Solution of Megsons 3rd Edition Question and AnswersFull description
Solution Manual chemical process safety 3rd editionDescripción completa
Descrição: solution manual
Full description
solution manualFull description
solution manual
Descripción: Solution Manual chemical process safety 3rd edition
Solution Manual chemical process safety 3rd edition
Full description
Solution Manual chemical process safety 3rd editionFull description
Solution Manual Chemical Reaction Engineering, 3rd Edition.pdfFull description
solution manualFull description
Solution Manual chemical process safety 3rd editionFull description
solution manualDescripción completa
Solution Manual chemical process safety 3rd editionFull description
Full description
This book provides an introduction to numerical analysis and is intended to be used by undergraduates in the sciences, mathematics, and engineering. The main prerequisite is a one-year course in th...
⎡N N ⎤ Vbi = VT ln ⎢ a 2 d ⎥ ⎣ ni ⎦ ⎡ (1017 )(1016 ) ⎤ ⎥ = 0.757 V = ( 0.026 ) ln ⎢ ⎢ (1.5 × 1010 )2 ⎥ ⎣ ⎦ 5 ⎞ ⎛ Then 0.8 = C jo ⎜ 1 + ⎟ ⎝ 0.757 ⎠ or C jo = 2.21 pF
−1/ 2
= C jo ( 7.61)
−1/ 2
EX1.7
⎡ ⎛v ⎞ ⎤ iD = I S ⎢exp ⎜ D ⎟ − 1⎥ ⎝ VT ⎠ ⎥⎦ ⎣⎢ ⎡ ⎛ v ⎞ ⎤ so 10−3 = (10−13 ) ⎢ exp ⎜ D ⎟ − 1⎥ ⎝ 0.026 ⎠ ⎦ ⎣
⎡ 10−3 ⎤ Solving for the diode voltage, we find vD = ( 0.026 ) ln ⎢ −13 + 1⎥ ⎣10 ⎦ or vD ≅ ( 0.026 ) ln (1010 )
which yields vD = 0.599 V EX1.8 ⎛V ⎞ VPS = I D R + VD and I D ≅ I S exp ⎜ D ⎟ ⎝ VT ⎠ ( 4 − VD ) so 4 = I D ( 4 ×103 ) + VD ⇒ I D = 4 ×103 and ⎛ V ⎞ I D = (10 −12 ) exp ⎜ D ⎟ ⎝ 0.026 ⎠ By trial and error, we find I D ≅ 0.864 mA and VD ≅ 0.535 V
EX1.9
(a)
ID =
(b)
ID =
Then R = (c)
VPS − Vγ R VPS − Vγ R
5 − 0.7 ⇒ I D = 1.08 mA 4 VPS − Vγ ⇒R= ID =
8 − 0.7 = 6.79 kΩ 1.075
ID(mA) Diode curve 1.25 1.08
Load lines (b) (a)
0
0.7
2
4 VD(v)
6
8
EX1.10 PSpice analysis EX1.11
Quiescent diode current I DQ =
VPS − Vγ
=
10 − 0.7 = 0.465 mA 20
R Time-varying diode current: V 0.026 We find that rd = T = = 0.0559 kΩ I DQ 0.465 Then id =
vI 0.2sin ω t (V ) = ⋅ or id = 9.97sin ω t ( μ A) rd + R 0.0559 + 20 ( kΩ )
EX1.12 ⎛I ⎞ ⎛ 1.2 × 10−3 ⎞ or VD = 0.6871 V For the pn junction diode, VD ≅ VT ln ⎜ D ⎟ = ( 0.026 ) ln ⎜ −15 ⎟ ⎝ 4 × 10 ⎠ ⎝ IS ⎠ The Schottky diode voltage will be smaller, so VD = 0.6871 − 0.265 = 0.4221 V ⎛V ⎞ Now I D ≅ I S exp ⎜ D ⎟ ⎝ VT ⎠ or 1.2 × 10−3 IS = ⇒ I S = 1.07 × 10−10 A 0.4221 ⎛ ⎞ exp ⎜ ⎟ ⎝ 0.026 ⎠
EX1.13 P = I ⋅ VZ ⇒ 10 = I ( 5.6 ) ⇒ I = 1.79 mA
Also I =
10 − 5.6 = 1.79 ⇒ R = 2.46 kΩ R
Test Your Understanding Exercises TYU1.1 (a) T = 400K ⎛ − Eg ⎞ Si: ni = BT 3 / 2 exp ⎜ ⎟ ⎝ 2kT ⎠ ni = ( 5.23 × 1015 ) ( 400 )
or ni = 4.76 × 1012 cm −3
3/ 2
⎡ ⎤ −1.1 ⎥ exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 400 ) ⎥⎦
Ge: ni = (1.66 × 1015 ) ( 400 )
3/ 2
⎡ ⎤ −0.66 ⎥ exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 400 ) ⎥⎦
or ni = 9.06 × 1014 cm −3 GaAs: ni = ( 2.1× 1014 ) ( 400 )
3/ 2
⎡ ⎤ −1.4 ⎥ exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 400 ) ⎥⎦
or ni = 2.44 × 109 cm −3 (b) T = 250 K Si: ni = ( 5.23 × 1015 ) ( 250 )
3/ 2
⎡ ⎤ −1.1 ⎥ exp ⎢ ⎢⎣ 2 ( 86 × 10−6 ) ( 250 ) ⎥⎦
or ni = 1.61× 108 cm −3 Ge: ni = (1.66 × 1015 ) ( 250 )
3/ 2
⎡ ⎤ −0.66 ⎥ exp ⎢ −6 ⎢⎣ 2 ( 86 × 10 ) ( 250 ) ⎥⎦
or ni = 1.42 × 1012 cm −3 GaAs: ni = ( 2.10 × 1014 ) ( 250 )
3/ 2
⎡ ⎤ −1.4 ⎥ exp ⎢ ⎢⎣ 2 ( 86 × 10−6 ) ( 250 ) ⎥⎦
or ni = 6.02 × 103 cm −3 TYU1.2 (a) n = 5 × 1016 cm −3 , p <<< n, so σ ≅ eμ n n = (1.6 × 10 −19 ) (1350 ) ( 5 × 1016 )
or
σ = 10.8 ( Ω − cm ) (b)
−1
p = 5 × 1016 cm −3 , n <<< p, so σ ≅ eμ p p = (1.6 × 10−19 ) ( 480 ) ( 5 × 1016 )
or
σ = 3.84 ( Ω − cm )
−1
TYU1.3 J = σ E = (10 )(15 ) or J = 150 A / cm2 TYU1.4
⎛ 0.5 ⎞ I D ≅ 10−14 exp ⎜ ⎟ ⎝ 0.026 ⎠ Then, for VD = 0.5 V, I D = 2.25 μ A VD = 0.6 V, I D = 0.105 mA VD = 0.7 V, I D = 4.93 mA (b) I D ≅ − I S = −10 −14 A for both cases. TYU1.8 ΔT = 100C so ΔVD ≅ 2 × 100 = 200 mV Then VD = 0.650 − 0.20 = 0.450 V TYU1.9 ID(mA) Diode 1.0 艐0.87
Load line
0
1 艐0.54v
2 VD(v)
VD
ID
0.45 0.50 0.55
0.033 0.225 1.54
3
TYU1.10 P = I DVD ⇒ 1.05 = I D ( 0.7 ) so I D = 1.5 mA
4
Now R =
VPS − Vγ ID
=
10 − 0.7 ⇒ R = 6.2 kΩ 1.5
TYU1.11 I 0.8 gd = D = = 30.8 mS VT 0.026 TYU1.12 V 0.026 0.026 rd = T ⇒ 50 = ⇒ ID = ID ID 50 or I D = 0.52 mA TYU1.13 For the pn junction diode, 4 − 0.7 ID = = 0.825 mA 4
For the Schottky diode, I D =
4 − 0.3 = 0.925 mA 4
TYU1.14 Vz = Vzo + I z rz ⇒ Vzo = Vz − I z rz so Vzo = 5.20 − (10 −3 ) ( 20 ) = 5.18 V
Then Vz = 5.18 + (10 × 10−3 ) ( 20 ) ⇒ Vz = 5.38 V