PLAXIS JAKARTA 2012
Plaxis Seminar, Binus University, Jakarta, Indonesia, 2012
Advanced Geotechnical Geotechnical Finite Element Modeling using PLAXIS Dr William WL Cheang Principal Geotechnical Consultant Plaxis AsiaPac Lecture notes are contributed by: Dr Lee Siew Wei Prof. Harry Tan A.Prof. Ronald Brinkgreve Dr Shen Rui Fu Ir Dennis Waterman
CONTENTS A. Section Section 1: Geotechnical Analysis using PLAXIS Programs B. Sectio Section n 2: Modelling of Deep of Deep Excavations C. Sectio Section n 3: Modelling of Piled of Piled Foundations D. Section 4: Modelling of Tunnel of Tunnel‐Soil‐Structure Interaction Problems E. Conclusions Conclusions F. Referenc References es
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
GEOTECHNICAL ANALYSIS USING PLAXIS FINITE ELEMENT CODES
SECTION 1.0
Plaxis Seminar, Jakarta 2012
SECTION 1 A. Versions Versions 1. Pre Pre 2010 (Version 7.x, 8.x and 9.x) 2. Post Post 2010 (Version 2010, 2011, 2012…) B. New New Developments (2011…2012) 1. On‐going software developments 2. Researc Research h projects 3. Conclusio Conclusions ns
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
GEOTECHNICAL ANALYSIS USING PLAXIS FINITE ELEMENT CODES
SECTION 1.0
Plaxis Seminar, Jakarta 2012
SECTION 1 A. Versions Versions 1. Pre Pre 2010 (Version 7.x, 8.x and 9.x) 2. Post Post 2010 (Version 2010, 2011, 2012…) B. New New Developments (2011…2012) 1. On‐going software developments 2. Researc Research h projects 3. Conclusio Conclusions ns
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis 2D: Features The PLAXIS 2D (Currently at v2010 moving to v2011)
•Program including the PLAXIS Dynamics and PLAXIS PlaxFlow modules of deformation • A finite element package intended for the two dimensional analysis of deformation and stability in geotechnical engineering The PLAXIS Dynamics Module
•An extension to PLAXIS 2D •The Dynamics module offers the tools to analyse the propagation of waves of waves through the soil and their influence on structures.
•This allows for the analysis of seismic of seismic loading as well as vibrations due to construction activities. •PLAXIS Dynamics offers the possibility to perform dynamic calculations in individual calculation phases.
PlaxFlow
• An add on module to the PLAXIS 2D program. of the non‐linear, time dependent and anisotropic behaviour of soils of soils • Simulation of the and/or rock in saturated and partially saturated situations.
Plaxis VIP These special extensions are: CAD Interfaces • New Material Models • • User Defined Soil Models • Multiphase Calculations • Sensitivity Analysis
Plaxis Seminar, Jakarta 2012
Plaxis 2D v2011
Plaxis 2D Workflow can be found at: http://www.youtube.com/watch?v=LMy895GCsBQ&lis http://www.youtube.com/watch? v=LMy895GCsBQ&list=PLF7F3CDD69090AF3A&index=1&featur t=PLF7F3CDD69090AF3A&index=1&feature=plpp_video e=plpp_video
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis 3D, 3DF & 3DT
1.
PLAXIS 3D is a finite element package intended for three‐ dimensional analysis of deformation and stability in geotechnical engineering. It is equipped with features to deal with various aspects of complex geotechnical structures and construction processes
1.
3DFoundation is a finite element package intended for the three‐
2.
3DTunnel is a geotechnical finite element package which is
dimensional deformation analysis of foundation structures
specifically intended for the three‐dimensional analysis of deformation and stability in tunnel projects.
Plaxis Seminar, Jakarta 2012
Plaxis 3D v2011
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
PLAXIS 3D INPUT
General toolbar Mode switches Selection explorer
Drawing area Model explorer Mode toolbar Command line
Plaxis Seminar, Jakarta 2012
Plaxis 3D Input : Modes
Definition of soil stratigraphy
Definition of structural elements, loads and boundary conditions
SOIL
STRUCTURES
Creation of the FE mesh
Definition of pressure distribution
MESH
WATER LEVELS
Definition of construction stages
STAGED CONSTRUCTION
Let me demonstrate!
PLAXIS JAKARTA 2012
GEOTECHNICAL ANALYSIS USING PLAXIS FINITE ELEMENT CODES
SECTION 1.1: FEM MODELS
Plaxis Seminar, Jakarta 2012
Tunnel‐Pile‐Soil Interaction 1
Bldg. load “Plate” modelling superstructure EI & EA
Building 40m Fill 1m
CDG
Tunnel
120m
48 Franki piles (Embedded Piles)
Tunnel advance
140m 6m Ø tunnel • Analysis by Plaxis 3D ( 70,000 Tets)
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Tunnel‐Pile‐Soil Interaction 1 Iso-surface of soil total displacements
Isometric view
Tunnel advance
Pile group deformations
Front view
Tunnel advance
Animation Plaxis Seminar, Jakarta 2012
Piled Foundations 1
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Piled Foundations 2
Plaxis Seminar, Jakarta 2012
Piled Foundations 2
Piled Raft Foundation for a storage platform and Stacker Reclaimer Runways Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Piled Foundations 3
Plaxis Seminar, Jakarta 2012
Deep Excavation
Video Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Dam:CFRD Malaysia
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Model: CFRW‐CH300‐2D (South Sumatra 2007‐09‐12)
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Model: Domain Mesh
Plaxis Seminar, Jakarta 2012
Stability Analysis: MUDMAT
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Filling of Spudcan Footprints:
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
GEOTECHNICAL ANALYSIS USING PLAXIS FINITE ELEMENT CODES
SECTION 1.2: NEW DEVELOPMENTS
Plaxis Seminar, Jakarta 2012
LATEST PRODUCT RELEASES PLAXIS 2D 2011 (December 2011)
1. Design approaches 2. Anisotropic plates and geogrids 3. Direct input of bending moments 4. Sekiguchi‐Ohta model
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Design Approach Facility 1. Possibility to enter a coherent set of partial factors in one location (according Eurocode 7, LRFD, etc.) 2. More structured and efficient way of modeling 3. Easy exchange of Design Approaches between different projects 4. Partial factors definition remain the entire responsibility of the user (no default values for different building codes)
Plaxis Seminar, Jakarta 2012
Orthotropic Plates and Geogrids – Independent definitio n of stif fness and strength properties with respect to element local axis
2 1
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
DIRECT INPUT OF BENDING MOMENTS
Plaxis Seminar, Jakarta 2012
LATEST PRODUCT RELEASES
PLAXIS 3D 2011 1. Shape designer 2. Steady state groundwater flow analysis 3. Section contraction (tunnels and shafts) 4. Anisotropic geotextiles 5. Parallel computing 6. Output visualization during calculation
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Shape Designer – Definition of polycurve (series of curved sections) which can then be extruded
Plaxis Seminar, Jakarta 2012
Steady State Groundwater Flow Analysis – Pore pressure distribution in a dam during full pool conservation
PLAXIS JAKARTA 2012
SECTION CONTRACTION – To model volume loss during construction of tunnels or shafts
– Applicable to plates only – Contraction definition: section
c [ %] =
Ainitial
section
- Afinal
section Ainitial
Plaxis Seminar, Jakarta 2012
PARALLEL COMPUTING – Reduce computation time by using domain decomposition
– Two new solvers available – PICOS solver (multicore iterative)
– PARDISO solver (multicore direct)
Plaxis Seminar, Jakarta 2012
Contraction
PLAXIS JAKARTA 2012
PARALLEL COMPUTING EXAMPLE • Multi‐layer ground with tunnel : – 100 000 elements – 148 000 nodes – 414 000 d.o.f’s
Tot
Dec
Back
Iter
Cores
Speedup
175
57.5
90.1
62
1
1.000
133
21.5
84.2
74
2
1.396
84
18.5
40.5
39
4
2.501
69
13.7
29.3
45
8
3.432
Plaxis Seminar, Jakarta 2012
OUTPUT VISUALIZATION DURING CALCULATION
Will open the Output program when the calculation is still running
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
ON-GOING SOFTWARE DEVELOPMENTS
– New modelling workflow PLAXIS 2D – Soil Constitutive Models – Model parameters definition from laboratory test results by inverse analysis in Soil Lab test
– Free‐field boundary elements – Reinforcement element for pile modelling in PLAXIS 2D – Structural forces in solid element in PLAXIS 2D – Thermo‐hydro‐mechanical coupling – New PLAXIS 3D add‐on modules: Dynamics and Transient GWF
Plaxis Seminar, Jakarta 2012
NEW MODELLING WORKFLOW PLAXIS 2D
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
SOIL CONSTITUTIVE MODELS User‐defined soil models: 1. Anisotropic S‐Clay1(S) model
15 10 ] a P k [ y x
2. Anisotropic Creep Model
5 0 -5
0
50
100
150
200
-10 -15
3. Barcelona Basic model (unsaturated soil)
p'[kPa]
4. Hypoplastic model with intergranular strain 5. UBCSAND model (liquefaction)
Plaxis Seminar, Jakarta 2012
PARA METER OPTIMIZATION BY INVERSE ANALYSIS
1. Based on Soil Test facility 2. Import of real lab test data (triaxial, oedometer) 3. Optimisation of selected model parameters based on particle swarm algorithm 4. Different curves can be considered simultaneously
Best
match between curves from real tests and model simulation
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
PARA METER OPTIMIZATION BY INVERSE ANALYSIS - EXAMPLE Experimental parameters: = 24º c = 5.5 kN/m2 Eoed= 9700 kN/m2 E50 = 9700 kN/m2 Calculated HS parameters: = 24.30º c = 4.68 kN/m2 Eoed= 9627 kN/m2 E50 = 9509 kN/m2
Hardening Soil model fit 180 160 140 | 3 120 a m g 100 i S 1 80 a m g i S 60 |
40 Experimental
20
Calculated 0 0
0.02
0.04
0.06
0.08
0.1
0.12
Strain 1
Plaxis Seminar, Jakarta 2012
FREE FIELD BOUNDARY ELEMENTS
– Free field condition definition – 1D soil column – Tied horizontal displacement on left and
right boundaries (Ux2=Ux1)
Y
X
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
FREE FIELD BOUNDARY ELEMENTS – Practical application of free field elements in PLAXIS Structure y r a d n u o b s u o c s i V
Soil
Structure y r a d n u o b s u o c s i V
Dynamic input (acc or vel)
n o i t i d n o c d l e i f e e r F
y r a d n u o b s u o c s i V
Soil
y r a d n u o b s u o c s i V
n o i t i d n o c d l e i f e e r F
Dynamic input (acc or vel)
Free Field elements
Plaxis Seminar, Jakarta 2012
REINFORCEMENT ELEMENT IN PLAXIS 2D – Offer pile modelling capabilities in 2D • Development of line interface elements inserted between soil and the pile (Same modelling strategy as 3D embedded pile)
• The beam representing the pile slides over the 2D geometry and not through the 2D geometry
2D model
Plaxis Seminar, Jakarta 2012
3D Equivalent representation
PLAXIS JAKARTA 2012
REINFORCEMENT ELEMENT IN PLAXIS 2D – Different than combining plate with surrounding interfaces • Soil cannot flow freely (as it should in between the piles) • Interfaces introduce unrealistic failure surfaces
2D model
3D Equivalent representation
Plaxis Seminar, Jakarta 2012
Structural Forces in Solid Element in 2D – Beam modelled as solid elements under pure flexion
– View of integrated stresses along drawn neutral axis
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
THERMAL FLOW, THERMAL EXPANSION, THM COUPLING 1. Taking temperature effects into account: A. B. C. D.
Expansion Soil freezing Phase transition (ice, water, vapour) Change of properties
2. Geo‐energy applications A. Heat / cold storage B. Geothermal energy
Plaxis Seminar, Jakarta 2012
Research Projects Participation in Research projects:
– Piles (inst. effects, embedded piles) i.c.w. TUD, TUGraz – Liquefaction of underwater slopes i.c.w. TUD – Geo‐Install (soil modelling, MPM) EU project (# partners) – Notes (dynamics) EU project i.c.w. TCD – Cyclic liquefaction, geotech EQ.eng. i.c.w. UC Berkeley, UIUC – Stochastic FEA i.c.w. TUD
PLAXIS JAKARTA 2012
MODELLING OF DEEP EXCAVATIONS
SECTION 2.0
Plaxis Seminar, Jakarta 2012
GEOMETRY‐ MODEL DISCRETIZATION 2-D Plane Strain
Plaxis Seminar, Jakarta 2012
3-D MODEL
PLAXIS JAKARTA 2012
GEOMETRY‐ MODEL DISCRETIZATION Axi-symmentry
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
3‐D MODELS
Piled building
Tower crane
N
Strut layout Piled building Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
3‐D MODEL OF AN EXCAVATION
Top of PW (70/90)
Top of Grade III or Better
N
Complex Soil-Structure Interaction Plaxis Seminar,Problem Jakarta 2012
CONSTITUTIVE MODELS
1. 2. 3.
Linear elastic, perfectly plastic Hyperbolic stress-strain curve (stiffness degradation for > 1E-4) Non-linear stiffness from very small strains (1E-6)
1: Mohr Coulomb
1e-6
2: Hardening Soil Plaxis Seminar, Jakarta 2012
1e-5
1e-4
1e-3
1e-2
1e-1
3:Hardening Soil + Small Strain Overlay
PLAXIS JAKARTA 2012
SURFACE HEAVE IN INITIAL EXC./CANTILEVER WALL 3 m deep excavation with cantilever wall 20kPa 5m
3m 7m Dry sandy material
FSP III sheetpile
• 3 analyses with Mohr Coulomb, Hardening Soil & Hardening Soil-Small models using equivalent soil input parameters • Compare ground movements, wall displacements & wall stability Plaxis Seminar, Jakarta 2012
SOIL INPUT PARAMETERS FOR 3 ANALYSES Parameters for soil strength & initial stress state Analyses Material Model 1 2 3
(kN/m3) MC 20 HS 20 HSsmall 20
c'
'
(kPa) 5 5 5
(Deg) 35 35 35
(or ur ) [-] 0.3 0.2 0.2
R inter
[-] 0.426 0.426 0.426
0.67 0.67 0.67
Parameters for soil stiffness prior to failure Analyses Material Model 1 2 3
MC HS HSsmall
Eref (or E50ref or Eoed ref ) (MPa) 30 30 30
Eur ref
pref
m
G0
0.7
(MPa) 90 90
(kPa) 100 100
[-] 0.5 0.5
(MPa) 150
[-] -5 2×10
• For derivation of soil stiffness parameters, a. HS model from standard drained triaxial compression tests b. HSsmall model from small-strain triaxial tests or field tests (e.g. downhole / crosshole seismic survey)
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
PREDICTED SURFACE SETTLEMENT BEHIND WALL Distance behind wall (m) 0
5
10
15
20
25
30
0.006
Heave
0.004 0.002 ) m 0.000 ( t n e m -0.002 e l t t e S -0.004
Settlement
-0.006
MC HS
-0.008
HSsmall -0.010
• MC predicts unrealistic surface heave 4 mm • HS & HSsmall predict max. surface settlement 9 mm
Plaxis Seminar, Jakarta 2012
PREDICTED HEAVE AT EXC. LEVEL IN COFFERDAM Distance in front of wall (m) -5
-4
-3
-2
-1
0
1
2
3
0.025 MC
0.020
Wall
0.015 ) m ( e v a e H
0.010
0.005
0.000
-0.005
• MC predicts 20 mm heave at cofferdam centreline • HS & HSsmall predict 11 mm & 8 mm respectively
Plaxis Seminar, Jakarta 2012
HS HSsmall
PLAXIS JAKARTA 2012
PREDICTED WALL RESULTANT DISPLACEMENT MC Ux=6mm
HS Ux=11mm
HSsmall Ux=10mm Ux: wall horizontal displacement
Plaxis Seminar, Jakarta 2012
PREDICTED STABILITY OF WALL 3 Sum-Msf = FOS
FOS=2.8
2.5
MC
2
Rotation mechanism with FOS 2.8
1.5
3
Sum-Msf = FOS
FOS=2.8
2.5 2
HS
1.5
3 Sum-Msf = FOS
FOS=2.8
2.5 2
HSsmall
1.5
Plaxis Seminar, Jakarta 2012
• “Phi-c' reduction” for predicting FOS • FSP III sheetpile properties: EI=34440 kNm2/m; EA=3.92×106kN/m Mp=369 kNm/m; Np=3575 kN/m
PLAXIS JAKARTA 2012
SUMMARY OF PREDICTIONS Analyses MC HS HSsmall
Surface settlement behind wall Heave 4 mm (not OK) Settle 9 mm Settle 9 mm
Heave at excavation level Heave 20 mm
Wall horizontal displacement 6 mm
FOS for wall stability 2.8
Heave 11 mm Heave 8 mm
11 mm 10 mm
2.8 2.8
1. MC predicts incorrect surface heave behind wall a. related to soil stiffness (E) prior to failure b. different ways of modelling E in 3 constitutive models 2. Stability of wall has FOS = 2.8 for 3 analyses a. related to soil shear strength b. all 3 constitutive models use Mohr Coulomb failure criterion with c'=5 kPa & '=35°
Plaxis Seminar, Jakarta 2012
VARIATION OF SOIL STIFFNESS IN EXCAVATION 1. Soil stiffness is not constant and varies with a. stress-level. Higher stress, higher stiffness b. strain-level. Higher strain (or displacement), lower stiffness c.
stress-path (recent soil stress history).
d. Rotation of stress path, higher soil stiffness 2. During excavation, soil elements at different locations experience different changes in stress, strain & stress-path direction
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
SOIL STRESS PATHS NEAR EXCAVATION GCO No.1/90
• A: unloading compression; B: unloading extension • Rotation of stress paths at A & B Plaxis Seminar, Jakarta 2012
SOIL STRESS PATHS NEAR EXCAVATION 20kPa
25
20kPa Failure line
20
3m
A
A
15
B
K0 Exc.
A B
10
7m
) a P k ( t 5
K0
20kPa
Exc.
B
0
5m
-5 -10
A: unloading compression B: unloading extension
Failure line
-15 0
10
20
30 s' (kPa)
Rotation of stress path at A, A 90° w.r.t. K0 direction Rotation of stress path at B, B 160° w.r.t. K0 direction ≈
≈
Plaxis Seminar, Jakarta 2012
40
50
60
PLAXIS JAKARTA 2012
STRESS PATH DEPENDENT SOIL STIFFNESS Stress path rotation,
Shear modulus, 3G’ (MPa)
t
°
=0° =180° K 0
° =90°
s'
Atkinson et al. (1990)
°
°
Triaxial tests on London Clay
Shear strain (%) -1 -0.1 -0.01 0.01 0.1 1 =0°, no change in stress path direction =180 °, full reversal of stress path direction Plaxis Seminar, Jakarta 2012
STRESS PATH DEPENDENT CDG STIFFNESS Stress-level
Test series
Extension Compress
Compression Extension
=90°
Wang & Ng (2005) • At s 0.01%, shear stiffness in extension 60% higher than in compression Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
WHY MC PREDICTS INCORRECT SURFACE HEAVE? 1.
MC models a constant soil stiffness prior to failure – not realistic
2.
In reality, stiffness of soil elements near excavation varies according to a. stress-level b. strain-level c. direction of stress-path
3.
Realistic prediction of wall deflections & ground settlements in all excavation stages requires a constitutive model that considers above factors, e.g. HS & HSsmall models
4.
HS & HSsmall consider factors (1), (2) & (3) in determining the operational soil stiffness (E), i.e. E is changing during excavation
Plaxis Seminar, Jakarta 2012
INFLUENCE OF SMALL STRAINS AT FAR FIELD AREAS
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
MODELLING OF DEEP EXCAVATIONS
SECTION 2.1:EXAMPLES
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
MODELLING OF DEEP EXCAVATIONS
SECTION 2.2: VALIDATIONS
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis vs. SAP2000 • Model a non-symmetrical deep deep exc. • DWall, 6 strut layers, 24m deep exc. • Compare Compare structural structural behavi behaviour our - DWall DWall deflections/bending moments/shear forces, strut forces
20m
• Recommenda Recommendation tion on design of reinforcement based on 3D results • Plaxis 3D 3D Foundation Foundation V2.2 - analyses analyses by GCG (Asia)
28m
• SAP2000 V12.0.2 V12.0.2 (BD (BD No. S0749) analyses by AECOM
25m
85 Plaxis Seminar, Jakarta 2012
Plaxis 3D Foundation
SAP2000
Element size ~1.3m Plaxis Seminar, Jakarta 2012
Element size ~1m
PLAXIS JAKARTA 2012
Plaxis 3D Foundation
SAP2000
87 Plaxis Seminar, Jakarta 2012
Validation 3 – Deformed Mesh Plaxis 3D Foundation
SAP2000
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 3 – DWall Deflection
Plaxis Seminar, Jakarta 2012
Validation 3 – Strut Axial Force
90 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 3 – DWall Bending Moment
91 Plaxis Seminar, Jakarta 2012
MODELLING OF PILED FOUNDATIONS
SECTION 3
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
OUTLINE A. Volume piles B. Embedded piles 1.
Concept
2.
Model
3.
Properties
4.
Deformation behaviour
5.
Elastic region
6.
Output
C. Verification & validation 1. Axial loading, pile groups, lateral loading D. Further research
Plaxis Seminar, Jakarta 2012
Volume piles Volume piles: Piles composed of volume elements or wall elements with pile properties • Use Cylinder command to create pile geometry Cylinder 0.6 20 24 (creates a cylinder with 0.6m radius, 20m length and 24 sections) • Alternative: Import cylinder • Pile can be inclined in PLAXIS 3D! (not in 3D Foundation)
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Volume piles
Volume piles:
• Import cylinder
Plaxis Seminar, Jakarta 2012
Volume piles Volume piles: After creating pile geometry: • Create soil material set with concrete properties for pile • Tubes: Apply plate around pile volume; create plate material set • Apply interface around pile geometry • To activate pile in calculation phase: - Assign pile properties - Tubes: activate plate - Activate interface
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Volume piles Volume piles: Limitations of volume piles: • Takes many elements • Limited number of piles feasible • Installation effects not considered • Possibly bad element shapes (check mesh quality)
Plaxis Seminar, Jakarta 2012
Embedded piles – Concept Sadek & Shahrour (2004): A three dimensional embedded beam element for reinforced geomaterials Beam arbitrarily through volume elements Shear interaction between beam element and surrounding soil. Septanika (2005) A finite element description of embedded pile model Shaft interaction similar to Sadek & Shahrour (2004) - Tip interface NEW: - Shaft interface
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Embedded piles –
Model
kt
kn pile
kt kn
ks
kt
tskin
Ffoot
ks
kn
soil
t
Skin stiffness: tmax ks : axial stiffness Kn ,kt : lateral stiffness
k 1
Skin tractions: ts = qs/length = ks (uspile‐ussoil) ≤ tmax tn = qn/length = kn (unpile‐unsoil) tt = qt/length = kt (utpile‐utsoil)
urel
ks Base stiffness: kb : base/foot stiffness
s
Base/Foot force: Fb = k b (ubpile ‐ ubsoil)
t
≤ Fmax
kb n
Plaxis Seminar, Jakarta 2012
Embedded piles – Model Embedded piles: • Beam nodes: Real nodes; 6 d.o.f.’s per node (u x u y u z r x r y r z ) • Interface nodes: Virtual nodes, 3 d.o.f.’s per node (u x u y u z ), expressed in volume element shape functions
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
Embedded piles – Properties
Properties (in explorer): Connection: • Rigid (only at beams / plates) • Hinged • Free
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Embedded piles – Properties
Material set with embedded pile properties: • Pile type and material - Type: Massive circular pile, Circular tube, Massive square pile • Interaction properties (defines pile bearing capacity)
Plaxis Seminar, Jakarta 2012
Embedded piles Bearing Capacity= ½ (Ttop+Tbot)×Lpile + Fmax Ttop
Lpile
Tbot
Fmax
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Embedded piles – Deformation behaviour • Pile bearing capacity is input and not result of FEM calculation t
F
tmax
Specified bearing capacity
k 1
urel
Global pile response from soil modelling and pile‐soil interaction
F Fmax k 1
u
urel
Plaxis Seminar, Jakarta 2012
Embedded piles – Without elastic region .
Load-Displacement Curves - Vertical Pile EB+CS 1250
Defined Capacity
Capacity Reached (Premature Failure)
Defined Pile Capacity
1193.2 kN
1000
) 750 N k ( d a o L 500
VERYFINEMESH FINEMESH MEDIUMMESH
250
COARSEMESH VERYCOARSEMESH PileCapacityDefined 0 0
50
100
150
200
250
Displacement (mm)
Without elastic region: Early (soil)Jakarta failure Plaxis Seminar, 2012 for fine meshes
300
350
400
PLAXIS JAKARTA 2012
Embedded piles – Elastic Region .
• Around shaft • Around foot
Soil stress points inside elastic region are forced to remain elastic Plaxis Seminar, Jakarta 2012
Embedded piles – Output Displacements, bending moments, axial forces, shaft friction, foot force
N
u
C B A Plaxis Seminar, Jakarta 2012
Ts
PLAXIS JAKARTA 2012
Verification & validation
Verification & validation by Plaxis, METU, TUGraz, TUDelft * - Shaft friction, end bearing, total capacity - Axial loading (compression, extension) - Lateral loading (external loading, soil movement) * 1. 2. 3. 4.
5. 6.
Related reportsandpublications: Engin H.K.(2006).Vali dation ofembeddedpiles,Plaxis InternalReport. Engin H.K., Septanika E.G.and Brinkgreve R.B.J.(2007). Improvedembeddedbeamelements for the modelling ofpiles.In: G.N.Pande & S. Pietruszczak (eds.), Int.Symp. on NumericalModels in Geomechanics – NUMOG X, 475-480. London:Taylor& Francis group. EnginH.K.(2007).A Reportontension piles testing using embeddedpiles,Plaxis InternalReport. Engin H.K., SeptanikaE.G.,Brinkgreve R.B.J., Bonnier P.G. (2008). Modelin g pile d foundation by means of embedded pile s.2nd Internatio nal Workshop on Geotechnic s of Soft Soils - Focus on Ground Improvement.3-5 September2008, Univ ersity of Strathclyde,Glasgow,Scotland. (Acceptedfor publication) S ep ta ni ka E .G ., B ri nk gr ev e R .B .J ., E ng in H .K . ( 20 08 ). E st im at io n o f p il e g ro up b eh av io r u si ng e mb ed de d p il es , t he 1 2t h I nt er na ti on al Conferenceof InternationalAssociationfor Computer Methods and Advances in Geomechanics (IACMAG),1-6 October, 2008,Goa, India. T sc hu ch ni gg F . ( 2 00 9) . E mb ed de d p il es – 1. Report. CGG_IR021_2009.TechnischeUniversitätGraz.
7.
Tschuchnigg F. (2009). Embedded piles – 2. Report. Improvements. Technische Universität Graz.
8.
DaoT.P.T.(2011). Vali dation ofPLAXIS embeddedpilesfor lateral loading.MSc thesisGeo-engineerin g.Delft University ofTechnology.
Plaxis Seminar, Jakarta 2012
Verification & validation – Axial loading (Plaxis)
Single Layer : = 0 , Cohesive Soil (Case 1): c = 50 kPa = 0
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Verification & validation – Axial loading (Plaxis)
Single Layer : = 0 , Cohesive Soil (Case 1): c = 50 kPa = 0
Plaxis Seminar, Jakarta 2012
Verification & validation – Axial loading (METU) Pile load test Alzey Bridge near Frankfurt (Bored Pile)
Hardening Soil model Pre Overburden Pressure = 50 kPa
El-Mossallamy, Y (1999)
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Verification & validation – Axial loading (METU) Alzey Brig de Sing le Pile Lo ad Test 3500
PILE CAPACITY
3000
2500
) N k ( d a o L
2000
1500
TotalLoad
SkinFriction
Base Resistance
1000
PILE CAPACITY
HS-CS
500 HS-CS-BaseRes.
HS-CS-Ave. SkinFriction
0 0
5
10
15
20
25
30
35
40
45
50
Plaxis Seminar, Jakarta Settlement (mm) 2012
Verification & validation – Pile groups (TUDelft)
Pile group example by Poulos:
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Verification & validation – Pile groups (TUDelft)
(a) Poulos & Davis (1980) (b) Randolph (1994) (c) Strip on springs analysis, using the program GASP (Poulos,1991) (d) Plate on springs approach, using the program GARP(Poulos, 1994a) (e) Finite element and boundary element method of Ta & Small(1996) Seminar, Jakarta 2012 (f) Finite el ement and boundary elementPlaxis method of Sinha(1996).
Verification & validation – Pile groups (TUDelft) Moment (MNm/m)
Average Settlement (mm) 1,2
50,0 45,0
1,0
40,0 35,0
0,8
30,0 0,6
25,0 20,0 15,0 10,0 5,0 0,0
d n F D 3 s i x a l P
s i v a D & s o l u o P
h p l o d n a R
) P S A G ( p i r t S
) P S A G ( e t a l P
l l a m S & a T E F
a h n i S E B + E F
0,4 0,2 0,0
d n F D 3 s i x a l P
DifferentialSettlement(mm)
) P S A G ( p i r t S
) P S A G ( e t a l P
l l a m S & a T E F
a h n i S E B + E F
% Load on Piles
10,0
100,0
9,0
90,0
8,0
80,0
7,0
70,0
6,0
60,0
5,0 4,0 3,0 2,0 1,0 0,0
d n F D 3 s i x a l P
) P S A G ( p i r t S
) P S
A G ( e t a l P
l l a m S & a T E F
50,0 a h n i S E B + E F
40,0 30,0 20,0 10,0
d n F D 3 s i x a l P
0,0
Plaxis Seminar, Jakarta 2012
h p l o d n a R
) P S A G ( p i r t S
) P S A G ( e t a l P
l l a m S & a T E F
a h n i S E B + E F
PLAXIS JAKARTA 2012
Verification & validation – Axial loading (TUGraz)
Plaxis Seminar, Jakarta 2012
Verification & validation 3D model - volume piles: 70 mm
2D model: 72 mm
3D model - embedded piles: 74 mm Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Verification & validation – Axial loading (TUGraz) Conclusions from research at TUGraz (based on 3D Foundation): • Embedded pile gives good results in serviceability states • Layer-dependent option preferred to obtain realistic shaft friction • Increased interface stiffness needed at pile tip * • Pile should end at corner node *
* Implemented in PLAXIS 3D
Plaxis Seminar, Jakarta 2012
Verification & validation – Lateral loading (TUDelft) Validation for lateral loading: • Comparison with volume pile • Lateral movement of pile in horizontal soil slice • Lateral loading of pile top • Lateral loading by soil movement (embankment construction) • Comparison with measurements from centrifuge test • Lateral loading by soil movement (embankment construction)
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Verification & validation – Lateral loading (TUDelft) Lateral movement of pile in horizontal soil slice: > Embedded pile almost behaves as volume pile due to elastic region
Plaxis Seminar, Jakarta 2012
Verification & validation – Lateral loading (TUDelft) Lateral loading by soil movement due to embankment construction > Bending moments in reasonable agreement with measurements
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Verification & validation – Lateral loading (TUDelft) 1. Conclusions from research at TUDelft: 2. Embedded piles have capabilities for lateral loading behaviour in case of rough pile-soil contact (full bonding) and small soil displacements 3. When using ‘standard’ mesh around embedded piles (no local refinement), stiffness and lateral capacity are over-estimated (~30%)
Plaxis Seminar, Jakarta 2012
Further research 1. Research at TUDelft on pile installation effects: 2. Press-replace technique to simulate pile installation with the purpose to generate data for different situations 3. Results are used in generalized model, where (embedded) piles are ‘wished-in-place’ and installation effects are ‘superimposed’
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
CONCLUSIONS A. Volume pile 1. Pile composed of volume elements or wall elements with pile prop’s 2. Massive piles or tubes (wall elements) 3. Not feasible for many piles B. Embedded piles 1. Efficient way to model different types of piles 2. Validated for axial loading, pile groups and lateral loading C. Limitations of embedded piles: 1. Primarily for bored piles (no installation effects) 2. Primarily for serviceability states 3. Mesh-dependency of results 4. Full bonding considered in lateral movement
Plaxis Seminar, Jakarta 2012
TUNNELS AND TUNNELLING
SECTION 4.0
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
CONTENTS
A. 4.1 Introduction to Plaxis Approach a. Input and construction of FE model b. Conclusions B. 4.2 Some Validations C. 4.3 Case Histories
Plaxis Seminar, Jakarta 2012
Modelling of Tunnelling in Plaxis 3D
•
To – – – –
be able to: Model tunnel geometries in different ways Model construction stages for tunnels Model volume loss due to tunnel construction Analyse deformations, stability, lining forces
PLAXIS JAKARTA 2012
Geometric modelling issues Circular tunnel shapes (TBM tunnels) • Create cylinder using Cylinder command or using Import facility cylinder 4 100 48
• Decompose cylinder volume into surfaces • Apply plate and negative interface features to cylinder contour
Geometric modelling issues Circular tunnel shapes (TBM tunnels) – Example
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Geometric modelling issues Cross passages and entrance shafts – Example Hint: Draw cross section surface and use Extrude command to create shafts PLAXIS 3D will automatically create intersections
Plaxis Seminar, Jakarta 2012
Geometric modelling issues Non-circular tunnel shapes • • • • •
Using shape designer* to create tunnel contour Create surface from tunnel contour using right-hand mouse button Extrude surface Decompose tunnel volume into surfaces Assign Plate and Negative interface features to tunnel surface
* new in 3D 2011
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Plaxis Seminar, Jakarta 2012
Geometric modelling issues
Non-circular tunnel shapes – Example
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Geometric modelling issues
Importing tunnel geometry using CAD model • DXF triangulated surface model - Model should be ‘cleaned’ before importing in PLAXIS 3D • 3DS model • Use Import command or corresponding tool in Structures mode
Plaxis Seminar, Jakarta 2012
Construction stages
Creating geometry for construction stages • • • •
Divide tunnel in excavation sections (top heading, bench, invert) Divide tunnel in longitudinal steps by defining cross section planes Intersect tunnel with excavation sections and cross section pl anes Remove unnecessary sub-surfaces around tunnel
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Construction stages
Creating geometry for construction stages – Example (exploded view)
Plaxis Seminar, Jakarta 2012
Modelling volume loss
Volume loss can be modelled by: • Defining Contraction * (TBM tunnels) in Structures mode, e.g: Contraction Fase_Volume_1_1
or use contraction tool or right-hand mouse menu • Activate contraction in Staged construction mode
* New in 3D 2011 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Contraction
Plaxis Seminar, Jakarta 2012
Modelling volume loss
Alternatively, volume loss can be modelled by: • Applying Volumetric strain to volume (Staged construction mode) - Distinction can be made between xx, yy, zz
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
TUNNELS AND TUNNELLING
SECTION 4.1: VALIDATIONS
Plaxis Seminar, Jakarta 2012
Validation 1 – Plaxis 3D Tunnel vs. Plaxis 2D Plaxis 2D
• Model a plane strain tunnelling • Layered ground Fill, Alluvium, CDG • GWL 2 mbgl • 6m dia. tunnel, tunnel axis 23 mbgl • Stress relief by 30% due to tunnel exc. • Linings take 70% initial soil stress
Plaxis 3D Tunnel
• Plaxis 2D V8.2 (BD No. G0133) - 456 nos 6-noded triangular elements • Plaxis 3D Tunnel V2.4 - 4,560 nos 15noded wedge elements • Fineness of 2D & 3D meshes identical in-plane
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 1 – Input Parameters
Plaxis Seminar, Jakarta 2012
Validation 1 – Ground Surface Settlement
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 1 – Lining Hoop Force & Bending Moment Plaxis 2D
Plaxis 3D Tunnel
Hoop force
Bending moment
145 Plaxis Seminar, Jakarta 2012
Validation 2 – Plaxis 3D Tunnel vs. Centrifuge Test in Sand Centrifuge model
• Stability of shallow tunnel in sand • Minimum tunnel support pressure ( T) before tunnel collapse • Centrifuge tests by Atkinson & Potts (1977) in Leighton Buzzard Sand • Acceleration 75g, 60mm dia. model tunnel is 4.5m dia. prototype tunnel • Centrifuge tests at C/2R ratios of 0.34, 0.63, 1.0, 1.37 & 2.0 • Plaxis 3D Tunnel replicates centrifuge tests in prototype scale • Predicted T compared to measured T
Atkinson, J. H. & Potts, D. M. (1977). Stability of a shallow circular tunnel in cohesionless soil. Geotechnique, 27(2), 203-215. 146 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 2 – Input Parameters quoted by Atkinson & Potts (1977)
147 Plaxis Seminar, Jakarta 2012
Validation 2 – Collapse Mechanism
148 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 2 – Comparison
Atkinson & Potts (1977)
Plaxis Seminar, Jakarta 2012
Validation 3 – Plaxis 3D Tunnel vs. Centrifuge Test in Clay • Stability of tunnel heading in clay • Minimum tunnel support pressure ( T) in unlined section P before collapse • Centrifuge tests by Kimura & Mair (1981) in soft kaolin clay • Acceleration 125g, 60mm dia. model tunnel is 7.5m dia. prototype tunnel Centrifuge model
• Centrifuge tests at C/D of 1.5 to 3.0, P/D of 0 to 3 • Plaxis 3D Tunnel replicates centrifuge tests in prototype scale with C/D = 3, P/D = 0, 0.5, 1, 2 & 3 • Predicted T compared to measured T
Kimura, T. & Mair, R. J. (1981). Centrifugal testing of model tunnels in soft clay. Proc. 10 th Int. Conf. Soil Mech. & Found. Eng., Stockholm, Vol. 1,2012 319-322. Plaxis Seminar, Jakarta
PLAXIS JAKARTA 2012
Validation 3 – Plaxis 3D Tunnel Model & Stability Ratio N
Stability Ratio, N
Prototype scale
151 Plaxis Seminar, Jakarta 2012
Validation 3 – Input Parameters
152 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 3 – Collapse Mechanism
P/D=0
P/D=2
Plaxis Seminar, Jakarta 2012
Validation 3 – Comparison
154 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 4 – Plaxis 3D Tunnel vs. SAP2000 Plaxis 3D Tunnel
• Model 6m dia. circular lining subjected to 100 kPa external radial pressure • Lining 0.25 m thick, E=20 GPa, =0.2 • Compare lining radial displacement, hoop force, axial force & bending moment • Plaxis 3D Tunnel V2.4 uses “Plate” element • SAP2000 Nonlinear V7.40 (BD No. S0476) uses “Shell” element
SAP2000
• Both predictions compare to known theoretical solutions
155 Plaxis Seminar, Jakarta 2012
Validation 4 – Theoretical Solution Cylinder Under External Radial Pressure
Watkins, R. K. & Anderson, L. R. (2000). Structural mechanics of buried pipes. CRC Press. Young, W. C. & Budynas, R. G. (2002). Roark’s formulas for stress and strain. McGraw-Hill, 7th edition. Plaxis Seminar, Jakarta 2012
156
PLAXIS JAKARTA 2012
Validation 4 – Comparison
157 Plaxis Seminar, Jakarta 2012
Validation 5 – Plaxis 3D Tunnel vs. Closed Form Solution + Boundary Element Method
• Model a 2x2 pile group near a 6m tunnel in clay 5.7m
• Hypothetical example by Loganathan et al. (2001) analysed using closed form solution + boundary element method GEPAN • Not an exact solution, not measurement • Volume loss ratio modelled 1%
20m
• Plaxis 3D Tunnel analysed the example 1.1m
25m
• Compare pile settlement, horizontal displacement, axial force, bending moment
6m dia. Front pile
Rear pile
0.8m
Loganathan, N., Poulos, H. G. & Xu, K. J. (2001). Ground and pile-group responses due to tunnelling. Soils and Foundations, JGS, 41(1), 57-67. 158 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 5 – Plaxis 3D Tunnel Model Deformed mesh
Exaggeration scale 150
159 Plaxis Seminar, Jakarta 2012
Validation 5 – Comparison Pile Settlement
Horizontal disp.
Axial force
Bending moment
160 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 6 – Tunnelling below Hua Tai Building, Sheung Wan
Sheung Wan Crossover Box
30-32 New Market Street • Hua Tai Bldg. built in 1964, 10-storey R.C. frame structure, founded on 73 nos. of 0.457m dia. Franki piles • 5.8m dia. overrun tunnel built in 1980s, trimmed 17 nos pile toes, Fill grouted, 161 increase size of central raft Plaxis Seminar, Jakarta 2012
Tunnelling Beneath/Near Building Piles • Advantage of 3D over 2D analysis 1. progressive advance of tunnel face
Proposed U/T tunnel
2. assess stability of tunnel face/heading Existing overrun tunnel
3. model individual piles
(Proposed D/T tunnel)
4. model plan area of buildings 5. model varying support pressure on tunnel face & along/around TBM 6. soils vary in tunnel axis direction 0 -10 -20 -30 -40
162 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Removal of Existing Tunnel Linings
• 3D analysis required because 1. soil arching in x, y, z (tunnel axis) directions
2. stability of localised unlined section 3. unlined & lined sections exist 4. shotcrete properties change with time in z direction Plaxis Seminar, Jakarta 2012 5. soils
vary in z direction
Validation 6 – Tunnelling below Hua Tai Building, Sheung Wan
WIL
Overrun
• Open-face shield tunnel 2.6 bar air pressure Overrun
• Bldg settled 6-9 mm, ground settled 4-6 mm
WIL
GCO (1985). Technical Note TN 4/85 – MTR Island Line: Effects of Construction on Adjacent Property. GEO, Eng. Development Dept., HK.
• Valuable case history for benchmarking
164 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 6 – Plaxis 3D Tunnel Model
40,388 15-noded wedge elements
165 Plaxis Seminar, Jakarta 2012
Validation 6 – Modelling of Tunnelling
• Progressive advance of tunnel face • Varying support pressure on tunnel face & along/around shield (average ~2.6 bar) • Building load, piles & cap modelled • Bldg. stiffness considered – Parallel Axis Theorem or sum of EI for individual storeys • Circular piles idealised as square piles 166 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 6 – Input Parameters
SGI
167 Plaxis Seminar, Jakarta 2012
Validation 6 – Ground & Pile Displacement Front
Rear
168 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 6 – Comparison of Settlement Building
Ground surface
169 Plaxis Seminar, Jakarta 2012
Validation 7 – Interface Behaviour
100kN
170 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 7 – Interface Behaviour
100kPa
171 Plaxis Seminar, Jakarta 2012
Validation 7 – Straight Interface Input Shear Strength
172 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Validation 7 – Curved Interface Input Shear Strength
173 Plaxis Seminar, Jakarta 2012
Validation 7 – Comparison 50kPa x 1m2 = 50 kN
Straight interface Input shear strength 50 kN
Curved interface 160kPa x
2.9688m2
= 475 kN
Input shear strength 474 kN
174 Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
TUNNELS AND TUNNELLING
SECTION 4.2: APPLICATION 1
Plaxis Seminar, Jakarta 2012
Scenario 1: Impact of tunnelling on existing piles
PLAXIS JAKARTA 2012
Scenario 2: Impact of piling loading on existing tunnels
(1) A proposed development was located adjacent to the future development MRT twin tunnels; (2) The piling system within MRT Protection Zone adopts bored piles so as to minimize the dynamic impact during construction. RC piles outside MRT Protection Zone Bored piles within MRT Protection Zone
MRT Protection Zone
Future MRT twin tunnels
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
HOW to simulate the problem using Plaxis 3D?
Most critical section adopted for the present 3D FEM analysis
Plaxis Seminar, Jakarta 2012
Typical cross section Road surface
Bored pile dia. 1000mm with 40m length with 28m into underlying OA soils
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Boreholes at this local area are adopted for the interpretation of subsurface soil profile
Plaxis Seminar, Jakarta 2012
GIBR soil parameters are adopted for the analysis. Effective drained parameters are adopted due to the long‐term nature of the project
Bored pile dia. 1000mm with 40m length to rest on the underlying hard OA with SPT N>100
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Illustration of effective drained soil parameters following GIBR adopted in 3D FEM analysis
Plaxis Seminar, Jakarta 2012
Illustration of effective drained soil parameters following GIBR adopted in 3D FEM analysis
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Constructing the 3D FEM mesh…
3D FEM mesh with subsurface soil profiles, pile groups, tunnels
Pile groups
25kPa surcharge
Working load on pile cap
Top fill
OA (E) OA (D)
F1 F2
Upper and closer tunnel
OA (C) OA (B)
Underlying hard OA (N>100)
Plaxis Seminar, Jakarta 2012
Lower and farther tunnel
PLAXIS JAKARTA 2012
Hiding of some soil elements to reveal the tunnels and piles Pile groups 25kPa surcharge Working load on pile cap
Bored piles dia. 1m with 40m length
tunnels
Plaxis Seminar, Jakarta 2012
Scenario 1: Pile groups assumed to be constructed first; Effect of 2 tunnelling (with 2% volume loss each) on the adjacent pile groups
PLAXIS JAKARTA 2012
Simulation sequence: 25kPa surcharge
Pile groups with loadings applied first
Tunnels NOT constructed yet Plaxis Seminar, Jakarta 2012
Lower tunnel activated with 2% volume loss
Lower tunnel activated with 2% volume loss Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
The invert of of the the tunnel was restrained from heaving up, so as to induce maximum tunnel shrinking inward with maximum impact to surrounding ground
Cross‐section of model of model tunnel
3D view
Plaxis Seminar, Jakarta 2012
A surprise: tunnel has an overall shrinking in, the restraint at the invert has NOT effect…
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
A surprise: tunnel has an overall shrinking in, the restraint at the invert has NOT effect…
“hexagon” “hexagon” tunnel tunnel composed of of 30 30 composed of of 24 24 sides, each 12 sides, each 15 Plaxis Seminar, Jakarta 2012
A relief to remove the unpleasant surprise
Correct restraint of invert of of tunnel tunnel
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Followed by the upper tunnel activated with 2% volume loss
Followed by the upper tunnel activated with 2% volume loss
Plaxis Seminar, Jakarta 2012
Final tunnel volume loss shapes (scaled up by 25 times)
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
Final ground movement contour plot Max ground movement around tunnel crown, and dissipates away from the tunnels Immediately above the tunnel, the induced ground surface settlement is about 25mm; while the ground movement at the adjacent site is about 10mm 10mm 25mm
Plaxis Seminar, Jakarta 2012
The induced max pile deflection is only about 6mm due to the 2 tunnelling with 2% volume loss each
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
The induced max pile settlement is less than 5mm
Plaxis Seminar, Jakarta 2012
Max pile axial force of 5386kN before tunnelling; and 5766kN after 2 tunnelling, an increment of 380kN, or about 7% increment only.
Axial force BEFORE 2 tunnelling
Plaxis Seminar, Jakarta 2012
Axial force AFTER 2 tunnelling
PLAXIS JAKARTA 2012
Max pile BM towards tunnels (M2‐2) of 90kNm before tunnelling; and 104kNm after 2 tunnelling, an increment of 14kNm which is negligible for a bored pile of 1m diameter.
Bending moment towards tunnels Plaxis Seminar, Jakarta 2012 M2 ‐2 BEFORE two tunnelling
Bending moment towards tunnels M2‐2 AFTER two tunnelling
Max pile BM parallel to tunnels (M3‐3) of 60kNm before tunnelling; and 63kNm after 2 tunnelling, indicating negligible increment of BM parallel to the two tunnelling.
Bending moment towards tunnels M3‐3 BEFORE two tunnelling Plaxis Seminar, Jakarta 2012
Bending moment towards tunnels M3‐3 AFTER two tunnelling
PLAXIS JAKARTA 2012
Final pile max loading condition: Final Max working axial force = 5766kN; FOS=1.4; Factored axial force =5766*1.4 = 8072kN Max working BM: M2‐2 = 104kNm; M3‐3 = 63kNm; So Composite BM = 122kNm; FOS=1.4; Factored BM = 170*1.4 = 170kNm
The final loading state is located well within the M‐N plot envelope
Plaxis Seminar, Jakarta 2012
TUNNELS AND TUNNELLING
SECTION 4.2: APPLICATION 2
Plaxis Seminar, Jakarta 2012
Stop
PLAXIS JAKARTA 2012
Zones of Influence
Zone C
Zone A
Zone B
Zone B
Zone C Pile settlement C B A
Selementas et al. (2005)
45º
45º
h t p e D
For pile toe located in Zone A: pile head settlement > soil surface settlement; decrease in pile axial force Zone B: pile head settlement soil surface settlement Zone C: pile head settlement < soil surface settlement; increase in pile axial force ≈
Plaxis Seminar, Jakarta 2012
ANALYSIS OF TUNNEL‐PILE INTERACTION A. Typically use the combination of 1. empirical relationships/closed‐form solutions to estimate greenfield ground movements; and 2. boundary element methods to compute pile deformations and stresses A. Suitable for preliminary assessment, with some limitations
B. Alternatively, use 3D numerical analysis Pros: model tunnelling, tunnel‐pile ‐building interaction &
geotechnical
entities in one single analysis Cons: complicated, relatively long analysis time & require constitutive model for soil non‐linear behaviour
Plaxis Seminar, Jakarta 2012
advanced
PLAXIS JAKARTA 2012
EXAMPLE OF TUNNELLING BELOW PILED BUILDING 25m
0 mbgl 2m
25m P5 Rear P6
P4
Pile cap Fill
5 mbgl
9m 4m
MD
10 mbgl
CDG
P1 10m
1m
10m P2 Front P3 6m Ø tunnel
1m
4m
Tunnel advance direction
20 mbgl 2m Ø pile
Tunnel 6m Ø 30 mbgl 31.5 mbgl Rock P1/P4
Pile design load 15MN (~5MPa) 3m Ø bell-out P2/P5
P3/P6
Plaxis Seminar, Jakarta 2012
INFORMATION FOR TUNNEL, PILES & GROUND
A. 6 m diameter tunnel excavated by TBM, tunnel axis depth at 20 mbgl in Completely Decomposed Granite B. 15‐storey building supported by 6 nos of 2 m diameter bored piles with 3 m diameter bell‐outs in rock at 32 mbgl C. Each pile takes 15 MN design load (~5 MPa). D. Building plan size is 25 m by 9 m, pile cap 2 m thick E. Stratigraphy is 5 m Fill, 5 m Marine Deposits, 20 m CDG and rock. Groundwater table at 2 mbgl F. Tunnel constructed in between piles, tunnel edge to pile edge distances are 1 m, 4 m and 10 m
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
SOIL SMALL STRAIN NON‐LINEAR STIFFNESS
0.01%
0.1%
1%
Atkinson & Sallfors (1991)
Plaxis Seminar, Jakarta 2012
CDG Small Strain Non‐linear Stiffness Laboratory small strain stiffness results for CDG samples Ng et al. (1998)
• Hardening Soil + Small Strain Overlay (HSsmall) constitutive model to consider CDG small strain non-linear stiffness
1600 Triaxial_Upper
1400
Adopted line
1200
Triaxial_Lower HSsmall_Upper
' p / c
e s
G
1000
HSsmall_Lower
800
HSsmall_Baseline
600 400 200 0 0.0001
0.001
0.01 0.1 Shear strain (%)
Plaxis Seminar, Jakarta 2012
1
10
PLAXIS JAKARTA 2012
3D Finite Element Model (Plaxis‐GiD) Load 15 MN
Rear
“Plate” Pile cap
Building 40m Bored pile Front Fill MD CDG
Tunnel
Tunnel face 149m TBM length
Rock
120m
Bell-out 43,000 elements
Linings
Refined mesh around tunnel & building piles Plaxis Seminar, Jakarta 2012
TUNNEL CONFINEMENT (FACE SUPPORT) PRESSURE A PIII
PIV
PI
Rear 6m Ø
Front
TBM shield 9m PII
PVI PV A PIII
PV Section A-A Plaxis Seminar, Jakarta 2012
Pressure increases with depth
• Confinement (face support) pressure (PI to PII) = hydrostatic pore pressure + overpressure • Higher confinement pressure, lower ground loss • Along TBM shield, tunnel support pressures vary to consider 1. conical shape of TBM shield / over-cutting 2. ground loss into tail void in rear • Any combination of support pressure profiles can be modelled
PLAXIS JAKARTA 2012
MODELLING OF TUNNEL FACE ADVANCE
g g n TBM shield n i i n n i i (elements nulled) L L
1.5 1.5m
g g n i n TBM shield i n i n i (elements nulled) L L
1.5 1.5m g g n i n i n i n i
TBM shield (elements nulled) L L
• Soil elements inside TBM shield are deactivated • Apply tunnel support pressure profiles • Shield is not modelled • For each face advance, shift tunnel support pressures forward & correspondingly erect new lining behind TBM • The process is repeated as tunnelling progresses
1.5 1.5m
Plaxis Seminar, Jakarta 2012
MODELLING OF STRUCTURES • Piles & pile cap modelled by solid elements
• Interface elements along pile shafts & on pile cap vertical faces • Consider flexural stiffness (EI) & axial stiffness (EA) of superstructure by incorporating a “Plate” structural elements on top of pile cap • Superstructure EI estimated by (Potts & Addenbrooke, 1997) 1. Parallel Axis Theorem (bending about building neutral axis); or 2. Summation of EI for individual building storeys
• Tunnel linings modelled by “Plate” elements
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
PREDICTION ON GROUND SURFACE SETTLEMENT Overpressure 20 kPa
Overpressure 20 kPa, G/F VL 1.6%
Distance from tunnel centreline (m) -60
Fill
0
MD
-40
-20
0
VL 0.31%
20
40
60
-4 ) m -8 m ( t n-12 e m e l t t -16 e S
CDG
Tunnel
-20
VL 1.61% Mid-building Greenfield Gaussian
-24
• Gaussian curve with K = 0.45 • Close to K 0.5 from HK tunnelling experience
• Lateral spreading of displacements in MD layer • Settlement trough becomes wider
≈
Plaxis Seminar, Jakarta 2012
Prediction on Pile Transverse Displacement Overpressure 20 kPa
Transverse horizontal disp. (mm) -5
-4
-3
-2
-1
+10D 0 0
-2D Front Rear +2D +10D
5
+2D
10 ) l g 15 b m ( h t 20 p e D
25 30 35
Plaxis Seminar, Jakarta 2012
Rear 1m
P2 Front -2D
Tunnel advance
PLAXIS JAKARTA 2012
Prediction on Pile Longitudinal Displacement Overpressure 20 kPa
+10D
Longitudinal horizontal disp. (mm) -3
-2
-1
0
1
2 0 5 +2D
10
) l g b 15 m ( h t p 20 e D
-2D
Rear 1m
Tunnel advance
Front
P2 Front
25
Rear -2D
30
+2D +10D
35 Tunnel advance
Plaxis Seminar, Jakarta 2012
Prediction on Pile Settlement & Axial Force Overpressure 20 kPa 0 0
Settlement (mm) -1
0
-2 0
P2
-2D Front
5
5
Rear 10
+2D
) l g b15 m ( h t p20 e D
+10D 7
25 30 35
B C
P2
-2D Front Rear
10 ) l g b15 m ( h t p e20 D
25
A
Increase in axial force (MN) 1 2 3
30 35
Pile toe Plaxis Seminar, Jakarta 2012
+2D +10D
4
PLAXIS JAKARTA 2012
Prediction on Pile Bending Moment Overpressure 20 kPa Transverse moment (kNm) 1500 0
500
-500
Longitudinal moment (kNm) -1500
1500
500
-500
-1500
0
P2
P2
5
5
10
-2D
) l g b 15 m ( h t p 20 e D
Front Rear +2D +10D
10
-2D
) l g b15 m ( h t p20 e D Tunnel advance
25
25
30
30
35
35
Front Rear +2D +10D
Plaxis Seminar, Jakarta 2012
Check on Potential Structure Damage OP 10kPa
45
P2 35
)_ N M ( 25 N , e 15 c r o F l 5 a i x A
Distance from tunnel centre (m) -10 - 5 0 5 10 15
OP 20kPa OP 30kPa OP 40kPa
-5
-15 -15 -10 -5 0 5 10 Moment, M (MNm)
0.3
0.0 )_ m -0.4 m ( t n e m e-0.8 l t t e s . g d l-1.2 B
OP 20kPa OP 30kPa OP 40kPa
)0.2 % ( L /
Cat. 3
0.1
=0.14 mm
2 0.0
15
Pile N-M Interaction Diagram
OP 10kPa
Cat. 4 & 5
0 0
-1.6
Building deflection
1 0.1
h (%)
0.2
0.3
Burland’s chart
PLAXIS JAKARTA 2012
Comparison with Closed Form Solution Greenfield subsurface settle. (mm)
-35
-25
-15
-5
0
5
Greenfield subsurface horiz. disp. (mm)
15
-15
-10
-5
0
0
Fill
0
Fill 5
MD
5
MD 10
CDG
) l g b m 15 ( h t p e 20 D
10 ) l g
15 b
CDG
m ( h t p 20 e D
25 Loganathan et al. (2001) 3D analysis
30
Rock
25
Loganathan et al. (2001) 3D analysis
Rock
35
30 35
Greenfield subsurface section corresponds to P2 location 3D analysis: Overpressure 20 kPa, G/F V L 1.61% Plaxis Seminar, Jakarta 2012
3D FEA vs. Analytical Solution Issues
3D FEA
Analytical Solution
Ease of use
• Complicated • Long analysis time
• Relatively easy • Less analysis time
Ground conditions
• Layered soil
• Homogeneous soil
• Need realistic constitutive model
• Estimated greenfield deformation less good for layered soil
Tunnelling progress
• Model face advance
• Only pile response in transverse direction
• Pile response in transverse & longitudinal directions
Plaxis Seminar, Jakarta 2012
PLAXIS JAKARTA 2012
3D FEA vs. Analytical Solution Issues Ground loss, VL
3D FEA
Analytical Solution
• Model confinement pressure & predict V L
• Assume a certain VL
Effect on • Model tunnel, piles, piles/building building & their interaction in one single analysis
• Different boundary element programs for pile axial and lateral responses
• Results from piles & building used directly in structural check
• Specific analysis for pile group effect • Dedicated modification factors account for building rigidity
Plaxis Seminar, Jakarta 2012
REFERENCES (1) 1.
Atkinson, J. H. & Sallfors G. (1991). Experimental determination of soil properties. Proc. 10
th
ECSMFE, Florence, Vol.3, 915-956 2.
Burland, J. B. (1995). Assessment of risk of damage to buildings due to tunnelling and excavation. 1
st
Int. Conf. on Earthquake Geotech. Engrg., IS Tokyo. 3.
Geotechnical Control Office (GCO) (1985). Technical Note T4/85 - MTR Island Line: Effects of Construction on Adjacent Property. Civil Engrg. Services Dept., Hong Kong.
4.
Hake, D. R. & Chau, I. P. W. (2008). Twin stacked tunnels - KDB200, Kowloon Southern Link, Hong Kong. Proc. 13 rd Australian Tunnelling Conference, 445-452.
5.
Loganathan, N., Poulos, H. G. & Xu, K. J. (2001). Ground and pile-group responses due to tunnelling. Soils and Foundations, 41(1), 57-67.
6.
Moller, S. (2006). Tunnel induced settlements and structural forces in linings. PhD thesis, University of Stuttgart.
7.
Moller, S. & Vermeer, P. A. (2008). On numerical simulation of tunnel installation. Tunnelling & Underground Space Technology, 23, 461-475.
8.
Ng, C. W. W., Sun, Y. F. & Lee, K. M. (1998). Laboratory measurements of small strain stiffness of granitic saprolites. Geotechnical Engineering, SEAGS, 29(2), 233-248.
Plaxis Seminar, Jakarta 2012