Seismic isolation product line-up High Damping Rubber Bearing Elastic Sliding Bearing
Lead Rubber Bearing
Natural Rubber Bearing
Elastic Sliding Bearing
Bridgestone seismic isolation product line-up We will meet the customer needs with our new product line-up .
Features
Page
HDR High Damping Rubber Bearing
LRB Lead Rubber Bearing
NRB Natural Rubber Bearing
Elastic Sliding Bearing
(Description) p5-p7 (Product Specication Specications) s) p16-p21 ● HH series (Total rubber thickness 20cm type) HL series (Total rubber thickness 16cm type) HT series (Total rubber thickness 25cm type)
High damping rubber includes both spring and damping characteristics. Generally, a separate damper is not required, making it an excellent choice for areas with space constraints. Since its hysteresis curves are relatively smooth, seismic isolation can also be extended to inequipment inside the building. Two different elastic moduli are available (E0.4 , X0.6R). X0.6R). Light column loads can also be accommodated.
(Description) p8-p10 (Product Specication Specications) s) p22-p32 ● LH series (Total rubber thickness 20cm type) LL series (Total rubber thickness 16cm type) LT series (Total rubber thickness 25cm type) LS series (S2=5 type)
This bearing includes a lead plug embedded at the centre of a laminated natural rubber structure, where the rubber incorporates the spring capability and the lead plug provides the damping capability. Generally, a separate damper is not required making it a good choice for areas with space constraint s. Its hysteresis resembles elastoplastic materials. The attenuation can be tuned by varying the lead plug diameter. One type of rubber material is available (G0.40).
(Description) p11-p12 (Product Specication Specications) s) p33-p41 ● NS series (S2=5 type) NH series (Total rubber thickness 20cm type) NL series (Total rubber thickness 16cm type) NT series (Total rubber thickness 25cm type)
This bearing uses natural rubber, which inherently has a low damping factor (about 2~3% equivalent damping factor), excellent linearity, and a stable restoring restorin g force. A separate damper is required, but the overall isolation design has much greater exibility. Four different kinds of elastic moduli are available (G0.30,G0.35,G0.40, G0.45) to support a wide range of column loads.
(Description) p13-p15 (Product Specication Specications) s) p42 ● SP series ( μ =0.015, =0.015, G0.4 type) type) SK series ( μ ==0.011,G0.4 ==0.011,G0.4 type) SL series ( μ =0.13, =0.13, G1.2 type) type)
This bearing consists of 2 pieces: 1) a natural rubber bearing bonded with PTFE (Teflon) material and; 2) a stainless steel slide plate. Small displacements are absorbed by the rubber itself, while large displacements cause the rubber bearing to slide slide on the plate. Since there is no restoring force, the slide bearing is normally used in combination with NRB, LRB or HDR. Three different coefficients of friction are available to suit the damping requirements.
1
Sectional View
Hysteretic Loop
High Damping Rubber Reinforcing Steel Plate
Cover Rubber
Flange
Lead Plug
Natural Rubber Reinforcing Steel Plate
Cover Rubber
Flange
Natural Rubber Reinforcing Steel Plate
Cover Rubber
Flange
Flange
SUS or SUS + PTFE Coating Note: The above diagram and hysteristic loop are for illustrativ illustrative e purpose only.
2
Bridgestone advanced polymer technology cre ated the next-generation high damping rubber.
High damping rubber bearing series X0.6R Features of high damping rubber bearing series X0.6R A high damping rubber bearing is a laminated rubber structure that includes a special ller compound in the rubber itself to provide energy absorption perf ormance . It combines damping and spring elements and is widely adopted as a seismic isolator. However, the traditional high damping rubber shows loading hysteresis dependency, where its rate of change change of stiffness has become reduced and restoration becomes progressively worse after repeated loading under increasing deformation. With Bridgestone's next-generation of high damping rubber X0.6R, the effect of loading hysteresis dependency is greatly reduced and the properties become much simpler simpler to manage. Furtherm ore, it is also more accommodating to the reduction in ultimate properaties caused by bi-directional loading.
● Reduction in loading loading hysteres hysteresis is dependency dependency 2.0
2.0 Conventionall material E0.6 Conventiona
1.5
) 2 1 m m / N 0.5 ( s 0 s e r t s−0.5 r a e h −1 S
New material X0.6R
1.5
) 2 1 m m / N 0.5 ( s 0 s e r t s−0.5 r a e h −1 S
Pre test Post test
1.3times
E0.6
−1.5
Pre test Post test
1.15times
X0.6R
−1.5
−2
−2
−3
−2
−1
0
1
2
3
−3
−2
−1
Shear strain
0
1
2
3
Shear strain
Compared to conventional high damping rubber, the change of equivalent shear stiffness (1cycle/3cycle) in repeated loading is reduced (1.30 → below 1.15 ). The properties of seismic isolation rubber bearings are dened by the 3rd cycle. The result is a bearing that reduces the load variation during initial deformation. 2.0
2.0 Pre test Post test
Conventional material E0.6
) 2 1.6 m m / N1.2 ( s s e r t 0.8 s r a e h 0.4 S 0
Pre test Post test
New material X0.6R
) 2 1.6 m m / N1.2 ( s s e r t 0.8 s r a e h 0.4 S 0
0
0.5
1
1.5
2
2.5
3
0
0.5
Shear strain
1
1.5
2
2.5
3
Shear strain
Traditional high damping rubber shows shear stress reduction after large deformation due to the effect of loading hysteresis dependency, but the next-generation high damping rubber is able to minimize the change in properties before and after large deformation. By reducing the effect of loading hysteresis dependency, dependency, the analysis of a high damping rubber bearing system can be easily managed and the accuracy of the overall seismic isolation design can be improved.
● Increas Increasing ing of equivalent equivalent damping damping ratio Compared to traditional high damping rubber, the equivalent damping ratio (at shear strain γ = ±100%) of high damping rubber X0.6R is increased (0.225 → 0.240). In addition, a higher damping ratio can be obtained in the range of γ ≦ 170%, while maintaining the same value in the range of γ ≧170% shear strain, as compared to traditional high damping rubber. Furtherm ore, compared to the same diameter of lead rubber bearing (lead diameter / outer diameter = 0.2), a higher damping ratio can be obtained in the range of γ ≧130% for high damping rubber X0.6R.
0.400 ) ( q e H n 0.300 o i t a r g n 0.200 i p m a d t n e 0.100 l a v i u q E 0.00
New material X0.6R Conventional Convention al material E0.6 Lead rubber bearing
0
0 .5
1
1.5
2
Shear strain γ
3
2.5
3
Ultimate Properties of High Damping Rubber Bearings by Horizontal Bi-directional Loading ● Ou Outl tlin ine e The ultimate deformation of high-damping rubber is degraded by applying bi-directional loading compared to unidirectional loading. Through the use of a horizontal bi -directional loading test, with a full scale model high-damping rubber bearing, torsional deformation can be seen in the side view of the rubber. Compared with unidirectional loading, the phenomenon of breaking at early stage by bi-directional loading has been identified. The standard standard value of the ultimate properties, inuenced by bi-dir ectional loading, is shown below and the ultimate compressive stress is conrmed. M T =(|u2 u2| |× Fn Fn)/ )/2 2
Y Damping element Elastic element
Fn ③
u2 u1
Δu
Solid line : Top flange (Fixed side)
X
①
②
Dashed line : Bottom flange (loading side) Figure 1: The mechanism of torsional deformation
Figure 2: Torsional deformation duri ng horizontal bi-dire ctional loading
As shown in Figure 1, when the bi-directional loading is applied on a high damping rubber bearing, the elastic force occurs in the shear deformation direction, while the damping force occurs in the tangential direction of the deformation trajectory. The torsional moment created by the damping elements and the shear deformation is present at each rubber layer of the laminated structure. The additional shear strain γ φ caused by torsional deformation is added to the shear strain caused by the rubber shear deformation itself. Thus, it will rupture relatively early compared to the unidirectional loading test. However, the torsional deformation caused by bi-directional loading does not affect the buckling ultimate strain, as veried experimentally.
● Ulti Ultimate mate Property of Horizontal Bi-directional Bi-directional Loading Loading According to the Japan Society of Seismic Isolation (JSSI) guidelines, the nal ultimate strain is determined by the minimum of the ultimate strain γ L by unidirectional loading and the ultimate strain γ Bo by bi-directional loading. ● Ultimate strain by unidirectional unidirectional loading Ultimate strain by unidirectional loading is dened as shown in Table Table 1. 1. Table 1: Standard value of ultimate strain by unidirectional loading Compound XO.4R XO.6R
Ultimate strain γL by unidirectional loading 0 . 9 × S2 ×100(0.9 × S2 < 4) 400%(0.9× S2 ≧ 4) 0.9×S2 × 100 100(S (S 2 < 4.5 4.5) ) 400% 40 0%(S (S2 ≧ 4. 4.5) 5)
X0.4R (Bi-directiona (Bi-directional) l) X0.4R (Unidirection (Unidirectional) al)
) S2=4.55 2 m 40 m / N ( σ s 30 s e r t s e 20 v i s s e r p m 10 o C 0 0
1
2
S2 : Second shape factor ● Ultimat Ultimate e strain by bi-directional loading Ultimate strain by bi-direc tional loading is dened as shown in Table Table 2. Table 2: Standard value of ultimate strain by bi-directional loading Compoun Compo und d XO.4 R XO.6R
Formu For mula la of ulti ultima mate te stra strain in γBo by bi-directional loading γB0 =(5 (5.8 .8 0× 0×S S2 + 9.05)/(S2 + 4.49 4.49) ) γB0 =(5 (5.0 .00× 0×S S2 + 9.05)/ 9.05)/(S (S2 + 4.49 4.49) )
S2 : Second shape factor
3
4
5
Shear strainγ
) 2 m m 60 / N ( σ s s e r t s e 30 v i s s e r p m o C
X0.6R (Bi-direction (Bi-directional) al) X0.6R (Unidirectio (Unidirectional) nal)
S2=5.0
0 0
1
2
3
4
5
Shear strainγ
Figure 3: Comparison exampl e of ultimate propert y diagram
4
Product Specication & Description of Performance Characteristics High Damping Da mping Rubbe R ubber r Bearing Be aring(HDR) Seismic isolation isolation material certication number by Ministry of Land, Infrastructure and Transport Transport MVBR-04 68 (X 0.4R) MVBR-04 30 (X 0.6R)
Acquired in December 201 2012 2 Acquired in February 2011
● Produ Product ct Dimens Dimension ion I tem
t r a p h c a e f o s n o i s n e m i d & e p a h S
Description
Outer diameter
:D0(mm)
Inner diameter
:D(mm) i
Effec tive plane area
:A(× 102mm2)
Thickness of each rubber layer
:t r(mm)
Number of rubber layers
:n
Integrated Type Flange
Total rubber thickness: thickness :H = n x tr(mm) First shape factor S1 =(D 0 —D i)/(4 x t r) Second shape factor S2 = D 0/(n x t r) Diameter of ange
:Df(mm) :t f/t ft(mm)
Thickness of ange: edge/center
Connect ing bolt PCD :PCD(mm)
Assembled Type Flange
(mm) m)x qt q ty Diameter of connecting bolt hole x qty:db(m Bolt size (assumption) :M :M(d b—3) Thickness of each reinforced steel plate: plate:ts(mm) Total height
:Ht(mm)
Total weigh wei ghtt 1 (kN) (kN )= 1/9. 1/9.80 8066 665 5(to (tonf nf) )
● Rubbe Rubber r Materi Material al Rubber code (standard temperature temperature 20℃ , standard strain y = 100%) Equivalent Shear modulus Rubber code damping ratio 2 Geq (N/mm ) H eq X0. 4 R 0.3 92 0.220 X0.6R
0.620
Combination of rubber materials (weight ratio %) Rubber designation Rubber layers
0 . 24 0
Vulcanization agent Natural rubber Reinforcementagent, Vulcanization Synthetic rubber Filler and others
X0. 4R 4R
35 an and ab above
20 an and ab above
4 5 and be below
X0.6R
35 and above
2 5 a n d a b ov e
4 0 and below
4 0 and above
15 and above
4 0 a nd b el o w
Cover r ub ubber Properties of rubber materials Tensile strength (N/mm 2) JIS K6251
Elongation at Break (%) JIS K6251
JIS K625 3
JIS K6251
X0. 4 R
7 以上
840 以 上
37 ± 8
X0.6R
8.5 以 上
78 0 以 上
12 以 上
60 0 以 上
Item Test St andard Inner rubber
C ov er r ub b e r
Young's modulus E(N/mm2)
Bulk modulus E ∞(N/mm2)
Young's modulus correctionfactor according to hardness
0 . 4 3 ± 0. 2
6. 2
130 0
1.0
53 ± 5
0.73 ± 0. 2
7.6
150 0
1.0
—
—
Hardness (JIS A)
100% modulus (N/mm 2)
● Stee Steell Materi Material al Each steel par t
Anti - r ust tr eatment of ange plate
Reinf orced steel plate Flange plate
*1
Connecting plate *1
Remove rust up to blasting quality of SSPC-SP-10 (SIS Sa 2 1/2) Zinc - rich paint 75 μ m x 1 c o a t
Mater ial
Pr eparation
SS 4 0 0(JIS G 3101)
Primer
SS 4 0 0(JIS G 3101)
Middle coat
E pox y resin paint
60 μ m x 1 coat
SS 4 0 0(JIS G 3101)
Finishing
E pox y resin paint
35 μ m x 1 coat
*1: Optionally SM490 (JIS G 3106).
Total lm thickn thickness ess 170 μ m and above above *1: Standard color is gray. *2: Others anti-rust treatment of ange plate than painting are also available. Please contact us for more details.
5
● Shea Shear r Prope Properties rties ■ Equivalent shear stiffness K eq , equivalent damping ratio H eq ,
initial stiffness K1 , post-yield stiffness K 2 , characteristic strength Q d Shear properties of HDR is dependent on shear strain amplitude. The shear strain dependency of each property is expressed by following equations. =0.. 0 5 4×γ4 −0 .416× =0 .416×γ γ3 +1.192×γ2 −1. 58 583× 3×γ+1.145 ● Rubber Material Material X0 X0.4R .4R Geq(γ) 3 2 γ≦ 2 .7) (0.1 (0.1 ≦ Heq(γ) =− 0. 0 0 6×γ +0.018×γ −0. 00 008× 8×γ+0.216 u(γ) =− 0. 0110×γ3 +0.032 5×γ2 −0 .013 2×γ+0.3617 ● Rubber Material Material X0.6R Geq=G0 ×(2.855 −3.878 −3.878γ γ+2.903γ 2 −1.016γ3 +0.1364γ4) (0.1 (0.1 ≦ G 0 =0.620 =0.620;; shear modulus at γ=1 =1.0 .0 γ≦ 2 .7) Heq=Heq0 ×(0.91 0.9150 50 +0.2364γ 0.2364γ−0.1804γ −0.1804γ2 +0.02902γ3) Heq0 =0.240 =0.240;; equivalent damping ratio at γ=1 =1.. 0 2 u =u0 ×(0.9028 +0.2711γ 0.2711γ−0.2083 −0.2083 γ +0.03421γ3) u0 =0.408 =0.408;; function giving ratio of characteristic strength to =1.. 0 maximum shear force of a loop at γ=1
Q
Qd
Kd Keq
−δ0 △W
δ0 δ
−Qd H eq=ΔW/ (2πKeqδ2)
Based on above equations, each shear properties shall be determined by the following equation. Heq =Δ W/(2 π・Keq δ 2) Equivalent shear stiffness:K stiffness:Keq = G eq・A/H Equivalent damping ratio: ratio:H Initial stiffness:K stiffness:K1 =10×K2 Post-yield stiffness:K stiffness:K 2 = Keq(1 − u) Characteristic strength:Q strength:Qd = u・ u・K Keq・H・γ
■ Temperature dependency Each shear property is corrected to the value at standard temperature of 20℃ by following equations. (Applicable range: − 10 ≦ T ≦ 40℃ ) (T: Temperature Temperature during inspection) (corrected ● Rubber Material X0.4R X0.4R :Keq : Heq (corrected (corrected ● Rubber Material X0.6R X0.6R :Keq : Heq (corrected
value value value value
at at at at
) =Keq (T℃ (T ( (1.205−1.862×10 / 1.205−1.862×10−2・T+5.9 91× 91×10 10 −4T 2 −8.991×10 −6T3) 20℃) 20℃ ℃) 20℃) 20℃) ℃) =Heq (T℃ (T ( (1.065−4.134×10 / 1.065−4.134×10−3・T+1.0 T+1.096 96×10 ×10 −4T 2 −3.102×10 −6T3) −2 =Keq (T℃ (T ( (1.205−1.862×10 / 1.205−1.862×10 ・T+5.9 91× 91×10 10 −4・T 2 −8.991×10 −6・T3) 20℃) 20℃) ℃) −3 20℃) 20℃) ℃) =Heq (T℃ (T ( (1.065−4.134×10 / 1.065−4.134×10 ・T+1.0 T+1.096 96×10 ×10 −4・T 2 −3.102×10 −6・T3)
● Standard value of temperature dependency
X0.4R X0.6R
Proper ties values Equivalent shear stiffness K eq Equivalent damping ratio H eq Equivalent shear stiffness K eq Equivalent damping ratio H eq
Standard temperatur temperature e (20℃ )
− 10℃ within + 4 6% within + 12 % within + 4 6% within + 12 %
0℃ within + 21% within + 7% within + 21% within + 7%
30℃ within − 6 % within − 4% within − 6 % within − 5%
4 0℃ within − 16 % within − 12 % within − 16 % within − 13 %
■ Performance variation The rate of change of main causes (manufacturing variation, aging, temperature change) which affect shear properties shall be shown as below. Rubber materials
Manufacturing variation *1 Aging * 2 Ambient temperature (+)side variation (−)side 20℃± 20℃ ± 20℃ (+)si sid de * 3 Total (−)si sid de * 3
X0. 4 R X0.6R Equivalent damping ratio, Heq Equivalent damping ratio, Heq Function giving ratio of Function giving ratio of Equivalent shear stiffness Keq Equivalent shear stiffness Keq characteristic strength to characteristic strength to maximum shear force, u maximum shear force, u ± ± ±10% 10 % ± 10 % 10% + 10 % − 10 % + 10 % − 10 % + 21% + 7% + 21% + 7% − 16%
− 12 %
− 16 %
− 13%
+ 41% − 26 %
− 13 % − 2%
+ 41% − 26%
− 13% − 3%
*
1 :The variation of each product (standard value) shall be within ± 20% and variation of all (per project) produc ts (total of standard values) shall be within ±10%. However, if the total units of products is less than 8 units per project, the variation (total of standard values) shall be within ± 15%. (For H eq , Σ ( H eq × K eq) / Σ K eq shall be within 15%) * 2:Predicted rate of change after 60 years at 20℃ standard temperature. * 3:The equivalent shear stiffness Keq and equivalent damping ratio H eq is dependent to each other.The indicated rate of change of H eq are corresponding to both maximum and minimum rate of change of Keq respectively respectively..
6
● Compr Compress essive ive Properties Properties ■ Compressive stiffness KV
σ
● Compress Compressive ive stiffness stiffness KV shall be determined by the following equation. A KV = E C・ H
2 E (1+ 1+2κ 2κS 1S) EC = 2 1+E (1+2κS1 ) /E ∞
σcr
■ Ultimate compressive stress
σL
(γ0,σ0)
Ultimate compressive stress
(γ1,σ1)
● Crit Critica icall stressσ stressσ cr at zero shear strain shall be determined by the following equation. π (Geq・Eb)0.5・S 2 4 However, Eb = E cr(1+2/3 ・κ・S12)/{1 + E cr(1+2/3 ・κ・S12)/E ∞} 1+2/3・ 1+2/3・
σcr( ' γ)
σcr =αc・
(γ2,σ2)
α c:Correction factor determined from our test data Rubber Material X0.4R:αc = 0.88(if S 2 ≧ 5) αc = 0.88(1−0.07(5 − S 2)) (i f 5 > S 2 ) Rubber Material X0.6R:αc =1.45 (if S 2 ≧ 5) αc =1.45−0.3 (5 − S 2) (if 5 > S 2) 1.45(if 1.45−0.3( E CR:3 × G eq
0.624)= 1.872(X 0.392)= 1.176(X0.4R) E (=33 × 0.624 )=1.872 (X0. 0.6R 6R) ) E CR(= (=33 × 0.392 )=1.176 CR(= CR
γL
’ )shall be deter mined by σcr in the following equation. ● Ultimat Ultimate e compressive compressive stress at any any shear strainσ cr(γ (γ) ’γ)=σcr ・ σcr(γ)=σ ( (1 −
γ ) S2
● The ultimate compressive stress shall not exceed the upper limit σ L determined as below and the strain region corresponding to the ultimate strain γ L at 0 compressive stress. 40(if 5.0) 3.0) Rubber Material X0.4R:α X0.4R :αL = 40 (if S 2 ≧ 5.0 ) αL = 40+10(S 2 − 5(if ( )if 5.0 > S 2 ≧ 3.0 ) 400%」 400% 100%」 +9.05)/( S 2 +4.49 +4.49)) × 100% 100%」 γ among「 」、 「S 2 × 0.9 × 100% 」 、 「(5.80 × S 2 +9.05 )/(S 」 L is den ed as minimum va lue among「 Rubber Material X0.6R :αL = 60 (if S 2 ≧ 4.9 ) αL = 48+14(S 2 − 4(if ( )if 4.9 > S 2 ≧ 4.0 ) 60(if 4.9) 4.0) 3.5) 3.0) α ( )if 4.0 > S 2 ≧ 3.5 ) αL =2 2 + 2 8(S 2 − 3(if ( )if 3.5 > S 2 ≧ 3.0 ) L = 2 4 + 2 4(S 2 − 3(if γ among「 」、 「S 2 × 0.9 × 100% 」 、 「(5.00 × S 2 +9.05 )/(S 」 400%」 400% 100%」 +9.05)/( S 2 +4.49 +4.49)) × 100% 100%」 L is den ed as minimum va lue among「
7
γ
Lead Rubber Bearing (LRB) Seismic isolation isolation material certication number by Ministry of Land, Infrastructure and Transport Transport MVBR-04 47
Acquired in February 201 2012 2
● Produ Product ct Dimens Dimension ion Item
t r a p h c a e f o s n o i s n e m i d & e p a h S
Descr iption
Outer diameter
:D0(mm)
Lead plug diameter
:D(mm) i
Effe ctive plane area
:Ar(×10 2mm2)
Thickness of each rubber layer
:t r(mm)
Number of rubber layers
:n
Integrated Type Flange
Total rubber thickness: thickness :H = n x tr(mm) First shape factor S1 = D 0 /(4 x t r) Second shape factor S2 = D0/(n x t r) Diameter of ange
:Df(mm)
Thickness of ange: edge/center
:t f/t ft(mm)
Connec ting bolt PCD :PCD(mm)
Assembled Type Flange
Diameter of connecting bolt hole x qty:db(m (mm) m)x qty q ty
Bolt size (a ssum ssumptio ption) n) :M(d b —3) Thickness of each reinforced steel plate: plate:ts(mm) Total height
:Ht(mm)
Total weig weight ht 1(kN)=1/9.8 (kN)=1/9.8066 0665 5(ton (tonf) f)
● Rubbe Rubber r Materi Material al Rubber code (standard temperatu re 20℃ standard strain y = 100%) 100%) Shear modulus Rubber code G eq(N/mm2) G4
Combination of rubber materials (weight ratio %) Rubber designation Rubber layers (G0.4) Cover rubber
0. 3 8 5
Natural rubber Synthetic rubber
Reinforcement Vulcanization agent, Filler agent and others
60 and ab above
10 and ab above
25 and be below
40 and above
15 and above
40 and below
Properties of rubber materials Item Test Standard Inner rubber Cover rubber
Tensile strength (N/mm2)
Elongation at Break (%)
Hardness (JIS A)
JIS K6251
JIS K6251
JIS K625 3
JIS K6251
17 and above
600 and above
37 ± 5
0. 8 ± 0. 2
12 and above
600 and above
—
—
100% modulus Young's modulus Bulk modulus (N/mm 2) E(N (N/mm /mm 2) E ∞(N/mm 2)
2.2 0
1176
Young's modulus correction factor according to hardness
0. 8 5
● Stee Steell Materi Material al E a c h st e e l p a r t
Anti - r ust tr eatment of ange plate
Reinforced steel plate Flange plate
*1
Connecting plate Lead plug *
*1
Remove rust up to blasting quality of SSPC-SP-10 (SIS Sa 2 1/2) Zinc - rich paint 75 μ m x 1 coat
Material
Preparation
SS 4 00(JIS G 3101)
Primer
SS 4 00(J IS G 3101)
Middle coat
Epox y resin paint 6 0 μ m x 1 coat
Finishing
Epox y resin paint 3 5μ 5 μ m x 1 c oa t
SS 4 00(J IS G 3101) Pb(JIS H 210 5 special)
1 : Optionally SM4 9 0 (JIS G 3106).
Total lm thick ness 170 μ m and above *1: Standard color is gray. *2: Others anti-rust treatment of ange plate than painting are also available. Please contact us for more details.
● Pre Preca cauti utions ons Due to the lead plug embedded in the center of the laminated rubber body, special treatment is required in case the laminated rubber bearing is to be treated as industrial waste. Please contact us if you have any questions.
8
● Shea Shear r Propert Properties ies ■ Equivalent shear stiffness K eq, equivalent damping ratio H eq,
initial stiffness K1, post-yield stiffness K 2, characteristic strength Q d Shear properties of LRB is dependent on shear strain amplitude. The shear strain dependency of each property is expressed by following equations. Post-yield stiffness:K stiffness:K 2 = Kd = CKd・ (Kr+Kp) Shear stiffness of laminated rubber: Kr = Gr・A r/H Kp =αp・Ap/H Additional shear stiffness by lead plug: Where, CKd : post-yield stiffness correction factor due to strain dependency G 0.385N/mm 2 r : shear modulus of rubber0.385N/mm CKd γ : shear strain 2 α p : apparent shear modulus of lead0.583N/mm Characteristics strength:Q strength:Qd = C Qd・σpb・Ap Qd Qd Where,C Qd :characteristic characteristic strength correction factor due to strain dependency C
Q
−0.43
0.779 γ [γ< 0.25 0.25] ] −0.25 [0.25≦ .25≦γ 1.0] ] −δ0 γ [0 γ< 1.0 [1.0 .0 ≦γ< 2.5 2.5] ] γ−0.12[1 △W 2.036 γ 0.41[γ≦ 0.1 0.1] ] 0.145 γ< 0.5 1.106 γ [0.1< [0.1<γ 0.5] ] 1[0.5 ≦γ]
Qd
Kd Keq
δ0 δ
−Qd
2 σ pb : Shear stress at yield of lead7.967N/mm Initial stiffness:K stiffness:K 1 =β・ Kd Where, β:Ra :Ratio tio of initial stiffness stiffness to post-yield stiffness stiffness which is between 10 10 〜 15. (recomme nded value: 13)
Equivalent shear stiffness K eq
Equivalent damping ratio
d Q Keq = +Kd γ・H
2 Heq = ・ π
d Q (β− 1)Kd (β− K (γ・H) (γ・H )2 eq・ eq
Qd γ・H−
■ Temperature dependency Each shear property is corrected to the value at standard temperature of 20℃ by following equations. (Applicable: − 20 ≦ T ≦ 40℃ ) (T: Temperature during inspection) 20 ℃) = Kd(T℃ (T℃)/(1.052 (1.052 − 2.9 55 × 10−3・T+ T+1.89 1.89 5 × 10 − 5・T 2) ● Tempe Temperature rature correction equation :Kd(corrected value at 20℃ −2 Qd(corrected value at 20 20℃ = Qd(T℃ (T℃)/(1.192 (1.1 92 − 1.017 × 10 ・T+ T+2.72 2.72 2 × 10 − 5・T2) : ℃)
● Standard value of temperature dependency Proper ties values Post-yield stiffness K d Characteristic strength Q d
-10℃ 10 % 36%
0℃ 6% 23 %
30℃ -3% -11%
Standard temperatur temperature e (20℃ ) *1 40℃ - 5% - 21%
*
1:20% variation is considered in the rate of change
■ Performance variation The rate of change of main causes (manufacturing variation, aging, temperature change) which affect shear properties shall be shown as below. Rubber materials Properties *2
Manufacturing variation Aging * 3 Ambient (+) side temperature variation (-) side 20℃± 20℃ ± 20℃ (+) si side de Total (-) si side
G 0. 4 Post-yield Characteristic stiffness K d strength Q d Withi Wit hin n ±10% ±10% Wit Within hin ±10% Within +10 % − Within + 6% 6%
Within +23%
Within - 5%
W ithin - 21%
*
2 :The variation of each product (standard value) shall be within ± 20% and variation of all (per project) products (total of standard values) shall be within ± 10%. However, if the total units of products is less than 8 units per project, the variation (total of standard values) shall be within ±15%. (Reference: For compressive stiffness Kv, variation of each product (standard value) shall shall be within ± 20%.)
*
3:Predicted rate of change after 60 years at 20℃ standard temperature. (20% variation is considered in the rate of change)
Within With in +2 +26% 6% With Within in +3 +33% 3% Within -1 -15% Within -3 -31%
9
● Comp Compress ressive ive Properties Properties ■ Compressive stiffness KV
PV
● Compressive stiffness K V shall be determined by the following equation. KV =αV・EC・
A H
EC =
2 E (1+ 1+2κ 2κS A : Laminated rubber plane area 1S) 2 1+E (1+2κS1 ) /E ∞ Ar : Effective plane area Ap : Lead plug plane area A = Ar+Ap αV : Young's modulus correction factor =1.23
P1 P0 KV:Compressive stiffness
P2
*Compared to MVBR-0380, αV has been revised from 1.30 to 1.23.
δV δ2δ0δ1
■ Ultimate compressive stress (refer gure on the right) ● Criti Critical cal stre stress ss σcr at zero shear strain shall be determined by the following equation. π ・1.26 ・α c ・ (G eq・Eb)0.5・S 2 1.26・ 4 1+2/3・ 1+2/3・ However,Eb = E(1+2/3 ・κ・S12)/{1 + E(1+2/3 ・κ・S12)/E ∞} α c : Correction factor determined from our test data based onS 2 IfS 2 ≧ 5 : α if S 2 < 5 : α ・ (S 2 − 5)+ 1 0.25・ c = 1, c = 0.25 σcr =
’ )shall be deter mined by σ cr in ● Ultimat Ultimate e compressive compressive stress at any any shear strainσ cr(γ (γ) the following equation. ’γ)=σcr ・ σcr(γ)=σ ( (1−0.9
γ ) S2
● The ultimate compressive stress shall not exceed the upper limit σ L determined as below and the strain region corresponding to the ultimate strain γ L at 0 compressive stress. σ L = 60 (N/mm 2) γ L = min (400%, S 2 × 100%)
σ σcr (γ0,σ0) σL
Ultimate compressive stress
(γ1,σ1) σcr( ' γ)
(γ2,σ2)
γL
10
γ
Natural Rubber Bearing (NRB) Seismic isolation isolation material certication number by Ministry of Land, Infrastructure and Transport Transport MVBR-0295 (N3, G3, G5) MVBR-04 46 (G4)
Acquired in January 2006 Acquired in February 201 2012 2
● Produ Product ct Dimens Dimension ion I tem
t r a p h c a e f o s n o i s n e m i d & e p a h S
Description
Outer diameter
:D0(mm)
Inner diameter
:D(mm) i
Effec tive plane area
:A(× 102mm2)
Thickness of each rubber layer
:t r(mm)
Number of rubber layers
:n
Integrated Type Flange
Total rubber thickness: thickness :H = n x tr(mm) First shape factor S1 =(D 0 —D i)/(4 x t r) Second shape factor S2 = D 0/(n x t r) Diameter of ange
:Df(mm) :t f/t ft(mm)
Thickness of ange: edge/center
Connect ing bolt PCD :PCD(mm)
Assembled Type Flange
(mm) m)x qt q ty Diameter of connecting bolt hole x qty:db(m Bolt size (assumption) :M :M(d b—3) Thickness of each reinforced steel plate: plate:ts(mm) Total height
:Ht(mm)
Total weigh wei ghtt 1 (kN) (kN )= 1/9. 1/9.80 8066 665 5(to (tonf nf) )
● Rubbe Rubber r Materi Material al Rubber code (standard tempera ture 20℃ standard strain y = 100%) Rubber Shear modulus Rubber code designation Geq (N/mm2)
Combination of rubber materials (weight ratio %) Rubber designation
Natural rubber Reinforcement Vulcanization Synthetic rubber agent, Filler agent and others
N3
G 0. 3 0
0. 2 9 4
G 0. 3 0
5 5 a n d a b ov e
15 and above
25 and below
G3
G 0. 3 5
0.3 4 3
6 0 a n d a b ov e
10 and above
25 and below
G4
G 0. 4 0
0.3 92
Rubber G0.35 layers G0.4 0
6 0 a n d a b ov e
10 and above
25 and below
G5
G 0. 4 5
0.4 41
G0.4 5
6 5 a n d a b ov e
10 and above
2 0 and below
4 0 and above
15 and above
4 0 an d b el ow
C ov e r r u bb e r Properties of rubber materials Tensile strength (N/mm2) JIS K6251
Young's modulus E(N (N/mm /mm 2)
Bulk modulus E ∞(N/mm2)
Young's modulus correction factor according to hardness
0.6 ± 0.2
1.6 4
12 00
0. 8 5
0.7 ± 0.2
1.92
12 00
0. 8 5
37 ± 5
0 . 8 ± 0. 2
2.2 0
12 00
0. 8 5
40 ± 5
0 . 9 ± 0. 2
2.47
13 00
0. 8 5
Elongation at Break (%)
Hardness (JIS A)
100% modulus (N/mm2)
JIS K6251
JIS K6253
JIS K6251
G 0.3 0 14 and above 60 0 and above
33 ± 4
G 0.3 5 16 and above 60 0 and above
Inner rubber G 0.4 0 17 and above 60 0 and above
33 ± 4
G 0.4 5 17 and above 60 0 and above
—
—
Item Test Standard
Cover r ubber
12 and above 60 0 and above
● Stee Steell Materi Material al Each steel par t
A nti- rust treatment of ange plate Material
P re reparation Remove r us ust up to blasting quality of SSP CC- SP SP -1 -10 (SIS Sa 2 1/2)
Reinf orced steel plate
S S 4 00(JIS G 3101)
Flange plate *1
S S4 S4 00 00(J IS IS G 3101)
M id id dl dl e c oa oa t E po pox y r es esin p ai ain t 6 0 μ m x 1 c oa oat
Connecting plate *1
S S4 S4 00 00(JIS G 3101)
Finishing Epox y resin paint 35 μ m x 1 coat Total lm 170 μ m and above above thickness
*1:: Optionally SM 490 (JIS G 3106). *1 3106).
Primer
Zinc - rich paint 75 μ m x 1 coat
*1: Standard color is gray. *2: Others anti-rust treatment of ange plate than painting are also available. Please contact us for more details.
11
● Shea Shear r Prope Properties rties Q
■ Shear stiffness K h
P0
NRB shows linear restoring force characteristics in horizontal direction. Shear stiffness K h shall be expressed in the following equations. Kh =
Kh
eq・A eq G H
−δ0
δ0
δ
−P 0
■ Temperature dependency
δ0 : P0 : Kh Geq :
Displacement equivalent to 100% strain Maximum load : Shear stiffness (secant (secant stiffness) Shear modulus
Each shear property is corrected to the value at standard temperature of 20℃ by following equations. (Applicable range: − 10 ≦ T ≦ 40℃ ) (T: Temperature Temperature during inspection) (T℃)/(1.052 (1.052 − 2.9 2.955 55 × 10−3・T+ T+1.8 1.8 95 × 10 −5・T2) ● Temperature correction equation :Kh (corrected value value at 20℃ ) =Kh(T℃ (Applied to all rubber materials) ● Standard value of temperature dependency Proper ties values Shear stiffness K h
-10℃ 8%
0℃ 6%
Standard Standar d temperature temperature (20℃ ) *1
30℃ 4 0℃ − 3 % − 5%
*
1:20% variation is considered in the rate of change
■ Performance variation The rate of change of main causes (manufacturing variation, aging, temperature change) which affect shear properties shall be shown as below. Rubber mater ials Proper ties Manufacturing variation Aging * 3 Ambient temperature variation 20℃± 20℃ ± 20℃
Total
*2
(+) side
C om m on Shear stif f ness K h ±10% Within +10%
*
2:The variation of each product (standard value) shall be within ± 20% and variation of all (per project) products (total of standard values) shall be within ±10%. However, if the total units of products is less than 8 units per project, the variation (total of standard values) shall be within ±15%. (Reference: For compressive stiffness Kv, variation of each product (standard value)
Within + 6% 6%
shall be within within ± 20%.) *
(-) side
Within − 5% 5%
(+) side (-) side
Within + 26 26 % Within − 15%
3:Predicted rate of change after 60 years at 20℃ standard temperature. (20% variation is considered in the rate of change)
● Comp Compress ressive ive Properties Properties PV
■ Compressive stiffness KV ● Compress Compressive ive stiffness stiffness KV shall be determined by the following equation. A KV = E C・ H
EC =
2 E (1+2κ 2κS 1S) 2 1+E (1+2κS1 ) /E ∞
P1 P0 P2
KV:Compressive stiffness
■ Ultimate compressive stress (refer gure on the right) ● Critical stress σcr at zero shear strain shall be determined by the following equation. σcr =π /4 ・α c ・ (Geq・Eb)0.5・S 2 /4・ Eb = E(1+2/3 1+2/3・ 1+2/3・ However,E However, ・κ・S12)/{1 + E(1+2/3 ・κ・S12)/E ∞} α c:Correction factor determined from our test data based on S 2
δV δ2δ0δ1 σ
Ultimate ● Ultimate compressive stress at any shear strain σ cr’( γ ) shall shall be determined determined compressive σcr by σ cr in the following equation. stress σcr(γ)=σ (1 −βc・γ /S2) ’ cr ・ (γ0,σ0) c : β : Correction factor determined from our test data based onS onS2 σL (γ1,σ1) α c are shown in the values below. c and β σcr( ' γ) IfS2 ≧ 5 : α c = 1、βc= 0.76 0.10・ +1、β 0.15・ +1} IfS2 < 5 : α ・ (S2 − 5)+1 、βc= 0.76/{0.15 ・ (S2 − 5)+1 } c = 0.10 ● The ultimate compressive stress shall not exceed the upper limit σ L determined as below (γ2,σ2) and the strain region corresponding to the ultimate strain γL at 0 compressive stress. 2 G0.30、G0.35 G0.35: For rubber materials (designation) G0.30、 :σ L = 40 N/mm ( ) 2 For rubber materials (designation) G0.40 、G0.45: ( ) G0.40、 G0.45:σ L = 60 N/mm 100%) γ L = min (400%,S2 × 100 %)
12
γL
γ
Elastic Sliding Bearing Seismic isolation isolation material certication number by Ministry of Land, Infrastructure and Transport Transport MVBR-034 9 (SL Series) MVBR -04 69 (SP Series, G0.4 Type) MVBR -0479 -0479(SK (SK Series, G0.4 Type) Type)
Acquired in June 2007 Acquired in Decembe r 201 2012 2 Acquired in May 201 2013 3
● Produ Product ct Dimens Dimension ion I tem
Plan and Sec tional View
Outer diameter
:D0(mm)
Inner diameter
:Di(mm)
Effective diameter (outer diameter of sliding Plate) : D(mm) s
Effec tive plane area
2
:A(× 10 mm2)
Thickness of each rubber layer
:t r(mm)
Number of rubber layers
:n
Total rubber thickness: thickness :H = n x tr(mm)
Sliding plate
s n First shape factor S1 =(D 0 —D i)/(4 x t r) o i s n Second shape factor S2 = D 0/(n x t r) e m Diameter of ange i :Df(mm) D
Outer base plate : L1(mm) Outer SUS plate : L 2(mm) Inner SUS plate : L 3(mm)
:t f/t ft(mm)
Thickness of ange: edge/center
Total thickness : t s = tb + tst(mm)
Connect ing bolt PCD :PCD(mm)
Connecting bolt hole position
(mm) m)x qt q ty Diameter of connecting bolt hole x qty:db(m
: Lb1,L b2(mm)
Bolt size (assumption) :M :M(d b—3)
Diameter of connecting bolt hole x qty
Thickness of each reinforced steel plate: plate:ts(mm)
: db(mm)x qty
Total height
Bolt size (assumptio n) : M(d M(d b—5)
:Ht(mm)
Total weigh wei ghtt 1 (kN) (kN )= 1/9. 1/9.80 8066 665 5(to (tonf nf) )
Weight of sliding plate :(kN) :(kN)
● Rubbe Rubber r Materi Material al Notation of rubber kind (standard tempera ture 20℃ Series
standard strain y = 100%) Shear modulus Rubber code Rubber name G eq(N/mm2)
SK
G4
G 0. 4
0.392
SL
GC
G1. 2
1.18
Composition of rubber materials (weight ratio %) Rubber name
Natural rubber Reinforcement Vulcanization Synthetic rubber agent, Filler agent and others
G0.4
60 or above
10 or above
G1.2
6 0 o r ab ov e
10 or above
2 5 o r b el o w
Cover r ubber
4 0 or above
15 or above
4 0 o r b el o w
Rubber layers
2 5 o r b el o w
Properties of rubber materials Elongation at Break (%)
Hardness (JIS A)
100% modulus (N/mm2)
G0.4
Tensile strength (N/mm2) JIS K6251 (ISO 37) 17 or above
JIS K6251 (ISO 37) 6 0 0 o r a b ov e
JIS K6253 (ISO 7619-1) 37 ± 5
JIS K6251 (ISO 37) 0. 8 ± 0. 2
2. 20
12 00
0. 8 5
G1.2
15 or above
5 50 or above
65 ± 5
2. 4 5 ± 0. 6 9
5.8 8
1569
0. 5 3
Cover r ubber
12 or above
6 0 0 o r a b ov e
—
—
Item Test Standard Inner rubber
Young's modulus E(N/mm2)
Bulk modulus E ∞(N/mm2)
Young's modulus correction factor according to hardness
● Sl Slidin iding g Material and Sliding Sliding Plate Coating Composition of sliding material and sliding plate coating (weight ratio %) SK S e r i e s
Tetra uoroethylene
Filler
SL Series
Tetra uoroethylene
Glass ber
Sliding material
80
20
Sliding mater ial
80
15
Sliding plate coating
55
45
Sliding plate
13
Molybdenum disulde 5
SUS ( polished by # 4 00 and above)
● Stee Steell Materi Material al Steel material for each par t
Anti- r ust treatment of base plate Remove rust up to blasting quality of SSPC-SP-10 (SIS Sa 2 1/2) Zinc - rich paint 75 7 5 μ m x 1 c o at
Mater ial
Pr eparation
Reinf or ced steel plate
SS 4 0 0 (JIS G 3101)
Primer
Flange plate
SS 4 0 0 (JIS G 3101)
Middle coat
Epox y resin paint 6 0μ 0 μ m x 1 c oa t
Finishing
Epox y resin paint 3 5 μ m x 1 coat
Stainless SUS304, SUS316 plate (JIS G 4304, G 4305)
Sliding plate
Total lm thickn thickness ess 170 μ m and above *1: Standard color is gray. *2: Other kinds of anti-rust treatment are also available. Please contact us for more details.
Base Bas e plate plate SS400 (JIS (JIS G 31 3101)
● Shea Shear r Prope Properties rties ■ Initial stiffness K1 Initial stiffness K1 of elastic sliding bearing is expressed in the following equations. eq・A eq G H Shear modulus G eq for computation of the initial stiffness shall be adopted from the values below.
K1 =
Shear modulus G eq(N/mm2)
S K ser i e s 0. 4 9
SL ser i es 1.18
K1
Q
Qd
K1
※ Please note that that starting from MVBR-0469, the shear modulus G eq for computation of the initial stiffness have been changed.
δ0
■ Compressive stress dependency and velocity dependency of friction coefcient
K1
δ
−Qd
μ : Friction coefcient P V: Compressive load K1 : Initial stiffness δ : Horizontal deformation Qd : Yield load (characteristic strength)
Compressive stress dependency and velocity dependency of the friction coefcient μ are expressed in the following equations. ● For SK series ( μ 0.01 0.011, Type G0.4) − 0.510 μ=0.0424 ・σ ・V0.0894 0.0424・ ● For SL series ( μ 0.13, 0.13, Type G1.2) G1.2) μ=( ・σ) ・V0.0863 0.112 − 0.00276 0.00276・ 2 σ : compress compressve ve stress (N/mm ) V: velocity (mm/s)
■ Temperature dependency of initial stiffness ● Standard values for temperature dependency Proper ties values SK series Initial stiffness SL series
-10℃ 0℃ Within +8% Within +6% Within +14% Within +9%
Standard temperatu temperature re (20℃ ) *1
30℃
4 0℃
Within -3% Within -4%
Within -5% Within -8%
*
1:Expected change ratio of initial stiffness at each temperature to the initial stifness at 20 deg. celcius. 20% variation is considered in the rate of change.
■ Property variation Property variation by each factors such as manufacturing tolerance, aging and temperature. Series Properties Manufacturing tolerance * 2 Aging * 3 Ambient temperature (+) side variation (-) side 20℃± 20℃ ± 20℃
Total
SK series SL series ( μ =0.011, type G0.4) ( μ =0. =0.1 13, type G1 G1.2) Fricition Initial Fricition Initial coefcient μ stiffness K1 coefcient μ stiffness K1 With Wi thin in ± 40% Wi With thin in ± 30% Wi With thin in ± 20% Wi With thin in ± 30% − Within +10 % − Within +16 % − −
Within in +40 +40% % (+) side With (-) side Within - 40 40 %
Within + 6%
−
Within +9 %
Within - 5%
−
Within - 8%
Within With in +46 +46% % Within - 35 35%
Within With in +2 +20% 0% Within - 20 20 %
Within With in +5 +55% 5% Within - 38 38%
14
*
2:The vari ation fo r both fri ction coefcient μ and initial stiffness K1 of each product shall be within the required variation range. Reference: For compressive stiffness Kv, variation shall be within ± 20% for SL series series and ± 30% for SK series. * 3:Predicted rate of change after 60 years at 20℃ standard temperature. 20% variation is considered in the rate of change.
● Compr Compress essive ive Properties Properties ■ Compressive stiffness KV
PV
● Design Compressive stiffness K V is calculated by the following equations. 2 A E (1+2κ 2κS 1S) EC = 2 H 1+E (1+2κS1 ) /E ∞ newly introduced in MVBR-0469 MVBR-0469) α :0.85 ( (newly ) V
KV =αV・E C・
P1 P0 KV:Compressive stiffness
P2
■ Ultimate compressive stress δV
(refer to the gures on the right)
δ2δ0δ1
● Since bearings will slide slide before reaching to the buckling shear strain γ L, ultimate compressive stress takes constant value as below regardless of the deformation of bearings. σ 80(N (N/mm /mm 2) For SK series ( μ =0.011, type G0.4) : σ L = 80 For SL series ( μ =0. =0.1 13, type G1 G1.2) .2) : σ L = 50 50(N (N/mm /mm 2) σcr ● The ultimate deformation shall be determined by the relationship between bearing diameter and sliding plate dimension. For SK series : 1275mm , For SL series : 700mm. (γ0,σ0) σL
Ultimate compressive stress
(γ2,σ2)
γL
15
Design Characteristics of High Damping Rubber Bearing Dimension Dimen sion and Performance Properties of H-RB ● HH-Series HH-Series(T (Total otal Rabber Rab ber Thickness 200mm)
Code Designat Desi gnation ion Compo Compound und
X4R Characteristics
Shear Modulus Equivalent Damping Ratio (N/mm2)
X0.4 R
0. 3 9 2
0. 2 2 0
HH06 HH 060X 0X4R 4R HH HH06 065X 5X4R 4R HH HH07 070X 0X4R 4R HH HH07 075X 5X4R 4R HH HH080 080X4 X4RR HH HH085 085X4 X4RR HH HH09 090X 0X4R 4R HH HH09 095X 5X4R 4R HH HH1100 00X4 X4RR HH HH1110X 0X4R 4R HH HH12 120X 0X4R 4R HH HH1130 30X4 X4RR HH HH1140 40X4 X4RR HH HH1150 50X4 X4RR
Outer Diameter (mm) (mm) 600 Inner Diameter (mm)
15
Effective Plane Area 2 82 82 6 (×102mm2) Thickness of One 4 .0 Rubber Layer (mm) Number of Rubber 50 Layers (—) Total Rubber 20 0 Thickness (mm) First Shape Factor(—) (—) 36.6
6 50
700
75 0
800
850
900
95 0
1000
1100
1200
1300
1400
1500
15
15
15
20
20
20
20
25
55
55
55
65
65
3 31 317
3 84 847
4 41 416
5 02 023
5 67 671
63 59 59
70 85 85
78 49 49
9 48 48 0
4. 4
4.7
5. 0
5. 4
5.7
6. 0
6. 4
6.7
7.4
8. 0
8.7
9 .5
10
45
43
40
37
35
33
31
30
27
25
23
21
20
198
202
200
200
200
198
198
201
200
20 0
200
200
20 0
36.1
36. 4
3 6. 8
36.1
3 6. 4
36.7
3 6. 3
3 6. 4
3 5. 3
3 5. 8
3 5. 8
35.1
3 5. 9
1128 6 13 13 24 24 9 15 15 36 361 17 1 763 8
Second Shape Factor 3. 0 0 3. 28 3. 4 6 3.75 4 .0 0 4.26 4. 5 5 4.79 4.98 5.51 6. 0 0 6 .5 0 7.02 7.50 (—) Dimensions Diameter of Flange 900 9 50 1000 1100 1150 1200 1250 1300 14 00 1500 1600 1700 1800 1900 (mm) Thickness of Flange 22/2 22 /28 8 22/2 22/28 8 22/2 22/28 8 22/2 22/28 8 24/3 24/32 2 24/3 24/32 2 28/3 28/36 6 28/3 28/36 6 28/3 28/36 6 30/3 30/38 8 32/ 32/40 32/ 32/40 50/ 50/1 100 50 50//100 (mm) Diameter of Bolt Center 7 75 8 25 875 95 0 1000 1050 1100 1150 1250 1350 14 50 1550 1650 1700 (mm) Diameter (Number) of φ33×122 φ33×1 φ33×1 φ33×122 φ33×1 φ33×122 φ33×1 φ33×122 φ33×1 φ33×122 φ33×1 φ33×122 φ33×1 φ33×122 φ33×1 φ33×122 φ39×1 φ39×122 φ39×1 φ39×122 φ39×1 φ39×122 φ39×1 φ39×122 φ42×1 φ42×122 φ42×12 φ42×12 Fixing bolts (mm) Physical
Supposed Bolt
(—) M30
Thickness of One Reinforcing Steel Plate (mm)
M30
M30
M 30
M30
M30
M 30
M36
M36
M 36
M36
M39
M39
3.1
3.1
3.1
4. 4
4.4
4.4
4. 4
4.4
4.4
4. 4
4.4
5. 8
5. 8
Height
407 7.9 (mm) 40
390. 39 0.4 4
388. 38 8.3 3
376. 37 6.9 9
422. 42 2.2 2
413.1
410. 0.8 8
402. 40 2.4 4
400. 40 0.6 6
390. 39 0.2 2
385. 38 5.6 6
376. 37 6.9 9
515. 5.5 5
510. 0.2 2
Total Weight
(KN) 6.5
7.0
7.9
8. 9
11.9
12.9
14.6
15.6
17.3
20.1
2 3. 3
26. 0
50.1
55 . 2
29
31
36
39
42
46
49
52
57
62
68
73
78
Critical Stress γ=0 σcr (N/mm2)
Compression
3.1
M 30
26
(γ0,σ0)(0,20) (0,23) (0,25) (0,28) (0,30) (0,33) (0,35) (0,38) (0,40) (0,40) (0,40) (0,40) (0,40) (0,40) Ultimate Compressive (0.7,20) ,20) (0.7 (0.7,23)(0.8,25)(0.8,28)(0.8,30)(0.9,33)(0.9,35)(1.0,38)(1.1 ,23)(0.8,25)(0.8,28)(0.8,30)(0.9,33)(0.9,35)(1.0,38)(1.1,40) ,40) (1.6,40)(2.1 (1.6,40)(2.1,40)(2.6,40) ,40)(2.6,40) (3.1 (3.1,40)(3.6,40) ,40)(3.6,40) (γ1,σ1)(0.7 Stress (N/mm2)(γ ,σ ) (2.7,3 ,3) ) (2. (2.9,3 9,3) ) (3.1, 1 ,3) 3 ) (3. (3.3,3 3,3) ) (3. (3.6,4 6,4) ) (3.8 (3.8,4) ,4) (3.9 (3.9,6 ,6) ) (3.9 (3.9,8) ,8) (4. (4.0, 0,10) 1 0) (4. (4.0, 0,15)(4.0,20)(4 0 ,20)(4.0,2 .0,25)(4 5)(4.0, .0,31 31)(4.0 )(4.0,36 ,36) ) 2
Properties Compressive Stiffness
2
1700 3 (×10 kN/m) Nominal Long Term +0.0 4.6 -1.5 Compressive Stress(N/mm ( N/mm2) Nominal Long Term 1300 Column Load (kN) Allowable Tensile Stress 1.0 2 (γ =1 =100 00%) %)(N/m (N/mm m ) Initial Stiffness 3.49 3.4 9 (×103kN/m) Post Yield Stiffness 0.349 (γ =100%) (×103 kN/m) (×10 Shear Characteristic Properties 41.0 41 .0 Strength (kN) (γ=100%) Equivalent Shear 0. 55 4 Stiffness(×103kN/m) Equivalent Damping 0.22 0. 220 0 Ratio (—)
2 02 0
5.5
+0.0 -1.8
22 9 0
6.1
+0.0 -2.0
26 6 0
7.0
+0.0 -2.3
3 0 30
7.8
+0.0 -2.6
3420
8.6
+0.0 -2.9
3 870
9.5
+0.0 -3.2
4300
10.3
+0.0 -3.4
4700
10.9
+0.0 -3.6
56 9 0
11.0
+0.0 -3.7
6 78 0
11.0
+0.0 -3.7
796 0
11.0
+0.0 -3.7
92 30
11.0
+0.0 -3.7
10600
11.0
+0.0 -3.7
1830
2340
3090
3920
4900
6070
7310 731 0
8570
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
4.14
4.70
5.45 5.4 5
6. 21 6.21
7.02
7.93
8. 82 8.82
9. 64 9.64
11.7
13.9
16.4
19.0
21.8
0.414 0.414
0.470
0.545
0.621 0.621
0.702
0.793
0.882
0.964
1.17 17
1.39
1.64
1.90
2.18 2.1 8
4 8.1
55.8
64.1
72.9
82.3
92. 2
103
114
137
164
192
223
256
0 .6 5 7
0.74 6
0. 8 6 6
0. 98 6
1.11
1.26
1.4 0
1.53
1.86
2.21
2 .6 0
3. 02
3.46
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
0.22 0. 220 0
16
10400 12400 14600 16900 19400
Code Designatio Desig nation n Compo Compound und
X 6R
Shear Modulus Equivalent Damping Ratio (N/mm2)
X0.6R
0.620
Characteristics
0. 24 0
HH060X6RR HH065X6R HH070X6 HH060X6 HH070X6RR HH075X6R HH080X6R HH080X6R HH085X6R HH085X6R HH090X6R HH090X6R HH095X6R HH095X6R HH100X6R HH100X6R HH110X6R HH110X6R HH120X6R HH120X6R HH130X6R HH130X6R HH140X6R HH140X6R HH1 HH150X6R 50X6R HH160X6R HH160X6R
Outer Diameter (mm) (mm) 600
650
70 0
75 0
800
850
900
95 0
1000
1100
1200
1300
14 00
1500
1600
Inner Diameter (mm) 15
15
15
15
20
20
20
20
25
55
55
55
65
65
80
3317 331 7
3847
4416 441 6
5023
5671
6359
7085
7849
9480
4.4
4.7
5.0
5.4
5.7
6.0
6.4
6.7
7.4
8.0
8.7
9.5
10.0 10.0
10.4
45
43
40
37
35
33
31
30
27
25
23
21
20
19
198
202
200
2 00
20 0
198
198
201
200
200
2 00
20 0
20 0
198
36.1
36.4
36.8
36.1
36.4
36.7
36. 3
36.4
35.3
35.8
3 5.8
35.1
35.9
36.5
3. 46
3 .75
4.00
4.26
4 .55
4.79
4. 98
5. 51
6.00
6.50
7.02
7.50
8.10 8.1 0
10 00 00
110 0
115 0
120 0
125 0
13 00 00
14 00 00
15 00 00
160 0
170 0
18 00 00
19 00 00
2 00 00 0
Effective Plane Area 2826 (×102mm2) Thickness of One 4.0 Rubber Layer (mm) Number of Rubber 50 Layers (—) Total Rubber 200 Thickness (mm) First Shape Factor(—) (—) 36.6
Second Shape Factor 3.00 3 .28 (—) Dimensions Diameter of Flange 9 00 00 95 50 0 (mm) Thickness of Flange 22/28 22/ 28 22/ 22/28 28 (mm) Diameter of Bolt Center 7 75 825 (mm) Diameter (Number) of φ33×12 φ33×12 Fixing bolts (mm) Physical
Supposed Bolt
(—) M30
Thickness of One R einforcing 3.1 Steel Plate (mm)
Compression
22/28 22/ 28 22/ 22/28 28 24 24/32 /32 24 24/32 /32 28/ 28/36 36 28/ 28/36 36 28 28/36 /36 30 30/38 /38 32/ 32/40 40 32/ 32/40 40 37 37/4 /45 5 42/5 42/50 0 50/1 50/110 875
95 0
100 0
1050
1100
1250
1350
1450
1550
1650
1750
1800
M30
M30
M30
M 30
M30
M30
M30
M 36
M 36
M36
M36
M39
M 39
M42
3.1
3.1
3.1
4. 4
4.4
4.4
4.4
4. 4
4.4
4.4
4.4
5. 8
5. 8
5.8
410. 0.2 2
522. 52 2.0 0
407 7.9 39 390. 0.4 4 38 388. 8.3 3 37 376. 6.9 9 42 422. 2.2 2 (mm) 40
413.1
410. 0.8 8
Total Weight
(KN) 6.5 43
1150
φ33×12 φ33×12 φ33×12 φ33×12 φ33×12 φ33×12 φ39×12 φ39×12 φ39×12 φ39×12 φ42×12 φ42×16 φ45×12
Height
Critical Stress γ=0 σcr (N/mm2)
11286 13249 15361 17638 20056 11286
402. 40 2.4 4 400 400.6 .6 39 390. 0.2 2 38 385. 5.6 6 37 376. 6.9 9 40 405. 5.5 5
7.0
7.9
8.9
11.9
12.9
14.6 14.6
15.6
17.3 17.3
20.1
23.3
26.0
33.9
39.9
65.1 65.1
52
58
69
78
89
101
113
122
136
148
160
173
185
200
(γ0,σ0)(0,22)(0,30)(0,35)(0,42)(0,48)(0,52)(0,56)(0,59)(0,60)(0,60)(0,60)(0,60)(0,60)(0,60)(0,60) Ultimate Compressive (1.5,22) 22)(1.4 (1.4,30)(1.4,35 ,30)(1.4,35) )(1.5, 42) 42)(1.6, (1.6,48) 48)(1.8, (1.8,52)(2.1,56) 52)(2.1,56)(2. (2.3,5 3,59) 9)(2. (2.5,6 5,60) 0)(3.1,60)(3.6, (3.1,60)(3.6,60) 60)(3. (3.8,6 8,60) 0)(3. (3.8,6 8,60) 0)(3. (3.9,6 9,60) 0)(3. (3.9,6 9,60) 0) (γ1,σ1)(1.5, Stress (N/mm2)(γ ,σ )(2 .7, 4) 4) (3.0,5) (3.1,6) (3 .4 ,7) ( 3. 3.4 ,11)(3.5,17)(3.5, 23 23)(3.6, 29 29)(3.6,3 4) 4)(3 .7, 46 46)(3.7,56) — — — — 2
Properties Compressive Stiffness
2
197 970 0 3 (×10 kN/m) Nominal Long Term +0.0 6.6 -2.0 Compressive Stress(N/mm ( N/mm2) Nominal Long Term 1860 Column Load (kN) Allowable Tensile Stress 1.0 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 5.19 (×10 3kN/m) Post Yield Stiffness 0.519 (γ =100%) (×10 3kN/m) Shear Characteristic Properties 71.5 Strength (kN) (γ=100%) Equivalent Shear 0. 876 Stiffness(×103kN/m) Equivalent Damping 0.24 0. 240 0 Ratio (—)
2340 23 40 8.1
+0.0 -2.7
2660 26 60 9.1
+0.0 -3.0
3090 30 90 10.7
+0.0 -3.5
351 35 10 12.0
+0.0 -3.9
3970 39 70
4490 44 90
+0.0
+0.0 -5.0
13.4 -4.4 15.0
4980 49 80 15.0
+0.0 -5.0
5450 54 50 15.0
+0.0 -5.0
6590 65 90 15.0
+0.0 -5.0
7860 78 60 15.0
+0.0 -5.0
9220 92 20 1070 10700 0 123 12300 00 142 4200 00 15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
2690
3500
4710 471 0
6050
7620
9540 10600 11800 14200 16900 19900 23000 26500 301 30100 00
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
6 .1 .15 5
6 .99 6.99
8.10
9.23
10.4
11.8
13.1
14.3
17.4 17 .4
20.7
24 .3
28. 3
32.4
37.3
0.615
0.699 0.69 9
0.810
0.923 0.92 3
1.04 1.04
1.18 18
1.31
1.43
1.74
2.07
2.43 2.4 3
2.83
3.24
3.73
83.9 83. 9
97.3 97.3
112
127
143
161
179
199
2 40 240
285
335
389
446
507
1.0 4
1.18
1.37
1.56
1.76
1.99
2.21
2. 4 2
2. 9 4
3. 50
4.11
4.77
5.47
6. 29
0.24 0. 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0 0. 0.24 240 0
17
● HL-Series(T (Total otal Rabber Thickness 160mm)
Code Designat Desi gnation ion Compo Compound und
X4R Characteristics
Shear Modulus Equivalent Damping Ratio (N/mm2)
X0.4 R
0. 3 9 2
0. 2 2 0
HL06 HL 060X 0X4R 4R HL HL06 065X 5X4R 4R HL HL07 070X 0X4R 4R HL HL07 075X 5X4R 4R HL HL08 080X 0X4R 4R HL HL08 085X 5X4R 4R HL HL09 090X 0X4R 4R HL HL1 100 00X4 X4R R HL HL1 110X 0X4R 4R HL HL1 120 20X4 X4R R HL HL1 130 30X4 X4R R
Outer Diameter (mm) (mm)
600
650
70 0
75 0
800
850
900
1000
1100
1200
1300
Inner Diameter (mm)
15
15
15
15
20
20
20
25
55
55
55
3317
3847
4 416
50 23
5671
6 3 59
78 4 9
9 480
11286
1324 9
4.4
4.9
4.85
5.1
5 . 25
5 .6 5
6 .3 5
7. 2
7.7
8 .0
37
34
34
33
32
30
26
23
22
21
163
167
165
168
168
170
165
166
169
168
37.0
36.1
34.9
37.9
3 8. 2
39. 5
3 8 .9
3 8. 4
3 6. 3
37.2
3 8. 9
3.70
3. 9 9
4.20
4.55
4.75
5 .0 6
5.31
6 .0 6
6 .6 4
7.08
7.74
Effective Plane Area 28 2 6 (×102mm2) Thickness of One 3. 9 5 Rubber Layer (mm) Number of Rubber 41 Layers (—) Total Rubber 162 Thickness (mm) First Shape Factor(—) (—) Second Shape Factor (—) Physical Dimensions Diameter of Flange
900 950 1000 1100 1150 1200 1250 14 00 1500 1600 1700 (mm) Thickness of Flange 22 /28 22 /28 2 2 /2 8 2 2 /2 8 24/3 2 24/3 2 28/36 28/3 6 30/3 8 32 /4 0 32/4 0 (mm) Diameter of Bolt Center 7 75 82 5 875 950 1000 1050 1100 1250 1350 14 50 1550 (mm) Diameter (Number) of φ33×1 φ3 3×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ39×1 φ39×12 2 φ39×1 φ39×12 2 φ39×1 φ39×12 2 φ39×1 φ39×12 2 Fixing bolts (mm)
Supposed Bolt
(—)
Thickness of One Reinforcing Steel Plate (mm)
M30
M30
M30
M30
M 30
M 30
M 30
M 36
M 36
M36
M36
3.1
3.1
3.1
3.1
4.4
4.4
4.4
4.4
4. 4
4. 4
5. 8
3 30. 4
324.9
32 3. 2
373.1
3 6 8. 4
369.1
347.1
3 3 8. 4
3 41.8
3 6 4 .0
5.7
6. 3
6. 9
8.1
11.0
12.1
13.7
15.9
18.4
21.8
27.5
34
38
40
45
48
51
54
62
68
72
79
Height
(mm) 3 42.0
Total Weight
(KN)
Critical Stress γ=0 σcr (N/mm2)
(0,2 ,27) 7) (0,3 (0 ,30 0) (0,3 (0,32) 2) (0,3 (0,35 5) (0,3 (0,38 8) (0,4 (0,40 0) (0 (0,4 ,40 0) (0,4 (0,40 0) (0,4 (0,40 0) (0 (0,4 ,40 0) (0,4 (0,40 0) (γ0,σ0) (0 Ultimate Compressive (0.8,30) (0.9,32) (0.9,35) (1.0,38) (1.0,38) (1 (1.1 .1,40) ,40) (1 (1.4,40) .4,40) (2.1,40) 1,40) (2.7 (2.7,40) ,40) (3.2,40) (3.8,40) (γ1,σ1) (0.8,27) (0.8,30) Stress 2 (N/mm ) (3.3,3) (3.5,4) (3.5 ,4) (3.7,4) (3.9 (3.9,6 ,6) ) (3.9 (3.9,8) ,8) (4.0 (4.0,,11) (4.0, (4.0,13) (4.0,21 (4.0,21) ) (4.0,27 (4.0,27) ) (4. (4.0,3 0,31 1) (4.0,38 (4.0,38) ) (γ2,σ2) (3.3,3)
Compression Properties Compressive Stiffness
2110 3 (×10 kN/m) Nominal Long Term +0.0 Compressive Stress(N/mm ( N/mm2) 6.9 -2.3 Nominal Long Term 19 40 Column Load (kN) Allowable Tensile Stress 1.0 2 (γ =1 =100 00%) %)(N/m (N/mm m ) Initial Stiffness 4.31 (×103kN/m) Post Yield Stiffness 0. 431 (γ =100%) (×103 kN/m) (×10 Shear Characteristic Properties 41.0 Strength (kN) (γ=100%) Equivalent Shear 0 .6 8 4 Stiffness(×103kN/m) Equivalent Damping 0. 2 2 0 Ratio (—)
24 50 7.8
+0.0 -2.6
276 0 8.4
+0.0 -2.8
324 0 9.6
+0.0 -3.2
36 20 10.2
+0.0 -3.4
4110 11.0
+0.0 -3.7
4560 11.0
+0.0 -3.7
57 70 11.0
+0.0 -3.7
6 8 90 11.0
+0.0 -3.7
8 05 0 11.0
+0.0 -3.7
9 59 0 11.0
+0.0 -3.7
25 8 0
32 50
4220
5130
624 0
6 9 90
8 6 30
10 400
124 00
14 600
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
5. 03
5.70
6.61
7.37
8 .3 4
9. 26
11.7
14.1
16.5
19.5
0. 5 03
0 .5 7 0
0.661
0.737
0. 8 3 4
0. 92 6
1.17
1.41
1.65
1.95
48.1
55 . 8
64.1
72. 9
8 2 .3
9 2. 2
114
137
16 4
192
0.799
0. 9 05
1.05
1.17
1.32
1. 47
1.86
2 . 24
2.61
3 .0 9
0. 2 2 0
0. 2 2 0
0. 2 20
0. 2 20
0. 2 20
0. 22 0
0. 22 0
0. 22 0
0. 22 0
0. 22 0
18
Code Designatio Desig nation n Compo Compound und
X 6R
Shear Modulus Equivalent Damping Ratio (N/mm2)
X0.6R
0.620
Characteristics
0. 24 0 HL060 HL0 60X6 X6RR
HL065 HL0 65X6 X6RR
HL070 HL0 70X6 X6RR
HL075 HL0 75X6 X6RR
HL080 HL0 80X6 X6RR
HL085X HL0 85X6R 6R
HL090 HL0 90X6 X6RR
HL1100 HL 00X6 X6RR
HL1110X HL 0X6R 6R
HL1120 HL 20X6 X6RR
HL1130 HL 30X6 X6RR
Outer Diameter (mm) (mm)
600
6 50
70 0
75 0
80 0
85 0
900
1000
1100
1200
130 0
Inner Diameter (mm)
15
15
15
15
20
20
20
25
55
55
55
3317
38 47
4 416
5 02 3
5671
63 5 9
78 4 9
94 80
11286
13249
4. 4
4. 9
4. 8 5
5.1
5. 25
5. 65
6. 3 5
7.2
7.7
8. 0
37
34
34
33
32
30
26
23
22
21
163
167
165
168
168
170
165
166
169
168
37.0
36.1
3 4.9
37.9
38.2
3 9. 5
38 . 9
38.4
3 6 .3
37. 2
38.9
3.70
3. 9 9
4. 20
4 .5 5
4.75
5. 0 6
5.31
6. 0 6
6 .6 4
7.08
7.74
Effective Plane Area 2 82 6 (×102mm2) Thickness of One 3 . 95 Rubber Layer (mm) Number of Rubber 41 Layers (—) Total Rubber 162 Thickness (mm) First Shape Factor(—) (—) Second Shape Factor (—) Physical Dimensions Diameter of Flange
900 95 0 1000 1100 1150 1200 1250 1400 1500 1600 1700 (mm) Thickness of Flange 2 2 /28 2 2 /28 22 /28 22 /28 24 /32 24 /32 2 8/36 2 8/36 30/38 32/40 32 /4 0 (mm) Diameter of Bolt Center 7 75 8 25 87 5 95 0 1000 1050 1100 1250 1350 1450 1550 (mm) Diameter (Number) of φ33×1 φ3 3×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ33×1 φ33×12 2 φ39×1 φ39×12 2 φ39×1 φ39×12 2 φ39×1 φ39×12 2 φ39×1 φ39×12 2 Fixing bolts (mm)
Supposed Bolt
(—)
Thickness of One R einforcing Steel Plate (mm)
M30
M30
M30
M30
M30
M30
M30
M36
M36
M36
M 36
3.1
3.1
3.1
3.1
4.4
4.4
4.4
4.4
4.4
4.4
5.8
3 3 0. 4
324 . 9
3 23. 2
373.1
36 8 . 4
369.1
347.1
33 8 . 4
341.8
364.0
5.7
6. 3
6. 9
8.1
11.0
12.1
13.7
15.9
18. 4
21.8
27.5
67
78
86
102
111
125
131
149
164
175
191
Height
(mm) 342.0
Total Weight
(KN)
Critical Stress γ=0 σcr (N/mm2)
(0,4 ,41 1) (0 (0,4 ,48 8) (0,5 (0,51 1) (0 (0,5 ,56 6) (0,5 (0,59 9) (0,6 (0,60 0) (0,6 (0,60 0) (0,6 (0,60 0) (0,6 (0,60 0) (0,6 (0,60 0) (0,6 (0,60 0) (γ0,σ0) (0 Ultimate Compressive (1.4,41 .4,41) ) (1.5,48) (1.5,48) (1 (1.7 .7,51 ,51) ) (2.1,56) 1,56) (2.2,59 (2.2,59) ) (2.6,60 (2.6,60) ) (2.9,60 (2.9,60) ) (3.6,60 (3.6,60) ) (3.8,60 (3.8,60) ) (3.8,60 (3.8,60) ) (3.9,60 (3.9,60) ) (γ1,σ1) (1 Stress 2 (N/mm ) 3.3, 3,7) 7 ) (3. (3.4, 4,11) (3 (3.5 .5,,15) (3.5 (3.5,2 ,23 3) (3 (3.6 .6,2 ,28 8) (3 (3.6 .6,3 ,36 6) (3 (3.6 .6,4 ,41 1) (3 (3..7,57) ,57) — — — (γ2,σ2) (3.
Compression Properties Compressive Stiffness
24 4 0 3 (×10 kN/m) Nominal Long Term +0.0 Compressive Stress(N/mm ( N/mm2) 10.4 -3.4 Nominal Long Term 294 0 Column Load (kN) Allowable Tensile Stress 1.0 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 6. 4 0 (×10 3kN/m) Post Yield Stiffness 0 .6 4 0 (γ =100%) (×10 3kN/m) Shear Characteristic Properties 71.5 Strength (kN) (γ=100%) Equivalent Shear 1.08 Stiffness(×103kN/m) Equivalent Damping 0. 24 0 Ratio (—)
284 0 12.0
+0.0 -3.9
32 0 0 13.1
+0.0 -4.3
3760 15.0
+0.0 -5.0
4190 15.0
+0.0 -5.0
4760 15.0
+0.0 -5.0
52 8 0 15.0
+0.0 -5.0
66 8 0 15.0
+0.0 -5.0
79 90 15.0
+0.0 -5.0
93 3 0 15.0
+0.0 -5.0
11100 15.0
+0.0 -5.0
3970
504 0
6 62 0
7540
8510
954 0
11800
14200
16900
19900
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
7.4 8
8.47
9. 8 3
11.0
12.4
13.8
17. 4
21.0
2 4 .5
28 . 9
0.748
0.847
0. 9 8 3
1.10
1. 24
1.38
1.74
2.10
2.45
2.89
8 3. 9
97.3
112
127
143
161
199
24 0
285
335
1. 26
1.4 3
1.66
1.85
2. 0 9
2. 3 3
2. 9 5
3. 5 5
4.13
4.89
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0 . 24 0
19
Code
●H T-Seri -Series es(T (Total otal Rabber Rab ber Thickness Thick ness 250mm)
Designat Desi gnation ion Compo Compound und
X4R Characteristics
Shear Modulus Equivalent Damping Ratio (N/mm2)
X0.4 R
0. 3 9 2
0. 2 2 0
HT090X4R
HT095X4R
HT100X4R
HT110X4R
HT120X4R
HT130X4R
HT140X4R
HT150X4R
Outer Diameter (mm) (mm)
900
95 0
1000
1100
1200
1300
140 0
1500
Inner Diameter (mm)
20
20
25
55
55
55
65
65
6 3 59
70 8 5
78 4 9
9 4 80
11286
1324 9
15361
17638
6.0
6. 4
6.7
7.4
8 .0
8.7
9. 5
10.0
42
39
37
34
31
29
26
25
2 52
25 0
24 8
252
24 8
2 52
247
25 0
36.7
3 6. 3
36 . 4
3 5 .3
3 5. 8
3 5. 8
35.1
35 . 9
3 . 57
3.81
4 .0 3
4. 37
4. 8 4
5.15
5 .6 7
6. 0 0
1300
1400
150 0
1600
1700
1800
1900
2 8/3 6
2 8/36
30/38
32 /4 0
32 /4 0
50/100
50/100
1150
1250
1350
1450
1550
1650
1700
φ 33 ×1 ×12
φ39 ×1 ×12
φ39 ×1 ×12
φ39 ×1 ×12
φ39 ×1 ×12
φ42 ×1 ×12
φ42 ×1 ×12
Effective Plane Area (×102mm2) Thickness of One Rubber Layer (mm) Number of Rubber Layers (—) Total Rubber Thickness (mm) First Shape Factor(—) (—) Second Shape Factor (—) Physical Dimensions Diameter of Flange
1250 (mm) Thickness of Flange 28/3 6 (mm) Diameter of Bolt Center ※ 110 0 (mm) Diameter (Number) of φ33 ×1 ×12 Fixing bolts (mm)
Supposed Bolt
(—)
M30
M30
M36
M36
M 36
M36
M39
M39
Thickness of One Reinforcing Steel Plate (mm)
4. 4
4.4
4.4
4.4
4.4
4. 4
5. 8
5. 8
Height
(mm)
50 4.4
4 8 8. 8
478.3
472.8
4 6 0 .0
4 5 5. 5
5 9 2 .0
58 9. 2
Total Weight
(KN)
16.9
18.0
19.6
22 . 9
2 6. 2
29. 5
5 4. 4
60. 2
33
35
38
43
49
52
58
61
(0,28)
(0,30)
(0,34)
(0,38)
(0,4 0)
(0,40)
(0, 40)
(0. 8, 8, 28 28)
(0. 8, 8,3 0) 0)
(0. 9, 9,3 4) 4)
(1. 0, 0, 38 38)
(1. 2, 2, 40 40)
(1.7, 40 40)
(2 .1, 40 40)
(3. 4, 4, 4. 4. 0) 0)
(3 .6 .6, 4. 4. 0) 0)
(3. 9, 9, 4. 4. 0) 0)
(4 .0 .0,5 .0 .0)
(4 .0 .0,12)
(4 .0 .0,17)
(4 .0 .0, 20 20)
3 420
3810
4 52 0
5 470
6310
74 50
84 80
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) (0, 26) Ultimate Compressive 8, 26 26) (γ1,σ1) (0. 8, Stress 2 (N/mm ) 2, 3. 3. 0) 0) (γ2,σ2) (3. 2,
Compression Properties Compressive Stiffness
3 (×10 kN/m) Nominal Long Term Compressive Stress(N/mm ( N/mm2) Nominal Long Term Column Load (kN) Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m ) Initial Stiffness (×103kN/m) Post Yield Stiffness (γ =100%) (×103 kN/m) (×10 Shear Characteristic Properties Strength (kN) (γ=100%) Equivalent Shear Stiffness(×103kN/m) Equivalent Damping Ratio (—)
30 40 6.4
+0.0 -2.1
7.2
+0.0 -2.4
7.9
+0.0 -2.6
9.0
+0.0 -3.0
+0.0
10.5 -3.5
11.0
+0.0 -3.7
11.0
+0.0 -3.7
11.0
+0.0 -3.7
4090
5 09 0
6210
85 2 0
11800
14 600
16900
19 400
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
6. 23
7.01
7.82
9 .3 0
11. 2
13.0
15. 4
17. 4
0 .6 2 3
0.701
0.782
0. 9 30
1.12
1.30
1.54
1.74
92 . 2
103
114
137
16 4
192
2 23
25 6
0. 9 8 9
1.11
1. 24
1. 48
1.78
2 .0 6
2. 4 4
2.77
0. 22 0
0. 2 2 0
0. 2 2 0
0. 2 20
0. 22 0
0. 22 0
0. 2 2 0
0. 2 2 0
20
Code Designatio Desig nation n Compo Compound und
X 6R
Shear Modulus Equivalent Damping Ratio (N/mm2)
X0.6R
0.620
Characteristics
0. 24 0 HT090X6R
HT100X6R
HT110X6R
HT120X6R
HT130X6R
HT140X6R
HT150X6R
HT160X6R
Outer Diameter (mm) (mm)
900
1000
1100
1200
1300
1400
1500
1600
Inner Diameter (mm)
20
25
55
55
55
65
65
80
6 3 59
78 4 9
9 4 80
11286
13249
15361
17638
2 0 0 56
6 .0
6.7
7.4
8. 0
8.7
9. 5
10.0
10.4
42
37
34
31
29
26
25
24
2 52
24 8
252
24 8
252
247
25 0
25 0
36.7
3 6. 4
3 5 .3
35 . 8
35 . 8
35.1
3 5. 9
3 6. 5
3. 57
4 . 03
4. 37
4.84
5.15
5 .6 7
6. 0 0
6.41
14 00
1500
1600
1700
1800
1900
20 0 0
28/36
30/38
32/40
32/40
37/45
42/50
50/110
1250
1350
1450
1550
1650
1750
1800
φ39 ×1 ×12
φ39 ×1 ×12
φ39 ×1 ×12
φ39 ×1 ×12
φ42 ×1 ×12
φ42 ×1 ×16
φ 45 ×1 ×12
Effective Plane Area (×102mm2) Thickness of One Rubber Layer (mm) Number of Rubber Layers (—) Total Rubber Thickness (mm) First Shape Factor(—) (—) Second Shape Factor (—) Physical Dimensions Diameter of Flange
1250 (mm) Thickness of Flange 28/3 6 (mm) Diameter of Bolt Center ※ 1100 (mm) Diameter (Number) of φ33 ×1 ×12 Fixing bolts (mm)
Supposed Bolt
(—)
M 30
M 36
M36
M36
M36
M39
M39
M42
Thickness of One R einforcing Steel Plate (mm)
4.4
4.4
4.4
4.4
4.4
5. 8
5. 8
5. 8
Height
(mm)
50 4 . 4
478.3
472.8
460
4 5 5. 5
4 82
4 8 9. 2
6 0 3. 0
Total Weight
(KN)
16.9
19.6
2 2 .9
2 6. 2
29.5
38.2
4 4.8
7 0. 8
62
80
94
115
127
140
14 8
158
(0,4 8)
(0,53)
(0,60)
(0,60)
(0,60)
(0,60)
(0,60)
(1.6, 48 48)
(1. 9, 9, 53 53)
(2 .3 .3 ,6 ,6 0) 0)
(2 .7,6 0) 0)
(3. 2, 2, 60 60)
(3. 6, 6,6 0) 0)
(3. 8, 8, 60 60)
(3.4,12)
(3.5,19)
(3.6,30)
(3.6,38)
(3.7,4 9)
(3.7,56)
—
4 4 20
524 0
6340
7310
864 0
9 83 0
11200
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) (0,38) Ultimate Compressive 4,3 8) 8) (γ1,σ1) (1. 4, Stress 2 (N/mm ) (γ2,σ2) (3.2,6)
Compression Properties Compressive Stiffness
3 5 30 3 (×10 kN/m) Nominal Long Term +0.0 -3.2 Compressive Stress(N/mm ( N/mm2) 9.7 Nominal Long Term 6170 Column Load (kN) Allowable Tensile Stress 1.0 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 9. 26 (×10 3kN/m) Post Yield Stiffness 0. 92 6 (γ =100%) (×10 3kN/m) Shear Characteristic Properties 161 Strength (kN) (γ=100%) Equivalent Shear 1.56 Stiffness(×103kN/m) Equivalent Damping 0. 24 0 Ratio (—)
12.2
+0.0 -4.0
14.0
+0.0 -4.6
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
9 5 80
13300
16900
19900
23 0 0 0
26 5 0 0
30100
1.0
1.0
1.0
1.0
1.0
1.0
1.0
11.6
13.8
16.7
19.3
22 . 8
25 . 9
2 9. 5
1.16
1.38
1.67
1.93
2. 28
2. 5 9
2 .9 5
199
24 0
285
33 5
38 9
4 46
5 07
1.96
2 .3 4
2. 8 2
3. 2 6
3. 8 6
4 . 37
4 . 98
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
0. 24 0
21
Dimension Dimen sion and Performance Properties of L-RB Code
● LH-Series LH-Series(T (Total otal Rabber Rabbe r Thickness 200mm)
G4 LH0 6 0 G4
Characteristics
C
B
G
H
C
B
100
Effective Plane Area 2749 27 49 (×10 2mm2)
0.3 85 L H070 G4
A
600
Inner Diameter (mm)
G 0. 4 0
L H0 65 G4
A
Outer Diameter (mm) (mm)
Shear Modul Modulus us(N/mm2)
Designat Desi gnation ion Compo Compound und
G
H
C
B
A
650
110
120
130
140
2732 27 32
271 27 14
2695 26 95
2673 26 73
110
120
3223 32 23 32 3205 05
130
140
150
120
130
14 0
150
160
3186
3164
3142
3735 37 35
371 37 16
3695 36 95
3672 36 72
364 36 47
8.4
8.4
4 .0
4.4
4.7
Number of Rubber Layers (—)
50
45
43
Total Rubber Thickness (mm)
200
198
2 02
First Shape Factor(—) (—)
37.5
36 . 9
37.2
3 .0 0
3. 2 8
3. 4 6
900
950
1000
Thickness of Flange (mm)
2 2 /28
22 /28
22 /28
Diameter of Bolt Center (mm)
7 75
82 5
87 5
φ33 ×12
φ33 ×12
φ 33 ×12
M 30
M30
M30
3.1
3.1
3.1
4 07.9
39 0. 4
3 8 8. 3
Second Shape Factor
(mm)
Diameter (Number) of Fixing bolts (mm) Supposed Bolt
(—)
Thickness of One Reinforcing Steel Plate (mm) Height
(mm)
Total Weight
(KN)
6. 6 .7
6.7
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
6. 9
7.3
7.3
7.4
7.5
8.2
8. 2
8. 3 (34.7)
(0.00,24.4)
(0.00,30.3)
(0.00,3 4.7)
—
—
—
(3.00,2.4 4)
(3.28,3.03)
(3.46,3. 47)
1670
1970
2 25 0
6.0 164 640 0
Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m )
+0.9
7.3
-1.4
163 630 0
162 620 0
160 600 0
2350 23 50 23 2330 30
1.0
Initial Stiffness 7.18 (×103kN/m)
7.4 (30.3)
Nominal Long Term Compressive Stress (N/mm2) 165 650 0
6. 8
(24.4)
3 (×10 kN/m)
Nominal Long Term Column Load (kN)
6. 8
7.20
7.22
+1.1
8.1
-1.7
2320 23 20 23 2300 00
2290 22 90
3020 30 20
301 30 10
1.0 7. 25
7. 27
8.51
8. 5 3
H
70 0
Thickness of One Rubber Layer (mm)
(—) Physical Dimensions Diameter of Flange
G
8. 5 6
+1.2 -1.9
2990 29 90
2970 29 70 29 2950 50
1.0 8 . 59
8 .6 2
9.67
9.70
9.73
9.76
9.79
Post Yield Stiffness 0.552 0.5 0.554 54 0.5 0.555 55 0.5 0.557 57 0.5 0.560 60 0. 0.655 655 0. 0.657 657 0.6 0.658 58 0. 0.66 661 1 0. 0.663 663 0. 0.7 744 0. 0.7 746 0. 0.7 748 0. 0.750 750 0. 0.753 753 (γ =1 =100 00%) %) (× 103 kN/m)
Shear Characteristic Strength Properties (kN) (γ=100%)
63
76
90
106
123 12
76
90
106
123 12
141 14
90
106
123 12
141 14
1 60 16
Equivalent shear stiffness (×10 3kN/m)
0. 8 7
0. 93
1.01
1.09
1.17
1.0 4
1.11
1.19
1.28
1.37
1.19
1.27
1.35
1.45
1.55
Equivalent Damping Ratio (—)
0.21 0.2 19 0.2 0.244 44 0.2 0.266 66 0.2 0.285 85 0.3 0.302 02 0.2 0.223 23 0.2 0.246 46 0.2 0.266 66 0.2 0.284 84 0.3 0.300 00 0.2 0.227 27 0.2 0.247 47 0.2 0.266 66 0.2 0.283 83 0.2 0.298 98
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
22
● LH-Series LH-Series(T (Total otal Rabber Thickness 200mm)
L H075G 4
Characteristics
C
B
Outer Diameter (mm) (mm) Inner diameter
(mm) 130
14 0
First Shape Factor(—) (—) Second Shape Factor (—) Physical Dimensions Diameter of Flange (mm) Thickness of Flange (mm) Diameter of Bolt Center (mm) Diameter (Number) of Fixing bolts (mm) (—)
Thickness of One Reinforcing Steel Plate (mm) Height
(mm)
Total Weight
(KN)
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
G
H
C
B
9. 2
9. 2
L H08 5 G4
A
75 0
Effective Plane Area 4285 42 85 42 4264 64 (×102mm2) Thickness of One Rubber Layer (mm) Number of Rubber Layers (—) Total Rubber Thickness (mm)
Supposed Bolt
L H0 8 0G 4
A
G
H
C
B
A
80 0
150
160
170
140
424 42 41
421 42 17
4191
150
160
170
4873 48 73 48 4850 50 48 4825 25 48 4800 00
180
150
477 772 2
5498 54 98
160
170
5.7
40
37
35
200
20 0
200
37.5
37.0
37.3
3.75
4 .0 0
4.26
1100
1150
1200
22 /28
24/32
24/3 2
95 0
1000
1050
φ33 ×12
φ 33 ×12
φ33 ×12
M30
M30
M 30
3.1
4. 4
4.4
376. 9
4 2 2. 2
413.1
9. 4
12.3
12.4
12.5
180
190
5473 54 73 54 5448 48 54 5420 20
5. 4
9 .3
H
850
5. 0
9. 3
G
12.5
12.6
13.4
13. 4
13.5
13.6
(42.0)
(48.8)
(56.5)
(0.00, 42.0)
(0.00,4 8.8)
(0.00,56.5)
—
—
—
(3.75,4.20)
(4.00, 4.92)
(4.00,8.75)
2610 2 96 0 3 (×10 kN/m) +1.4 +1.6 Nominal Long Term Compressive 9.4 -2.2 10.5 -2.4 Stress (N/mm 2) Nominal Long Term 4020 40 20 4000 4000 39 3980 80 39 3960 60 3940 3940 5130 5110 50 5080 80 Column Load (kN) Allowable Tensile Stress 1.0 1.0 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 11. 2 11.3 11.3 11.3 11.3 12.8 12.8 12.9 (×10 3kN/m) Post Yield Stiffness 0.86 0.864 4 0.866 0.866 0.86 0.868 8 0.870 0.870 0.87 0.873 3 0.984 0.984 0. 0.98 986 6 0.989 0.989 (γ =1 =100 00%) %)(× (×10 103 kN/m) Shear Characteristic Strength Properties 106 123 141 160 181 123 141 160 (kN) (γ=100%) Equivalent shear 1.39 1.4 8 1.57 1.67 1.78 1.60 1.69 1.79 stiffness (×10 3kN/m) Equivalent Damping 0.229 0.2 29 0.2 0.248 48 0.2 0.266 66 0.2 0.282 82 0.2 0.296 96 0.232 0.232 0.2 0.250 50 0.2 0.266 66 Ratio (—)
539 53 91
13.7
3360 11.7
+1.8 -2.7
5050 50 50 50 5020 20 64 6430 30 64 6400 00 63 6370 70 63 6340 40
6300 63 00
1.0 12.9
12.9
0.991 0.994 0.99 0.994
14.5
14.5
14.5
14.6
14.6
1.11
1.12
1.12
1.12
1.12
181
203
141
160
181
2 03
22 6
1.90
2.01
1.82
1.92
2. 02
2.14
2. 26
0.28 0.2 81 0.2 0.294 94 0.2 0.234 34 0.2 0.25 51 0.2 0.266 66 0.2 0.280 80 0.2 0.293 93
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
23
● LH-Series LH-Series(T (Total otal Rabber Rabbe r Thickness 200mm)
LH090G4 C
B
A
G
H
C
LH095G4 LH A
B
900 160
170
180
6161
6135
6107
15.1
15.2
H
C
LH100G4 A
B
9 50 190
200
6078 60 78 60 6048 48
G
H
C
LH110G4 A
B
1000
170
180
190
20 0
210
180
686 68 61
6834 68 34
6805 68 05
677 67 74
6742 67 42
7600 76 00
190
200
7570 75 70 75 7540 40
22 0
200
210
220
230
24 0
7508 75 08
7474
9189
9157
9123
9088 90 88
905 90 51
21.2
21.3
6.7
7.4
33
31
30
27
198
198
201
200
37.5
37.1
37.3
37. 2
4 . 55
4.79
4. 9 8
5.51
1250
1300
1400
1500
28/3 6
2 8/3 6
2 8/36
30/38
1100
1150
1250
1350
φ33 ×12
φ 33 ×12
φ39 ×12
φ39 ×12
M 30
M30
M36
M36
4.4
4. 4
4.4
4.4
410.8
4 0 2. 4
4 0 0. 6
3 9 0. 2
15.4
15.4
16.2
16.3
16.4
16.5
16.6
18.0
18.1
18.2
18.3
18.4
21.0
21.0
21.1
(65.6)
(73.6)
(80.4)
(89.4)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.43,60.0)
(0.98,60.0)
(1. 40,60.0)
(2.01,60.0)
(4.00,13.7)
(4.00,18.3)
(4.00,22.2)
(4.00,30.9)
3800
4210
4610
56 0 0
7960 796 0
+2.0 -3.0
7930 793 0
13.0 7890 789 0
7850 785 0
8920 892 0
8880 888 0
1.0
+2.0 -3.0
8850 885 0
15.0 881 88 10
H
210
6. 4
15.3
G
1100
6 .0
13.0 8000 800 0
G
+0.0 -5.0
15.0
+0.0 -5.0
8760 87 60 11400 11 11400 11 11300 11 11300 11 11200 1380 13800 0 137 13700 00 137 13700 00 1360 13600 0 1360 13600 0
1.0
1.0
1.0
16.3
16. 4
16.4
16.4
16.5
18. 2
18. 2
18. 2
18.3
18.3
19.9
19.9
2 0. 0
2 0. 0
2 0. 0
24. 2
2 4 .3
2 4 .3
2 4 .3
24. 4
1.26
1.26
1.26
1.27
1.27
1. 40
1. 40
1. 40
1.41
1.41
1.53
1.53
1.54
1.54
1.54
1.86
1.87
1.87
1.87
1.88
160
181
203
22 6
25 0
181
203
226
2 50
276
203
2 26
25 0
276
3 03
25 0
276
30 3
331
36 0
2 .0 7
2.17
2. 2 9
2. 41
2. 5 3
2.31
2.42
2 .5 4
2. 67
2 . 80
2. 5 4
2 .6 6
2.78
2.91
3 .0 5
3.12
3. 25
3. 3 8
3. 5 3
3. 6 8
0.23 0. 236 6 0. 0.25 251 1 0. 0.26 266 6 0. 0.27 279 9 0. 0.29 291 1 0. 0.23 238 8 0. 0.25 252 2 0. 0.26 266 6 0. 0.27 278 8 0. 0.29 290 0 0. 0.23 239 9 0. 0.25 253 3 0. 0.26 266 6 0. 0.27 278 8 0. 0.28 289 9 0. 0.24 242 2 0. 0.25 254 4 0. 0.26 266 6 0. 0.27 277 7 0. 0.28 287 7
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
24
● LH-Series LH-Series(T (Total otal Rabber Thickness 200mm)
Characteristics
C
Outer Diameter (mm) (mm)
B
LH120G4 A G
1200
H
C
B
LH130G4 A G
1300
H
C
B
LH140G4 A G
14 00
H
C
B
LH150G4 A G
H
150 0
Inner Diameter (mm) 2 20 20 23 0 24 0 2 50 50 2 60 60 24 0 2 50 50 26 0 270 2 80 80 26 0 270 2 80 80 29 0 3 00 00 2 80 80 29 0 3 00 00 310 32 0 Effective Plane Area 109300 10894 10857 10819 1093 10819 107 10779 79 128 12821 21 12782 127 12742 42 127 12701 01 12657 14863 1482 148211 14778 14778 147 14733 33 1468 146877 170 17056 56 170 170111 1696 169655 169 16917 17 168 16867 67 (×102mm2) Thickness of One 8. 0 8.7 9. 5 10.0 Rubber Layer (mm) Number of Rubber 25 23 21 20 Layers (—) Total Rubber 200 20 0 200 200 Thickness (mm) First Shape Factor(—) (—)
37.5
37.4
3 6. 8
37.5
6. 0 0
6. 5 0
7.02
7.50
1600
1700
1800
1900
32/40
32/4 0
50/100
50/100
1450
1550
1650
1700
φ 39 ×12
φ 39 ×12
φ 42 ×12
φ42 ×12
(—)
M36
M36
M 39
M39
Thickness of One R einforcing Steel Plate (mm)
4.4
4. 4
5. 8
5.8
3 8 5 .6
376. 9
515.5
510. 2
Second Shape Factor (—) Physical Dimensions Diameter of Flange (mm) Thickness of Flange (mm) Diameter of Bolt Center (mm) Diameter (Number) of Fixing bolts (mm) Supposed Bolt
Height
(mm)
Total Weight
24.3 .3 24. 24.4 4 24. 24.5 5 24. 24.6 6 24 24.7 .7 27 27.2 .2 27 27.3 .3 27 27.4 .4 27 27.5 .5 27 27.6 .6 52. 52.2 2 52. 52.4 4 52. 52.6 6 52.7 52. 52.9 9 57 57.7 .7 57 57.8 .8 58. 58.0 0 58. 58.2 2 58. 58.4 4 (KN) 24
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
3 (×10 kN/m) Nominal Long Term Compressive Stress(N/mm ( N/mm2) Nominal Long Term 164 00 00 Column Load (kN) Allowable Tensile Stress 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 28.8 28 .8 (×10 3kN/m) Post Yield Stiffness 2.21 2.2 1 (γ =100%) (×10 3kN/m) Shear Characteristic Properties 303 30 3 Strength (kN) (γ=100%) Equivalent shear 3.73 3. 73 sti ff ne ness ss (× 103kN/m) (× Equivalent Damping 0.2444 0.24 Ratio (—)
(97.8)
(106)
(114)
(122)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(2.58,60.0)
(3.12,60.0)
(3.68,60.0)
—
(4.00,39.1)
(4.00,47.1)
(4.00,55.3)
(4.00,60.3)
66 9 0
78 3 0
9060
10 400
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
1630 0 16300 162 00 00 1620 0 19200 1920 0 1910 0 19100 190 00 00 223 00 00 2220 0 2 22 2200 22100 2200 0 256 00 00 2550 0 25 40 40 0 254 00 00 2530 0
1.0
1.0
1.0
1.0
28.8 28. 8 28. 28.9 9 28. 28.9 9 29 29.0 .0 33. 33.8 8 33. 33.8 8 33. 33.9 9 33. 33.9 9 34. 34.0 0 39. 39.3 3 39 39.4 .4 39. 39.4 4 39. 39.5 5 39. 39.5 5 45. 45.0 0 45.1 45.1 45. 45.2 2 45. 45.3 3 2.22 2.2 2 2.2 2.22 2 2.2 2.23 3 2.2 2.23 3 2.6 2.60 0 2. 2.60 60 2.6 2.61 1 2.6 2.61 1 2.6 2.61 1 3.0 3.02 2 3.0 3.03 3 3. 3.03 03 3.0 3.04 4 3.0 3.04 4 3.4 3.46 6 3.4 3.47 7 3.4 3.47 7 3.4 3.48 8 3.4 3.48 8 331 33 1 36 360 0 39 391 1 42 423 3 36 360 0 39 391 1 42 423 3 45 456 6 49 491 1 42 423 3 45 456 6 49 491 1 52 526 6 56 563 3 49 491 1 52 526 6 56 563 3 60 601 1 64 641 1 3.87 3.8 7 4.0 4.02 2 4.18 4.3 4.34 4 4.4 4.40 0 4.5 4.56 6 4. 4.72 72 4.89 5.0 5.07 7 5.14 5.3 5.31 1 5.4 5.49 9 5. 5.67 67 5.8 5.86 6 5.9 5.92 2 6.10 6.2 6.29 9 6.4 6.48 8 6.6 6.68 8 0.2555 0.26 0.25 0.2666 0.27 0.2766 0.28 0.2855 0.2 0.246 46 0.25 0.2566 0.26 0.2666 0.27 0.2755 0.28 0.2844 0.2 0.247 47 0.25 0.2577 0.26 0.2666 0.27 0.2755 0.28 0.2833 0.24 0.2488 0.25 0.2577 0.26 0.2666 0.27 0.2744 0.28 0.2822
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
25
Code
● LL-Series LL-Series(T (Total otal Rabber Thickness 160mm)
Designat Desi gnation ion Compo Compound und
G4
Characteristics
C
LL060G4 A G
B
H
C
Outer Diameter (mm)
600
Inner diameter (mm) 100 110
120 130 140 110
LL065G4 A G
B
H
C
G 0. 4 0
LL070G4 A G
B
650
Shear Modul Modulus us(N/mm2)
H
0.3 85
C
LL075G4 A G
B
70 0
H
75 0
120 130 140 150 120 130 140 150 160 130 140 150 160 170
Effective Plane Area 2749 2732 2714 2695 2673 3223 3205 3186 3164 3142 3735 3716 3695 3672 3647 4285 4264 4241 4217 4191 (×10 2mm2) Thickness of One 3 . 95 4.4 4.9 4 . 85 Rubber Layer (mm) Number of Rubber 41 37 34 34 Layers (—) Total Rubber 162 163 167 165 Thickness (mm) First Shape Factor(—) (—) Second Shape Factor (—) Physical Dimensions Diameter of Flange (mm) Thickness of Flange (mm) Diameter of Bolt Center (mm) Diameter (Number) of Fixing bolts (mm) Suppose d Bolt
(—)
Thickness of One Reinforcing Steel Plate (mm) Height
(mm)
Total Weight
(KN) 5.9
5. 9
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
3 (×10 kN/m) Nominal Long Term Compressive Stress(N/mm ( N/mm2) Nominal Long Term 2 53 0 Column Load (kN) Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m ) Initial Stiffness 8.86 (×103kN/m) Post Yield Stiffness 0.6822 0.68 (γ =100%) (×103 kN/m) (×10 Shear Characteristic Properties 63 Strength (kN) (γ=100%) Equivalent shear 1.07 stif st iffn fnes ess s (× 103kN/m) (× Equivalent Damping 0.219 0.2 19 Ratio (—)
3 8 .0
36. 9
35.7
38.7
3.70
3. 99
4 . 20
4 . 55
900
950
1000
1100
2 2 /28
2 2 /2 8
22 /28
22 /28
7 75
825
87 5
95 0
φ33 ×12
φ33 ×12
φ33 ×12
φ 33 ×12
M 30
M30
M30
M30
3.1
3.1
3.1
3.1
3 4 2. 0
33 0. 4
3 24. 9
3 23. 2
6 .0
6. 0
6.1
6. 5
6. 5
6 .6
6 .6
6.7
7.1
7. 2
7.2
7.3
7.3
8. 3
8.3
8. 4
8.4
(41.0)
(48.4)
(53.7)
(66.5)
(0.00,41.0)
(0.00, 48.4)
(0.00,53.7)
(0.00,60.0)
—
—
—
(0.50,60.0)
(3.70,4.10)
(3.99, 4.84)
(4.00,7.69)
(4.00,13.9)
2 070
24 0 0
26 8 0
32 0 0
9.2
+1.4 -2.1
10.5
+1.6 -2.4
11.4
+1.7 -2.6
13.0
8.5
+2.0 -3.0
2510 2500 2480 2460 3380 3370 3340 3320 3300 4260 4240 4210 4190 4160 5570 55 40 5510 5480 5450 1.0
1.0
1.0
1.0
8.89 8.92 8.95 8.98 10.4 10 10.4 .4 10.4 10 10.4 .4 10 10.5 .5 11.7 11. 1.8 8 11.8 11. 1.8 8 11.9 13 13.6 .6 13.6 13.7 13.7 13.8 0.684 0.686 0.684 0.686 0.688 0.688 0.691 0.691 0.796 0.796 0.798 0.798 0.801 0.801 0.803 0.806 0.806 0.903 0.903 0.905 0.905 0.908 0.908 0.910 0.910 0.913 0.913 1.05 05 76
90
106 123
76
90
106 123
141
90
106 123
141
1.05 05
160 106 123
1.05 05 141
1.06 06
1.06
160 181
1.15 1. 1.24 24 1.34 1.45 1.26 1.35 1.45 1. 1.56 56 1. 1.67 67 1.44 1.54 1.64 1.76 1.87 1.69 1.79 1.9 .91 1 2.03 2.16 2.16 0.244 0.26 0.2666 0.28 0.2855 0.3 0.302 02 0.22 0.2233 0.2 0.246 46 0.26 0.2666 0.28 0.2844 0.3 0.300 00 0.22 0.2277 0.24 0.2477 0.26 0.2666 0.28 0.2833 0.29 0.2988 0.22 0.2299 0.24 0.2488 0.26 0.2666 0.28 0.2822 0.29 0.2966
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
26
Code
● LL-Series LL-Series(T (Total otal Rabber Thickness 160mm)
Designati Desi gnation on Compo Compound und
G4
Characteristics
C
LL080G4 A G
B
Outer Diameter (mm) (mm)
H
C
LL085G4 A G
B
800
85 0
H
C
B
LL090G4 A G
900
Shear Modul Modulus us(N/mm2)
G 0. 4 0
H
0. 3 8 5
C
B
LL095G4 A G
H
950
Inner diameter (mm) 140 150 160 170 180 150 160 170 180 190 160 170 180 190 20 200 0 170 180 190 20 200 0 210 Effective Plane Area 4873 4850 4825 4800 4772 54 98 5473 54 48 5420 5391 6161 6135 6107 6078 6048 6861 6834 6805 6774 6742 (×102mm2) Thickness of One 5.1 5. 25 5 .6 5 6 .0 0 Rubber Layer (mm) Number of Rubber 33 32 30 28 Layers (—) Total Rubber 168 168 170 168 Thickness (mm) First Shape Factor(—) (—)
39. 2
4 0. 5
3 9. 8
3 9 .6
4.75
5. 0 6
5.31
5.65
1150
1200
1250
1300
24 /32
24/32
28/3 6
28/36
1000
1050
1100
1150
φ33 ×12
φ 33 ×12
φ33 ×12
φ33 ×12
(—)
M30
M30
M30
M 30
Thickness of One R einforcing Steel Plate (mm)
4.4
4.4
4. 4
4.4
373.1
36 8 . 4
369.1
35 8. 8
Second Shape Factor (—) Physical Dimensions Diameter of Flange (mm) Thickness of Flange (mm) Diameter of Bolt Center (mm) Diameter (Number) of Fixing bolts (mm) Supposed Bolt
Height
(mm)
Total Weight
1.4 4 11.4 11.5 11.6 11. 1.6 6 12.5 12.5 12 12.6 .6 12.7 12.8 14.2 14 14.2 .2 14 14.3 .3 14 14.4 .4 14 14.5 .5 15.1 15.1 15 15.2 .2 15.3 15.3 (KN) 11.
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
3 (×10 kN/m) Nominal Long Term Compressive Stress(N/mm ( N/mm2) Nominal Long Term 63300 633 Column Load (kN) Allowable Tensile Stress 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 15.2 15 .2 (×10 3kN/m) Post Yield Stiffness 1.17 17 (γ =100%) (×10 3kN/m) Shear Characteristic Properties 123 Strength (kN) (γ=100%) Equivalent shear 1.90 sti ff nes s (× 103kN/m) (× Equivalent Damping 0.2322 0.23 Ratio (—)
(74.0)
(8 4.9)
(88.6)
(94.1)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(1.00,60.0)
(1.65,60.0)
(1.90,60.0)
(2. 28,60.0)
(4.00,17.9)
(4.00, 24.5)
(4.00, 28.5)
(4.0,34. 2)
35 9 0
4100
4530
5080
13.0
+2.0 -3.0
15.0
6300 63 00 62 6270 70 62 6240 40 62 6200 00 82 8250 50 82 82110
1.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
8170 81 8130 30 80 8090 90 92 9240 40 920 92000 9160 9120 90 9070 70 10300 10300 1030 03000 1020 02000 102 0200 00 101 0100 00
1.0
1.0
1.0
15.2 15.3 15.3 15 15.3 .3 17.2 17.2 17.3 17.3 17.3 19.1 19.1 19 19.2 .2 19.2 19.3 21 21.5 .5 21 21.5 .5 21 21.6 .6 21 21.6 .6 21 21.6 .6 1.17 1.17 1.18 1 8 1.18 1.32 1.32 1. 1.33 33 1.33 1. 1.33 33 1.47 1. 1.47 47 1.47 1. 1.48 48 1.48 1. 1.65 65 1. 1.65 65 1.66 1. 1.66 66 1. 1.67 67 141
160 181 20 203 3 141
160 181 20 203 3 22 226 6 160 181 20 203 3 22 226 6 25 250 0 181 20 203 3 22 226 6 25 250 0 27 276 6
2.01 2.0 1 2.13 2.2 2.25 5 2.3 2.38 8 2.16 2.2 2.28 8 2.40 2.54 2.68 2.41 2.41 2.5 2.54 4 2.6 2.67 7 2.8 2.81 1 2.9 2.96 6 2. 2.73 73 2.8 2.86 6 3. 3.00 00 3.15 3.3 3.31 1 0.2500 0.26 0.25 0.2666 0.28 0.2811 0.294 0.234 0.251 0.251 0.26 0.2666 0.28 0.2800 0.29 0.2933 0.23 0.2366 0.25 0.2511 0.26 0.2666 0.27 0.2799 0.29 0.2911 0.23 0.2388 0.25 0.2522 0.26 0.2666 0.27 0.2788 0.29 0.2900
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
27
● LL-Series(T (Total otal Rabber Thickness 160mm)
C
LL100G4 A
B
G
H
C
LL110G4 A
B
100 0
G
H
C
LL120G4 A
B
1100
G
H
C
LL130G4 A
B
1200
G
H
1300
180
190
200
210
22 0
20 0
210
22 0
23 0
24 0
220
230
24 0
2 50
260
24 0
25 0
2 60
2 70
28 0
7600
7570
7540
7508
7474
9189
9157
9123
9088
9051
10930
10894
10857
10819
10779
12821
12782
12742
12701
12657
16.5
16.6
6.35
7.2
7.7
8 .0
26
23
22
21
165
166
169
168
3 9. 4
38.2
3 9 .0
4 0 .6
6.06
6 .6 4
7.08
7.74
14 00
1500
1600
1700
2 8/3 6
3 0/38
32 /4 0
32 /4 0
1250
1350
1450
1550
φ39 ×12
φ 39 ×12
φ39 ×12
φ39 ×12
M 36
M36
M36
M 36
4. 4
4.4
4.4
5. 8
3 47.1
33 8 . 4
341.8
3 6 4 .0
16.7
16.8
19. 2
19. 2
19.3
19. 4
19.5
22.7
22.7
22 . 8
22 . 9
2 3 .0
2 8 .6
2 8 .6
2 8. 8
2 8. 9
(101)
(109)
(117)
(130)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(2.72,60.0)
(3.32,60.0)
(3.84,60.0)
—
(4.00,4 0.8)
(4.00,4 9.9)
(4.00,57.6)
(4.00,60.0)
572 0
6 83 0
8000
9600
15.0 1140 4000
16.7
1140 4000
+0.0 -5.0
1130 3000
15.0 1130 3000
1120 2000
138 3800 00
137 3700 00
1.0
+0.0 -5.0
137 3700 00
15.0 136 3600 00
136 3600 00
164 6400 00
163 6300 00
1.0
+0.0 -5.0
163 6300 00
15.0 162 6200 00
162 6200 00
192 9200 00
192 9200 00
1.0
29. 0
+0.0 -5.0
19100
19100
190 9000 00
1.0
24 . 2
24.3
24.3
24.3
24 . 4
29. 2
2 9. 3
2 9. 3
29. 4
29. 4
3 4 .0
3 4 .0
34.1
34. 2
34.2
4 0. 2
4 0. 3
4 0. 4
4 0. 4
4 0. 5
1.86
1.87
1.87
1.87
1.88
2. 25
2. 25
2. 25
2. 26
2. 26
2.61
2 .6 2
2 .6 2
2. 63
2. 63
3.10
3.10
3.10
3.11
3.11
203
226
2 50
276
303
25 0
276
3 03
331
36 0
30 3
331
36 0
391
4 23
36 0
391
423
456
491
3. 09
3.23
3. 39
3 .5 4
3.71
3.76
3 . 92
4 .0 8
4.26
4.4 4
4.4 0
4 . 57
4.75
4.94
5.13
5. 24
5. 4 3
5. 62
5. 8 2
6. 03
0. 23 23 9
0. 25 253
0. 26 266
0. 27 278
0. 28 289
0. 24 24 2
0. 25 25 4
0. 26 266
0. 27 277
0. 28 287
0. 24 24 4
0. 25 25 5
0. 26 266
0. 27 276
0. 28 28 5
0. 24 24 6
0. 25 25 6
0. 26 26 6
0. 27 275
0. 28 28 4
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
28
Code
● LT-Se -Series ries(T (Total otal Rabber Rab ber Thickness Thick ness 250mm) 250m m)
Designati Desi gnation on Compo Compound und
G4
Characteristics
C
Outer Diameter (mm) (mm)
B
LT090G4 A G
H
C
LT100G4 A G
B
900
H
C
G 0. 4 0
LT110G4 A
B
1000
Shear Modul Modulus us(N/mm2)
G
H
0. 3 8 5
C
B
1100
LT120G4 A G
H
120 0
Inner diameter (mm) 160 170 180 190 20 200 0 180 190 20 200 0 210 22 220 0 20 200 0 210 22 220 0 23 230 0 24 240 0 22 220 0 23 230 0 24 240 0 25 250 0 26 260 0 Effective Plane Area 6161 6135 6107 60 6078 78 604 60488 76 7600 00 75 7570 70 754 75400 750 75088 74 74774 9189 9157 9123 9123 908 90888 90 9051 51 10930 10930 1089 08944 1085 08577 108 108119 107 10779 79 (×102mm2) Thickness of One 6. 0 6.7 7. 4 8. 0 Rubber Layer (mm) Number of Rubber 42 37 34 31 Layers (—) Total Rubber 25 2 24 8 2 52 24 8 Thickness (mm) First Shape Factor(—) (—)
37.5
37.3
37.2
37.5
3 .5 7
4 .0 3
4 . 37
4.84
1250
14 00
1500
1600
2 8/36
2 8/3 6
30/3 8
32/40
1100
1250
1350
1450
φ 33 × 12
φ 39 × 12
φ 39 × 12
φ 39 × 12
(—)
M30
M36
M 36
M36
Thickness of One R einforcing Steel Plate (mm)
4.4
4. 4
4.4
4.4
504.4
478.3
472.8
4 6 0 .0
Second Shape Factor (—) Physical Dimensions Diameter of Flange (mm) Thickness of Flange (mm) Diameter of Bolt Center (mm) Diameter (Number) of Fixing bolts (mm) Supposed Bolt
Height
(mm)
Total Weight
18.0 .0 20.5 20.5 20.7 20.8 20.9 24.0 24.1 24.2 24.3 24.4 27 27.5 .5 27 27.6 .6 27 27.7 .7 27 27.9 .9 28.0 (KN) 17.6 17.7 17.8 17.9 18
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
3 (×10 kN/m) Nominal Long Term Compressive Stress(N/mm ( N/mm2) Nominal Long Term 5300 Column Load (kN) Allowable Tensile Stress 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 12.8 (×10 3kN/m) Post Yield Stiffness 0.98 0. 9888 (γ =100%) (×10 3kN/m) Shear Characteristic Properties 16 0 Strength (kN) (γ=100%) Equivalent shear 1.62 sti ff ne ness ss (× 103kN/m) (× Equivalent Damping 0.2366 0.23 Ratio (—)
(37. 4)
(49.8)
(59.8)
(75.7)
(0.00,37.4)
(0.00, 49.8)
(0.00,59.8)
(0.00,60.0)
—
—
—
(1.11,60.0)
(3.57,3.74)
(4.00,5.35)
(4.00,10.6)
(4.0 0,19. 4)
29 8 0
3740
4 4 50
5390
8.6
+1.3 -2.0
10.7
+1.7 -2.5
12.2
+1.9 -2.8
13.0
+2.0 -3.0
52800 525 528 52500 5230 5200 81 8130 30 81 8100 00 807 80700 8030 8000 112 1200 00 11200 11200 1110 1000 1110 1000 110 1000 00 14200 14200 14 14200 200 14 1410 1000 1410 141000 14000 14000
1.0
1.0
1.0
1.0
12.9 12.9 12.9 13.0 16.1 16.2 16.2 16.2 16.3 19.2 19. 9.3 3 19.3 19. 9.3 3 19.4 23.2 23. 23.3 3 23. 23.3 3 23 23.3 .3 23. 23.4 4 0.99 0. 9900 0.992 9 92 0. 0.99 9944 0. 0.99 9977 1.2 .244
1.2 .244
1.2 .244
1.2 .255
1.2 .255
1.4 .488
1.4 .488
1.4 .488
1.4 .499
1.4 .499
1.7 .799
1.7 .799
1.7 .799
1.7 .799
1.8 .800
181 20 3 2 26 26 25 0 2 03 03 2 26 26 25 0 276 3 03 03 25 0 276 3 03 03 3 31 31 3 60 60 3 03 03 3 31 31 3 60 60 3 91 91 4 23 23 1.7 .71 1 1.80 1.89 1.99 2.06 2.15 2.2 2.25 5 2.3 2.36 6 2.4 2.47 7 2.4 2.47 7 2.5 2.58 8 2. 2.69 69 2.8 2.80 0 2.9 2.92 2 3.0 3.01 1 3.12 3.2 3.25 5 3.3 3.37 7 3.5 3.50 0 0.251 0.2 51 0.266 0.27 0.2799 0.29 0.2911 0.23 0.2399 0.25 0.2533 0.26 0.2666 0.27 0.2788 0.28 0.2899 0.2 0.242 42 0.25 0.2544 0.26 0.2666 0.27 0.2777 0.28 0.2877 0.2 0.244 44 0.25 0.2555 0.26 0.2666 0.27 0.2766 0.28 0.2855
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
29
● LT-Seri -Series es(T (Total otal Rabber Ra bber Thickness Thick ness 250mm) 250 mm)
C
LT130G 4 A
B
G
H
C
LT14 0G 4 A
B
1300 24 0
2 50
260
G
H
C
LT150G 4 A
B
14 00 270
2 80
2 60
2 70
28 0
G
H
C
LT160G 4 A
B
1500 29 0
30 0
28 0
29 0
300
G
H
330
3 40
1600 310
32 0
300
310
320
12821 12 821 12782 127 12742 42 12 12701 701 12657 14863 1482 14821 1 14 14778 778 14 14733 733 14687 17056 17 1701 011 1696 16965 5 169 16917 17 1686 16867 7 1939 19399 9 193 19351 51 19302 192 19251 51 19 19198 198
31.0
31.1
8.7
9. 5
10.0
10.4
29
26
25
24
2 52
247
25 0
2 50
37.4
3 6. 8
37.5
38.5
5.15
5 .6 7
6. 0 0
6.41
1700
1800
1900
2000
32 /4 0
50/100
50/100
50/110
1550
1650
1700
1800
φ39 ×12
φ42 ×12
φ42 ×12
φ45 ×12
M 36
M39
M39
M42
4.4
5. 8
5. 8
5.8
4 5 5 .5
59 2. 0
5 89. 2
603
31.3
31. 4
31.5
5 6. 5
56. 6
5 6. 9
57.1
57.3
6 3. 5
6 3. 6
6 3. 9
64.1
6 4. 3
74.2
74.3
74.6
74.9
(83.8)
(91.7)
(97.8)
(106)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(1.63,60.0)
(2.18,60.0)
(2.58,60.0)
(3.07,60.0)
(4.00,25.3)
(4.00,33.5)
(4.00,39.1)
(4.00, 46.3)
6210
7 32 0
8 36 0
9610
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
75.1
+0.0 -5.0
19200 19 200 19200 19100 19100 19 19100 100 19000 22300 22200 22200 221 22100 00 22000 25600 25500 25400 25400 25300 291 29100 00 29000 29000 28900 28800 1.0
1.0
1.0
1.0
2 6. 8
2 6. 8
2 6. 9
2 6. 9
27.0
31.7
31.8
31.8
31.9
31.9
3 6 .0
36.1
36.1
3 6. 2
3 6. 2
41.0
41.1
41.1
41.2
41.3
2 .0 6
2 .0 6
2. 07
2. 07
2. 07
2.4 4
2.4 5
2.45
2.45
2.46
2.77
2.77
2.78
2.78
2.79
3.16
3.16
3.17
3.17
3.17
360
391
423
456
491
4 23
456
4 91
52 6
56 3
4 91
52 6
56 3
601
641
563
601
6 41
681
723
3. 4 9
3.61
3.74
3. 8 8
4 . 02
4.15
4. 29
4.4 4
4 .5 8
4.74
4.73
4.88
5. 03
5.19
5. 35
5.41
5. 57
5.73
5 . 90
6. 07
0.246 0.2 46 0.2 0.256 56 0.2 0.266 66 0.2 0.275 75 0.2 0.284 84 0.2 0.247 47 0.2 0.257 57 0.2 0.266 66 0.2 0.275 75 0.2 0.283 83 0.2 0.248 48 0.2 0.257 57 0.2 0.266 66 0.2 0.27 74 0.2 0.282 82 0.2 0.250 50 0.2 0.258 58 0.2 0.266 66 0.2 0.273 73 0.2 0.28 81
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
30
Code
● LS-Se LS-Series ries(S2 = 5ty 5type pe) )
G4
Characteristics
C
Outer Diameter
(mm)
Inner diameter
(mm) 100
LS060G4 A
B
G
H
C
LS065G4 A
B
600
Effective Plane Area 2749 27 49 (×102mm2) Thickness of One Rubber Layer (mm) Number of Rubber Layers (—) Total Rubber Thickness (mm)
Shear Modul Modulus us(N/mm2)
Designati Desi gnation on Compo Compound und
G
H
G 0. 4 0
C
0. 3 8 5 LS070G4 A
B
6 50
110
120
130
14 0
110
2732 27 32
271 27 14
2695 26 95
2673 26 73
120
3223 32 23 32 3205 05
130
140
150
120
130
140
150
160
3186
3164
3142
3735 37 35
371 37 16
3695 36 95
3672 36 72
364 36 47
6.7
6. 8
4. 4
4.7
30
30
30
120
132
141
First Shape Factor (—)
37.5
3 6. 9
37. 2
Second Shape Factor (—)
5. 0 0
4 . 92
4.96
900
95 0
1000
22 /28
2 2 /28
2 2 /2 8
7 75
8 25
875
φ33 ×12
φ 33 ×12
φ33 ×12
M30
M30
M 30
3.1
3.1
3.1
2 65. 9
277.9
28 6. 9
(mm) Thickness of Flange (mm) Diameter of Bolt Center (mm) Diameter (Number) of Fixing bolts (mm) Supposed Bolt
(—)
Thickness of One Reinforcing Steel Plate (mm)
Height
(mm)
Total Weight
(KN)
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
5 .0
5. 0
5. 0
5.1
5.1
5. 8
5 .8
H
70 0
4. 0
Physical Dimensions Diameter of Flange
G
5. 8
5. 9
5.9
6 .6
6. 6
6.7
(81.5)
(78. 2)
(79.9)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(1.4 6,60.0)
(1.28,60.0)
(1.38,60.0)
(4.00,22.8)
(4.00,21.0)
(4.0 0,22.0)
279 0 2 96 0 32 20 3 (×10 kN/m) +0.0 +0.0 +0.0 Nominal Long Term Compressive 15.0 -5.0 15.0 -5.0 15.0 -5.0 Stress (N/mm 2) Nominal Long Term 4120 4100 40 4070 70 40 4040 40 401 4010 48 4830 30 481 4810 478 780 0 475 750 0 4710 56 5600 00 5570 5570 55 5540 40 55 551 10 5470 5470 Column Load (kN) Allowable Tensile Stress 1.0 1.0 1.0 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 12.0 12.0 12.0 12.1 12.1 12.8 12.8 12.8 12.9 12.9 13.9 13.9 13.9 14.0 14.0 (×10 3kN/m) Post Yield Stiffness 0.920 0.920 0.923 0.923 0.92 0.926 6 0. 0.92 929 9 0. 0.93 933 3 0. 0.98 982 2 0. 0.98 985 5 0. 0.98 988 8 0. 0.99 991 1 0. 0.99 994 4 1.0 .07 7 1.0 .07 7 1.0 .07 7 1.0 .08 8 1.0 .08 8 (γ =1 =100 00%) %)(× (×10 103 kN/m) Shear Characteristic Strength Properties 63 76 90 106 123 12 76 90 106 123 12 141 14 90 106 123 12 141 14 160 16 (kN) (γ=100%) Equivalent shear 1.4 4 1.55 1.68 1.81 1.95 1.56 1.67 1.79 1.92 2 .0 6 1.71 1.82 1.9 4 2. 07 2 . 2 2 stiffness (×10 3kN/m) Equivalent Damping 0.21 0.2 19 0.2 0.244 44 0.2 0.266 66 0.2 0.285 85 0. 0.302 302 0.223 0.246 0.266 0.284 0.300 0.300 0.227 0.227 0.2 0.247 47 0.2 0.266 66 0.2 0.283 83 0.2 0.298 98 Ratio (—)
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
31
● LSLS-Series Series(S2 = 5typ 5type e)
C
LS075G4 A
B
G
H
C
LS080G4 A
B
750 130
140
4285 42 85 42 4264 64
7.8
7.8
G
H
C
LS085G4 A
B
800
150
160
170
424 42 41
421 42 17
4191
14 0
150
160
G
H
C
LS090G4 A
B
85 0 170
4873 48 73 48 4850 50 48 4825 25 48 4800 00
180
150
477 772 2
5498 54 98
160
170
180
5473 54 73 54 5448 48 54 5420 20
190
160
170
180
539 53 91
6161
6135
6107
5. 4
5.7
6 .0
30
30
30
30
150
162
171
180
37.5
37.0
37.3
37.5
5 .0 0
4.9 4
4 . 97
5 .0 0
1100
1150
1200
1250
2 2 /28
24/32
24 /32
28/36
9 50
1000
1050
1100
φ33 ×12
φ 33 ×12
φ33 ×12
φ33 ×12
M 30
M30
M30
M30
3.1
4. 4
4.4
4.4
29 5. 9
35 3. 6
3 6 2 .6
3 7 9 .6
7.9
7.9
10.8
10.9
10.9
11.0
11.1
12.1
12. 2
12.3
H
190
200
900
5 .0
7.8
G
12.3
12. 4
14.3
14.3
14.4
6078 60 78 60 6048 48
14.5
(81.5)
(78.8)
(80.2)
(81.5)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(1.4 6,60.0)
(1.31,60.0)
(1.39,60.0)
(1.4 6,60.0)
(4.00, 22.8)
(4.00, 21.4)
(4.00,22.1)
(4.00, 22.8)
3 4 80
3 65 0
3910
4180
15.0
+0.0 -5.0
15.0
6430 64 30 64 6400 00 63 6360 60 63 6330 30 62 6290 90
731 73 10
7270 72 70
1.0
+0.0 -5.0
7240 72 40
15.0 7200 72 00
7160
8250 82 50
821 82 10
1.0
+0.0 -5.0
8170
15.0 8130
8090 80 90
9240 92 40
9200 92 00
1.0
14.6
+0.0 -5.0
9160
9120
9070 90 70
1.0
15.0
15.0
15.0
15.1
15.1
15.8
15.8
15.8
15.9
15.9
16.9
16.9
17.0
17.0
17.0
18.0
18.0
18.1
18.1
18.1
1.15
1.15
1.16
1.16
1.16
1. 21 21
1.22
1.22
1.22
1.23
1.30
1.30
1.30
1.31
1.31
1.38
1.39
1.39
1.39
1.40
106
123
141
160
181
123
141
160
181
203
141
160
181
2 03
2 26
160
181
20 3
22 6
25 0
1.86
1.97
2.10
2. 2 3
2. 37
1.97
2. 09
2. 21
2 .3 4
2. 4 8
2.12
2 . 24
2 . 36
2. 4 9
2 .6 3
2. 27
2. 3 9
2.51
2 .6 5
2.79
0.229 0.2 29 0.2 0.248 48 0.2 0.266 66 0.2 0.282 82 0.2 0.296 96 0.2 0.232 32 0.2 0.250 50 0.2 0.266 66 0.2 0.28 81 0.2 0.294 94 0.2 0.234 34 0.2 0.25 51 0.2 0.266 66 0.2 0.280 80 0.2 0.293 93 0.2 0.236 36 0.2 0.25 51 0.2 0.266 66 0.2 0.279 79 0.2 0.29 91
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
32
Code
● LS-Se LS-Series ries(S2 = 5ty 5type pe) )
G4
Characteristics
C
LS095G4 A
B
Outer Diameter (mm) (mm) Inner diameter
Effective Plane Area 686 68 61 (×102mm2) Thickness of One Rubber Layer (mm) Number of Rubber Layers (—) Total Rubber Thickness (mm)
210
180
6834 68 34
6805 68 05
677 67 74
6742 67 42
7600 76 00
(mm) Thickness of Flange (mm) Diameter of Bolt Center (mm) Diameter (Number) of Fixing bolts (mm) Supposed Bolt (—) Thickness of One Reinforcing Steel Plate (mm)
(KN)
LS100G4 A
B
15.9
15.9
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
3 (×10 kN/m) Nominal Long Term Compressive Stress (N/mm 2) Nominal Long Term 10300 Column Load (kN) Allowable Tensile Stress 2 (γ =100%)(N/m (N/mm m ) Initial Stiffness 18.8 (×10 3kN/m) Post Yield Stiffness 1. 1.4 4 (γ =1 =100 00%) %)(× (×10 103 kN/m) Shear Characteristic Strength Properties 181 (kN) (γ=100%) Equivalent shear 2 . 39 stiffness (×10 3kN/m) Equivalent Damping 0.23 0. 238 8 Ratio (—)
G
H
G 0. 4 0
C
0. 3 8 5 LS110G4 A
B
1000 200
Second Shape Factor
Total Weight
C
190
(—) Physical Dimensions Diameter of Flange
(mm)
H
180
First Shape Factor(—) (—)
Height
G
95 0
(mm) 170
Shear Modul Modulus us(N/mm2)
Designati Desi gnation on Compo Compound und
190
20 0
7570 75 70 75 7540 40
210
220
20 0
210
220
23 0
24 0
7508 75 08
7474
9189
9157
9123
9088 90 88
905 90 51
2 2. 5
22.7
6.7
7.4
30
30
30
192
201
222
37.1
37.3
37. 2
4. 9 5
4 . 98
4.95
1300
14 00
1500
2 8/36
2 8/3 6
30/38
1150
1250
1350
φ33 ×12
φ39 ×12
φ39 ×12
M30
M 36
M36
4.4
4. 4
4.4
391.6
4 0 0 .6
4 2 5 .6
16.1
16.2
18.0
18.1
18.2
18.3
18. 4
2 2. 3
2 2. 3
22.4
(79. 2)
(80.4)
(79.5)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(1.33,60.0)
(1.40,60.0)
(1.35,60.0)
(4.0 0,21.6)
(4.00,22.2)
(4.00, 21.8)
4 35 0
4610
50 4 0
15.0
+0.0 -5.0
15.0
H
1100
6.4
16.0
G
+0.0 -5.0
15.0
+0.0 -5.0
10300 10200 10200 10200 10 10100 100 11400 11400 11300 11300 11200 13800 13700 13700 13600 13600 1.0
1.0
1.0
18.8
18.9
18.9
18.9
19.9
19.9
2 0. 0
2 0 .0
2 0 .0
21.8
21.8
21.9
21.9
21.9
1.4 5
1.45
1. 45
1.4 6
1.53
1.53
1.54
1.54
1.5 4
1.68
1.68
1.68
1.69
1.69
2 03
22 6
2 50
276
203
226
25 0
276
303
25 0
276
303
331
36 0
2 .5 0
2. 63
2.76
2. 8 9
2.54
2. 66
2.78
2.91
3. 05
2 . 80
2. 9 2
3. 05
3.18
3.31
0.25 0. 252 2 0. 0.26 266 6 0. 0.27 278 8 0. 0.29 290 0 0. 0.23 239 9 0. 0.25 253 3 0. 0.26 266 6 0. 0.27 278 8 0. 0.28 289 9 0. 0.24 242 2 0. 0.25 254 4 0. 0.26 266 6 0. 0.27 277 7 0. 0.28 287 7
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
33
● LSLS-Series Series(S2 = 5typ 5type e)
C
L S120G 4 A
B
G
H
C
LS130G 4 A
B
1200 22 0
23 0
24 0
G
H
C
LS140G 4 A
B
1300 25 0
260
24 0
2 50
260
G
H
C
LU150G 4 A
B
14 00 270
2 80
2 60
270
28 0
G
H
310
32 0
1500 29 0
30 0
28 0
29 0
300
10930 10894 10857 108 10819 19 1077 10779 9 12 12821 821 12782 127 12742 42 12 12701 701 12657 14863 1482 14821 1 14 14778 778 14 14733 733 14687 17056 17 1701 011 1696 16965 5 169 16917 17 1686 16867 7
27.0
8. 0
8.7
9. 3
8. 5
30
30
30
35
24 0
261
2 79
29 8
37.5
37.4
37.6
4 4.1
5. 0 0
4.98
5.02
5 .0 4
1600
1700
1800
1900
32/40
32 /4 0
37/45
50/100
1450
1550
1650
1700
φ39 ×12
φ39 ×12
φ42 ×12
φ42 ×12
M36
M 36
M39
M39
4.4
4.4
5. 8
5. 8
4 47.6
4 6 8 .6
537.2
69 4.7
27.1
27. 2
27.3
27. 4
31.6
31.7
31.9
3 2 .0
3 2. 2
4 3 .6
43.7
43.9
4 4.1
4 4.2
72 . 3
72 . 5
72 . 8
7 3 .0
(81.5)
(80.6)
(81.9)
(87.1)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(0.00,60.0)
(1.4 6,60.0)
(1.42,60.0)
(1.49,60.0)
(1.75,60.0)
(4.00,22.8)
(4.00, 22.4)
(4.00, 23.1)
(4.00, 24.9)
5 570
6000
6 5 30
74 00
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
7 3 .3
+0.0 -5.0
15.0
16400 16300 16300 16200 16200 19 19200 200 19 19200 200 19 19100 100 19 19100 100 19000 22300 22200 22200 221 22100 00 22000 25600 25500 25400 25400 25300 1.0
1.0
1.0
1.0
2 4 .0
2 4 .0
24.1
24.1
24 . 2
25. 9
25. 9
26. 0
26. 0
26.1
28.1
28.1
28 . 2
28 . 2
2 8. 3
3 0. 3
3 0. 3
3 0 .3
30. 4
30. 4
1.85
1.85
1.85
1.85
1.86
1.99
2 .0 0
2 .0 0
2 .0 0
2 .0 0
2.16
2.16
2.17
2.17
2.17
2 .3 3
2. 3 3
2. 3 3
2. 3 4
2. 3 4
30 3
331
36 0
391
4 23
360
391
423
456
491
423
456
491
5 26
56 3
4 91
52 6
56 3
601
641
3.11
3. 2 3
3. 3 5
3. 4 8
3. 62
3. 37
3. 4 9
3. 62
3.75
3 . 88
3 .6 8
3. 8 0
3. 9 3
4 .0 6
4.19
3. 9 8
4.10
4 . 23
4. 3 6
4.49
0.24 0. 244 4 0. 0.25 255 5 0. 0.26 266 6 0. 0.27 276 6 0. 0.28 285 5 0. 0.24 246 6 0. 0.25 256 6 0. 0.26 266 6 0. 0.27 275 5 0. 0.28 284 4 0. 0.24 247 7 0. 0.25 257 7 0. 0.26 266 6 0. 0.27 275 5 0. 0.28 283 3 0. 0.24 248 8 0. 0.25 257 7 0. 0.26 266 6 0. 0.27 274 4 0. 0.28 282 2
It will NOT be able to supply our LRB(Lead Rubber Bearing) to 8 countries as China, Taiwan, Korea, Philippines, Malaysia, New Zealand, USA and Italy.
34
Dimension Dimens ion and Performance Properties of N-RB N -RB Code
● NS-Series(S2 = 5ty 5type pe) )
N3
Characteristics
Shearr Modu Shea Modulus lus(N/mm2)
Designatio Desig nation n Compo Compound und
G0.30
0.29 4
NS06 NS 060N 0N33
NS06 NS 065N 5N33
NS07 NS 070N 0N33
NS0075 NS 75N3 N3
NS08 NS 080N 0N33
NS08 NS 085N 5N33
NS09 NS 090N 0N33
NS09 NS 095N 5N33
NS1100 NS 00N3 N3
NS1110N NS 0N33
NS1120 NS 20N3 N3
Outer Diameter (mm)
600
65 0
70 0
75 0
80 0
850
90 0
950
1000
1100
1200
Inner Diameter (mm)
15
15
15
15
20
20
20
20
25
25
25
3317
3847
4 416
5 0 23
5671
6 35 9
70 85
784 9
9498
11305
Effective Plane Area 28 26 (×10 2mm2) Thickness of One Rubber Layer (mm)
4.0
4.4
4.7
5. 0
5. 4
5.7
6. 0
6. 4
6.7
7. 4
8. 0
Number of Rubber Layers (—)
30
30
30
30
30
30
30
30
30
30
30
Total Rubber Thickness
120
132
141
150
162
171
180
192
201
222
24 0
3 6 .6
36.1
3 6. 4
36 . 8
36.1
36. 4
36.7
36. 3
36 . 4
36. 3
36.7
Second Shape Factor 5 .0 0 (—)
4 .9 2
4 . 96
5. 0 0
4. 9 4
4.97
5. 0 0
4.95
4. 9 8
4.95
5. 0 0
900
95 0
10 00
1100
1150
1200
1250
1300
14 00
1500
1600
Thickness of Flange 2 2 /28 (mm)
22 /28
2 2 /28
22 /28
24/3 2
24/32
2 8/3 6
28 /36
2 8/3 6
30/3 8
32/40
Diameter of Bolt Center 7 75 (mm)
82 5
875
95 0
100 0
1050
1100
1150
1250
1350
14 50
φ33×12
φ33×12
φ33×12
φ33×12
φ33×12
φ33×12
φ33×12
φ39×12
φ39×12
φ39×12
M 30
M30
M 30
M30
M30
M30
M30
M30
M36
M 36
M36
3.1
3.1
3.1
3.1
4. 4
4.4
4. 4
4.4
4.4
4.4
4.4
277.9
28 6. 9
2 95. 9
35 3. 6
3 6 2 .6
379.6
391.6
4 0 0 .6
4 2 5 .6
4 47.6
4.8
5. 6
6. 4
7.5
10.5
11.7
13.8
15.3
17.3
21.3
25 . 8
53
51
52
53
51
52
53
52
52
52
53
(mm)
First Shape Factor(—) (—)
Physical Dimensions Diameter of Flange
(mm)
Diameter (Number) of φ33×12 Fixing bolts (mm) Suppose d Bolt
(—)
Thickness of One Reinforcing Steel Plate (mm) Height
(mm) 265.9
Total Weight
(KN)
Critical Stress γ=0 σcr (N/mm2)
(0,40 ,40) ) (0,40 (0,40) ) (0 (0,40 ,40) ) (0 (0,40 ,40) ) (0,40 (0,40) ) (0 (0,40 ,40) ) (0 (0,4 ,40 0) (0,40 (0,40) ) (0 (0,4 ,40 0) (0,40 (0,40) ) (0 (0,40 ,40) ) (γ0,σ0) (0 Ultimate Compressive (1.6,40) 6,40) (1.4,40 (1.4,40) ) (1. (1.5,40) 5,40) (1 (1.6,40) .6,40) (1 (1.4,40) .4,40) (1 (1.5,40) .5,40) (1. (1.6,40) 6,40) (1.5 (1.5,40) ,40) (1 (1.5,40) .5,40) (1.5 (1.5,40) ,40) (1 (1.6,40) .6,40) (γ1,σ1) (1. Stress 2 (N/mm ) (γ2,σ2) (4.0,2 (4.0,21 1) (4.0,1 19) 9) (4.0,20) (4.0,21) (4.0,21) (4.0,1 19) 9) (4.0,20 (4.0,20) ) (4.0,2 (4.0,21 1) (4.0,20 (4.0,20) ) (4.0,20) (4.0,20) (4.0,20 (4.0,20) ) (4.0,21 (4.0,21)
Compression Properties Compressive Stiffness
3 (×10 kN/m)
2140
Nominal Long Term Compressive Stress(N/mm ( N/mm2) 10.0
+1.0 -3.0
Nominal Long Term 2 8 30 Column Load (kN) Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m ) Shear Stiffness(×10 3kN/m) Shear Properties 〔critical stress:γ= stress:γ= ±100%〕
2 270 10.0
+1.0 -3.0
2470 10.0
+1.0 -3.0
26 8 0 10.0
+1.0 -3.0
28 0 0 10.0
+1.0 -3.0
3000 10.0
+1.0 -3.0
3210 10.0
+1.0 -3.0
33 4 0 10.0
+1.0 -3.0
354 0 10.0
+1.0 -3.0
3 870 10.0
+1.0 -3.0
4 29 0 10.0
+1.0 -3.0
3 32 0
3 8 50
4 420
5 02 0
5 670
6 36 0
709 0
78 5 0
9500
11300
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0 .6 9 3
0.739
0. 8 0 3
0. 8 66
0.912
0.976
1.04
1.09
1.15
1.26
1.39
35
Code
● NS-Series(S2 = 5ty 5type pe) )
G3
Characteristics
Shear Modul Modulus us(N/mm2)
Designat Desi gnation ion Compo Compound und
G0.3 5
0. 3 4 3
NS06 NS 060G 0G33
NS06 NS 065G 5G33
NS07 NS 070G 0G33
NS0075 NS 75G3 G3
NS08 NS 080G 0G33
NS08 NS 085G 5G33
NS09 NS 090G 0G33
NS09 NS 095G 5G33
NS1100 NS 00G3 G3
NS1110G NS 0G33
NS1120 NS 20G3 G3
Outer Diameter (mm) (mm)
600
65 0
70 0
75 0
800
850
900
950
1000
1100
1200
Inner Diameter (mm)
15
15
15
15
20
20
20
20
25
25
25
3317
3847
4 416
5 0 23
5671
6 3 59
70 85
784 9
9 4 98
11305
Effective Plane Area 28 26 (×102mm2) Thickness of One Rubber Layer (mm)
4.0
4.4
4.7
5. 0
5. 4
5.7
6 .0
6.4
6.7
7.4
8. 0
Number of Rubber Layers (—)
30
30
30
30
30
30
30
30
30
30
30
Total Rubber Thickness
120
132
141
150
162
171
180
192
201
222
24 0
3 6 .6
36.1
3 6. 4
36 . 8
36.1
36. 4
36.7
3 6 .3
3 6. 4
36. 3
36.7
Second Shape Factor 5 .0 0 (—)
4 . 92
4.96
5. 0 0
4 .9 4
4 . 97
5. 0 0
4.95
4 . 98
4.95
5. 0 0
900
95 0
1000
1100
1150
1200
1250
1300
14 00
1500
1600
Thickness of Flange 2 2 /2 8 (mm)
22 /28
2 2 /2 8
22 /28
24/3 2
24 /32
28/3 6
2 8/36
28/3 6
30/38
32/4 0
Diameter of Bolt Center 775 (mm)
8 25
875
95 0
1000
1050
1100
1150
1250
1350
14 50
(mm)
First Shape Factor(—) (—)
Physical Dimensions Diameter of Flange
(mm)
Diameter (Number) of φ33×12 φ33×12 φ 33×1 33×12 2 φ33×12 φ33×12 φ33×12 φ 33×1 33×12 2 φ33×12 φ39×12 φ39×12 φ 39×1 39×12 2 Fixing bolts (mm) Supposed Bolt
(—)
Thickness of One Reinforcing Steel Plate (mm)
M30
M30
M 30
M30
M 30
M30
M 30
M30
M 36
M36
M36
3.1
3.1
3.1
3.1
4.4
4.4
4. 4
4.4
4. 4
4.4
4. 4
277.9
28 6. 9
2 9 5 .9
3 5 3 .6
3 6 2 .6
3 7 9 .6
391.6
4 0 0 .6
4 2 5 .6
4 47.6
4.8
5. 6
6. 4
7.5
10.5
11.7
13.8
15.3
17.3
21.3
25 . 8
59
57
58
59
58
58
59
58
58
58
59
Height
(mm) 265.9
Total Weight
(KN)
Critical Stress γ=0 σcr (N/mm2)
(0,4 ,40 0) (0,4 (0,40 0) (0 (0,4 ,40 0) (0,4 (0,40 0) (0 (0,4 ,40 0) (0 (0,4 ,40 0) (0 (0,4 ,40 0) (0 (0,4 ,40 0) (0 (0,4 ,40 0) (0 (0,4 ,40 0) (0 (0,4 ,40 0) (γ0,σ0) (0 Ultimate Compressive 1,40) (1 (1.9,40) .9,40) (2.0,40 (2.0,40) ) (2.1,40) 1,40) (2.0,40) (2.0,40) (2.1,40) 1,40) (2.0,40 (2.0,40) ) (2. (2.1,40 1,40) ) (2.0,40 (2.0,40) ) (2.1,40) 1,40) (γ1,σ1) (2.1,40) Stress 2 (N/mm ) (γ2,σ2)(4.0,23) (4.0,22) (4.0,22) (4.0,23) (4.0,22) (4.0,23) (4.0,23) (4.0,22) (4.0,23) (4.0,22) (4.0,23)
Compression Properties Compressive Stiffness
3 (×10 kN/m)
2220
Nominal Long Term +2.0 Compressive Stress(N/mm ( N/mm2) 10.0 -2.0 Nominal Long Term 2830 Column Load (kN) Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m ) Shear Stiffness(×10 3kN/m) Shear Properties 〔critical stress:γ= stress:γ= ±100%〕
23 5 0 10.0
+2.0 -2.0
256 0 10.0
+2.0 -2.0
27 80 10.0
+2.0 -2.0
2 90 0 10.0
+2.0 -2.0
3120 10.0
+2.0 -2.0
3 3 30 10.0
+2.0 -2.0
3 4 60 10.0
+2.0 -2.0
3670 10.0
+2.0 -2.0
4 02 0 10.0
+2.0 -2.0
4440 10.0
+2.0 -2.0
3 32 0
3850
4 420
5 02 0
5 670
6 36 0
70 9 0
78 5 0
9500
11300
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0. 80 8
0. 8 62
0. 93 6
1.01
1.06
1.14
1. 21
1.27
1.34
1.47
1.62
36
Code
● NS-Series(S2 = 5ty 5type pe) )
Designati Desi gnation on Compo Compound und
G5
Characteristics
Shear Modul Modulus us(N/mm2)
G 0. 4 5
0.4 41
NS060G5 NS065G5 NS070G5 NS075G5 NS080G5 NS085G5 NS090G5 NS095G5 NS095G5 NS100G NS100G55 NS110G5 NS120G5 NS120G5 NS130G5 NS130G5 NS140G5 NS140G5 NU150G5 NU150G5
Outer Diameter (mm) (mm) 600
6 50
70 0
75 0
800
850
900
950
1000
1100
1200
1300
14 00
1500
15
15
15
20
20
20
20
25
25
25
30
30
40
3 31 317
3 84 847
4 41 416
5 02 02 3
5 67 671
63 59 59
70 85 85
78 49 49
9 49 498
Thickness of One 4 .0 Rubber Layer (mm)
4. 4
4.7
5. 0
5. 4
5.7
6. 0
6.4
6.7
7.4
8 .0
8.7
9. 3
8 .5
Number of Rubber Layers (—)
30
30
30
30
30
30
30
30
30
30
30
30
30
35
Total Rubber Thickness
120
132
141
150
162
171
180
192
201
222
24 0
261
279
2 98
First Shape Factor(—) (—) 36.6
36.1
3 6. 4
3 6. 8
36.1
36 . 4
36.7
3 6 .3
36. 4
3 6 .3
36.7
36. 5
3 6. 8
42.9
Second Shape Factor 5. 0 0 (—)
4 . 92
4 . 96
5. 0 0
4.94
4 . 97
5. 0 0
4.95
4.98
4.95
5 .0 0
4.98
5 .0 2
5. 0 4
900
95 0
1000
1100
1150
1200
1250
130 0
1400
1500
1600
1700
1800
1900
Thickness of Flange 22/2 22 /28 8 (mm)
22/2 22 /28 8
22/2 22 /28 8
22/2 22 /28 8
24/3 24 /32 2
24/3 24 /32 2
28/3 28 /36 6
28/3 28 /36 6
28/3 28 /36 6
30/3 30 /38 8
32//40 32 32 32//40
37//45 50/1 37 50/100
Diameter of Bolt Center 7 75 (mm)
8 25
87 5
95 0
1000
1050
1100
1150
1250
1350
1450
1650
Inner Diameter (mm)
15
Effective Plane Area 2 82 82 6 (×102mm2)
(mm)
Physical Dimensions Diameter of Flange
(mm)
113 05 05 1 32 326 6 15 15 38 387 17 176 59 59
1550
1700
Diameter (Number) of φ33 33× ×12 φ33 33× ×12 φ33 33× ×12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ33 33× ×12 φ33 33× ×12 φ39 39× ×12 φ39 39×1 ×12 2 φ39 39×1 ×12 2 φ39 39×1 ×12 2 φ42 42×1 ×12 2 φ42 42×1 ×12 2 Fixing bolts (mm) Supposed Bolt
(—) M30
Thickness of One R einforcing Steel Plate (mm)
3.1
M30
M30
M30
M30
M30
M30
M30
M36
M36
M36
M36
M 39
M 39
3.1
3.1
3.1
4.4
4.4
4.4
4.4
4.4
4.4
4.4
4.4
5 .8
5. 8
Height
(mm) 26 265. 5.9 9
277 27 7.9
286. 28 6.9 9
295. 29 5.9 9
353. 35 3.6 6
362. 36 2.6 6
379. 37 9.6 6
391 39 1.6
400. 40 0.6 6
425. 42 5.6 6
447 44 7.6
468. 46 8.6 6
537 53 7.2
694. 69 4.7
Total Weight
(KN) 4.8
5. 6
6. 4
7.5
10.5
11.7
13.8
15.3
17.3
21.3
25. 8
30.1
41.6
6 9. 2
70
71
72
71
71
72
71
72
71
72
72
73
77
Critical Stress γ=0 σcr (N/mm2)
72
(γ0,σ0)(0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) Ultimate Compressive (γ1,σ1)(1.1,60) (1.1,60)(0.9 (0.9 ,60) ,60)(1.0,6 (1.0,6 0)(1.1,60)(1.0,60)(1.0,6 1,60)(1.0,60)(1.0,6 0)(1.1,60)(1.0,60)(1. 1,60)(1.0,60)(1.1,60)(1.0,60)(1. 1,60)(1.0,60)(1.1,60)(1.1,60)(1.2,6 1,60)(1.1,60)(1.2,6 0) 0)(1.5,6 (1.5,6 0) Stress 2 (N/mm ) (γ2,σ2)(4.0 ,28) ,28)(4.0 (4.0 ,26) ,26)(4.0 (4.0 ,27) ,27)(4.0 (4.0 ,28) ,28)(4.0 (4.0 ,27 )(4.0 ,28) ,28)(4.0 (4.0 ,28) ,28)(4.0 (4.0 ,27 )(4.0 ,28) ,28)(4.0 (4.0 ,27 )(4.0 ,28) ,28)(4.0 (4.0 ,28) ,28)(4.0 (4.0 ,29) ,29)(4.0 (4.0 ,31)
Compression Properties Compressive Stiffness
3 (×10 kN/m)
24 9 0
264 0
28 8 0
3110
32 6 0
35 0 0
373 0
3890
4110
4510
4980
5 3 60
58 40 40
6610
Nominal Long Term +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 Compressive Stress(N/mm ( N/mm2) 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 15.0 -3.0 Nominal Long Term 4240 42 40 Column Load (kN) Allowable Tensile Stress 2 (γ =100%)(N/m (N/mm m )
1.0
Shear Stiffness(×10 3kN/m) Shear 1.04 Properties 〔critical stress:γ= stress:γ= ±100%〕
4970 49 70
5770 57 70
6620 66 20
7540 75 40
851 85 10
9540 95 40
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.11
1. 20
1.30
1.37
1.46
1.56
1.63
1.72
1.89
2. 08
2. 24
2. 4 3
2 .6 2
37
106 0600 00 11 1180 800 0 142 4200 00 170 17000 00 199 19900 00 231 23100 2650 26500 0
Code
● NS-Series(S2 = 5ty 5type pe) )
Designat Desi gnation ion Compo Compound und
G4
Characteristics
Shear Modul Modulus us(N/mm2)
G 0. 4 0
0. 3 92
NS060G4 NS065G4 NS070G4 NS070G4 NS075G4 NS075G4 NS080G4 NS085G4 NS090G4 NS095G4 NS100G4 NS100G4 NS110G4 NS110G4 NS120G4 NS120G4 NS130G4 NS130G4 NS140G4 NS140G4 NU150G4 NU150G4
Outer Diameter (mm) (mm) 600
650
700
750
800
850
900
9 50
1000
1100
1200
1300
1400
1500
15
15
15
20
20
20
20
25
25
25
30
30
40
Effective Plane Area 28 26 26 (×102mm2)
3317
3 84 847
4 41 416
50 23 23
5 67 671
6 35 359
70 85 85
78 49 49
9 49 49 8
Thickness of One 4. 0 Rubber Layer (mm)
4.4
4.7
5 .0
5. 4
5.7
6 .0
6. 4
6.7
7.4
8. 0
8.7
9. 3
8. 5
Number of Rubber Layers (—)
30
30
30
30
30
30
30
30
30
30
30
30
30
35
Total Rubber Thickness
120
132
141
150
162
171
180
192
201
2 22
24 0
261
279
29 8
First Shape Factor(—) (—) 36.6
36.1
36. 4
36. 8
36.1
3 6. 4
36.7
3 6. 3
3 6. 4
3 6. 3
36.7
3 6. 5
3 6. 8
4 2. 9
Second Shape Factor 5. 0 0 (—)
4. 9 2
4.96
5 .0 0
4.94
4. 97
5 .0 0
4 . 95
4 . 98
4 . 95
5. 0 0
4 .9 8
5 .0 2
5 .0 4
900
950
1000
1100
1150
1200
1250
1300
14 00
1500
1600
1700
1800
1900
Thickness of Flange 22/2 22 /28 8 22/ 22/28 28 22/ 22/28 28 22 22/2 /28 8 (mm)
24/3 24 /32 2
24/3 24 /32 2
28/3 28 /36 6
28/3 28 /36 6
28/3 28 /36 6
30/3 30 /38 8
32//40 32 32 32//40
37//45 50/1 37 50/100
Diameter of Bolt Center 7 75 (mm)
1000
1050
1100
1150
1250
1350
14 50
1650
Inner Diameter (mm)
15
(mm)
Physical Dimensions Diameter of Flange
(mm)
82 5
875
950
113 05 05 1 32 32 66 66 15 153 87 87 17 1765 9
1550
1700
Diameter (Number) of φ33× φ3 3×1 12 φ33 33× ×12 φ33 33× ×12 φ33 33×1 ×12 2 φ33 33×1 ×12 2 φ33 33×1 ×12 2 φ33 33× ×12 φ33 33× ×12 φ39 39× ×12 φ39 39× ×12 φ39 39× ×12 φ3 φ39× 9×1 12 φ42 42× ×12 φ42 42× ×12 Fixing bolts (mm) Supposed Bolt
(—) M30
Thickness of One Reinforcing Steel Plate (mm)
3.1
M30
M30
M30
M30
M 30
M 30
M 30
M 36
M 36
M 36
M36
M39
M39
3.1
3.1
3.1
4.4
4.4
4.4
4.4
4. 4
4. 4
4. 4
4. 4
5. 8
5. 8
Height
(mm) 26 265. 5.9 9
277 27 7.9
286. 28 6.9 9
295. 29 5.9 9
353. 35 3.6 6
362. 36 2.6 6
379. 37 9.6 6
391 39 1.6
400. 40 0.6 6
425. 42 5.6 6
447 44 7.6
468. 46 8.6 6
537 53 7.2
694. 69 4.7
Total Weight
(KN) 4.8
5 .6
6.4
7.5
10.5
11.7
13.8
15.3
17.3
21.3
25 . 8
30.1
41.6
69. 2
63
64
65
63
64
65
64
64
64
65
65
65
70
Critical Stress γ=0 σcr (N/mm2)
65
(γ0,σ0)(0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) Ultimate Compressive (γ1,σ1)(0.5 ,60) ,60)(0.3 (0.3 ,60) ,60)(0.4 (0.4 ,60) ,60)(0.5 (0.5 ,60) ,60)(0.3 (0.3 ,60) ,60)(0.4 (0.4 ,60) ,60)(0.5 (0.5 ,60) ,60)(0.4 (0.4 ,60) ,60)(0.4 (0.4 ,60) ,60)(0.4 (0.4 ,60) ,60)(0.5 (0.5 ,60) ,60)(0.5 (0.5 ,60) ,60)(0.5 (0.5 ,60) ,60)(0.9 (0.9 ,60) Stress 2 (N/mm ) (γ2,σ2)(4.0 ,25) ,25)(4.0 (4.0 ,24) ,24)(4.0 (4.0 ,25) ,25)(4.0 (4.0 ,26) ,26)(4.0 (4.0 ,24) ,24)(4.0 (4.0 ,25) ,25)(4.0 (4.0 ,25) ,25)(4.0 (4.0 ,24) ,24)(4.0 (4.0 ,25) ,25)(4.0 (4.0 ,24) ,24)(4.0 (4.0 ,26) ,26)(4.0 (4.0 ,25) ,25)(4.0 (4.0 ,26) ,26)(4.0 (4.0 ,28)
Compression Properties Compressive Stiffness
3 (×10 kN/m)
22 8 0
24 2 0
26 4 0
2 8 50
2 99 0
3 20 0
3420
3 56 0
37 70
4130
4 570
4 92 0
53 5 0
6 070
Nominal Long Term +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 Compressive Stress(N/mm ( N/mm2) 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 Nominal Long Term 4240 42 40 Column Load (kN) Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m )
1.0
Shear Stiffness(×10 3kN/m) Shear 0. 9 23 Properties 〔critical stress:γ= stress:γ= ±100%〕
4970 49 70
5770 57 70
6620 66 20
7540 75 40
851 85 10
9540 95 40
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0 . 9 85 0.
1.07
1.15
1.22
1.30
1.38
1.4 5
1.53
1.68
1.85
1.99
2.16
2. 3 3
38
106 0600 00 11 1180 800 0 142 4200 00 170 17000 00 199 19900 00 231 23100 2650 26500 0
Code
● NH-Series NH-Series(T (Total otal Rabber Thickness 200mm)
Designatio Desig nation n Compo Compound und
G4
Characteristics
Shearr Modu Shea Modulus lus(N/mm2)
G0.4 0
0.3 92
NH060G4 NH065G4 NH070G4 NH070G4 NH075G4 NH075G4 NH080G4 NH085G4 NH090G4 NH095G4 NH100G4 NH100G4 NH110G4 NH110G4 NH120G4 NH120G4 NH130G4 NH130G4 NH140G4 NH140G4 NH150G4 NH150G4
Outer Diameter (mm) 600
650
70 0
7 50
800
8 50
900
95 0
1000
1100
1200
1300
1400
1500
15
15
15
20
20
20
20
25
25
25
30
30
40
Effective Plane Area 28 26 26 (×10 2mm2)
3 31 317
3 84 847
4 41 416
5 02 023
56 71 71
6 35 35 9
70 85 85
7 84 84 9
9 49 49 8
Thickness of One 4.0 Rubber Layer (mm)
4.4
4.7
5 .0
5. 4
5.7
6. 0
6. 4
6.7
7.4
8. 0
8.7
9 .5
10
Number of Rubber Layers (—)
50
45
43
40
37
35
33
31
30
27
25
23
21
20
200
198
202
200
200
200
198
198
201
20 0
200
200
200
200
First Shape Factor(—) (—) 36.6
36.1
3 6. 4
3 6. 8
36.1
3 6. 4
36.7
3 6. 3
3 6. 4
3 6. 3
36.7
3 6. 5
36.1
3 6 .5
Second Shape Factor 3 .0 0 (—)
3.28
3. 4 6
3.75
4 .0 0
4.26
4 . 55
4.79
4 . 98
5.51
6. 0 0
6. 5 0
7.02
7.50
900
950
1000
1100
1150
1200
1250
1300
14 00
1500
1600
1700
1800
1900
Thickness of Flange 22/2 22 /28 8 22 22/2 /28 8 22 22/2 /28 8 22 22/2 /28 8 (mm)
24/3 24 /32 2
24/3 24 /32 2
28/3 28 /36 6
28/3 28 /36 6
28/3 28 /36 6
30/3 30 /38 8
32//40 32 32 32//40
37//45 37
42/5 42 /50 0
Diameter of Bolt Center 775 (mm)
1000
1050
110 0
1150
1250
1350
14 50
1650
1750
Inner Diameter (mm)
Total Rubber Thickness
15
(mm)
Physical Dimensions Diameter of Flange
(mm)
825
875
950
113 05 05 1 32 32 66 66 15 153 87 87 17 176 59 59
1550
Diameter (Number) of φ33× φ3 3×1 12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ3 φ33× 3×1 12 φ3 φ39× 9×1 12 φ3 φ39× 9×1 12 φ3 φ39× 9×1 12 φ3 φ39× 9×1 12 φ4 φ42× 2×1 12 φ4 φ42× 2×1 16 Fixing bolts (mm) Suppose d Bolt
(—) M30
Thickness of One Reinforcing Steel Plate (mm)
3.1
M30
M30
M 30
M 30
M 30
M 30
M30
M 36
M36
M36
M36
M39
M39
3.1
3.1
3.1
4.4
4.4
4. 4
4. 4
4. 4
4. 4
4.4
4.4
5. 8
5. 8
Height
(mm) 40 407 7.9
390. 39 0.4 4
388. 38 8.3 3
376. 37 6.9 9
422. 42 2.2 2
413.1
410. 0.8 8
402. 40 2.4 4
400. 40 0.6 6
390. 39 0.2 2
385. 38 5.6 6
376. 37 6.9 9
405. 40 5.5 5
410. 0.2 2
Total Weight
(KN) 6.5
7.0
7.9
8.9
11.9
12.9
14.6
15.6
17.3
20.1
23 . 3
2 6 .0
3 4 .0
39.9
35
38
43
47
51
56
61
64
71
78
84
91
97
Critical Stress γ=0 σcr (N/mm2)
31
(γ0,σ0)(0,31) (0,35) (0,38) (0,43) (0,47) (0,51) (0,56) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) (0,60) Ultimate Compressive (γ1,σ1) — — — — — — — (0 .1,6 0)(0 . 4 ,6 0)(1. 2 ,6 0)(1.8 ,6 0)(2 .5 ,6 0)(3 .1,6 0)(3 .8 ,6 0) Stress 2 (N/mm ) (γ2,σ2)(2.8,0) (3.2,0) (3.5,0) (3.8,3) (4.0,5) (4.0,10 (4.0,10)(4.0, )(4.0,16)(4.0,21) 16)(4.0,21)(4.0,25) (4.0,25)(4.0,32) (4.0,32)(4.0,39) (4.0,39)(4.0,45) (4.0,45)(4.0,51) (4.0,51)(4.0,58)
Compression Properties Compressive Stiffness
3 (×10 kN/m)
1370
Nominal Long Term Compressive Stress(N/mm ( N/mm2) 6.0
+0.9 -1.4
Nominal Long Term 170 700 0 Column Load (kN) Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m )
1.0
Shear Stiffness(×10 3kN/m) Shear 0 .5 5 4 Properties 〔critical stress:γ= stress:γ= ±100%〕
1610 7.0
+1.1 -1.6
18 40 40 7.8
+1.1 -1.8
2140 8.9
+1.4 -1.8
24 2 0 9.8
+1.5 -2.0
275 0 10.8
+1.7 -2.3
3110 12.0
+1.9 -2.8
3 45 450 +2.0
13.0
-3.0
3 77 0 +0.0
15.0
-5.0
4 59 590 +0.0
15.0
-5.0
54 80 80 +0.0
15.0
-5.0
6410 +0.0
15.0
-5.0
7420 +0.0
15.0
-5.0
8540 +0.0
15.0
-5.0
2320 23 20
3000 30 00
3930 39 30
4920 49 20
6130
763 630 0
9200 92 00
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0. 65 7
0.747
0. 86 6
0. 98 6
1.11
1. 26
1.4 0
1.53
1.86
2.22
2. 60
3. 02
3. 4 6
39
1180 800 0 142 4200 00 170 17000 00 199 19900 00 231 23100 265 26500 00
Code
● NL-S NL-Series eries(T (Total otal Rabber Rabb er Thickness Thickne ss 160mm) 160mm)
Designat Desi gnation ion Compo Compound und
G4
Characteristics
Shear Modul Modulus us(N/mm2)
G 0. 4 0
0. 3 92
N L0 L0 60 60 G4 G4 N L0 L0 65 65 G4 G4 N L0 L0 70 70 G4 G4 N L0 L0 75 75 G4 G4 N L0 L0 80 80 G4 G4 N L0 L0 85 85 G4 G4 N L0 L0 90 90 G4 G4 N L0 L0 95 95 G4 G4 N L1 L10 0G 0G 4 N L1 L110 G4 G4 N L1 L12 0G 0G 4 N L1 L13 0G 0G 4
Outer Diameter (mm) (mm)
600
650
70 0
75 0
800
850
900
95 0
1000
1100
1200
1300
Inner Diameter (mm)
15
15
15
15
20
20
20
20
25
25
25
30
3317
3847
4 416
5 023
5671
63 5 9
70 8 5
784 9
9 498
11305
13266
Effective Plane Area 2 8 26 (×102mm2) Thickness of One Rubber Layer (mm)
4 .0
4.4
4.9
4.9
5.1
5. 3
5.7
6. 0
6. 4
7. 2
7.7
8 .0
Number of Rubber Layers (—)
41
37
34
34
33
32
30
28
26
23
22
21
162
163
167
165
168
168
170
168
165
166
169
168
First Shape Factor(—) (—) 37.0
36.1
34.9
37.9
38.2
3 9 .5
38 . 9
3 8. 8
38 . 4
37.3
38.1
39.7
Second Shape Factor 3.70 (—)
3 . 99
4.20
4.55
4.75
5. 06
5.31
5. 65
6. 0 6
6. 6 4
7.08
7.74
900
950
1000
1100
1150
1200
1250
1300
14 00
1500
1600
1700
Thickness of Flange 2 2 /28 (mm)
2 2 /2 8
2 2 /2 8
2 2 /2 8
24/32
24 /32
2 8/36
2 8/36
2 8/3 6
3 0/3 8
32 /4 /4 0
32 /4 /4 0
Diameter of Bolt Center 7 75 (mm)
8 25
875
950
1000
1050
1100
1150
1250
1350
14 50
1550
Total Rubber Thickness
(mm)
Physical Dimensions Diameter of Flange
(mm)
Diameter (Number) of φ 3 3 × 12 12 φ 3 3 × 12 12 φ 3 3 × 12 12 φ 3 3 × 12 12 φ 3 3 × 12 12 φ 3 3 × 12 12 φ 3 3 × 12 12 φ 3 3 × 12 12 φ 3 9 × 12 12 φ 3 9 × 12 12 φ 3 9 × 12 12 φ 3 9 × 12 12 Fixing bolts (mm) Supposed Bolt
(—) M30
Thickness of One Reinforcing Steel Plate (mm)
M 30
M 30
M30
M30
M30
M30
M30
M36
M36
M36
M 36
3.1
3.1
3.1
4.4
4.4
4.4
4.4
4.4
4. 4
4. 4
5. 8
33 0. 4
324 . 9
32 3. 2
373.1
36 8. 4
369.1
3 58 . 8
3 47.1
3 38 . 4
3 41.8
3 6 4 .0
5.7
6 .3
6.9
8.1
11.0
12.1
13.7
14.5
15.9
18.4
21.8
27.5
42
46
49
57
61
68
71
75
80
87
94
10 4
3.1
Height
(mm) 34 2.0
Total Weight
(KN)
Critical Stress γ=0 σcr (N/mm2)
(0,42 ,42) ) (0,46 (0,46) ) (0,49 (0,49) ) (0,57 (0,57) ) (0 (0,60 ,60) ) (0 (0,60 ,60) ) (0 (0,60 ,60) ) (0 (0,60 ,60) ) (0 (0,60 ,60) ) (0 (0,60 ,60) ) (0 (0,60 ,60) ) (0 (0,60 ,60) ) (γ0,σ0) (0 Ultimate Compressive — — — — (0..1,6 (0 ,60 0)(0. )(0.8, 8,60 60) ) (1 (1..1,6 ,60 0) (1 (1.5 .5,6 ,60 0)(2 )(2.0 .0,6 ,60 0)(2.7,6 ,60 0)(3. )(3.3, 3,60 60)(4 )(4.0 .0,6 ,60 0) (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2) (3.7 (3.7,2) ,2) (4.0,5) (4.0,9 (4.0,9) ) (4.0,1 16) 6) (4.0,21 (4.0,21) (4.0,27)(4.0,30 (4.0,27)(4.0,30)(4.0,35)(4.0,40)(4.0,47)(4.0,53 )(4.0,35)(4.0,40)(4.0,47)(4.0,53)(4.0,60) )(4.0,60)
Compression Properties Compressive Stiffness
3 (×10 kN/m)
1700
1960
2190
26 3 0
29 4 0
33 6 0
372 0
4170
Nominal Long Term +1.4 Compressive Stress(N/mm ( N/mm2) 8.7 -1.8
9.7 -2.0
Nominal Long Term 24 6 0 Column Load (kN)
3 2 20
4 04 0
53 4 0
65 3 0
8510
954 0
10630
1.0
1.0
1.0
1.0
1.0
1.0
0.799
0. 9 05
1.05
1.17
1.32
1.47
Allowable Tensile Stress 2 (γ =1 =100 00%) %)(N/m (N/mm m )
1.0
Shear Stiffness(×10 3kN/m) Shear 0. 6 8 4 Properties 〔critical stress:γ= stress:γ= ±100%〕
+1.5
+1.7
+1.9
10.5 -2.3 12.1 -2.8
+2.0
+0.0
+0.0
+0.0
4 69 0 +0.0
5 59 0
6 56 0
7870
+0.0
+0.0
+0.0
11800
14 200
17000
19900
1.0
1.0
1.0
1.0
1.0
1.65
1.86
2. 25
2 .6 2
3.10
13.0 -3.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0 15.0 -5.0
40
Code
● NT NT-Series -Series(T (Total otal Rabber Thickness 250mm)
Designati Desi gnation on Compo Compound und
G4
Characteristics
Shear Modul Modulus us(N/mm2)
G 0. 4 0
0. 3 9 2
N T090G 4
N T100G 4
N T110G 4
NT120G4
N T130G 4
N T14 0G4
N T150G 4
N T160G 4
Outer Diameter (mm) (mm)
900
1000
1100
1200
1300
1400
1500
1600
Inner Diameter (mm)
20
25
25
25
30
30
40
80
Effective Plane Area (×102mm2)
6 3 59
78 4 9
9 4 98
11305
13266
15387
17659
2 0 0 56
Thickness of One Rubber Layer (mm)
6 .0
6.7
7.4
8. 0
8.7
9. 5
10
10.4
Number of Rubber Layers (—)
42
37
34
31
29
26
25
24
2 52
24 8
252
24 8
252
247
25 0
25 0
First Shape Factor(—) (—)
36.7
3 6. 4
3 6 .3
36.7
36 . 5
36.1
3 6. 5
3 6. 5
Second Shape Factor (—)
3. 57
4 . 03
4. 37
4.84
5.15
5 .6 7
6. 0 0
6.41
1250
14 00
1500
1600
1700
1800
1900
20 0 0
Thickness of Flange (mm)
28/3 6
28/36
30/38
32/40
32/40
37/45
42/50
50/110
Diameter of Bolt Center (mm)
1100
1250
1350
1450
1550
1650
1750
1800
φ 33 33 ×1 × 12
φ 39 39 ×1 ×12
φ 39 39 ×1 ×12
φ 39 39 ×1 ×12
φ 39 39 ×1 × 12
φ 42 42 ×1 ×12
φ 42 42 ×1 × 16
φ 45 45 ×1 × 12
(—)
M 30
M 36
M36
M36
M36
M39
M39
M42
Thickness of One R einforcing Steel Plate (mm)
4.4
4.4
4.4
4.4
4.4
5. 8
5. 8
5. 8
Total Rubber Thickness
(mm)
Physical Dimensions Diameter of Flange
(mm)
Diameter (Number) of Fixing bolts (mm) Supposed Bolt
Height
(mm)
50 4 . 4
478.3
472.8
4 6 0 .0
4 5 5. 5
4 8 2. 0
4 8 9. 2
6 0 3. 0
Total Weight
(KN)
16.9
19.6
2 2 .9
2 6 .3
29.5
3 8. 3
4 4.8
70.7
40
47
53
62
67
73
78
83
(0,4 0)
(0,47)
(0,53)
(0,60)
(0,60)
(0,60)
(0,60)
(0,60)
—
—
—
(0. 2,60)
(0.7,60)
(1.3,60)
(1.8,60)
(2.4,60)
(3.6,1)
(4.0,6)
(4.0,12)
(4.0, 22 22)
(4.0, 27 27)
(4.0,34)
(4.0,38)
(4.0,4 4) 4)
24 4 0
3060
36 4 0
4 420
50 9 0
6000
6 83 0
7 7 70
Critical Stress γ=0 σcr (N/mm2)
(γ0,σ0) Ultimate Compressive (γ1,σ1) Stress 2 (N/mm ) (γ2,σ2)
Compression Properties Compressive Stiffness
3 (×10 kN/m)
Nominal Long Term Compressive Stress(N/mm ( N/mm2)
8.2
+1.3 -1.9
9.9
+1.5 -2.3
11.3
+1.7 -2.6
13.2
+1.8 -3.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
15.0
+0.0 -5.0
Nominal Long Term Column Load (kN)
5210
7 7 70
10700
14900
19900
23100
26 5 0 0
30100
Allowable Tensile Stress 2 (γ =100%)(N/m (N/mm m )
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0 .9 8 9
1.24
1. 48
1.79
2. 0 6
2. 4 4
2.77
3.15
Shear Stiffness(×10 3kN/m) Shear Properties 〔critical stress:γ= stress:γ= ±100%〕
41
Dimension and Performance Properties of Elastic Sliding Bearing Code
● SL-Se SL-Series ries(μ (μ= = 0. 0.1 13,G 3,G1 1.2 タイプ)
Designat Desi gnation ion Compo Compound und
GC
Characteristics
Shear Modul Modulus us(N/mm2)
G1.2
1.18
S L 0 30 G C
SL 0 4 0 G C
SL 0 5 0 G C
SL 0 6 0 G C
SL 070 G C
S L 08 0 G C
Outer diameter (exclude cover rubber) (mm) Inner diameter of reinforcing steel plate (mm) Effective outer diameter (mm) Effective Plane Area 2 (×10 mm 2) Thickness of one rubber layer (mm) Number of rubber layers (—) Total rubber thickness (mm)
300
400
500
600
70 0
80 0
0
0
0
0
0
0
300
400
500
600
70 0
80 0
707
1257
1963
2 827
384 8
5 0 27
3 .5
5 .0
6. 0
7.5
8.7
10.0
12
12
10
8
7
6
42
60
60
60
61
60
First shape factor
(—)
21.4
2 0 .0
2 0. 8
2 0. 0
20.1
2 0. 0
Second shape factor
(—)
7.14
6. 67
8. 3 3
10.0
11.5
13.3
of sliding material Dimensions Diameter (PTFE) (mm)
308
408
508
60 8
70 8
8 08
Diameter of ange
500
650
75 0
900
1000
1150
Thickness of ange (mm)
16/22
16/22
22 /28
22 /28
22 /28
24/32
Diameter of bolt center(mm)
420
550
650
7 75
87 5
100 0
Number of xing bolts and Diameter of bolt hole (mm)
φ 27 × 8
φ 27 × 8
φ 27 × 8
φ 33 × 8
φ 33 × 8
φ 33 × 8
M24
M24
M24
M30
M30
M30
2. 2
2. 2
2.2
3.1
3.1
3.1
(mm)
Size of bolts
(—)
Thickness of one reinforcing steel plate plate (mm)
Vertical Properties
Horizontal Properties
Height (bearing)
(mm)
103.2
121. 2
122.8
132.7
130.5
130.5
Weight (bearing)
(KN)
0. 5
0 .9
1.5
2.4
3. 0
4 .0
Ultimate displacement (mm) Ultimate compressive stress (N/mm2) Design compressive stress 2 (N/mm ) Design compressive force (kN) Compressive stiffness 3 (×10kN/m) Allowable tensile stress 2 (N/mm ) Initial stiffness 3 (×10 kN/m) Post-yield stiffness (×103kN/m)
(outer diameter of SUS Plate- effective Area) / 2 50 10 707
1260
1960
28 3 0
3 85 0
5 0 30
1730
20 4 0
32 9 0
4 60 0
6190
8170
5. 5 5
7.4 4
9. 8 6
0 1.98
2. 4 6
3. 8 5 0
Friction Dynamic friction coecient (—) Properties
0.13(σ =10(N (N/mm /mm2), V (veloc (vel ocit ity)=100(mm/s) y)=100(mm/s))
SL:μ μ =(0.112 ー 0.00276 σ)V0.0863 Design Formula SL: Characteristics
QL1 QL 1322 3228 8
QL1 QL 1422 4228 8
QL1 QL 1522 5228 8
QL1 QL 1623 6231 1
QL1 QL 172 723 31
QL1 QL 1823 8231 1
QL1 QL 1923 9231 1
QL2023 QL2 0231 1
QL21 QL2 123 231 1
QL2223 QL22 231 1
□ 13 1320
□ 14 1420
□ 15 1520
□ 16 1620
□ 17 1720
□ 18 1820
□ 19 1920
□ 20 2 0
□ 2120
□ 2 22 0
□ 13 1300
□ 14 14 00
□ 15 150 0
□ 16 1600
□ 17 1700
□ 18 1800
□ 19 1900
□ 2000
□ 2100
□ 2 20 0
55 0
600
650
70 0
75 0
800
850
900
9 50
1000
28
28
28
31
31
31
31
31
31
31
L b1 (mm)
1000
1100
120 0
1300
14 00
1500
1600
1700
1800
1900
Lb2(mm)
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
φ 35 35 × 8
φ 35 35 × 8
φ 35 35 × 8
φ 41 41 × 8
φ 41 41 × 8
φ 41 41 × 8
φ 41 41 × 8
φ 41 41 × 8
φ 41 41 × 8
φ 41 41 × 8
M30
M 30
M30
M36
M 36
M 36
M36
M36
M 36
M36
3.7
4 .3
4.9
6.1
6. 8
7.7
8. 5
9. 4
10.4
11.4
Outer diameter of base plate (mm) s e Outer diameter of stainless i t plate (mm) r e Inner diameter of stainless ) p e plate (mm) o r t a P l Total thickn ess (mm)
P e t a s l s P e ) l n k i a c t a S B ( ( e s a B
Connecting bolt hole position
Number of xing bolts and Diameter of bolt hole(mm) hole(mm) Size of bolts Weight
(—) (kN)
42
●The information in this catalogue is
subject to change without any prior notice. For more information, please kindly contact our company. ●The information in this catalogue is up to date until June 2013
13-02
G DE 0812○