Proiectarea unei instalatii de reformare catalitica.Full description
gvggbvbvvbvbFull description
SUMMARY SUMMARY S HEET OW NER OF PLANT TEST CONDUCTED BY BOILER MAKE & TYPE STOKER TYPE & SIZE PULVERIZER, TYPE & SIZE FUEL USED MINE PRESSURE & TEMPERATURES 1 STEAM PRESSURE IN BOILER DRUM 2 STEAM PRESSURE AT S.H. OUTLET 3 STEAM PRESSURE AT R.H.INLET
4 5 6 7
ASME TEST FORM FOR ABBREVIATED EFFICIENCY TEST TEST NO LOCATION OBJECTIVE TEST
STEAM PRESSURE AT R.H OUTLET STEAM TEMPERATURE AT S.H. OUTLET STEAM TEMPERATURE AT R.H. INLET STEAM TEMPERATURE AT R.H. OUTLET
DUR RATED CAPACITY BURNER, TYPE & SIZE
COUNTY FUEL DATA psia psia psia
STATE COAL AS FIRED 37 MOISTURE 38 VOL MATTER
psia F F F
% wt 51 52
F F F
39 FIXED CARBON 40 ASH TOTAL 41 Btu per lb AS FIRED ASH SOFT TEMP. 42 ASTM METHOD COAL OR OIL AS FIRED ULTIMATE 43 CARBON
54 55
F F F
44 HYDROGEN 45 OXYGEN 46 NITROGEN
56 57 58
8 W ATER TEMP.ENTERING (ECON.)(BOILER) 9 STEAM QUALITY % MOISTURE OR P.P.M. 10 AIR TEMP.ARROUND BOILER (AMBIENT) TEMP AIR FOR COMBUSTION (This is 11 Reference Temperature) ** 12 TEMPERATURE OF FUEL 13 GAS TEMP.LEAVING (Boiler)(Econ.)(Air Htr.) GAS TEMP.ENTERING AH (If conditions to be corrected to guarantee) 14 U N IT Q U AN T IT I E S 15 ENTHALPY OF SAT.LIQUID (TOTAL HEAT) 16 ENTHALPY OF (SATURATED) (SUPERHEATED) S TM. 17 ENTHALPY OF SAT.FEED TO (BOILER) (ECON.)
Btu/lb Btu/lb Btu/lb
18 EN ENTHALPY OF REHEATED STEAM R.H. INLET
Btu/lb
19 EN ENTHALPY OF REHEATED STEAM R.H. OUTLET
Btu/lb
20 HE HEAT ABS/LB R.H.STEAM (ITEM 16 - ITEM 17)
Btu/lb
21 HEAT ABS/LB R.H.STEAM (ITEM 19 - ITEM 18)
Btu/lb
22 DRY REFUSE (ASH PIT+FLY ASH) PER LB AS FIRED FUEL
PTC BOILER NO
F
47 SULPHUR 59 40 ASH 60 37 MOISTURE 61 TOTAL 0.000 COAL P ULVERIZATION ULVERIZATION GRINDABILITY INDEX 48 * 62 FINESS % THRU 50 49 M* 63 FINESS % THRU 200 0 50 M* 41 INPUT-OUTPUT INPUT-OUT PUT ITEM 31 X 100 64 0 EFFICIENCY OF UNIT % ITEM 29
lb/lb
23 Bt Btu PER LB IN REFUSE (W EIGHTED AVERAGE) Btu/lb 24 CARBON BURNED PER LB AS FIRED FUEL lb/lb 25 DR DRY GAS PER LB AS FIRED FUEL BURNED lb/lb HOURLY QUANTITIES 26 ACTUAL W ATER EVAPORATED lb/hr 27 REHEAT STEAM FLOW lb/hr 28 RATE OF FUEL FIRING (AS FIRED wt) lb/hr TOTAL HEAT INPUT (Item 28 x Item 41) 29 kB/hr 1000 30 HEAT OUTPUT IN BLOW -DOW N W ATER kB/hr TOTAL 31 HEAT (Item 26 x Item 20) + (Item 27 x Item 21) + Item 30 kB/hr OUTPUT 1000 FLUE GAS ANAL.(BOILER)(ECON)(AIR HTR) OUTLET 32 CO2 % VOL 33 O2 % VOL 34 CO % VOL VOL 35 N2 (BY DIFFERENCE) % VOL 36 EXCESS AIR %
53 44 41
0 #DIV/0! 0 0 0
65 66 67 68 69 69 70 71
0 72 0 0
#DIV/0!
HEAT LOSS EFFICIENC HEAT LOSS DUE TO DRY GAS HEAT LOSS DUE TO MOISTURE IN FUEL HEAT LOSS DUE TO H2O FROM COMB.OF HEAT LOSS DUE TO COMBUST.IN REFUS HEAT LOSS DUE TO RADIATION UNMEASURED LOSSES TOTAL EFFICIEN EFFICIENCY CY = (100 (100 - Item 71)
4.1-a(1964) DATE TION
SIZE AS FIRED OIL FLASH POINT F* Sp.Gravity Deg.API* VISCOSITY AT SSU* BURNER TOTAL HYDROGEN Btu per lb
SSF* data inputan perhitungan nilai dari tabel
% wt
GAS CO CH4 METHANE
% VOL
C2H2 ACETYLENE C2H4 ETHYLENE C2H6 ETHANE H2S CO2 H2 HYDROGEN TOTAL TOTAL HYDROGEN % wt DENSITY 68 F ' ATM.PRESS.
HEAT OUTPUT IN BOILER BLOW-DOWN WATER = LB OF WATER BLOW-DOWN PER HR x If impractical to weight refuse, this item can be estimated as follows DRY REFUSE PER LB OF AS FIRED FUEL=
% ASH IN AS FIRED COAL 100 - % COMB.IN REFUSE SAMPLE
24 CARBON BURNED PER LB AS FIR = FUEL
ITEM 43 0
14,500
11CO2 + 8O2 + 7(N2 + CO) 3 (CO2 + CO )
25
x (LB CARBON BURNED PER LB AS FIRED FUEL + 3 5 )
ITEM 32 = 11 x
EXESS AIR 1
0
+8x
O2
0
3
x
-
CO 2 O2
100 x .2682N 2 -
ITEM 23 0
x
100
DRY GAS PER LB AS FIRED FUE BURNED
36
ITEM 22 0.00
-
ITEM 33 +
ITEM 32 0
+
66
67
HEAT LOSS D TO DRY GAS
LB DRY GAS PER LB AS FIRED FUEL
HEAT LOSS DUE MOISTURE IN =
ITEM 34 0
= -
100 x
CO 2
H EA T LO SS
65
ITEM 35 0
7
E FF I C I E NC Y
ITEM 25 x x
CP
x (t v - t air ) = Unit
#DIV/0!
LB H2O PER LB AS FIRED FUEL x [(ENTHALPY OF VAPOR AT 1 PSIA & T GAS LVG) - (ENTHALPY OF LIQUID AT T AIR)] = ITEM 37/100 x [(ENTHAPLY OF VAPOR AT 1 PSIA & T ITEM 13) - (ENTHALPY OF LIQUID AT T ITEM 11)] = ……
0
HEAT LOSS DUE TO H2O FROM COMB.OF H2 = 9H2 x [(ENTHALPY OF VAPOR AT 1 PSIA & T GAS 0 LVG) - (ENTHALPY OF LIQUID AT T AIR)] = 9 x ITEM 44 x [(ENTHALPY OF VAPOR AT 1 PSIA & T ITEM 13) - (ENTHALPY OF LIQUID AT 100 T ITEM 11)] =
68
HEAT LOSS DUE TO COMBUSTIBLE IN REFUSE
=
69
HEAT LOSS DUE TO RADIATION * =
TOTAL BTU RADIATION LOSS PER HR LB AS FIRED FUEL - ITEM 28
70
UNMEASURED LOSSES **
71
TOTAL
72
EFFICIENCY
= ( 100 - ITEM 71)
ITEM 22 0
x
ITEM 23 0
=
-
PTC 4.1-a(1964) Revised September, 1965 BOILER NO Item 15 0
lb of water blowdown per hr = 0
DATE Item 17 1000
kB/hr 0
0
NOTE : IF FLUE DUST & ASH PIT REFUSE DIFFER MATERIALLY IN COMBUSTIBLE CONTENT, THEY SHOULD BE ESTIMATED SEPARATELY. SEE SECTION 7, =
0.000 COMPUTATIONS.
8 ITEM 34 0
+
x
ITEM 33 ITEM34/2 0 0 .2682 (ITEM 35) 0 0
ITEM 24 0
+ ITEM 47 0 267
#DIV/0!
= ITEM 33 -ITEM 34/2 -
#DIV/0!
0 1 psi = 0,069 bar
((ITEM 13) -
LOSS x HHV 100
#DIV/0!
65 X 100 41
#DIV/0!
0.000
66 X 100 41
#DIV/0!
0.000
67 X 100 41
#DIV/0!
0.000
68 X 100 41
#DIV/0!
69 X 100 41
#DIV/0!
70 X 100 41
#DIV/0!
(ITEM 11))
0.24
= 0
Btu/lb AS FIRED FUEL
-
0
x
=
LOSS %
#DIV/0! 0
#DIV/0!
#DIV/0!
#DIV/0!
Inputan untuk Boiler Test eficiency berdasar PTC 4,1 No Data yang harus diinput
Steam Pressure In Boiler Drum Steam Pressure at S.H. Outlet Steam Pressure at R.H. inlet Steam Pressure at R.H. outlet Steam Temperature at S.H. outlet Steam Temperature at R.H. inlet Steam Temperature at R.H. outlet Water Temp. Entering (Econ.)(Boiler) Steam Quality % moisture or p.p.m Air Temp. Arround Boiler (ambient) Temp air for Combustion (This is Reference Temperature) ** Temperature of fuel Gas Temp. Leaving (Boiler)(Econ.)(Air Htr.) Gas Temp. Entering AH (If conditions to be corrected to guarantee) Coal as fired Moisture Vol Matter Fixed Carbon Ash Btu per lb AS FIRED Ash Soft Temp. ASTM Method Coal or Oil as fired ultimate Analysis Carbon Hydrogen Oxygen Nitrogen Sulphur Ash Moisture Oil Flash Point Sp.Gravity Deg. Viscosity at SSU* Burner at SSF* Total Hydrogen Btu per lb Gas CO
psia psia psia psia F F F F F F F F F F % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % wt F API
% wt
% vol
34 CH4 Methane
% vol
35 C2H2 Acetylene
% vol
36 C2H4 Ethylene
% vol
37 C2H6 Ethane
% vol
38 H2S
% vol
39 CO2
% vol
40 H2 Hydrogen
% vol
Coal Pulverization
41 42 43 44 45 46 47
Grindability Index * Fineness % Thru 50 M* Fineness % Thru 200 M* Density 68 F atm.Press. Btu Per cu ft Btu Per lb Flue Gas Analysis (Boiler)(Econ)(Air Heater) Outlet
48 CO2
% vol
49 O2
% vol
50 CO
% vol
51 N2 (by Difference)
% vol
52 Excess Air
% vol
Table 13 B Combustion Calculations - Btu Method (with S orbent) INPUT CONDITIONS - BY TEST OR SPECIFICATION INPUT - Bituminou 1 Exess air at burner/leaving boiler/econ. % by weight 15 Ultimate Analysis 16 Theo Air lb/1 2 Entering air temperature, F Constituent % by weight K1 3 Reference temperature, F A C 4 Fuel temperature, F B S 5 Air temperature leaving air heater, F C H2 6 Flue gas temperature leaving (excluding leakage).F D H2O 7 Moisture in air. Lb/lb dry air E N2 8 Additional moisture. Lb/100 lb fuel F O2 -4.32 9 Residue leaving boiler/economizer. % Total G Ash 10 Output. 1.000.000 Btu/h H Total 0 Air Corrections for sorbent (from table 14 if used) 11 Additional theoritical air. Lb/10.000 Btu Table 14, item [21] 18 Higher heating value (HHV). Btu/lb fuel Table 14, Item [19] 12 CO2 from sorbent. Lb/10.000 Btu 19 Unburned carbon.loss % fuel input Table 14, Item [20] 13 H2O from sorbent, lb/10.000 Btu 20 Theoretica air. Lb/10.000 Btu 14 Spent sorbent. Lb/10.000 Btu Table 14, Item [24] 21 Unburned carbon. % of fuel
22 Theoritical air (corected). Lb/10.000 Btu 23 Residue from fuel. Lb/10.000 Btu 24 Total residue. Lb/10.000 Btu 25 Excess air. % by weight 26 Dry air. Lb/10.000 Btu 27 H2O from air. Lb/10.000 Btu 28 Additional moisture. Lb/100 lb Btu 29 H2O from fuel. Lb/10.000 Btu 30 Wet gas from fuel. Lb/10.000 Btu 31 CO2 from sorbent. Lb/10.000 Btu 32 H2O from sorbent. Lb/10.000 Btu 33 Total wet gas. from Lb/10.000 Btu 34 Water in wet gas. Lb/10.000 Btu 35 Dry gas. Lb/10.000 Btu 36 H2O in gas. % by weight 37 Residue. % by weight
[20] - [21] x 1151 / [18] + [11] ([15G] + [21]) x 100 / [18] [23] + [14] A At burners
B Infiltration
(1 + [25] / 100) x [22] [26] x [7] [8] x 100 / [18] [17H] X 100 / [18] (100 - [15G] - [21]) x 100 / [18] [12] [13] Summation [26] thrugh [32] Summation [27] + [28] + [29] + [32] [33] - [34] [100] x [34] / [33] [9] x [24] / [33]
Enthalpy of steam at 1 psi. T= [6] Enthalpy of water at 1 T= [3]
% Moisture in air. % Unburned carbon. % Radiation and convection. % Unaccounted for and manufactures margin. % Sorbent net losses. % if sorbent is used Summation of losses. % Credits Heat in dry air. % Heat in moisture in air. % Sensible heat in fuel. % Others. % Summation of credits. % Efficiency. %
KEY PERFORMANCE PARAMETERS 54 Input from fuel. 1.000.000 Btu/h 55 Fuel rate. 1000 lb/h 56 Wet gas weight. 1000 lb/h
Losses 0.0024 x [35D] x ([6] - [3]) H1 = (3.958E-5 x T + 0.4329) x T + 1062.2 H2 = [3] - 32 [29]x([39] - [40]) / 100 0.0045 x [27D] x ([6] - [3]) [19] or [21] x 14.500 / [18] ABMA curve. Chapter 22 From Table 14 Item [41] Summation [38] through [46] 0.0024 x [26D] x ([2] - [3]) 0.0045 x [27D] x ([6] - [3]) (H at T[4] - H at T [3]) x 100 / [18] Summation [48] through [51] 100 - [47] + [52] Leaving F 100 x [10] / [53] 1000 x [54] / [18] [54] x [33] / 10
#DIV
57 Air to burner (wet). Lb/10.000 Btu 58 Air to burner (wet). 1000 lb/h 59 Heat available. 1.000.000 Btu/h H, 66 O Btu/h 60 Heat available/lb wet gas. Btu/lb 61 Adiabatic flame temperature. F
(1 + [7]) x (1 + [25A] / 100) X [22] [54] x [57] / 10 [54] x ([18] - 10.30 x [17H]) / [18] - 0.005 x ([44] + [45] + H2 at T[5] x [57] / 10.000 1000 x [59] / [56] From Fig. 3 at H = [60]. % H 2O = [36]
#DIV #DIV #DIV #DIV
coal 00 lb fuel 17 [15] X K1 0.00 0.00 0.00
H2O. Lb/100 lb fuel K2 [15] x K2
0.00 0.00
0.00 H2O
0.00
0.00 0.00
[16H] x 100 / [18] [19] x [18] / 14.500
#DIV/0! 0.00
#DIV/0! #DIV/0! #DIV/0! ce
D
Leaving Blr/Econ
#DIV/0!
#DIV/0! #DIV/0! #DIV/0! #DIV/0!
#DIV/0! 0.00 0.00 #DIV/0! #DIV/0! ! ! !
0.000 #DIV/0! #DIV/0! #DIV/0! #DIV/0!
#DIV/0! 0.00 0.00 #DIV/0! #DIV/0!
#DIV/0! 1,062.2 -32.0 #DIV/0! #DIV/0! #DIV/0!
#DIV/0! #DIV/0! #DIV/0!
#DIV/0! #DIV/0! urnace
/0!
Leaving Blr / Econ #DIV/0! #DIV/0! #DIV/0!
tulisan merah = inputan tulisan hitam = output
/0! /0! /0! /0!
Inputan untuk Boiler Test eficiency berdasar PTC 4,1 with sorbent No Data yang harus diinput
1 2 3 4 5 6 7 8 9 10
Nilai
Satuan
Exess air at burner/leaving boiler/econ. Entering air temperature Reference temperature Fuel temperature Air temperature leaving air heater Flue gas temperature leaving (excluding leakage) Moisture in air Additional moisture. Residue leaving boiler/economizer Output Ultimate Analysis 11 C 12 S
% by weight F F F F F Lb/lb dry air Lb/100 lb fuel % Total per 1.000.000 Btu/h % weight % weight
13 H2
% weight
14 H2O
% weight
15 N2
% weight
16 O2
% weight
17 Ash Theoritical Air needed 18 C 19 S
% weight /100 lb fuel /100 lb fuel
20 H2
/100 lb fuel
21 O2
/100 lb fuel
H2O formed
22 H2
/100 lb fuel
23 H2O
/100 lb fuel
Corrections for sorbent (from table 14 if used)
24 Additional theoritical air
Lb/10.000 Btu
25 CO2 from sorbent
Lb/10.000 Btu
26 H2O from sorbent
Lb/10.000 Btu
27 Spent sorbent
Lb/10.000 Btu
28 29 30 31 32 33 34 35
loss % fuel input % by weight % by weight % by weight % by weight % % %
Unburned carbon Excess air at burner Excess air at infiltration Excess air leaving furnace Excess air leaving Boiler/Economizer Radiation and convection Unaccounted for and manufactures margin Sorbent net losses