The Spring 2008 edition of IQ magazine is available now. IQ lets you in on all the latest releases and what the authors, editors and publishers at Intellect have to say! Why not take a look …Descrição completa
TIA-526-7-2008
2008 MAXXFORCE 7
2008 MAXXFORCE 7
Descripción completa
Full description
Eletromagnetismo ReitzDescrição completa
advance accounting - dayagFull description
Auditing Solutions manualFull description
a
Descripción: Light
Good ab workouts
Here's the solution to Brainteaser No. 7 for AutoMATHic 2014.
Full description
Springback merupakan gaya balik yang ditimbulkan akibat pengaruh elastisitas bahan sheet metal pada proses metal forming dalam hal ini proses bending. Besarnya gaya balik ditentukan oleh nilai modu...Full description
single degree of freedom
http://vujannat.ning.com Best Website To Help VUStudents
Solution Assignment # 7 Let V be the region bounded by the surface x 2 + y 2 = 4 and the planes
Q 1.
z = 0 and z = 3 in three dimensional space and let S denote the surface →
^
^
^
of V . If F = x3 i + y 3 j + z 3 k , use Divergence Theorem to find
→
^
∫ F • n dS S
^
where n denote the unit outer normal to S.
ts
Solution:
ud
en
Divergence Theorem or Gauss’s Theorem states that
ht Be tp: st //vu W ja eb nn si at te .n To ing H .co el m p VU St
Let V be a region in three dimensional space which is bounded by a closed surface S (In three dimensional space such region V is a volume of the solid ^
whose surface is S). Also suppose that n denote the unit outer normal to S at any →
point (x, y, z). If F is a vector function that has continuous partial derivatives on →
V then the volume integral of the divergence of F
i-e
→ ⎛ ⎞ ⎜ ∇ • F ⎟ over V and the ⎝ ⎠
→
surface integral of F over the surface S of V are related by →
→
^
∫ F • n dS = ∫ ∇ • F dV S
V
Or →
→
^
∫ F • n dS = ∫ div F dV S
V
Now come up to the solution of this question. According to the given statement, V is a cylinder of radius 2 and height 3 (as shown in figure)
http://vujannat.ning.com Best Website To Help VUStudents
http://vujannat.ning.com Best Website To Help VUStudents →
^
^
^
F = x3 i + y 3 j + z 3 k → ⎛ ∂ ^ ∂ ^ ∂ ^⎞ ⎛ 3^ 3 ^ 3 ^⎞ j+ k ⎟ • ⎜ x i+ y j+ z k ⎟ ∇ • F = ⎜ i+ ∂z ⎠ ⎝ ⎠ ⎝ ∂x ∂y 3 3 3 ∂x ∂y ∂z = + + ∂x ∂y ∂z
= 3x 2 + 3 y 2 + 3z 2 = 3( x 2 + y 2 + z 2 ) So by Divergence Theorem →
→
^
∫ F • n dS = ∫ ∇ • F dV = 3∫ ( x 2 + y 2 + z 2 ) dV V
ts
V
en
S
ud
Use cylindrical co-ordinates to evaluate the volume integral at right hand side.
ht Be tp: st //vu W ja eb nn si at te .n To ing H .co el m p VU St
x = r cos θ y = r sin θ z=z
x 2 + y 2 + z 2 = r 2 cos 2 θ + r 2 sin 2 θ + z 2 = r2 + z2 dV = r dz dr dθ
Limits for
z is 0 to 3
r is 0 to 2 θ is 0 to 2π
To have better understanding of cylindrical co-ordinates, see the following link.
http://vujannat.ning.com Best Website To Help VUStudents
http://vujannat.ning.com Best Website To Help VUStudents →
→
^
2 2 2 ∫ F • n dS = ∫ ∇ • F dV = 3∫ ( x + y + z ) dV V
V
3
0
0
2
3
∫ ∫
0
2π
(r 2 cos 2 θ + r 2 sin 2 θ + z 2 ) r dz dr dθ
∫ ∫ (r
= 3∫ 0
2π
= 3∫
0
0
2
3
0
0
∫ ∫
0
2π
2
= 3∫
2π
(r 3 + rz 2 ) dz dr dθ
2
∫ ( 3r
0
3
dr dθ
3
0
= 3∫
(cos 2 θ + sin 2 θ ) + z 2 ) r dz dr dθ
rz 3 r z+ 3
∫
0
2
3
0
+ 9r ) dr dθ
0
2π
3r 4 9r 2 + 4 2
= 3∫
dθ
ht Be tp: st //vu W ja eb nn si at te .n To ing H .co el m p VU St
0
2
ts
= 3∫
2
en
2π
ud
S
2π
= 90 ∫
0
dθ
0
= 90 θ
2π
0
= 180π
Thus →
^
∫ F • n dS = 180π S
Q 2.
Determine the Fourier Series of the periodic function f ( x ) shown in the figure.
Solution:
First we will find how the periodic function in the figure be defined. ⎧π f ( x) = ⎨ ⎩x f ( x) = f ( x + 2π )
−π ≤ x ≤ 0 0≤ x ≤π
http://vujannat.ning.com Best Website To Help VUStudents
http://vujannat.ning.com Best Website To Help VUStudents As we know, Fourier Series is of the form a0 ∞ + ∑ {an cos nx + bn sin nx} 2 n =1 where n is a positive int eger f ( x) =
Before doing calculation for Fourier co-efficients, its better to find whether the given function is even or odd. As then, you know we can apply some known results and reduce our work. If the function is odd, all the Fourier co-effiients an for n = 0, 1, 2… are zero. If the function is even, all the Fourier co-efficients bn
en
ts
for n = 0, 1, 2… are zero.
ud
Here, even by looking at the figure we can easily say that the given function is
ht Be tp: st //vu W ja eb nn si at te .n To ing H .co el m p VU St
neither even nor odd as it is not symmetric about y-axis or origin.
π 0 ⎞ 1⎛ + f x nx dx f ( x) cos nx dx ⎟ ( ) cos ⎜∫ ∫ π ⎝ −π 0 ⎠
http://vujannat.ning.com Best Website To Help VUStudents
http://vujannat.ning.com Best Website To Help VUStudents
=
0 π ⎞ 1⎛ + cos π nx dx x cos nx dx ⎟ ⎜∫ ∫ π ⎝ −π 0 ⎠
sin nx 1 sin nx ( − cos nx ) = π + x − π n −π π n n2 0 1
0
π
⎛ (−1) n 1 ⎞ (0 − 0) + ⎜ 0 + 2 − 0 − 2 ⎟ π n n ⎠ ⎝ (−1) n − 1 = π n2 =
π 1
π
π
∫
f ( x) sin nx dx
−π
π
∫
−π
0 π ⎞ 1⎛ f ( x) sin nx dx = ⎜ ∫ f ( x) sin nx dx + ∫ f ( x) sin nx dx ⎟ π ⎝ −π 0 ⎠
ts
bn =
1
en
bn =
1
ht Be tp: st //vu W ja eb nn si at te .n To ing H .co el m p VU St
ud
0 π ⎞ 1⎛ = ⎜ ∫ π sin nx dx + ∫ x sin nx dx ⎟ π ⎝ −π 0 ⎠
(− cos nx) 1 (− cos nx) ( − sin nx ) = π + x − π π n2 n n −π 0 1
=
0
⎞ 1 ⎛ −π −π (−1) n ⎞ 1 ⎛ π (−1) n +1 − − 0 + 0 − 0⎟ ⎜ ⎟+ ⎜ π⎝ n n n ⎠ π⎝ ⎠
1 ⎛ −π + π (−1) n ⎞ 1 ⎛ π (−1) n +1 ⎞ = ⎜ ⎟+ ⎜ ⎟ π⎝ n n ⎠ π⎝ ⎠ n n +1 −1 + (−1) (−1) −1 + (−1) n + (−1) n (−1) = + = n n n n n −1 + (−1) − (−1) −1 = = n n
Hence a0 ∞ + ∑ {an cos nx + bn sin nx} 2 n =1 ∞ ∞ a f ( x) = 0 + ∑ an cos nx + ∑ bn sin nx 2 n =1 n =1 f ( x) =
f ( x) =
∞ 3π ∞ (−1) n − 1 sin nx +∑ cos − nx ∑ 2 πn 4 n =1 n n =1
http://vujannat.ning.com Best Website To Help VUStudents
π
http://vujannat.ning.com Best Website To Help VUStudents Now if n is odd (−1) n − 1 −2 = 2 π n2 πn and if n is even (−1) n − 1 =0 π n2 So 3π ⎛ 2 2 2 ⎞ + ⎜ − cos x + (0) cos 2 x − 2 cos 3x + (0) cos 4 x − 2 cos 5 x − − − − ⎟ + 4 ⎝ π 3π 5π ⎠ sin 2 x sin 3 x ⎛ ⎞ − − − − −⎟ ⎜ − sin x − 2 3 ⎝ ⎠
or
ud
3π 2 ⎛ cos 3 x cos 5 x sin 2 x sin 3 x ⎞ ⎞ ⎛ − ⎜ cos x + + + − − − − − − − ⎟ − ⎜ sin x + + + − − − − −⎟ 2 2 3 4 π⎝ 3 5 2 ⎠ ⎝ ⎠
ht Be tp: st //vu W ja eb nn si at te .n To ing H .co el m p VU St
=
en
ts
f ( x) =
f ( x) =
3π 2 ∞ cos(2n − 1) x ∞ sin nx − ∑ −∑ 4 π n =1 (2n − 1) 2 n n =1
http://vujannat.ning.com Best Website To Help VUStudents