DISTRIBUTIONS DISTRIBU TIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev’s Inequal!y "#e!a$sa%aan Chebyshev& selen'$a(nyaa $e!a$sa%a selen'$a(ny $e!a$sa%aan an )hebshev 1. *en *en+ah +ahulu uluan #,nse( a!au -u%us yan' be-hubun'an +en'an #e!a$sa%aan Chebyshev
E$s(e$!as yan' be-$a!an +en'an sua!u va-abel -an+,%
bla $,n!nu bla +s$-! / Va-ans +a- 0 a$an +la%ban'$an +en'an 23 +an 4$a 2 a+a3 $!a %en+e5ns$annya %en+e5ns$annya +en'an 2 2 / E 6"0 7 8& 93 un!u$ 0 a+alah va-abel -an+,% 4ens +s$-! a!au $,n!nu. Un!u$ %en'h!un' va-ans 2 la%ban' +a- s%(an'an ba$u
Fun's *e%ban'$! M,%en
fungsi pembangkit momen +a- sua!u va-abel va-abel -an+,% 0. Msal$an Msal$an a+a blan'an (,s!5 (,s!5 h tx sehn''a un!u$ -h < t < h e$s(e$!as %a!e%a!$anya3 E (e ) a+a. :a+
B. T,($ #e!a$sa%aan Chebyshev Dala% ba'an n $!a a$an %e%bu$!$an !e,-e%a yan' %e%un'$n$an $!a un!u$ %ene%u$an ba!as a!as "a!au ba;ah& un!u$ (-,babl!as "(eluan'& !e-!en!u. Ba!as n3 ba'a%ana(un3 ba'a%ana(un3 !+a$ (e-lu +e$a! +e$a! un!u$ (-,babl!as "(eluan'& "(eluan'& yan' !e(a!3 !e(a!3 +an %a$a3 $!a basanya !+a$ %en''una$an %en''una$an !e,-e%a un!u$ %e%(e-$-a$an %e%(e-$-a$an (-,babl!as. (-,babl!as. *-ns( (en''unaan (en''unaan !e,-e%a +an $asus $husus !u a+alah +ala% +s$us !e,-!s. Teorema 6. Msal$an u"0& a+alah 5un's n,n ne'a!5 +a- va-abel -an+,% 0. 4$a E6u "0&9
a+a3 %a$a3 un!u$ se!a( ) $,ns!an!a (,s!53
*- 6 u"0& < ) 9 =
Bu$!. Bu$!nya +be-$an $e!$a va-abel -an+,% 0 a+alah !(e $,n!nyu3 !e!a( bu$! +a(a! +sesua$an +en'an $asus +s$-! 4$a $!a %en''an! n!e'-al +en'an 4u%lah. Msal$an A/ > ? u"& < )@ +an %sal$an 5"& %enan+a$an (.+.5 +a- 0. Ma$a E6u "0&9 / $a-ena se!a( n!e'-al + an'',!a an'',!a e$s!-% -uas $anan +a- (e-sa%aan (e-sa%aan sebelu%nya a+alah a+alah n,n ne'a!53 an'',!a -uas $- lebh besa- +a- a!au sa%a +en'an salah sa!u +a- %e-e$a. Se)a-a $husus3
Na%un3 4$a A3 $e%u+an u"& < )? )? %a$a3 an'',!a an'',!a -uas $anan +a- +a- $e!a$sa%aan $e!a$sa%aan sebelu%nya !+a$ %enn'$a! 4$a $!a %en''an! u"& +en'an ). sehn''a Se4a$
!u %en'$u! E6u "0&9 < ) *- 6 u"0& < ) 9 yan' %e-u(a$an hasl yan' +n'n$an. Te,-e%a sebelu%nya a+alah 'ene-alsas +a- $e!a$sa%aan yan' se-n' +sebu! $e!a$sa%aan Chebyshev. #e!a$sa%aan n se$a-an' a$an +ben!u$. Teorema 7. #e!a$sa%aan Chebyshev Chebyshev.. Msal$an
va-abel -an+,% 0 %e%l$ +s!-bus (-,babl!as !en!an' a(a a(a yan' $!a asu%s$an asu%s$an bah;a hanya a+a va-ans va-ans yan' !e-ba!as !e-ba!as 2. n3 !en!u sa4a3 %eny-a!$an bah;a a+a %ean "-a!a-a!a& 8. Ma$a un!u$ se!a( $ *- "0 8 < $& = A!au equvalen +en'an *- "0 8 < $& < 1 Bukti. Dala% !e,-e%a a%bl u"0& / "0 7 μ&2 +an c = k 2σ 2 . $e%u+an $!a %e%(unya
*- 6"0 8&2 < $ 229 = / $a-ena (e%blan' +a- an'',!a -uas $anan +a- $e!a$sa%aan sebelu%nya a+alah 23 +ala% (e-sa%aan +a(a! +a(a! +!uls
*- "0 8 < $& = yan' %e-u(a$an hasl yan' +n'n$an. Ten!u3 $a% a$an %en'a%bl 4u%lah $ (,s!5 lebh besa- +a- 1 un!u$ %e%l$ $e!a$sa%aan $e!a$sa%aan yan' + )a-. Gal n !e-lha! bah;a blan'an 1H$ 2 a+alah ba!as a!as un!u$ (-,babl!as (-,babl!as *- "0 8 < $&. Dala% ),n!,h be-$u! n ba!as a!as +an nla yan' !e(a! +a- (-,babl!as +ban+n'$an +ala% $e4a+an $husus. Contoh 1. %sal 0 %e%(unya (.+.5 F"& / 3 . / yan' lannya. Dsn 8 / +an 2 / 1. I5 $ / JH23 $!a %e%(unya (-,babl!as e$sa$ *- "0 8 < $& / *- "0 & / 1 7 Den'an $e!a$sa%aan $e!a$sa%aan )hebysev3 )hebysev3 (-,babl!as sebelu%nya %e%(unya ba!as a!as 1H$ 2 / KH. Se4a$ 1 / 31JK3 +en'an (e-$-aan3 (e-$-aan3 (-,babl!as (-,babl!as e$sa$ +ala% $asus $asus n a+alah a+alah 4auh $u-an' $u-an' +a- ba!as a!as KH. :$a $!a %en'a%bl $/23 $!a %e%(unya $e%un'$nan *-"0 < 2& / . In $e%bal +en'an san'a! $u-an' +a- ba!as a!as 1H$ 2 / %enya4$an +ala% $e!a$sa%aan )hebyshev. Dala% se!a( $e4a+an (a+a ),n!,h sebelu%nya3 sebelu%nya3 (-,babl!as *- "0 8 < $& +an ba!as a!as 2 1H$ !e-$a! be-be+a 4auh. Gal n %enun4u$$an bah;a $e!a$sa%aan n %un'$n +bua! lebh !a4a%. Na%un3 4$a $!a %en'n'n$an $e!a$sa%aan $e!a$sa%aan yan' be-la$u un!u$ se!a( $ +an be-la$u un!u$ se%ua va-abel -an+,% yan' %e%l$ va-ans yan' !e-ba!as3 se(e-! (enn'$a!an a+alah a+alah !+a$ %un'$n3 %un'$n3 se(e-! yan' +!un4u$$an +!un4u$$an ,leh ),n!,h ),n!,h be-$u!. Contoh 2. Msal 0 va-abel -an+,% !(e +s$-! %e%l$
(-,babl!as 1H3 H3 1H + !!$ / 13313 -esve)!vely. -esve)!vely. Dsn 8 / +an / . :$a $ /23 $e%u+an 1H$ 2 / +an 2
*- " 0 < 1& / . Bah;a 3 (-,babl!as *- " 0 8& < $& be-$u! %en)a(a ba!as a!as 1H$ 2 / Oleh $a-ena !u $e!a$sa%aan !e-sebu! !+a$ +a(a! +!n'$a!$an !an(a asu%s lebh lan4u! !en!an' +s!-bus +a- 0.
Ta%bahan :$a (eubah a)a$ 0 %e%l$ -e-a!a 8 +an va-an 2 !+a$ n,l3 %a$a $!a +a(a! %en'hubun'$an %en'hubun'$an an!a-a $e+uanya3 +ala% (e-nya!aan (eluan' +an hu$u% n +!e%u$an ,leh se,-an' ahl %a!e%a!$a (a+a aba+ 13 ya!u *. I Chebyshev. Gu$u%nya a!au -u%usnya n +na%a$an $e!a$sa%aan Chebyshev. Bu$u (+5 *en'an!a- S!a!s!$a S!a!s!$a Ma!e%a!$a ,leh G. G. Ma%an Suhe-%an3D-s.3M.S Suhe-%an3D-s.3M.S
1. La!han
1.104 Msal$an 0 "a+alah& va-abel -an+,% +en'an %ean +an %sal$an E6"0 7 8 & 2$ 9 a+a.
Tun4u$$an3 +en'an +3 bah;a *- "0 8 < +& = E6"0 7 8 & 2$ 9H+2$
1.105 Msal$an 0 "a+alah& sua!u va-abel -an+,% bah;a
*- "0 = & / +an %sal$an
8 / E "0&. Tun4u$$an bah;a *- "0 < 2 8 & = 1H2.
1.106 4$a 0 a+alah sua!u va-abel -an+,% ya!u E"0&/J +an E"0 2&/J 'una$an
$e!a$sa%aan )hebyshev’s un!u$ %enen!u$an ba!as ba;ah un!u$ (-,babl!as *-"2 0 &.
1.107 %sal$an 0 "a+alah& sua!u
va-abel -an+,% +en'an 5un's (e%ban'$! %,%en M"!&3
7 h!h. Bu$!$anlah bah;a *- "0 < a& = e 7a! M "!&3 ! h3 +an bah;a *- "0 = a& = e 7a! M "!&3 h ! .
Isya-a!. Msal u"& / e ! +an ) / e !a + !e,-e%a . Ca!a!an. Gasl n %eny-a!$an bah;a *- "0< a& +an *- "0=a& $u-an' +a- ba!as ba;ah yan' (aln' -en+ah %asn'%asn' e 7a! M "!& $e!$a ! h +an $e!$a h !
1.108.5un's (e%ban'$! %,%en 0 a+a un!u$ se%ua nlanla -l ! +an +be-$an
M "!& / 3 ! &3 M"& / 1.
Men''una$an hasl +a- la!han sebelu%nya un!u$ %enun4u$$an bah;a *-" 0 < 1&/ +an *-" 0 = 7 1& / . Ca!a!an bah;a + sn h !an(a ba!as.
*enyelesaan 1.1K. D$e!ahu P 0 "a+alah& va-abel -an+,% +en'an %ean +an %sal$an E6"0 7 8 & 2$ 9 a+a D!anya P +en'an + 3 !un4u$$an bah;a *- "0 8 < +& = E6"0 7 8 & 2$9H+2$ :a;ab
P
Den'an %en''una$an bu$! !e,-e%a *- 6"0 8&2 < $ 229 = /
A%bl *- "0 8 < +& / *- "0 8 2$ < +2$ & $e+ua -uas +$al 2$3 +en'an $/ *- "0 8 < +& / *- "0 8 2$ < +2$ & = Sehnn'a *- "0 8 < +& = !e-bu$! 1.1Q. D$e!ahu P 0 sua!u va-abel -an+,% bah;a *- "0 = & / 8 / E "0& D!anya P Tun4u$$an *- "0 < 2 8 & = :a;ab
P
A+! "a$an +!un4u$$an& *- "0 < 2 8 & = Msal
)/28 Den'an %en''una$an !e,-e%a *- 6 u"0& < ) 9 = 3 %a$a *- 60 < ) 9 = *- 60 < 2 8 9 = *- 60 < 2 8 9 = *- 60 < 2 8 9 =
!e-bu$!
:a+3 !e-bu$! bah;a *- 60 < 2 8 9 =
1.1. D$e!ahu P E(X) / / J E(X 2 ) / 1J
D!anya P ba!as ba;ah *-"2 0 & :a;ab P 2 / E(X 2 ) – 2 / 1J 7 J 2 / 1J 7 2/ K /2 Den'an $e!a$sa%aan Chebyshev3
Ba!as ba;ah *- "0 8 < $& < 1 *- "0 J < 2$& < 1 *- "0 J < 2$& < 1 *- 6 2$ "0 J& 2$9 < 1 *- 6 2$ J 0 2$ J9 < 1 Ba!as un!u$ *-"2 0 &9
2$ J / 2
2$ J /
2 $ / Q
2$/Q
$/
$/
ba!as ba;ahnya a+alah 1 / 1 / / 3K :a+3 ba!as ba;ah un!u$ ba!as ba;ah *-"2 0 & a+alah / 3K
1.107.
D$e!ahu : 5un's (e%ban'$! %,%en M"!&3 7 h!h.
D!anya P Bu$!$anlah bah;a *- "0 < a& = e 7a! M "!&3 ! h +an *- "0 = a& = e 7a! M "!&3 h ! . :a;ab
P
A+b *- "0 < a& = e 7a! M "!&3 ! h +an *- "0 = a& = e 7a! M "!&3 h ! . Msal u"& / e ! +an ) / e !a Den'an %en''una$an !e,-e%a *- 6 u"0& < ) 9 = 3 %a$a
0= a 0
! h h ! h
h *- 6e ! < e !a 9 = *- 6e ! < e !a 9 = e !a M"!&
Gasl n %eny-a!$an bah;a *- "0< a& +an *- "0=a& $u-an' +a- ba!as ba;ah yan' (aln' -en+ah %asn'%asn' e 7a! M "!& $e!$a ! h +an $e!$a h ! . Sehn''a ++a(a!$an *- "0 < a& = e 7a! M "!&3 ! h 3 +an *- "0 = a& = e 7a! M "!&3 h ! :a+3 !e-bu$! bah;a *- "0 < a& = e 7a! M "!&3 ! h 3 +an *- "0 = a& = e 7a! M "!&3 h ! 1. #es%(ulan #e!a$sa%aan Chebshev :$a (eubah a)a$ 0 %e%l$ -e-a!a 8 +an va-an 2 !+a$ n,l3 %a$a $!a +a(a! %en'hubun'$an an!a-a $e+uanya3 -u%us n +na%a$an $e!a$sa%aan )hebyshev. Teorema 6. Msal$an u"0& a+alah 5un's !a$ ne'a!5 +a- va-abel -an+,% 0. 4$a E6u "0&9
a+a3 %a$a3 un!u$ se!a( ) $,ns!an!a (,s!53 *- 6 u"0& < ) 9 =
Teorema 7. #e!a$sa%aan Chebyshev. Msal$an
va-abel -an+,% 0 %e%l$ +s!-bus (-,babl!as !en!an' a(a yan' $!a asu%s$an bah;a hanya a+a va-ans yan' !e-ba!as 2. n3 !en!u sa4a3 %eny-a!$an bah;a a+a %ean "-a!a-a!a& 8. Ma$a un!u$ se!a( $ *- "0 8 < $& = "ba!as a!as& A!au equvalen +en'an *- "0 8 < $& < 1
"ba!as ba;ah&
Teorema Chebyshev
BAB 1 *ENDAGULUAN
A. La!a- Bela$an' Va-an sua!u (eubah a)a$ %e%be- 'a%ba-an %en'ena (enyeba-an (en'a%a!an +se$!a- nla -a!aan. Bla va-ans a!au s%(an'an ba$u sua!u (eubah a)a$ $e)l %a$a +a(a! +ha-a($an bah;a u%u%nya (en'a%a!an %en'el,%(,$an +e$a! +se$!a- nla -a!aan. #a-ena !u3 (eluan' sua!u (eubah a)a$ %en+a(a! nla +ala% sua!u selan' !e-!en!u +se$!a- nla -a!aan a$an lebh besa- +a-(a+a (eubah a)a$ se-u(a yan' lebh besa- s%(an'an ba$unya. Bla (eluan' +nya!a$an +en'an luas %a$a +a(a! +ha-a($an bah;a sua!u +s!-bus $,n!nu +en'an s%(an'an ba$u yan' $e)l %e%(unya seba'an besa- luasnya +e$a! +en'an . A$an !e!a(3 nla yan' besa- %enya!a$an (enyeba-an yan' lebh besa- sehn''a +a(a! +ha-a($an luas !a+ lebh %enyeba-. B.
Man5aa! Da(a! %enen!u$an (eluan' (eubah a)a$ yan' %en+a(a! nla +ala% 4a-a$ $ s%(an'an ba$u +a- ha-'a -a!aannya (aln' se+$! "1 7 1H$ 2& +en'an $ blan'an -eal.
BAB 2 ISI
A. Te,-e%a Cheby)hev3 se,-an' %a!e%a!$a;an Rusa3 %ene%u$an bah;a ba'an luas an!a-a +ua nla yan' s%e!- !e-ha+a( nla -a!aan be-$a!an +en'an s%(an'an ba$u. #a-ena luas + ba;ah $u-va +s!-bus (eluan' a!au +ala% hs!,'-a% (eluan' be-4u%lah 13 %a$a luas an!a-a +ua blan'an se%ba-an' %enya!a$an (eluan' (eubah a)a$ yan' be-san'$u!an %en+a(a! nla an!a-a $e+ua blan'an !e-sebu!. Te,-e%a be-$u! +$e%u$a$an ,leh Cheby)hev3 %e%be-$an !a$s-an yan' $,l,! "$,nse-va!5& !en!an' (eluan' bah;a se!a( (eubah a)a$ X %en+a(a! nla +ala% k s%(an'an ba$u +a- nla -a!aannya un!u$ se!a( blan'an $ -eal a+alah (aln' se+$! 3 ya!uP BU#TI Menu-u! +e5ns !e-+ahulu %en'ena va-ans x %a$a +a(a! +!uls 2
/
/ / $a-ena yan' $e+ua +a- $e!'a n!e'-al !a$ne'a!5. Se$a-an'3 $a-ena +ala% $e+ua n!e'-al lannya. Ma$a +an bah;a Sehn''a Dan !e,-e%a !elah !e-bu$!. Un!u$ k / 2 !e,-e%a %enya!a$an bah;a (eubah a)a$ X %e%(unya (eluan' (aln' se+$! 1 7 "1H2&2 / %en+a(a!nla +ala% 4a-a$ +ua s%(an'an ba$u +a- nla -a!aan. a!u !'a (e-e%(a! a!au lebh (en'a%a!an se!a( +s!-bus !e-le!a$ +ala% selan' .be'!u (ula !e,-e%a
!e-sebu! %enya!a$an bah;a (aln' se+$! +ela(an (e-se%blan (en'a%a!an se!a( +s!-bus !e-le!a$ +ala% selan'
B. 1.
*e-%asalahan Sua!u (eubah a)a$ X %e%(unya -a!aan
/ 3 va-ans
2
/ 3 se+an'$an (eluan'
+s!-busnya !+a$ +$e!ahu. G!un'lah P a. b.
2.
P (- < x < 2!) P ("x – #" $ %)
Sua!u (eubah a)a$ X %e%(unya -a!aan / 123 va-ans 2 / 3 se+an'$an (eluan'
+s!-busnya !+a$ +$e!ahu. Den'an %en''una$an !e,-e%a Chebyshev h!un'lahP a. b.
J.
P (% < x < "#) P (& < x < 2")
Sua!u (eubah a)a$ X %e%(unya -a!aan / 13 va-ans
2
/ K. Den'an %en''una$an
!e,-e%a Chebyshev h!un'lahP a. b. c.
K.
P ( ' x – "! ' $ &) P ( ' x – "! ' < &) P ( < x < ")
Sua!u (eubah a)a$ X %e%(unya -a!aan /3 va-ans se+an'$an +s!-busnya !+a$
+$e!ahu. G!un'lah a. b.
C. 1.
*e%bahasan D$e!ahu P / 3 2 / D!anya$anP a. P (- < x < 2!) b.P ("x – #" $ %)
*enyelesaan P a. b.
P (- < x < 2!) = P ( - k < x < * k ) $ " P ('x – #' $ %) = P ( - k < x < * k ) $ " -
a!au 2. D$e!ahu P / 123 2 /
D!anya$an P a. P (% < x < "#) *enyelesaanP
b. P (& < x < 2")
a. . P (- < x < 2!)= P ( - k < x < * k ) $ " -
J.
b.P (& < x < 2") = P ( - k < x < * k ) $ " –
D$e!ahu P / 13 2 / K.
D!anya$an P a. P ( ' x – "! ' $ &) b. P ( ' x – "! ' < &) c. P ( < x < ")
*enyelesaan P a. b. c.
P ( ' x – "! ' $ &)= " – P ( ' x – "!'< P ( ' x – "! ' < &) = P (-& < x – "! < &) $ " P ( < x < ") =
K.
D$e!ahu P /3 D!anya$an P a. b. *enyelesaan P a. P ( - k < x < * k ) $ " – P ( - k < x < * k ) $ " –
D. #es%(ulan Te,-e%a Cheby)hev *eluan' bah;a se!a( (eubah a)a$ X %en+a(a! nla +ala% k s%(an'an ba$u +a- nla -a!aan a+alah (aln' se+$! 3 ya!uP
TEOREMA CGEBSGEV Bla $!a %en'ala% $esul!an un!u$ MENDEFINISI#AN +s!-bus (eluan' +a- sebuah va-abel a)a$ 3 +a(a! +(a$a sua!u !a$ s-an ya!u TEOREMA CGEBSGEV P
W*eluan' va-abel a)a$ a$an be-a+a +ala% -en!an' X Y $ a+alah *ALINX SEDI#IT Z 2 $ 1 1 2 $ 1 1 & $ y $ "* < ATAU CONTOG P Te-+a(a! sebuah +a!a +en'an 8 / +an /J . .. . *en'a%a! %en'ala% $esul!an un!u$ %en+e5ns$an +s!-bus (eluan'ny a. *en'a%a! n'n %en)a- (eluan' 4a!uhnya sebuah +a!a +ala% selan' 7 K y 23 %a$a P * " K y 2& / * " 7 $.J y $.J&3 4a
6 96 6 2222222222 H1&"1&" H&"&"&"&"&" $ $ 0 * $ 0 $ * :a+ $ $ 0 * a!au $ $ 0 E $ 0 * a!au $ 0 E $ 0 * [<<[[/[ =<[/[=<[[=<[
9
Q..MOMENDANFUNXSI*EMBANX#ITMOMEN *an+an' 0 (eubah a)a$ +en'an 5un's (eluan' 5"& %a$a -a!aan (an'$a! - a+alah&" 5 0 \ +an n +sebu! %,%en $e - se$!a- n,l "a;al&3 se+an'$an -a!aan (an'$a! - +a- selsh 0 !e-ha+a( A "$,ns!an& a+alah&"&" 5 A [\ +sebu! %,%en $e - se$!a- A3 Bla se%ua unsu- %en'an+un' (eluan' yan' sa%a %a$a-a!aan !e-sebu! be-!u-u! a+alah n A +ann -H&"H [\\ 2D.Q..De5ens M,%en $e - se$!a- a;al (eubah a)a$ 0+be-$an ,leh $,n!nu + 5 b +s$-! 5 a 0 E - - - 3&". &3".&" ]\ ^^[ / D.Q.1. De5ens M,%en $e - se$!a- A (eubah a)a$ 0 +be-$an ,leh 69 $,n!nu + 5 A b +s$-! 5 A a A 0 E A - - - 3&"&". &3"&". &"&" _ ]\ ^^[ [[/[/ D.Q.1. De5ens P Fun's (e%ban'$! %,%en (eubah ava$ +be-$an ,leh E "e ! & +an +s%b,l$an +en'an M "!& "se-n' 4u'a +en'an +s$-! 5 ea ! +en'an 4u'a se-n' ! M
9
! &3".&&""&" \ ^ / ` T. Q.1K. Te,-e%a P Msal$an 0 sua!u (eubah a)a$ +en'an 5un's (e%ban'$! %,%en %a$a! M &"&" / ! +! ! M + - /
5(%+an%,%en+en'anansh Nya!a$anla C,n!,h 0 E +(e-,leh! %e%bua! Den'an $,n!nu + 5 e b +s$-! 5 e a +! ! M + %a$aa+a yae'-a+an!u-unanbah;a Dan''a( Bu$! - - !- ! - - va- .2K.Q &"3&". &3".&"Plnn!P _
/[/ ]\ 69 6 96 9 6 69 n(q (n(Va-ans +ann(-a!aan!u$a-ena (nn(+ann(+(e-,leh! Den'an eq (e (e (een(+! ! M + +an (e (en+! ! M + be-!u-u! 5(%$e+ua+an (e-!a%a!u-unanaSelan4u!ny ! +! ! +M +! ! M + 0 E 4u'a+e%$an 0 E 0 E se+an'$an 0 E +e5ens Menu-u! 0 Va- :a+ !a$,ns- +en'ann+s%b,l$abasanya-a!aan se$!a- M,%en-a!aan se$!a- $e+ua%,%ena+alahnben!u$ 0 E +e5ens Menu-u! :a;ab n! ! nq! ! nq! /[/[/ //[/// [//[/[/ //////[/ [[ &1"1&1" &"&&"1"H&" &"H&" 33&H&""H&" &"3&"&"3&" &"&!an". 3&"P 2_22_1_2_1112122 2222 _22_22_112222 J T.Q.1Q.Te,-e%aP Sua!u (eubah a)a$ %e%l$ 5un's(e%ban'$! %,%en yan' !un''al !e,-e%a !un''al:$a P %a$a! se%uaun!u$ ! M ! M y &"&" / sa%a yan' (eluan' seba-an%e%l$ +an 0 T.Q.1. Te,-e%a&"&" ! Me! M a! n /
Bu$!P&"&" &" &" Mee E e e E ! M a! !0 a! a 0 ! n /// Bu$! P&"&" &"&" a! Me E e E ! M 0 !aa0 ! a0 /// 69 &".....&".&" &".&".&"&" &".......&".&"&.....333" P.....&.....33"... &"&"P 21222111 1221121 11&........1" &.....21" 2 n M! M! M + 5 e+ 5 e+ 5 e! M sehn''a 5 5 5 5 %a$abebas 0 a)a$ (eubah #a-ena ++ 5 e e E e E ! M Bu$! nnnnn!!! ynnnnn 0n 0 ! n 0 0 0 ! !y y
////// ]]]]] ^^[^^[^^[^^[^^[ *a+a (e%b)a-aan be-$u! yan' +%a$su+ +en'an (eubah n,-%al a+alah (eubah yan'%e%(unya seba-an n,-%al (a+a ),n!,h Q.2. yan' a$an +b)a-a$an lebh lan4u!+ala% (e-!e%uan lan4u!an. *e%ba)a +ha-a($an +a(a! %ene-%a !e,-e%a be-$u! P EVALUASI K T.Q.1. Te,-e%a P &"&" a! M! M a0 / &"......3&3"&3"&" .....3&"......3&3"&3" ......333 212121 21 ! M! M! M! M %a$a 0 0 0 +an!u-u! be-!u-u! ! M! M! M 5(% +en'anbebasa)a$ (eubaha+alah 0 0 0 :$aTe,-e%a n ynnn //[ 222222212122211 2211 222212121 ........va- ..................33........33va- .........333 3.......33.1.Q. nn ynn ynnnnn aaans+anaaa -a!a-a!a+en'ann,-%al %enyeba- 0 a 0 a 0 a a)a$ (eubaha)a$ (eubah%a$a!u-u! be-!u-u! ans+an-a!aan+en'an n,-%al %enyeba- bebana)a$ (eubah 0 0 0 Te,-e%aT / / [/[
1.D$e!ahu bah;a 4u%lah (-,+u$s susa!u (e-usahaan !e-ha+a( se4ens ba-an'an!$ %e%(unya -a!a-a!a Q buah (e-%n''ua&Be-a(a$ah (eluan' bah;a (e-usahaan !u %e%(-,+u$s (aln'se+$! Q buah ba-an' an!). b&:$a va-ans (-,+u$s (e-%n''u sa%a +en'an 2Q3 be-a(a$ah (eluan' (-,+u$s (e-%n''u an!a-a K hn''a :a;ab PMsal$an 0 (eubah a)a$ %enya!a$an 4u%lah a!au banya$nya ba-an' an!) yan'+(-,+u$s (e-%n''u.a & M e n u - u ! ( e - ! + a $ s a % a a n M a - ) , v JH2QHQQH&"&Q" //= 0 E 0 *
b&an' +%n!a a+alah (eluan' be-a-!n 0 &K" == 6 96 9 2QQ&Q.2Q"&Q.2Q &1Q"&1Q" ///==[ ==[ $ se+an'$an+an 0 * 0 * :a+ %enu-u! !e,-e%a Chebyshev P 69
KHJ&K" 211&Q.2Q"&Q.2Q 2 <[<==[
0 * 0 * Q Similar to T!"#!$% C!B&S!'
a 12 O*TIMASI FUNXSI LEBIG DARI SATU VARIABEL BEBASDENXAN #ENDALA Il%u e$,n,% (a+a +asa-nya %e%bahas ba'a%ana (ela$u e$,n,%%en)a(a $,n+s ,(!%al +en'an %ela$u$an ,((,-!un!y ),s! !e-!en!uyan' ha-us +$,-ban$an. Den'an $a!a lan (ela$u e$,n,% a$an%en'ha+a( $en+ala +ala% usaha un!u$ %en',(!%al$an !u4uan yan'n'n +)a(a +a- $e'a!an yan' +la$u$annya.Seba'a ),n!,h $e!$a se,-an' $,nsu%en n'n %e%a$s%u%$an$e(uasannya %a$a $en+ala yan' +ha+a( a+alah $,nsu%en %e%l$+ana !e-ba!as un!u$ %e%bel ba-an' +an ba-an'ba-an' yan' !e-se+a%e-u(a$an ba-an' bebas sehn''a un!u$ %en+a(a!$annya $,nsu%enha-us %e%baya- se4u%lah uan' !e-!en!u be-+asa-$an ha-'a ba-an' yan'be-san'$u!an. Sub bab n %en4elas$an ba'a%ana 5un's !u4uan +)a(aba$ %a$s%u% %au(un %n%u% +en'an $en+ala !e-!en!u ya'n +%l$ :$a sua!u 5un's !u4uan +en'an lebh +a- sa!u va-abel bebas +nya!a$an+en'an (e-sa%aan P y / 5" 1 3 2 3 J 3 ......3 n Un!u$ %en)a(a 5un's !u4uan !e-sebu! !e-+a(a! $en+alaH),ns!-an! yan'+nya!a$an +en'an 5un's P ' " 1 3 2 3 J 3 cc.3 n & / $ O(!%as 5un's !u4uan +en'an %e%(e-ha!$an $en+ala yan' a+a+la$u$an +en'an %en''una$an %e!,+e LAXRANXE yan' +nya!a$an+en'an (e-sa%aan P
L / 5" 1 3 2 3 J 3 ......3 n & d>$ ' " 1 3 2 3 J 3 cc.3 n &@ C,n!,h S,al P #asus Laba Ma$s%al :$a 5un's $eun!un'an se,-an' (-,+usen +!un4u$$an +en'an 5un's
/ K0 2 Q 2 20 + %ana 0 +an a+alah ba-an' yan' +a(a! +4ual.:$a $e%a%(uan (ab-$ un!u$ %en'hasl$an $e+ua ba-an' a+alah !+a$lebh +a- K un! *e-!anyaan P a. Be-a(a ba-an' +an y yan' ha-us +(-,+u$s a'a- laba %a$s%al.b. Bu$!$an bah;a laba yan' +(e-,leh a+alah %a$s%al.). Be-a(a besa-nya laba %a$s%u% +a- (en4ualan !e-sebu! en!u$an 5un's !u4uan P
/ K 2 Qy 2 2yTen!u$an 5un's $en+ala P y / KTen!u$an 5un's la'-an'e P L / K 2 Qy 2 2y d "K
7 y&