What is a Transf Transform ormer? er?
T ransform ransformers ers are com com pletely stati stati c electrical devices which convert alternating curr cu rren entt fro from m one vol voltag tage e le level vel to anot another her.. G eneral purpose purpose transformers transform ers are rated 600 volts and below for supplying appliance, lighting, and power loads from electrical distribution systems. Standard distribution voltages are 600, 600, 480 480,, and 240 volts; standard load voltages are 480, 240, and 120 volts. The transformer is used to match the voltage supply to the electrical load. T hey can increase increase ( stepstep-up) up) or o r decrease (step-down) (stepdown) voltages voltages.. Si nce no vaults are required for installation, dry type transformers can be located right at the load to provide correct voltage for the application. This eliminates the need for long, costly, costly, low voltage feeders. Si em ens general general purpose purpose t rans ransform form ers meet app appllic icab able le NEM A , A NSI , U L, and IE EE stan standard dards. s. AN SI C89.2 C89.2//NEM A ST 20 ANSI C57.12.91 ANSI C57.96 UL 506 U L 1561 1561
Contents O vervi ew
1-3
S electi on and A ppli cati on
4
C atalog C odi ng S ystem
5
E ncapsulated T ransf orm ers
6
V enti lat ed T ransf orm ers
7
Single Phase and Three Phase T ransf orm ers
8-10
K V A /A m pere T ables
8-10
E lectrostati c S hi elded
11
N on-L i near L oads
12
D ri ve T ransf orm ers
13
K -Factor
14-15
B uc uck -B oo oost Tr T ransf orm er ers
16-21
Industrial Control Circuit T ransf orm ers
22-26
G lossary
27-29
What does a Transformer do?
Principle of Operation
Autotransformers
Transformers operate on the principle of magnetic induction. induction. T hey con consis sist, t, in their simplest form, of two or more coils of insulated wire wound on laminated steel core. The current supplied to one coil oil,, the PR IM A R Y or inpu input, t, m ag agne netiz tizes es the steel core, which in turn induces a volta vol tage ge in the SEC O N D A R Y or outp output ut coil. T he change change of voltage from t he primary to the secondary is proportional to the turns ratio of the two coils.
Standard transformers are referred to as insulating transformers, or isolation transformers, because the primary and secondary sec ondary windi ngs are separated separated by insulation. T here is no electrical connecconnection between the windings; the voltage is magnetically induced between the prim ary and secondar secondary. y. A s such, such, tw owinding transformers isolate the load circuit from the supply circuit.
For example, example, i n the figure shown shown below, the cores input, or primary leg has twice as many turns as the secondary. secondary. T his is a two-to-one transformer...any voltage fed into the system will be reduced by one half. half. In other w ords ords,, if 480 volts volts are applied to the primary, 240 volts w ill be induced in the secondary secondary.. T his is an an example of a two wi nding “ stepdown” trans transformer. former. I f the voltage voltage is to be “ step steppedped-up” or increas increased, ed, the same transformer could be turned around and connected so that the input side would have 240 volts and the output would be 480 volts. Standard transformers Standard transformers rated 3 KV A and larger can be used for either step-up or step-down service. Transformers rated 2 K VA and below below have compensated compensated windings and should not be used in reverse feed applications.
A utotran utotransformers sformers are spe special ciallydesigned lydesigned transformers trans formers con consis sisting ting of one con continutinuous windi ng. T he primary prim ary and secondary secondary are electrically connected. The required secondary sec ondary voltage is obtained obt ained by designing a tap at the appropriate turn location. A utotransform ers can can be used used in three phase phas e or single phase applications to perform the sa sam m e function as two-wi two-wi nding transformers, transformers, wi th the exception of i sol solating ating tw o circuits. circuits. Si nc nce e they are are physically phys ically connected connected internall int ernally, y, autotransformers do not provide circuit isolation and in some cases, local codes cod es may restrict restrict their us use. e. Standard Transformer H1
Input
X1
480 Turns Primary
H2
240 Turns Secondary
Autotransformer H1 Input
Output
X2
Output X1
H2
X2
1
What does a Transformer do?
Principle of Operation
Autotransformers
Transformers operate on the principle of magnetic induction. induction. T hey con consis sist, t, in their simplest form, of two or more coils of insulated wire wound on laminated steel core. The current supplied to one coil oil,, the PR IM A R Y or inpu input, t, m ag agne netiz tizes es the steel core, which in turn induces a volta vol tage ge in the SEC O N D A R Y or outp output ut coil. T he change change of voltage from t he primary to the secondary is proportional to the turns ratio of the two coils.
Standard transformers are referred to as insulating transformers, or isolation transformers, because the primary and secondary sec ondary windi ngs are separated separated by insulation. T here is no electrical connecconnection between the windings; the voltage is magnetically induced between the prim ary and secondar secondary. y. A s such, such, tw owinding transformers isolate the load circuit from the supply circuit.
For example, example, i n the figure shown shown below, the cores input, or primary leg has twice as many turns as the secondary. secondary. T his is a two-to-one transformer...any voltage fed into the system will be reduced by one half. half. In other w ords ords,, if 480 volts volts are applied to the primary, 240 volts w ill be induced in the secondary secondary.. T his is an an example of a two wi nding “ stepdown” trans transformer. former. I f the voltage voltage is to be “ step steppedped-up” or increas increased, ed, the same transformer could be turned around and connected so that the input side would have 240 volts and the output would be 480 volts. Standard transformers Standard transformers rated 3 KV A and larger can be used for either step-up or step-down service. Transformers rated 2 K VA and below below have compensated compensated windings and should not be used in reverse feed applications.
A utotran utotransformers sformers are spe special ciallydesigned lydesigned transformers trans formers con consis sisting ting of one con continutinuous windi ng. T he primary prim ary and secondary secondary are electrically connected. The required secondary sec ondary voltage is obtained obt ained by designing a tap at the appropriate turn location. A utotransform ers can can be used used in three phase phas e or single phase applications to perform the sa sam m e function as two-wi two-wi nding transformers, transformers, wi th the exception of i sol solating ating tw o circuits. circuits. Si nc nce e they are are physically phys ically connected connected internall int ernally, y, autotransformers do not provide circuit isolation and in some cases, local codes cod es may restrict restrict their us use. e. Standard Transformer H1
Input
X1
480 Turns Primary
H2
240 Turns Secondary
Autotransformer H1 Input
Output
X2
Output X1
H2
X2
1
Overv erview, iew, Selec Selection tion and and App Applilic cat ation ion
Insulation Systems
Low Temper Temperature ature Rise
Overload Capability
T here are four types of insulation insulation systems commonly used in dry type transformers. Each is made of materials that will withstand a certain temperature without shortening the life of the transformer. This means that regardless of the insulation system used, transform trans form ers operating operating at their rated tem peratur perature e rise w ill have essentially essentially the same design life. Each insulation system will withstand the following average averag e tem peratur perature e rise over a 40°C ambient as defined by by AN SI (A merican N ationa ationall Standar Standards ds Institute) and and NE M A (N ational Electric Electrical al M anufac anufacturers turers A ss ssociation). ociation).
T rans ransform form ers rated 15 15 K VA and above above using 220°C i nsu nsulation lation can can be designed for 115°C or 80°C wi nding temperatu temperature re rise as an an optional feature. R educ educing ing the temperature from 150°C rise provides several benefits:
P er AN SI loa loading ding guides guides,, the amount, frequency, and duration of loading cycl cy cles es determine a transform transform er’s lif e. T ransforme ransformers rs can can deliver short-term short-term overloads without being damaged if the overload period is preceded and followed by reduced reduced loads. loads. (R eference A NSI C57 C57.96 .96). ).
Insulation System Classification Maximum +Wi +Winding Ambient Rise 40°C 40°C 40°C 40°C
55°C 80°C 115°C 150°C
+Hot +Ho Spot 10°C 30°C 30°C 30°C
=Temp. =Te Class 105°C 150°C 185°C 220°C
Temperature Rise The temperature rise for transformers is the average temperature rise of the aluminum or copper conductor inside the coil windings. The temperature rise does not apply to the outside surface, the core, or any part part of the transformer– only the coil. The temperature rise of the coil is set by the designer and must be compatible compatible with the lim it of the insulation system. That is, when a 220°C rise insulation insulation sy system stem is used, the rise of the coil must not exceed 150°C. Surface temperatures on transformers are established by U nd nder erwriter writer’s ’s Labo Labora rator tories(U ies(U L). °C -° F 0° - 32° 10° - 50° 30° - 86° 40° -104° 55° -131° 80° -176° 90° -194°
• R edu educe ced d los losse ses, s, lower oper operating ating costs, higher efficiency.
The ambient air temperature should not exceed 30°C average, or 40°C m ax axiim um over a 24-hour period, and the altitude should not exceed 3300 feet above sea level for normal operation.
• Longer expec expected ted trans transformer former life. life. • C ons onserves erves elec electric trical al power, power, les less s heat generated, saves energy. Rating of Design Operating Overload Overload Insulation Temp. Rise Temperature Capability 220°C 220°C 220°C
80 °C 115°C 150°C
150°C 185°C 220°C
30% 15% 0%
W hen opera operated ted at rated rated K VA and temperature rise, losses for 115 °C rise are about 1010-20% les less, s, and 80°C rise are are about 20-35% les less s than transformers transformers wi th 150 150°C rise/ rise/220 220°C insulation system. 80°C Rise 80° 40°°C 40 M ax aximu imum m Ambient
80°C 80° Winding Rise
30°°C 30 Hot Spot A llowance
70°C Reserve (30%)
110°C Hot Spot Rise 110° (80°°C + 30° (80 30°C)
150°C
115°C Rise 115° 40°C M axi aximum mum Ambient
115°C Wi nding Rise
30°C Hot Spot Allowance
40°C M axi aximum mum Ambient
220 °C
35°C Reserve (15%)
145°C H ot Spot Rise Rise (115°C + 3 0°C)
185°C
150°C Rise 150°
°C -° F 100° -212° 105° -221° 115° -239° 150° -302° 185° -365° 220° -428°
Ambient Tempe Temperature rature and Altitude
• A dditiona dditionall capa capacity city for emergency emergency overloads.
150°C Wi nding Ri se
220 °C
30°C Hot Spot A llowance
Basic Impulse Levels Basic impulse level (BIL, or kv-BIL) is the ability of the transformer insulation insulation to withstand high voltage surges due to swi tching or lightning. D ry type 600 600 volt class transformers are rated 10 kv-BIL per industry standards.
Series-Multiple Connections Transformers with two identical voltages (e.g. 120/240 or 120 x 240) may be connected either in series or in parallel per the connection diagrams. C onnec onnected ted in series, the transform transform er will provide the higher voltage (240 volts); connected connected in para parallel llel,, the lower voltage (120 volts) is obtained. If the dual voltage is separated by an “ X” (120 x 240), 240), the transfor transformer mer can can be connected only for 120 volts or 240 volts. B ut, if it i s separa separated ted by a “ sl slas ash” h” (120/240), an additional connection is possible since the mid-point becomes available for 240/120 3-wire operation.
180°C H ot Spot Spot Rise
Series Connection (typical) 220°C
Rating T he trans transformer former rating inclu includes des its K VA , phase, frequency, voltages, taps, connections, and temperature rise. This information is sh shown own on the namepl nameplate ate..
H4
X1
Output (Secondary)
Input (Primary) H3
X2
H2
X3
H1
X4
Multiple (Parallel) Connection (typical)
Input (Primary)
2
H4
X1
H3
X2
H2
X3
H1
X4
Output (Secondary)
Voltage Termination
Sound Levels
Both high voltage and low voltage windings are terminated in the transformer wiring compartment. T he high voltage terminations are identified in accordance wi th NE M A standards as H 1, H 2, H 3, the low voltage leads as X1, X2, X3 and the neutral as X0. T he connection diagram on t he transform er nameplate shows the proper connections for series or m ultiple connections and tap settings.
A ll transformers that are energized w ill produce an audible noise that sounds like a “ hum.” AN SI and NEM A standards for average sound levels are shown below. Transformers can be custom designed for sound levels below standard w hen specifi ed.
Voltage Changing Taps T aps are frequently added on the prim ary wi nding to change the turns ratio and com pensate for hi gh or low li ne voltages. The number of taps and the tap ratio depend on the KV A size and the design volts per turn ratio. Standard taps are two 5% below normal on most smaller transformers to provide a 10% range of tap voltage adjustment. M ost larger transformers have six taps - four 2-¹⁄₂% below normal and two 2-¹⁄₂% above normal for a 15% range of tap voltage adjustment. For some ratings, the actual number of taps and the tap ratio may vary based on the volts per turn ratio required for the design.
KVA
Average dB Sound Level
0 -9 10 - 50 51 - 150 151 - 300 301 - 500 501 - 700 701 - 1000
40 45 50 55 60 62 64
AN SI C89.2/NEM A ST20 (150°C RISE K-1)
Reducing Noise Levels The sound level of background music, a typical classroom, or conversation at 3 feet is about 60 dB. The ambient sound level, or background noise can reach 90 dB in typical industrial locations. G enerally, sound levels above 70dB are considered annoying and 100 dB very loud. T o achieve a “ quiet” transformer installation, use the following tips:
120
208
240
277
480
600
-5% -10%
114 108
198 187
228 216
263 249
456 432
570 540
+ 5% + 2.5% -2.5% -5% -7.5% -10%
126 123 117 114 111 108
218 213 203 198 192 187
252 246 234 228 222 216
291 284 270 263 256 249
504 492 468 456 444 432
630 615 585 570 555 540
2 - 5% FC B N Figure A 2 - 2.5% FC A N 4 - 2.5% FC B N Figure B
Figure A (typical)
Figure B (typical) X1
H1
H1
456V
432V
H2
492V
s n r u T 120V 0 2 1
480V
s n r u T 0 8 4
X1
504V
s n r u T 120V 0 2 1
480V 468V 456V
X2
240V
444V
X3
432V
s n r u 120V T 0 2 1
X4
H2
s n r u T 0 8 4
X2
240V
65-75 dB* 50-70 dB* 45-60 dB* 25-50 dB* Office Retail Average Office without store home with at night machines machines
*decibels - used for measuring the loudness of sound. (3 dB increase =2x sound volume.)
Average ambient sound level of typical locations
Rated Line Voltage Taps
80-90 dB* Factory
1. I nstall the transform er so that vibrations are not transmitted to the structural parts of the building. M ounting should be on a solid w all, floor, or other structure wi th solid m ass. M ounts must be isolated and properly loaded, avoiding direct contact with other metal structures. 2. I solate the transform er by using flexible couplings and conductors to help prevent vibrations being transm itted to other equipment. M ake sure shipping braces and hold-down bolts are loosened or removed as specified by the m anufacturer’s installation m anual. V entilated transformers should “ float” on vibration dampening pads located between the enclosure and the core and coil assembly. 3. Locate the transformer where sound is not significantly increased by sound reflection. W hen transform ers are m ounted in a corner or near the ceiling, the adjacent surfaces act as a megaphone. H alls or small and narrow areas with short distance between multiple reflective areas will also amplify sound. 4. T ransform er noise can be reduced in a closet or behind a wall if the wall has no openings and is not subject to vibrations from the transformer. M ake sure the area has proper air ventilation. C urtains, screens, and other ceiling or wall sound treatments are generally not effective barriers to transformer noise. 5. Locate the transformer away from areas where noise is undesirable. Improper location and installation can increase the noise level 10 dB or more and cause complaints about transform er noise.
X3
s n r u 120V T 0 2 1
X4
3
Selection and Application
Selection Factors T he most im portant thing to remember w hen selecting a transform er is to choose a unit that matches supply and load conditions. Y ou must fi rst determine:
watts by the power factor to determine VA capacity:
VA capacity = W atts Pow er Factor
Load (needed)
Voltage Frequency P hase
K VA Voltage Frequency P hase
Selecting Transformer KVA Rating Y ou w ill usually know your load requirements. I f not, maxim um load current m ultiplied by the load voltage gives volt-amp capacity for single phase applications. For three phase applications, m ultiply load current tim es load voltage times 1.732. The transformer must have this minim um nameplate capacity in volt-amps (or K VA if voltamps has been divided by 1000). Single phase: KV A = (FLA x Volts) ÷ 1000 Three phase: K VA = (FLA x Volts x 1.732) ÷ 1000 U sually, some provision for future increase in load should be made when selecting the transformer. F or example, if maximum load current is 50 amps and load voltage is 120, single phase, the requirement is 6,000 VA or 6 K VA . T he next largest standard single phase unit is 7-¹⁄₂ K VA , which allows for future load expansion. If load requirements are given in watts, the power factor of the load must be considered. D ivi de the
4
If the transformer is to be installed outdoors, it must be suitable for outdoor application. Be on the alert for high ambient temperatures (above 40 C), high altitude conditions (above 3300 feet), and high humidity or saltspray conditions. R efer to NEM A S T 20 and A N SI C 57.96 for high ambient or high altitude applications. Special transformers are normally required for such applications. °
KVA capacity = K W Line (available)
Special Applications
Pow er Factor W hen mot ors are installed in the circuit, the current required to deliver rated motor horsepower di ctates the mi nimum transformer KV A required.
Selecting Voltage Ratings N ext select the proper line and load voltages. In m ost cases, you will already know the power supply and load ratings. In single phase circuits, the transformer primary must match the line voltage. For example, if the line voltage is rated single phase, 60 Hz 480 volts, a transformer rated 240 x 480 volts primary, or 480 volts primary, with taps is suitable. The same principle applies to load voltage.
Frequency and Phase T he transform er cannot change the frequency of the supply. T herefore, it t he load is rated 60 H z, the supply m ust also be rated 60 H z. T ransform ers rated to carry 60 Hz should not be used on other frequencies. T ransform ers rated 50 Hz can be used for either 50 or 60 Hz. If the load is three phase, both the supply and transformer must be three phase. If the load is single phase, the supply can be either single or three phase, but the transformer will be single phase.
T ransformers can be operated stepdown or step-up provided the rated nameplate KV A is 3 K VA or greater. B elow 3 KV A , the transform ers usually have compensated windings to provide rated voltage at rated load. If these transformers are reverseconnected, the load voltage w ill not m atch the nameplate value. D epending on K VA size, the actual load voltage could be up to 15 per cent lower than expected. W hen using transform ers in reverse (step-up), remember that the normal prim ary taps will now be on the secondary. A lso, wi th three phase delta wye models, the neutral of the 4-wire secondary winding will now be on the primary side. T he neutral (X O ) is not needed in thi s application. I t should be insulated and not connected to the input source neutral if one exi sts. T he transformer will now be the equivalent of a delta-delta connection.
Catalog Coding System
1
D
1
Y
167
K4
F
ES
C
LN3
W
DS
Basic Rating Information PHASE P RI M A R Y VO L T A G E SEC O N D A R Y V O L T AG E TAPS K VA
Optional Modifications K -FA C T O R R A T E D 50% 100% 125% 150%
Non-Linear Load (K4) Non-Linear Load (K13) Non-Linear Load (K20) Non-Linear Load (K30)
A dd suffix codes if optional modifications required
LO W T EM P ER A TU R E R ISE °
80 C ( B ) 115 C (F) °
E LE C T R O S T A T I C S H I EL D ( ES ) C O P P E R W O U N D ( C) LO W N O I SE (SPECIFY LN3 LN5, ETC.)
Suffix code for optional information indicated in parentheses. O ther optional modifications must be specified.
W A L L M O U N T I N G B R A C K ET S (W ) D R I P S H IEL D S ( D S)
Drive Transformer Catalog Coding - See Page 15. Primary
Phase 1 Phase 3 P hase
1 3
240 x 120 208 240 480 x 240
A B C D
Optional Modifications
Secondary 277 480 600
E F G
120/240 240/120 LT 240 208Y /120 480 480Y /277
1 1 2 3 4 5
Taps Description
Catalog Code
N one 2 - 5 % FC B N 2 - 5% (1 FC A N , 1 FC B N ) 4 - 2.5% (2 FC A N , 2 FC B N ) 2 - 2.5% FC B N 4 - 2.5% FC B N 6 - 2.5% (2 FC A N , 4 FC B N ) 4 - 3.1% (2 FC A N , 2 FC B N ) 2 - 3.5% (1 FC A N , 1 FC B N ) 3 - 5% (1 FC A N , 2 FC B N )
N R S T U X Y J K M
K4 K 13 K 20 K 30 B F ES C LN ( ) TE W DS -
50% Non-Linear Load 100% N on-Linear Load 125% Non-Linear Load 150% Non-Linear Load 80 C R ise 115 C R ise Electrostati c Shi eld C opper W indings Low N oise (specify dB level) T otally Enclosed N on-Ventilated W all B rack ets D ri p S hi eld ( N E M A 3R ) °
°
KVA KVA
Catalog Code
0.25 0.50 0.75 1 1.5 2 3
205 505 705 001 105 002 003
KVA
Catalog Code
KVA
Catalog Code
5 7.5 9 10 15 25 30
005 007 009 010 015 025 030
37.5 45 50 75 100 112.5 150
037 045 050 075 100 112 150
KVA 167 225 300 500 750 1000
Catalog Code 167 225 300 500 750 1000
A ctual taps may vary based on volts/turn ratio.
5
Encapsulated Transformers .050 - 3.0 KVA Single Phase 3.0 - 15 KVA Three Phase
Features
• U L listed designs which comply with applicable AN SI, NEM A, IE EE standards. • T otally enclosed, non-ventilated, heavy gauge steel enclosure. • C ore and coil completely em bedded within a resin compound for quiet, low temperature operation. • Encapsulation seals out moisture and air. • U L listed indoor/outdoor enclosure features integral w all mounting brackets. • R ugged design resists weather, dust, and corrosion. • Efficient, compact, lightweight, easy to install. • Flexible wi ring leads that terminate within the bottom wiring compartment. • Large wiring compartment on the bottom with convenient knockouts. • H igh quality non-aging electrical grade core steel. • P recision wound coils.
W iring com partment for encapsulated transformer
6
Ventilated Transformers 15 - 167 KVA Single Phase 15 - 1000 KVA Three Phase
Features • U L listed designs which comply with applicable A N SI, N EM A , and IE EE standards. • D esigned for indoor installation: enclosures suitable for outdoor locations available as an option. • C ore and coils are designed with U L listed high-tem perature m aterials rated for 220 C; standard units feature 150 C w inding temperature rise. °
°
• O ptional low temperature rise of 115 C or 80 C wi nding temperature rise for increased efficiency and additional overload capability. °
°
• R ugged 12 gauge sheet steel enclosure w ith rem ovable panels for access to the internal wiring area. • N eoprene noise dampening pads isolate the core and coil from the enclosure. • O ptional drip shields and wall brackets available on most ratings. • H igh quality, non-aging electrical grade core steel. • P recision wound coils. • T otally enclosed N on-Venti lated designs available as an optional feature on m ost ratings.
Optional Accessories Wall Mounting Brackets 1 P hase 3 P hase
15-50 K VA 15-50 K VA
W all M ounting Brackets
Drip Shield Kits 1 P hase 3 P hase
15-167 K VA 15-225 K VA
N EM A 3R outdoor rated transformer with
installation of opti onal drip shield k it. C ontact sales offi ce for kit s used on larger ratings. For units having standard features.
W iring com partment for ventilated transformer
D rip Shield K its 7
Steps To Select Single Phase and Three Phase Transformers
Single Phase Transformers
Single Phase Full Load Amperes
1. D etermi ne the electrical supply. a) C heck the prim ary source (i nput) voltage available. b) C heck the f requency in hertz, or cycles per second. T he frequency of the prim ary line supply, t he transformer, and the load equipment must be the same.
KVA
120V
.25 .50 .75 1 1.5 2 3 5 7.5 10
2. D etermi ne the electrical load. a) T he secondary voltage or load (output) v oltage required. b) L oad ampere, or K VA capacity required by the load. c) Verif y the load is designed to operate on the same phase and frequency that is available. d) Select a transform er wit h a K VA capacity equal to or greater then the required load. e) U se charts, or calculate the load as follows:
15 25 37.5 50 75 100 167 250 333 500
1 Phase K VA = Volts x Am ps 1000 Load Amps = 1 Phase K VA x 1000
277V
480V
2.0 4.2 6.3 8.3 12.5
208V 1.2 2.4 3.6 4.8 7.2
240V 1.0 2.1 3.1 4.2 6.2
0.9 1.8 2.7 3.6 5.4
0.5 1.0 1.6 2.1 3.1
600V 0.4 0.8 1.3 1.7 2.5
16.7 25 41 62 83
9.6 14.4 24 36 48
8.3 12.5 20.8 31 41
7.2 10.8 18.0 27 36
4.2 6.2 10.4 15.6 20.8
3.3 5 8.3 12.5 16.7
125 206 312 416 625
72 120 180 240 340
62 104 156 208 312
54 90 135 180 270
31 52 76 104 156
25 41 62 83 125
833 1391 2063 2775 4167
480 803 1202 1601 2404
416 695 1041 1387 2063
361 603 903 1202 1805
208 347 520 695 1042
166 278 416 555 833
Volts f) D etermi ne taps to com pensate for line voltage variation and tem perature rise requirem ents.
AC Motor Full Load Running Current and Recommended Transformer Ratings Horsepower ¹⁄₂
110-120V Single Phase Three Phase Amps KVA Amps KVA
1 1 ¹⁄₂ 2 3 5
9.8 13.8 16.0 20.0 24.0 34.0 56.0
7 ¹⁄₂ 10 15 20 25
80.0 100.0 135.0 — —
³⁄₄
30 40 50 60 75 100
— — — — — —
1.5 2.0 3.0 3.0 5.0 5.0 7.5
220-240V Single Phase Three Phase Amps KVA Amps KVA
440-480V Single Phase Three Phase Amps KVA Amps KVA
4.0 5.6 7.2 10.4 13.6 19.2 30.4
3 3 3 3 6 6 9
4.9 6.9 8.0 10.0 12.0 17.0 28.0
1.5 2.0 3.0 3.0 5.0 5.0 7.5
2.0 2.8 3.6 5.2 6.8 9.6 15.2
3 3 3 3 6 6 9
2.5 3.5 4.0 5.0 6.0 8.5 14.0
1.5 2.0 3.0 3.0 5.0 5.0 7.5
1.0 1.4 1.8 2.6 3.4 4.8 7.6
3 3 3 3 6 6 9
2.0 2.8 3.2 4.0 4.8 6.8 11.2
1.5 2.0 3.0 3.0 5.0 5.0 7.5
0.8 1.1 1.4 2.1 2.7 3.9 6.1
3 3 3 3 6 6 9
15 15 25 — —
44.0 56.0 84.0 108.0 136.0
15 15 30 30 45
40.0 50.0 68.0 88.0 110.0
15 15 25 25 37.5
22.0 28.0 42.0 5.0 68.0
15 15 30 30 45
21.0 26.0 34.0 44.0 55.0
15 15 25 25 37.5
11.0 14.0 21.0 27.0 34.0
15 15 30 30 45
16.0 20.0 27.0 35.0 44.0
15 15 25 25 37.5
9.0 11.0 17.0 22.0 27.0
15 15 30 30 45
— — — — — —
160.0 208.0 260.0 — — —
45 75 75 — — —
136.0 176.0 216.0 — — —
37.5 50 75 — — —
80.0 104.0 130.0 154.0 192.0 248.0
68.0 88.0 108.0 — — —
37.5 50 75 — — —
40.0 52.0 65.0 77.0 96.0 124.0
45 75 75 75 112.5 112.5
54.0 70.0 86.0 — — —
37.5 50 75 — — —
32.0 41.0 52.0 62.0 77.0 99.0
45 75 75 75 112.5 112.5
R ecomm ended KV A rating shown in chart includes aluminum of 10%
45 75 75 75 112.5 112.5
spare capacity for frequent motor starting.
T o obtain f ull-clad currents for 200 and 208 volt m otors, i ncrease corresponding 220-240 volt ratings by 15 and 10% respectively.
8
550-600V Single Phase Three Phase Amps KVA Amps KVA
Catalog Temperature KVA Number Taps Rise 208 Volts Primary, 120/240 Volts Secondary 3 5 7.5 10 15 25
1B 1B 1B 1B 1B 1B
1N 003 1N 005 1N 007 1N 010 1N 015 1N 025
N one N one N one N one N one N one
115 115 115 115 115 115
°
C C C C C C
° ° ° ° °
Insulation °
180 180 180 180 180 180
C C C C C C
° ° ° ° °
277 Volts Primary, 120/240 Volts Secondary 3 5 7.5 10 15 25
1E 1E 1E 1E 1E 1E
1U003 1U 005 1U 007 1U 010 1U 015 1U 025
2 -2 ¹⁄₂% 2 - 2¹⁄₂% 2 - 2¹⁄₂% 2 - 2¹⁄₂% 2 - 2¹⁄₂% 2 - 2¹⁄₂%
FC B N FC B N FC B N FC B N FC B N FC B N
°
115 115 115 115 115 115
C C C C C C
° ° ° ° °
°
180 180 180 180 180 180
C C C C C C
° ° ° ° °
240 x 480 Volts Primary, 120/240 Volts Secondary .25 .50 .75 1.0 1.5 2.0 3.0 5.0 7.5 10 15 25 37.5 50 75 100 167
1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D
1N 205 1N 505 1N 705 1N 001 1N 105 1N 002 1N 003 1N 005 1N 007 1N 010 1N 015 1Y 025 1Y 037 1Y 050 1Y 075 1Y 100 1Y 167
N one N one N one N one N one N one N one N one N one N one N one
°
115 115 115 115 115 115 115 115 115 115 115 150 150 150 150 150 150
C C C C C C C C C C C C C C C C C
° ° ° ° ° ° ° ° ° ° ° °
2 - 2¹⁄₂% F CA N 4 - 2¹⁄₂% FC B N
° ° ° °
°
180 180 180 180 180 180 180 180 180 180 180 220 220 220 220 220 220
° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
C C C C C C C C C C C C C C C C C
480 Volts Primary, 120/240 Volts Secondary 3 5 7.5 10 15
1F 1F 1F 1F 1F
1R 003 1R 005 1R 007 1R 010 1R 015
2 - 5% 2 - 5% 2 - 5% 2 - 5% 2 - 5%
FC B N FC B N FC B N FC B N FC B N
°
115 115 115 115 115
C C C C C
° ° ° °
°
180 180 180 180 180
C C C C C
° ° ° °
600 Volts Primary, 120/240 Volts Secondary 3 5 7.5 10 15 25 37.5 50 75 100 167
1G 1G 1G 1G 1G 1G 1G 1G 1G 1G 1G
1R 003 1R 005 1R 007 1R 010 1R 015 1U 025 1U 037 1U 050 1U 075 1U 100 1U 167
2 - 5% FC B N 2 - 5% FC B N 2 - 5% FC B N 2 - 5% FC B N 2 - 5% FC B N 2 - 2¹⁄₂% FC B N 2 - 2¹⁄₂% FC B N 2 - 2¹⁄₂% F C B N 2 - 2¹⁄₂% FC B N 2 - 2¹⁄₂% FC B N 2 - 2¹⁄₂% FC B N
°
115 115 115 115 115 150 150 150 150 150 150
C C C C C C C C C C C
° ° ° ° ° ° ° ° ° °
°
180 180 180 180 180 220 220 220 220 220 220
C C C C C C C C C C C
° ° ° ° ° ° ° ° ° °
A ctual taps may vary based on volts/turn ratio.
9
Three Phase Transformers
Three Phase Full Load Amperes
T o select T hree Phase transform ers follow the same steps as Si ngle Phase, except use 3 phase A m ps/K VA chart or calculate the load as follows: 3 Phase K VA = Volts x Am ps x 1.732 1000 Load A mps = 3 Phase K VA x 1000 Volts x 1.732 Catalog Temperature KVA Number Taps Rise 208 Volts Primary, 208Y/ 120 Volts Secondary 15 30 45 75 112.5 150 225 300 500
3B 3Y 015 3B 3Y 030 3B 3Y 045 3B 3Y 075 3B 3Y 112 3B 3Y 150 3B 3S225 3B 3S300 3B 3S500
2 - 5% 2 - 5% 2 - 5% 2 - 5% 2 - 5% 2 - 5% 1 - 5% 1 - 5% 1 - 5%
FC B N FC B N FC B N FC B N FC B N FC B N FC B N FC B N FC B N
°
150 150 150 150 150 150 150 150 150
° ° ° ° ° ° ° °
C C C C C C C C C
Insulation °
220 220 220 220 220 220 220 220 220
C C C C C C C C C
° °
3B 5R 015 3B 5R 030 3B 5R 045 3B 5R 075 3B 5R 112 3B 5R 150 3B 5S225 3B 5S300 3B 5S500
2 - 5% 2 - 5% 2 - 5% 2 - 5% 2 - 5% 2 - 5% 1 - 5% 1 - 5%
FC B N FC B N FC B N FC B N FC B N FC B N FC A N FC A N
°
150 150 150 150 150 150 150 150 150
° ° ° ° ° ° ° °
C C C C C C C C C
3C3Y 015 3C 3Y 030 3C 3Y 045 3C 3Y 075 3C 3Y 112 3C 3Y 150 3C 3S225 3C 3S300 3C 3S500
°
150 150 150 150 150 150 150 150 150
°
2 - 2¹⁄₂% FC A N 4 - 2¹⁄₂% FC B N
° ° ° °
1 - 5% FC A N 1 - 5% FC B N
° ° °
C C C C C C C C C
3C5Y 015 3C 5Y 030 3C 5Y 045 3C 5Y 075 3C 5Y 112 3C 5Y 150 3C 5S225 3C 5S300 3C 5S500
°
150 150 150 150 150 150 150 150 150
°
2 - 2¹⁄₂% FC A N 4 - 2¹⁄₂% FC B N
° ° ° °
1 - 5% FC A N 1 - 5% FC B N
° ° °
C C C C C C C C C
° ° °
°
220 220 220 220 220 220 220 220 220
C C C C C C C C C
° ° ° ° ° ° ° °
°
220 220 220 220 220 220 220 220 220
° ° ° ° ° ° ° °
C C C C C C C C C
°
220 220 220 220 220 220 220 220 220
C C C C C C C C C
° ° ° ° ° ° ° °
480 Volts Primary, 208Y/ 120 Volts Secondary 3 6 9 15 15 30 37.5 45 75 112.5 150 225 300 500 750 1000
3F3R 003 3F3R 006 3F3R 009 3F3R 015 3F3Y 015 3F3Y 030 3F3Y 037 3F3Y 045 3F3Y 075 3F3Y 112 3F3Y 150 3F3Y 225 3F3Y 300 3F3Y 500 3F3Y 750 3F3Y 000
2 - 5% 2 - 5% 2 - 5% 2 - 5%
FC B N FC B N FC B N FC B N
°
115 115 115 115 150 150 150 150 150 150 150 150 150 150 150 150
° ° ° ° ° ° ° °
2 - 2¹⁄₂% F CA N 4 - 2¹⁄₂% FC A N
° ° ° ° ° ° °
C C C C C C C C C C C C C C C C
416V
480V
3 6 9 15 30 45 50 75 112.5 150 225 300 500 750 1000
8.3 16.6 25 41.7 83.4 124 139 208 312 416 624 832 1387 2084 2779
7.2 14.4 21.6 36.1 72.3 108 120 180 270 360 541 721 1202 1806 2408
4.16 8.32 12.4 20.8 41.6 62.4 69.4 104 156 208 312 416 693 1040 1388
3.6 7.2 10.8 18.0 36.1 54.2 60.1 90 135 180 270 360 601 903 1204
°
240 Volts Primary, 480Y/ 277 Volts Secondary 15 30 45 75 112.5 150 225 300 500
240V
600V 2.9 5.8 8.6 14.4 28.9 43.4 48.1 72 108 144 216 288 481 723 963
°
240 Volts Primary, 208Y/ 120 Volts Secondary 15 30 45 75 112.5 150 225 300 500
208V
°
208 Volts Primary, 480Y/ 277 Volts Secondary 15 30 45 75 112.5 150 225 300 500
KVA
°
180 180 180 180 220 220 220 220 220 220 220 220 220 220 220 220
C C C C C C C C C C C C C C C C
° ° ° ° ° ° ° ° ° ° ° ° ° ° °
KVA
Catalog Number
Taps
Temperature Rise Insulation
480 Volts Primary, 240 Volts Secondary 3 6 9 15
3F2R 003 3F2R 006 3F2R 009 3F2R 015
2 - 5% 2 - 5% 2 - 5% 2 - 5%
FC BN FC B N FC B N FC B N
°
115 115 115 115
C C C C
° ° °
°
180 180 180 180
° ° °
C C C C
480 Volts Primary, 240 Volts Secondary with 120 Volt Lighting Tap 15 30 45 75 112.5 150 225 300 500
3F1Y015 3F1Y 030 3F1Y 045 3F1Y 075 3F1Y 112 3F1Y 150 3F1Y 225 3F1Y 300 3F1Y 500
°
150 150 150 150 150 150 150 150 150
C C C C C C C C C
° °
2 - 2¹⁄₂% FC A N 4 - 2¹⁄₂% FC B N
° ° ° ° ° °
°
220 220 220 220 220 220 220 220 220
° ° ° ° ° ° ° °
C C C C C C C C C
480 Volts Primary, 480/277 Volts Secondary 15 30 45 75 112.5 150 225 300 500
3F5Y015 3F5Y 030 3F5Y 045 3F5Y 075 3F5Y 112 3F5Y 150 3F5Y 225 3F5Y 300 3F5Y 500
°
150 150 150 150 150 150 150 150 150
C C C C C C C C C
° ° °
2 - 2¹⁄₂% FC A N 4 - 2¹⁄₂% FC A N
° ° ° ° °
°
220 220 220 220 220 220 220 220 220
° ° ° ° ° ° ° °
C C C C C C C C C
600 Volts Primary, 208Y/ 120 Volts Secondary 3 6 9 15 30 45 75 112.5 150 225 300 500
3G 3R 003 3G 3R 006 3G 3R 009 3G 3R 015 3G 3Y 030 3G 3Y 045 3G 3Y 075 3G 3Y 112 3G 3Y 150 3G 3Y 225 3G 3Y 300 3G 3Y 500
2 - 5% 2 - 5% 2 - 5% 2 - 5%
FC B N FC B N FC B N FC B N
°
115 115 115 115 150 150 150 150 150 150 150 150
C C C C C C C C C C C C
° ° ° ° ° °
2 - 2¹⁄₂% FC A N 4 - 2¹⁄₂% F CB N
° ° ° °
A ctual taps may vary based on volts/turn ratio. R educed capacity 1 phase tap -5%
°
rated KV A.
°
180 180 180 180 220 220 220 220 220 220 220 220
° ° ° ° ° ° ° ° ° ° °
C C C C C C C C C C C C
Electrostatic Shielded
Electrical noise and transients on power lines can be created by a number of different sources. Some examples are: lightning strikes, switching or motor loads or capacitors, and SC R circuits. Electrical noise can be classified as either “ comm on” or “ transverse” mode. C omm on-mode noise is the type which appears between t he line conductor and ground, whereas transverse-mode noise appears between tw o line conductors. T hese types of noise have been around since electricity w as first used. H owev er, they were of little concern where traditional electromechanical devices were used. B ut today, electronic components and systems are being used increasingly in many types of equipment destined for commercial and industrial installations. Electronic circuitry can be sensitive to transient noise and these transients have to be controlled. T ransient noise is usually measured in decibels (dB ). D ecibel is a unit of measurement, in this context, used to express the ratio between the input transient voltage and the output transient voltage. N oise A ttenuation (dB) =
20 log10
V
in
V
out
The formula used in measurement of transient noise attenuation i s logarithm ic and hence a change of 40 dB to 60 dB is actually a ten fold reduction in electrical noise. The following table outlines some common attenuating ratios and their decibel equivalents.
Voltage Ratio V in : V out 5:1 10:1 100:1 1,000:1 10,000:1 100,000:1 1, 000,000:1
Transient Noise Attenuation (dB)
Single Phase - Electrostatic Shielded KVA 3 5 7.5 10 15 25 37.5 50 75 100 167
208 120/240
277 120/240
480 120/240
240x480 120/240
600 120/240
1B1N003ES 1B 1N 005ES 1B 1N 007ES 1B 1N 010ES 1B 1N 015ES
1E1R003ES 1E1R 005ES 1E1R 007ES 1E1R 010ES 1E1R 015ES
1F1R003ES 1F1R 005ES 1F1R 007ES 1F1R 010ES 1F1R 015ES
—
—
—
1D1N 003ES 1D 1N 005ES 1D 1N 007ES 1D 1N 010ES 1D 1N 015ES 1D 1Y 025ES 1D 1Y 037ES 1D 1Y 050ES 1D 1Y 075ES 1D 1Y 100ES 1D 1Y 167ES
1G1R 003ES 1G 1R 005ES 1G 1R 007ES 1G 1R 010ES 1G 1R 015ES 1G 1U 025ES 1G 1U 037ES 1G 1U 050ES 1G 1U 075ES 1G 1U 100ES 1G 1U 167ES
480∆ 208Y/120
480∆ 240∆
480∆ 480Y/ 277
3F3R003ES 3F3R 006ES 3F3R 009ES
3F2R003ES 3F2R 006ES 3F2R 009ES
3F3Y 015ES 3F3Y 030ES 3F3Y 045ES 3 F3Y 075ES 3F3Y 112ES 3F3Y 150ES 3F3Y 225ES 3F3Y 300ES 3F3Y 500ES
3F1Y 015ES 3F1Y 030ES 3F1Y 045ES 3F1Y 075ES 3F1Y 112ES 3F1Y 150ES 3F1Y 225ES 3F1Y 300ES 3F1Y 500ES
Three Phase - Electrostatic Shielded KVA 3 6 9 15 30 45 75 112.5 150 225 300 500
208∆ 208Y/120 — 3B 3Y 015ES 3B 3Y 030ES 3B 3Y 045ES 3B 3Y 075ES 3B 3Y 112ES 3B 3Y 150ES —
208∆ 480Y/277 — 3B 5Y 015ES 3B 5Y 030ES 3B 5Y 045ES 3B 5Y 075ES 3B 5Y 112ES 3B 5Y 150ES 3B 5S225ES 3B 5S300ES 3B 5S500ES
— 3F5Y 015ES 3F5Y 030ES 3F5Y 045ES 3F5Y 075ES 3F5Y 112ES 3F5Y 150ES 3F5Y 225ES 3F5Y 300ES 3F5Y 500ES
R efer to page 5 for other optional modifications.
A n optional feature for i solation transformers is to include an electrostatic shield between the prim ary and secondary w indings. Shielded isolation transform ers do not provide voltage regulation, but they do reduce electrical noise by attenuating spikes and transients to ground. The amount of transient noise attenuation depends on the transformer design, but a typical or “ standard” shielded isolation transform er w ill provide about 60 dB attenuation (10 K H z -10 M H z). Shielded isolation transformers are typically used where load equipment is sensitive to transients or to suppress transients from back-feeding onto the feeder circuits.
Unshielded Transformer
Primary
Secondary V
Shielded Transformer
Primary
Secondary
V
14 20 40 60 80 100 120
Comm on mode.
11
Non-Linear Loads
What Are Non-Linear Loads?
Voltage or Current Waveform for Linear Loads (Sine Wave)
W hen a sinusoidal voltage is applied to a “ linear load,” the resultant current waveform takes on the shape of a sine w ave as well. T ypical linear loads are resistive heating and induction motors. In contrast, non-linear load either: • D raws current during only part of the cycle and acts as an open circuit for the balance of the cycle, or
Typical Current Waveform of Switching Power Supply
• C hanges the im pedance during the cycle, hence the resultant waveform is distorted and no longer conforms to a pure sine wave shape. In recent years, the use of electronic equipment proliferated in both offices and industrial plants. T hese electronic devices are pow ered by sw itching power supplies or some type of rectifier circuit. Examples of these devices used in offi ces are: com puters, fax m achines, copiers, printers, cash registers, U P S and solid-state ballasts, etc. In industrial plants, one will find other electronic devi ces lik e variable speed drives, H ID lighting, solid-state starters and solid-state instruments, etc. T hey all contribute to the di stortion of the current waveform and the generation of harmonics. A s the use of electronic equipment increases and it makes up a significant portion of the electrical load, m any concerns are raised about its impact on the electrical supply system .
A Non-Linear Current and Its Fundamental, Plus 3rd and 5th Harmonic Components
fundamental 3rd harmonic
What Are Harmonics? A s defined by A N SI /IEEE S td. 519-1981, harmonic components are represented by a periodic w ave or quantity having a frequency that is an integral multiple of the fundamental frequency. H armonics superimpose them selves on the fundamentals waveform, distorting it and changing its magnitude. The percent of odd harmonics (3rd, 5th, 7th,...,25th,...) present in the load can affect the transformer, and this condition is called a “ N on-Linear Load” or “ N on-Sinusoidal Load.” The total amount of harmonics will determine the percentage of non-linear load, which can be specified with the appropriate K -Factor rating. 12
5th harmonic
Harmonics For 60 Hz Systems In a 60H z pow er system , the fundam ental and harmonic f requencies are outlined in the table below. Fundam ental 2nd H arm onic 3rd H arm onic* 4th H arm onic 5th H arm onic 6th H arm onic* 7th H arm onic 8th H arm onic 9th H arm onic*
60H z 120H z 170H z 240H z 300H z 360H z 420H z 480H z 540H z
* Triplen Harmonic
Effect Of Harmonics On Transformers N on-sinusoidal current generates extra losses and heating of transformer coils
thus reducing efficiency and shortening the lif e expectancy of the transform er. C oil losses increase w ith t he higher harmonic frequencies due to higher eddy current loss in the conductors. Furthermore, on a balance linear power system, the phase currents are 120 degrees out of phase and they offset one another in the neutral conductor. But w ith the “ Triplen” harmonics (m ultiple of 3) the phase current are in phase and they are additi ve i n this neutral conductor. This may cause installations with non-linear load to be double eit her the size or the number of neutral conductors.
Motor Drive Isolation Transformers
W ith today’ s technological advances in solid-state power control devices, A C and DC variable speed motor drives have become more popular in many industrial applications. Siem ens D rive Isolation T ransform ers are designed to m eet the rugged demands of A C and D C variable speed drives and to provide circuit isolation from S C R ’s. T hey also provide the specifi c horsepower rating and voltage change to match the motor
KVA
Motor H.P.
Catalog Number
7.5 11 15 20 27 34 40 51 63 75 93 118 145 175 220 275 330 440 550 660
3& 5 7.5 10 15 20 25 30 40 50 60 75 100 125 150 200 250 300 400 500 600
D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T( D T(
DT( )Code 22 24 42 44 52 54
Suffix Code ES W DS TS
)007 )011 )015 )020 )027 )034 )040 )051 )063 )075 )093 )118 )145 )175 )220 )275 )330 )440 )550 )660
drive system . T he cores are designed with reduced flux density to meet the inrush characteristics of drive applications. W indings are braced to w ithstand the mechanical stress and overload capacity needed for m otor drive and SC R duty cycles. T he separate primary and secondary windings provide electrical isolation between the incoming line and the load which minimizes line disturbances, feedback, and transients
Standard Taps 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5% 1 - 5%
FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N FC A N /B N
Primary Volts
Secondary Volts
230 D elta 230 D elta 460 D elta 460 D elta 575 D elta 575 D elta
230Y /133 460Y /266 230Y /133 460Y /266 230Y /133 460Y /266
caused by SCR firing. W hen needed, an optional electrostatic shield can be provided betw een the prim ary and secondary windi ngs to provide additional noise attenuation. A lso available as an option is a thermal switch wi th 1-N C contact installed in each coil.
Temperature Rise
Insulation
Mounting Type
Drip Shield Required
150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C 150°C
220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C 220°C
Floor & W all Floor & W all Floor & W all Floor & W all Floor & W all Floor & W all Floor & W all Floor & W all Floor Floor Floor Floor Floor Floor Floor Floor Floor Floor Floor Floor
Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es
Optional Modification Electrostatic Shield W all M tg. B rackets - 7.5 thru 51 K VA D rip Shields - 7.5 thru 330 K VA T herm al Switches
Standard taps varies with K VA size based on the design volts/turn ratio. R efer to page 8 for additional information on horsepower. A mpere, and
K VA ratings. For outdoor application.
13
K-Factor
Measurement of Harmonics
K-Factors
For existing installations, the extent of the harmonics can be measured with appropriate instruments lik e “ P ower H armonic Analyzer.” This service is offered by many consulting service organizations. For new construction, such information may not be obtainable, hence it is best to assume t he “ worst case” condition based on experience with the type and mix of loads.
K -Factor is a ratio bet ween t he additional losses due to harmonics and the eddy losses at 60H z. It is used to specify transform ers for non-linear loads. N ote that K -Factor transformers do not elim inate harmonic distortion, they withstand nonlinear load condition w ithout overheating.
Linear Load Load
Type
Sizing Transformers for Non-Linear Loads
K -4 K -13 K -20 K -30
A N SI /IEE E C 57.110-1986 has a procedure on de-rating standard distribution transformers for non-linear loading. H oweve r, this is not the only approach. A transform er with the appropriate K -Factor specifically designed f or non-linear loads can be specified.
1 3 5 7 9 11 13 15 17 19 21 23 25
Non-Linear Load
100% 100% 100% 100%
50% Non-Linear Load (K4 Rating) Harmonic (h)
+
50% 100% 125% 150%
K-Factor Value 4.0 13.0 20.0 30.0
100% Non-Linear Load (K13 Rating)
Current (I)
I(pu)
I(pu) h
Harmonic (h)
100.000% 16.667% 10.000% 7.143% 5.556% 4.545% 3.846% 3.333% 2.941% 2.632% 2.381% 2.174% 2.000%
1.000 0.167 0.100 0.071 0.056 0.045 0.038 0.033 0.029 0.026 0.024 0.022 0.020
1.000 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
1 3 5 7 9 11 13 15 17 19 21 23 25
2
2
Current (I)
I(pu)
I(pu)2h2
100.000% 33.333% 20.000% 14.286% 11.111% 9.091% 7.692% 6.667% 5.882% 5.263% 4.762% 4.348% 4.000%
1.000 0.333 0.200 0.143 0.111 0.091 0.077 0.067 0.059 0.053 0.048 0.043 0.040
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
K -Factor ∑(1h(pu)-h) = 4.0
125% Non-Linear Load (K20 Rating) Harmonic (h) 1 3 5 7 9 11 13 15 17 19 21 23 25
K -Factor ∑(1h(pu)-h) = 13.0
150% Non-Linear Load (K30 Rating)
Current (I)
I(pu)
I(pu) h
Harmonic (h)
100.000% 41.667% 25.000% 17.857% 13.889% 11.364% 9.651% 8.333% 7.353% 6.579% 5.952% 5.435% 5.000%
1.000 0.417 0.250 0.179 0.139 0.114 0.096 0.083 0.074 0.066 0.060 0.054 0.050
1.000 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.563 1.563
1 3 5 7 9 11 13 15 17 19 21 23 25
2
2
K -Factor ∑(1h(pu)-h) = 19.756
Current (I)
I(pu)
I(pu)2h2
100.000% 50.000% 30.000% 21.429% 16.667% 13.636% 11.538% 10.000% 8.824% 7.895% 7.143% 6.522% 6.000%
1.000 0.500 0.300 0.214 0.167 0.136 0.115 0.100 0.088 0.079 0.071 0.065 0.060
1.000 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 2.250 K -Factor ∑(1h(pu)-h) = 28.0
N ote: I n the exam ples above the am ount of non-linear load specified, the percentage of fundamental, and the percentage of harmonic factor are arbitrary values; actual values may vary. Co nsult sales office for your specifi c application w ith current values for each harmoni c.
14
K-Factor
K-Factor 4 with Electrostatic Shield KVA
480∆ 208Y/ 120
15 30 45 75 112.5 150 225 300 500
3F3Y015K 4 3F3Y 030K 4 3F3Y 045K 4 3F3Y 075K 4 3F3Y 112K 4 3F3Y 150K 4 3F3Y 225K 4 3F3Y 300K 4 3F3Y 500K 4
Taps
K-Factor 13 with Electrostatic Shield Temp. Rise
Insulation
2 - 2¹⁄₂% FC A N 4 - 2¹⁄₂% FC B N
150°C
220°C
2 - 2¹⁄₂% FC AN 4 - 2¹⁄₂% FC B N
150°C
220°C
K-Factor 20 with Electrostatic Shield KVA
480∆ 208Y/ 120
15 30 45 75 112.5 150 225 300 500
3F3Y 015K20 3F3Y 030K 20 3F3Y 045K 20 3F3Y 075K 20 3F3Y 112K 20 3F3Y 150K 20 3F3Y 225K 20 3F3Y 300K 20 3F3Y 500K 20
Taps
KVA
480∆ 208Y/ 120
15 30 45 75 112.5 150 225 300 500
3F3Y 015K13 3F3Y 030K 13 3F3Y 045K 13 3F3Y 075K 13 3F3Y 112K 13 3F3Y 150K 13 3F3Y 225K 13 3F3Y 300K 13 3F3Y 500K 13
Temp. Rise
Insulation
150°C
220°C
150°C
220°C
Temp. Rise
Insulation
2 - 2¹⁄₂% FC AN 4 - 2¹⁄₂% FC B N
150°C
220°C
2 - 2¹⁄₂% FC AN 4 - 2¹⁄₂% FC B N
150°C
220°C
Taps 2 - 2¹⁄₂% FC AN 4 - 2¹⁄₂% FC B N
2 - 2¹⁄₂% FC AN 4 - 2¹⁄₂% FC B N
K-Factor 30 with Electrostatic Shield Temp. Rise
Insulation
2 - 2¹⁄₂% FC AN 4 - 2¹⁄₂% FC B N
150°C
220°C
2 - 2¹⁄₂% FC AN 4 - 2¹⁄₂% FC B N
150°C
220°C
KVA
480∆ 208Y/ 120
15 30 45 75 112.5 150 225 300 500
3F3Y 015K30 3F3Y 030K 30 3F3Y 045K 30 3F3Y 075K 30 3F3Y 112K 30 3F3Y 150K 30 3F3Y 225K 30 3F3Y 300K 30 3F3Y 500K 30
Taps
R efer to page 5 for other optional modifications.
Standard Features
Options
• D esigned to AN SI and NEM A Standards
• O ther K-Factor ratings
• U L K -Factor listed per UL 1561 • K -Factor rating designed to IE EE C57.110 • A luminum wound coils • 150°C R ise, 220°C insulation • C ore, conductors designed for H armonics and Eddy currents
• O ther voltage ratings • 80°C or 115°C temperature rise • Copper windings • Low noise • D rip Shields for NEM A 3R Enclosure • W all M ounting Brackets (15-50 kV A )
• 200% neutral bar (2x phase current) • Electrostatic shield to attenuate line transients • N EM A 1 enclosure
U
15
Buck-Boost Transformers
Application The Buck-Boost Transformer has four separate windings, two-windings in the primary and two-windings in the secondary. The unit is designed for use as an insulating fransformer or as an autotransform er. A s an autotransform er the unit can be corrected to Buck (decrease) or Boost (increase) a supply voltage. W hen connected in either the B uck or Boost mode, the unit is no longer an insulating transform er but is an autotransform er. A utotransform ers are more economi cal and physically smaller then equivalent tw o-wi nding transformers and are designed to carry the same function as two-winding transformers, with the exception of isolating two circuits. Si nce autotransform ers may transm it line di sturbances directly, they may be prohibited in some areas by local building codes. Before applying them, care should be taken to assure that they are acceptable to local code. N ote: A utotransform ers are not used in closed delta connections as they introduce into the circuit a phase shift which makes them uneconomical. A s insulating transformers these units can accomm odate a high voltage of 120, 240, or 480 volts. For units with two 12 volt secondaries, two 16 volt secondaries, or two 24 volt secondaries, the output can be wired for either secondary voltage, or for 3-wire secondary. The unit is rated (K VA ) as any conventional transformer.
Operation Electrical and electronic equipm ent i s designed to operate on a standard supply voltage. W hen the supply voltage is constantly too high or too low (usually greater than + 5% ) the equipment fails to operate at maximum efficiency. A B uck-B oost transform er is a sim ple and economical m eans of correcting this off-standard voltage up to + 20% . A B uck-B oost Transformer will N O T , howev er, stabilize a fluctuating voltage. B uck-B oost transform ers are suitable for use as a three phase autotransformer bank in either direction to supply 3-wire loads. T hey are also suitable for
16
use in a three-phase autotransformer bank which provides a neutral return for unbalanced current. T hey are NO T suitable for use in a three phase
autotransformer bank to supply a 4-wire unbalanced load when the source is a 3-wire circuit.
120 x 240 Pri. - 12/24 Sec. KVA Catalog Number
120 x 240 Pri. - 16/32 Sec. KVA Catalog Number
240 x 480 Pri. - 24/48 Sec. KVA Catalog Number
.050 .100 .150 .250 .500 .750 1.00 1.50 2.00 3.00 5.00
.050 .100 .150 .250 .500 .750 1.00 1.50 2.00 3.00 5.00
.050 .100 .150 .250 .500 .750 1.00 1.50 2.00 3.00 5.00
050BB 1224 100B B 1224 150B B 1224 205B B 1224 505B B 1224 705B B 1224 1B B 1224 105B B 1224 2B B 1224 3B B 1224 5B B 1224
050BB 1632 100B B 1632 150B B 1632 205B B 1632 505B B 1632 705B B 1632 1B B 1632 105B B 1632 2B B 1632 3B B 1632 5B B 1632
050BB 2448 100B B 2448 150B B 2448 205B B 2448 505B B 2448 705B B 2448 1B B 2448 105B B 2448 2B B 2448 3B B 2448 5B B 2448
How to Use Selection Charts
Typical Three Phase Buck-Boost Autotransformer Installation
1. C hoose the selection table wi th the correct number of phases for single or three phase applications. Buck Boost Transformer
Buck Boost Transformer
2. Li ne/Load voltage combinations are listed across the top of the selection table. S elect a line/load voltage combination whi ch com es closest to matching your application.
Buck Boost Transformer
In Coming Power (Supply) Wires
To Load
Transformer lead (terminal) wires. Not all leads are shown.
90 Connectors may be used to save bending room. (See N.E.C.) °
"T" Connectors may be used to save bending room. (See N.E.C.) Bottom cover of transformer is not used. A hole is cut at the time of installation in the wiring trough or box to match the opening in the bottom of the transformer. Wiring trough or box (not supplied with the transformer(s). Available fro m electrical supply houses. Wiring trough or box cover is shown.
Use quantity of Buck-Boost Transformer(s) indicated on chart for connection to be made. Quantity required may vary from quantity shown in this illustration. CAUTION: Refer to National Electrical Code Article 373-4 for determining wire bending space.
How to Select the Proper Transformer To select the proper Transformer for Buck-Boost applications, determine: 1. Input line voltage - The voltage that you want to buck (decrease) or boost (i ncrease). T his can be found by measuring the supply line voltage with a voltmeter. 2. Load voltage - The voltage at which your equipm ent i s designed to operate. This is listed on the nameplate of the load equipment. 3. Load KV A or Load A mps - Y ou do not need to know both - one or the either i s suffi cient for selection purposes.T his inform ation usually can be found on t he nameplate of the equipment that you want to operate.
4. N umber of phases - Si ngle or three phase line and load should match because a transformer is not capable of converting single to three phase. It is however, a common application to m ake a single phase transform er connection from a three phase supply by use of one leg of the three phase supply circuit. Care must always be taken not to overload the leg of the three phase supply. T his is particularly true in a B uck-B oost application because the supply must provide for the load KV A , not just the name plate rating of the Buck-Boost transformer.
3. Follow the selected column down until you find either the load K VA or load amps of your application. If you do not find the exact value, go on the next highest rating. 4. N ow f ollow the colum n across the table to the far left-hand side to find the catalog number and K VA of the transformer you need. 5. Follow the column of your line/load voltage to the bottom to find the connection diagram for thi s application. N O T E: C onnection diagrams show low voltage and high voltage connection term inals. Ei ther can be input or output depending on Buck or B oost application. 6. In the case of three phase loads either tw o or three single phase transformers are required as indicated in the “ quantity required” line at the bottom of the table. The selection is dependent on w hether a W ye connected bank of t hree transform ers wit h a neutral is required or whether an open D elta connected bank of tw o transform ers for a Delta connected load wi ll be suitable. 7. For line/load voltage not listed on the selection tables, use the pair listed on the table that is slightly above your application for reference. T hen apply the first form ula at the bottom of the table to determine “ new” output voltage. T he new K VA rating can be found using the second formula.
5. F requency - T he supply line frequency must be the same as the frequency of the equipment to be operated - either 50 or 60 cycles.
17
Buck-Boost Transformers 120 x 240 Volts Primary - 12/24 Volts Secondary - 60Hz - No Taps - Wall Mounted Single Phase - Table 1 Catalog Number
Line Voltage (Available)
Insulating Transformer Load Voltage Rating (Output)
Boosting
Bucking
95
100
105
109
189
208
215
220
125
132
229
245
250
252
114
120
115
120
208
229
237
242
113
120
208
222
227
240
050B B 2448 .050 K VA
Load
KVA A m ps
. 24 2.08
. 25 2.08
. 50 4.17
. 50 4.17
. 43 2.08
. 48 2.08
. 49 2.08
. 50 2.08
. 52 4.59
. 55 4.59
. 48 2.29
. 51 2.29
. 52 2.29
1. 05 4.38
100B B 2448 .100 K VA
Load
K VA A m ps
.48 4.17
.50 4.17
.96 8.33
1.00 8.33
.87 4.17
.95 4.17
.99 4.17
1.01 4.17
1.04 9.16
1.10 9.16
.95 4.58
1.02 4.58
1.04 4.58
2.10 8.75
150B B 2448 .150 K VA
Load
K VA A m ps
.72 6.25
.75 6.25
1.44 12.50
1.50 12.50
1.30 6.25
1.43 6.25
1.48 6.25
1.51 6.25
1.55 13.75
1.65 13.75
1.43 6.88
1.53 6.88
1.56 6.88
3.15 13.13
205B B 2448 .250 K VA
Load
K VA A m ps
1.19 10.42
1.25 10.42
2.40 20.83
2.50 20.83
2.17 10.42
2.38 10.42
2.47 10.42
2.52 10.42
2.60 22.92
2.75 22.92
2.38 11.46
2.54 11.46
2.60 11.46
5.25 21.88
505B B 2448 .500 K VA
Load
K VA A m ps
2.37 20.83
2.50 20.83
4.80 41.67
5.00 41.67
4.33 20.83
4.77 20.83
4.94 20.83
5.04 20.83
5.18 45.83
5.50 45.83
4.77 22.92
5.09 22.92
5.20 22.92
10.50 43.75
705B B 2448 .750 K VA
Load
K VA A m ps
3.56 31.25
3.75 31.25
7.19 62.50
7.50 62.50
6.50 31.25
7.15 31.25
7.41 31.25
7.56 31.25
7.77 68.75
8.25 68.75
7.15 34.38
7.63 34.38
7.80 34.38
15.75 65.63
1B B 2448 1.00 K VA
Load
K VA A m ps
4.75 41.67
5.00 41.67
9.58 83.33
10.00 83.33
8.67 41.67
9.53 41.67
9.88 41.67
10.08 41.67
10.36 91.66
11.00 91.66
9.53 45.83
10.17 45.83
10.40 45.83
21.00 87.50
105B B 2448 1.50 K VA
Load
K VA A m ps
7.13 62.50
7.50 62.50
14.38 125.00
15.00 125.00
13.00 62.50
14.30 62.50
14.81 62.50
15.13 62.50
15.54 137.50
16.50 137.50
14.30 68.75
15.26 68.75
15.61 68.75
31.50 131.25
2B B 2448 2.00 K VA
Load
K VA A m ps
9.50 83.33
10.00 83.33
19.17 166.66
20.00 166.66
17.33 83.33
19.07 83.33
19.75 83.33
20.17 83.33
20.72 183.33
22.00 183.33
19.07 91.66
20.35 91.66
20.81 91.66
42.00 175.00
3B B 2448 3. 00 K VA
L oad
K VA A m ps
14.25 125. 00
15.00 125. 00
28.75 250. 00
30.00 250. 00
26.00 125. 00
28.60 125. 00
29.63 125. 00
30.25 125. 00
31.08 275. 00
33.00 275. 00
28.60 137. 50
30.53 137. 50
31.21 137. 50
63.00 262. 50
5B B 2448 5. 00 K VA
L oad
K VA A m ps
23.75 208. 33
25.00 208. 33
47.92 416. 66
50.00 416. 66
43.33 208. 33
47.67 208. 33
49.37 208. 33
50.42 208. 33
51.79 458. 33
55.00 458. 33
47.67 229. 17
50.88 229. 17
52.02 229. 17
105.00 437. 50
B
B
A
A
D
D
D
D
A
A
D
D
D
C
Connection Diagram
Three Phase - Table 2 Catalog Number
Line Voltage (Available)
Insulating Transformer Load Voltage Rating (Output)
Boosting
Bucking
189Y 109
195Y 113
200Y 115
208Y 120
416Y 240
416Y 240
189
208
220
218
229
250
255
264
208
234
240
229
457
436
208
229
242
208
208
227
232
240
050B B 2448 .050 K VA
Load
K VA A m ps
1.50 4.17
.84 2.08
.86 2.08
1.65 4.17
1.65 2.08
3.15 4.17
.75 2.08
.83 2.08
.87 2.08
1.58 4.39
.83 2.29
.90 2.29
.92 2.29
.95 2.29
100B B 2448 .100 K VA
Load
K VA A m ps
3.00 8.33
1.69 4.17
1.73 4.17
3.30 8.33
3.30 4.17
6.29 8.33
1.50 4.17
1.65 4.17
1.75 4.17
3.15 8.75
1.65 4.58
1.80 4.58
1.84 4.58
1.90 4.58
150B B 2448 .150 K VA
Load
K VA A m ps
4.50 12.50
2.54 6.25
2.60 6.25
4.96 12.50
4.96 6.25
9.44 12.50
2.26 6.25
2.48 6.25
2.62 6.25
4.73 13.13
2.48 6.88
2.71 6.88
2.76 6.88
2.86 6.88
205B B 2448 .250 K VA
Load
K VA A m ps
7.50 20.83
4.22 10.42
4.33 10.42
8.30 20.83
8.25 10.42
15.75 20.83
3.75 10.42
4.13 10.42
4.37 10.42
7.88 21.88
4.13 11.46
4.50 11.46
4.61 11.46
4.76 11.46
505B B 2448 .500 K VA
Load
K VA A m ps
15.01 41.67
8.44 20.83
8.66 20.83
16.60 41.67
16.50 20.83
31.50 41.67
7.50 20.83
8.26 20.83
8.73 20.83
15.76 43.75
8.26 22.92
9.01 22.92
9.21 22.92
9.53 22.92
705B B 2448 .750 K VA
Load
K VA A m ps
22.52. 62.50
12.67 31.25
12.99 31.25
24.90 62.50
24.75 31.25
47.25 62.50
11.26 31.25
12.39 31.25
13.10 31.25
23.64 65.63
12.39 34.38
13.52 34.38
13.82 34.38
14.29 34.38
1B B 2448 1.00 K VA
Load
K VA A m ps
30.02 83.33
16.89 41.67
17.32 41.67
33.20 83.33
33.00 41.67
63.00 83.33
15.01 41.67
16.51 41.67
17.47 41.67
31.52 87.50
16.51 45.83
18.02 45.83
18.42 45.83
19.05 45.83
105B B 2448 1.50 K VA
Load
K VA A m ps
45.03 125.00
25.33 62.50
25.98 62.50
49.80 125.00
49.50 62.50
94.50 125.00
22.52 62.50
24.77 62.50
26.20 62.50
47.28 131.25
24.77 68.75
27.03 68.75
27.63 68.75
28.53 68.75
2B B 2448 2.00 K VA
Load
K VA A m ps
60.06 166.67
33.77 83.33
34.64 83.33
66.40 166.67
66.00 83.33
126.00 166.66
30.02 83.33
33.03 83.33
34.93 83.33
63.05 175.00
33.03 91.67
36.04 91.67
36.84 91.67
38.11 91.67
3B B 2448 3. 00 K VA
L oad
K VA A m ps
90.07 250. 00
50.66 125. 00
51.96 125. 00
99.59 250. 00
99.00 125. 00
189.00 250. 00
45.03 125. 00
49.54 125. 00
52.39 125. 00
94.57 262. 50
49.54 137. 50
54.06 137. 50
55.25 137. 50
57.16 137. 50
5B B 2448 5. 00 K VA
L oad
K VA A m ps
150.11 416. 67
84.44 208. 33
86.60 208. 33
165.00 416. 67
165.00 208. 33
318.00 416. 66
75.05 208. 33
82.56 208. 33
87.32 208. 33
157.62 437. 50
82.56 229. 17
90.10 229. 17
92.09 229. 17
95.26 229. 17
Quantity Required
3
3
3
3
3
3
2
2
2
2
2
2
2
2
Connection Diagram
F
E
E
F
J
K
G
G
G
H
G
G
G
G
* O utput voltage for lower input voltage can be found by:
18
R ated O utput Voltage — — — — — — — — — — R ated Input Voltage
x Input Actual Voltage =
O utput New Voltage.
Buck-Boost Transformers 120 x 240 Volts Primary - 16/32 Volts Secondary - 60Hz - No Taps - Wall Mounted Single Phase - Table 3 Catalog Number
Line Voltage (Available)
Insulating Transformer Load Voltage Rating (Output)
Boosting
Bucking
95
100
105
208
215
215
220
225
135
240
240
245
250
255
120
114
119
240
244
230
235
240
119
208
225
230
234
239
050B B 1632 .050 K VA
Load
K VA A m ps
.19 1.56
.36 3.12
.37 3.12
.37 1.56
.38 1.56
.72 3.12
.73 3.12
.73 3.12
.42 3.54
.37 1.77
.75 3.33
.77 3.33
.78 3.33
.80 3.33
100B B 1632 .100 K VA
Load
K VA A m ps
.38 3.13
.72 6.25
.74 6.25
.74 3.13
.76 3.13
1.44 6.25
1.46 6.25
1.50 6.25
.84 7.09
.74 3.54
1.50 6.66
1.54 6.66
1.56 6.66
1.60 6.66
150B B 1632 .150 K VA
Load
K VA A m ps
.56 4.69
1.06 9.38
1.12 9.38
1.12 4.69
1.14 4.69
2.16 9.38
2.20 9.38
2.26 9.38
1.26 10.64
1.10 5.30
2.26 10.02
2.30 10.02
2.34 10.02
2.40 10.02
205B B 1632 .250 K VA
Load
K VA A m ps
.94 7.81
1.78 15.63
1.86 15.63
1.88 7.81
1.91 7.81
3.59 15.63
3.67 15.63
3.75 15.63
2.11 17.71
1.84 8.85
3.75 16.67
3.83 16.67
3.90 16.67
3.98 16.67
505B B 1632 .500 K VA
Load
K VA A m ps
1.88 15.63
3.56 31.25
3.72 31.25
3.75 15.63
3.81 15.63
7.19 31.25
7.34 31.25
7.50 31.25
4.21 35.42
3.68 17.71
7.50 33.33
7.67 33.33
7.80 33.33
7.97 33.33
705B B 1632 .750 K VA
Load
K VA A m ps
2.81 23.44
5.34 46.88
5.58 46.88
5.63 23.44
5.72 23.44
10.78 46.88
11.02 46.88
11.25 46.88
6.32 53.13
5.53 26.56
11.25 50.00
11.50 50.00
11.70 50.00
11.95 50.00
1B B 1632 1.00 K VA
Load
K VA A m ps
3.75 31.25
7.13 62.50
7.44 62.50
7.50 31.25
7.63 31.25
14.38 62.50
14.69 62.50
15.00 62.50
8.43 70.83
7.37 35.42
15.00 66.67
15.33 66.67
15.60 66.67
15.93 66.67
105B B 1632 1.50 K VA
Load
K VA A m ps
5.63 46.90
10.69 93.80
11.16 93.80
11.25 46.90
11.44 46.90
21.56 93.80
22.03 93.80
22.50 93.80
12.64 106.30
11.05 53.10
22.50 100.00
23.00 100.00
23.40 100.00
23.90 100.00
2B B 1632 2.00 K VA
L oad
K VA A mps
7.50 62. 50
14.25 125.00
14.88 125.00
15.00 62. 50
15.25 62. 50
28.75 125. 00
29.38 125.00
30.00 125.00
16.86 141.70
14.73 70.80
30.00 133.30
30.67 133.30
31.20 133.30
31.87 133.30
3B B 1632 3.00 K VA
L oad
K VA A mps
11.25 93. 80
21.38 187.50
22.31 187.50
22.50 93. 80
22.88 93. 80
43.13 187. 50
44.06 187.50
45.00 187.50
25.29 212.50
22.10 106.30
45.00 200.00
46.00 200.00
46.80 200.00
47.80 200.00
5B B 1632 5. 00 K VA
L oad
K VA A m ps
18.75 156. 30
35.63 312. 50
37.19 312. 50
37.50 156. 30
38.13 156. 30
71.88 312. 50
73.44 312. 50
75.00 312. 50
42.15 354. 20
36.83 177. 10
75.00 333. 30
76.67 333. 30
78.00 333. 30
79.67 333. 30
B
A
A
D
D
C
C
C
A
D
C
C
C
C
Connection Diagram
Three Phase - Table 4 Catalog Number
Line Voltage (Available)
Insulating Transformer Load Voltage Rating (Output)
Boosting
Bucking
183Y 106
208Y 120
195
208
225
240
245
250
256
265
272
208
236
208
240
240
208
230
234
240
234
240
050B B 1632 .050 K VA
Load
K VA A m ps
1.13 3.13
1.28 3.13
1.13 3.13
.62 1.56
1.30 3.13
.56 1.56
1.33 3.34
1.35 3.34
1.39 3.34
.72 1.77
.74 1.77
100B B 1632 .100 K VA
Load
K VA A m ps
2.25 6.25
2.55 6.25
2.25 6.25
1.30 3.13
2.60 6.25
1.13 3.13
2.66 6.67
2.70 6.67
2.77 6.67
1.44 3.55
1.48 3.55
150B B 1632 .150 K VA
Load
K VA A m ps
3.38 9.38
3.83 9.38
3.38 9.38
1.95 4.69
3.90 9.38
1.69 4.69
3.98 10.00
4.05 10.00
4.16 10.00
2.15 5.31
2.21 5.31
205B B 1632 .250 K VA
Load
K VA A m ps
5.63 15.63
6.39 15.63
5.63 15.63
3.17 7.81
6.50 15.63
2.81 7.81
6.64 16.67
6.76 16.67
6.93 16.67
3.59 8.85
3.68 8.85
505B B 1632 .500 K VA
Load
K VA A m ps
11.26 31.25
12.77 31.25
11.26 31.25
6.33 15.63
12.99 31.25
5.63 15.63
13.28 33.33
13.50 33.33
13.86 33.33
7.17 17.69
7.36 17.71
705B B 1632 .750 K VA
Load
K VA A m ps
16.89 46.88
19.16 46.88
16.89 46.88
9.50 23.44
19.49 46.88
8.44 23.44
19.92 50.00
20.26 50.00
20.78 50.00
10.76 26.54
11.04 26.56
1B B 1632 1.00 K VA
Load
K VA A m ps
22.52 62.50
25.55 62.50
22.52 62.50
12.67 31.25
25.98 62.50
11.26 31.25
26.56 66.67
27.02 66.67
27.71 66.67
14.34 35.39
14.72 35.42
105B B 1632 1.50 K VA
Load
K VA A m ps
33.77 93.75
38.32 93.75
33.77 93.75
19.00 46.88
38.97 93.75
16.89 46.88
39.84 100.00
40.53 100.00
41.57 100.00
21.52 53.08
22.08 53.13
2B B 1632 2.00 K VA
Load
K VA A m ps
45.03 125.00
51.10 125.00
46.03 125.00
25.33 62.50
51.96 125.00
22.52 62.50
53.11 133.33
54.04 133.33
55.43 133.33
28.69 70.78
29.44 70.83
3B B 1632 3.00 K VA
Load
K VA A m ps
67.55 187.50
76.64 187.50
67.55 187.50
38.00 93.75
77.94 187.50
33.77 93.75
79.67 200.00
81.06 200.00
83.14 200.00
43.03 106.17
44.17 106.25
5B B 1632 5.00 K VA
Load
K VA A m ps
112.58 312.50
127.74 312.50
112.58 312.50
63.33 156.25
129.90 312.50
56.29 156.25
132.79 333.33
135.09 333.33
138.56 333.33
71.72 176.95
73.61 177.08
Quantity Required
3
3
2
2
2
2
2
2
2
2
2
Connection Diagram
F
F
H
G
H
L
H
H
H
G
G
* O utput KVA available at reduced input voltage can be found by:
A ctual Input Voltage — — — — — — — — — — R ated Input Voltage
x O utput KVA
=
New KVA Rating.
19
Buck-Boost Transformers 240 x 480 Volts Primary - 24/48 Volts Secondary - 60Hz - No Taps - Wall Mounted Single Phase - Table 5 Catalog Number
Line Voltage (Available)
Insulating Transformer Load Voltage Rating (Output)
Boosting
Bucking
230
380
416
425
430
435
440
440
450
460
277
480
480
504
277
420
457
467
473
457
462
484
472
483
230
436
456
480
050B B 1224 .050 K VA
Load
K VA A m ps
.29 1.04
.44 1.04
.48 1.04
.49 1.04
.49 1.04
.95 2.08
.96 2.08
.50 1.04
.98 2.08
1.01 2.08
.29 1.25
.50 1.15
1.05 2.29
1.10 2.29
100B B 1224 .100 K VA
Load
K VA A m ps
.58 2.08
.87 2.08
.95 2.08
.97 2.08
.99 2.08
1.90 4.17
1.93 4.17
1.01 2.08
1.97 4.17
2.01 4.17
.58 2.50
1.00 2.29
2.09 4.58
2.20 4.58
150B B 1224 .150 K VA
Load
K VA A m ps
.87 3.13
1.31 3.13
1.43 3.13
1.46 3.13
1.48 3.13
2.86 6.25
2.89 6.25
1.51 3.13
2.95 6.25
3.02 6.25
.86 3.75
1.50 3.44
3.14 6.88
3.00 6.88
205B B 1224 .250 K VA
Load
K VA A m ps
1.44 5.21
2.19 5.21
2.38 5.21
2.43 5.21
2.46 5.21
4.76 5.21
4.81 10.42
2.52 5.21
4.92 10.42
5.03 10.42
1.44 6.25
2.50 5.73
5.23 11.46
5.50 11.46
505B B 1224 .500 K VA
Load
K VA A m ps
2.89 10.42
4.38 10.42
4.76 10.42
4.86 10.42
4.93 10.42
9.52 20.83
9.62 20.83
5.04 10.42
9.83 20.83
10.06 20.83
2.88 12.50
5.00 11.46
10.45 22.92
11.00 22.92
705B B 1224 .750 K VA
Load
K VA A m ps
4.33 15.63
6.56 15.63
7.14 15.63
7.30 15.63
7.39 15.63
14.28 31.25
14.44 31.25
7.56 15.63
14.75 31.25
15.09 31.25
4.31 18.75
7.49 17.19
15.68 34.38
16.50 34.38
1B B 1224 1.00 K VA
Load
K VA A m ps
5.77 20.83
8.57 20.83
9.52 20.83
9.73 20.83
9.85 20.83
19.04 41.67
19.25 41.67
10.08 20.83
19.67 41.67
20.13 41.67
5.75 25.00
9.99 22.92
20.90 45.83
22.00 45.83
105B B 1224 1.50 K VA
Load
K VA A m ps
8.66 31.25
13.13 31.25
14.28 31.25
14.59 31.25
14.78 31.25
28.56 62.50
28.88 62.50
15.13 31.25
29.50 62.50
30.19 62.50
8.63 37.50
14.99 34.38
31.25 68.75
33.00 68.75
2B B 1224 2.00 K VA
Load
K VA A m ps
11.54 41.67
17.50 41.67
19.04 41.67
19.46 41.67
19.71 41.67
38.08 83.33
38.50 83.33
20.17 41.67
39.33 83.33
40.25 83.33
11.50 50.00
19.98 45.83
41.80 91.67
44.00 91.67
3B B 1224 3.00 K VA
Load
K VA A mps
17.31 62.50
26.25 62.50
28.56 62.50
29.19 62.50
29.56 62.50
57.13 125.00
57.75 125.00
30.25 62.50
59.00 125.00
60.38 125.00
17.25 75.00
29.98 68.80
62.70 137.50
66.00 137.50
5B B 1224 5. 00 K VA
L oad
K VA A m ps
28.90 104. 20
43.80 104. 20
47.60 104. 20
48.60 104. 20
49.30 104. 20
95.20 208. 30
96.20 208. 30
50.40 104. 20
98.30 208. 30
100.60 208. 30
28.80 125. 00
50.00 114. 60
104.50 229. 20
110.00 229. 20
B
D
D
D
D
C
C
D
C
C
B
D
C
C
Connection Diagram
Three Phase - Table 6 Catalog Number
Line Voltage (Available)
Insulating Transformer Load Voltage Rating (Output)
Boosting
Bucking
399Y 230
380
430
440
460
460
480
480
440
440
460
460
480
480
500
500
480Y 277
420
473
462
506
483
528
504
400
419
438
418
457
436
455
477
050B B 1224 .050 K VA
Load
K VA A m ps
.86 1.04
.76 1.04
.85 1.04
1.66 2.08
.91 1.04
1.74 2.08
.95 1.04
1.82 2.08
.79 1.14
1.58 2.18
1.66 2.18
.83 1.14
1.73 2.18
.86 1.14
.90 1.14
1.80 2.18
100B B 1224 .100 K VA
Load
K VA A m ps
1.73 2.08
1.51 2.08
1.70 2.08
3.33 4.16
1.82 2.08
3.48 4.16
1.90 2.08
3.63 4.16
1.59 2.29
3.17 4.37
3.31 4.37
1.66 2.29
3.46 4.37
1.73 2.29
1.80 2.29
3.61 4.37
150B B 1224 .150 K VA
Load
K VA A m ps
2.60 3.12
2.27 3.12
2.56 3.12
4.99 6.24
2.73 3.12
5.22 6.25
2.85 3.12
5.45 6.24
2.38 3.43
4.75 6.55
4.97 6.55
2.48 3.43
5.19 6.55
2.59 3.43
2.70 3.43
5.41 6.55
205B B 1224 .250 K VA
Load
K VA A m ps
4.33 5.20
3.78 5.20
4.26 5.20
8.32 10.40
4.56 5.20
8.70 10.40
4.76 5.20
9.08 10.40
3.96 5.72
7.92 10.92
8.28 10.92
4.14 5.72
8.64 10.92
4.32 5.72
4.51 5.72
9.02 10.92
505B B 1224 .500 K VA
Load
K VA A mps
8.60 10.40
7.56 10.40
8.52 10.40
16.64 20.80
9.11 10.40
17.40 20.80
9.51 10.40
18.16 20.80
7.93 11.44
15.85 21.84
16.57 21.84
8.28 11.44
17.29 21.84
8.64 11.44
9.02 11.44
18.04 21.84
705B B 1224 .750 K VA
Load
K VA A mps
12.90 15.60
11.34 15.60
12.77 15.60
24.97 31.20
13.67 15.60
26.10 31.20
14.27 15.60
27.24 31.20
11.89 17.16
23.77 32.76
24.85 32.76
12.42 17.16
25.93 32.76
12.96 17.16
13.52 17.16
27.07 32.76
1B B 1224 1.00 K VA
Load
K VA A mps
17.30 20.80
15.12 20.80
17.03 20.80
33.29 41.60
18.23 20.80
34.80 41.60
19.02 20.80
36.31 41.60
15.85 22.88
31.70 43.68
33.14 43.68
16.57 22.88
34.57 43.68
17.28 22.88
18.03 22.88
36.09 43.68
105B B 1224 1.50 K VA
Load
K VA A mps
25.90 31.20
22.69 31.20
25.55 31.20
49.93 62.40
27.34 31.20
52.50 62.40
28.53 31.20
54.47 62.40
23.78 34.32
47.55 65.52
49.71 65.52
24.85 34.32
51.86 65.62
25.92 34.32
27.05 34.32
54.13 65.52
2B B 1224 2.00 K VA
Load
K VA A mps
34.60 41.60
30.25 41.60
34.07 41.60
66.58 83.20
36.46 41.60
69.60 83.20
38.04 41.60
72.63 83.20
31.70 45.76
63.40 87.36
66.27 87.36
33.13 45.76
69.15 87.36
34.56 45.76
36.06 45.76
72.18 87.36
3B B 1224 3. 00 K V A
L oad
K VA A m ps
52.00 62. 50
45.45 62. 50
51.18 100.03 62. 50 125. 00
49.77 103.89 68. 75 131. 25
51.92 68. 75
54.18 108.44 68. 75 131. 25
5B B 1224 5. 00 K V A
L oad
K VA Amps
54.69 104.57 62. 50 125. 00
57.07 109.12 62. 50 125. 00
47.63 95.25 99.57 68. 75 131. 25 131. 25
86.10 75.62 85.17 166.44 91.15 174.01 95.11 181.57 79.26 158.50 165.69 82.83 172.87 86.39 90.16 180.44 104. 00 104. 00 104. 00 208. 00 104. 00 208. 00 104. 00 208. 00 114. 40 218. 40 218. 40 114. 40 218. 40 114. 40 114. 40 218. 40
Quantity Required
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Connection Diagram
E
G
G
H
G
H
G
H
G
H
H
G
H
G
G
H
* O utput voltage for lower input voltage can be found by:
20
R ated O utput Voltage — — — — — — — — — — R ated Input Voltage
x Input Actual Voltage =
O utput New Voltage.
Buck-Boost Connection Diagrams
Single Phase Diagram A
Three Phase Diagram E
Diagram G
Diagram F
LOW VOLTAGE
LOW VOLTAGE
LOW VOLTAGE 1
HIGH VOLTAGE
2 NEUTRAL H4
NEUTRAL
3
X2
H2 H1
H3
X4
H4 X1
X3
X1
X2
X2
X3
X1
X1
X2
X2
H4
X1
X3
X4
X4
X3
X3
H3 H1
H2
LOW VOLTAGE
X4
H1
H2
H1
H2
H4 H3
H4
H2
H3
H3
H4
H3
Diagram B
H3 H4
X4
X3
X3
X2
X2
X4
X3
X3
X2
X1
X1
X2 X1
X1
1
H3 H4
H1
X4
H2 H1
X4
H2
H1
H3 H2 H1
LOW VOLTAGE
H2
H4 H4
H3
X4
H1
2
H2 H1
X4
X3
X2
X1
HIGH VOLTAGE
HIGH VOLTAGE
WYE
3
HIGH VOLTAGE
WY E
OPEN DELTA
HIGH VOLTAGE
Diagram J
Diagram H
LOW VOLTAGE
L O W V O L TA G E 3 2
Diagram C
NEUTRAL
1 H4
X1
X2
X2
X3
HIGH VOLTAGE
X3 X4
X4
H3
X2 H4
H3
H2
H1
X4
X1
X3
H4
X1
H1
H3
H1 H2 H3 H4 H3 H4
H2
H2
H4
H2
H1
H1
X4 H3 LOW VOLTAGE
X4 X3
X3
H2 H1
X2
X2
X4 X3 X1
X1
X2
Diagram D
X1
3 2
HIGH VOLTAGE
HIGH VOLTAGE
WYE
1 OPEN DELTA
LOW VOLTAGE
H4
H3
H2
H1
X4
X3
X2
X1
Diagram K
Diagram L
LOW VOLTAGE
HIGH VOLTAGE
1
2 3 NEUTRAL X4
HIGH VOLTAGE
X1
X2
X2
X3
X3 X4
H1 H1 H2 H2 H4 H3 H3 H4 H4
X4
X1
X3
X4
X3
X2
X2
X1
X1
H1
Diagram #1
H2
H3
(S tandard S tep-down application)
H1
H2
H2 H1 H3
H3
X4
H1
H2
H3
H4
X3 X2
1
X1
H4
H4 2 3
H I G H V O L TA G E
WYE
LOW VOLTAGE
OPEN DELTA
T he neutral XO should not be used when
the source is a three wire supply.
X4
X3
X2
X1
NOTES • Inputs and O utputs may be reversed: KV A capacity rem ains constant. A ll applications are suitable for 60H z only. • Refer to NEC 450-4 for overcurrent protection of an autotransformer.
21
Industrial Control Circuit Transformer
Features 1. Epox y-encapsulated (50-750 VA ) epoxy resin impregnated (1.0 - 5.0 K VA ). C om pletely seals the transformer coils against moisture, dust, dirt and i ndustrial contaminants for maximum protection in hostile and industrial environments. 2. Fuse clips (most models). Factory-mounted for integral fusing on the secondary side to save panel space, save wiring time and save the space, save wiring time and save the cost of buying an add-on fuse block. 3. Integrally-molded barriers. Between terminals and between termi nals and transform er protect against electrical creepage. U p to 30% greater termi nal contact area permits low-loss connections. Extra-deep barriers reduce the chance of shorts from frayed leads or careless wiring. 4. T erminals. M olded into the transformer and virtually im possible to break during w iring. A full quarter-inch of thread on the 10-32 termi nal screws pre vents stripping and pullout. 5. Ten year warranty A t no additional cost. 6. Jumpers supplied. Two jumpers links are standard w ith all transformers whi ch can be jumpered.
Operation Industrial control circuits and motor control loads typically require more current when they are initially energized than under normal operating conditions. This period of high current demand, referred to as inrush, may be as great as ten times the current required under steady state (norm al) operating conditions, and can last up to 40 milliseconds. A transform er in a circuit subject to inrush will typically attempt to provide the load wi th the required current during the inrush period. H owev er, it w ill be at the ex pense of the secondary voltage stability by allowing the voltage to the load to decrease as the current
22
increases. Thi s period of secondary voltage instability, resulting from increased inrush current, can be of such a m agnitude that the transformer is unable to supply sufficient voltage to energize the load. The transformer must therefore by designed and constructed to accommodate the high inrush current, while maintaining secondary voltage stability. A ccording to NEM A standards, the secondary voltage should typically be at 85% of the rated voltage. Industrial C ontrol C ircuit Transformers are specifically designed and built to provide adequate voltage to t he load while accommodating the high current levels present at inrush. T hese transformers deliver excellent secondary voltage regulation and m eet or exceed the standards established by N EM A , ANSI, IL and CSA.Their hearty construction and excellent electrical characteristics provide reliable operation of electromagnetic devices and troublefree perform ance.
Selection Process
Selecting a transformer f or industrial control circuit applications requires knowledge of the following terms:
Inrush VA is the product of load voltage (V) m ultiplied by the current (A ) that is required during circuit start-up. It is calculated by adding the inrush VA requirements of all devices (contactors, timers, relays, pilot lights, solenoids, etc.), which will be energized together. Inrush VA requirements are best obtained from the component manufacturer.
Sealed VA is the product of load voltage (V) multiplied by the current (A ) that i s required to operate the circuit after initial start-up or under normal operating conditions. I t i s calculated by adding the sealed VA requirements of all electrical components of the circuit that w ill be energized at any given tim e. Sealed VA requirements are best obtained from the component manufacturer. Sealed VA is also referred to as steady state VA .
Primary Voltage is the voltage available from the electrical distribution system and its operational frequency, w hich is connected to the transformer supply voltage terminals.
Secondary Voltage is the voltage required for load operation which is connected to the transformer load voltage term inals.
O nce the circuit variables have been determined, transformer selection is a sim ple 5-step process as follows: 1. D etermi ne the A pplication Inrush VA by using the following i ndustry accepted formula: A pplication Inrush VA = (Inrush VA) 2 + (Sealed VA) 2 2. R efer to the Regulation C hart. I f the primary voltage is basically stable and does not vary by m ore than 5% from nomi nal, the 90% secondary voltage column should be used. I f the prim ary voltage carries betw een 5% and 10% of nominal, the 95% secondary voltage colum n should be used.
4. R ead left to the T ransformer VA R ating column to determine the proper transformer for this application. A s a final check, m ake sure that the Transformer VA R ating is equal to or greater then the total sealed requirements. If not, select a transformer with a VA rating equal to or greater than the total sealed VA . 5. R efer to the following pages to determi ne the proper catalog number based on the t ransform er VA , and primary and secondary voltage requirements.
3. A fter determi ning the proper secondary voltage column, read down until a value equal to or greater than the A pplication Inrush VA is found. In no case should a figure less than the A pplication Inrush VA be used.
Regulation Chart Transformer VA Rating
95% Secondary Voltage
25 50 75 100 150 200 250 300 500 750 1000 1500 2000 3000 5000
100 170 310 370 780 810 1400 1900 4000 8300 9000 10500 17000 24000 55000
Inrush VA at 20% Power Factor 90% 85% Secondary Voltage Secondary Voltage 130 200 410 540 930 1150 1900 2700 5300 11000 13000 15000 25500 36000 92500
150 240 540 730 1150 1450 2300 3850 7000 14000 18500 20500 34000 47500 115000
T o comply with N EM A standards which require all magnetic devices to operate successfully at 85% of rated voltage, the 90% secondary voltage column is m ost often used in selecting a transformer.
23
Specifications
• Lam inations are of the finest silicon steel to m inim ize core losses and to increase optim um performance and efficiency.
• M ounting brackets are heavy gauge steel to add strength to core construction and provide stable mounting. Slotted mounting feet permit easy installation.
• C opper magnet wire of the highest quality assures efficient operation. • Factory mounted type “ K ” fuse clips are standard on all single secondary transform ers.
• A ttractive black finish: easy-to-read nam eplate with complete rating data and wiring diagram.
• T wo j umper lines are standard wit h all transformers which can be jum pered.
B
• O ptional type “ M ” fuse clips available for separate m ounting.
C
E
• U L listed and C SA certified. D
• 50/60 Hz rated.
A
• Insulation m aterials are of the highest rating available for the temperature class. Top View
Primary Volts 240x 480, 230 x 460, 220 x 240
Side View
Secondary Volts 120/115/110 Dimensions (inches)
Catalog Number
VA Rating
Temp. Rise
Output Ampere
M T0050A M T 0075A M T0100A M T 0150A M T 0200A M T 0250A M T 0300A M T 0350A M T 0500A M T 0750A M T 1000A M T 1500A M T 2000A M T 3000A M T 5000A
50 75 100 150 200 250 300 350 500 750 1000 1500 2000 3000 5000
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 115°C 115°C 115°C 115°C 115°C
0.43 0.65 0.87 1.30 1.74 2.17 2.61 3.04 4.35 6.52 8.70 13.04 17.39 26.09 43.48
“A” 3 3 ¹⁄₂ 3 ³⁄₈ 4 4 4 ³⁄₈ 4 ³⁄₄ 5 ¹⁄₄ 5 ¹⁄₂ 7 7 ⁷⁄₈ 6 ³⁄₄ 7 7 ¹⁄₂ 7 ³⁄₄
“B” 3 3
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄ 5 ¹⁄₄ 5 ¹⁄₄ 6 ³⁄₄ 6 ³⁄₄
“C”
“D”
2 ⁹⁄₁₆ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄ 4 ³⁄₄ 4 ⁷⁄₁₆
2 2 ¹⁄₂ 2 ³⁄₈ 2 ⁷⁄₈ 2 ¹⁄₂ 2 ⁷⁄₈ 3 ¹⁄₄ 3 ³⁄₄ 4 ¹⁄₄ 5 ³⁄₄ 5 ¹⁄₂
5 ¹¹⁄₁₆
3 ⁹⁄₁₆
5 ¹¹⁄₁₆
9
7 ⁹⁄₁₆
4 ⁷⁄₁₆ 4 ¹⁄₈
9
7 ⁹⁄₁₆
6
50/60Hz
“E” 2 ¹⁄₂ 2 ¹⁄₂ 2 ¹³⁄₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₈ 4 ³⁄₈ 6 ¹⁄₁₆ 6 ¹⁄₁₆ 6 ¹⁄₂ 6 ¹⁄₂
240V 230V 220V
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁹⁄₃₂ x ¹³⁄₃₂ ⁹⁄₃₂ x ¹³⁄₃₂ ⁹⁄₃₂ x ¹³⁄₃₂ ⁷⁄₁₆ x ³⁄₄ ⁷⁄₁₆ x ³⁄₄
2.6 3.5 4.2 6.7 8.5 10.0 11.3 13.6 19.2 28.1 29.8 30.0 38.0 53.0 89.0
H1
H3
480V 460V 440V
H2
H1
H4
H1
H3
H3
H2
H4 H4
H2
110V 115V 120V
X2
X1
Includes secondary fuse clip on sizes 50 through 750VA .
Primary Volts 240x 480 Catalog Number M T0050B M T 0075B M T0100B M T 0150B M T 0200B M T 0250B M T 0300B M T 0350B M T 0500B
VA Rating 50 75 100 150 200 250 300 350 500
Secondary Volts 24 Dimensions (inches) Temp. Rise
Output Ampere
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C
2.08 3.13 4.17 6.25 8.33 10.42 12.50 14.58 20.83
“A” 3 3 ¹⁄₂ 3 ³⁄₈ 4 4 4 ³⁄₈ 4 ³⁄₄ 5 ¹⁄₄ 5 ³⁄₈
“B” 3 3
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄
Includes secondary fuse clip on sizes 50 through 500VA .
24
“C”
“D”
2 ⁹⁄₁₆ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄
2 2 ¹⁄₂ 2 ³⁄₈ 2 ⁷⁄₈ 2 ¹⁄₂ 2 ⁷⁄₈ 3 ¹⁄₄ 3 ³⁄₄ 4 ¹⁄₈
50/60Hz
“E” 2 ¹⁄₂ 2 ¹⁄₂ 2 ¹³⁄₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆
2.7 3.5 4.2 6.7 8.5 10.1 11.4 13.4 17.5
240V
H1
H3 H1
480V
H2
H4
H1
H3
H2
H3
H2
H4 H4
24V X2
X1
Primary Volts 120x 240 Catalog Number M M M M M M M M M
T 0050C T 0075C T0100C T0150C T 0200C T0250C T 0300C T 0350C T 0500C
Secondary Volts 24 Dimensions (inches)
VA Rating
Temp. Rise
Output Ampere
“A”
50 75 100 150 200 250 300 350 500
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C
2.08 3.13 4.17 6.25 8.33 10.42 12.50 14.58 20.83
3 3 ¹⁄₂ 3 ³⁄₈ 4 4 4 ³⁄₈ 4 ³⁄₄ 5 ¹⁄₄ 5 ¹⁄₂
“B” 3 3
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 19 ¹⁄₅
“C”
“D”
2 ⁹⁄₁₆ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄
2 2 ¹⁄₂ 2 ³⁄₈ 2 ⁷⁄₈ 2 ¹⁄₂ 2 ⁷⁄₈ 3 ¹⁄₄ 3 ³⁄₄ 4 ¹⁄₄
50/60Hz
“E” 2 ¹⁄₂ 2 ¹⁄₂ 2 ¹ ³⁄ ₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹ ³⁄ ₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆
2.6 3.6 4.4 6.7 8.3 10.1 11.2 13.2 19.2
120V
H1
H3
240V
H2
H1
H4
H1
H3
H3
H2
H4 H4
H2
24V X2
X1
Includes secondary fuse clip on sizes 50 through 500VA .
Primary Volts 115x 230 Catalog Number M M M M M M M M M
T0050D T 0075D T0100D T0150D T 0200D T0250D T 0300D T 0350D T0500D
Secondary Volts 24 Dimensions (inches)
VA Rating
Temp. Rise
Output Ampere
50 75 100 150 200 250 300 350 500
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C
2.08 3.13 4.17 6.25 8.33 10.42 12.50 14.58 20.83
“A” 3 3 ¹⁄₂ 3 ³⁄₈ 4 4 4 ³⁄₈ 4 ³⁄₄ 5 ¹⁄₄ 5 ¹⁄₂
“B” 3 3
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 19 ¹⁄₅
50/60Hz
“C”
“D”
“E”
2 ⁹⁄₁₆ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄
2 2 ¹⁄₂ 2 ³⁄₈ 2 ⁷⁄₈ 2 ¹⁄₂ 2 ⁷⁄₈ 3 ¹⁄₄ 3 ³⁄₄ 4 ¹⁄₄
2 ¹⁄₂ 2 ¹⁄₂ 2 ¹ ³⁄ ₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹ ³⁄ ₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆
2.7 3.7 4.3 6.8 8.5 10.1 11.4 13.4 19.2
115V
H1
H3 H1
230V
H2
H4
H1
H3
H3
H2
H4 H4
H2
24V X2
X1
Includes secondary fuse clip on sizes 50 through 500VA .
Primary Volts 540/575/600
Secondary Volts 110/115/120 Dimensions (inches)
Catalog Number
VA Rating
Temp. Rise
M T0050E M T 0075E M T0100E M T0150E M T 0200E M T0250E M T 0300E M T 0350E M T0500E M T0750E
50 75 100 150 200 250 300 350 500 750
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C
Output Ampere 0.43 0.65 0.87 1.30 1.74 2.17 2.61 3.04 4.35 6.32
“A” 3 3 ¹⁄₂ 3 ³⁄₈ 4 4 4 ³⁄₈ 4 ³⁄₄ 5 ¹⁄₄ 5 ³⁄₈ 7
“B” 3 3
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄ 5 ¹⁄₄
“C” 2 ⁹⁄₁₆ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄ 4 ³⁄₄
“D” 2 2 ¹⁄₂ 2 ³⁄₈ 2 ⁷⁄₈ 2 ¹⁄₂ 2 ⁷⁄₈ 3 ¹⁄₄ 3 ³⁄₄ 4 ¹⁄₄ 5 ³⁄₄
50/60Hz
“E” 2 ¹⁄₂ 2 ¹⁄₂ 2 ¹ ³⁄ ₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₈
H1
H2
600V 575V 540V
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹ ³⁄ ₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆
2.7 3.6 4.2 6.8 8.4 10.0 11.3 13.6 16.8 25.7
110V 115V 120V
X2
X1
Includes secondary fuse clip on sizes 50 through 750VA .
Primary Volts 208/277
Secondary Volts 120 Dimensions (inches)
Catalog Number
VA Rating
Temp. Rise
M T0050F M T 0075F M T0100F M T0150F M T 0200F M T0250F M T 0300F M T 0350F M T0500F M T0750F
50 75 100 150 200 250 300 350 500 750
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C
Output Ampere 0.42 0.63 0.83 1.25 1.67 2.08 2.50 2.92 4.17 6.25
“A” 3 3 ¹⁄₂ 3 ³⁄₈ 4 4 4 ³⁄₈ 4 ³⁄₄ 5 ¹⁄₄ 5 ³⁄₈ 7
“B” 3 3
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄ 5 ¹⁄₄
“C” 2 ⁹⁄₁₆ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄ 4 ³⁄₄
“D” 2 2 ¹⁄₂ 2 ³⁄₈ 2 ⁷⁄₈ 2 ¹⁄₂ 2 ⁷⁄₈ 3 ¹⁄₄ 3 ³⁄₄ 4 ¹⁄₈ 5 ³⁄₄
50/60Hz
“E” 2 ¹⁄₂ 2 ¹⁄₂ 2 ¹ ³⁄ ₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₈
H1
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹ ³⁄ ₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆
2.9 3.8 4.5 6.9 8.7 10.2 11.4 13.7 17.2 25.7
V 7 7 2
H2
V 8 0 2
H3
V 0
120V X2
X1
Includes secondary fuse clip on sizes 50 through 750VA .
25
Specifications Primary Volts 208/230/460 Catalog Number M M M M M M M M M M M M M M M
T0050G T 0075G T0100G T 0150G T 0200G T 0250G T 0300G T 0350G T 0500G T 0750G T 1000G T 1500G T 2000G T 3000G T 5000G
VA Rating 50 75 100 150 200 250 300 350 500 750 1000 1500 2000 3000 5000
Secondary Volts 115 Dimensions (inches) Temp. Output Rise Amperes 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 115°C 115°C 115°C 115°C 115°C
0.43 0.65 0.87 1.30 1.74 2.17 2.61 3.04 4.35 6.52 8.70 13.04 17.39 26.09 43.48
“A” 3 ¹⁄₈ 3 ³⁄₈ 3 ¹¹⁄₁₆ 4 ³⁄₁₆ 4 ¹⁄₄ 4 ³⁄₄ 5 ¹⁄₄ 5 ⁷⁄₈ 6 7 ³⁄₈ 7 ¹⁄₈ 7 ¹⁄₂ 8 ¹⁄₄ 8 10 ¹⁄₂
50/60Hz
“B”
“C”
“D”
“E”
3
2 ⁹⁄₁₆ 2 ⁷⁄₈ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄ 4 ³⁄₄ 5 ³⁄₈
2 ¹⁄₈ 2 ³⁄₈ 2 ¹¹⁄₁₆ 3 ¹⁄₁₆ 2 ³⁄₄ 3 ¹⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₄ 5 ³⁄₄
2 ¹⁄₂ 2 ¹³⁄₁₆ 2 ¹³⁄₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₈ 5 ⁵⁄₁₆ 6 ¹⁄₁₆ 6 ¹⁄₁₆ 6 ¹⁄₂ 6 ¹⁄₂
3 ³⁄₈
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄ 5 ¹⁄₄ 6 ³⁄₈ 6 ³⁄₄ 6 ³⁄₄
5 ¹¹⁄₁₆
4 ¹⁄₂
5 ¹¹⁄₁₆
4 ⁷⁄₁₆ 5 ¹⁄₄
9
7 ⁹⁄₁₆
4 ⁵⁄₈
9
10 ³⁄₁₆
6 ¹⁄₂
¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁹⁄₃₂ x ⁹⁄₁₆ ⁹⁄₃₂ x ⁹⁄₁₆ ⁷⁄₁₆ x ³⁄₄ ⁷⁄₁₆ x ³⁄₄
2.8 4.3 4.9 7.4 9.4 11.1 13.6 15.6 21.0 30.0 29.2 33.5 42.5 63.7 102.0
H2
H1
Mounting Approx. Slots Wt.(lbs)
V 0 6 4
H3
V 0 3 2
H4
V 8 0 2
V 0
115V
X2
X1
Includes secondary fuse clip on sizes 50 through 750VA .
Primary Volts 230/460/575 Catalog Number
95/115 VA Temp. Output Rating Rise Amperes
M M M M M M M M M M M M M M M
50 75 100 150 200 250 300 350 500 750 1000 1500 2000 3000 5000
T0050H T 0075H T0100H T0150H T 0200H T0250H T 0300H T 0350H T 0500H T0750H T 1000H T 1500H T 2000H T 3000H T 5000H
Secondary Volts 95/115 Dimensions (inches) “A”
55°C .53/.44 3 55°C .79/.65 3 ³⁄₈ 55°C 1. 05/. 87 3 ⁷⁄₈ 55°C 1.58/1.30 4 ¹⁄₄ 55°C 2.11/1.74 4 ¹⁄₄ 55°C 2.63/2.17 4 ³⁄₄ 55°C 3.16/2.61 5 ¹⁄₈ 55°C 3.68/3.04 5 55°C 5.26/4.35 5 ⁷⁄₈ 55°C 7.89/6.52 7 115°C 10.53/8.70 7 ¹⁄₈ 115°C 15.79/13.04 8 ¹⁄₄ 115°C 21.05/17.39 7 ⁹⁄₁₆ 115°C 31.58/26.09 8 ⁵⁄₈ 115°C 52.63/43.48 13 ¹⁄₂
“B” 3 3 ³⁄₈
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄ 5 ¹⁄₄ 5 ¹⁄₄ 6 ³⁄₈ 6 ³⁄₄ 9
50/60Hz
“C”
“D”
“E”
2 ⁹⁄₁₆ 2 ⁷⁄₈ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄ 4 ³⁄₄ 4 ³⁄₄ 5 ³⁄₈
2 ³⁄₁₆ 2 ³⁄₈ 2 ⁷⁄₈ 3 ¹⁄₄ 2 ³⁄₄ 3 ³⁄₁₆ 3 ⁵⁄₈ 3 ³⁄₄ 4 ⁵⁄₈ 5 ³⁄₄
2 ¹⁄₂ 2 ¹³⁄₁₆ 2 ¹³⁄₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₈ 4 ³⁄₈ 5 ⁵⁄₁₆ 6 ¹⁄₁₆ 6 ¹⁄₂ 6 ¹⁄₂ 6 ¹⁄₂
5 ¹¹⁄₁₆ 7 ⁹⁄₁₆
4 ¹⁄₂
5 ¹⁄₄ 4 ³⁄₁₆
9
7 ⁹⁄₁₆
5 ¹⁄₄
9
10 ¹³⁄₁₆
8 ¹⁄₄
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁹⁄₃₂ x ⁹⁄₁₆ ⁷⁄₁₆ x ³⁄₄ ⁷⁄₁₆ x ³⁄₄ ⁷⁄₁₆ x ³⁄₄
3.5 4.5 6.0 7.7 9.0 9.7 11.7 16.5 21.5 28.0 29.2 33.5 42.5 63.7 102.0
H2
H1
V 5 7 5
H3
V 0 6 4
H4
V 0 3 2
V 0
V 5 1 1
V 5 9
V 0
X3
X2
X1
D oes not include secondary fuse clip.
Primary Volts 380/400/415 Catalog Number M M M M M M M M M M
T0050I T 0075I T0100I T0150I T 0200I T0250I T 0300I T 0350I T 0500I T0750I
110/220V VA Temp. Output Rating Rise Amperes 50 75 100 150 200 250 300 350 500 750
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C
.455/.227 .68/.34 .91/. 455 1.37/6.85 1.82/.91 2.28/1.14 2.72/1.36 3.18/1.59 4.55/2.27 6.82/3.41
Secondary Volts 110/220 Dimensions (inches) “A” 3 3 3 4 4 4 4 5 5 7
“B” 3
¹⁄₂
3
⁹⁄₁₆
3 ³⁄₈ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄ 5 ¹⁄₄
³⁄₈ ³⁄₄ ¹⁄₄ ³⁄₈
50/60Hz
“C”
“D”
“E”
2 ⁹⁄₁₆ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄ 4 ³⁄₄
2 2 ¹⁄₂ 2 ⁹⁄₁₆ 2 ⁷⁄₈ 2 ¹⁄₂ 2 ⁷⁄₈ 3 ¹⁄₄ 3 ³⁄₄ 4 ¹⁄₈ 5 ³⁄₄
2 ¹⁄₂ 2 ¹⁄₂ 2 ¹³⁄₁₆ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₈
V 5 1 4
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆
3.0 4.0 5.2 7.0 8.7 10.2 11.0 13.0 20.0 28.0
H2
H1
V 0 0 4
X4 X4
H3 V 0 8 3
X2 X2
X3
H4
V 0
X3 X1
X4
X1 X2
110V
X3
X1
220V
D oes not include secondary fuse clip.
Primary Volts 208/230/460 Catalog Number M M M M M M M M M
T0050J T 0075J T 0100J T0150J T0200J T0250J T 0300J T0350J T0500J
24/115V VA Temp. Output Rating Rise Amperes 50 75 100 150 200 250 300 350 500
55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C 55°C
2.08/.44 3.13/.65 4. 17/. 87 6.51/1.30 8.33/1.74 10.42/2.17 12.50/2.61 14.58/3.04 20.84/4.35
Secondary Volts 24/115 Dimensions (inches) “A” 3 3 3 4 4 5 5 5 6
“B”
“C”
“D”
¹⁄₄
3
¹⁄₂
3 ³⁄₈
⁵⁄₈
3 ³⁄₄ 3 ³⁄₄ 4 ¹⁄₂ 4 ¹⁄₂ 5 ¹⁄₄ 5 ¹⁄₄ 5 ¹⁄₄
2 ⁹⁄₁₆ 2 ⁷⁄₈ 3 ³⁄₁₆ 3 ³⁄₁₆ 3 ¹³⁄₁₆ 3 ¹³⁄₁₆ 4 ³⁄₄ 4 ³⁄₄ 4 ³⁄₄
2 ¹⁄₂ 2 ¹⁄₂ 2 ¹⁄₂ 3 ¹⁄₄ 3 3 ³⁄₄ 3 ⁷⁄₈ 4 ¹⁄₈ 5 ¹⁄₄
³⁄₈ ¹⁄₂ ¹⁄₄ ¹⁄₈ ³⁄₈ ¹⁄₂
Includes secondary fuse clip on sizes 50 through 500VA .
26
50/60Hz
“E” 2 ¹⁄₄ 2 ¹³⁄₁₆ 3 ¹⁄₈ 3 ¹⁄₈ 3 ³⁄₄ 3 ³⁄₄ 4 ³⁄₈ 4 ³⁄₈ 4 ³⁄₈
Mounting Approx. Slots Wt.(lbs) ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ¹³⁄₆₄ x ³⁄₈ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆ ⁵⁄₁₆ x ¹¹⁄₁₆
3.4 4.8 5.9 7.9 10.6 13.9 15.5 16.8 23.4
H1
V 0 6 4
V 0
X3
H2
V 0 3 2
H3
V 8 0 2
V 4 2
X2
H4
V 0
V 5 1 1
X1
Glossary
Air Cooled
Buck-Boost
Copper Loss
A transform er w hich uses air as the cooling method medium. Term is abbreviated wi th the A N SI designation A A indicating open, natural draft ventilated construction.
Sm all K VA , two-wi nding transformers typically wired as an autotransformer to raise or lower single and three phase line voltages by 10 - 20% .
See load loss.
Core Electrical grade steel lam inations w hich carries the m agnetic flux.
Cast Coil Transformer Ambient Noise Level The inherent or existing noise level of the surrounding area measured in decibels.
T ransform er w ith coils solidly case in epoxy resin under vacuum in a m old. A lso called cast resin or epoxy cast coil transformer.
Ambient Temperature
Center Tap
The inherent or existing temperature of surrounding atm osphere into w hich the heat of a transform er is dissipated. T ransformers are designed for 30°C average ambient temperature with a 40° C maxim um during any 24 hour period.
A reduced capacity tap at the m idpoint in a wi nding. A lso referred to as lighting tap.
Ampere
Certified Test A ctual values taken during production testing w hich certif y the values or results or testing to apply to a specific unit.
Core Loss Losses in watts caused by magnetization of the core and its resistance to magnetic flux when excited or energized at rated voltage and frequency. A lso referred to as excitation loss or no-load loss.
Current Transformer T ransformer generally used in control or instrumentation circuits for m easuring current.
Decibel (dB) A standard unit of m easure of intensity.
A unit of electric current flow .
ANSI A m erican N ational Standards Institute, Inc. – a recognized organization whi ch specifies the standardsf or transformers.
Coil
Delta
Turns of electrical grade wire or strip conductor material wound on a form; often referred to as winding.
A standard three phase connection with the ends of each phase winding connected in series to form a loop with each phase 120 degrees from each other. A lso referred to as 3-wi re.
Common Mode ASTM A merican Society for Testing M aterials.
ATC Air Terminal Chamber. See Terminal Chamber.
Electrical noise or voltage disturbance that occurs between one of the line leads and the comm on ground, or between the ground plane and either the line or the neutral.
Delta-Wye A term or sym bol indicating the prim ary connected in delta and the secondary in wye when pertaining to a three phase t ransform er or t ransform er bank.
Compensated Transformer Attenuation
A transform er wit h a turns ratio whi ch provides a higher than rated voltage at no load and rated voltage at rated load. Such transformers cannot be used for reverse feed.
Dielectric Tests
Conductor Losses
Distribution Transformer
Losses in watts caused by the resistance of the transformer winding during a loaded condition. A lso referred to as load loss or winding loss.
G enerally referred to as any transform er rated 500 KV A and below, except for current, potential, or other specialty transformers.
Continuous Rating
Dry Type A transform er wit hout liquid for cooling.
Two or more single phase transformers connected together to supply a three phase load.
T he constant load which a transformer can maintain indefinitely, at rated voltage and frequency, wi thout exceeding its designed tem perature rise.
BIL
Control Transformer
Basic Impulse Level measures the ability of the i nsulation system to w ithstand high voltage surges.
A transform er designed to provide good voltage regulation for control or instrumentati on circuits having hi gh inrush current or low power f actor conditions.
A term used to denote a decrease in magnitude in transmission from one point t o another. T ypically expressed as a ratio or in decibels, as in electrical noise attenuation.
Autotransformer A transformer wi th one winding per phase in which part of the winding is common to both the primary and the secondary circuits.
Banked
A series of tests conducted to veri fy effectiveness of i nsulation m aterials and clearances used between turns and layers in the w inding.
Dual Winding A wi nding consisting of tw o separate parts which can be connected in series or in parallel. A lso referred to as dual voltage or series multiple winding.
27
Electrostatic Shield
High Voltage Winding
KVA
C onductor m aterial placed between t he primary and secondary windings which is grounded to reduce electrical noise or line i nterference.
D esignates the winding wi th the greater voltage; designated as H V on the nameplate and as H 1, H 2, etc. on the termi nation.
Exciting Current
Hi Pot
K ilovolt ampere rating w ith designates the capacity or output with a transform er can deliver at rated voltage and frequency wi thout exceeding designed temperature rise. (1 K VA = 1000VA , or 1000 volt amperes).
“ N o-load current” flowing in the winding used to excite the transformer when all other windings are open-circuited. U sually expressed in percent of the rated current of a winding in which it is measured.
H igh potential dielectric test i m pressed on the windings to check insulation m aterials and clearances.
Encapsulated T ransform er wi th coils either encased or cast in an epoxy resin or other encapsulating materials.
FCAN “ Full Capacity A bove Normal.” A designation for no-load taps indicating the taps are suitable for full-rated K VA at the designated voltages above nominal voltage.
Lamination T hin sheets of special steel used to make the core of a transformer.
Impulse Tests D ielectric test w hich determi nes B IL capability by applying high frequency, steep wave-front voltage betw een wi ndings and ground.
Liquid Transformer
Impedance
Load Losses
R etarding or opposing forces of current flow in A C circuit, expressed in percentage.
Losses in watts w hich are the result of current flowi ng to the load. A lso referred to as winding loss, copper loss, or conductor loss.
A transform er which used mi neral oil, or other dielectric fluid, w hich serves as an insulating and cooling medi um.
Induced Potential Test Mid-tap
FCBN
A high frequency dielectric test w hich verifies the integrity of insulating m aterials and electrical clearances between turns and layers of a winding.
Same as above except Full Capacity Below N ormal.
Inductance
NEC N ational Electric Code.
Fan Cooled
A property which opposes a change in current flow .
C ooled mechanically to mai ntain rated temperature rise, typically using auxiliary fans to accelerate heat dissipation.
Flexible Connection A non-rigid connection used to elim inate transm ission of noise and vibration.
Frequency D esignates the number of tim es, or complete cycles, that polarity alternates from positive to negative per unit of tim e; as in 60 cycles per second. A lso referred to as H ertz.
NEMA Inrush Current A bnorm ally high current, caused by residual flux in the core, which is occasionally drawn when a transformer is energized.
A special 3 phase autotransform er used to establish a stable neutral point on a 3-wi re delta system. A lso referred to as Zig-Zag transformer.
Grounding C onnecting one side of a circuit to earth; or creating a conducting path to some conducting body that serves in place of earth through low-resistance or low-impedance paths.
No-load Loss See core loss.
Oil Cooled
O ne which the prim ary winding connected to the i nput or source, i s insulated from the secondary wi nding connected to the output or load. A lso referred to as two-wi nding or isolation transformers, which isolate the primary circuit from the secondary circuit.
A transform er whi ch uses oil as the cooling medium. T erm i s abbreviated with the A NS I designation O A indicating natural oil ambient ventilation.
Iron Loss
Parallel Operation T ransform ers having com patible design features with their appropriate terminals connected together.
See N o Load Loss or Core loss.
Phase IR%
Grounding Transformer
N ational Electrical M anufacturers A ssociation.
Insulating Transformer
Full Capacity Tap T ap than can deliver rated K VA wi thout exceeding its designated tem perature rise.
A reduced capacity tap mi dway in a wi nding. A lso referred to a C enter tap; usually in the secondary winding.
P ercent resistance. Voltage drop due to conductor resistance at rated current expressed in percent of rated voltage
C lassification of an A C circuit; t ypically designated as single phase 2-wire or 3-wire, or three phase 3-wire or 4-wire.
Polarity IX% P ercent reactance. V oltage drop due to reactance at rated current expressed in percent of rated voltage.
D esignates the instantaneous direction of the voltages in the prim ary compared to the secondary.
Potential Transformer IZ% Percent impedance. Voltage drop due to impedance at rated current expressed in percent of rated voltage.
A transform er generally used in instrum entation circuits for measuring or controlling voltage.
Hertz (Hz)
Power Factor
A term f or AC frequency in cycles per second.
The relation of watts to volt amps in a circuit.
28