ROOF THICKNESS VERIFICATION VERIFICATION AS PER API 620 6 20
Contents: 1
Design Data
2
Roof Design
3
Se!! Desin
"
Co#$%ession A%ea Design
&
'otto# P!ate Design
6
Inte%# e%#e(iate )in( *i%(e% Ca!+ a!+,!ations
-
Sta.i! a.i!tti!it !it/ Ca!+, a!+,!!ati ations Again ainst )in( in( oa(
Sta.i! a.i!tti!it !it/ Ca! Ca!+, +,!!ati ations Again ainst Seis# eis#ii+ o oa( 1
Resistan+e To Oe% T,%ning
2 2
Se!! e!! Co Co#$%ess %essiion Fo Fo% 4n 4nan+ an+o o%e( %e( Tan5s an5s
3 3
a7i a7i#, #,# # A!!o A!!o8a 8a.! .!e e Se Se!! !! Co#$ Co#$%e %ess ssio ion n Fo% Fo% 4na 4nan+ n+o o%e %e( ( Tan5s an5s
" "
Se!! e!! Co#$%ess %essiion Fo% An+o +o%e( %e( Tan5s an5s
& &
a7i a7i#, #,# # A!!o A!!o8a 8a.! .!e e Se! Se!!! Co# Co#$% $%es essi sion on Fo% Fo% An+ An+o% o%e( e( Tan5s an5s
9
4$!ift o oa( Ca Cases As Pe Pe% API 6&0 6&0 Ta.! a.!e 3 321a 21a
10
An+o% Cai% Ca!+,!ations
11
Fo,n(ation oa(ing Data
12
No;;!e ;;!e Rein einfo% fo%+e# +e#ent ent Ca! Ca!+, +,!a !attion ions< s<ATER= ER=
13
No;; No;;!e !e F!e7i F!e7i.i .i!i !it/ t/ Ana! Ana!/s /sis is As Pe% Pe% A$$e A$$en( n(i7 i7 P of API API 6&0 6&0< <A ATER= TER=
1"
Vent enting ing Ca! Ca!+, +,!a !attion ions As As Pe% Pe% API 200 2000< 0< ATER=
-1=
Roof T Ti+5ness an( Co Co#$%essi ssion A%ea %ea Ve Ve%ifi+atio tion As Pe Pe% API 62 620 No#en+!at,%e P
P1
=
#oal pressure in lbs/2 actng a a given level of he ank
=
partcular conditon of loading. P1 0 Pg
=
Pressure in lbs/2 resultn resultng g from from he he liuid liuid head a he he lev lev consideraton consideraton in he ank.
Pg
=
2as pressure in lbs/2 abov above e he he surf surface ace of he he liu liuid id.. #h #h gas pressure%no exceeding 1( lbs/2& is he nominal pres of he ank. Pg is he positve excep in compuaton used he abili abiliy y of he he ank ank o wihsand wihsand a partal partal vacuum; vacuum; in su compuatons is value is negatve.
#1
=
Meridional uni force in lbsinch of latudinal arc! in he a he level of he ank under consideraton. #1 is positve when in ension.
#2
=
"atudinal uni force in lbsin of maridional arc! in he wal under nder cons consid ider era aton ton. #$ #$ is is po positv sitve e wh when in en ensi sion on.% .%in in cyl cyli side walls he latudinal uni forces are circumfrental uni
'1
=
'adius of curvaure of he ank side wall in inch in a merid a he level under consideraton. '1 is o be considered ne when i is on he side of he ank wall opposie from '2 ex as provided in (.1).$.*
'2
=
"engh in inch of he normal o he ank wall a he level u consid consider erat aton on measu measured red fro from m he wall wall of of he ank ank o o he a revoluton. '2 is always positve excep as provided in (.1)
+
=
#oal weigh in lbs of ha porton of he ank and is cone above he level under consideraton! as in ,gure (- panel
-1=
Roof T Ti+5ness an( Co Co#$%essi ssion A%ea %ea Ve Ve%ifi+atio tion As Pe Pe% API 62 620 No#en+!at,%e P
P1
=
#oal pressure in lbs/2 actng a a given level of he ank
=
partcular conditon of loading. P1 0 Pg
=
Pressure in lbs/2 resultn resultng g from from he he liuid liuid head a he he lev lev consideraton consideraton in he ank.
Pg
=
2as pressure in lbs/2 abov above e he he surf surface ace of he he liu liuid id.. #h #h gas pressure%no exceeding 1( lbs/2& is he nominal pres of he ank. Pg is he positve excep in compuaton used he abili abiliy y of he he ank ank o wihsand wihsand a partal partal vacuum; vacuum; in su compuatons is value is negatve.
#1
=
Meridional uni force in lbsinch of latudinal arc! in he a he level of he ank under consideraton. #1 is positve when in ension.
#2
=
"atudinal uni force in lbsin of maridional arc! in he wal under nder cons consid ider era aton ton. #$ #$ is is po positv sitve e wh when in en ensi sion on.% .%in in cyl cyli side walls he latudinal uni forces are circumfrental uni
'1
=
'adius of curvaure of he ank side wall in inch in a merid a he level under consideraton. '1 is o be considered ne when i is on he side of he ank wall opposie from '2 ex as provided in (.1).$.*
'2
=
"engh in inch of he normal o he ank wall a he level u consid consider erat aton on measu measured red fro from m he wall wall of of he ank ank o o he a revoluton. '2 is always positve excep as provided in (.1)
+
=
#oal weigh in lbs of ha porton of he ank and is cone above he level under consideraton! as in ,gure (- panel
below below i! i! as as in ,gure ,gure (- (- pane panell a& ha ha is rea reaed ed as as a free free b compu compuato atons ns for for ha ha lev level. el. 3ric 3ricly ly spea speakin king g he o oal al wei wei include he weigh weigh of all meal! gas gas and liuid liuid in he porto ank ank re rea aed ed as as desc descri ribe bed; d; howe howeve verr he he gas gas wei weigh gh is negl neglii he meal meal weig weigh h may may be negli negligib gible le comp compare ared d wih wih he he li li + shall shall be giv given en he he same same sign sign as as P when when i acs acs in he he sa sa directon as he pressure on he hori4onal hori4onal face of he free i shal shalll be given given he he oppo opposi sie e sign sign when when i acs acs in he oppo oppo directon. t
=
6ross secton area in in2 of he side walls! walls! roof roof or bo5om bo5om o a he level under consideraton.
=
#hickness in inch of he side walls! roof or bo5om of he a he level under consideraton.
c
=
6orrosion allowance in inch
7
=
8oin e9ciency
3ts
=
Maximum allowable sress for simple ension in lbsin 2 as able (-1
3ca
=
llowable compresive sress in lbsin 2 esablished as presc in (.(.
Design Data : :esig 6ode
PB *$) 1)TH 7d. :
6liens 3pecs
3ulphuric cid
Maerial
>*
:esign :ensiy of 6onens
=
1?$ )
=
1 1 > .* $ >
:ensiy of waer for hydroes
1)) ) =
3peci,c 2raviy @f 6onens Maerial Aield 3rengh
1 .? $ =
$?.$1
=
>*)) )
:esign #emperaure Bnernal Pressure
*$.>
1)) =
1.)1( 1*.1*
7xrenal Pressure
=
).)C$(
"iuid "evel
=
$))
=
1>.C?
=
$))
=
1
=
11).>$
:esign "iuid "evel llowable #ensile 3ress :esign #emperaure
1*))) 6orrosion llowance 3hell
*. ).$(1DC
Eo5om
*. ).$(1DC
'oof
*. ).$(1DC
Bnside :ia @f #ank
:
=
))) 1>.1$
:n
Fominal :ia @f #ank
=
)1) 1>.1*
:0
@uside :ia of ank
=
)$) 1>.1D 1(?.$C
Geigh @f 3hell
=
$)) 1
+eigh @f 6ompression 'ing B< applicable
()
+eigh @f ccessories
=
>)))
+ind Helociy
=
D*.>1
Aield 3rengh @f 3eel 3rucure
=
>*)))
'oof ngle
=
11.>
Roof Design
As Pe% API 620 ' &102
Ass,#$tions
#aking #hickness
=
1 mm
=
).((1 inch
8oin 79ciency
7
=
'adius @f :ome
rr
=
Geigh @f 6one 'oof
h
).C 1x:
=
1>.1$ /
=
1.>1 /
@ne Galf #he included apex angle
a
=
C?.C
'adius @f 6one
"
=
*.*D /
ngle bw he normal o roof
q
=
11.>)
=
$)$(*
=
11
of he 6onical roof or bo5om .
and a vertcal line a he roof o shell Iuncure
t
'oof rea 'oof +eigh
+ <4n+o%%o( =
:ensiy x x 'oof rea >1*>
'oof +eigh
+ <+o%%o(e( = t
6ross sectonal rea a roof o shell Iuncton
1C1D
=
1DC?
=
1>(
As $e% API 620 &102&a
'1
=
As $e% API 620 &102&a '3 = :$
Case I :
Bn,niy
/
=
*.(*$ /
=
C?.C inch
Ti+5ness At Te To$ Hea( E(ge Against Inte%na! P%ess,%e
+t
=
-).1*$ psi
+t'
=
-).1(* psi %force actng in downward di
Fow 6alculatng Meridional and "atudinal
=
J'>%$6osa&KLJP0+ t}
= #2
=
1C1 lbfin J%P '3&%6osa&K )? lbfin
Fow s Per (.1).>.$ Bf #1 and #2 boh are 0ve! hen #
=
7uaton ? of
Max.%# 1 and #2&
7uaton D of
)? lbfin calc.
=
#%3ts.7& 0 6.
=
).$?? inch P%oi(e( Ti+5ness is O5
Case II :
Ti+5ness At Te To$ Hea( Cente% Against Inte%na! P%ess,%e
#1'
=
Rs$%P0+ t'&
= #2'
=
) lbfin 's x %P0+t'& - #1
=
) lbfin
Fow s Per (.1).>.$ Bf #1 and #2 boh are 0ve! hen #
= =
calc.
=
Max.%# 1' and #2'& ) lbfin #%3ts.7& 0 6. ).$($ inch
s hese hicknesses are calculaed based on he inernal pressure of =
1.)1( psi
#herefore! 'a+5 +a!+,!ating te inte%na! $%ess,%e !i#ite( ./ te a+t,a! $%oi(e( ti+5ness
prov.
=
#%3ts.7& 0 6.
#
=
%prov. - C.A) X S ts X E
= >>(1 lbfin Fow puNng his value of # in he euaton of # 2! where we ,nd he maximum calculaed hickness #2
=
's x %P0+t x cos a& - #1
#
=
's x %P0+t x cos a& - 's$%P0 #2 = T
P
=
%$ R #'s& - + t%$Lcos a -1&
=
O:BH) #!"0$
s Per C.1?.>.$! our roof will be safe agains he hydro es pressure of 1.$( x inernal pressure
Case II :
i.e.
1.$*?C( psi
Ti+5ness At Te To$ Hea( E(ge Against E7te%na! P%ess,%e
+
=
- %"ive "oad 0 :ead "oad& x 'oof rea
-ve sign id due o he downward directon of load =
-%$( 0 weigh of roof in lbs/2& x roof area
=
-D?( lbf
+t
=
-).$(* psi
+t'
=
-).$* psi
Fow 6alculatng Meridional and "atudinal
=
J'>%$6osa&KLJP0+ t}
= #2
=
7uaton ? of
-**.) lbfin J%P '3&%6osa&K
7uaton D of
-$D.1 lbfin Fow s Per (.1).>.( #
=
Max.JE3%#1& ! E3%#2&K
= #Q
=
**.) lbfin Min.JE3%#1& ! E3%#2&K $D.1 lbfin
3imilarly! '
=
'Q
=
1%
=
Infinit/
C?.C inch
Fow!
1&
=
3rJ%#0).? R #Q& R 'K1>$ 3olving Ey 7ua inch Infinit/
=
3S'#J# x 'K1))) 0 6 ).>)) inch
Solving By Equat
Fow; s per (.1).>.(.b 3ep-$ 1% - 6. ' 1& - 6. '
=
Infinit/
T .))*C
=
).)))*
T .))*C
r(
=
Max%1% ! 1&&
r(
=
).>)) inch
t$%oi(e(
=
0&&1 in+
s per (.(..> llowable 6ompressive 3ress; 3ca
P%oi(e( ti+5ness is OK
Case IV :
Ti+5ness At Te To$ Hea( Cente% Against E7te%na! P%ess,%e
#1'
=
's$%P0+ t' &
= #2'
=
).)) lbfin 's%P0+t' & -#1
=
).)) lbfin
Fow s Per (.1).>.( # #Q
=
Max.JE3%#1' & ! E3%#2' &K
=
).)) lbfin Min.JE3%#1' & ! E3%#2' &K ).)) lbfin
3imilarly ' = '2
).)) inch
'Q = '1
).)) inch
Fow! 1%
=
3rJ%#-).? R #Q& R 'K1>$ 3olving Ey 7u ).$($
1&
=
3S'#J# x 'K1))) 0 6 ).$($
Fow; s per (.1).>.(.b 3ep-$
3olving Ey 7u
1% - 6. ' 1& - 6. '
=
O:BH)
T .))*C
=
O:BH)
T .))*C
r(
=
Max%1% ! 1&&
r(
=
).$($ inch
t$%oi(e(
=
0&&1 in+
s per (.(..> llowable 6ompressive 3ress; 3ca
= 1) x % - 6.& '
3ca
=
O:BH)
s hese hicknesses are calculaed based on he exernal pressure of P
=
).)C$( psi
#herefore! 'a+5 +a!+,!ating te e7te%na! $%ess,%e !i#ite( ./ te a+t,a! $%oi(e( ti+5ness
Fow; s per (.1).>.(.a 1&
=
3S'#J# x 'K1))) 0 6
prov*++
=
3S'#J# x 'K1))) 0 6
#
=
U%prov*++-6.& x 1))) V2 '
#
=
O:BH) lbsin
#
=
-'s$%P0+ t' &
Pxt
=
$'s x # - +t O:BH) Psi
NOTE:
s Per 32SASS006 Pa%a &"5 ! roof live loads shall no be less han concenraed lo meer suare area. for his purpose! by considering he roof segmen of C))mm diamer which is euivela area is o be analysed agains hese loading Fo% %es,!t an( #eto(o!g/ see ANNE>4RE 1
3=
Se!! Design
#!"0$
S,ll calclat*ons ar as+ on +*//rnt ass+ t,*cnsss ,r *ll pr/or t, spc*n calclat*ons /or 1st s,ll cors an+ t, ot,rs ar g*vn *n t, talat+ /or ,*c, ar nt*on+ lo.
Case I :
Ti+5ness of 1st se!! +o,%se Against Inte%na! P%ess,%e
8oin 79ciency
7
=
).?(
#aking hickness of Bs 3hell 6ourse
=
).*>) inch
Total *g,t o/ s,ll o/ +*//rnt
=
$*)) lbs
=
>1*> lbs
%'oof Pl.03hell=
$D1*C lbs
=
1.() psi
t,*cnsss. Total *g,t o/ roo/ Total 4*g,t5 4 4At 6o Total 7rssr !ntrnal 7rssr 8 7rssr + to l*(*+ ,a+
=
$.>1 psi
6o calclat*ng t, lat*t+*nal an+ ar*+*anal /orcs As 7r 9.10.2.9.c
#1
=
'c$%P0+t& euaton 1) of (.1).$.(
= #2
= =
1!)1* 'c x P
lbsinch euaton 11 of (.1).$.(
1!D1(
lbsinch
Fow s Per (.1).>.$ Bf #1 and #2 boh are 0ve! hen #
calc.
=
Max.%# 1 and #2&
=
1!D1(
=
#%3ts.7& 0 6.
=
).>D
lbsinch
inch
Te sa#e $%o+e(,%e is a(o$te( 8i!e +onfi%#ing te ti+5ness (,%ing /(%otest
s his hickness is calculaed based on he inernal pressure of P
= =
!ntrnal 7rssr 8 7rssr + to l*(*+ ,
$.>1 psi
Eack calculatng he inernal pressure limied by he acual provided hickness prov. #%3ts.7& 0 6. =
#
=
(!1) lbsinch
Fow puNng his value of # in he euaton of # 2! where we ,nd he maximum calculaed hickness #2
=
'c x P
Pax.*nt
=
#2'c
=
#2=# *(.$? psi
Case II :
Ti+5ness of 1st se!! +o,%se Against E7te%na! P%ess,%e
4
=
7xt.
-%+eigh @f 'oof Plaes 0 +eigh @f shell 0 "ive "oad&
=
->$*? lbs
=
-).)C$( psi
-ve sign id due o he downward directon of load 6o calclat*ng t, lat*t+*nal an+ ar*+*anal /orcs As 7r 9.10.2.9.c
#1
=
'c$%P0+t& euaton 1) of (.1).$.( -*D lbsinch
#2
=
'c x P
euaton 11 of (.1).$.( -(.C1 lbsinch
Fow s Per (.1).>.( # #Q
=
Max.JE3%#1& ! E3%#2&K
=
*D lbsinch Min.JE3%#1& ! E3%#2&K * lbsinch
s**larl:
' = 'c
=
C?.C inch
'Q = 'c
=
C?.C inch
Fow! 1% 1&
= =
).>)?C inch
=
3S'#J# x 'K1))) 0 6
=
).$C>$ inch
Fow; s per (.1).>.(.b 3ep-$
3rJ%#0).? R #Q& R 'K1>$ 0 6.
3olving Ey 7u 3olving Ey 7u
1% - 6. ' 1& - 6. ' r(
=
).)))C
T .))*C
=
).)))>
T .))*C
Max%1% ! 1&&
= =
).>)?C inch
s per (.(..> llowable 6ompressive 3ress; 3ca
= 1) x % - 6.& '
3ca
=
)
Psi
'a+5 +a!+,!ating te e7te%na! $%ess,%e !i#ite( ./ te a+t,a! $%oi(e( ti+5ness
Fow; s per (.1).>.(.a as t, ax* t,*cnss *s ota*n+ : ( at*on 1% t,r/or ac calclat*ng t, xtrnal prssr l**t+ : t prov.
1%
=
3rJ%#0).? R #Q& R 'K1>$ 0 6.
J1>$ x %tprov.-6.&K2'
=
#-).? R #Q
J1>$ x %tprov.-6.&K2'
=
-'c$%P0+t&- ).? x %'c x P&
6o 7tt*ng t, vals *n t, aov (at*on Pax.xt. =
->1.$C Psi
-ve sign shows he vacuum conditon. Ass*ng T,*cnsss o/ "ar*os S,ll Corss an+ Calclat t,*r 4*g,ts
Fow following he above mentoned procedure for he calculaton of remaining shell co
CASE 1 Ta.!e 1
Inte%na! P%ess,%e )it F,!! of i?,i(
Se!!
Ti+5ness
)i(t
)ei
Co,%es @
##
in+
##
in+
Kgs
1
1*
).*>)
$()
D*.*
>!?*>
$
1
).((1
$()
D*.*
>!>?)
>
1$
).C$
$()
D*.*
$!?DC
1)
).>D
1*()
*.D*
1!*$*
(
)
).)))
)
).))
-
*
)
).)))
)
).))
=
Tota! )eigt Of Se!!
Ta.!e 2
Se!! Co,%es @
)eigt of Roof
)eigt of Se!!
!.s
!.s
Tota! )eigt Tota! )eigt )H/(%otest ) !.s
)At
!.s
Psi
1
>!1*>
$*!))
$D!1*C
$D!1*C
1.()
$
>!1*>
1C!*C
$)!*>)
$)!*>)
1.)*
>
>!1*>
D!DDC
1>!1*)
1>!1*)
).*?
>!1*>
>!(D
*!C(*
*!C(*
).>(
(
>!1*>
-
>!1*>
>!1*>
).1*
*
>!1*>
-
>!1*>
>!1*>
).1*
Ta.!e 3
Inte%na! P%ess,%e
Contents P%ess,%e ea(
)ate% P%ess,%e Hea(
Tota! P%ess,%e PContents
Tota! P%ess,%e PH/(%otest
Psi
Psi
Psi
Psi
Psi
1
1.)1(
$>.>)
1$.?)
$.>1
1.)C
$
1.)1(
1*.D*
D.>$
1C.DC
1).(D
>
1.)1(
1).*1
(.?>
11.*>
C.1)
1.)1(
.$C
$.>(
(.$D
>.*$
(
1.)1(
).))
).))
1.)$
1.$C
*
1.)1(
).))
).))
1.)$
1.$C
Se!! Co,%es @
As Pe% -132 Inte%na! P%esss,%e fo% H/(%otest is 12& B P int No8 Ca!+,!ating e%i(iana! an( atit,(ina! Fo%+es aginst $%ess,%e an( D,%ing H/(%otest Con(ition
Se!! Co,%es @
P+on)At inte%na!
P/(%o)At H/(%otest
T1
T1/(%o
Psi
Psi
!.sin+
!.sin+
1
$(.?1
1(.(C
1!)1*.$$
*1$.D$
$
1D.)>
11.*
CD.$(
(?.*
>
1$.>)
C.C?
?.
>)*.1*
(.*>
>.D*
$$1.CD
1(*.)1
(
1.1?
1.>
*.>(
(*.>
*
1.1?
1.>
*.>(
(*.>
Se!! Co,%es @
T2
T2/(%o
Ta7
Ta7
!.sin+
!.sin+
!.sin+
!.sin+
1
1!D1.(>
1!1)C.D>
1!D1.(>
1!1)C.D>
$
1!1(.11
?>>.($
1!1(.11
?>>.($
>
D1(.*D
((D.11
D1(.*D
((D.11
1*.$C
$?.C1
1*.$C
$?.C1
(
CD.D$
DD.D)
CD.D$
DD.D)
*
CD.D$
DD.D)
CD.D$
DD.D)
Fow 6alculatng he reuired hickness as Per (.1).>.$ Se!! Co,%es @
t+a!+
t/(%o
t+a!+Gt$%o
t/(%oGt$%o
in+
in+
in+
in+
1
).>D
).>>
;<
;<
$
).>*
).>1
;<
;<
>
).>$
).$D
;<
;<
).$?
).$C
;<
;<
(
).$*
).$*
6ot ;<
6ot ;<
*
).$*
).$*
6ot ;<
6ot ;<
No8 'a+5 Ca!+,!ating te $%ess,%e !i#ite( ./ a+t,a! $%oi(e( ti+5nesses
Se!! Co,%es @
T !.sin+
P#a7 inte%na! P#a7inte%Pint Psi
in+
1
(!1)
*(.$?
;<
$
!)*D
(1.*?
;<
>
$!DD?
>?.)?
;<
1!D$?
$.?
;<
(
%$!?$$&
%>(.?&
6ot ;<
*
%$!?$$&
%>(.?&
6ot ;<
CASE 2
E7te%na! P%ess,%e In E#$t/ Con(ition
Se!! Co,%es @
E7te%na! P%ess,%e
)eigt of Roof
)eigt of Se!!
Psi
!.s
!.s
ie oa( !.s
Tota! )eigt ) !.s
1
-).)C$(
>!1*>
$*!))
>(1*.*)
->$*?>.C
$
-).)C$(
>!1*>
1C!*C
>(1*.*)
-$1*.>
>
-).)C$(
>!1*>
D!DDC
>(1*.*)
-1**C*.11
-).)C$(
>!1*>
>!(D
>(1*.*)
-1)$C>.)*
(
-).)C$(
>!1*>
-
>(1*.*)
-**CD.(1
*
-).)C$(
>!1*>
-
>(1*.*)
-**CD.(1
Se!! Co,%es @
)At
P)At
T1
T2
Psi
Psi
!.sin+
!.sin+
1
-1.*C?
-1.C()
-*D
-(.C)D
$
-1.$)
-1.>1$
-($
-(.C)D
>
-).?(*
-).D$D
->C
-(.C)D
-).($C
-).*))
-$
-(.C)D
(
-).>>
-).1(
-1*
-(.C)?**1$
*
-).>>
-).1(
-1*
-(.C)?**1$
T
T
R
R
!.sin+
!.sin+
in+
in+
Se!! Co,%es @
1
*D
*
CD
CD
$
($
*
CD
CD
>
>C
*
CD
CD
$
*
CD
CD
(
1*
*
CD
CD
*
1*
*
CD
CD
Se!! Co,%es @
t1
t19
in+
in+
t1 t19 CARG006- CARG006in+
in+
1
).>)?C
).$C>$
).)))C
).)))>
$
).>)1*
).$C>$
).)))*
).)))>
>
).$D
).$C>$
).)))(
).)))>
).$?C1
).$C>$
).)))
).)))>
(
).$?$$
).$C>$
).)))
).)))>
*
).$?$$
).$C>$
).)))
).)))>
Se!! Co,%es @
t+a!+
t+a!+Gt$%o
in+
in+
1
).>)?C
;<
$
).>)1*
;<
>
).$D
;<
).$?C1
;<
(
).$?$$
6ot ;<
%>!$))&
*
).$?$$
6ot ;<
%>!$))&
Fow Eack 6alculatng he pressure limied by acual provided hicknesses.
P#a7 E7te%na!
P#a7e7tPe7t
Psi
in+
1
->1.$C
;<
$
-1D.(>
;<
>
-1).(>
;<
-.$D
;<
(
-1.)(
;<
*
-1.)(
;<
Se!! Co,%es @
Co#$%ession A%ea Design
As Pe% API 620
s Per (.1$..$ +,
=
+idh in inch of roof consider o partcipae in resistng h circumfrental forces actng on he compression ring regio
+c
=
6orresponding +idh in inch of shell o be partcipatng.
,
=
#hickness in inch of roof a and near he Iuncure of he roof including corrosion allowance.
c
=
6orresponding hickness in inch of shell a and near he Iuncure of he roof and shell.
'2
=
"engh in inch of he normal o he roof a he Iuncure b he roof and he shell measured from he roof o he ank vertcal axis of of revoluton.
'c
=
Gori4onal radius in inch of he cylinderical shell a is Iuncure wih he roof of he ank.
#2s
=
6ircumfrental uni force in he shell side wall of he ank a is Iuncure wih he roof in lbfin measured along an elemen of he cylinder.
a
=
ngle bw he directon of # 1 and a vertcal line .
S
=
#oal circumfrental force in lbs actng in a vertcal cross secton hrough he corresponding ring region.
C
=
Fe rea in Bnch$ of he vertcal cross secton of meal reuired in he compression ring region exclusive of of all corrosion allowances.
Fow! 6alculatng he +h and +c based on he acual provided hickess of he roof and shell. +,
=
).* x J'2 x %,-6.&K0.9
= +c
=
$.D1 inch ).* x J'c x %c-6.&K0.9
=
$.D1 inch
Fow! s per (.1$..> S
=
#2 R +, 0 #2s x +c - #1 R 'c x 3in a
euaton $*
#herefore! #$s
=
P R '3 CD.D$1$(D? lbsinch
S
=
-11?)C
3o! s per (.1$..> C
= =
S1()))
euaton $C ).CD inch2
()C.? mm2
prov*++
=
$.)1 inch2
1$D( mm2
P%oi(e( ti+5ness an( te +o#$%ession a%ea is s,ffi+ient +o#$a%e( 8it a!,es a+iee( .ase
Providing he compression rea s per
>* mm 1.1C inch
+,
= =
+c
= =
).* x J'2 x %-6.&K0.9 ).)) inch ).* x J'c x %-6.&K0.9 (.C( inch
#herefore! prov.
= =
+, x %-6.& 0 + c x %-6.& *.C inch2
As A$%oA%e? Co#$%esssion Ring Is OK As te %e?,i%e( a%ea fo% +o#$%ession %ing %egion is e7t%a o%(ina%/ ig Te%fo%e 8e 8i!! $%oi(e te C,%e( Kn,+5!e %egion in o%(e% to aoi( te
%e?,i%e#ent of +o#$%ession %ing %egion To%i S$e%i+a! Hea( Kn,+5!e Ca!+,!ation
"
=
Bnside :ish 'adius
) inch
P
=
Bnernal :esign Pressure
7
=
8oin 79ciency
=
Provided #hickness
).((1 inch
r
=
Wnuckle 'adiu %1$X of diame
1)).? inch
1.)1( psi ).C
of shell as per (.1$.>.1& s
=
M
=
Maerial llowable :esign 3
).$( R J> 0 %"r&0.9K
= calc
=
1*))) psi
).C( UJP R " R MKJ$ R 3 x 7 - ).$ R PKV 0 6.
=
).$($
inch
No8 .a+5 +a!+,!ting te inte%na! $%ess,%e !i#ite( ./ a+t,a! $%oi(e( ti+5ness
Pax. !nt
=
J$ x 3 x 7 x %prov.-6.&KJ" x M 0 ).$ x % prov.-6.&K
=
&=
11$))).)) psi
'otto# P!ate Design Eo5om Plae rea
= =
nnular Plae rea
=
8oin 79ciency 7
= =
As $e% &9"2 *n otto
=
tprov otto
p%Eo5om
@:-$ R nnular 'ing +idh&2
C1) inch2 p%Eo5om @:&2 -
1>() inch2 ).C .$( 0 6.
=
).()$ inch
=
1) mm ).>D mm
*n annlar
Eo5om Plae rea
=
.$( 0 6.
).()$ inch prov.annlar #oal +eigh
=
1) mm ).>D>C inch :ensiy x %prov.x Eo5om rea 0 prov x nnu
=
$>)C lbs
=
?>) lbs
Va+,,# Ca!+,!ations as Pe% ASE Se+tion VIII Di1
+eigh of bo5om plae resistng Potto exernal vacuum
=
Pxt.//
=
7Yectve 7xernal Pressure
=
).$?>> x prov.otto.corr. ).))$ psi Pxt 0 Potto
=
-).)>$> psi
As te 8eigt of .otto# $!ate is g%eate% tan te a+,,# So te%e is no nee( to +a!+,!ate te ti+5ness agianst a+,,#
+ xt prov xt
for 1s shell course for 1s shell course
6
=
%calc. - 6.&
= =
).1 inch %prov. - 6.&
=
).>? inch ).>> R + xt.prov
=
).1$
#herefore! #hickness reuired agains vacuum vac
calc. t$%o
=
@: R % 6 R Pxt.// 3 R 7&0.9 0 6.
=
).>1? inch
= = =
Max.%calc.!vac.& ).()$ inch 039" in+
No8 .a+5 +a!+,!ating te #a7i#,# e7te%na! $%ess,%e !i#ite( ./ .otto# $!ate
Pax.xt.
= =
6=
Design Of Inte%#e(iate )in( *i%(e%
-UJprov. - 6.K@:K2 R J3 R 7 -).11>$ psi As Pe% &106
G1
=
* x %1)) x & x %1))x:&32
G1
=
Hertcal :isance bw he inermediae win
+here!
of he shell or in he case of he formad he bw he inermediae wind girder and he h one hird he deph of he formed head.
=
#he hickness of he op shell course as ord unless oherwise speci,ed in inch.
:
=
G1
=
Fominal ank diameer in /.
1D$?.DC /
Fow! s per (.1).*.1.a :ynamic Pressure gains he wind velociy Z 1))mph
=
>1
:ynamic Pressure due o inernal vacuum
=
(
#oal :ynamic Pressure Z 1))mph
=
>*
:ynamic Pressure due o vacuum
=
1).
cual :ynamic Pressure
=
1.
#herefore G1 shell be decreased by he facor
=
).?C
1*C(.C /
%a/er multply
Fow! s per (.1).*.1.d
Fow! G1
=
T%ansfo%#e( Se!! Ti+5nesses
As Pe% &1062
+r
=
+ R %n*/ortop&2.9
n*/or
=
#hickness @f #op 3hell 6ourse as ordered c
top
=
#hickness @f 3hell 6ourse for which ransp
4,r
being calculaed as ordered conditon in inc +
=
cual course widh in /
+r
=
#ransposed course widh in /
1st Se!! Co,%se #hickness @f
1
=
).*>)
#ransposed 6ourse +idh
+r
=
>.D$
#hickness @f $nd 3hell 6ourse
2
=
).((1
#ransposed 6ourse +idh
+r
=
(.C
#hickness @f >rd 3hell 6ourse
3
=
).C$
#ransposed 6ourse +idh
+r
=
?.)
#hickness @f h 3hell 6ourse
=
).>D
#ransposed 6ourse +idh
+r
=
(.1
#hickness @f (h 3hell 6ourse
9
=
).)))
#ransposed 6ourse +idh
+r
=
O:BH)
#hickness @f *h 3hell 6ourse
=
).)))
#ransposed 6ourse +idh
+r
=
O:BH)
Gtr
=
$$.?>
2n( Se!! Co,%se
3%( Se!! Co,%se
"t Se!! Co,%se
&t Se!! Co,%se
6t Se!! Co,%se
Fow! #ransformrd heigh of shell
As Ht%GH1Inte%#e(iate )in( *i%(e% In Not Re?,i%e(
-=
Sta.i!it/ Ca!+,!ations Against )in( oa(
Pe% ASCE02
+ind Helociy
H
=
).)
Geigh @f #ank including 'oof Geigh
Gt
=
1(.1
=
.*
7Yectve +ind 2us
/
=
).?(
6/
=
).C
+ind :irectonaliy
W+
=
).D(
Helociy Pressure 7xposure 6o-eY
W>
=
).D(
#opo 2raphic
W>t
=
1
Bmporance
B
=
1.$(
H
=
>?.?D
>
=
:esign +ind Pressure
).*)1> x W> x
= :esign +ind "oad
P1
=
1.)* > x :0 x / x
=
11.(1
Oe%t,%ning )in( o#ent
M
P1 R Gt
=
$ =
$* 1D(>)
Resisting o#ent
Mr
2 x ?4s' 8 4r' - @pl*/t to
>
$
+s
=
#oal +eigh @f #ank 3hell
1>$* lbs
+r
=
#oal +eigh @f #ank 'oof
1C1D lbs
Mr
?((( lbs-/ 4$!ift is g%aete% tan se!!
As 8% An+o%age is Re?,i%e(
=
Sta.i!it/ Ca!+,!ations Against Seis#i+ oa(
Pe% API 620 A$$en(i7
Ms
=
Ms
=
@ver #urning Momen :ue #o 3iesmic
[
=
3eismic [one
#herefore! = B
=
).)C( Bmporance
= 3
=
1.$( 3ie mpli,caton
= 61
=
1.$ "aeral 7arhuake
= 6$
= =
+here
).*
s Per ".>.>.1
"aeral 7arhuake
s Per ".>.>.$
# #
=
Faural Period @f
s Per ".>.>.$
=
k x @:0.9
k
=
:G
=
).D(C
k
=
).*)C
#
=
$.$)
6$
=
).)?>
nd 3o! Fow!
Fow!
+here
R1G
=
).>C(
R2G
=
).(?(
+1+t
=
).(>
+2+t
=
).*1
+t
=
+eigh of ank 6onens Z Maximum "iuid "evel
=
$11!CCC lbs
R1
=
(.1C
R2
=
?.)*
+1
=
11!DD.D*
+2
=
DC!*$D.$
Rs
=
3o!
Geigh
=
*.?D /
Fow! 61 x +S x RS
=
1)CD?
61 x +r x Gt
=
$*!1()
61 x +1 x R1
=
>(*!(>)
62 x +2 x R2
=
>$1!>)(.**
s
1=
=
C*!)CC lbs-/
Resistan+e To Oe% T,%ning
Pe% API 620 A$$en(i7 "
ssuming Fo nchors are provided +
C.D x x %
= =
$?>C.1 lbs/
=
1>.( lbs/
Fow! 1.$( x 2 x G x :
AS )12&*HD Te%efo%e )J12&*HD
+
2=
=
1>.( lbs/
Se!! Co#$%ession Fo% 4nan+o%e( Tan5s Bs : %+t0+&
=
2
Pe% API 620 A$$en(i7 &
).>D
+here! +t
=
J+eigh of 'oof 0 +eigh @f 3hellK p x :
=
C) lbs/
As sD2B<)t)=G0-& 4se .J)t 12-3BsD2
#he Maximum "ongiudinal 6ompressive
=
0 1.23 x Bs
t
:2 =
3=
1!$*).*? lbs/
a7i#,# A!!o8a.!e Se!! Co#$%ession Fo% 4nan+o%e( Pe% API 620 A b1$
=
Maximum "ongiudinal 6ompressive 3ress
=
1**.C? psi
Fow! 2G:2 2
T
1.))70)*
=
1)DD
3o! 2G:2 2
As *HD2t2G1000000 4se FaJ<1000000Bt2&BD=600Bs?%t<*H=
#herefore!
=
1000000 x t 0 *)) %2G&0.9
$.( x : =
$$1)D.$ psi
As .12tGFa Se!! is Safe In Co#$%ession
"=
Se!! Co#$%ession Fo% An+o%e( Tan5s
Pe% API 620 A$$en(i7 &
#he Maximum "ongiudinal 6ompressive
0 1.23 x Bs
=
t
:2 =
&=
1!$*).*? lbs/
a7i#,# A!!o8a.!e Se!! Co#$%ession Fo% An+o%e( Ta Pe% API 620 A b1$
=
Maximum "ongiudinal 6ompressive 3ress
=
1**.C? psi
Fow! 2G:2 2
T
3o! 2G:2
=
1.))70)*
2 As *HD2t2G1000000 4se FaJ<1000000Bt2&BD=600Bs?%t<*H=
#herefore!
=
1000000 x t 0 *)) %2G&0.9
$.( x : =
$$1)D.$ psi
As .12tGFa Se!! is Safe In Co#$%ession
9=
4$!ift oa( Cases As Pe% API 6&0 Ta.!e 321a
P
=
:esign Pressure in inch of waer 6olumn
$?.)D($
Pt
=
#es Pressure in inch of waer column
>(.11D
,
=
'oof Plae hickness in inches
).((1
M
=
+ind Momen in /-lbs
1D(>)
Ms
=
3eismic Momen in /-lbs
C*!)CC
+1
=
:ead "oad @f shell minus any corrosion al
1*!$*
any dead load oher han roof plae actng on he shell minus any corrosion allowance in lbs +2
=
:ead "oad @f shell minus any corrosion al
1?!1(
any dead load including roof plae actng on he shell minus any corrosion allowance in lbs +3
=
:ead "oad @f shell using as buil hickness
$D))
any dead load oher han roof plae actng on he shell using as buil hicknesses in lbs Foe
=
#he llowable #ension 3resses are #aken
Maerial
=
F/
=
A36
>*))) psi
F%o# Ta.!e 1 of '&&E01
UPLIFT LOAD CASES
NET UPLIFT F (lbf)
Fall For An (P
Design Pressure
//P % 't D2 !&0' % "1
217
15
est Pressure
//Pt % 't D2 !&0' % "1
5153
20
"in# $oa#
/! 4 D % "2
%12192&06
2'
Seis(i) $oa#
/! s D % "2
50!3&39
2'
Design Pressure * "in#
//P % 't D2 !&0' * /!
6170
20
Design Pressure * Seis(i)
//P % 't D2 !&0' * /!
23!05
20
+P$I, $-AD .ASES
eq#& Bolt Area Ar t 8,all
2
/in
eq#& Bolt Area
Design Pressure
0&00025
0&16
est Pressure "in# $oa#
0&00!52 %0&00756
2&92 %!&''
Seis(i) $oa#
0&00313
2&02
Design Pressure * "in# Design Pressure * Seis(i)
0&005!1 0&0205!
3&!9 13&25
Fo @f nchor Eol Provided
F
(*
Max. 'euired Eol rea
r(.
).)$)( inch2
Eol rea Provided
prov.
>.$( inch2
%Providing $.$ he corrosion
:ia @f nchor Eol
d
Eol 6ircle :ia
$.( inch $)$) mm
Eol 3pacing
11>( mm Va!,e of A%ea is o.taine( f%o# Ta.!e II of '&&E01 As A$%oA%e? An+o% 'o!t Is Safe
10=
An+o% Cai% Ca!+,!ations As Pe% AISI E1 Vo!,#e II Pa%t VII
#op Plae #hickness
6
=
6ritcal 3ress bw he hole and
3
=
$1 ksi
f
=
$.*C inch
:isance bw gusse5 plaes
g
=
>.D> inch
nchor Eol :iameer
d
=
$.( inch
:esign "oad @r Maximum
P
=
1 kips
6
=
).1) inch
P/0&375g%0&22#Sf:0&5
and he free edge of plae :isance from ouside of he op plae o edge of he hole
llowable load or 1.( tmes he acual bol load whichever is lesser 3o! #op Plae #hickness
$.(? mm cual \sed Plae #hickness
6
=
>) mm
Ti+5ness P%oi(e( Is OK
An+o% Cai% Heigt Ca!+,!ations 3*n+c+
=
Pe;1&32<=/1&!3
'educton
[
=
1;0&177a(/(t2/t0&5>
#op Plae +idh
a
=
1>.CC inch
nchor 6hair Geigh
h
=
$$ inch
Fominal 3hell 'adius
'
=
CD inch
3hell #hickness 6orroded
=
).>C? inch
Eo5om Plae #hickness 6orr.
m
=
).1$ inch
nchor Eol ccenriciy
e
=
.)1 inch
llowable 3ress
3alloal
=
$( ksi
[
=
0&991
3*n+c+
=
0&17
3o!
ksi
*,ssett P!ate Ti+5ness Ca!+,!ations 2usse5 Plae #hickness
cual 2usse5 Plae #hickness
8*n
0&0!/%.
=
8
=
).?> inch
=
$1.1($ mm
=
>)
*,ssett P!ate Ti+5ness Is A(e?,ate
?o4 ³
@ @
Average "i#t of ussett
@ P25
11=
O!
P25 1&1'1 5&11'
in in
6&0!5 0&0251
Fo,n(ation oa(ing Data #he 3elf weigh of roof and live load will be ransferred o shell
Li"e loa# transferre# to fo$n#ation
$ive $oa# on roof rea @f 'oof
= r
=
$( psf $)$(* inch2
otal $ive $oa#
=
>(1C lbs
6ircimference of ank
6
=
1 /
"ive "oad #ransferred
"
=
?( lbs/
o foundaton
Dea# loa# transferre# to fo$n#ation 3elf +eigh @f 3hell
+s
=
$*)) lbs
3elf +eigh @f 3hell
+r
=
>1*> lbs
3elf +eigh @f Eo5om
+
=
$>)C lbs
+eigh of accessories
+a
=
>))) lbs
#oaal :ead "oad
+
=
>$1*C lbs
:
=
including annular plae
ctng @n 3hell :ead "oad #ransferred
CC? lbs/
o foundaton
O%erating & '#rostatic Test Loa#s 3elf weigh of ank
=
>C lbs
+eigh of conens in
=
$11CCC lbs
=
$D!>( lbs
operatng conditon +eigh @f +aer in hydroes conditon \niform "oad Bn
3elf + 0
>*)>D lbs/2
3elf +0+ae =
$?>!?1D lbs/2
operatng conditon \niform "oad Bn es conditon
in# Loa# Transferre# to Fo$n#ation
Ease 3hear :ue o
<
=
'
=
>* lbs/
M
=
1D(>) lbs-/
=
1))?> lbs
's
=
1) lbs/
Ms
=
C*!)CC lbs-/
$(?? lbs
wind load 'eacton :ue #o +ind "oad Momen :ue o wind load
Seis*ic Loa# Transferre# to Fo$n#ation Ease 3hear :ue o 3eismic load 'eacton :ue #o 3eismic "oad Momen :ue o 3eismic load
S$**ar of Fo$n#ation Loa#ing Data :ead "oad
:
CC?
lbs/
"ive "oad
"
?(
lbs/
\niform "oad @peratng 6onditon
+;
>*)>D
lbs/2
uniform "oad #es 6onditon
+,
$?>!?1D
lbs/2
Ease 3hear :ue #@ wind "oad
<
$(??
'eacton :ue #o +ind "oad
'
>*
lbs/
Momen :ue #o +ind "oad
M
1D(>)
lbs-/
Ease 3hear :ue #@ 3eismic "oad
1))?>
lbs
'eacton :ue #o 3eismic "oad
's
1)
lbs/
Momen :ue #o 3eismic "oad
Ms
C*!)CC
lbs-/
lbs
nder he
l under
e maximum ure ratng o investgae ch
all of he ank
l of he ank
nderical forces&
ional plane atve ep
nder
xis of he .$.* ns%eiher b! or
ody on he gh would n of he gible and id weigh. e body;
sie
f he ank
nk
given in
ribed
:.)1
Wgm3 lbs/3 Wgm3 lbs/3 Mpa psi ;
C
psi psf
psi mm / mm / Mpa psi mm inch mm inch mm inch mm / mm / mm / inch mm / lbs lbs mph Dpsi 0
% ).?: #@ 1.$:&
in2 /2 lbf lbf in2 /2
ecton&
.1).$.(
.1).$.(
.1).$.(
.1).$.(
on 1? of PB *$)
on 19 of API 620
Psi
aton 1? of PB *$) aton 1D of PB *$)
Psi
O:BH) d of $$( Wgs over ). o ). meer sure
a+
aton 1? of PB *$) aton 1D of PB *$)
urses.
ts
)eigts !.s
Kgs
?!(>C
$!>1?
C!C)
1!?>(
*!)>
1!>($
>!(D
(?(
-
-
2600"
corroded wei
)eigt of Contents !.s
(>!?)? >>)!$C1 $)*!C>( ?>!1D? $11!CCC
Tota! )eigt )H/(%otest !.s
$C?!(1$ $)$!)D? 1$*!C() ($!C) >!1*> >!1*>
T1 !.sin+
1!D>>.D 1!1*.?$ D)$.>1 >?D.D* -
Ta7
1!D>>.D 1!1*.?$ D1(.*D 1*.$C -
by using e.1? U1>$%prov-6 >$*C $)? 111$ (D 1($ 1($
e .
( on API 620
ar rea&
6K 0 PottoV
girder and he op
d he vertcal disance ead bend line plus
ered conditon
psf psf psf
psf psf
ing wih load facor&
nditon in inch. sed widh is h.
inch /
inch /
inch /
inch /
inch /
inch /
/
kmhr / m
msec
>t
x W+ x H2 R B1)))
WFm2 x Gt
/
WF-m lbs-/
!ntrnal 7rssr&
n( %oof 8eigt
K
2
@f 2raviy
$$en(i7 &3
$$en(i7 &3
inch of G 2@ inch of G 2@ inch /-lbs /-lbs lbs
lbs
lbs
hor olts I)
00
tb + U , N Loa# , Anchor 3&''
!9
92&01
00
%217&72
00
90&06
!9
110&1'
!9
!17&95
Q anchor bol area by considering llowance of 1Qon he dia&
2 0&333
1:
>*;0&031/t0&5>:
0&025
11
WFm
1
WFm
1C$*
WFm2
1>!(?D
WFm2
1$
WF
1
WFm
$*
WF-m
(
WF
$
WFm
1)>
WF-m
o%%o(e( !.s
(!11) !)( $!D?1 1!$D) -
13"26
)eigt of )ate%
Tota! )eigt )
!.s
!.s
$D!>(
?$!DC( C)(?D*.*$C(
1?1!*?
>()!D)1
11>!(D1
$1D!?D
(!C1>
?D!D((
-
>!1*>
-
>!1*>
)At
)At/(%o
P+on)At inte%na!
P/(%o)At H/(%otest
Psi
Psi
Psi
Psi
$.?)
1.>)
D.11
$?.>C
1?.)$
1).>?
>(.DD
$).D*
11.$D
*.(1
$$.D$
1>.*1
.*$
$.*D
D.D)
*.>1
).1*
).1*
1.1?
1.>
).1*
).1*
1.1?
1.>
T1/(%o
T2
T2/(%o
!.sin+
!.sin+
!.sin+
1!11*.D1
1!D1.(>
1!1)C.D>
?$(.$(
1!1(.11
?>>.($
(>(.C(
D1(.*D
((D.11
$?.1
1*.$C
$?.C1
-
-
-
-
-
Ta7
t+a!+
t/(%o
t+a!+Gt$%o
t/(%oGt$%o
!.sin+
in+
in+
in+
in+
1!11*.D1
).1C
).>(
;<
;<
?>>.($
).1>
).>>
;<
;<
((D.11
).)?
).>)
;<
;<
$?.C1
).)
).$?
;<
;<
-
-
).$(
6ot ;<
6ot ;<
-
-
).$(
6ot ;<
6ot ;<