = I / L Base of Column Depth of Column Height of Column (GROUND TO SECOND)
b d L
= = = =
0.000183 0.200 m 0.400 m 5.830 m
KC2(GROUND TO 2ND) = I / L Base of Column Depth of Column Height of Column (GROUND TO SECOND)
b d L
= = = =
0.000183 0.200 m 0.400 m 5.830 m
KC1(2ND TO ROOF) = I / L Base of Column Depth of Column Height of Column (2nd to Roof)
b d L
= = = =
0.000333 0.200 m 0.400 m 3.200 m
KC2(2ND TO ROOF) = I / L Base of Column Depth of Column Height of Column (2nd to Roof)
b d L
= = = =
0.000333 0.200 m 0.400 m 3.200 m
1.4
1.5
1.6
1.7
2.0 Compute DF 2.1
Joint 1 SK1 DF1A
= K1A + K1B + K13 = K1A / SK1
SK1 DF1A
=
0.000574
=
0.318606
= K1B / SK1 = K13 / SK1
DF1B
=
0.318606
DF13
=
0.362788
= K31 + K3C + K3D + K34 = K31 / SK3
SK3 DF31
=
0.316032
=
0.000659
DF3C
=
0.000579
DF3D
= K3C / SK3 = K3D / SK3
DF3D
=
0.000579
DF34
= K34 / SK3
DF34
=
0.998183
Joint 4 SK4 DF43
= K43 + K46 = K43 / SK4
SK4 DF43
=
0.468
=
0.674203
DF46
= K46 / SK4
DF46
=
0.325797
DF1B DF13 2.2
Joint 3 SK3 DF31 DF3C
0.1
2.3
Joint 6 SK6 DF63
= K63 / SK6
SK6 DF63
=
0.15302
=
0.996206
= K6E / SK6 = K6F / SK6
DF6E
=
0.001196
DF6F
DF6F
=
0.001196
DF68
= K68 / SK6
DF68
=
0.001403
= K86 + K8G + K8H = K86 / SK8
SK8 DF86
=
0.000881
=
0.243531
DF8G
= K8G / SK8
DF8G
=
0.378234
DF8H
= K8H / SK8
DF8H
=
0.378234
WT
=
36.31
kN/m
5.12
m
DF6E
2.3
= K63 + K6E + K6F + K68
Joint 8 SK8 DF86
3.0 Compute Fixed End Moment 3.1
Compute Fixed End Moment for Span 13 Total Loads
37.49 kN/m 5.12 m
1
3
L13
=
FEM31
=
WT
=
Span Length 13
FEM31 3.2
= (W T * L132 / 12)
Compute Fixed End Moment for Span 34 Total Loads
79.31377 kN-m
27.71
kN/m
3.17
m
28.08 kN/m 3.17 m
3
4
L34
=
FEM34
=
23.20438 kN-m
WT
=
26.62121 kN/m
P1
=
162.41
kN
P2
=
87.83
kN
Span Length 34
FEM34 3.2
= (W T * L132 / 12)
Compute Fixed End Moment for Span 36 Total Loads Load P1 due to B2 Load P2 due to B2 87.83
162.41 4.65 m
1.4 m
kN 2.7 m
27.55 kN/m 3
6.56 m
6
Span Length 36 Distance of P1 from Support 3
L36
=
6.56
m
a136
=
2.52
m
Distance of P1 from Support 6
b136
=
4.04
m
Distance of P2 from Support 3
a236
=
3.88
m
Distance of P2 from Support 6
b236
=
2.66
m
= (W T * L362 / 12) +
FEM36
2
FEM36
=
2
2
FEM32
=
2
306.7225 kN-m
(P1 * a136 * b136 / L36 ) + ((P2 * a236 * b236 / L236 ) = (W T * L632 / 12) +
FEM63
(P1 * 3.2
2 a136
* b136 /
2 L36 )
+ ((P2 *
2 a236
274.0179 kN-m
2
* b236 / L236 )
Compute Fixed End Moment for Span 34 Total Loads
WT
=
26.62
kN/m
4.97
m
27.55 kN/m 4.97 m
4
6
L46
=
FEM64
=
Span Length 46
= (W T * L642 / 12) +
FEM64
59.89393 kN-m
4.0 Maximum Shear and Moment Computation 4.1 Compute Moment at Supports using FEM Method 3
4
6
MEMBERS DF FEM BAL COM BAL COM
JOINT
1A 1B 0.319 0.319 -79.314 25.270 25.270 -0.018 0.006 0.006 -0.036
13 0.363 -79.314 28.774 -0.018 0.007 -0.036
31 0.001 79.314 -0.037 14.387 -0.072 0.003
3C 3D 0.001 0.001 56.109 -0.032 -0.032 109.962 -0.064 -0.064 -19.369
34 43 46 63 0.998 0.674 0.326 0.996 -23.204 23.204 -306.723 274.018 -56.007 191.1489 92.3692 -213.312 95.574 -28.004 -106.656 46.185 -109.762 90.7879 43.8716 -38.744 -19.372 -54.881 -19.372 -54.881
6E 6F 0.001 0.001 214.124 -0.256 -0.256 38.892 -0.047 -0.047 -54.863
68 0.001 -59.894 -0.300 -7.293 -0.055 0.018
86 0.244 59.894 -14.586 -0.150 0.037 -0.027
8G 8H 0.378 0.378 59.894 -22.654 -22.654 -0.150 0.057 0.057 -0.027
BAL COM BAL FEM
0.012 0.012 0.006 -0.002 -0.002 25.285 25.285
0.013 0.006 -0.002 -50.571
0.013 0.007 -0.018 93.596
0.011 0.011 27.334 -0.016 -0.016 -0.101 -0.101
19.333 27.327 -27.284 -93.394
0.066 0.066 9.670 -0.012 -0.012 -0.248 -0.248
0.077 0.003 -0.014 -67.457
0.007 0.038 -0.009 45.203
0.010 0.010 0.038 -0.015 -0.015 -22.601 -22.601
4.2
1
50.0615 24.1913 9.667 27.327 -24.9414 -12.0525 257.044 -257.044
Isolate Span 46 Total Loads Load P due to B-5
54.654 9.667 -9.633 67.954
WT P
67.457 kN-m
8
= =
29.10
kN/m kN -45.203 kN-m
30.04 kN/m 4
72.30655 kN
22.66793 kN RA = 94.97448 kN
4.97 m
6
112.660
72.307
RB =
kN
-22.6679 kN 49.639 kN
Span Length 46
L46
=
4.97
m
Distance of P from Support A
aAB
=
0
m
Distance of P from Support B
bAB
=
0
m
RB
RB
=
72.307
kN
0
kN
= (W T * LAB / 2)
4.2.1 Shear Computation VAL
VAL
=
VAR
=
85.5800 kN
VBL
VBL
=
-78.770
kN
VBR
VBR
=
0.0000
kN
VAR
4.2.2 Moment Computation
MAB
MAB
=
-67.457
kN-m
M0
M1
=
11.33
kN-m
MBA
MBA
=
45.203
kN-m
Design of Steel Beam SB-1 1.0 Design Criteria This calculation is for the design of the continuous beam SB-3 of the 2nd Floor for the proposed 2-Storey Residence with Penthouse 1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total)
= = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
=
248.4
Mpa
1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Steel I-Beam Minimum Yield Stress of I-Beam
Fy
2.0 Analysis A
C
170.10 4.65 m
37.49 kN/m 1
5.12 m
B
90.95
1.4 m
E 2.67 m
29.88 kN/m 3
3.17
6.56
G
30.04 kN/m m
6
D
4.97 m
F
3.1 Maximum Moment Computation Negative Moment
MU
=
3.2 Design of Beam Design Constants Ultimate Moment
MU
=
Allowable Stress
Fb
=
3.2.1 Computation of SXREQ'D
1
257.043505 kN-m 163.944 Mpa
257.0435052 kN-m
8
H
SXREQ'D = M / Fb
SXREQ'D
=
1,567,873.82 mm3
=
3,343,000.00 mm3
3.2.2 Try Steel Member SXSUPP = SX of W18 x 106 Fbactual = M / SXSUPP
Fbactual
=
76.8901
Mpa
SECTION IS SAFE
2
Design of Continuous Beam B-2 (200 mm x 400 mm) 1.0 Design Criteria This calculation is for the design of the beam B-1 of the proposed 2-storey residential
1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads = = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
f'c
=
20.7
Mpa
db
=
16
mm
fy
=
275
Mpa
ES
=
Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total) 1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength 1.3.2 Steel Rebar Diameter Reinforcing bar Yield strength Modulus of Elasticity 1.3.3 Concrete Cover
200,000 Mpa
=
40
mm
WL
=
14.34
kN/m
tL S L wL
= = = =
0.125 4.28 6.64 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
2.0 Load Computations 2.2 Span AB
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3
1
Grade 40
2.1.3 Weight of beam
Wb
=
3.36
kN/m
LS b h d
= = = =
2.45 0.250 0.400 0.400
m m m m
WT
=
17.698
kN/m
PB-4 a b
= = =
153.45 1.84 2.07
kN/m m m
WL
=
14.34
kN/m
tL S L wL
= = = =
0.125 4.28 6.64 4.20
m m m 2 kN/m
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m
WL
=
13.07
kN/m
tL S L wL
= = = =
0.125 3.90 5.82 4.20
m m m 2 kN/m
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m
Wb
=
2.31
kN/m
LS b h d
= = = =
3.91 0.250 0.400 0.275
m m m m
WT
=
16.648
kN/m
WL
=
10.72
kN/m
tL S L wL
= = = =
0.125 3.20 5.82 4.20
m m m kN/m2
Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span AB W T = S of Loads 2.1 Span BC 2.1.1 Load P due to B4 Distance of P from B Distance of P from C
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3 2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3
2.1.3 Weight of beam Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span BC
2
2
W T = S of Loads 2.1 Span CD
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4
2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m
WL
=
10.54
kN/m
tL S L wL
= = = =
0.125 2.860 3.200 4.20
m m m 2 kN/m
Dead Load = DL * 1.4
wDL
=
2.45
kN/m
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
Wb
=
2.31
kN/m
LS b h d
= = = =
3.20 0.250 0.400 0.275
m m m m
WT
=
23.575
kN/m
WL
=
9.72
kN/m
tL S L wL
= = = =
0.125 2.90 5.82 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m
WL
=
9.72
kN/m
tL S L wL
= = = =
0.125 2.90 6.64 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
2.1.3 Weight of beam
Wb
=
2.31
kN/m
Span Length Base of Beam Height of Beam
LS b h
= = =
2.90 0.250 0.400
m m m
= LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3 2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.3 Weight of beam Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span CD
2
2
W T = S of Loads 2.1 Span DE
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3 2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3
3
2
Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4
d
=
0.275
m
WT
=
21.740
kN/m
PB-4 a b
= = =
153.45 2.33 1.90
kN m m
WL
=
8.36
kN/m
tL S L wL
= = = =
0.125 1.75 4.570 4.20
m m m 2 kN/m
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
Wb
=
2.31
kN/m
LS b h d
= = = =
4.23 0.250 0.400 0.275
m m m m
WT
=
10.674
kN/m
WL
=
8.36
kN/m
tL S L wL
= = = =
0.125 1.75 4.570 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
Wb
=
3.36
kN/m
LS b
= =
2.66 0.250
m m
2.1.4 Total Weight Carried by Span DE W T = S of Loads 2.2 Span EF 2.1.1 Load P due to B4 Distance of P from E Distance of P from F
2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.3 Weight of beam Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span EF W T = S of Loads 2.2 Span FG
2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.3 Weight of beam Span Length Base of Beam
4
Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span FG W T = S of Loads
3.0 Analysis
5
h d
= =
0.400 0.400
m m
WT
=
11.724
kN/m
6
A
2
1
2.45 m
16.20 kN/m B
4
3 2.07 m
3.91
m
16.68 kN/m
156.80 kN 1.84 m
6
C
5
3.20 m
15.22 kN/m
8
D
7
2.90 m
17.97 kN/m
.m
0.00 kN .m
10
E
9
4.23 m
28.97 kN/m
12
F
11
2.66 m
15.94 kN/m
14
G
13
3.1 Maximum Shear Computation See FEM Computation
VMAX
=
3.2 Maximum Moment Computation Negative Moment Moment Due to Loads Moment Due to Earthquake MD = (MV + MEQ) * .75
109.7772 kN
MV
=
MEQ
=
kN-m
MD
=
69.0872 kN-m
MU
=
92.862
Positive Moment
92.12
kN-m
USE
kN-m
3.3 Negative Steel Reinforcement Design Constants Ultimate Moment Conc. Comp. Strength Rebar Yield Strength Reduction factor
Width Height Effective depth
MU f'c fy f b1
= = = = =
92.12 20.7 275 0.90 0.85
kN-m Mpa Mpa (Gr. 60) (for flexure)
b h d
= = =
250 400 360.0
mm mm mm
3.3.1 Computation of w
w
=
0.169574
rMIN = 1.4 / fy
rMIN
=
0.0051
rREQ = w * f'c / fy
rREQ
=
0.0128
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
1148.787 mm2
As = p * db2 / 4
As
=
201.0619 mm2
n = AREQ / As
n
=
6
Use
6 nos.
MU = fbd2f'cw(1-0.59w) w - 0.59w2 = 0.152608 w = 1.525341 w = 0.169574 3.3.2 Computation of rREQ
Singly Reinforced
3.3.3 Computation No. of Steel Bars AREQ = r * b * d
3.4 Positive Steel Reinforcement Design Constants Ultimate Moment Conc. Comp. Strength Rebar Yield Strength Reduction factor
MU f'c fy Ø
= = = =
7
92.862 20.7 275 0.90
kN-m Mpa Mpa (Gr. 60) (for flexure)
of 16 mm dia.
Width Height Effective depth
b1
=
0.85
b h d
= = =
250 400 360.0
3.4.1 Computation of w
mm mm mm w
=
0.17112
rMIN = 1.4 / fy
rMIN
=
0.0051
rREQ = w * f'c / fy
rREQ
=
0.0129
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
1159.263 mm2
As = p * db2 / 4
As
=
201.0619 mm2
n = AREQ / As
n
=
6
Use
6 nos.
MU = Øbd2f'cw(1-0.59w) w - 0.59w2 = 0.153844 w = 1.523795 w = 0.17112 3.4.2 Computation of rREQ
Singly Reinforced
3.3.3 Computation No. of Steel Bars AREQ = r * b * d
of 16 mm dia.
3.5 Check for Shear Design Constants Maximum Shear Conc. Comp. Strength Rebar Yield Strength Reduction factor
VMAX f'c fy f
= = = =
109.777186 20.7 275 0.85
kN Mpa Mpa (Gr. 60) (for shear)
b h d Ø Av
= = = = =
250 400 360.0 12.0 113.097336
mm mm mm mm mm2
Width Height Effective depth Stirrups
3.5.1 Computation of VU VU = VMAX - (W T * d)
VU
=
101.2902 KN
Actual VC
=
1.324055 Mpa
3.5.2 Computation of Actual V Actual VC = VU / (.85 * b * d) 3.5.3 Allowable VC
8
Allow VC = .17 * √ f'c 3.5.4 Computation for Stirrups SACTUAL = Av * fy / ((VC - V) * b)
Allow VC
=
0.773453 Mpa
SACTUAL
=
451.8948 mm
"Use 10mmØ Stirrups @ 200 mm O.C."
Prepared By:
Engr. Jose J. Oriola, Jr. Civil Engineer - Lic. No.
9
FIXED END MOMENT COMPUTATIONS FOR CONTINUOUS BEAM B-2 1.0 Compute K = 1 / L Span Length AB Span Length BC Span Length CD Span Length DE Span Length EF Span Length FG 1.1
= = = = = =
2.45 3.91 3.20 2.90 4.23 2.66
m m m m m m
KAB = KBA = I / L Base of Beam Depth of Beam
b d
= = =
0.000544 0.250 m 0.400 m
KBC = KCB = I / L Base of Beam Depth of Beam
b d
= = =
0.000341 0.250 m 0.400 m
KCD = KDC = I / L Base of Beam Depth of Beam
b d
= = =
0.000417 0.250 m 0.400 m
KDE = KED = I / L Base of Beam Depth of Beam
b d
= = =
0.00046 0.250 m 0.400 m
KEF = KFE = I / L Base of Beam Depth of Beam
b d
= = =
0.000315 0.250 m 0.400 m
KFG = KGF = I / L Base of Beam Depth of Beam
b d
= = =
0.000501 0.250 m 0.400 m
KC1(GF TO 2F) = I / L Base of Column Depth of Column Height of Column (GF to 2F)
b d L
= = = =
0.000274 0.300 m 0.400 m 5.830 m
KC2(GF TO 2F) = I / L Base of Column Depth of Column Height of Column (2F to Attic)
b d L
= = = =
0.000274 0.300 m 0.400 m 5.830 m
KC1(2F TO ATTIC) = I / L Base of Column Depth of Column Height of Column (Attic to Roof)
b d L
= = = =
0.0005 0.300 0.400 3.200
m m m
1.10 KC2(2F TO ATTIC) = I / L Base of Column Depth of Column Height of Column (Attic to Roof)
b d L
= = = =
0.0005 0.300 0.400 3.200
m m m
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0 Compute DF 2.1
Joint A
2.2
2.3
2.4
2.5
2.6
2.3
SKA
= KA1 + KA2 + KAB
SKA
=
0.001319
DFA1
= KA1 / SKA
DFA1
=
0.379173
DFA2
= KA2 / SKA
DFA2
=
0.208122
DFAB
= KAB / SKA
DFAB
=
0.412705
SKB
=
0.00166
Joint B SKB
= KBA + KB3 + KB4 + KBC
DFBA
= KBA / SKB
DFBA
=
0.327908
DFB3
= KB3 / SKB
DFB3
=
0.301265
DFB4
= KB4 / SKB
DFB4
=
0.16536
DFBC
= KA"C / SKA"
DFBC
=
0.205467
Joint C SKC
SKC
=
0.001532
DFCB
= KCB / SKC
DFCB
=
0.222572
DFC5
= KC5 / SKC
DFC5
=
0.326346
DFC6
= KC6 / SKC
DFC6
=
0.179127
DFCD
= KCD / SKC
DFCD
=
0.271955
Joint D SKD
= KCB + KB4 + KB5 + KCD
SKD
=
0.001651
DFDC
= KDC / SKD
DFDC
=
0.252391
DFD7
= KD7 / SKD
DFD7
=
0.302869
DFD8
= KD8 / SKD
DFD8
=
0.16624
DFDE
= KDE / SKD
DFDE
=
0.2785
Joint E SKE
= KDC + KD7 + KD8 + KDE
SKE
=
0.002
DFED
=
0.296737
= KE9 / SKE
DFE9
=
0.322701
= KE10 / SKE
DFE10
=
0.177126
= KEF / SKE
DFEF
=
0.203436
= KED + KE9 + KE10 + KEF
DFED
= KED / SKE
DFE9 DFE10 DFEF Joint F SKF
SKF
=
0.002
= KFE / SKF
DFFE
=
0.198132
= KF11 / SKF
DFF11
=
0.314287
DFF12
= KF12 / SKF
DFF12
=
0.172507
DFFG
= KFG / SKF
DFFG
=
0.315074
SKG
=
0.001276
DFFE DFF11
Joint G SKG
= KFE + KF11 + KF12 + KFG
= KCA" + KG13 + KG14
DFGF
= KGF / SKG
DFGF
=
0.392925
DFG13
= KG13 / SKG
DFG13
=
0.391943
DFG14
= KG14 / SKG
DFG14
=
0.215132
3.0 Compute Fixed End Moment 3.1
Compute Fixed End Moment for Span AB Total Loads
WT
=
17.70
kN/m
2.45
m
19.37kN/m A
2.45 m
B
Span Length AB
3.2
LAB
=
FEMAB
= (W T * LAB2 / 12)
FEMAB
=
8.852687 kN-m
FEMBA
= (W T * LAB2 / 12)
FEMBA
=
8.852687 kN-m
WT P
= =
Compute Fixed End Moment for Span BC Total Loads Load P due to B4 153.45 kN 1.84 m
16.65 153.45
kN/m kN
2.07 m
18.11 kN/m B
3.91 m
C
Span Length BC
LBC
=
3.91
m
Distance of Load P from B
aBC
=
1.84
m
Distance of Load P from C
bBC
=
2.07
m
FEMBC
=
100.3467 kN-m
FEMCB
=
91.55372 kN-m
WT
=
FEMBC
= (W T * LBC2 / 12) (P * aBC *
FEMCB
bBC2
/
LBC2)
= (W T * LBC2 / 12) (P * aBC2 * bBC / LBC2)
3.3
Compute Fixed End Moment for Span CD Total Loads
23.57
kN/m
3.20
m
25.28 kN/m C
Span Length CD
3.20 m
D
LCD
=
FEMCD
= (W T * LCD2 / 12)
FEMCD
=
20.11725 kN-m
FEMDC
= (W T * LCD2 / 12)
FEMDC
=
20.11725 kN-m
3.4
Compute Fixed End Moment for Span DE Total Loads
WT
=
21.74
kN/m
2.90
m
23.38 kN/m D
2.90 m
E
Span Length DE
3.5
LDE
=
FEMDE
= (W T * LDE2 / 12)
FEMDE
=
15.23612 kN-m
FEMED
= (W T * LDE2 / 12)
FEMED
=
15.23612 kN-m
WT P
= =
Compute Fixed End Moment for Span EF Total Loads Load P due to PC-2 153.45 2.33 m
10.67 153.45
kN/m kN
1.90 m
11.93 kN/m E
3.6
4.23 m
F
Span Length EF
LAB
=
4.23
m
Distance of Load P from E
aAA"
=
2.33
m
Distance of Load P from F
bAA"
=
1.90
m
FEMEF
= (W T * LEF2 / 12)
FEMEF
=
88.05246 kN-m
FEMFE
= (W T * LEF2 / 12)
FEMFE
=
104.3782 kN-m
WT
=
Compute Fixed End Moment for Span FG Total Loads
11.72
kN/m
2.66
m
13.19 kN/m E
Span Length FG
2.66 m
F
LFG
=
FEMFG
= (W T * LFG2 / 12)
FEMFG
=
6.912814 kN-m
FEMGF
= (W T * LFG2 / 12)
FEMGF
=
6.912814 kN-m
BC
CB
C5
C6
CD
DC
D7
D8
DE
ED
E9
E10
EF
FE
F11
F12
FG
GF
F13
G F14
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -2.739 -1.280 4.242 39.514 29.539 16.214 -85.266 83.622 -26.399 -14.490 -42.733 7.935 -1.419 -0.779 -5.737 39.250 26.824 14.723 -80.797 92.116 -32.863 -18.038 -41.216 -4.716 3.045
BAL FEM
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000
0.001 0.001 0.000 0.000 0.000 0.000
0.001 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.002 0.002 0.000 -0.001 0.000 0.000 0.000
0.000 0.000 0.000 0.006 0.005 0.003 0.000 0.003 0.000 0.003 -0.001 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000 -0.001 0.000
BAL COM BAL COM
0.004 0.000 0.000 0.000
-0.003 -0.003 -0.002 0.034 0.034 -0.013 -0.013 -0.007 0.000 0.000 -0.003 -0.005 -0.003 -0.017 -0.017 0.003 0.005 0.003 -0.001 -0.001 -0.034 0.000 -0.002 0.000
0.024 -0.049 -0.054 -0.029 0.012 0.000 0.012 0.000 -0.004 -0.004 -0.002 0.000 0.000 0.000
0.022 0.026 0.014 -0.001 -0.001 0.000 0.000 0.000 -0.005 -0.005
-0.005 0.000 -0.005 0.108 0.100 0.055 0.068 -0.002 -0.003 -0.001 -0.002 0.000 0.034 -0.002 0.034 -0.004 0.054 -0.003 0.054 -0.021 0.000 -0.022 0.001 0.001 0.001 0.001 -0.008 -0.011 -0.006 -0.009 0.000 0.000 -0.007 0.000 -0.018 0.001 -0.011 0.001
BAL COM BAL COM
0.000 1.671
0.000 0.000 0.000 0.000 0.002 0.000 0.002 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000
-0.005 0.000 0.005 0.000
0.629 0.000 0.629 1.051 0.000 1.051 0.031 -0.208 -0.330 -0.181 -0.331 -0.247 -0.247 -0.135 0.008 0.000 0.008 0.015 0.000 0.015
-0.152 0.000 -0.152 0.333 0.045 0.049 0.027 0.166 0.000 0.166
-1.194 0.000 -1.194 0.629 3.017 0.629 -0.079 1.004 -3.095 1.004 -0.381 0.000 -0.414 0.026 0.024 0.013 0.016 -0.140 -0.205 -0.113 -0.171 0.301 0.362 0.199 -0.086 0.000 -0.086 0.008 -0.124 0.008 -0.331 0.013 -0.207 0.013
0.328 0.301 0.165 0.205 0.223 0.326 0.179 0.272 0.252 0.303 0.166 0.279 0.297 0.323 0.177 0.203 0.198 0.314 0.173 0.315 0.393 0.392 0.215 6.913 -6.913 6.913 97.465 -88.052 104.378 -72.816 -15.236 15.236 4.881 -20.117 20.117 71.436 -100.347 91.554 -91.494 8.853 30.002 27.564 15.129 18.799 -15.900 -23.313 -12.796 -19.428 -1.232 -1.478 -0.811 -1.359 21.607 23.498 12.898 14.814 -19.311 -30.632 -16.813 -30.709 -2.716 -2.709 -1.487 -15.354 -1.358 -15.354 6.049 -9.655 7.407 -10.335 10.804 -0.680 1.090 -0.616 -9.714 8.784 -7.950 9.399 -6.123 1.827 2.008 1.845 1.013 1.258 -1.955 -2.866 -1.573 -2.389 -0.275 -0.330 -0.181 -0.304 3.067 3.335 1.831 2.103 -1.198 -1.901 -1.043 -1.906 6.033 6.018 3.303
B4
F
0.413 -8.853 3.654 15.001 -6.191
B3
E
BA
D
AB
C
COM BAL COM
A2
B
0.379 0.208 -8.853 3.357 1.842 15.001 -5.688 -3.122
A1
A
DF FEM BAL COM BAL
MEMBERS
JOINT
4.0 Maximum Shear and Moment Computation 4.1 Compute Moment at Supports using FEM Method
4.2
Isolate Span EF Total Loads Load P due toFB-2 153.45 2.33 m
80.797 kN-m
1.90
WT P kN
= =
10.67 153.45
kN/m kN
m
92.116 kN-m
11.93 kN/m E
91.502
4.23 m
kN
-2.67584 kN RB = 88.82628 kN
11.319
F
107.101 kN
2.675843 kN RC = 109.777 kN
Span Length EF
LEF
=
4.23
m
Distance of Load P from E
aEF
=
2.33
m
Distance of Load P from F
bEF
=
1.90
m
RE
= (W T * LBC / 2)
RE
=
91.502
kN
RF
= (W T * LBC / 2)
RF
=
107.101 kN
VEL
=
VER
=
88.8263 kN
V1L
V1L
=
65.2700 kN
V1R
V1R
=
-91.5300 kN
VEL
VEL
=
-109.777 kN
VER
VER
=
0.0000
kN
4.2.1 Shear Computation VEL VER
4.2.2 Moment Computation MEF
0
kN
MBC
=
-80.797
kN-m
M1
M1
=
103.18
kN-m
MFE
MCB
=
-92.116
kN-m
Design of Isolated Beam B-3 (200 mm x 400 mm) 1.0 Design Criteria This calculation is for the design of the beam B-3 of the proposed 2-storey Residence
1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads = = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
f'c
=
20.7
Mpa
db
=
16
mm
fy
=
275
Mpa
ES
=
Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total) 1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength 1.3.2 Steel Rebar Diameter Reinforcing bar Yield strength Modulus of Elasticity 1.3.3 Concrete Cover
200,000 Mpa
=
40
mm
WL
=
10.48
kN/m
tL S L wL
= = = =
0.125 2.85 3.20 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
3.43
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
11.03
kN/m2
2.0 Load Computations 2.2 Span AB
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3
1
2.1.1 Due to Trapezoidal Loading
WL
=
8.57
kN/m
tL S L wL
= = = =
0.125 2.07 2.850 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
Wb
=
1.848
kN/m
LS b h d
= = = =
3.50 0.200 0.400 0.275
m m m m
WT
=
20.899
kN/m
R1
=
36.57352 kN
VMAX
=
36.57352 kN
MU
=
32.00183 kN-m
Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.3 Weight of beam Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span AB W T = S of Loads
3.0 Analysis 20.8992 kN/m 3.50
m
R1 = 36.574 kN 3.1 Maximum Shear Computation Simple Beam - Uniformly Distributed Load VMAX = W T * LS / 2 3.2 Maximum Moment Computation Simple Beam - Uniformly Distributed Load 2
MU = W T * L S / 8
3.4 Positive Steel Reinforcement Design Constants Ultimate Moment Conc. Comp. Strength Rebar Yield Strength Reduction factor
MU f'c fy Ø b1
= = = = =
32.001832 20.7 275 0.90 0.85
b h d
= = =
200 400 352.0
Width Height Effective depth
2
kN-m Mpa Mpa (Gr. 40) (for flexure)
mm mm mm
3.4.1 Computation of w
w
=
0.072412
rMIN = 1.4 / fy
rMIN
=
0.0051
rREQ = w * f'c / fy
rREQ
=
0.0055
rMAX = f*[0.85 * b1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
575.5865 mm2
As = p * db2 / 4
As
=
201.0619 mm2
n = AREQ / As
n
=
3
Use
3 nos.
MU = Øbd2f'cw(1-0.59w) w - 0.59w2 = 0.069318 w = 1.622504 w = 0.072412 3.4.2 Computation of rREQ
Singly Reinforced
3.3.3 Computation No. of Steel Bars AREQ = r * b * d
of 16 mm
3.5 Check for Shear Design Constants Maximum Shear Conc. Comp. Strength Rebar Yield Strength Reduction factor
VMAX f'c fy f
= = = =
36.5735222 20.7 275 0.85
kN Mpa Mpa (Gr. 60) (for shear)
b h d Ø Av
= = = = =
200 400 360.0 10.0 78.5398163
mm mm mm mm mm2
Width Height Effective depth Stirrups
3.5.1 Computation of VU VU = VMAX - (W T * d)
VU
=
36.57352 KN
Actual VC
=
0.597607 Mpa
Allow VC
=
0.773453 Mpa
SACTUAL
=
1228.254 mm
3.5.2 Computation of Actual V Actual VC = VU / (.85 * b * d) 3.5.3 Allowable VC Allow VC = .17 * √ f'c 3.5.4 Computation for Stirrups SACTUAL = Av * fy / ((VC - V) * b)
3
SALLOWABLE = d / 2
SALLOWABLE
=
180
mm
"Use 10mmØ Stirrups @ 130 mm O.C."
4
Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical
(Gr. 40)
5
6
Singly Reinforced
dia.
7
"Use 10mmØ Stirrups @ 130 mm O.C."
8
DESIGN OF COLUMN C1 (200 mm x 400 mm) 1.0 Design Criteria This calculation is for the design of the planted column PC1 of the proposed 2-storey House with Attic 1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads = = = = = =
24 0.25 0.50 1.00 1.75 3.45
kN/m3 Kpa Kpa Kpa Kpa Kpa
=
2.00
Kpa
f'c
=
20.7
Mpa
db1
=
16
mm
fy
=
414
Mpa
ES
=
Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total) Minimum Design Load for Hollow Concrete Masonry Unit Two faces plastered 1.2.2 Live Load 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength 1.3.2 Steel Rebar Diameter Reinforcing bar Yield strength Modulus of Elasticity 1.3.3 Concrete Cover
200,000 Mpa
=
75
LAB
=
7.00
m
Span BC
LBC
=
3.00
m
Span 34
L45
=
4.65
m
Span 45
L56
=
4.14
m
Base C1 Exterior Column
bC1
=
0.20
m
Depth C1 Exterior Column
dC1
=
0.40
m
Base B1
bB1
=
0.20
m
Effective Depth B1
dB1
=
0.40
m
Base B2
bB2
=
m
Effective Depth B2
dB2
=
m
Base SB1
bB2
=
m
Effective Depth SB1
dB2
=
m
1.2.2 Design Data Span AB
mm
(Gr. 60)
H2nd-Deck
=
3.20
m
tS1
=
0.125
m
=
21.98
m2
=
13.44
kN
=
11.81
kN
2.1.4 Super-Imposed Dead Load SDL = SDL * Tributary Area * 1.4
=
53.84
kN
2.1.5 Live Load LL
=
74.72
kN
=
8.60
kN
Height from Second Floor to Attic Thickness S1 2.0 Load Computation on Column C1
2.1 Deck Floor: Trib. Area = [(L34 + L45) / 2] * [(LAB + LBC) / 2] 2.1.2 Beams Along Transverse Direction B1 = Unit Wt. Of Conc. * bB1 * dB1 * (LAB + LBC) / / 2 * 1.4 Along Longitudinal Direction B1 = Unit Wt. Of Conc. * bB1 * dB1 * (L34 + L45) / 2 * 1.4
= LL * Tributary Area * 1.7
2.1.6 Column Column C1 = Unit Wt. Of Conc. * bC1 * dC1 * H2-D * 1.4 2.1.7 Total Loads at Deck
PU1
=
162.41
kN
2.2 Total Loads for Column C1
PU
=
162.41
kN
3.0 Analysis Deck Floor
Deck Floor P1 MU
= =
MEQ MD
= kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m = 47.31 kN-m = kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m
MU MEQ MD Second Flr
PU1
=
129.84 kN 47.31 kN-m
138.24 kN
P1 MU
= =
MEQ MD
= kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m = 47.31 kN-m = kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m
MU MEQ MD Second Flr
PU1
=
129.84 kN 47.31 kN-m
138.24 kN
MU
=
MEQ MD
= kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m = 47.31 kN-m = kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m
MU MEQ MD Second Flr
PU1
=
47.31 kN-m
MU
=
MEQ MD
= kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m = 47.31 kN-m = kN-m = (MU + MEQ) * 0.75 = 35.48 kN-m
MU MEQ MD
138.24 kN
Second Flr
Longitudinal
PU1
=
47.31 kN-m
138.24 kN
Transverse
0.1 Footing to Second Floor Design Constants Total Loads for Column C1
PU
=
162.41
kN
Design Moment
MD
=
46.70
kN-m
Conc. Comp. Strength
fC'
=
20.7
Mpa
Rebar Yield Strength Reduction Factor
fy f b1 AG
= = = =
414 0.70 0.85 80000
Mpa
n1
=
8
Base
bC1
=
200
mm
Depth
hC1
=
400
mm
Effective Depth
dC1
=
325
AG
= bC1 * dC1 16 mm dia.
No. Of Steel Bars
200
mm
0.003 E S'
C
mm2
C1
a
(Gr. 60)
C2
C - 75 400 mm
d - (a / 2)
`
d - d'
` EY MU1
MU2
3.1.1 Computation of AS AS = AS' = n * p * db2 / 4 3.1.2 Computation of C From Strain Diagram
C ES' C - 75
=
=
804.25
mm2
=
89.18
mm
= =
75.80 266.74
mm kN
0.003 C
ES' = .003 * [(C-75) - C] f S' = ES * ES' = 600 * [(C-75) - C] ASfy = .85 * fC' * [0.85 * c * b - AS'] + AS' * fS' 168.15 C 3.7730912 C2 + = 45000 C = 89.1761 C = -133.74 3.1.3 Computation of C1 a = b 1C C1 = .85 * fC' * a * b
3.1.4 Computation of C2 fS' = 600 * [(C-75) - C] C2 = AS' [fS' - (.85 * fC')] 3.1.5 Computation of T T = C1 + C2 T = AS * f Y 3.1.6 Computation of Moment Capacity MINT = [C1 * (d - a / 2)] * [C2 * (d - d')] MCAP = 0.70 * MINT
3.1.7 Consider Axial Load rG = AS / AG
PU = 0.80 * f * AG [.85 * f'c * (1 - rG) +
=
95.38
Mpa
=
62.56
kN
=
329.30
kN
=
332.96
kN
=
92.22
kN-m
=
83.00 SAFE
kN-m
rG
=
0.020106 > 1% < 8%
PU
=
1145.32 kN
(rGfy)] SAFE 3.1.8 Design the Lateral Ties Using 10 mm dia. Lateral Ties, Spacing "S" S = 16 * Longitudinal Bar Diameter S = 48 * Lateral Tie Bar Diameter S = Least Column Size
Prepared By:
Engr. Jose J. Oriola, Jr. Civil Engineer - Lic. No.
S S S
= = =
256 480 400
mm mm mm
DESIGN OF COLUMN C1 (250 mm x 400 mm) 1.0 Design Criteria This calculation is for the design of the Column C1 for the proposed two storey residential unit 1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads = = = = = =
24 0.25 0.50 1.00 1.75 3.45
kN/m3 Kpa Kpa Kpa Kpa Kpa
=
2.00
Kpa
f'c
=
20.7
Mpa
db1
=
20
mm
fy
=
275
Mpa
ES
=
Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total) Minimum Design Load for Hollow Concrete Masonry Unit Two faces plastered 1.2.2 Live Load 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength 1.3.2 Steel Rebar Diameter Reinforcing bar Yield strength Modulus of Elasticity 1.3.3 Concrete Cover
200,000 Mpa
=
75
LCE
=
5.17
m
Span EH
LEH
=
4.55
m
Span 13
L13
=
5.12
m
Span 36
L36
=
8.72
m
Base C2 Interior Column
bC1
=
0.25
m
Depth C2 Interior Column
dC1
=
0.40
m
Base B1
bB1
=
0.25
m
Effective Depth B1
dB1
=
0.40
m
Base B2
bB2
=
0.20
m
Effective Depth B2
dB2
=
0.40
m
Height from Ground Floor to 2nd Floor
HG-2
=
5.83
m
1.2.2 Design Data Span CE
mm
Grade 40
Height from 2nd Floor to Roof
H2-3
=
3.20
m
Thickness S1
tS1
=
0.125
m
=
33.63
m2
=
13.06
kN
=
23.25
kN
=
10.75
kN
=
47.07
kN
=
33.63
m2
=
141.25
kN
=
13.06
kN
=
23.25
kN
2.1.4 Super-Imposed Dead Load SDL = SDL * Tributary Area * 1.4
=
82.40
kN
2.1.5 Live Load LL
=
114.35
kN
=
19.59
kN
PU1
=
427.53
kN
PU
=
474.60
kN
2.0 Load Computation on Column C1 2.1 Roof: Trib. Area = [(LCE + LEH) / 2] * [(L13 + L36) / 2] 2.1.2 Beams Along Transverse Direction B2 = Unit Wt. Of Conc. * bB2 * dB2 * (LCE + LEH) / 2 * 1.4 Along Longitudinal Direction B1 = Unit Wt. Of Conc. * bB1 * dB1 * (L13 + L36) / 2 * 1.4 2.1.6 Column Column C1 = Unit Wt. Of Conc. * bC1 * dC1 * H2-R * 1.4 2.1.7 Total Loads at Roof
PU1
2.2 2nd: Trib. Area = [(LCD + LBC) / 2] * [(L34 + L46) / 2] 2.1.1 Slabs S1
= Unit Wt. Of Conc. * tS1 * Trib. Area * 1.4
2.1.2 Beams Along Transverse Direction B1 = Unit Wt. Of Conc. * bB1 * dB1 * (LBD + LDE) / 2 * 1.4 Along Longitudinal Direction B1 = Unit Wt. Of Conc. * bB2 * dB2 * (L34 + L46) / 2 * 1.4
= LL * Tributary Area * 1.7
2.1.6 Column Column C1 = Unit Wt. Of Conc. * bC1 * dC1 * HG-2 * 1.4 2.1.7 Total Loads at 4th Floor
2.3 Total Loads for Column C1
3.0 Analysis Roof
Roof P1
=
36.31 kN
P1
=
36.31 kN
MU
=
93.73 kN-m
MU
=
93.73 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
= (MU + MEQ) * 0.75
MD
= (MU + MEQ) * 0.75
MU
=
70.29 kN-m
=
93.73 kN-m
MU
=
70.29 kN-m
=
93.73 kN-m
Roof
Roof
2nd Floor
Ground Floor
P1
=
36.31 kN
P1
=
36.31 kN
MU
=
93.73 kN-m
MU
=
93.73 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
= (MU + MEQ) * 0.75
MD
= (MU + MEQ) * 0.75
=
70.29 kN-m
=
70.29 kN-m
MU
=
93.73 kN-m
MU
=
93.73 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
= (MU + MEQ) * 0.75
MD
= (MU + MEQ) * 0.75
=
70.29 kN-m
PU1
=
47.07 kN 466.78 kN
2nd Floor
=
70.29 kN-m
PU1
=
47.07 kN 466.78 kN
P2
=
P2
=
MU
=
93.73 kN-m
MU
=
93.73 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
MD
MU
= (MU + MEQ) * 0.75 = 70.29 kN-m = 93.73 kN-m
MU
= (MU + MEQ) * 0.75 = 70.29 kN-m = 93.73 kN-m
MEQ
=
MEQ
=
MD
= (MU + MEQ) * 0.75 = 70.29 kN-m = 486.37 kN
MD
= (MU + MEQ) * 0.75 = 70.29 kN-m = 486.37 kN
PU2
kN-m
Ground Floor
Longitudinal
PU2
kN-m
Transverse
3.1 Footing to Second Floor Design Constants Total Loads for Column C1
PU
=
474.60
Design Moment
kN
MD
=
0.19
kN-m
Conc. Comp. Strength
fC'
=
20.7
Mpa
Rebar Yield Strength Reduction Factor
fy f b1 AG
= = = =
275 0.70 0.85 100000
Mpa
AG
= bC3 * dC3 16 mm dia.
mm2
n1
=
12
Base
bC1
=
250
mm
Depth
hC1
=
400
mm
Effective Depth
dC1
=
325
No. Of Steel Bars
250
mm
Grade 40
0.003 ES'
C
a
C1
C2
C - 75 400 mm
d - (a / 2)
` EY
d - d'
250
mm
0.003 ES'
C
C1
a
C2
C - 75 400 mm
d - (a / 2)
d - d'
` EY MU1
MU2
3.1.1 Computation of AS AS = AS' = n * p * db2 / 4
=
3.1.2 Computation of C From Strain Diagram
C ES' C - 75
=
1206.37 mm2
=
80.38
mm
= =
68.32 300.52
mm kN
=
40.13
Mpa
=
27.18
kN
=
327.70
kN
=
331.75
kN
=
94.20 SAFE
kN-m
0.003 C
ES' = .003 * [(C-75) - C] f S' = ES * ES' = 600 * [(C-75) - C] ASfy = .85 * fC' * [0.85 * c * b - AS'] + AS' * fS' 307.15 C 3.1442427 C2 + = 45000 C = 80.3757 C = -178.06 3.1.3 Computation of C1 a = b 1C C1 = .85 * fC' * a * b 3.1.4 Computation of C2 fS' = 600 * [(C-75) - C] C2 = AS' [fS' - (.85 * fC')] 3.1.5 Computation of T T = C1 + C2 T = AS * f Y 3.1.6 Computation of Moment Capacity MINT = [C1 * (d - a / 2)] * [C2 * (d - d')]
3.1.7 Consider Axial Load rG = AS / AG
PU = 0.80 * f * AG [.85 * f'c * (1 - rG) +
rG
=
0.024127 > 1% < 8%
PU
=
1333.11 kN
(rGfy)] SAFE 3.1.8 Design the Lateral Ties Using 10 mm dia. Lateral Ties, Spacing "S" S = 16 * Longitudinal Bar Diameter S = 48 * Lateral Tie Bar Diameter S = Least Column Size
S S S
= = =
256 480 250
mm mm mm
Design of Isolated Square Footing 1 1.0 Design Criteria This calculation is for the design of the Isolated Square Footing F-1 for the proposed two storey residential unit 1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads Reinforced Concrete Unit Weight Ceilings (Acoustical Fiber Board) Floor Finishes (Cement Finish on Stone Concrete Fill) Electrical Fixtures Super-Imposed Dead Load (Total)
3
= = = = =
24.00 0.05 1.53 0.40 2.00
kN/m Kpa Kpa Kpa Kpa
=
2.00
Kpa
1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength
f'c
=
20.7
Mpa
1.3.2 Steel Rebar Diameter (Main & Temperature)
db
=
16
mm
fy
=
275
Mpa
=
75
mm
Reinforcing bar Yield strength 1.3.3 Concrete Cover 2.0 Load Computations 2.1 Column C2: 0.40 x 0.40 (Column A) Dead Load Computations
PDLA
=
257.32
kN
Live Load Computations
PLLA
=
63.53
kN
Total Load on Column A
PTA
=
320.85
kN
2.2 Weight of Footing Assumed Weight of Footing = 10% of PT
1
Grade 40
3.0 Analysis Design Constants Conc. Comp. Strength Rebar Yield Strength Reduction factor
Soil Bearing Capacity
f'c fy f b1
= = = =
20.7 275 0.90 0.85
Mpa Mpa Grade 40 (for flexure)
SBC
=
144
kN/m
3.1 Compute Area Required AREQ'D = (PT1 + PT2) * 1.12 / SBC
2
AREQ'D
=
2.45
m2
3.2 Compute the Footing Dimensions Assume B = 2 / 3 * L L = √ AREQ'D
L
=
1.60
m
B
=
1.60
m
PUA
=
468.24
kN
qU
=
182.91
qU
=
0.0183
kN/m kN/m
B = √ AREQ'D 3.3 Compute Ultimate Soil Pressure in kN/m PU = (PDL * 1.4) + (PLL * 1.7) qU = PU / (B * L) qU = qU * B 3.4 Check d = 496 mm for Beam Shear Design Constants Conc. Comp. Strength f'c fy Rebar Yield Strength Reduction factor f d
20.7 275 0.85 200.00
= = = =
2
Mpa Mpa (Gr. 60) (for shear) mm
3.4.1 Transverse Direction B = 1.60 m
(L - a - 2d) / 2
d a=
0.3
m L = 1.60 m
a
d
(L - a - 2d) / 2
VU = qU * B * (L - a - 2d) / 2 Actual VC = Vu / (f * B * d) Allow VC = .17 * √ f'c
2
VU
=
Actual VU
=
0.4842
Mpa
Allow VC
=
0.7735 SAFE
Mpa
131.6933 kN
3.4.2 Longitudinal Direction B = 1.60 m
a=
0.3
m L = 1.60 m
(B - a - 2d) / 2
d
d
VU = qU * L * (B - a - 2d) / 2 Actual VC = Vu / (f * L * d) Allow VC = .17 * √ f'c
(B - a - 2d) / 2
VU
=
131.6933 kN
Actual VU
=
0.484166 Mpa
Allow VC
=
0.7735 SAFE
Mpa
3.5 Check d = 496 mm for Moment 3.5.1 Transverse
(B - a) / 2
(B - a) / 2
qU =
MU = qU * L * [(B - a) / 2] * [(B - a) / 2]
MU
=
182.91 kN/m2
61.82268 kN-m
Design of Steel Reinforcement Design Constants MU Ultimate Moment Conc. Comp. Strength f'c fy Rebar Yield Strength Reduction factor f b1
= = = = =
61.82 20.7 275 0.90 0.85
kN-m Mpa Mpa Grade 40 (for flexure)
Width Effective depth
= =
1600 200.0
mm mm
b d
3
Computation of w
w
=
0.053542
rMIN = 1.4 / fy
rMIN
=
0.0051
USE
rREQ = w * f'c / fy
rREQ
=
0.0040
SAFE
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
2117.82 mm2
As = p * d2 / 4
As
=
201.06
n = AREQ / As
n
=
11
Use
11 nos.
=
0.15
MU = fbd2f'cw(1-0.59w) 2 w - 0.59w = 0.051851 w = 1.641373 w = 0.053542 Computation of rREQ
Computation No. of Steel Bars AREQ = r * b * d
S = [L - (2 * Concrete Cover)] / (n - 1)
S
2
mm
of 16 mm dia. m O.C.
3.5.2 Longitudinal
(L - a) / 2
(L - a) / 2
182.91 kN/m2
qU =
MU = qU * B * [(L - a) / 2] * [(L - a) / 2]
MU
=
61.82268 kN-m
Design of Steel Reinforcement Design Constants MU Ultimate Moment Conc. Comp. Strength f'c fy Rebar Yield Strength Reduction factor f b1
= = = = =
61.82 20.7 275 0.90 0.85
kN-m Mpa Mpa Grade 40 (for flexure)
Width Effective depth
= =
1600 200.0
mm mm
b d
Computation of w
w
MU = fbd2f'cw(1-0.59w) w - 0.59w2 = 0.051851 w = 1.641373 w = 0.053542
4
=
0.053542
Computation of rREQ rMIN = 1.4 / fy
rMIN
=
0.0051
USE
rREQ = w * f'c / fy
rREQ
=
0.0040
SAFE
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
2117.82 mm2
As = p * d2 / 4
As
=
201.06
n = AREQ / As
n
=
11
Use
11 nos.
S
=
0.15
Min, t
=
299.00
Computation No. of Steel Bars AREQ = r * b * d
S = [B - (2 * Concrete Cover)] / (n - 1) 3.5.3 Minimum Thickness, t d + (1.5 * dB) + C
Prepared By:
Engr. Jose J. Oriola, Jr. Civil Engineer - Lic. No.
5
mm2
of 16 mm dia. m O.C.
mm
DESIGN OF COLUMN C2 (200 mm x 400 mm) 1.0 Design Criteria This calculation is for the design of the Column C2 for the proposed two storey residential unit 1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads = = = = = =
24 0.25 0.50 1.00 1.75 3.45
kN/m3 Kpa Kpa Kpa Kpa Kpa
=
2.00
Kpa
f'c
=
20.7
Mpa
db1
=
20
mm
fy
=
275
Mpa
ES
=
Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total) Minimum Design Load for Hollow Concrete Masonry Unit Two faces plastered 1.2.2 Live Load 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength 1.3.2 Steel Rebar Diameter Reinforcing bar Yield strength Modulus of Elasticity 1.3.3 Concrete Cover
200,000 Mpa
=
75
LAB
=
2.45
m
Span BC'
LBC'
=
3.90
m
Span 46
L46
=
6.64
m
Span 69
L69
=
5.82
m
Base C2 Exterior Column
bC2
=
0.20
m
Depth C2 Exterior Column
dC2
=
0.40
m
Base B1
bB1
=
0.25
m
Effective Depth B1
dB1
=
0.40
m
Base B2
bB2
=
0.20
m
Effective Depth B2
dB2
=
0.40
m
Height from Ground Floor to 2nd Floor
HG-2
=
5.83
m
1.2.2 Design Data Span AB
mm
Grade 40
Height from 2nd Floor to Roof
H2-3
=
3.20
m
Thickness S1
tS1
=
0.125
m
=
16.22
m2
=
10.67
kN
=
7.82
kN
=
8.60
kN
=
27.09
kN
=
16.22
m2
=
68.11
kN
=
10.67
kN
=
7.82
kN
2.1.4 Super-Imposed Dead Load SDL = SDL * Tributary Area * 1.4
=
39.73
kN
2.1.5 Live Load LL
=
55.13
kN
=
15.67
kN
PU1
=
213.34
kN
PU
=
240.43
kN
2.0 Load Computation on Column C1 2.1 Roof: Trib. Area = [(LAB / 2) * (L46 / 2)] + {(LBC' / 2) * [(L46 + L69)/ 2]} 2.1.2 Beams Along Transverse Direction B1 = Unit Wt. Of Conc. * bB1 * dB1 * (LAB + LBC') / 2 * 1.4 Along Longitudinal Direction B1 = Unit Wt. Of Conc. * bB2 * dB2 * L69 / 2 * 1.4 2.1.6 Column Column C1 = Unit Wt. Of Conc. * bC1 * dC1 * H2-R * 1.4 2.1.7 Total Loads at Roof
PU1
2.2 2nd: Trib. Area = [(LAB / 2) * (L46 / 2)] + {(LBC' / 2) * [(L46 + L69)/ 2]} 2.1.1 Slabs S1
= Unit Wt. Of Conc. * tS1 * Trib. Area * 1.4
2.1.2 Beams Along Transverse Direction B1 = Unit Wt. Of Conc. * bB1 * dB1 * (LBD + LDE) / 2 * 1.4 Along Longitudinal Direction B1 = Unit Wt. Of Conc. * bB2 * dB2 * L13 / 2 * 1.4
= LL * Tributary Area * 1.7
2.1.6 Column Column C1 = Unit Wt. Of Conc. * bC1 * dC1 * HG-2 * 1.4 2.1.7 Total Loads at 4th Floor
2.3 Total Loads for Column C1 3.0 Analysis Roof
Roof P1
=
P1
=
MU
=
22.13 kN-m
MU
=
22.13 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
= (MU + MEQ) * 0.75
MD
= (MU + MEQ) * 0.75
139.87 kN
=
16.60 kN-m
=
16.60 kN-m
MU
=
11.96 kN-m
MU
=
11.96 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
= (MU + MEQ) * 0.75
MD
= (MU + MEQ) * 0.75
= 2nd Floor
139.87 kN
PU1
=
8.97 kN-m 147.94 kN
= 2nd Floor
PU1
=
8.97 kN-m 147.94 kN
MU
=
22.13 kN-m
MU
=
22.13 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
= (MU + MEQ) * 0.75
MD
= (MU + MEQ) * 0.75
=
16.60 kN-m
=
16.60 kN-m
MU
=
11.96 kN-m
MU
=
11.96 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
= (MU + MEQ) * 0.75
MD
= (MU + MEQ) * 0.75
= 2nd Floor
Ground Floor
8.97 kN-m
PU1
=
147.94 kN 382.40 kN
= 2nd Floor
8.97 kN-m
PU1
=
147.94 kN 382.40 kN
P2
=
P2
=
MU
=
11.96 kN-m
MU
=
11.96 kN-m
MEQ
=
kN-m
MEQ
=
kN-m
MD
MD
MU
= (MU + MEQ) * 0.75 = 8.97 kN-m = 11.96 kN-m
MU
= (MU + MEQ) * 0.75 = 8.97 kN-m = 11.96 kN-m
MEQ
=
MEQ
=
MD
= (MU + MEQ) * 0.75 = 8.97 kN-m = 396.76 kN
MD
= (MU + MEQ) * 0.75 = 8.97 kN-m = 396.76 kN
PU2
kN-m
Ground Floor
Longitudinal
PU2
kN-m
Transverse
3.1 Footing to Second Floor Design Constants Total Loads for Column C1
PU
=
240.43
kN
Design Moment
MD
=
32.86
kN-m
Conc. Comp. Strength
fC'
=
20.7
Mpa
Rebar Yield Strength Reduction Factor
fy f b1 AG
= = = =
275 0.70 0.85 80000
Mpa
AG
= bC3 * dC3 16 mm dia.
mm2
n1
=
8
Base
bC1
=
200
mm
Depth
hC1
=
400
mm
Effective Depth
dC1
=
325
No. Of Steel Bars
250
mm
Grade 40
0.003 ES'
C
C1
a
C2
C - 75 400 mm
d - (a / 2)
d - d'
` EY MU1
MU2
400 mm
d - (a / 2)
d - d'
` EY MU1
MU2
3.1.1 Computation of AS AS = AS' = n * p * db2 / 4 3.1.2 Computation of C From Strain Diagram
C ES' C - 75
=
=
804.25
mm2
=
75.84
mm
= =
64.47 226.86
mm kN
=
6.68
Mpa
=
-8.78
kN
=
218.09
kN
=
221.17
kN
=
64.22 SAFE
kN-m
0.003 C
ES' = .003 * [(C-75) - C] f S' = ES * ES' = 600 * [(C-75) - C] ASfy = .85 * fC' * [0.85 * c * b - AS'] + AS' * fS' 307.15 C 3.7730912 C2 + = 45000 C = 75.8446 C = -157.25 3.1.3 Computation of C1 a = b 1C C1 = .85 * fC' * a * b 3.1.4 Computation of C2 fS' = 600 * [(C-75) - C] C2 = AS' [fS' - (.85 * fC')] 3.1.5 Computation of T T = C1 + C2 T = AS * f Y 3.1.6 Computation of Moment Capacity MINT = [C1 * (d - a / 2)] * [C2 * (d - d')]
3.1.7 Consider Axial Load rG = AS / AG
PU = 0.80 * f * AG [.85 * f'c * (1 - rG) +
rG
=
0.020106 > 1% < 8%
PU
=
1020.12 kN
(rGfy)] SAFE 3.1.8 Design the Lateral Ties Using 10 mm dia. Lateral Ties, Spacing "S" S = 16 * Longitudinal Bar Diameter S = 48 * Lateral Tie Bar Diameter S = Least Column Size
Prepared By:
Engr. Jose J. Oriola, Jr. Civil Engineer - Lic. No.
S S S
= = =
256 480 200
mm mm mm
Design of Isolated Square Footing 1 1.0 Design Criteria This calculation is for the design of the Isolated Square Footing F-1 for the proposed two storey residential unit 1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads Reinforced Concrete Unit Weight Ceilings (Acoustical Fiber Board) Floor Finishes (Cement Finish on Stone Concrete Fill) Electrical Fixtures Super-Imposed Dead Load (Total)
3
= = = = =
24.00 0.05 1.53 0.40 2.00
kN/m Kpa Kpa Kpa Kpa
=
2.00
Kpa
1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Concrete Concrete Compressive Strength
f'c
=
20.7
Mpa
1.3.2 Steel Rebar Diameter (Main & Temperature)
db
=
16
mm
fy
=
275
Mpa
=
75
mm
Reinforcing bar Yield strength 1.3.3 Concrete Cover 2.0 Load Computations 2.1 Column C2: 0.40 x 0.40 (Column A) Dead Load Computations
PDLA
=
132.36
kN
Live Load Computations
PLLA
=
32.43
kN
Total Load on Column A
PTA
=
164.79
kN
2.2 Weight of Footing Assumed Weight of Footing = 10% of PT
1
Grade 40
3.0 Analysis Design Constants Conc. Comp. Strength Rebar Yield Strength Reduction factor
Soil Bearing Capacity
f'c fy f b1
= = = =
20.7 275 0.90 0.85
Mpa Mpa Grade 40 (for flexure)
SBC
=
144
kN/m
3.1 Compute Area Required AREQ'D = (PT1 + PT2) * 1.12 / SBC
2
AREQ'D
=
1.26
m2
3.2 Compute the Footing Dimensions Assume B = 2 / 3 * L L = √ AREQ'D
L
=
1.20
m
B
=
1.20
m
PUA
=
240.43
kN
qU
=
166.97
qU
=
0.0167
kN/m kN/m
B = √ AREQ'D 3.3 Compute Ultimate Soil Pressure in kN/m PU = (PDL * 1.4) + (PLL * 1.7) qU = PU / (B * L) qU = qU * B 3.4 Check d = 496 mm for Beam Shear Design Constants Conc. Comp. Strength f'c fy Rebar Yield Strength Reduction factor f d
20.7 275 0.85 200.00
= = = =
2
Mpa Mpa Grade 40 (for shear) mm
3.4.1 Transverse Direction B = 1.20 m
(L - a - 2d) / 2
d a=
0.3
m L = 1.20 m
a
d
(L - a - 2d) / 2
VU = qU * B * (L - a - 2d) / 2 Actual VC = Vu / (f * B * d) Allow VC = .17 * √ f'c
2
VU
=
50.0904 kN
Actual VU
=
0.2455
Mpa
Allow VC
=
0.7735 SAFE
Mpa
3.4.2 Longitudinal Direction B = 1.20 m
a=
0.3
m L = 1.20 m
(B - a - 2d) / 2
d
d
VU = qU * L * (B - a - 2d) / 2 Actual VC = Vu / (f * L * d) Allow VC = .17 * √ f'c
(B - a - 2d) / 2
VU
=
50.09043 kN
Actual VU
=
0.245541 Mpa
Allow VC
=
0.7735 SAFE
Mpa
3.5 Check d = 496 mm for Moment 3.5.1 Transverse
(B - a) / 2
(B - a) / 2
qU =
MU = qU * L * [(B - a) / 2] * [(B - a) / 2]
MU
=
166.97 kN/m2
20.28663 kN-m
Design of Steel Reinforcement Design Constants MU Ultimate Moment Conc. Comp. Strength f'c fy Rebar Yield Strength Reduction factor f b1
= = = = =
20.29 20.7 275 0.90 0.85
kN-m Mpa Mpa Grade 40 (for flexure)
Width Effective depth
= =
1200 200.0
mm mm
b d
3
Computation of w
w
=
0.022998
rMIN = 1.4 / fy
rMIN
=
0.0051
USE
rREQ = w * f'c / fy
rREQ
=
0.0017
SAFE
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
1710.55 mm2
As = p * d2 / 4
As
=
201.06
n = AREQ / As
n
=
9
Use
9 nos.
=
0.13
MU = fbd2f'cw(1-0.59w) 2 w - 0.59w = 0.022686 w = 1.671917 w = 0.022998 Computation of rREQ
Computation No. of Steel Bars AREQ = r * b * d
S = [L - (2 * Concrete Cover)] / (n - 1)
S
2
mm
of 16 mm dia. m O.C.
3.5.2 Longitudinal
(L - a) / 2
(L - a) / 2
166.97 kN/m2
qU =
MU = qU * B * [(L - a) / 2] * [(L - a) / 2]
MU
=
20.28663 kN-m
Design of Steel Reinforcement Design Constants MU Ultimate Moment Conc. Comp. Strength f'c fy Rebar Yield Strength Reduction factor f b1
= = = = =
20.29 20.7 275 0.90 0.85
kN-m Mpa Mpa (Gr. 60) (for flexure)
Width Effective depth
= =
1200 200.0
mm mm
b d
Computation of w
w
MU = fbd2f'cw(1-0.59w) w - 0.59w2 = 0.022686 w = 1.671917 w = 0.022998
4
=
0.022998
Computation of rREQ rMIN = 1.4 / fy
rMIN
=
0.0051
USE
rREQ = w * f'c / fy
rREQ
=
0.0017
SAFE
rMAX = f*[0.85 * b 1 * f'c / fy] [600 / (600+fy)]
rMAX
=
0.0280
AREQ
=
1710.55 mm2
As = p * d2 / 4
As
=
201.06
n = AREQ / As
n
=
9
Use
9 nos.
S
=
0.13
Min, t
=
299.00
Computation No. of Steel Bars AREQ = r * b * d
S = [B - (2 * Concrete Cover)] / (n - 1) 3.5.3 Minimum Thickness, t d + (1.5 * dB) + C
Prepared By:
Engr. Jose J. Oriola, Jr. Civil Engineer - Lic. No.
5
mm2
of 16 mm dia. m O.C.
mm
Design of Isolated Beam B-3 (200 mm x 400 mm) 1.0 Design Criteria This calculation is for the design of the beam B-3 of the proposed 2-storey Residence
1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads = = = = =
24 0.25 0.50 1.00 1.75
kN/m3 Kpa Kpa Kpa Kpa
=
2.0
Kpa
Fy
=
248.4
Mpa
PB-2 a b
= = =
WL
=
16.24
kN/m
tL S L wL
= = = =
0.125 4.00 5.270 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m2
WL
=
10.54
kN/m
tL S L wL
= = = =
0.125 2.86 3.200 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m2
Live Load
wLL
=
3.40
kN/m2
Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total) 1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Steel I-Beam Minimum Yield Stress of I-Beam 2.0 Load Computations 2.2 Span AB 2.1.1 Load P due to B-2 Distance of P from A Distance of P from B
2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4
Total Load Load W L
= LL * 1.7 = wL + wDL + wLL
28.404747 kN/m 2.07 m 3.20 m
= W * S / 3 * {[3 - (S / L)2] / 2}
2.1.1 Due to Trapezoidal Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7
1
Total Load Load W L
W
=
10.05
kN/m2
WT
=
26.785
kN/m
= wL + wDL + wLL 2
= W * S / 3 * {[3 - (S / L) ] / 2}
2.1.4 Total Weight Carried by Span AB W T = S of Loads
3.0 Analysis 28.405 kN 2.07 m
3.20 m
26.785 kN/m 5.27
R1 = 81.736 kN 3.1 Maximum Shear Computation Simple Beam - Uniformly Distributed Load VMAX = (W T * LS / 2) + (P * b / L) 3.2 Maximum Moment Computation Simple Beam - Uniformly Distributed Load
m
R1
=
VMAX
=
87.8262
87.8262
kN
kN
81.735619
MU
=
128.68989 kN-m
MU = (W T * LS2 / 8) + (P * a * b / L) 3.2 Design of Beam Design Constants Ultimate Moment
MU
=
Allowable Stress
Fb
=
128.689886 kN-m 163.944 Mpa
3.2.1 Computation of SXREQ'D SXREQ'D = M / Fb
SXREQ'D
=
784,962.46 mm3
=
851,160.00 mm3
=
151.1935 Mpa
3.2.2 Try Steel Member SXSUPP = SX of W12 x 40 Fbactual = M / SXSUPP
Fbactual
SECTION IS SAFE
2
Design of Isolated Beam B-3 (150 mm x 300 mm) 1.0 Design Criteria This calculation is for the design of the beam B-3 of the proposed 2-storey Residential
1.1 Specifications 1.1.1 Design References National Structural Code of the Philippines, Volume I - Buildings, Tower, and Other Vertical Structures Fifth Edition 2001 1.1.2 Design Aids Microsoft Excel 1.2 Design Loads 1.2.1 Dead Loads Reinforced Concrete Unit Weight Ceilings Floor Finishes Movable Partitions Super-Imposed Dead Load (Total)
3
= = = = =
24 0.25 0.50 1.00 1.75
kN/m Kpa Kpa Kpa Kpa
=
2.0
Kpa
Fy
=
248.4
Mpa
WL
=
10.48
kN/m
tL S L wL
= = = =
0.125 2.85 3.20 4.20
m m m
Dead Load = DL * 1.4
wDL
=
3.43
kN/m2
Live Load
wLL
=
3.40
kN/m
2
W
=
11.03
kN/m
2
1.2.2 Live Loads Second Floor 1.3 Materials Property 1.3.1 Steel I-Beam Minimum Yield Stress of I-Beam 2.0 Load Computations 2.2 Span AB
2.1.2 Due to Triangular Loading Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W*S/3
1
kN/m
2
2.1.1 Due to Trapezoidal Loading
WL
=
8.57
kN/m
tL S L wL
= = = =
0.125 2.07 2.850 4.20
m m m kN/m2
Dead Load = DL * 1.4
wDL
=
2.45
kN/m
Live Load
wLL
=
3.40
kN/m2
W
=
10.05
kN/m
Wb
=
0.882
kN/m
LS b h d
= = = =
2.85 0.150 0.300 0.175
m m m m
WT
=
19.933
kN/m
R1
=
VMAX
=
28.404747 kN
MU
=
20.238382 kN-m
Thickness of Slab Short Span Long Span Slab Load = tS * Unit Wt. Of Conc. * 1.4 = LL * 1.7 Total Load = wL + wDL + wLL Load W L = W * S / 3 * {[3 - (S / L)2] / 2}
2.1.3 Weight of beam Span Length Base of Beam Height of Beam Depth of Beam less slab Wt. Beam = Unit Wt. Of Conc. * b * d * 1.4 2.1.4 Total Weight Carried by Span AB
2
2
W T = S of Loads
3.0 Analysis 19.9332 kN/m 2.85
R1 = 28.405 kN
m
28.404747
kN
3.1 Maximum Shear Computation Simple Beam - Uniformly Distributed Load VMAX = W T * LS / 2 3.2 Maximum Moment Computation Simple Beam - Uniformly Distributed Load 2
MU = W T * LS / 8 3.2 Design of Beam Design Constants Ultimate Moment
MU
=
Allowable Stress
Fb
=
20.238382 kN-m 163.944 Mpa
3.2.1 Computation of SXREQ'D SXREQ'D = M / Fb
SXREQ'D
=
123,446.92 mm3
=
249,280.00 mm3
3.2.2 Try Steel Member SXSUPP = SX of W8 x 13 Fbactual = M / SXSUPP
Fbactual
=
81.1873
Mpa
SECTION IS SAFE
2
3