»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
1
3.|üPs¡Mí Te÷+dü`yÓ~’ ø£± Á|üd~æ >∆ ±+∫q uÛ≤s¡‘<· o˚ j·T Äs¡¸yêvàj·T eTq<ä–q ÁX¯ó‹düàè‹|ü⁄sêDÒ‹Vü‰kÕ~ Á>∑+<∏äeTT\T y˚T|òüT>∑s¡®qeTTe+{Ï >∑+;Ûs¡ dü«s¡eTT‘√`ªÁãVü≤à$<ëb˛ï‹ |üsy¡ Té μ ` nq>± ÁãVü≤àeTTHÓi+Ï –qyê&ÉT J$‘·|⁄ü ª|üsê uÛ÷Ñ $Tø£μqT (ñqï‘√qï‘·yTÓ qÆ Áu≤V”≤àdæ‘ú ´· qTuÛeÑ eTTqT bı+<äT‘ê&Éì ñ<√Èwdæ Tü HÔ êïsTT. ÁãVü≤àeTTqT eTqdüT‡#˚>±ì, Ç+Á~j·TeTT\#˚>±ì >∑T]Ô+|ü˝eÒ TT.ø±ì C≤„ìjÓTÆ qyê&ÉT ‘·q<Óq’ ~e´C≤„qÁ|üu≤Û eeTT#˚ ‘·è{Ïø±\eTT˝À, nq>± ôdø£qTø£qï ‘·≈î£ ÿe ø±\eTT˝ÀH˚ <ëìì nqTuÛÑeeTT<ë«sê bı+<ä>∑\&ÉT. kÕ<Ûës¡DeTT>±ì{Ϻ ~e´C≤„qeTT Hêsêj·TDT&Ü~>∑Ts¡Te⁄>± >∑\ >∑Ts¡T|üs+¡ |üsê>∑‘e· TT>± dæ∑Ts¡TyÓq’ Hêsêj·TDT&ÉT ‘=eTà+&ÉT>∑Ts¡T Á|üC≤|ü‘·T\≈£î Á|üeè‹Ô<Ûäs¡àeTTqT, ◊<äT>∑Ts¡T ~e´s¡T¸\≈£î ìeè‹Ô<Ûäs¡àeTTqT nqTÁ>∑Væ≤+#ÓqT. jÓ÷>∑, ø£s¡àXÊÁdüÔeTT\T Á|üeè‹Ô<Ûäs¡àeTTqT, kÕ+K´, C≤„qeTT\T ìeè‹Ô=|üŒyÓq’ qT, düT+<äse¡ TT\T düTuÀ<Ûeä TT˝…q’ qT, }Vü‰b˛Vü≤ ˝…+‘·{Ï j·TTøÏj Ô T· Tø£eÔ TT˝…q’ qT, n$ ÁãVü≤àeTTjÓTTø£ÿ ì»dü«s¡÷|ü dü«uÛ≤eeTT q_Ûe´ø°øÔ ]£ +|üC≤\e⁄. ø±e⁄q uÛ>Ñ y∑ êqT&ÉT dü<äTZs¡Te⁄>± õC≤„düTe⁄˝…’q ‘·q •wüß´\≈£î ‘·‘·Ô«C≤„qeTTqT uÀ~Û+#·T≥≈£î ø=ìï ñbÕj·TeTT\qT ñ|üøs£ D¡ eTT\T>± qqTÁ>∑V≤æ +#ÓqT. á C≤„qdüeTTbÕs¡q® e÷s¡eZ TT\T Hê\T>∑T $<Ûeä TT\T>±` ª|ü∑‹øÏ uÛÑ>∑eìï]›wüºyÓTÆq ø£\Œeèø£åeTT. ãTT>∑´EkÕ‡e÷<Ûäs¡«y˚<äeTT\T <ëì Á|ü<ëÛ qXÊK\T. düàè‹Á>∑+<∏eä TT\T ñ|üXÊK\T. |ü⁄sêDÒ‹Vü‰düeTT\T <ëìøÏ Ä≈£î\T eT]j·TT |üPe⁄\T. nfÒ¢ <äsÙ¡ qeTT\T |ò\ü eTT\T. ;»eTT C≤„qeTH˚ eTVü‰eèø£eå ÷$s¡“$¤ +#·T≥≈£î eT÷\ø±s¡DyÓTqÆ eT+Á‘·eTTq≈£î ñbÕ<˚jT· eT>∑T#·Tqï~. ÁãVü≤àeTTqT ìπs•› +#·T≥≈£î ÁbÕ‹ì<∏´ä eTTqT eVæ≤+#·T |ü$Á‘·yTÓ qÆ n+¬øqT dü+K´ n+{≤s¡T. ÁãVü≤àC≤„qeTT\≈£î dü+ã+~Û+∫q Ä˝À#·Hêdüs¡DÏì düÁø£eTeTT>± sπ U≤∫Á‘·eTT>± dü÷∫+#·Tsπ U≤‘·àø£ |ü≥eTTqT bÕ]uÛ≤wæø+£ >± ª#·Áø£eTTμ
2
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
˝Ò<ë ªj·T+Á‘·eTTμ nì e´eVü≤]kÕÔs¡T. Ç˝≤ e´eVü≤]+#·&Éy˚T ø±≈£î+&Ü Bìì nsêÃeT÷]ÔøÏ Á|ü‹ì~Û>± ≈£L&Ü |üPõkÕÔsT¡ . Á|üdTü ‘Ô Á· |üøs£ D ¡ +˝À ns¡dú Œü w”øº s£ D ¡ eTTq¬ø’ ª;»eTTμ ªdü+K´μ nqTq$ y˚πs«s¡T>± ìs¡«∫+|ü ã&çHê, n$ Á|üjÓ÷>±‘·àø£ Á|üj÷Ó »qe´eVü‰s¡eTT\ìï+≥qT |üsd¡ Œü sêqTã+<Ûeä TT\T >∑H˚ $ìjÓ÷–+|ü ã&ÉT‘êsTT. ÁãVü≤àC≤„HêH˚«wüD e÷s¡+Z ˝À |üjT· ì+#˚ ì»yÓTqÆ kÕ<Û≈ä î£ ìøÏ |ü<ä ;» dü+U≤´ sπ K\H˚ Hê\T>∑T C≤„q≈£îxÏø® \£ T (Keys of knowledge) >± ñ|üj÷Ó –kÕÔsTT. õC≤„dTü e⁄ kÕ<Û≈ä î£ &ÉTHÓq’ yêìøÏ e÷Á‘·yT˚ ‘·|Œü Á|ü‹$<ë´]úø,Ï Á|ü‹ ÁãVü≤à#ê]øÏ eT+Á‘√|ü±ì, ns¡Ãq¬ø’ j·T+Á‘·Á|ü<ëqeTT>±ì, |ü$Á‘· y˚<ë<Ûë´|üqeTT>±ì #˚jT· sê<äT. ;» dü+K´\T s¬ +&É÷ eT+Á‘· uÛ≤>∑eTT˝Àπø ekÕÔsTT. |ü± eT÷&ÉTXÊÁdüeÔ TT\T Á|üø{£ ‘Ï e· TT˝…’ ÁãVü≤às¡T¸\≈£î yêìì uÀ~Û+#˚ |üì e|üŒ–+#·ã&ç+~. n$ Á|üø{£ +Ï |üã&˚es¡≈î£ Äj·÷ s¡V≤ü dü´eTT\T kÕ<Ûës¡D kÕ<Û≈ä î£ \≈£î, õC≤„dTü e⁄\≈£î nC≤„‘e· TT>±H˚ ñ+&çb˛j·÷sTT. bÕ]uÛ≤wæø+£ >± á eT÷&ÉT XÊÁdüeÔ TT\T |üD∑ ‘Ï X· ÊÁdüeÔ TT (Arithmatic) ;»>∑D‘Ï e· TT (Algebra)\≈£î, sπ U≤XÊÁdüeÔ TT ˝Ò<ë j·T+Á‘·XÊÁdüeÔ TT (Lenier Mathematics) øπ Áå ‘·>D∑ ‘Ï e· TT (Geometry), X¯+≈£î#˚ä<äπøåÁ‘·>∑DÏ‘·eTT (Conic Sectional Geometry) eT]j·TT Á‹ø√D$T‹ (Trigonometry) XÊÁdüeÔ TT\≈£î »qàì∫Ãq~. |ü<äXÊÁdüÔ, eT+Á‘·XÊÁdüÔ,j·T+Á‘·XÊÁdüÔeTT\T eT÷&ÉTqT #·ø£ÿHÓ’q |üs¡düŒs¡ kÕeTs¡dü´eTT‘√bÕ≥T yêì kÕ<Ûës¡D Á|ü‹bÕ<ä´\ø£å´yÓTÆq ÁãVü≤à uÀ<Ûäq˝À |üs¡´edæ+#·T#·Tqï$. ˇø£ÿe÷≥˝À #ÓbÕŒ\+fÒ, áeT÷&ÉT XÊÁdüÔeTT\TqT, ˇπø ‘˚»'|ü⁄+»eTTqT+&ç yÓ\Te&çqyÓ,’ ˇπøjÓTTø£ >=|üŒ øπ +Á<äeTT˝À ©qeTj˚T´ eT÷&ÉT øÏsD¡ eTT\ì #Ó|Œü e#·TÃqT. á øÏsD¡ Á‘·jT· e÷$s¡“$¤ +∫q ‘˚»'|ü⁄+»eTT, |üs´¡ edæ+#˚ øπ +Á<ä_+<äTeP s¬ +&ÉTq÷, lX¯èv‚ØZ $s¡÷bÕø£å l |”sêƒ BÛX«¯ s¡T˝…q’ »>∑∑+<∏yä T˚ qì ‘ê‘·Œsê´s¡eú TT. á |üPs¡Mí Te÷+kÕ<äsÙ¡ q+˝À ◊<ëVæ≤ïø£eTT\THêïsTT. yêì˝À Áø£eT+>± ` 13G07G11G12G11R54 dü÷Á‘·eTT\THêïsTT. nVü≤ïeTq>± ~qeTì ns¡ú+. Ä#ês¡T´&=ø£s√E˝À uÀ~Û+#˚ $wüjT· $uÛ≤>∑eTTqT ÄVæ≤ïø£eTì dü÷\ú +>± ìs¡«∫+|ü e#·TÃqT. n˝≤H˚ dü÷Á‘·eTTqT ªn˝≤Œø£så e¡ TT\˝À nq˝≤Œs¡sú #¡ q· μ >± ìs¡«∫+|üe#·TÃ.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
3
ªªn˝≤Œø£så e¡ Tdü+~>∑+∆ kÕs¡e~«X¯«‘√eTTKyéTˆ nk˛ÔueÑÛ Tqe<ä´+#· dü÷Á‘·+ dü÷Á‘·$<√ $<äT'ˆˆμμ ` nì dü÷Á‘·\ø£Då eTT. dü÷Á‘·eTT˝À #Ó|Œü ã&çq $wüjT· eT‹≈£î|¢ eÔü TT>± @$<Ûyä TÓ qÆ dü+X¯jT· eTT\≈£î ‘êMj·Tì~>±, Vü≤è<ä´yÓTqÆ ~>±, düs«¡ »HêyÓ÷<äj÷Ó >∑´ yÓTqÆ ~>±, @$<Ûeä TT>∑qT ‹s¡dÿü ]+|ü X¯ø´£ eTTø±ì~>± s¡∫+|üã&Ée˝…qì ‘ ê ‘ · Œ s ¡ ´ e T T . á$<Ûeä TT>± dü÷Á‘·eTT ˝…+‘·{Ï y˚T<Ûëe+‘·T\¬øq’ qT n<Û´ä j·TqeTT #˚jT· <ä–q$. Ç$ dü+Á|ü<ëj·T$<äT\>∑T ÁãVü≤às¡T¸\#˚ yê] |ü$Á‘·eTT˝…’q Ä˝À#·qdüs¡DÏì õC≤„dTü e⁄˝…q’ kÕ<Û≈ä î£ \≈£î e÷s¡ìZ sπ X› e¯ TT #˚jT· T≥≈£î Á|ü‹bÕ~+#· ã&çq$. á$<ÛäyÓTÆq dü÷Á‘·yêvàj·TeTT>± s¡∫+|üã&çq+<äTq á |üPs¡íMTe÷+kÕ <äsÙ¡ qeTTq≈£î dü÷ø£àå eTT düŒwü‘º s· e¡ TTq>∑T yê´K´qT |ü]‘ƒ \· jÓTTø£ÿ kÂ\uÛ´Ñ eTTø=s¡ø¬ ’ sTT≥¢+Bj·Tã&ÉT#·Tqï~. |ü<ä,dü+U≤´ πsU≤XÊÁdüÔeTT\T eT÷&ç+{ÏjÓTTø£ÿ düeTÁ>∑ dü«s¡÷|üeTTqT dü+Á>∑V≤ü eTT>± ‘Ó*j·TCÒdqæ #√ á |üPs¡Mí Te÷+kÕ <äsÙ¡ qyê´U≤´qeTT düsê«+^DeTT>± düTdü+|üqïeTÚ‘·T+~. dü+|üPs¡íy˚<äyêvàj·T $C≤„qeTTq≈£î eT÷\ø£+<äyÓTÆq ÁãVü≤àõC≤„düj˚T |üPs¡Mí Te÷+kÕ <äsÙ¡ q Á|ü‹bÕ<ä´eTT. dü+|üPs¡í y˚T∑ uÛèÑ >∑Te⁄q≈£î|ü<•˚ +∫q C≤„qeTT. Ç~ ‘Ó‹’ ØÔ jÓ÷|üìwü‘T· ˝Ô À uÛèÑ >∑Te*¢>± Á|üd<æ e∆ä TT. 2.#Ûê+<√>√´|üìwü‘·TÔ˝À ÁãVü≤à]¸jÓÆTq ñ<ë›\ø£eTVü≤]¸ ‘·q≈£î $<Û˚j·TT&Ó’q ≈£îe÷s¡T&ÉT X‚«‘·πø‘·Tq≈£î|ü<˚•+∫q ÁãVü≤àC≤„qeTTq ø£edüs¡yÓTÆq eTÚ*ø£dæ<ë∆+‘· ìs¡÷|üDeTT. á ¬s+&ÉT ñbÕU≤´qeTT\T düs¡«y˚<ë+‘· kÕs¡uÛÑ÷‘·eTT˝…’ Áø£eTã<ä∆yÓTÆq yÓC’ ≤„ìø£yTÓ qÆ , |ü<‹∆ä ˝À XÊÁd”j Ô T· dæ<ë∆+‘·eTT\≈£î dü+ã+~Û+∫q düeTdü´\ø£ìï+{ÏøÏ ‘·sÿ¡ ã<äy∆ TÓ qÆ |ü]cÕÿs¡eTTqT #·÷|ü>*∑ –q$. #·sê#·sy¡ TÓ qÆ uÛÖ‹ø£Á|ü|+ü #·eT+‘·jT· T ãVüQeTTFqeTT>± ø£qã&ÉT#·TqïqT Ç+<ä* ãVüQ$<ÛäedüTÔC≤‘·eTTq ø£+‘·≈£îqT ;»uÛÑ÷‘·yÓTÆq eT÷\ø±s¡DyÓTTø£ÿfÒqìj·TT, n~«rj·TyÓTÆq <ëìqT+&çj˚T uÛÑ÷‘·C≤‘·eT+‘·j·TT ãVüQeTTFqeTT>± Hê$s¡“¤$+∫q<äìj·TT, eTÚ*ø£yÓTÆq <ëìqqTuÛeÑ |üPs¡«ø£eTT>± ‘Ó*dæø=qT≥j˚T e÷qe»qà \_Û+∫q+<äT\≈£î #˚se¡ \dæq eTôVAqï‘·>e∑ T´eTT, n~j˚T |üse¡ ÷e~Û j·Tìj·TT, düs√«‘·ÿèwüyº TÓ qÆ Ä eT÷\ø±s¡D
4
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
|ü]C≤„qeTT (By the knowledge of the Supreme Fundamental Cause) e\q düs«¡ »„‘«· eTT \_Û+#·Tqìj·TT, Ä ñbÕU≤´Hê\T s¬ +&É÷ ñ<ëÈ{dÏ Tü HÔ êïsTT. yÓw’ sü TTø£ Á|ü|+ü #·eTT(Objective world)m+‘·>± ãVüQeTTFq+>± |ü]|ü] $<Ûeä TT\T>± Á|üd]Ôü +∫, $dü]Ô +∫, ∫Á‘·es¡Xí À_Û‘+· >± ø£qã&ÉT‘·THêï, <ëìì øπ e\+ s¬ +&˚ s¬ +&ÉT eTÚ*ø£ Á|üu<ÒÛ ë\˝À <ä]Ù+#·e#·TÃ. n$ HêeTs¡÷bÕ\T.(Name and ¬ +&ÉT>± $#ês¡Dø√dü+ $+>∑&+ç #·T≈£îHêï n$ s¬ +&É÷ Form). HêeTs¡÷bÕ\ì s |üsd¡ Œü s¡s n+fÒ, ˇø£<ëì‘√ H=ø£{Ï ì‘·´dü+ã+<Ûëìï ø£*– ñ+{≤sTT. ˇπøHêD…eTTjÓTTø£ÿ u§eTà u§s¡TdüT\ e+{Ïeì #Ó| ü ø√e#·TÃqT. XÊÁd”j Ô T· eTT>± M{Ïì $X‚w¢ +æ #·T≈£îqï|ü &ÉT HêeTeTTqT |ü<;ä »dü+U≤´s¡÷|üeTT\˝À eT÷&ÉT>±qT, s¡÷|üeTTqT sπ U≤‘·àø£+>±qT, e´eVü≤]+#·&+É |ü]bÕ{Ï. ø±>± eTq |ü]o\q˝À` 1.ãVüQeTTFq+>± Á|üd]Ôü dü÷,Ô ìs¡+‘·s+¡ >± $dü]Ô düTqÔ ï á yÓw’ sü TTø£ Á|ü|+ü #êìøÏ ;»uÛ÷Ñ ‘·yTÓ qÆ ,eTÚ*ø£yTÓ qÆ Á|ü<ëÛ qø±s¡DyÓTTø£ÿ{ÏjT˚ ‘·|Œü s¬ +&Ée~ ˝Ò± n~ n~«rj·TeTT, ì‘·´eTTHÓq’ ~. 2. nqTuÛeÑ |üPs¡«ø£eTT>± Ä yÓ~’ ø£d<æ ë∆qeÔ TTjÓTTø£ÿ |üse¡ Tdü‘ê´ìï |ü]o*+#ê\+fÒ ( To verify the Truth of the Vedic Doctrine) eTT+<ä T >± eTq+ á yÓw’ sü TTø£Á|ü|+ü #·+jÓTTø£ÿ yÓC’ ≤„ìø£yTÓ qÆ dü÷ø£àå |ü]o\qqT (Scientific Scrutiny of · *‡j·TT+≥T+~. this Objective World) ì•‘·+>± #˚j÷ dü+Á>∑V≤ü +>± #Ó| ü ≈£î+fÒ >∑qTø£ HêeTs¡÷bÕ‘·àø£yTÓ qÆ á uÛÖ‹ø£ $wüjT· Á|ü|+ü #êìï $X‚w¢ +æ ∫ $e]+#·Tø√yê\qïe÷≥. HêeTs¡÷bÕ\qT |ü<;ä »dü+U≤´πsU≤ Á|üu<ÒÛ ë\T>± eTT+<äT #Ó| ü ≈£îHêï+. MìH˚ eTq+ Áø£eT+>±` 1.|ü<Áä |ü+#·+ ˝Ò<ë X¯ãÁ› |ü|+ü #·+(Pada World) 2.;»Á|ü|+ü #·+(Bija World) 3.dü+U≤´Á|ü|+ü #·+(Samkhya World or Number World) 4.πsU≤Á|ü+#·+(Rekha World)`nì Hê\T>∑T $uÛ≤>±\T>± $e]+#·T≈£î+<ë+. sπ U≤Á|ü|+ü #·+ (Rekha World) :` ÁbÕ<Ûëq´‘·qT Á|üe÷D+>± Á>∑V≤æ +∫ Ä Áø£eT+˝À eTT+<äT>± sπ U≤Á|ü|+ü #êìï |ü]>∑Dq˝ÀìøÏ rdæø√yê\+{≤s¡T Ä#ês¡´kÕ«$T. ø±s¡D+, sπ U≤eT÷\+>± yÓw’ sü TTø£ Á|ü|+ü #êìï, <ëì ‘·‘êÔ«ìï ‘Óìj·TCÒjT· e#·TÃq+{≤sêj·Tq. düsπ ! ø£ì|ædTü qÔ ï á edüTÔ Á|ü+#·eTTjÓTTø£ÿ dü«s¡÷bÕìï bÕ]uÛ≤wæø+£ >± s¡÷|üeTì e´eVü≤]+#·T≈£î+≥THêï+. <ëìjÓTTø£ÿ sπ U≤‘·àø£yTÓ qÆ dü«s¡÷bÕìï bÕ]uÛ≤wæø+£ >± ª#·Áø£eTTμ
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
5
˝Ò<ë ªj·T+Á‘·eTTμ nì e´eVü≤]dü÷Ô ñ+{≤s¡T. Ç~ eTqπøeT+‘· ÄX¯Ãsê´ìï ø£*–+#·± uÛ≤$+∫ n]Ã+#·ã&ÉT#·Tqï á #·Áø£eTT\qT Áyêùd$<ÛëHêìï bÕ]uÛ≤wæø£+>± $X‚¢wæ+∫ $e]+#˚ XÊÁd”Ôj·TyÓTÆq |ü<ä∆‹j˚T sπ U≤Á|ü|+ü #·eTì e´eVü≤]düTHÔ êï+. eTq J$‘· |üse¡ T\ø£´å eTTqT Á>∑V≤æ +#·&Üìø£qTe⁄>± bÕsƒ≈¡ î£ \ø√dü+ sπ U≤Á|ü|+ü #· yÓu’ yÑÛ êìï eTT+<äT>± ‘Ó*j·TCÒj÷· *. ø±ã{Ï,º eTqMT Á|üøs£ D ¡ +˝À eTT+<äT>± #·Áø£eTT\≈£î dü+ã+~Û+∫q dü÷ø£àå s¡V≤ü dü´eTT\qT n+<äs≈¡ î£ ne>±Vü≤qø£+<˚$<ÛäeTT>± qT+&˚yêìì $e]+#·T≈£î+<ë+. düs¡«kÕ<Ûës¡D+>± πsU≤‘·àø£∫Árø£s¡D(Graphic Representation)˝À ñ|üjÓ÷–+#˚ #·Áø£eTT\≈£î dü+ã+~Û+∫q $wüjT· eTT\qT bÕ]uÛ≤wæø+£ >±` _+<äT#·‘T· wüj º T· eTT, |ü+#·ø√DeTT, wü{ÀÿDeTT...\T>± e´eVü≤]kÕÔsT¡ . kÕ<Ûës¡D√|üjT· Tø£eÔ TT˝…q’ Çe˙ï ˇø£ |ü]eè‘·eÔ TT˝À qTqï≥T¢ > ± dü ÷ ∫+|ü ã &É ‘ êsTT. á |ü ] eè‘· Ô e TT( Boundary Circle )H˚ ªeTsê´<ëeè‘·ÔeTμì≈£L&Ü n+{≤s¡T.(á |üPs¡íMTe÷+kÕ Á>∑+<∏ä$es¡D˝À ∫e] ÄVæ≤ïø£+˝À M{Ïì>∑T]+∫ ∫Á‘·eTT\‘√bÕ≥T>± k˛<ëVü≤s¡DeTT>± düMTøÏ+å #·T≈£î+<ë+. sπ U≤‘·àø£+>± Á|ü‹uÀ~Û+|üã&ÉT#·Tqïá #·Áø£eTT\T(Graphic Representations of the chakrams ) Á|ü ‹ bÕ~+#˚ s¡ V ü ≤ dü ´ |ü ] C≤„ H êìï Á>∑ V æ ≤ +#ê\+fÒ , ‘Ó‘’ ØÔ· jÓ÷|üìwü‘Œ· ]C≤„q+ nedüsy¡ TÓ +‘ÓH’ ê ñ+~. ‘Ó’‹ÔØjÓ÷|üìwü‘ê‡s¡dü+Á>∑Vü≤eTT ( Gist of the Taittareeyopanishat) : Ç+<äT˝À es¡TDT&ÉT ‘·q ≈£îe÷s¡T&Óq’ uÛèÑ >∑Te⁄q≈£î »sêj·TT», ùd«<ä», n+&É», ñ~“¤»eTT\T>± $uÛõÑ +#·ã&ç,düe÷Vü‰s¡+>± $wüjT· Á|ü|+ü #·+>± e´eVü≤]+|üã&ÉT#·Tqï #·sê#·sd¡ èü wæ,º @<Ó’‘˚ XÊÁdüÔ|ü]uÛ≤wü˝À ÁãVü‰à~düÔ+ã|üs¡´+‘·yÓTÆq~>± e´eVü≤]+|üã&ÉT#·Tqï<√, n<ä+‘·jT· T ÁãVü≤àeTTqT+&ç j·÷$s¡“$¤ +∫q<˚qì Á|ü<ëÛ q+>± uÀ~ÛkÕÔ&TÉ . n+<ä* ÁãVü≤àe*¢ |ü⁄s¡Twüßì(ñbÕ~Ûìwüߘ&Ó’q Je⁄ì)jÓTTø£ÿ dü+uÛÑ÷‹ì˝≤ $e]düT+Ô ~. dü÷Á‘ê‘·à ˝Ò<ë ø±s¡DÁãVü≤àeTTqT+&ç Äø±X¯eTT, <ëìqT+&ç yêj·TTe⁄, yêj·TTe⁄qT+&ç n–ï, Ä j·T–ïqT+&ç »\eTT »\eTT\qT+&ç |üè~∏$, uÛ÷Ñ $TqT+&ç zwü± >√#·]+#˚ |ü⁄s¡Twüß&ÉT Ä$s¡“$¤ +#˚sT¡ . ø±>±, á |ü⁄s¡Twüß&ÉH˚ <˚V≤æ ÁãVü≤àeTTqT+&ç j·÷$s¡“$¤ +∫q düTì•Ñ·yTÓ qÆ ∫≥º∫e] s¡÷bÕ+‘·se¡ Tì #Ó|Œü e#·TÃqT.
6
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Jyê‘·à>± e´eVü≤]+|üã&ÉT#·Tqï á |ü⁄s¡Twüßì dü«s¡÷bÕìï @ $<Ûyä TÓ qÆ dü+<˚V‰ü \≈£î ‘êMj·Tì |ü<‹∆ä ˝À ÁX¯ó‹e÷‘· y˚˝‹… Ô #·÷|æd÷ü Ô k˛<ëVü≤D+>±`ªÇ~ Ä |ü⁄s¡Twüßì •s¡dTü ‡(‘·\), Ç~ n‘·ì ≈£î&çs¬ ø£ÿ(<äøD åÏ |üøeå£ TT), Ç~ yêeT|üøeå£ TT (m&ÉeT¬sø£ÿ). Ç~ Vü≤è<äjT· eTT ˝Ò<ë Ä‘·à, Ç~ |ü⁄#·Ãe¤ TT ˝Òø£ ‘√ø£ nì |üøj åÏ ÷· ø£è‹‘√ b˛*Ã` ‘·\ s¬ +&ÉT s¬ ø£ÿ\T X¯Øs¡eTT, ‘√ø£ nì |ü+#êej·Te düeTì«‘·+>± ìπs•∆ +∫ Á|ü‹uÀ~ÛdTü qÔ ï~. Ç˝≤ |üøåÏ X¯Øs¡+‘√ b˛*à ìπs•› +#·&+É ˝À ˇø£ #·øÿ£ ì Á|üD≤[ø±ã<äy∆ TÓ qÆ ìs¡÷|üD >±$+#·ã&çq~. <ëìì ø=~›>± |ü]o*<ë›+. e÷qyêø£è‹˝Àì kÂwüe˜ Áø£eTeTT (Arrangement of the Human Form) : Bìì nqTuÛeÑ |üPs¡«ø£+>± Á>∑V≤æ +#·&ÜìøÏ>±qT |ü]o\≈£î&ÉT ‘êH=ø£ m\¢\T >√#·]+|üì $XÊ\yÓTqÆ yÓT<Æ ëqeTT˝À ‘·÷s¡TŒyÓ|’ ⁄ü ‘·\qT |ü&eÉ Ts¡~X¯>± ø±fi¯q¢ T ñ+∫, |üsT¡ +&çqç ≥T¢, ø£qTï\qT u≤>± ‘Ó]∫, j·T‹ÿ+∫<äDZ ‘Ï X· ÊÁdü|Ô ]ü C≤„q+‘√ düMTøÏ+å #ê*. n|ü &ÉT mes¡÷ #Ó|Œü ≈£î+&ÜH˚, ‘·q#·T≥÷º nbÕs¡+>± ø£ì|ædTü qÔ ï ~ø£ÃÁø£eTT ˝Ò<ë ~vàD¶\eTT ˇø£ ô|<ä› eè‘·eÔ TT>±qT, ‘êqT Ä eè‘·eÔ TTq≈£î øπ +Á<äkÕúq+˝ÀqTqï≥T¢ nqTuÛyÑ êìøÏ edüT+Ô ~. á uÛ≤eq sπ U≤XÊÁdü|Ô ]ü C≤„qeTT˝À eè‘·ìÔ s¡«#·eTTq≈£î Hê+~j·Tì #Ó|Œü e#·TÃqT. Á|ü± |üsT¡ +&ç, ≈£î&ç#‹˚ ì ≈£î&ç ‘·T+{Ï ø°\T≈£î, m&ÉeT#˚‹ì m&ÉeTyÓ|’ ⁄ü qTqï ‘· T +{Ï ø ° \ T≈£ î <ä > ∑ Z s ¡ > ± u≤D≤ø£ è ‹˝À #˚ ] à |æ e Tà≥ bÕ<ä e TT\qT m<äTs¬ <äTs¡T>±jÓTTø£<ëìø√ø£{Ï #˚]Ãj·TT+∫q≥¢>± uÛ≤$+#ê*. |ü]o\q`düe÷˝À#·qeTT: áuÛ≤eq ñ|üìwü<äT<√“<ÛäqeTTqT Á|ü‘·´ø£ås¡eTT |üP]Ô>±qe>±Vü≤q#˚døæ √&ÜìøÏ XÊÁd”j Ô T· yÓTqÆ |ü<‹∆ä ì dü÷∫düT+Ô ~. ñ|üìwü‘T· Ô á dü÷\ú X¯Øsêìï |üøj åÏ ÷· ø£è‹‘√ b˛*Ã` ªª‘·ùd´<äyT˚ e •s¡'ˆ nj·T+ <äøDåÏ ' |üø'å£ ˆ nj·TeTT‘·sÔ '¡ |üø'å£ ˆ nj·Te÷‘êà Ç<ä+ |ü⁄#·Ã+¤ Á|ü‹cÕ˜ˆμμ nq>±, Ç~ •s¡dTü ‡, Ç~ ≈£î&ç bÕs¡Ù«eTT, Ç~ m&ÉeTbÕs¡Ù«eTT, eT<Û´ä qTqï~ Ä‘·àuÛ≤>∑eTT. Ç~ |ü⁄#·Ãu¤ ÷ÑÛ ‘·yTÓ qÆ n<Û√uÛ≤>∑eTT nì ◊<äTuÛ≤>±\T>± $e]+∫+~. Ç~ Ä\+ø±]ø£ |ü]uÛ≤wü˝À #Ó|üŒã&çq≥T¢ Á>∑V≤æ +#ê*. <Û«ä Hê´‘·àø£yTÓ qÆ á j·TT|ü±Vü≤q≈£î ø=+‘· >∑DÏ‘·XÊÁdüÔ|ü]C≤„qeTT, πsU≤ XÊÁdüÔ|ü]#·j·TeTT ñ+fÒ á n_Ûe´øÏÔjÓTTø£ÿ Vü≤è<äj÷· qïs¡+ú #˚dTü ø√e&É+ düT\uÛeÑ TÚ‘·T+~. düsπ ! á $<Ûyä TÓ qÆ dü+ø£\ŒeTT‘√ ô|u’ +ÑÛ –eTqT ø=~›>± |ü]o*<ë›+. |ü]o\≈£î&ÉT ‘·q (uÛ+Ñ –eT) Äø£è‹ì dü+uÛ≤$+#·T≈£î+≥÷, ÁuVü≤às¡+Á<Ûeä TTqT+&ç m&ÉeT ø£øeå£ TT(#·+ø£),
7
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
m&ÉeT ‘·T+{Ïø\° T ø±*Áy˚fi¢¯ eT<ä´uÛ≤>∑eTTqT düŒè•dü÷Ô Áø£eT+>± ≈£î&çy|’Ó ⁄ü q ‘·T+{Ïø\° T <äøD åÏ ø£øeå£ TT (≈£î&ç#+· ø£)\ >∑T+&Ü ÁãVü≤às¡+Á<Ûeä TTqT ø£\T|ü⁄‘·÷ ˇø£ sπ U≤Áø£$T‘· øπ Áå ‘êìï dü+uÛ≤$ùdÔ ì\Te⁄>± kÕ>∑Bj·Tã&çq ˇø£ eè‘·eÔ TTe+{Ï Äø£è‹ düTŒ¤]düT+Ô ~. >∑D‘Ï X· ÊÁdü+Ô bÕ]uÛ≤wæø+£ >± á øπ ¸Á‘·eTTqT Bs¡eÈ è‘·eÔ TT (Ellipse) nì e´eVü≤]düT+Ô ~. (#·÷. 1e ∫Á‘·eTT.) •s¡eTT m&ÉeT#˚sTT
≈£î&ç#˚sTT
s¬ ø£ÿ\T m&ÉeT ‘·T+{Ïø±\T
≈£î&ç‘T· +{Ïø±\T
bÕ<ë\T m<äTs¬ <äTs¡T>±
∫Á‘·eTT 1
‘√ø£ ∫Á‘·eTT 2
Ç<˚ $<Ûeä TT>± ø£+sƒe¡ T<Û´ä uÛ≤>∑eTTqT+&ç ÁbÕs¡+_Û+∫, m&ÉeT` uÛTÑ »os¡¸eTT (Left Shoulder) m&ÉeT#˚‹ eTT&ÉT≈£î(Left Elbow) #˚sTT (Palm) \<ë«sê *+>∑kÕúHêìï ø£+sƒe¡ T<Û´ä uÛ≤>∑eTT‘√ ø£*dæq≥T¢ dü+uÛ≤$ùd,Ô eT]jÓTTø£ Bs¡eÈ è‘·eÔ TT (Ellipse) n&É>¶ ± kÕ>∑Bj·Tã&çq eè‘êÔøè£ ‹˝À düTŒ¤]düT+Ô ~.(#·÷ˆˆ 2e ∫Á‘·eTT) Ç|ü &û ¬s+&ÉT πsU≤∫Á‘·eTT\qT düe÷Vü‰s¡+#˚dæ @ø±ø±s¡+>± uÛ≤$+∫q≥¢sTT‘˚ |üsd¡ Œü s¡eTT K+&ç+#·Tø=qT s¬ +&ÉT Bs¡eÈ è‘·eÔ TT\T <äsÙ¡ q$TkÕÔsTT ∫Á‘·eTT 3. á düe÷Vü≤è‘·∫Á‘êìï C≤Á>∑‘·Ô>± ñ|üìwü‘Y Á|üe#·HêìøÏ nq«sTTdü÷Ô uÛ≤$ùdÔ, eTq+eTT+<äT #Ó|ü⁄Œ≈£îqï |ü+#êej·Te düüeTì«‘·yÓTÆq ∫Á‘·eTT 3 $Vü≤+>±ø£è‹ (|üøj åÏ ÷· ø£è‹)` 1.‘·\ (Head), 2.≈£î&çs¬ ø£ÿ (Right ¤ TT Wing), 3.m&ÉeT¬sø£ÿ (Left Wing), 4.X¯Øs¡eTT (Body/ Trunk), 5.|ü⁄#·Ãe (Tail) uÛ≤dædTü +Ô ~.(∫Á‘·+ 3). Bìì ñ|üìwü‘T· Ô nqïeTj·Tø√X¯+>± e´eVü≤]+|ü ã&ÉT#·Tqï dü÷\ú X¯ØsêìøÏ dü+øπ ‘·+>± #Ó|Œæ düeTq«sTTdüT+Ô ~. á ~X¯>± Ä˝À∫ùd,Ô ô|’ uÛ≤>±˝…’<ä÷ ÁX¯ó‹ Á|ü‹uÀ~Û‘·eTT˝…’q nqïeTj·T, ÁbÕDeTj·T, eTH√eTj·T, $C≤„qeTj·T, ø√XÊ\qT, ÁãVü≤àe*¢˝À Çe˙ï Äq+<äeTj·T ø√X¯+˝À \sTT+∫q $<Ûëq+` ô|q’ $e]+#·T≈£îqï Bs¡eÈ è‘·eÔ TT\ Hê\T>∑T Á|ü<ëÛ q _+<äTe⁄\qT (Four
8
Cardinal Points )
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
nq>± eTq+ uÛ ≤ $+#· T ≈£ î qï ÁãVü≤às¡+Á<Û+ä , ≈£î&çjTÓ &ÉeT eTT&ÉT≈£î\T (Right and Left Elbows) bÕ<ë+>∑Tfi¯ó\ eT<Û´ä _+<äTe⁄\qT (Tip of the central fingers of the feet ) ø£ \ T|ü ⁄ ‘· ÷ @s¡ Œ &ç q eTVü‰|ü]eè‘·eÔ TT(Huge Circumcircle) <äè>√Z#s· e¡ TÚ‘·T+~ ∫Á‘·eTT 4 ∫Á‘· e TT 4. ~vàD¶ \ eTT ( Horizon) <ëì |ü ] ~Û (Circumference) ø±ã{Ϻ, Ä |ü]eè‘êÔìï eTVü‰|ü]eè‘·ÔeTì e´eVü≤]+#·T ≈£î+≥THêï+. Á|üdTü ‘Ô +· eTq e´eVü‰s¡+˝À Bìì ˇø£ #·Áø£+>± |ü]>∑DkÏ ÕÔ+. á Á|ü=|üŒ>± >√#·]düTqÔ ï eTVü‰ (dü÷\ú ) Á|ü|+ü #·+ (Macrocosm) jÓTTø£ÿ dü+Á>∑V≤ü dü«s¡÷|üyT˚ sT÷ dü÷ø£ÎÁ|ü|+ü #·+ (Microcosm). Ç$ s¬ +&É÷ dü÷\ú dü÷ø£Î dü«s¡÷|üuÛÒ<äeTT $Hê |üs¡düŒs¡ kÕ<äèX¯´eTTø£\$ (Mutually Analagous)>± <äsÙ¡ q$TkÕÔsTT. á $<ÛäeTT>± á eTVü‰|ü]eè‘·Ô#·Áø£eTT |ü⁄s¡Twüdü÷ø£Ô+˝À $sêÁ&É÷|ü+˝À düTÔ‹+#·ã&çq $sê≥TŒs¡TwüßDÏí, ˝Ò<ë ñbÕ~Ûìwüߘ&Ó’q ˝ÖøÏø£ |ü⁄s¡TwüßDÏí ˝Ò<ë ñ|üìwüÁ‘·Œ‹bÕ<ä´yÓTqÆ $sêÁ≥Œø£è‹ ˝Ò<ë ÁãVü‰àD≤¶ìï (Macrocosm), |ü+#·ø√X¯ düeTì«‘·yTÓ qÆ JeÁ|üøè£ ‹ì (Macrocosm) ≈£L&Ü kÕ+πø‹ø£+>± ‘Ó*j·TCÒdTü qÔ ï~. ø±e⁄qH˚ ñbÕdüq˝À Á|ü<ëÛ qyÓTqÆ <Ûë´qeTT ˝Ò<ë uÛ≤eq\ ø£qT≈£L\yÓTqÆ Ä\+ãqeTT>± á #·Áø£eTT ˝Ò<ë j·T+Á‘·eTT Á|ü<ëÛ qyÓTqÆ ns¡ÃH√|üøs£ D¡ eTT(Prime Object of worship) >±ìπs•› +|üã&çq~. |ü⁄s¡Twüd÷ü ø±Ô~yÓ~’ ø£$~Û $<ÛëqeTT‘√ <˚e‘·\q]Ã+#˚yê]øÏ j·T+Á‘·eTT ˝Ò<ë #·Áø£eTT ñbÕdü´<˚e‘·‘√ ◊ø±´qTdü+<Ûëq|üs¡+>± nsêÃeT÷]ÔøÏ Á|ü‹s¡÷|ü+>± $~Û+|üã&çq~. ~«rj·TuÛÑ+–eT(Posture-II):: eTq nqTo\q+˝À uÛ≤>∑+>± y˚s=ø£ uÛÑ+–eTqT |ü]o*<ë›+. uÛ≤e⁄≈£î&ÉT á uÛÑ+–eT˝À ‘·q ¬s+&ÉT#˚‘·T\ eT<Ûä´Áy˚fi¯¢qT ¬s+&ÉT ‘=&É\MT<äT>± yÓ÷ø±*∫|üŒ\≈£î düMT|ü+>± ‹qï>±qTqï≥T¢ uÛ≤$dü÷,Ô ÁãVü≤às¡+Á<Ûeä TT,
9
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
#˚‹Áy˚fifl¯ ø=q\T
m&ÉeTuÛTÑ »os¡¸eTT, m&ÉeT yÓ÷#˚‹ø°\T (Left elbow) yÓ÷ø±*∫|üŒ≈£î düMT|üeTT˝ÀqTqï eT<Û´ä Áy˚*ø=q\qT,n≥qT+&ç Áø£eTeTT>± ≈£î&ç bÕs¡Ù«eTT˝Àì eT<Û´ä Áy˚*ø=q, yÓ÷#˚‹ eTT&ÉT≈£î (Elbow) uÛTÑ » os¡¸eTT\qT düŒè•dü÷Ô ÁãVü≤à s¡+Á<Ûëìï ø£*ù| $<Û+ä >± uÛ≤$ùdÔ eTs¡\ ˇø£ #·øÿ£ ì Bs¡eÈ è‘·eÔ TT (Fine Ellipse) düTŒ¤]düT+Ô ~. |ü]o\q(Observation) : ÁãVü≤às¡+Á<Ûä+ á Bs¡ È e è‘êÔ ì ïC≤Á>∑ ‘ · Ô > ± |ü]o*+∫ ÁãVü≤às¡+Á<Û,ä eT÷˝≤ <Ûës¡, bÕ<äeTT\Áy˚fi¯¢ eT<Ûä´ uÛ≤>∑eTTqT düŒè•dü÷Ô ˇø£ düsfi¡ ¯ πsKqT, Hê_ÛeT<Ûä´>± áπsK≈£î \+ãe÷s¡ Z + ˝À ( Perpen dicular)>± yÓ÷#˚‹ eTT&ÉT≈£î\ (Elbows) eT<Û´ä uÛ≤>∑eTT\qTø£\T|ü⁄‘·÷ eT]jÓTTø£ düsfi¡ sπ¯ KqT uÛ≤$+∫ <ä]Ù+#ê*.á sπ K\T¬s+&É÷ ~vàD¶\|ü]yê´|ü+Ô >± Á|üj÷· DÏkÕÔsTT. á sπ K\T eTq+ <ä]Ù+∫q Bs¡eÈ è‘·eÔ TTq≈£î s¬ +&Éøeå£ TT\T (Axis)>± ìπs•› +#·ã&çHêsTT. n<äT“¤‘e· TT>± uÛ≤dæ+∫q á Bs¡eÈ è‘·eÔ TTq≈£î Hê_ÛkÕúqeTTqqTqï eTDÏ|Pü s¡#Á· ø£+ eT<Û´ä _+<äTe⁄ ne⁄‘·T+~. <ëìøÏ *+>∑kÕúqeTTq≈£î <ä>sZ∑ >¡ ±qTqï kÕ«~ÛcÕ˜qeTT, Vü≤èqà<Û´ä eTTq+<äTqï nHêVü≤‘·eTT, s¬ +&ÉTqT Ä Bs¡eÈ è‘·eÔ TTq≈£î HêuÛTÑ ˝Ö‘êsTT. ÇfÒ¢ eT÷˝≤<Ûës¡ $X¯ó~∆ #·Áø£eTT\qT≈£L&É s¬ +&ÉT HêuÛTÑ \T>± Á>∑V≤æ +#·e#·TÃqT. |ü]o\≈£î&ç<˚ uÛ≤eq‘√ ø=~›bÕ{Ï ÁbÕD≤j·÷eTeTTqT ≈£L&Ü nuÛ´Ñ dæ+|üC≤*q#√, ÁãVü≤àe*¢˝À ìπs›•+#·ã&çq ÁbÕDeTj·T,eTH√eTj·T $C≤„qeTj·T, Äqq›eTj·T ø√X¯eTT\T Hê\T>∑TqT Ä düsfi¡ sπ¯ U≤+øÏ‘e· TT` ˝…q’ BsêÈøHå£ êuÛTÑ \ô|’ $Ts¡T$T≥T¢>=\T|ü⁄ ø±+‹‘√ n<äT“¤‘·+>± >√#·]kÕÔsTT. n$ Áø£eT+>± ~vàD¶\eTT, |ü]eè‘·ÔeTT, |ü+#·ø√X¯eTT\ BsêÈøeå£ TT eT]j·TT düTwüße÷ï|ü± >∑D‘Ï X· ÊÁdü$Ô T˝≤ Á|ü‹bÕ~düT+Ô ~. x2 a2+λ
+
y2 b2+λ
=e
10
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
eT÷&Ée uÛ+Ñ –eT (Posture-III) :` |ü]o\≈£î &ç| ü &ÉT eT]jÓTTø£ uÛ+Ñ –eTì˝≤ dü+uÛ≤$+#ê*. eTT+<äT>± s¬ +&ÉT ø±fi¯q¢ T ø±* u§≥qÁy˚fió¯ ¢ (Tip of the central fingers of the feet) düH Ô êÁ>∑eTT (Teats)‘√ düsfi¡ sπ¯ K˝À ñ+&˚˝≤ uÛ≤$+#ê*. ÁãVü≤às¡+Á<ÛäeTTqT+&ç düÔHêÁ>∑eTT >∑T+&Ü ø±*∫es¡qT ø£\T|ü⁄‘·÷ ≈£î&çjÓT&ÉeTyÓ’|ü⁄\ ¬s+&ÉT düs¡fi¯πsK\qT ^dæq#√ ˇø£ düeT~«u≤VüQ Á‹uÛTÑ C≤ø£è‹ j˚Ts¡Œ&ÉT‘·T+~.‘·sT¡ yê‘· m&ÉeT#˚‹ì m&ÉeT düHÔ êÁ>∑eTTqT düŒè•+#·Tq≥T¢qT, nfÒ¢ ≈£î&ç #˚‹ì ≈£î&çy|’Ó ⁄ü düHÔ êÁ>∑eTTqT düŒè•+#·Tq≥T¢qT uÛ≤$dü÷Ô sπ U≤∫Á‘êìï Äj·÷ _+<äTe⁄\qT ø£\T|ü⁄‘÷· ^dæqf…q¢Æ ˇø£ #·øÿ£ ì |ü+#·uTÑÛ » sπ U≤∫Á‘·eTT dæ ~ ∆ d ü T Ô + ~. Ç~ <Û ë ´q$wü j · T ø£ + >± uÛ ≤ $ùdÔ , ÁãVü ≤ àe©¢ Á|ü ‹ bÕ<ä ´ yÓ T Æ q |ü+#·ø√X¯Á|ü‹ø£è‘·T\qqTÁ>∑V≤æ dü÷Ô |ü⁄s¡Twüd÷ü ø£Ô Á|ü‹bÕ<äT´&Óq’ Á|ü<ëÛ q $sê≥TŒs¡Twüßì jÓTTø£ÿ dü÷ø£ÎyÓTqÆ Äø£è‹(Form)>± ãT~∆>√#·se¡ TÚ‘·T+~. á #·Áø£eTT kÕ<Ûës¡D+>± |ü⁄s¡Twüd÷ü ø£Ô Á|ü‹bÕ<äT´&Óq’ |ü⁄s¡Twüßì •edü«s¡÷|ü+>± n]Ã+#˚yê]#˚ |üPõ+|üã&ÉT‘·÷ ñ+≥T+~. eT÷&Ée #·Áø£eTT:` eT÷&Ée #·Áø£eTT wü{ÀÿDeTT.Bìì bÕ]uÛ≤wæø+£ >± ªdüT<äsÙ¡ qμeTì e´eVü≤]kÕÔs¡T. $X¯«»˙q dü‘·´eTT˝…’q y˚<ëqÔ dæ<ë∆+‘·eTT\qT düTdüŒwüºeTT>± Á|ü‹bÕ~+#˚ ùV≤‘·Tã<äe∆ TT˝…q’ ‘·‘«Ô· XÊÁdüÔ ìs¡÷|üDeTT\qT <äsÙ¡ qeTT\T n+{≤s¡T. ªdüT<äsÙ¡ qμ|ü<+ä ˝À <äsÙ¡ qeTH˚ |ü<ëìøÏ eTT+<äTqï ªdüTμ nH˚ ñ|üdsü Z¡ düsê«+^D düTdü+|üqïeTT, düeTÁ>∑eTT, dü+|üPs¡eí TT nH˚$wüj÷· \qT ‘Ó*j·TCÒdTü +Ô ~. ø±>±, á düT<äsÙ¡ q+ ñ|üìwü‘‘Ô· êÔ«ìï j·T<∏ëj·T<∏+ä >± ‘Ó*j·TCÒdTü +Ô <äqïe÷≥! düT<äsÙ¡ qeTH˚ á |ü∑yêqTì j·T<∏ës¡‘ú ‘· «Ô· <äsÙ¡ qeTqï $wüjT· eT+<äs≈¡ î£ qT ‘Ó*dæq<˚. uÛ>Ñ e∑ BZ‘· uÛ>Ñ y∑ êqTì |ü<Áä |ü|+ü #· <äsÙ¡ qyÓT‘Æ ,˚ düT<äsÙ¡ q#·Áø£eTT sπ U≤‘·àø£ <äsÙ¡ HêìøÏ Á|ü‹s¡÷|üeTqïe÷≥. ø±>±, á dü÷ø£Îwü{ÀÿDeTTjÓTTø£ÿ X¯u≤›‘·àø£yÓTÆq |ü]|üPs¡íÁ|ükÕÔs¡y˚T uÛÑ>∑eBZ‘·. ø±<äT, á wü{ÀÿD#·Áø£eTT ^‘·jÓTTø£ÿ düeTÁ>∑XÊã›uÀ<Ûä≈£î kÕs¡dü+Á>∑Vü≤s¡÷|üyÓTÆq Á|ürø£j·Tì kÕsê+X¯eTT. eTq eTsêÃeT÷]Ô>± ñ|üjÓ÷–düTÔqï #·Áø£eTT ˝Ò<ë j·T+Á‘·eTT\ yÓ’uÛÑe$T+‘·{Ï >=|üŒ~ ø±e⁄qH˚ #·Áø±s¡Ãq eTq uÛ≤s¡‘·<˚X¯+˝À }Vü≤ø£+<äq+‘· ÁbÕNqø±\+qT+&ç Äsê<ÛHä ê Á|üø±s¡eTT>± nqTdü]+#·ã&ç nqTdü÷´‘·eTT>± ÄqT e+•ø£+>± ø=qkÕ>∑T‘·Tqï<äì Á>∑V≤æ +#ê*.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
11
>∑DÏ‘·XÊÁdüÔÁbÕe÷DÏø£‘· :` |ü]o*düTÔqïø=\~ á |ü$Á‘·#·Áø£eTT\T ˝Ò<ë j·T+Á‘·eTT\ìïj·TT Á|üjÓ÷>±‘·àø£+>± >∑DÏ‘·XÊÁdüÔìã<ä∆eTT˝…’q πsU≤∫Á‘·eTT\ ‘√&ÉqT,πsU≤>∑DÏ‘·XÊÁdüÔeTT˝Àì dü÷Nos¡¸ X¯+≈£î(Cone) eT]j·TT Hê$<ÛäyÓTÆq XÊ+ø£e|ü]#˚Ã<¤ eä TT˝…q’ , XÊ+ø£e (Conic), Bs¡eÈ è‘·Ô (Elliptic), n‹eè‘·Ô (Hyperbolic), eè‘êÔ~ (Circular etc ) Äø£è‘·T\T eT]j·TT yêìì ìãB∆ø]£ +∫ ìs¡«Væ≤+#˚ XÊÁd”j Ô T· dü÷Á‘·eTT\‘√qT, dü+e~dü÷Ô (In Harmony with those Mathematical Laws) >√#·]kÕÔsTT. á$<Ûyä TÓ qÆ yÓC’ ≤„ìø£yTÓ qÆ Ä+‘·s|¡ ]ü o\q (Subtle and Scientific Observation)‘√ á #·Áø£eTT\T ˝Ò<ë j·T+Á‘·eTT\ |ü]C≤„qeTT ‘·‘·Ô«XÊÁdüÔ õC≤„dTü e⁄\¬ø+‘·j÷Ó Äq+<ëìï ø£*–düT+Ô ~. <ëì ÁbÕe÷DÏø‘£ · $wüjT· +˝À ø£*–q, ˝Ò<ë Ç‘·sT¡ ˝≤s√|æ+∫q dü+<˚V‰ü \T, <äTs¡T≈£î\Ô T |ü]wüÿ]+|üã&É‘êsTT. dü+<˚V‰ü ìøÏ @e÷Á‘·eTT ‘êe⁄˝Òì ìø±s¡‡sTTq ne>±Vü≤q j˚Ts¡Œ&ÉT‘·T+~. Ç+ø√ $X‚w+ü ` ‘=* >∑D‘Ï X· ÊÁdüyÔ ‘˚ \Ô· T á sπ U≤XÊÁdü|Ô ]ü C≤„Hêìï á #·Áø£d+ü øπ ‘ê\T eT]j·TT j·T+Á‘·eTT\qT+&˚ eTq ñ|üìwüÁ‘·Œ‹bÕ~‘· ‘·‘«Ô· XÊÁdü|Ô ]ü uÛ≤wü\ qT+&çjT˚ Á>∑V≤æ +∫Hês¡H˚ $wüjT· + X¯‘Á· |ü‹ X¯‘·dü‘·´eTT n+fÒ q÷{ÏøÏ q÷iTbÕfi¯¢ ì»eTH˚ $wüj·÷qïqTuÛÑe |üPs¡«ø£+>± ‘Ó\TdüT≈£î+{≤+. ˇø£ÿe÷≥˝À $wüj·Tìï dü+Á>∑Væ≤+#ê\qT≈£î+fÒ πsU≤XÊÁdüÔ eTÚ*ø£ dü÷Á‘·u÷ÑÛ ‘·eTT˝…q’ $wüj÷· \˙ï düT<äsÙ¡ q+ ˝Ò<ë wü{ÀÿDeTTqT+&ç yÓ\Te&çHêj·Tì˙ï, |ü + #· ø √D+ XÊ+ø£ e , eT]j· T T ‘· ‘ · Œ ]#˚ à ¤ < ä Á |ü ø ±sê˝… ’ q eè‘· Ô e TT( Circle ), Bs¡Èeè‘·ÔeTT(Ellipse), n‹eè‘·ÔeTT(Hyperbola), yÓTT<ä\>∑Tyêì |ü]C≤„HêìøÏ eT÷\uÛ÷Ñ ‘·yTÓ qÆ <äì˙ï ‘Ó\TdüT+Ô ~. ø±>±, >∑D‘Ï X· ÊÁdüeÔ TT˝À @ n<äT“¤‘e· ÷$wüÿ]+|üã&çHê, @dü÷Á‘·+ ôd<’ ë∆+‹ø£+>± ìs¡«∫+|üã&çHê, @düeTdü´ m<äTs¬ H’ ê <ëìøÏ ÁX¯ó‹Á|ü‹bÕ~‘·yTÓ qÆ ‘·‘«Ô· XÊÁdüdÔ ‘ü ´· eTT eT÷\+>± ø£ì|ædTü +Ô ~. ø£ì|æ+#·&yÉ T˚ ø±<äT, nø£ÿ&É n|ü]wüÿè‘·+>± e<ä*y˚jT· ã&çq düeTdü´≈£î |ü]cÕÿs¡+≈£L&Ü eTq y˚<ë+‘·‘·Ô«XÊÁdüÔ|ü]o\q˝À ÁX¯ó‹e÷‘· eTq≈£î <äè>√Z#s· #¡ j · T˚ ´˝≤ nqTÁ>∑V≤æ düT+Ô ~. y˚<ë+‘·+`πsU≤∫Á‘ê\T:` eTÚ*ø£eTT˝…q’ y˚<ë+‘· ‘·‘«Ô· uÛ≤eq\ qT+&çjT˚ >∑D‘Ï X· ÊÁd”j Ô T· πsU≤∫Á‘ê˝≤$s¡“¤$+∫Hêj·Tì ìX¯Ãj·T+>± #Ó|üŒe#·TÃ. áyê<ëìøÏ Áb˛<ä“\+>± ø=ìï ñ<ëVü≤s¡D\qT >∑eTì<ë›+. >∑DÏ‘·XÊÁkÕÔìøÏ dü+ã+~Û+∫q ÁbÕ<∏ä$Tø£
12
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
‘·©j·T(Plane) sπ U≤∫Á‘·eTT\T ` 1._+<äTe⁄(Point), 2.düsfi¡ sπ¯ K (Straight Line), 3.ø√DeTT (Angle ), 4.düeTu≤VüQÁ‹uÛTÑ »eTT(Eqilateral Triangle), 5.düeT#·‘T· s¡ÁdüeTT (Square ), 6.eè‘·eÔ TT (Circle), 7.XÊ+ø£eeTT (Parabola), 8.n‹eè‘·eÔ TT (Hyperbola), 9.Bs¡e È è‘·eÔ TT (Ellipse). |üP]Ô>± ‘·sÿ¡ ã<ä+∆ >± <ä]Ùùd>Ô q∑ Tø£ (In strict Logical sense) á ‘·\eTT\qT dü÷∫+#˚ πsU≤∫Á‘ê\˙ï X¯+≈£îe⁄ (Cone ) qT $$<ÛäeTT˝…’q ø√D≤\˝À ˝Ò<ë ‘·\eTT\˝À K+&ç+#·>± Ä$s¡“$¤ +∫q s¡÷|üeTT˝Òqì ‘Ó\TdüT+Ô ~. n+<äTøπ Mìì $e]+#˚ á sπ U≤XÊÁdü$Ô uÛ≤>±ìï XÊ+ø£esπ U≤XÊÁdüeÔ TTnì˙ï, X¯+≈£îe⁄, eè‘·eÔ TT, n‹eè‘·eÔ TT, Bs¡eÈ è‘·eÔ TT yÓT<ä˝q’… sπ U≤K+&Ü\qT XÊ+ø£esπ U≤K+&ÉeTT\T (Conic Sections) nì˙ï e´eVü≤]+#·&É+ »]–+~. ø±>±, Çe˙ï XÊ+ø£e>∑DÏ‘·XÊÁdüÔ Á|ü$uÛ≤>±ìøÏ #Ó+~q $wüjT· eTT\T>± Á>∑V≤æ +#ê*. sπ U≤XÊÁdüeÔ ÷$s¡“$¤ +#·&ÜìøÏ |üPs¡«y˚T uÛ≤s¡‘<· X˚ +¯ ˝Àì Á|üuTÑÛ e⁄\+<ä]#˚ sê»˝≤+#Ûq· yÓTqÆ eT≈£î{≤uÛsÑ D ¡ +>± ‘·\<ë\Ãã&çq dü«s¡÷bÕø£è‹ X¯+≈£îy˚! Äsê´es¡Ô eT+<ä* eTVü‰qTuÛ≤e⁄\>∑T ñbÕdüø£ •s√eTDT\+<ä]#˚‘·qT ì‘ê´sê<Ûä´ <˚e‘ê dü«s¡÷|üeTT>± uÛ≤$+#·ã&ÉT#·Tqï l#·Áø£sê» y˚Ts¡TÁ|ükÕÔs¡eTT X¯+≈£îe⁄qø£qï _ÛqïyÓTqÆ <˚MTø±<äT. á $y˚#q· qTã{Ï,º nq>± XÊ+ø£yêø£è‘·T\≈£î dü+ã+~Û+∫q ìs¡«#·q dæ<ë∆+‘·eTT\˙ï eT÷\ø±s¡DyÓTÆq X¯+≈£îe⁄jÓTTø£ÿ dü«s¡÷|üdæ<ë∆+‘·eTT\ qT+&çj˚T s¡÷bı+~+#· e#·TÃqH˚ $wüj·T+ ‘Ó\¢eTÚ‘·T+<äì ãVüQeTTFq+>± Ä$s¡“$¤ +∫q eè‘·,Ô Bs¡eÈ è‘êÔ<ë´ø£è‘·T\ ø£ìï+{ÏøÏ X¯+≈£îy˚ eT÷\eTì dæ<ë∆+rø£]+|ü e#·TÃqT. XÊÁd”j Ô T· yÓTqÆ $X‚w¢ Dü ‘√ yÓC’ ≤„ìø£+>± #·øÿ£ >± ìs¡÷|æ+#·ã&ç ìs¡«∫+|üã&çq X¯+≈£îe⁄ jÓTTø£ÿ ìs¡«#·q+ á $wüj÷· ìï düTdüŒwü+º >± <Ûèä Mø£]düT+Ô ~. á $<Û ä + >± Á|ü ‘ ˚ ´ ø£ Á bÕeTTU≤´ìï dü+‘·]+#·T ≈£îqï X¯+≈£îe⁄jÓTTø£ÿ ìs¡«#·Hêìï (y-b) ø=~›>± $y˚∫+#·Tø£T+<ë+.X¯+≈£îe⁄jÓTTø£ÿ (x-a) uÛ÷Ñ $TuÛ≤>∑+ eè‘êÔø±s¡+˝À ñ+≥T+~. ø±e⁄q eTT+<äT>± eè‘êÔìï >∑T]+∫ ‘Ó\TdüT≈£î+<ë+. X¯+≈£îe⁄ jÓTTø£ÿ uÛ÷Ñ $T uÛ≤>∑+ eè‘êÔ ø±s¡+˝À ñ+≥T+~. ø±e⁄q eTT+<äT>± eè‘êÔìï >∑T]+∫ B C A ø=~›>± ‘Ó\TdüT≈£î+<ë+. 90 90 0
0
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
13
ˇø£ dæsú ¡ _+<äTe⁄qT øπ +Á<ä+ (Centre-C)>± rdæ≈î£ +fÒ <ëìqT+&ç düe÷q <ä÷s¡+˝À #·*+#˚ _+<äT|ü’ \∑ _+<äTe⁄q≈£î eT<Û´ä <ä÷s¡+ ኑ qT yê´kÕs¡eú TT (Radius-r) n+{≤s¡T. C (a,b) ø π +Á<ä+>± >∑\ eè‘·eÔ TT. P (x,y) |ü]~∏ô|>’ \∑ ˇø£ _+<äTe⁄. CP = r (yê´kÕs¡e ú TT) nqT≈£î+fÒ ô|<’ ë∏ >∑sd¡ t dæ<ë∆+‘·Á|üø±s¡+ eè‘·Ô düMTø£sD¡ ≤ìï r = ( x-a) + (y-b) eT÷\ _+<äTe⁄ (0,0) qT øπ +Á<ä+>±, r yê´kÕs¡+ú >± Á>∑V≤æ ùdÔ >∑qTø£ eè‘·eÔ TT jÓTTø£ düMTø£sD ¡ +. r = ( x-0) + (y-0) = x +y ne⁄‘·T+~. BìH˚ x +y = r nì ìπs•› kÕÔsT¡ . eè‘·Ô |ü]~∏ô|’ s¬ +&ÉT _+<äTe⁄\qT ø£*ù| düsfi¡ sπ¯ KqT C≤´ n+{≤s¡T. C≤Á>∑‘·Ô>± >∑eTìùdÔ eè‘·Ô yê´düeTT (Dimeter) nìï C≤´\ø£qï ô|<ä›~ nì ‘Ó\TdüT+Ô ~ Cø π +Á<ä+>± >∑\ eè‘·Ô |ü]~Ûô|’ P ˇø£ _+<äTe⁄. <ëìqT+&ç eè‘·eÔ TTq≈£î ãj·T≥>∑\ ˇø£ _+<äTe⁄ <ë«sê ø£\T|ü⁄‘·÷ #·*+#˚ sπ U≤ |ü<ë∏ ìï düŒs¡Ùsπ K (Tangent) n+{≤s¡T. _+<äTe⁄ Pì düŒs¡Ù_+<äTe⁄ (Tangenial Point) n+{≤s¡T. eT]jÓTTø£ $X‚w+ü . eè‘·eÔ TTq≈£î u≤Vü≤´ _+<äTe⁄qT+&ç øπ e\+ s¬ +&ÉT düŒs¡Ùsπ K\T e÷Á‘·yT˚ ^j·T&É+ kÕ<Û´ä eTe⁄‘·T+~. X¯+≈£îe⁄qT øÏ‹å » düe÷+‘·s+¡ >± <ä]ÙùdÔ eè‘· Ô e TT ne⁄‘· T +~. <ëì dü « s¡ ÷ |ü dü«uÛ≤yê\qT ø=~›>± <ä]Ù+#êeTT. <ëìì @≥yê\T>± K+&ç+|üã&çq≥T¢ uÛ≤$ùdÔ @s¡Œ&˚ dü«s¡÷bÕ\qT XÊ+ø£e dü«s¡÷bÕ\ì dü÷\ú +>± ìπs•› +#· e#·TÃqT. 2
2
2
2
2
2
2
2
2
2
2
14
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ìs¡«#·q+ : a dü e T‘· + ˝À>∑ \ ˇø£ _+<ä T e⁄qT+&ç , dæsú _¡ +<äTe⁄≈£î >∑\ <ä÷sêìø°, n<˚ _+<äTe⁄ qT+&ç ˇø£ dæsú ¡ düsfi¡ sπ¯ K≈£L >∑\ <ä÷sêìø° ñ+&˚ ìwüŒ‹Ô dæúsê+ø£yÓTÆ‘˚ Ä _+<äT|ü<∏ëìï XÊ+ø£eeTT nì n+{≤s¡T. S nH˚~ dæs ú ¡ _+<äTe⁄ L nH˚~ ˇø£ dæs ú sπ¡ K P nH˚ düeT‘·\+˝À qTqï ˇø£ _+<äTe⁄ nqT≈£î+fÒ P qT+&ç L s π Kô|’ >∑\ \+ã<ä÷s¡eTT PM≈£î, dæsú _¡ +<äTe⁄ S eT]j·TT #·s_¡ +<äTe⁄ P \qT ø£*ù| sπ K SP (yêì eT<Û´ä <ä÷s¡eTT) \ ìwüŒ‹Ô SP dæsú +¡ >± ñ+≥T+~. PM
á XÊ+ø£e dü«s¡÷|üeTT jÓTTø£ÿ dæsú _¡ +<äTe⁄ S qT Hê_Û (Focus) n+{≤s¡T. L dæs ú sπ¡ KqT ìj·T‘·sπ K (Directrix) n+{≤s¡T. SP, PM \ dæsú ¡ ìwüŒ‹Ôì ñ‘˚ÿ+Á<ä‘· (Eccentricity) n+{≤s¡T. Bìì 'e' nH˚ nø£så ê\‘√ dü÷∫kÕÔsT¡ . SP
ø±>±
PM
= e (k)
á dæús¡ìwüŒ‹Ô ˇø£{Ï (o1) nsTT‘˚, Ä XÊ+ø£yêìï |üsêe\j·TeTT (Parabola) n+{≤s¡T. SP dü÷. =e=1
]
PM
]
ø±>± |üsêe\j·TeTT dæsú _¡ +<äTe⁄ (S) eT]j·TT ìj·T‘·sπ K\≈£î düe÷q<ä÷s¡+˝À #·]+#˚ _+<äT|ü
` XÊ+ø£e sπ U≤ ∫Á‘·+
15
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
|ü s êe\j· T dü M Tø£ s ¡ D ≤ìï ( y =4ax ) >± <ä]Ù+#·e#·TÃ. |üsêe\j·THê_Û S=(a,o) ìj·T‘·sπ K (Directrix) l (l) ìj·T‘·sπ Kô|q’ (S) jÓTTø£ÿ $πø|å eü TT (Z) SZ\ eT<Û´ä _+<äTe⁄ A. <ëìì a >± dü÷∫kÕÔsT¡ . ø±>± SA = 1 = e ne⁄‘·T+~. 2
AZ
ø±>± A |üsêe\j·TeTT MT<ä ˇø£ _+<äTe⁄. ìj·T‘·sπ K≈£î düe÷+‘·s+¡ >± A >∑T+&Ü Y nøå±ìï dü+uÛ≤$ùdÔ A (o,o), Hê_Û (S) = (a,o) Z = (-a,o) |üsêe\j·T+MT<ä P(x,y) _+<äTe⁄ nqT≈£î+fÒ PM ìj·T‘·sπ K≈£î \+ãπsK PM, perpendicular l ne⁄‘·T+~. |üsê\ej·T ñ‘˚ÿ+Á<ä‘êdü«uÛ≤yêìï ã{Ϻ dü÷Á‘·+ SP PM
= 1 (e)
∴ SP2=PM2
SP2=PM2 i.e. (x-a)2+y2 = (x+a)2, {(x-(-a))2}+(y-y)2 0
∴ y2 = (x+a)2-(x-a)2 = x+2ax+a2 - (x2-2ax+a2) = x2+2ax+a2 - x2+2ax-a2 = 4ax
á $<Û+ä >± |üsêe\j·T düMTø£sD ¡ + y =4ax >± <ä]Ù+#·e#·TÃqT. ``` ñ‘˚ÿ+Á<ä‘· eè‘·Ô $wüj·T+˝À X¯Sq´eTe⁄‘·T+~. eè‘·Ôπø+Á<äeTTqT Hê_Û (Focus) >±, nq+‘·<÷ä s¡+˝À qTqï dæsú sπ¡ KqT Line at infinityì ìj·T‘·sπ K Directrix>±qT uÛ≤$ùdÔ e $\Te X¯SHê´+ø£eTT Zero ne⁄‘·T+~. $πø|å Cü ≤´$T‹ (Projective Geometry) ˝À X¯+≈£îe⁄ jÓTTø£ÿ ìs¡«#·Hêìï |ü]o*+#˚ ø=\B mHÓïH√ï n<äT“¤‘ê\T >√#·]kÕÔsTT. XÊ+ø£e $uÛ≤>±\T eè‘·eÔ TT 2
16
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
jÓTTø£ÿ $πøbå Õ˝Ò. ˇø±H=ø£ XÊ+ø£e Á|üu<ÒÛ eä TT jÓTTø£ÿ dü«s¡÷|üeTT Äeè‘·eÔ TTq≈£î <ëìjÓTTø£ÿ \T|ü´e÷q (n<äèX¯´) sπ K vanishingline ‘√&ç dü+ã+<Ûeä TT ô|’ Ä<Ûës¡|&ü ç ñ+≥T+~. n~ düV≤ü » _+<äTe⁄ e<ä› eè‘êÔìï K+&ç+∫q≥¢sTTq Ä $πø|å eü TT n‹|üsêe\j·TeTT Hyperbola ne⁄‘·T+~. s¬ +&ÉT }Vü‰_+<äTe⁄\ e<ä› K+&çùdÔ Ä $πø|å eü TT Bs¡eÈ è‘·eÔ TT (Ellipse) ne⁄‘T· +~. Ä n<äèX¯´sπ K eè‘êÔìï düŒè•ùdÔ >∑qTø£ $πø|å eü TT |üsêe\j·TeTT (Parabola) ne⁄‘·T+~. Bìì ã{Ϻ XÊ+ø£eeTT\ ÁbÕ<äTsꓤeeTTq≈£î eè‘·yÔ T˚ eT÷\ø±s¡DeTì K∫Ñ·eTT>± #Ó|Œü e#·TÃqT. eè‘·eÔ TT nq+‘· uÛTÑ »eTT\T ø£\ ãVüQuÛTÑ õ nì >∑D‘Ï · $C≤„q dæ<ë∆+‘·eTT. Çø£ÿ&É nq+‘·X㯠e› TT N #˚ dü÷∫+|üã&ÉT nìj·T‘· dü+K´qT dü÷∫düT+Ô <äì Á>∑V≤æ +#ê*. ãVüQuÛTÑ õ˝Àì ãVüQX¯ãe› TT, ˇø£{øÏ q£ ï m≈£îÿe nì X¯ã› Á|ü|+ü #·+˝ÀqT, s¬ +&ÉT ø£qï $Tqï>± XÊÁdüeÔ TT\˝ÀqT bÕ]uÛ≤wæø+£ >± e´eVü≤]+|ü ã&ÉT#·Tqï~. <ëìøÏ 1 qT+&ç Áø£eT+>± 2, 3, 4, 5.....N es¡≈î£ $\Te\qT |ü]>∑DùÏ dÔ Áø£+>±, ø√DeTT, Á‹uÛTÑ »eTT, #·‘T· s¡T“¤»eTT, |ü+#·uTÑÛ õ, wü&TÉ “¤õ, nwüuº TÑÛ õ ... N uÛTÑ »dü+K´>± >∑\ ãVüQuÛTÑ õ\T dæ~∆kÕÔsTT. MìjÓTTø£ÿ |òüTqeTT\qT Á|üe÷D+>± |ü]>∑DÏùdÔ X¯+≈£îe⁄ ‘·~‘·s¡ |òTü qeTT\ø£ìï{Ïø° eT÷\ø±s¡DuÛ÷Ñ ‘·yTÓ qÆ <äì ‘·\eTTqT Á|üe÷D+>± Á>∑V≤æ ùdÔ eè‘·eÔ TT nìï{Ïø° eT÷\ ø±s¡DuÛ÷Ñ ‘·yTÓ qÆ <äì˙ï ‘Ó\TdüT+Ô ~. y˚<ëqÔ $C≤„q |ü]o\≈£î\T |òTü qyÓTHÆ ê, ‘·\yÓTHÆ ê uÛ<Ò +ä n+‘·>± |ü{+ºÏ #·Tø√s¡T. nìï{Ïø° eT÷\yÓTqÆ Á|ü<ëÛ q ø±s¡DyÓTTø£fÒ ‘·|Œü s¬ +&Ée<˚~j·TT qT+&É<ìä yê] ìs¡j í T· eTT. n~ |üPs¡eí TT (Complete) n<˚ ÁãVü≤àeTT. n<˚ HêeTs¡÷|üeTT\T ø£\ nìï{ÏøìÏ eT÷\ø£sêDyÓTqÆ ~. n~ n~«rj·TeTT (Unique) nì yê] dæ<ë∆+‘·eTT ˝Ò<ë <äsÙ¡ qeTT. á$<Û+ä >± XÊÁd”j Ô T· eTT>± ìs¡÷|æ‘e· TT˝…q’ $$<Ûeä TT˝…’ sπ Fj·÷ø£è‘·T\≈£î dü+ã+~Û+∫q y˚<ëqTÔ\ jÓTTø£ÿ }Vü≤\T ˝Ò<ë uÛ≤eq\≈£î dü+ã+~Û+∫q ø=ìï $wüj÷· \qT Ä ~X¯>± n+fÒ s¬ +&ÉT <äèø£Œ<∏ë\qT düeTq«j·T |üs#¡ T· ≈£î+≥÷ düMTøÏ<å ë›+ `
1. _+<äTe⁄ (Point) : _+<äTe⁄ n$<ä´≈£î Á|ürø£. n$<ä´ $T<∏ë´C≤„HêìøÏ |üsê´j·T+>± |ü]>∑DÏ+|üã&ÉT‘·T+~. BìøÏ <ÛäHê‘·àø£yÓTÆq (Positive) ñìøÏ (Existance) ˝Òøb£ ˛sTTHê, Á|üdTü ‘Ô êìøÏ ‘·q<Óq’ ndæ‘Ô «· eTT ˝Ò<ë ñìøÏì ø£qãs¡Tdü÷Ô ñ+≥T+~. ‘·q<Ó’q nej·Te uÛ≤>∑eTT\T (parts) >±ì Äj·÷eTeTT ˝Ò<ë $kÕÔse¡ TT>±˙, ˝Ò≈î£ +&Ó&ç ˇø±H=ø£ dü÷øå±àø£è‹ì _+<äTe⁄ nì ìs¡«∫+|ü e#·TÃqT.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
17
_+<äTe⁄q≈£î Á|üjÓ÷>±‘·à Á|üjÓ÷»Hê\ <äècÕº´ >∑DÏ‘· $C≤„q XÊÁkÕÔ\˝À, $düÔè‘·yÓTÆq ÁbÕeTTK´eTT ñqï|üŒ{Ïø,° <ëìøÏ ‘·q<Óq’ Äø£è‹ì dü÷∫+#˚ ˇø±H=ø£ <Ûsä à¡ eTT (property) >±ì, ø=\‘· (Dimension) >±ì, >∑D˙j·TyÓTq Æ y˚s=ø£ dü«s¡÷|üeTT>±ì ø£qã&É∑D‘Ï X· ÊÁdüÔ <äècÕº´ ìs¡«∫+|üã&çq _+<äTe⁄ jÓTTø£ÿ <äèø£Œ<∏eä TT, y˚<ë+‘· XÊÁdüeÔ TT˝À bÕ]uÛ≤wæø+£ >± ìs¡«∫+|üã&çq n$<ä´ ˝Ò<ë $T<∏ë´<äèø£Œ<∏+ä ‘√ dü+e~dü÷Ô <ëìøÏ Á|ü‹s¡÷|ü+>± ì\TdüT+Ô ~. y˚<ë+‘· XÊÁdüeÔ TT˝Àì $T<∏ë´ ˝Ò<ë n$<ë´ |ü]uÛ≤wüqT, >∑DÏ‘· XÊÁdüÔ+˝À bÕ]uÛ≤wæø£+>± _+<äTe⁄qT, (yê´kÕs¡úeTT X¯ S Hê´+ø£ e TT (( Zero))>± >∑ \ , eè‘· Ô e TT nì) dü e ÷+‘· s ¡ e TT>± _+ã Á|ü‹_+ãeTT\T>± düMTø£sD ¡ eTT <ë«sê dü÷∫+|ü e#·TÃqT. $T<∏ë´ C≤„qeTT _+<äTe⁄ r=o >± >∑\ eè‘·eÔ TT.
2. düs¡fi¯πsK (Straight Line) : düs¡fi¯πsK y˚<ë+‘·XÊÁdüÔ+˝À bÕ]uÛ≤wæø£+>± ìs¡«∫+|üã&çq ª>∑TDª X¯u≤›ìøÏ Á|ü‹s¡÷|üeTqe#·TÃqT. Äs¡e® eTT, ãTTE‘·«eTT ˝Ò<ë ‹qïHÓq’ sπ U≤‘·àø£yTÓ qÆ uÛ≤eq, kÕVæ≤‘·´+˝À $+{ÏHê]øÏ |üsê´j·T|ü<+ä >± yê&Éã&ÉT#·Tqï ª>∑TDμ X¯ãe› TT qT+&ç e⁄´‘·ŒqïyÓTqÆ ~ (Derived) nì #Ó|Œü e#·TÃqT. <Ûqä Te⁄q ø£qTdü+<Ûë ì+|üã&çq >∑TDeTT, nq>± n˝…¢Á‘ê&ÉT ãTTE‘·«eTT (straightness)qT ‘Ó*j·TCÒdTü +Ô ~. Ç+ø± y˚<ë+‘· XÊÁdü+Ô ˝À >∑TDX¯ãe› TT, eT÷\Á|üøè£ ‹øÏ nej·Te uÛ÷Ñ ‘·eTT˝…q’ dü‘«Ô· s¡» düeÔ TdüT‡\H˚ eT÷&ÉT kÕ«uÛ≤$ø£ >∑TDeTT\≈£î ÁbÕ‹ì<∏´ä eTTqT eVæ≤düTqÔ ï~. düsfi¡ sπ¯ K, y˚<ë+‘·T\T kÕ<Ûës¡D+>± dü+uÛ≤$+#˚ Äs√|üeT÷\ø£yTÓ qÆ n<Ûë´dü dü÷Á‘·eTT (Law of superimposition)≈£î <äècÕº+‘·eTT (Testimony)>± ì\TdüT+Ô ~. düTdüŒwüeº TT>± ø£+{ÏøÏ ø£ì|ædTü qÔ ï ˇø±H=ø£ ÁbÕ<∏$ä Tø£yTÓ qÆ eTÚ*ø√<ëVü≤s¡D (Fundamental Illustration) |üPs¡«ø£yÓTÆq <äèXÊ´qTuÛÑeeTT, Äs√bÕ‘·àø£yÓTÆq $T<∏ë´C≤„Hêìï n<Ûë´dü>±, n+fÒ n<Ûë´düs¡÷|ü+˝À ãT~∆ì Á|üuÛ≤$‘·+ #˚düTÔ+~. Bìì l X¯+ø£sT¡ \T ‘·eT n<Ûë´dü uÛ≤wü´+˝À ` ªn‘·àdæà+düÔ <äT“~∆s<¡ ëÛ ´ùd‘·´y√#êeTμ nq>± n~ø±ì <ëìj· T +<ä T n~ (|ò ü ˝ ≤Hê edü T Ô e ⁄) nH˚ $T<∏ë´C≤„qeTT (ÁuÛ≤+‹)qT ø£*–+#˚~ n<Ûë´dü ` nì ìs¡«∫kÕÔsT¡ . eTq jÓTTø£ÿ |üPs¡« |ü]o\q\qT düà]ùdÔ, yêì˝À |ü]o\≈£î&ÉT (observer) ~vàD¶˝≤ìï (Horizon)qT eè‘·sÔ ÷¡ |ü+˝À ~ø£ÃÁø£+>± <ä]Ù+∫ dü+|üPs¡+í >± es¡T˝Ô ≤ø£è‹ (circular shape)H˚ dü+uÛ≤$kÕÔ&ÉT. ø±e⁄q n‘·ìøÏ ~vàD¶\+ jÓTTø£ÿ @ uÛ≤>±ìï
18
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
<ä]Ù+∫Hê n~ eÁø£sπ U≤‘·àø£+ (curvature)>±H˚ ø£ì|ædTü +Ô ~. n<˚ |ü]o\≈£îìøÏ, dü÷øπ àå øÏøå £ dü÷ø£àå <äèw摺 √ <ä]Ù+∫q|ü &ÉT, Ä eÁø£sπ Kô|’ @ s¬ +&ÉT _+<äTe⁄\qT #·÷∫Hê n$ ˇø£ ãTTEπsK n+fÒ düsfi¡ sπ¯ K H˚sŒ¡ s¡TdüTqÔ ï≥T¢>± ø£ì|ækÕÔsTT. á $<Ûyä TÓ qÆ düe÷˝À#·qy˚T Á|üÁ|ü± >∑D‘Ï X· ÊÁdüyÔ ‘˚ ≈Ô· î£ ` ªªeè‘·eÔ TT nq+‘·uTÑÛ »eTT\T ø£\ ˇø£ ãVüQuÛÑTõ (Polygon with N sides where N ∝) nH˚ ìs¡«#·Hêìï düTŒ¤]+|ü#d˚ +æ ~. düe÷Vü≤s¡+>± |ü]o\qqT dü+Á>∑V≤æ ùdÔ ` ˇπøø£qTï, ˇπø ~vàD¶˝≤ìï s¬ +&ÉT <äèø£Œ<∏ë\˝À dü+<ä]Ù+#·&+É e\¢ ~vàD¶\+ (Horizon) ˇø£ |üsê´j·T+ es¡T˝Ô ≤ø£è‹˝À nq+‘· |ü]sπ U≤ |ü]yê´|üyÔ TÓ qÆ |ü]~Û>\∑ eè‘·+Ô >±qT, nH˚øe£ TT˝…’ nq+‘· dü+K´>∑\ uÛTÑ »eTT\Tø£\ ãVüQuÛTÑ õ>±qT >√#·]+∫q<äì ‘Ó\TdüT+Ô ~. ˇπø edüTeÔ ⁄ jÓTTø£ÿ |ü]sπ K es¡T˝Ô ≤ø£è‹˝À eÁø£sπ U≤‘·àø£+>±qT, nq+‘· uÛTÑ »eTT\T>∑\ ãVüQuÛTÑ õ>±ì eTq>∑\T>∑T≥ kÕ<Û´ä e÷? ~vàD¶\eTT jÓTTø£ÿ |ü]sπ K eÁø£e÷ ˝Òø£ düsfi¡ sπ¯ U≤‘·àø£e÷? ˝Òø£ s¬ +&ÉT$<Ûë\T>± ≈£L&Ü ñ+≥T+<ë? ˝Ò<ë s¬ +&ÉT $<Ûeä TT\T>± ø±≈£î+&Ü eTπs $<Û+ä >±HÓq’ ñ+≥T+<ë? Mì˝À nq>± á dü+uÛ≤e´‘·\˝À @~ ì»yÓTqÆ ~? ˇø£{Ï ì»yÓT‘Æ ˚ <ëì <äècÕº´ $T–*q yêì dü+uÛ≤e´‘· ndü‘·´eTì #Ó|üŒø£ ‘·|üŒ<äT. kÕs¡«»˙qyÓTÆq nqTuÛÑeeTT ø±e⁄q ÁbÕ<∏ä$Tø£ dü+uÛ≤e´‘·jTÆÓ q eÁø£‘q· T j·T<∏ës¡eú TT>± |ü]>∑D+Ï #·&yÉ T˚ Hê´j·TeTT. Ä |üøeå£ TT˝À nq+‘· uÛTÑ »eTT\ jÓTTø£ÿ dü+uÛ≤e´‘· øπ e\eTT Äs√|üeT÷\ø£yTÓ qÆ ÁuÛ≤+‹. ˝Ò<ë $T<∏ë´C≤„qeTT. y˚<ë+‘· |ü]uÛ≤wü˝À n<Ûë´dü ne⁄‘·T+~. n<Ûë´dü s¡÷|üyTÓ qÆ Äs√|üeTT nqï+‘·e÷Á‘êq ãVüQuÛTÑ » dü+uÛ≤e´‘· ns¡sú V¡ ≤æ ‘·eTT ˝Ò<ë ìÁwüŒjÓ÷»qeTT nì uÛ≤$+#· ≈£L&ɱ j·T<∏ës¡yú TÓ qÆ dü+uÛ≤e´‘· Äs√|üeT÷\ø£yTÓ qÆ n<Ûë´dü, s¬ +&É÷ ≈£L&Ü e´eVü‰s¡+˝À dü‘´· eTT\T>±H˚ uÛ≤dæd÷ü ,Ô ndü\T dæd˝ü q’… bÕs¡e÷]úø£ ‘·‘«Ô· |ü]C≤„q s¡V≤ü kÕ´ìï nqTuÛeÑ |üPs¡«s¡ø+£ >± ‘Ó\TdüTø√e&ÜìøÏ ñ|üj÷Ó –kÕÔsTT. Äs√|ü eT÷\ø£yTÓ qÆ n<Ûë´düs÷¡ |ü+˝À, j·T<∏ës¡eú TT\T ø±q≥T¢>± uÛ≤dædTü qÔ ï sT÷ düsfi¡ sπ¯ K\‘√ H˚sŒ¡ &çq ãVüQuÛTÑ E˝Ò $$<Ûeä TT˝…’ eÁø£sπ U≤‘·àø£ dü«s¡÷bÕ\ ø=\‘·\qT, |ü]e÷D≤\qT ìs¡sí TT+#·&Üì ≈£î|üj÷Ó –kÕÔsTT. ô|’ s¬ +&ÉT |ü]o\qT ì•‘·+>± düMTøÏùå dÔ düsfi¡ sπ¯ K jÓTTø£ÿ n<Ûë´dü‘‘· «Ô· eTT düŒwü+º >± ‘Ó\TdüT+Ô ~. |ü]o\≈£î&ÉT eTT+<äT>± ~vàD¶˝≤ìï <ä]Ù+∫q|ü &ÉT, øπ e\ eÁø£‘‘· √ ≈£L&çq eè‘êÔø±s¡yT˚ ø£qã&ÉT‘·T+~ ‘·|Œü , n‘·ì düàè‹|ü<+ä∏ ˝ÀøÏ, eè‘·eÔ TT jÓTTø£ÿ eTÚ[ø£ dü«uÛ≤eeTTq≈£î dü+ã+~Û+∫q, øπ +Á<äeTT, |ü]~Û, yê´düeTT, yê´kÕs¡eú TT
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
19
yÓTT<ä˝q’… $wüjT· eTT\T düTŒ¤]+#·e⁄. ø±e⁄q ãTTEπsK>±ì ãVüQuÛTÑ õ>±ì n‘·ìøÏ <äè>√Z#s· +¡ ø±˝Ò√Z#s· y¡ TÓ ‘Æ ˚ ô|’ $wüj÷· \˙ï düTŒ¤]+∫ j·TT+&˚$. ø±ì ~vàD¶\ <äsÙ¡ q+ e\¢ ø£*–q ~Å>“∑ e¤ T á $wüj÷· \qT eTs¡>T∑ |üs∫¡ +<äì Á>∑V≤æ +#ê*.) eè‘·Ô ìs¡«#·q+ _+<äTe⁄ jÓTTø£ÿ ãTTEπsK jÓTTø£ÿ Äs√|æ‘ê<Ûë´dü dü«uÛ≤yêìï (Super imposed Nature of a point and a straightline) düŒwüº+>± $X¯Bø£]düT+Ô ~. eè‘·eÔ TH˚~ düeT‘·\+˝À ~«|ü]e÷D ∫Á‘·+>±,(Two Dimentional fig. in a plane surface) ˇπø ˇø£ |ü]~Û˝À <ëì ø π +Á<äeTT >∑T+&Ü ^j·Tã&çq düsfi¡ sπ¯ K\˙ï düe÷q |ü]e÷D+˝À ñ+&˚ eÁø£|]ü sπ K>± #Ó|Œü ã&ç+~. á Á|üe#·q+˝À øπ +Á<äeTT >∑T+&Ü |ü]~Û˝Àì s¬ +&ÉT _+<äTe⁄\qT ø£\T|ü⁄‘·÷ ^j·Tã&çq ãTTE sπ K\T #Ó|üŒã&É&É+, n~ ˇø£ø£è‘·ø£yÓTÆq nq>± eTqeTT #˚dæq{Ϻ n<Ûë´s√|üeTT (Superimposition) nì #Ó|Œü ø£jT˚ #Ó|Œæ q≥¢sTTq~. Ç<˚ $<Û+ä >± _+<äTe⁄ (πø+Á<ä+) jÓTTø£ÿ n<Ûë´s√|üeTTqT ≈£L&Ü >∑T]Ô+#ê*. ø±>±, øπ +Á<äeTT yê´düeTT\T, |ü]~Ûô|’ >∑\ eTq }Vü‰ _+<äTe⁄\T Cardinal points, Çe˙ï yÓC’ ≤„ìø£ düe÷˝À#·qeTT e\q Ä$s¡“¤$+∫q n<Ûë´düeT÷\ø£eTT˝…’q Äs√|üeTT˝Ò (super impositions) e÷Á‘·yT˚ qì kÕsê+X¯+ Á>∑V≤æ +#ê*.
3. ø√DeTT (Angle) : |üsd¡ Œü s¡eTT ˇø£ _+<äTe⁄ e<ä› ø£*dæø=qT s¬ +&ÉT düsfi¡ sπ¯ K\ q&ÉTeTH˚s¡Œ&çq n+‘·s¡eTT (yê\T) (inclination)qT ø√DeTT nì dü÷ú\eTT>± ìs¡«∫+#· e#·TÃqT. ø√D≤ìï ‘ê‹Ô«ø£+>± y˚<ë+‘·+˝À ìπs•› +#·ã&çq >∑TDeTTq≈£î Á|ürø£>± #Ó|Œü e#·TÃqT. ø√D≤H˚ïs¡Œ]#˚ sπ K\T s¬ +&É÷ ≈£L&Ü >∑TDeTTq≈£î Á|ü‹ì<ÛTä ˝Ò ø√DeTTqT ìs¡«∫+#˚ eTÚ*ø£yÓTÆq Á^ø˘uÛ≤wü≈£î #Ó+~q bÕ]uÛ≤wæø£ |ü<äeTT ª>√ìj·÷`Goniaμ nH˚~. BìøÏ eT÷\eTT eTs¡\ dü+düÿè‘·u≤Û wü˝Àì ªø√DeTTμ nìj˚T #Ó|Œü e#·TÃqT. X¯ãX› ÊÁdüeÔ TT˝À ø£ø±s¡kÕúq+˝À >∑ø±s¡± ø±q edüT+Ô ~. ‘·± ªªø√Dμμ X¯ãe› TT qT+&˚ ªª>√ìj·÷μμ eT]j·TT y˚<ë+‘·T\T ìπs•› +∫q ªª>∑TDμμ X¯u≤›\ e⁄´‘·Œ‹Ôì dü+uÛ≤$+#·e#·TÃqT.
4. düeTu≤VüQ Á‹uÛTÑ »eTT (Equilateral Triangle) : Á‹uÛTÑ »eTTqT >∑D‘Ï X· ÊÁdü+Ô ˝À Ä+>∑u¢ ≤Û wü˝À Triangle nì e´eVü≤]kÕÔsT¡ . Bìì Á‹ø√DeTT nì ≈£L&Ü nqTe~+#· e#·TÃqT. (á dü+uÛ≤e´‘·jT˚ j·T<∏ës¡yú TÓ qÆ ~.) Á‹ø√DeTTq≈£î Ä+>∑¢ |üsê´j·TyÓTqÆ eT÷\+ Á^ø˘ uÛ≤wü˝Àì Åf>Æ… H∑ é Trigon >± ìπs•› +#·ã&ç+~. BìøÏ eT÷\+ dü+düÿè‘·
20
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
uÛ≤wü˝Àì ªÁ‹>∑TDμ X¯ã›y˚Tqì y˚s¡T>± #Ó|üŒqedüs¡+ ˝Ò<äT. uÛ≤s¡rj·T ‘·‘·Ô«XÊÁdüÔ+ #·sê#·s¡ Á|üøè£ ‹q+‘·qT, dü‘«Ô· , s¡»dt ` ‘·y÷Ó >∑TD≤\ düe÷Vü‰s¡ dü«s¡÷|ü+>± uÀ~ÛdTü qÔ ï~. á eT÷&ÉT>∑TD≤\T Á|üøè£ ‹ (Universe) jÓTTø£ÿ düeT‘Í\´eTT (Equilibrium) qT dü+s¡ødåÏ ÷ü Ô ñ+{≤sTT. ø±e⁄q düeTu≤VüQ Á‹uÛTÑ »eTT Á‹>∑TDeTT\#˚ |ü]s¡ø+åÏ #· ã&ÉT#·Tqï düeT‘ê dæ‹ú >∑\ Á|üøè£ ‹øÏ Á|ü‹s¡÷|üeTì eTq+ dü+uÛ≤$+#ê*. 5. #·s¡Ts¡ÁdüeTT (Square) : ~≈£L‡#·ø£eTT\T>± Hê\T>∑T ~>∑qÔ_+<äTe⁄\qT Hê\T>∑T düsfi¡ sπ¯ K\#˚ \+ãe÷s¡eZ TT˝À ø£\T|ü>± H˚sŒ¡ &çq #·‘T· s¡ÁdüeTTqT uÛ÷Ñ |ü⁄s¡eTT n+{≤s¡T. uÛ÷Ñ |ü⁄s¡eTq>± ~vàD¶\ |ü]yê´|üyÔ TÓ qÆ düeT#·‘T· s¡ÁdüeTì bÕ]uÛ≤wæø+£ >± ìs¡«∫+#· e#·TÃqT. >∑D‘Ï X· ÊÁdü+Ô #·‘T· s¡ÁkÕìï Áø£eTã<äy∆ TÓ qÆ ø=\‘·\T (|ü]e÷DeTT\T) ne<ÛTä \T (Boundaries) ø£*–q düsfi¡ ¯ düeT‘·\ øπ Áå ‘·eTT (Superficies) nì ìs¡«∫+∫+~. á ìs¡«#·q+ j·T+Á‘·XÊÁdüeÔ TT˝Àì ªuÛ÷Ñ |ü⁄s¡μ X¯ãe› TTq≈£î #·øÿ£ >± nq«sTTdüT+Ô ~. 6. eè‘·eÔ TT (Circle) : sπ U≤>∑D‘Ï X· ÊÁdüÔ |ü]uÛ≤wüqqTdü]+∫ eTT+<äT eè‘·eÔ TT jÓTTø£ÿ dü«s¡÷|ü dü«uÛ≤eeTT\qT >∑T]+∫ dü÷\ú +>± $e]+#·T≈£îHêï+. eè‘·ÔeTT sπ U≤∫Á‘·eTT\ìï{ÏøìÏ eT÷\ø±s¡DyÓTqÆ ~. ø±e⁄qH˚ Bìì y˚<ë+‘·T\T »>∑‘êÿs¡DyÓTqÆ ÁãVü≤àeTì˙ï |üPs¡eí Tì˙ï ù|s=ÿHêïs¡T. |üPs¡‘í «· ÁãVü≤à‘·«eTT\qT dü+‘·]+#·T≈£îqï Bìì eTs√$<Û+ä >± uÛ÷Ñ ‘·eTT\ô|’ e÷qe<äèwæº |ü∑\ ~–›>+∑ ‘· |ü]yê´|üyÔ TÓ qÆ uÛ÷Ñ ‘·\eTTô|’ >∑\ düsfi¡ d¯ eü T‘·\ es¡T˝Ô ≤ø±s¡ øπ Áå ‘·eTT>±qT ~vàD¶\y˚T <ëì Vü≤<äT› ` nì ìs¡«∫+#ês¡T. á es¡T˝Ô ≤ø±s¡ øπ Áå ‘·+ eTq≈£î dü+|üPs¡+í >± ø£qã&ÉT#·Tqï Äø±XÊìøÏ Á|ü‹ì~∏>± #Ó|Œü &É+ @eT+‘· $&É÷s¶ +¡ >±ì $+‘·>±ì ø±<äT. y˚<ë+‘·T\T ÁãVü≤àeTT>± <ä]Ù+∫q sT÷ eTVü‰eè‘êÔìï, ‘Ó‘’ ØÔ· j·T X¯è‹ y˚<Áä |ü‹bÕ<ä´yÓTÆ »>∑‘êÿs¡D uÛ÷Ñ ‘·yTÓ qÆ |üsÁ¡ ãVü≤àeTT jÓTTø£ÿ X¯Øs¡+>± ` Äø±X¯+‘√ b˛*à ` ªªÄø±X¯Xد s¡+ ÁãVü≤àμμ nì ù|s=ÿ+fÒ, eT]jÓTTø£ X¯è‹ yêø£´+ ÁãVü≤àeTTqT ` ªª>∑>q∑ dü<èä X¯yTé μμ n+fÒ Äø£è‹˝À Äø±X¯eTTqT b˛*q~ nì ø°]+Ô ∫+~. ø±>± |ü]<äèX¯´e÷qyÓTqÆ >∑>q∑ ‘·\+ (Äø±X¯+) ≈£L&Ü eè‘·yÔ T˚ qì kÕsê+X¯+. ø±e⁄q n~ ÁãVü≤àeTT jÓTTø£ÿ |ü]<äèX¯´e÷qyÓTqÆ dü«s¡÷|ü+>±qT |üPs¡eí TH˚ ù|s¡T‘√qT ø°]+Ô #·ã&çq~. ø±>± eè‘·eÔ TT jÓTTø£ÿ ÁãVü≤àeTT nH˚ ìπsX› +¯ bÕs¡e÷]úø+£ >± ø£ì|æùd,Ô |üPs¡eí TH˚ e´|ü± XÊÁd”j Ô T· yÓTqÆ Äø£è‹eT÷\ø£+>± ìπs•› +#·ã&çq<äì Á>∑V≤æ +#ê*. Ç˝≤ eè‘·eÔ TT jÓTTø£ÿ s¬ +&ÉT $<Ûeä TT˝…q’ HêeTs¡÷bÕ‘·àø£yTÓ qÆ e´eVü‰s¡ ìπsX› +¯ bÕs¡e÷]úø,£ yÓC’ ≤„ìø£ Á|üj÷Ó »Hê\qT s¬ +&ç+{Ï˙ dü÷∫düTqÔ ï~.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
21
ì»+ ìø±s¡T‡>± #ÓbÕŒ\+fÒ ÁãVü≤àeTTqT Ç<ä$T‘·+ú >± ìs¡÷|æ+#·&ÜìøÏ nqTyÓq’ Äø£è‹ øπ e\+ eè‘·eÔ TT (Circle) e÷Á‘·yT˚ . Ç~ nìï$<Ûeä TT˝…q’ <äèø√ÿDeTT\qT n‹Áø£$T+∫ #Ó|æŒq ÁãVü≤àeTT jÓTTø£ÿ |ü]<äèX¯´e÷qyÓTÆq j·T<∏ës¡ú dü«s¡÷bÕìï uÀ~ÛdTü qÔ ï~. ÁãVü≤àeTTq≈£î <äèXÊ´<äèX¯´eTT˝…q’ s¡÷bÕ\THêïsTT. <äèX¯´s¡÷bÕìï áX¯«s¡ X¯ã+› #˚‘,· n<äèX¯´s¡÷bÕìï ÁãVü≤à‘·‘«Ô· +>± e´eVü≤]+#·&+É |ü]bÕ{Ï. ‘·± eè‘·eÔ TT |ü]<äèX¯´e÷q ÁãVü≤àeTTqT dü÷∫+#˚ dü+øπ ‘ê‘·àø£yTÓ qÆ j·T+Á‘·+>± dü+uÛ≤$+#·&+É »]–+~. á eè‘·Ô øπ +Á<äeTTqT n$<ä´ ˝Òø£ nHê~>± e÷j·T (eè‘·|Ô ]ü ~Û) nqTdü÷´‘·+>± eTq\q+{Ï ô|≥Tº≈î£ ì dü+Áø£$TdüTqÔ ï nC≤„q+>±qT |ü]~Ûì ì»yÓTqÆ ÁãVü≤àC≤„qeTT (The Original Supreme Intelligence )qT ø£ì|æ+#·≈î£ +&Ü #˚dTü qÔ ï Äes¡DeTT (cover) >±qT ù|s=ÿHêïs¡T. á Äes¡D+ eTs¡\ ` e÷j·T, n$<ä´ nì ¬ s +&É T $<Û ä e TT\T>± eTVü ≤ s¡ T ¸\#˚ Bs¡Èeè‘êÔ\ |ü]<ÛäT\T n$<ä´ ìπs•› +#·ã&çq~. Ä |üø+å£ ˝À eè‘·Ô |ü]~Û e÷j·TqT, <ëì yê´düe÷<Ûës¡eTT>± kÕ>∑Bj·TVü≤ã&çq Bs¡Èeè‘·ÔeTT jÓTTø£ÿ |ü]~Û (The Circumference of the Ellipse) n$<ä ´ qT dü ÷ ∫dü T Ô + <ä ì kÕ+π ø ‹ø£ + >± #·÷|üã&çq~. n$<ä´ ñbÕ~Ûìwü˜ áX¯«s¡ dü«s¡÷|üyTÓ qÆ Je⁄ì jÓTTø£ÿ Äes¡DeTT>±qT, e÷j·TqT |ü]<äèX¯´e÷q ÁãVü≤àeTTq≈£î Á|ü‹s¡÷|üyTÓ qÆ áX¯«s¡TìjÓTTø£ÿ Äes¡DX¯ø>ÔÏ ±qT bÕsƒ≈¡ î£ \T Á>∑V≤æ +#ê*. @ø£eè‘·Ô dü+øπ ‹ø£yTÓ qÆ e÷j·T áX¯«s¡TìjÓTTø£ÿ @ø£‘ê«ìï Bs¡eÈ è‘·eÔ TT\ düe÷Vü‰s¡eTT\#˚ Je⁄\ jÓTTø£ÿ n$<ë´ dü«s¡÷|üeTT\T Je⁄\ jÓTTø£ÿ HêHê‘·«eTT ˝Ò<ë nH˚ø‘£ ê«ìï kÕ+πø‹ø£+>± ìπs•› düTHÔ êïj·Tì Á>∑V≤æ +#ê*. sπ U≤ C≤´$T‹ XÊÁdüeÔ TT˝À eè‘·eÔ TT jÓTTø£ÿ eÁø£‘ê $πø|å eü TT (Curved Projections)˝…q’ |üsêe\j·TeTT, (Parabola), n‹eè‘·eÔ TT (Hyperbola)\T ≈£L&Ü HêHê $<Ûä ñ bÕ~Ûìwü˜ Je⁄\≈£î ø£sà¡ $bÕø£eTT qqTdü]+∫ dü+ÁbÕ|æ+Ô ∫q n$<ë´es¡D Á|üu<ÒÛ eä TT\T>± y˚<ë+‘·+ ìπs•› +∫+~. e÷j·T, n$<ä´\ jÓTTø£ÿ á Äes¡D X¯≈î£ \Ô T ÁãVü≤àeTT jÓTTø£ÿ ø±s¡DX¯Øs¡yTÓ qÆ áX¯«s¡TìøÏ, ñbÕ~Ûìwü˜ áX¯«s¡ dü«s¡÷|üeTT˝…’ Je⁄\≈£î e]ÔkÕÔsTT. e÷j·÷ X¯ã*‘·yTÓ qÆ áX¯«s¡ dü«s¡÷|ü+ ˇø£ÿ{Ï>± eè‘·|Ô ]ü ~Û s¡÷|ü+˝ÀqT, n$<ë´ X¯ã*‘·eTT˝…’ Je⁄\≈£î dü + ã+~Û + ∫, Bs¡ È e è‘· Ô ( Ellipse ), |ü s êe\j· T ( Parabola), n‹eè‘· Ô (Hyperbola)eTT\ HêHê$<Ûeä TT˝…q’ ndü+UÒ´j·T s¡÷bÕ˝À¢qT, nìï{Ïø° nr‘·+>±
22
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
e÷j·÷ n$<ä´\ Á|üu≤Û eeTT\≈£î ˝ÀqTø±ì ÁãVü≤àeTT øπ +Á<ä+>±qT ìs¡÷|æ+#·ã&çHêsTT. á$<Ûyä TÓ qÆ s¡÷|ü |ü]C≤„Hêìï kÕ+πø‹ø£+>± ìs¡÷|æ+∫q sπ U≤ Á|ü|+ü #êìï dü+Á>∑V≤ü +>± $Vü≤+>±e ˝Àø£q+>± düMTøÏ+å #·T≈£îqï eTq+, HêeT |ü]C≤„HêìøÏ Ä\+ãqyÓTqÆ |ü<Áä |ü|+ü #êìï |ü]o*+#˚ ~X¯>± Á|üj÷· DÏ<ë›+.
|ü<Áä |ü|+ü #·+
(Pada World)
ÁX¯ó‹, düàè‹ Á|üu<ÒÛ eä TT\#˚ |ü<Áä |ü|+ü #·+ s¬ +&ÉT $<Ûë\T. ÁX¯ó‹ düàè‘·T\~ ø±s¡Dø±s¡´ dü+ã+<Ûeä TT. ÁX¯eDeTT<ë«sê n<Û´ä j·Tq n<Ûë´|üqeTT\ eT÷\eTT>± dü+ÁbÕ|æ+Ô #·Tq~ ø±e⁄q y˚± düsT¡ «\#˚ düeTà‹+|üã&çq~. y˚± nqTdü]dü÷Ô Áyêj·Tã&çq düàè‘·T\T s¬ +&ÉTq÷ C≤„qdüeTTbÕs¡q® ≈£î n‘·´+‘· ÁbÕe÷DÏø£ Á>∑+<∏eä TT\T>± Á>∑V≤æ +|üã&çq$. düàè‘·T\T bÂs¡Tùwj·TeTT\T. ø±e⁄q nì‘·´eTT\T. nsTTHê Á|üd<æ y∆ä <˚ ä ÁbÕe÷D´eTTq≈£î ˝Àã&ç j·TTqï+<äTq |üs‘¡ '· Á|üe÷DeTT\T>± d”«ø£]+#·ã&çq$. y˚∑Ts¡T >∑+;Ûsd¡ «ü s¡eTT (Stertorian Voice)‘√ ªªdüsπ «y˚<ëj·T‘·Œ<äe÷eTqìÔ ‘·bÕ+dæ düsê«DÏ #· j·T<ä«<äìÔ j·T~#·ÃH¤ √Ô ÁãVü≤à#·s´¡ + #·sì¡ Ô ‘·‘˚Ô |ü<ä+ dü+Á>∑ùV≤D ÁãMyÓ÷´$T‘˚´‘·‘·Ôμμì ñ<√“~Û+∫q~. Çø£ÿ&É |ü± ÁãVü≤àeTTq≈£î n~Ûøs£ D ¡ eTT (kÕúqeTT) ˝Ò<ë düsê«‘·àø£yTÓ qÆ ÁãVü≤àeTTqT ìπs•› +#·T yê#·ø£ |ü∑‘y· TÓ qÆ ÁãVü≤àeTTq≈£î |üsê´j·TeTH˚ $wüj÷· ìï ªz$T‹ ÁãVü≤à ` z$Tr<ä+ düs¡«yéTμ nH˚ ÁX¯ó‹ yêø£´eTT ã\|üs¡TdüTÔqï~. Á|üe÷D°ø£]düTÔ+~. y˚<äyê´dü HêeTeTT#˚ düTÁ|üdæ<äT∆&Ó’q, uÛÑ>∑e‘Yø£èwüí <Ó’«bÕj·Tq uÛ≤s¡‹, Äsê´es¡Ô |ü⁄D´uÛ÷Ñ $T˝À Hê$s¡“$¤ +∫q ÁX¯ó‹ düàè‹ |ü⁄sêDÒ‹Vü‰kÕ‘·àø£yTÓ qÆ |ü$Á‘· kÕVæ≤‘·´eT+‘·jT· T ÁãVü≤àeTTH˚ Á|ü‹bÕ~+#·T #·Tqï<äì ‘·q y˚<ëqÔ <äsÙ¡ q Á|ükÕúqeTT˝À qT<ëÈ{+Ï ∫ j·TTHêïs¡T. ªn<∏ë‘√ ÁãVü≤àõC≤„kÕμ ` j·Tì ‘·q ÁãVü≤àdü÷Á‘·eTT\ Hês¡+_Û+#·T≥j˚T á $wüjT· eTTq Á|üe÷DeTT.
23
leTHêïsêj·TDT&˚ »>∑±, Á|ü|+ü #· Á|üd<æ y∆ä TÓ qÆ ‘·q ^‘êdüàè‹˝À ` ªnVü≤+μ X¯ã› |ü]C≤„qy˚T y˚± ‘Ó*j·T<ä–q<äì ` ªy˚± ìπs•› +|üã&çq<äì ≈£L&Ü Ä Á|üøs£ D ¡ eTTq+<˚ ` ªz+ ‘·‘‡· ~‹ ìπs›X¯' ÁãVü≤àDÁdæÔ$<Ûä' düàè‘·'μ nì Á|üuÀ~Û+∫Hê&ÉT. á $wüjT· eTTqT X¯è‹ düàè‹ Á|ü‹bÕ~‘·eTT˝…q’ $wüj÷· +‘·se¡ TT\‘√ düeTq« sTT+∫ |ü]o*+∫q MT<ä≥, düs¡«y˚<ë+‘·eTT\ Á|ü‹|ü<ä´yÓTÆq #·s¡eT>∑eT´eTT ÁãVü≤ày˚Tqìj·TT, n~ Á|ü<ëÛ qeTT>± ` ªzyéT`ÁãVü≤à`nVü≤yéTμ nqT eT÷&ÉT |ü∑TqT. á eT÷&ÉT |ü∑‹ ` •e ` Á|üDe ` |ü<ä ` n» ` Ä‘·à ` dü‘Y ` uÛÑ÷e÷ ` ø£sêÔ ` áùwº ` >∑s¡“¤ ` j·T»„ ` dü«|æ‹ ` |ü⁄]X¯j·T ` Á|üC≤|ü‹ ` ‘ês¡ø£ ` ‘·‘Y ` |üPs¡yí Té ` ‘·TØj·T ` |üsy¡ Té ` >±j·TÁ‹j·T+Á‘· ` #·Áø£ ` düT<äsÙ¡ qyéTμ ` yÓTT<ä˝…’q |ü<äeTT\T ≈£L&Ü zyéT, eT]j·TT ÁãVü≤àeTTq≈£î dü+ã+~Û+∫q |üsê´j·T|ü± ÁX¯ó‹, düàè‘ê´~ |ü$Á‘· Á>∑+<∏eä TT\#˚ kÕ+Á|ü<ëj·Tø£eTT˝…q’ $>± ˝Àø£eTTq Á|üyX˚ ô¯ |≥ºã&çqyÓ’ e´eVü‰s¡eTT˝À >√#·]+#·T #·Tqï$.
;»Á|ü|+ü #·eTT (Bija World) ;»eTq>± eT+Á‘·eTì e]í+#·ã&çq~. n~ HêeTeTT jÓTTø£ÿ Á|ü‹s¡÷|üeTT ≈£L&Ü ø±e#·TÃqT. |ü<Áä |ü+#· e÷$s¡“$¤ +∫q~ HêeTeTT\ jÓTTø£ÿ sT÷ eT÷\s¡÷|üeTT\ qT+&çjT˚ . Á|üDeeTT, >±j·TÁ‹ nHÓ&TÉ s¬ +&ÉT |ü$Á‘· eT+Á‘·eTT˝Ò X¯è‹ düàè‘·T\T #·se¡ T d”eT\T>± ø£*– j·TTqïeì #Ó|Œæ q#√ ÄX¯Ãs¡´eTT ø£\T>∑ø£ e÷q<äT. ªz$Tr<äyTé düs«¡ yéTμ, ª>±j·TÁr yê Ç<äyTé düs«¡ yéTμ ªz$T‘˚´ø±ø£så y¡ Té ÁãVü≤àμ ` nqTyêø£´eTT© $wüjT· eTTqT Á|üe÷D°ø]£ +#·T#·Tqï$. HêeTÁbÕ<äTsꓤeTT ( Origin of Nama or Name) : |ü<ä, ;» Á|ü|ü+#·eTT\T ¬s+&ç+{Ï jÓTTø£ÿj·TT, yêì |üs¡düŒs¡ ÁbÕeTTK´eTT\ jÓTTø£ÿj·TT ÁbÕ<äTsꓤeeTT nq>± |ü⁄≥Tºø£ dü+düÿè‘êø£ås¡ düe÷e÷ïj·TeTTqT+&çj˚T qqT≥ n‹X¯j÷Ó øÏÔ ø±uÀ<äT. á nø£så ¡ düe÷e÷ïj·TeTT (Alphabet) Hêsêj·TDeTT, e÷ùV≤X¯«s¡eTT nì s¬ +&ÉT$<Ûeä TT\T. Hêsêj·TD≤ø£ås¡düe÷e÷ïj·TeTT˝À ` es¡íeTT\T ˝Ò<ë nø£ås¡eTT\ìïj·TT Áø£eTeTT>± ªn ` ø£ ` #· ` ≥ ` ‘· `|ü` j·T ` X¯μ ` nqT es¡eí TT˝≤s¡+uÛeÑ TT>± >∑\ mì$T~ es¡eZ TT\T>± ì≥T¢qï$.
24
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ˇˇ
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
1. nes¡Z ` n, Ä, Ç, á, ñ, }, ãTT, ãT÷, ± @, ◊, z W, n+, n' 2. ø£es¡Z ` ø£, K, >∑, |òTü , v 3. #·es¡Z ` #·, #Û,· », s¡a, x 4. ≥es¡Z ` ≥, sƒ,¡ &É, &Û,É D 5. ‘·es¡Z ` ‘·, <∏,ä <ä, <Û,ä q 6. |ües¡Z ` |ü, |ò,ü ã, uÛ,Ñ eT 7. j·Tes¡Z ` j·T, s¡, \, e 8. X¯es¡Z ` X¯, wü, dü, Vü≤, ø£å e÷ùV≤X¯«sêø£så ¡ düe÷e÷ïj·TeTTqT eTùV≤X¯«s¡T&ÉT (•e⁄&ÉT) bÕDÏì eTVü≤]¸øÏ |ü∑T dü÷Á‘·eTT\T>± (&ÛøÉ ±ÿ)Hê<ä s¡÷|üeTT˝À qqTÁ>∑V≤æ +#ÓqT. Ä dü÷Á‘·eTT\T ` 1. n, Ç, ñ, DY 2) ãTT \T ø˘ 3) @ z vŸ 4) ◊ W #Y 5) Vü≤, j·T, e, s¡,{Ÿ 6) \ DY 7) x, eT v D qyéT 8) s¡a uÛÑ xŸ 9) |òTü , &Û,É <Û,ä wt 10) » ã >∑ &É <äXŸ 11) K |òü #Û· sƒ¡ <∏ä #· ≥ ‘· yé 12 ) ø£ |ü jYT, 13 ) X¯, wü, dü, sY 14) Vü≤ ˝Ÿ ˆˆ nqTq$. Hêsêj·TD düe÷e÷ïj·TeTTqT nø±sê~ Vü≤ø±sêqÔeTT>± dü+uÛ≤$ùdÔ <ëì˝À 49 es¡eí TT\T. nø±sê~ ø£øå ±sêqÔeTT>± >∑TDÏùdÔ 50 es¡eí TT\T ˝…øÿ£ ≈£î ekÕÔsTT. e÷ùV≤X¯«s¡ dü÷Á‘·eTT\˝À es¡ídü+K´ 42>± >∑DÏ+#·ã&çq~. á ¬s+&ÉT düe÷e÷ïj·TeTT\ eØZøs£ D ¡ , dü÷Árø£sD ¡ eTT\˝ÀqT, es¡Áí ø£eTeTT˝˝ÀqT n+‘·se¡ TT ˝Ò<ë uÛÒ<äeTT u≤>∑T>± qTqï|üŒ{ÏøÏì, Ä<ä´+‘· es¡íeTT˝…’q ªn`Vü≤μ\ kÕeT´eTT ñuÛj Ñ T· kÕe÷q´ <Ûsä à¡ eTT>±, nq>± s¬ +&ÉT düe÷e÷ïj·TeTT\+<ä* düeT÷Vü≤eT+‘·jT· T ªnμ eT]j·TT ªVü≤μ nqT s¬ +&Éøså£ e¡ TT\ eT<Û´ä >∑‘e· TT>± ñ|ü<•˚ +|üã&çq<äH˚ s¡V≤ü dü´+ eTTK´+>± Á>∑Væ≤+#ê*. Ä<ä´+‘· es¡íeTT\‘√ eT<Ûä´>∑‘· es¡íeTT\qT ø£*|æ düe÷Vü‰s¡eTT>± dü+uÛ≤$+#·&Üìï yê´ø£sD ¡ XÊÁdü+Ô ˝À bÕ]uÛ≤wæø+£ (technial)>± ªÁ|ü‘ê´Vü‰s¡eTTμ n+{≤s¡T. ø±>±, Hêsêj·TD, e÷ùV≤X¯«s¡ dü+Á|ü<ëj·÷\T s¬ +&É÷ ‘·eT ‘·eT es¡ídüe÷e÷ïj·÷\qT ªnVü≤+μ Á|ü‘ê´Vü‰s¡+>±H˚ Á|ü‹bÕ~+∫qeì |æ+&ç‘ês¡+ú . nVü≤eT+fÒ @$T{Ï? y˚± Á|ükÕ~+∫+~. y˚<äuÛ≤wü˝À Ç~ ˇø£ düs¡«HêeTeTT (Pronoun).
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
25
düs«¡ HêeTeTH˚~, düs«¡ `HêeT nH˚ s¬ +&ÉT |ü± ªnìïj·TT (All)μ nH˚ nsêúìï dü÷∫düT+Ô ~. HêeT X¯ãe› TT ù|s¡T (Name)qT ‘Ó*j·TCÒdTü +Ô ~. Ç˝≤ dü+uÛ≤$ùdÔ ªdüs¡«HêeTX¯ã›eTTμ nìï+{Ï ù|s¡T (Name of All) nH˚ nsêúìï düTŒ¤]+|ü#d˚ Tü +Ô ~. yÓ~’ ø£ |ü]uÛ≤wü˝À düs«¡ X¯ãe› TT ÁãVü≤àeTTqT, ˝Ò<ë »>∑‘T· qÔ T uÀ~ÛdTü +Ô ~. ø±>±, düs«¡ HêeT|ü<+ä ÁãVü≤àeTT ˝Ò<ë »>∑‘T· qÔ T dü÷∫düTqÔ ï<äì uÛ≤e+. á <äèw摺 √ #·÷ùdÔ ªnVü≤+μ X¯ãe› TT ÁãVü≤àeTT, ˝Ò<ë »>∑‘T· qÔ T Á|ü‹uÀ~ÛdTü +Ô <äì #Ó|Œü &É+ Áø=‘·>Ô ± ø£ì|æ+#·± #Ó|ü ≈£î+fÒ, ÁãVü≤àyê∫ j·Tq&ÜìøÏ ø±s¡D+, øπ e\+ n~ ªdüs«¡ HêeT+μ ø±e&ÉyT˚ Hê? ø±<äT, <ëìøÏ ÁãVü≤àyê#·ø‘£ «· eTT düV≤ü »+>±H˚ #Ó|Œü ã&ç+~. düs«¡ HêeT e´eVü‰s¡+ øπ e\+ yê´ø£sD ¡ dü+Á|ü<ëj·÷ìπø |ü]$T‘·yTÓ qÆ ~. ªÁãVü≤ày˚TH˚qTμ nH˚ e´eVü‰s¡+ y˚<ë+‘· XÊÁdü+Ô ˝À Á|üd<æ +∆ä >± |ü\T#√≥¢ ø£ì|ædTü +Ô ~. ãèVü≤<ës¡D´ø£ ÁX¯ó‹ ` á $wüj÷· ìï ` ªk˛Vü≤eTd”à‘·´Áπ> e´eVü‰sê‘Y, ‘·‘√Vü≤yéT Hêe÷uÛeÑ ‘Yμ ` nì düŒwü+º >± ìπs•› +∫q~. ÁãVü≤àeTT ‘=\T<=\T‘· ª$sê{Ÿ`˝Ò<ë Á|üC≤|ü‹μ>± ne‘·]+∫, Áø£eT+>± e÷qyêø£è‹>± s¡÷bı+~ yêÁ>∑÷|ü+˝À ‘·qqT ªnVü≤eTdæà`H˚H’Ó j·TTHêïqT ˝Ò<ë H˚qTHêïqT (I am)μ ` nì Á|üø{£ +Ï #Óq≥. ø±e⁄q Ä ÁãVü≤àeTT nVü≤eTqT X¯ãe› TT#˚ e´eVü‰s¡eTT˝À qTqï~. á $<Û+ä >± Ä$s¡“$¤ +∫q ÁãVü≤à≈£î |üsê´j·TyÓTqÆ ªnVü≤+μ nH˚ yÓTT<ä{Ï e´øÏÔ (HêeT) yê#·øe£ TT (proper noun) n<˚ X¯ã› Á|ü|+ü #·+˝À yÓTT<ä{Ï düs«¡ HêeT+ (pronoun) ≈£L&Ü ø±e&É+ >=|üŒ $X‚w+ü . n+‘˚ø±<äT Á|üÁ|ü± ‘·q e´øÏ‘Ô «· eTTqT n_Ûe´ø£+Ô #˚d,æ >∑Ts¡T>∑+;Ûs¡ dü«s¡+‘√ ‘·qqT ` ªnVü≤+μ nì Á|üø{£ +Ï #·Tø=qï ÁãVü≤àeTT n<˚ dü«s¡eTT‘√ eTs¡\ n<˚ X¯ãe› TTqT, k˛Vü≤eTì düs«¡ HêeTeTT>± ñ‘·eÔ T |ü⁄s¡Tôwø’ £ e#·q+>± Á|üø{£ +Ï #·&+É ≈£L&Ü >∑eTì+#·<–ä q $X‚wyü T˚ . Ä~ |ü⁄s¡Twüß&ÉT>± Ä$s¡“$¤ +∫q ÁãVü≤à ‘·qT ñ‘·eÔ T |ü⁄s¡Tôwø’ £ e#·q yê#·T´ì>± uÛ≤$+∫ ªnVü≤+μ X¯ãe› TT#˚ HÓ˝≤ Á|üø{£ +Ï #·T≈£îHêï&ÉT? nVü≤eT+fÒ @$T{Ï? nì Ä˝À∫ùdÔ nVü≤eTH˚~ ªnGVü≤GyéT (_+<äTe⁄)μ nH˚ eT÷&ÉT es¡eí TT\ düe÷Vü‰s¡+>± ø£ì|ædTü +Ô ~. dü+düÿè‘· yê´ø£sD ¡ XÊÁdüÔ dü+Á|ü<ëj·T+ Á|üø±s¡eTT ªnVü≤μ es¡eí TT\ Á|ü‘ê´Vü‰s¡eTT es¡dí eü ÷e÷ïj·TeTT\˝À 49 ˝Ò<ë 42 >± |ü]>∑D+Ï |üã&çq nø±sê~ Vü≤ø±sêqÔeTT˝…q’ es¡eí TT\qìí+{Ïì _+<äT|üPs¡«ø£+>± ˇø£ dü+Á>∑V≤ü yÓTqÆ bÕ]uÛ≤wæø£
26
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
|ü√#·]düT+Ô ~. e´ø£Ô ÁãVü≤àeTT jÓTTø£ÿ Á|ü‹s¡÷|üyTÓ qÆ Á|üC≤|ü‹ ‘·q dü«s¡÷bÕìï eTTK´+>± X¯Øsêìï es¡dí eü ÷e÷ïj·T düe÷e÷ï‘·+>± Á>∑V≤æ +∫ ˇø£ÿkÕ]>± <ëìì nq>± ‘·qqT ªnVü≤yéTμ nH˚ X¯uÀ›#êÃs¡D+‘√ Á|üø{£ +Ï #·T≈£îHêï&É≥. á yÓ~’ ø£ dü‘´· eTT yÓqTø£ <ë–j·TTqï s¡Vü≤dü´eTT ( The mystery behind this Vedic Truth) dü+|üPs¡íeTT>± eT+Á‘·XÊÁdüeÔ TT˝À e÷‘·èø±Hê´düsV¡ ≤ü dü´eTTqT $e]+#˚ dü+<äs“¡ +¤ ˝À ‘Ó*j·TCÒjT· ã&çq~. eT÷\ø±s¡DeTT (Root cause) :` ãVüQ$<Ûä Á|üj÷Ó >∑, Á|üj÷Ó »qeTT\ø√dü+, es¡í düe÷e÷ïj·T+˝Àì es¡íeTT\T ãVüQ$<ÛäeTT\T>±, es¡ZeTT\, dü÷Á‘·eTT\˝À nH˚ø+£ >± Á|üd]Ôü +∫q≥T¢ >√#·]düTHÔ êï, Çe˙ï X¯ãÁ› |ü|+ü #· eT+&É˝À|ü] uÛ≤>∑+˝À yÓ\T>=+<äT#·Tqï ªdü+eè‘· nø±s¡eTTμ jÓTTø£ÿ Á|ü‹s¡÷|üeTT\T e÷Á‘·yT˚ . á dü+eè‘· nø±s¡eTT jÓTTø£ÿ eTVü‰‘·à´eTTqT ÁX¯ó‹e÷‘· ` ªnø±s√yÓ’ düsê«yêø˘ ôdc’ Õdü´ düŒsêÙqÔk˛úwàü _Ûs«¡ ´»´e÷Hê ãV”≤« HêHês¡÷bÕμ nì ø°]+Ô ∫+~. lø£èwüuí >ÑÛ y∑ êqT&ÉT ≈£L&Ü Ç<˚ $wüj÷· ìï ªnø£så êD≤eTø±s√dæàμ nì ìs¡«› +<ä«+>± Á|üø{£ +Ï #ê&ÉT. á dü+eè‘êø±s¡|⁄ü e÷Vü‰‘·à´eTT bÕDÏ˙j·T yê´ø£sD ¡ dü+Á|ü<ëj·TeTT jÓTTø£ÿ |ü]C≤„q+‘√ |ü]o*ùdÔ #ê˝≤u≤>± uÀ<Û|ä &ü TÉ ‘·T+~. bÕDÏ˙j·T yê´ø£s¡DeTT (Paninian Grammar) :` dü+düÿè‘· uÛ≤cÕ X¯ã› Á|ü|+ü #·eT+‘·jT· T, dü+|üPs¡+í >±, düeTÁ>∑+>±, bÕDÏ˙j·T yê´ø£sD¡ +˝À ìπø|å +æ |üã&çq~. dü+düÿè‘· uÛ≤wü˝À @ jÓTTø£ |ü∑TdüT+Ô ~. C≤Á>∑‘>Ô· ± |ü]o*ùdÔ ªn Ç ñ DY...μ nì dü+eè‘· nø±s¡+‘√ Hês¡+_Û+∫q XÊÁdü+Ô , eTs¡\ ªn`nμ nì dü+eè‘· nø±s¡+‘√ |ü]düe÷|üeÔ Te⁄‘·T+~. |üPs¡«+ #Ó| ü ≈£îqï Á|ü‘ê´Vü‰s¡ dü+Á|ü<ëj·T+‘√ düeTq«sTTùdÔ ˝ÖøÏø£ yÓ~’ ø£yTÓ qÆ X¯ãC› ≤\eT+‘ê es¡dí eü ÷e÷ïj·T s¡÷|ü+˝À, |ü<ä yêø£´ Á|üe÷D≤~ XÊÁdüÔ s¡÷|ü+˝ÀqT Ç‹Vü‰dü |ü⁄sêD≤~ kÕVæ≤‘·´ s¡÷|ü+˝ÀqT á s¬ +&ÉT dü+eè‘· nø±s¡eTT\˝À ìøÏ|å +Ôü >± eTs¡\ n<˚ dü+eè‘· nø±s¡+ @ø°u$ÑÛ +∫ ÁãVü≤àyÓTÆ Á|üø±•düT+Ô <äì düŒwü+º >± ‘Ó\TdüT+Ô ~. Ç<˚ $wüj÷· ìï ÁX¯ó‹
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
27
ªªjÓ÷ y˚<ë<Í dü«s¡' Áb˛ø√Ô' y˚<ëH˚ #· Á|ü‹w昑·' ‘·d´ü Á|üøè£ ‹©qdü´ j·T' |üsd¡ ‡ü eTùV≤X¯«s¡'μμ nì Á|üø{£ dÏ Tü +Ô ~. ªªn`nμμ ` nH˚ n+‹eT dü÷Á‘·+ dü+eè‘· nø±s¡yTÓ Tø£ÿ{ÏjT˚ dü‘´· eTT, ì‘·´eTT ÁbÕDuÛ÷Ñ ‘·yTÓ Æ düeTdüÔ kÕs¡d«ü ‘· eT+&É˝À|ü]uÛ≤>∑+˝À Á|üø±•düTqÔ ï<äì ìπs•› +#·&ÜìøÏ y˚± |ü⁄qsêeè‘·yÔ TÓ Æ dü÷Árø£]+|üã&çq~. dü+eè‘·yTÓ qÆ nø±s¡eTT, uÛ≤cÕ Á|ü|+ü #·eTTq≈£î eT÷\eTT ø±<äT, ;»y˚TqqT $wüjT· eTT ˙ dü÷Á‘·eTT düŒw”øº ]£ k˛Ô+~. á dü+eè‘· nø±s¡eTT es¡eí ÷ (nø£så e¡ ÷)? nø£så y¡ T˚ ø±<äT nø£så ¡ |üsÁ¡ ãVü≤àeTTqT dü÷∫+#·T#·Tqï~. ÁãVü≤àeTT‘√ $X¯«eTTq¬ø{Ϻ dü+ã+<Ûeä TTqï<√, n{Ϻ dü+ã<Ûeä TTH˚ dü+eè‘· nø±s¡eTTq≈£î X¯ã› Á|ü|+ü #·eTT‘√&ç dü+ã+<Ûeä Tì ≈£L&Ü á bÕDÏ˙j·T dü÷Á‘· dü+$<ÛëqeTT dü÷∫düT+Ô ~. ÁãVü≤àeTT düs√«qï‘· dæ‹ú ˝À qT+&ç $X¯«eTT˝Àì #·sê#·s¡ ÁbÕDT\ jÓTTø£ÿ dæ‹ú (stabity)øÏ ø±s¡DuÛ÷Ñ ‘· eT>∑T#·Tqï~. n+‘·øq£ ï $Tqï>± dü+eè‘· nø±s¡eTT ˇø£ dü+<ä+X¯eTT (|ü≥Tºø±s¡T) (an trustment í TT\≈£î ÁbÕDuÛ÷Ñ ‘·yTÓ Æ ñ#êÃs¡D˝À to hold the objects safely) e˝… düs«¡ es¡e |ü⁄wæºì düeT≈£Ls¡TÃ#·T <Ûä]+#·T#·Tqï~. á dü+eè‘· nø±s¡|ü⁄ düVü‰j·TeTT˝Òì<˚ uÛ≤cÕ+‘·s‘Z¡ · es¡yí T˚ ~j·TTqT düTdüŒwüeº TT>± |ü\Tø£≥≈£î M\T |ü&<É Tä . á$<Û+ä >± ˇπø ˇø£ dü+eè‘· nø±s¡eTT, es¡ídüe÷e÷ïj·TeTT˝Àì es¡íeTT\ø£ìï{ÏøÏ, yêì düe÷Vü≤è‘·s¡÷|üeTT‘√ H˚s¡Œ&çq X¯ã›C≤˝≤s¡D´eTTqø£+‘·≈£îqT, yêìì <ë{Ï+∫ >∑eT´eTTqT #˚sT¡ à X¯è‹ düàè‘ê´‘·àø£ kÕs¡d«ü ‘· düeTT<ëj·TeTTqø£+‘·≈î£ ;»uÛ÷Ñ ‘·yTÓ qÆ eT÷\ø±s¡DeTì Á>∑V≤æ +∫q|ü⁄ &É‘´· +‘êX¯Ãs¡´eTT ø£\T>∑TqT. @yÓTqÆ qT dü‘´· eTT dü‘´· y˚T (Truth is TRUTH!) Ç<˚ $<Ûeä TT>± ÁãVü≤àeTT ãVüQs¡÷|üeTT\T>± $dü]Ô +∫q $XÊ\ $X¯«eTTqø£+‘·≈î£ eT÷\ø±s¡DeTT>± #Ó|Œü ã&çq~.
_+<äT$düs\Z¡ T (Bindu and Visarga) : _+<äTe⁄ eT]j·TT $düsZ¡ nqTq$ dü+düÿè‘· uÛ≤wü˝À n‘·´<äT“¤‘· dü«uÛ≤eeTTqT Á|üø{£ +Ï #˚ s¬ +&ÉT n#·TÃ\T. Mìì dü«‘·+Á‘·eTT>± ñ#·Ã]+#·T≥ kÕ<Ûä´eTT ø±<äT. Mì j·TT#êÃs¡DeTT nø±s¡ |üPs¡«ø£eTT>±H˚ kÕ<Û´ä eTe⁄‘·T+~. nø±s¡|Pü s¡«ø£+>± ‘·|Œü MìøÏ dü«‘·+Á‘· Á|ü‹|ü‹Ô ˝Òøb£ ˛sTTHê, Ç$ ¬s+&ÉTqT nø±s¡eTT jÓTTø£ÿ n+&É‘√ (support)‘√ kÕVæ≤‘·´+˝À n<äT“¤‘·yÓTÆq Á|üj÷Ó »Hê\qT kÕ~ÛkÕÔsTT. n$ Á|üøè£ ‹ $ø£è‘·T\≈£î Á|ü‹ì<ÛTä \T>± uÛ≤$+|üã&çHêsTT. ªnVü≤+μ nH˚|ü<ä+ C≤Á>∑‘·Ô>± |ü]o*ùdÔ ªnø±s¡`$düs¡Z`_+<äTμ e⁄\ ø£\sTTø£>± ø£ì|ædTü +Ô ~. á dü+uÛ≤eq˝À nVü≤yéT nH˚~ Áø£eT+>± ÁãVü≤à`Á|üøè£ ‹`$ø£è‘·T\ düe÷Vü‰s¡+>± düTŒ¤]düT+Ô ~.
28
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü+U≤´ Á|ü|+ü #·+ (Number World) dü+U≤´ Á|ü|ü+#·eTT, HêeT Á|ü|ü+#·eTT jÓTTø£ÿ kÕ<Ûës¡D dü«s¡÷bÕìï ‘Ó*j·TCÒdTü +Ô ~ ø±e⁄q düsfi¡ y¯ TÓ qÆ ~. dü÷ø£àå yÓTqÆ ~ ≈£L&Ü. Ç~ |ü<,ä s¡÷|üeTT\ qqTdü+<Ûëì+#˚ dü+<Ûëj·Tø£eTT (Link) HêeT dü+ã+<Û+ä ‘√ s¡÷|ü Á|üu<ÒÛ ë\qT Á|üø{£ +Ï ∫ yÓ\&¢ ç #˚jT· &ÉyT˚ dü+U≤´Á|ü|+ü #·|⁄ü Á|üj÷Ó »qeTT. dü+Á>∑V≤ü +>± á dü+K´ nH˚~ Äø£è‹øÏ e´øÏøÔ Ï nq>± HêeTs¡÷|üeTT\ q&ÉTeT qT+≥÷ yêì eT<Û´ä >∑\ C≤‹ eT]j·TT ‘Ó>∑ ˝Ò<ë ø±s¡´ø±s¡D dü+ã+<Ûeä TT\qT ‘Ó*j·TCÒjT· T≥ ≈£î|üø]£ düT+Ô <äì #Ó|Œü e#·TÃqT. yÓ~’ ø£ uÛ≤wü m+‘· s¡V≤ü dü´>∑]“¤‘· eT+fÒ, <ëì˝Àì Á|ü‹|ü± ‘·q<Óq’ kÕ+K´ø£ $\TeqT (Numerical Value) ø£*– ñ+≥T+~. Ç˝≤ Á|ü‹ es¡eí TTq≈£î ‘·q<Óq’ kÕ+K´ø£ $\Te ñHêï, ø=ìï |ü± ñ+{≤sTT. es¡eí TT\≈£î dü+K´\≈£î >∑\ dü+ã+<Ûeä TT dü÷Á‘·eTT\T>± ` ªªø±~qe`{≤~qe j·÷<ä´cº ` bÕ~ |ü+#·μμ nì ìs¡«∫+|üã&çq~. á dü÷Á‘ê\T øπ e\+ kÕ+πø‹ø£eTT˝Ò ø±<äT (Not merely conventional) Bì jÓTTø£ÿ kÕ«uÛ≤$ø£ (natural) eT]j·TT yÓC’ ≤„ìø£ (scientific) ‘·‘«Ô· eTT\ ø±s¡D+>±, Ç$ #ê˝≤ |ü<äeTT\ |üsê´j·T‘·«eTTqT, ns¡údü+ã+~Û $\Te\qT düT\uÛÑeTT>± Á>∑V≤æ +#·&ÜìøÏ düV≤ü ø£]kÕÔsTT. dü+düÿè‘· es¡eí TT\, eT]j·TT yêì dü+K´\ jÓTTø£ÿ >√|ü´yÓTqÆ ÄX¯Ãs¡´»qø£yTÓ qÆ sT÷ dü+ã+<Ûeä TT ø±s¡DeTTqH˚ yÓ~’ ø£ yêvàj·TeTT jÓTTø£ÿ ~e´‘·« Á|üø±X¯eTT düT\uÛeÑ TT>± ìsêú]+#·ã&çq~. ô|q’ #Ó| ü ≈£îqï dü÷Á‘·eTT\qT ã\|üsT¡ dü÷Ô nH˚ø£ yÓ~’ ø£ düMTø£sD ¡ eTT\T (Vedic Equations) >√#·]kÕÔsTT. yÓ~’ ø£ kÕVæ≤‘ê´ìøÏ, dü+U≤´ Á|ü|+ü #·+‘√ >∑\ n$HêuÛ≤e dü+ã+<Ûeä TT (Inseparable · <äd‡ü μì |üsê´j·T|ü<+ä >± ìπs•› +#·&yÉ T˚ ‘Ó*j·TCÒdTü +Ô ~. relation) qT y˚<ëìøÏ ª#Û+ y˚<+ä ˝Àì #Û+· <äd‡ü H˚ |ü<+ä dü+K´ (Number)H˚ ns¡+ú >± ‘Ó*j·TCÒdTü +Ô <äqï $wüjT· + ‘·‘«Ô· E„˝q’… $E„\+<ä]ø° $~‘·yT˚ . y˚<+ä ˝À Á|ü‹eT+Á‘·eTTq≈£î ‘·q<Óq’ dü+U≤´ dü+ã+<Ûyä TÓ qÆ ÁbÕ<ÛëHê´ìï (Numerical Importance) ‘Ó*j·TCÒùd˝≤ <ëìø=ø£ #Û+· <ädTü ‡ ìπs•› +#·ã&çq~. ø±e⁄q y˚<ë+‘· XÊÁdü+Ô ˝À, dü+U≤´ Á|ü|+ü #êìøÏ dü+ã+~Û+∫q s¡V≤ü kÕ´\qT nH˚«wæ+#·&eÉ TH˚~ m+‘√ ÁbÕeTTU≤´ìï dü+‘·]+#·T≈£î+~. ø±e⁄q eTq+ dü+K´\≈£î dü+ã+~Û+∫q ø=ìï kÕ<Ûës¡D $wüj÷· \qT y˚<ëqÔ dæ<ë∆+‘·eTT\‘√ yêìøÏ>\∑ yÓC’ ≤„ìø£yTÓ qÆ düeTq«j·TeTT (General Features of Numbers and how the Doctrines of Vedanta corroborated by the Sciecne of Numbers)
nH˚ $wüj÷· \qT ø=~›>± eTT#·Ã{Ï+#·T≈£î+<ë+.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
29
Ç+‘·≈î£ eTT+<äT |ü]o\q˝À eTq+ sπ U≤>∑D‘Ï · XÊÁdüeÔ TTq≈£î dü+ã+~Û+∫q dü«s¡÷|üeTT\T (figures) n˙ï øπ e\+ eè‘·eÔ TT jÓTTø£ÿ s¡÷bÕ+‘·se¡ TT\T ˝Ò<ë Äs√|ü $πø|å ,ü Á|üøπ |å eü TT\H˚ $wüj÷· ìï $e]+#·T≈£îHêï+. á $<Û+ä >± sπ Fj·T>∑D‘Ï · XÊÁdü+Ô ˝À eè‘·+Ô ‘·q<Óq’ ÁbÕ<Ûëq´eTTqT ø£*–j·TTqï~. dü]>±Z Ç˝≤π> ªzyéTμ nH˚~ |ü<Áä |ü|+ü #·+˝À ‘·q Á|üu≤Û yêìï Á|üø{£ dÏ Tü qÔ ï~. dü+U≤´ Á|ü|+ü #·eTTq+<ä* dü+K´\ìï+{ÏøìÏ eT÷\ø±s¡D (;») uÛ÷Ñ ‘·yTÓ qÆ dü+K´H=ø£ <ëìì <ä]Ù+|ü>*∑ –q#√ eTq ÄX¯jT· eTT HÓsy¡ ]˚ qfÒ!¢ n|ü &ÉT eTq≈£î Á|ü‹ dü+K´ jÓTTø£ÿ nq>± dü+U≤´ Á|ü|+ü #·eTT jÓTTø£ÿ ne>±Vü≤q düeTÁ>∑eTT, düT\uÛÑ‘·s¡eTT ne⁄‘·T+~. Hê´j·Tã<ä∆eTT ( Majestic)eT]j·TT eTôVAqï‘·yTÓ qÆ dü+U≤´Á|ü|+ü #·eTT (Numerical World) n+‘·jT· T ˇø£{Ï qT+&ç ‘=$Tà~ n+¬ø\T eT]j·TT düTqï\ jÓTTø£ÿ ãVüQ$<Ûeä TT˝…q’ dü+jÓ÷>∑ düe÷jÓ÷»q dü«s¡÷|üyT˚ ‘·|Œü y˚sT¡ ø±<äì #Ó| ü ≥≈£î Á|üe÷D≤+‘·se¡ TT\qT #·÷|üqedüse¡ TT ˝Ò∑DÏ‘· XÊÁdüÔeTT˝À >∑Dq≈£î nr‘·eTT>± nq>± ˝…øÏÿ+#·T≥≈£îe\qT |ü&Éì~>± nq+‘·eTT (Infinity - ∝) nqT dü+K´ dü+uÛ≤$+|ü ã&çq~. Bìì y˚<ë+‘·eTT ª|üsμ¡ , ªn|üsμ¡ nH˚ ÁãVü≤àyê#·ø£ |ü∑eTT\˝ÀqT ` ª|üs¡'μ nì |ü⁄+*+>∑eTT˝ÀqT, ª|üsêμ nì Ád”Ô yê#·øe£ TT>∑qT, |üs+¡ nì q|ü⁄+düø£ *+>∑eTT˝ÀqT eTT$«<ÛäeTT\T>± Á|üjÓ÷–+#· ã&ç+~. eT÷&ÉT *+>∑eTT\˝ÀqT Ä|ü<äeTTq≈£î $X‚weü TT˝…q’ nsêú\˝À Á|üj÷Ó >∑+ ø£ì|ædTü +Ô ~. |ü⁄+*vZ ì]›wyºü TÓ qÆ ª|üs'¡ μ nH˚ |ü<+ä Á|ü‹ e´øÏÔ ‘·qqT (y˚TqTqT) ªnVü≤yéTμ (H˚qT)>± e´eVü≤]+#·T ª|ü⁄sT¡ wüßμì ‘Ó*j·TCÒdTü +Ô ~. y˚<ä ãTTwüß\T Bìì Á|üDe+>± ø°]+Ô #˚sT¡ . Ád”*Ô +>∑yê#·øy£ TÓ qÆ ª|üsêμ X¯ãe› TTqT nq+‘·d+ü K´ (Infinity - ∝) qT ‘Ó*j·TCÒdTü +Ô ~. ª|üsy¡ Té μ nH˚ q|ü⁄+düø*£ vZyTé áX¯«s¡X㯠e› TTq≈£î dü+øπ ‘·eTT>± #Ó|Œü ã&çq j·T+Á‘·s÷¡ |üyTÓ qÆ ªeè‘·eÔ TTμ (circle)qT ‘Ó*j·TCÒdTü +Ô ~. n~ |üsê‘·Œs¡yTÓ qÆ ÁãVü≤àeTTqT dü÷∫düT+Ô ~. dü+U≤´‘·àø£yTÓ qÆ (∝Infinity) nq+‘·+ ≈£L&Ü ÁãVü≤àeTTH˚ ìπs• › düT+Ô <äì Á>∑V≤æ +#ê*.
|ü⁄s¡TwüX㯠e› TT :` y˚<+ä ªqy√ qy√ uÛeÑ ‹ C≤j·Te÷q'μ nì Ä$s¡“$¤ +∫q |ü⁄s¡Twüßì ªqe'μ nì qeX¯ã+› #˚‘· ø°]+Ô ∫+~. qe X¯ãe› TT jÓTTø£ÿ q|ü⁄+düø£ *+>∑ yê#·øe£ TT qedü+K´ (9)ì dü÷∫düT+Ô ~. ÁãVü≤àyê∫jÓTÆ q sT÷ qedü+K´ Á|üDyêìøÏ ≈£L&Ü
30
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü+øπ ‘·yT˚ . ª‘·d´ü yê#·ø'£ X¯ã'› Á|üDe'μ nì XÊÁdüeÔ TT. |ü⁄s¡Twüß&ÉT>± Á|üÁ|ü± q_Ûe´ø£yÔ TÓ qÆ ÁãVü≤ày˚T, ªqe'μ nìj·TT, ª|ü⁄s¡Twü'μ nìj·TT, nq+‘·T&Éìj·TT (∝), Á|üDe dü«s¡÷|ü⁄&Éìj·TT, Á|üC≤|ü‹ nìj·TT yÓ~’ ø£ e´eVü‰s¡eTT˝À Á|üd<æ e∆ä TT. n{Ϻ ª|ü⁄s¡Twüß&ÉTμ ‘·qqT ªnVü≤yéTμ nì dü+uÛ≤$+#·Tø=ìHê&ÉT. nVü≤yéT˝À nø±s¡ Vü≤ø±s¡ eTø±s¡eTT\ì eT÷&ÉT es¡eí TT\THêïsTT. eTø±s¡eTTqT _+<äTe⁄>± uÛ≤$ùdÔ n$ eT÷&ÉT ªn,Vü≤,+μ>± <äsÙ¡ q$TkÕÔsTT. eT+Á‘·d+ü U≤´q+ á eT÷&ç+{Ï˙ 1, 8, 0 >± dü÷∫düT+Ô ~. (>∑D‘Ï X· ÊÁdü+Ô 180ì ne´ø£eÔ TT nq+‘·+>± Á|üd]Ôü +#˚ |ü]D≤e÷ìï 1800\T>± dü÷∫+#·&+É ˝Àì s¡V≤ü dü´eTT (Mystery) Ç<˚qì Á>∑V≤æ +#ê*.) ø±e⁄q nVü≤eTq>± 180. á $<Û+ä >± nVü≤eTH˚~ nø±sê~ Vü≤ø±sêqÔ es¡sí ÷¡ |üeTT _+<äTe⁄‘√ ø£*dæ |üPs¡íyÓTÆ ªH˚qTμ I ªnVü≤+μ nì dü«dü«s¡÷|ü+>± uÛÑ>∑yêqTì#˚ dü«j·T+>± d”«ø£]+#·ã&çq<äì ‘ê‘·Œs¡´eTT. á$<Û+ä >± @ø±<ä´cÕºqÔ s¡÷|üyTÓ qÆ , nq>± 1 yÓTT<ä\T 8 es¡≈î£ >∑\ dü+U≤´ Á|ü|+ü #·eTT _+<äTe⁄‘√ ø£*dæ |üPs¡yí TÓ Æ |ü$Á‘·yTÓ qÆ nVü≤+ X¯ãe› TT ` (n ` (1), Vü≤ ` (8)>± s¡÷bı+~q<Ó,’ dü+düÿè‘· es¡dí eü ÷e÷ïj·TeTT (Sanskrit Alphabet) eT]j·TT dü+U≤´XÊÁd”j Ô T· dü+K´\ìï{ÏøìÏ (The Whole Number World) <Ûësêj·T+Á‘· os¡¸eTT (Fountain Head) >± ø£ì|ædTü +Ô ~. á $<Ûeä TT>± nVü≤+ X¯ãe› TT, es¡,í |ü<,ä dü+U≤´‘·àø£+>± ‘·q<Óq’ Á|üd~æ ∆ ˝Òø£ Á|ü‘´˚ ø£‘· ˝Ò<ë >∑T]Ô+|ü⁄ (significance)qT ø£*– j·TTqï~. dü+düÿè‘·u≤Û wü˝À nVü≤+ø±s¡eTH˚ X¯ãe› TTqï~. Á|üDeeTT ˝≤>±H˚ nVü≤+qT @ø£es¡+í ˝Ò<ë @ø±ø£så +¡ >± uÛ≤$ùdÔ nVü≤+ø±s¡eTT`|ü± ø£ì|ædTü +Ô ~. ªz+ ø±s¡μ ªnVü≤+ø±s¡μ dü«s¡÷bÕ\ kÕe÷´ìï˝≤ dü+<ä]Ù+#· e#·TÃqT. z+ø±s¡eTTqT |ü± <ä]ÙùdÔ n`ñ`eT nH˚ es¡dí +ü |ò÷ü ‘·+ ø£ì|ædTü +Ô ~. y˚<ë+‘·XÊÁdüÔeTT z+ø±s¡yê#·T´&Ó’q ÁãVü≤àeTTqT CÒ„j·TeTT (cognizent) nq>± neX¯´eTT >∑T]Ô+|ü <ä–q ˝Ò<ë ‘Ó*dæø=q e\dæq |ü⁄s¡Twüß&ÉT, |üsê‘·Œs¡T&ÉT, Á|üC≤|ü‹øÏ |üsê´j·TeTT\T>± ª‘·d´ü yê#·øX£ Ù¯ ã›' Á|üDe'μ ` nì z+ø±sêìï ìπs•› +∫+~. <ëìì @ø±ø£så +¡ >± uÛ≤$ùdÔ ` ª@ø£yT˚ yê~«rj·T+ ÁãVü≤àμ nì @¬øø’ £ dü+dæ‹ú (existance) ø£\ ÁãVü≤àeTTqT e÷Á‘·yT˚ ìπs•› düT+Ô ~. ªz$T‘˚´ø±ø£så +¡ ÁãVü≤à ‘·‘|Ô˚ <ü +ä dü+Á>∑V≤” D
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
31
Á|üeπøå´ ` z$T‘˚´‘·‘Yμ nH˚ yêø£´eTT © $wüjT· +˝À Á|üe÷D≤\T. zyéTqT |ü<+ä >± uÛ≤$ùdÔ eT+Á‘·d+ü U≤´q+ nGñGeT (1G3G5) nì düe÷Vü‰s¡+>± qe (9) dü+K´qT ìs¡÷|ædTü +Ô ~. @ø±ø£så +¡ >± dü+uÛ≤$ùdÔ eT+Á‘·d+ü U≤´q+ <ëìï nq+‘·+ (Infinity -∝ )>± ìπs•› düT+Ô ~. Ç~ z+ø±s¡ $wüjT· +. Ç<˚$<Û+ä >± nVü≤+ X¯u≤›ìï ≈£L&Ü |ü± <ä]ÙùdÔ <ëì kÕ+K´ø£ $\Te 180R1G8G0R 90 ˝Ò<ë 1G8R 9 ˝Ò<ë 18 esêí‘à· ø£+>± n+fÒ ˇπø ˇø£ nø£så +¡ >± dü+uÛ≤$ùdÔ <ëì kÕ+K´ø£ $\Te 9 e÷Á‘·yT˚ . m˝≤ Á|üu$ÑÛ +∫Hê ‘·T<äø~£ ÁãVü≤àyê#·øy£ T˚ ne⁄‘·+<äH˚ $wüj÷· ìï ` ªqy√ qy√ uÛeÑ ‹ C≤j·Te÷q'μ ª‘·d´ü yê#·ø'£ Á|üDe'μ nH˚ X¯è‹ düàè‹ Á|üe÷DeTT\T ìs¡÷|ækÕÔsTT.
dü+U≤´qeTT jÓTTø£ÿ XÊÁd”j Ô T· Á|ükÕÔse¡ TT (Development of the Numerical Science) : nVü≤+ jÓTTø£ÿ n<äT“¤‘· dü+U≤´q+ 180 nH˚~ mHÓïH√ï >∑D‘ Ï · XÊÁdüeÔ TTq≈£î dü+ã+~Û+∫q eTÚ*ø£eTT˝…q’ ÁbÕ<∏$ä Tø£ ‘·‘«Ô· eTT\ Hê$wüÿ]+∫q<äH˚ $wüj÷· ìï ø=~›>± düà]+#·&eÉ TH˚~ sT÷ dü+<äs“¡ +¤ ˝À nÁ|üdTü ‘Ô y· T˚ MT ø±<äT. ncÕº± ìsêú]+|üã&çq~. Ç~ eTq+ #ê˝≤ es¡≈î£ e´eVü‰s¡+˝À <ä]ÙdüTHÔ êï+ ` Ä <äsÙ¡ Hêìï˝≤ ø=~›>± $X‚w¢ +æ #·T≈£î+<ë+. eTq dü+U≤´q |ü<‹∆ä Numerical Notion Áø£eT+>± ` 1. @ø£ (ˇø£≥T¢) 2. <äX¯ (|ü± <äX>¯ T∑ DÏ‘· Á|ükÕÔse¡ TT#˚ >∑T]Ô+|üã&ç (with Tenfold Multiplicative significance) ˇø£{Ï ‘·sT¡ yê‘· 17 düTqï\T ø£\~>± ìπs•› +|üã&çq~. Ç+‘·{‘Ï √ á ìπsX› e¯ TT Ä>∑˝<Ò Tä . |üs¡ (nq+‘·eTT`∝)qT eTs¡\T ˇø£{Ï ‘·sT¡ yê‘· eTT|üŒ{ÏjTÆÓ <äT düTqï\T ø£\~>± #Ó|Œæ <ëìì eTs¡\ @ø±~ ncÕºqÔ 1 qT+&ç 8 es¡≈î£ >∑\ n+¬ø\ Á|ükÕÔs¡ X¯SHê´e~Û>± dü+Á>∑Væ≤+∫ <ëìì |üsês¡úeTì nq>± |üs¡dü+K´˝À (∝) ˝À Ç+#·T$T+#·T>± dü>u∑ ≤Û >∑yT˚ (Hemisphere of the Circle) nì áX¯«sê+X¯˝À
32
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
nsêú+X¯eTT>± ~v±àÁ‘· ìπsX› e¯ TT #˚jT· ã&çq~. á $<Û+ä >±H˚ \+ãø√D $T‹ 90 yÓTT<ä\>∑T ÁbÕ<∏$ä Tø£ ‘·‘«Ô· eTT\qT dü÷øπ àå øÏøå ‘£ √ <ä]Ù+|üe#·TÃqT.
dü+U≤´Á|ü|ü+#ê$sꓤeeTT (Evolution of the Numerical World) : dü+U≤´ Á|ü|ü+#·eTTq≈£î eT÷\eTT ÁãVü≤ày˚T ! ÁãVü≤àeTT ˝Ò<ë áX¯«s¡TìøÏ ÁbÕ‹ì<∏ä´eTTqT eVæ≤düTÔqï qe dü+K´ (9) qT+&çj˚T nìïj·T+¬ø\T dü+K´\T Ä$s¡“$¤ +∫Hêj·Tqï $wüj÷· ìï ÁX¯ó‹ Á|ü‹bÕ~‘· düsD ¡ ˝Ï À <ä]Ù+#˚ Á|üjT· ‘êïìï Á|üdTü ‘Ô +· ÁbÕs¡+_ÛdTü HÔ êï+. ÁãVü≤àeTT áX¯«s¡Tì>± n_Ûe´ø£yÔ TÓ Æ ` ªªk˛´ø±eTj·T‘·' ãVüQVü≤kÕ´$T‹μμ H˚qT ãVüQs¡÷|üeTT\T>± Á|üdüÔ]+∫ n_Ûe´ø£eTT ø±yê\ì dü+ø£*Œ+∫+~. ÁãVü≤àyê#·øy£ TÓ qÆ dü+K´ (9) >± #Ó| ü ≈£îHêï+. 1 qT+&ç 9 es¡≈î£ >∑\ n+¬ø\qT 9 #˚ >∑TDÏùdÔ (á Á|üÁøÏjT· qT ãVüAø£sD ¡ eT+{≤s¡T,) Á|üDeeTT 9 eT]j·TT nVü≤yéT (ÁãVü≤àeTT) 18 düsD ¡ ˝Ï À 8 »‘·\ dü+K´ ˝ÒsŒ¡ &ÉT‘êsTT. yêì qT+&ç eTs¡\ eTÚ*ø£eTT˝…q’ 8 n+¬ø\T ( 2 qT+&ç 9 ) dæ~k∆ ÕÔsTT. ø±>± Á|ü‹dü+K´j·TT ‘·qô|’ uÛ>Ñ e∑ Á<ä÷|üyTÓ qÆ qe‘·«eTT (9‘·Hêìï) Äs√|æ+#·T≈£îì ‘·q<Óq’ ndæ‘Ô ê«ìï Á|üø£{Ï+#·T≈£î+≥Tqï<äì ‘ê‹Ô«ø£yÓTÆq s¡Vü≤dü´+. Bìì˝≤ ñ<ëVü≤s¡D Á|ü<äs¡Ùq |ü⁄s¡d‡ü s¡+>± ìs¡÷|æ+#·e#·TÃqT. ñ<ëVü≤s¡D≈£î s¬ +&ÉH˚ n+¬øqT rdæ≈î£ +<ë+. s¬ +&ÉT (2)qT s¬ +&ÉT ˇø£≥T¢>± $X‚w¢ ùæ dÔ 2 R 11 R 9G2. ø±>± s¬ +&ÉT yÓqTø£ qTqï ‘·‘«Ô· dü+K´ 9 nì #Ó|Œü H=|ü qT. Ç˝≤H˚ 3qT $X‚w¢ ùæ dÔ 3 R 1,2 R 12, R 9G3. Çø£ÿ&É ≈£L&Ü eT÷&ÉT≈£î yÓqTø£ 9 ø£ì|ædTü +Ô ~. n<˚ $<Û+ä >± 4R1,3 R 13 R 9G4. Ç<˚ dü÷Á‘·dsü D ¡ ìÏ nìï Á|ü<ëÛ Hê+ø£eTT\≈£î e]Ô+|üCdÒ æ <ä]Ù+#·e#·ÃqT. Ç~ 1 $wüjT· +˝À ≈£L&Ü Ç˝≤ ìs¡÷|æ+#·ã&ç+~. 1R1,0 R 10 R 9G1 ø±>± 1 yÓqTø£ ≈£L&Ü qe (ÁãVü≤à) ‘·‘«Ô· e÷<Ûës¡ dü+Ô uÛeÑ TT>± ì\∫ j·TTqï<äì uÛ≤e+. á $<Û+ä >± dü+U≤´Á|ü|+ü #êìï qedü+K´ n+‘·sê´$T>± q&ç|dæ Tü qÔ ï~. Bìì JeÁ|ü|+ü #êìøÏ düeTq«j·T+ #˚dæ uÛ>Ñ y∑ êqT&ÉT »>∑± ^‘êdüàè‹˝À #Ó|Œæ q `
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
33
ªªáX¯«s¡' düs«¡ uÛ÷Ñ ‘êHê+ Vü≤è<˚X› s‚ T¡ q® ‹wü‹˜ ÁuÛ≤eTj·THé düs«¡ uÛ÷Ñ ‘êì j·T+Á‘ês¡÷&ÛÜì e÷j·Tj·÷ˆˆμμ nH˚ XÀ¢ø£ MT dü+<äs“¡ +¤ ˝À ô|’ dæ<ë∆+‘êìøÏ yê´U≤´ÁbÕj·T+>± eTq+ dü+uÛ≤$+#·e#·TÃqT.
düTqï (Zero) : Bìì X¯SHê´+ø£eTT (cipher) nì XÊÁd”j Ô T· +>± e´eVü≤]kÕÔsT¡ . Bì dü«uÛ≤e+ s¬ +&ÉT $<Ûë\T>± $X‚w¢ +æ |üã&ç+~. Ç~ X¯Sq´eTT nq>± ‘·q<Óq’ ndæÔ‘·«yÓT+‘· e÷Á‘·eTT ˝Òì~ (Absolute Nothing) nì yÓTT<ä{Ï uÛ≤eq. ˝…ø£ÿø£+<äq≥Te+{Ï dü÷ø£åà‘·eTyÓTÆq, ø±e⁄qH˚ ñù|øÏå+|üü<ä–q (Negligible) |ü]e÷D$\Te (Value of quantity) ø£\~ nì s¬ +&Ée uÛ≤eq. (ñ|üìwü‘T· Ô ‘·‘«Ô· eTTqT ∫Á‘·+>± Á|ü‹bÕ~düT+Ô ~. ñ<ëVü≤s¡D≈£î ÁãVü≤àeTTqT e]íd÷ü Ô eTT+<äT˝ÒÏ ± $X‚w¢ ùæ dÔ ` eTT+<äT ˝Ò<+ä fÒ yÓqTø£qTqï<äH˚ ns¡+ú dæ~d∆ Tü +Ô ~. Ç˝≤ uÛ≤$dü÷bÔ ˛‘˚ n+‘·{≤ ì+&ç ì_&ûøè£ ‘·yTÓ Æ j·TTqï <äH˚ ns¡+ú dæ~d∆ Tü +Ô ~.) á ñ|üìwü‘·Œ]uÛ≤wü˝À yÓTT<ä{Ï uÛ≤eqø£qT>∑TD+>± X¯Sq´eTTq ø£dü\T $\Te˝Ò<äT (Absolute Nothing) nq>± <ëì $\Te ˝…øÿ£ ≈£î $T≈£îÿ≥eTT, nq+‘·eTT (∝) nì uÛ≤eeTT. á $wüjT· eTTqT a/o = ∝. kÕe÷q´ |ü]uÛ≤wü˝À ≈£L&Ü (o/a=1). nq>± X¯SHê´+ø£eTì ≈£L&Ü (a $\Te düTqï) nì ìs¡«∫+|ü e#·TÃqT. ñù|øÏ+å |ü<–ä q n‘·´+‘· dü÷ø£àå ‘·eTyÓTqÆ $\Te ø£\<äqï s¬ +&Ée |üø+å£ ˝À XÊÁdü+Ô ªªnD√s¡DT‘·se¡ TT‘·ÿèwüyº Té μμ dü÷ø£àå ‘·«eTTqT |ü]>∑Dq˝À rdæ≈î£ +fÒ dü÷ø£àå ‘·eTeTT nq>± <ëìø£qï ∫qï$\Te ˝Òøb£ ˛e⁄≥j˚T <ëì ñ‘·ÿèwü‘º .· n~«rj·TyÓTqÆ eTVü≤‘·«eTT ˝Ò<ë >=|üŒ‘·qeTì áX¯«s¡|sü +¡ >± yê´U≤´ì+#· e#·TÃqT. Ç+ø± á uÛ≤eq\T s¬ +&É÷ n$<ë´|üs+¡ >± ≈£L&Ü yê´U≤´ì+|ü ã&çHêsTT. n$<ä´ nH˚~ $T<∏ë´C≤„qy˚T (Absolute nothig). |üse¡ ÷s¡ú C≤„qeTT <äècÕº´ ndü\T eTVü≤‘·«y˚T ˝Òì $T<∏ë´C≤„qeTT ø±e⁄q n~ ñù|øÏ+å |ü<–ä q~ Negligible nì nÁ|üe÷D+>± dæ<ë∆+rø£]+#· ã&çq~.
34
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
#·øÿ£ ì düeTq«j·TeTT (Nice Harmony) : eTq$T+‘·es¡≈î£ sπ U≤, |ü<,ä ;», dü+U≤´ Á|ü|+ü #·eTT\≈£î y˚<ë+‘·XÊÁdüÔ eT÷\ø£‘ê«ìï yÓC’ ≤„ìø£+>± $X‚w¢ +æ ∫ (By Syntific Analysis) $y˚∫+#·T≈£îHêï+. nìï{Ïø° y˚<ë+‘·XÊÁdüÔ eT÷\ø£‘·«eTT dæ<ë∆+‘·|sü e¡ TT>± ìs¡÷|æ+#·ã&çq+<äTq n$ |üsd¡ Œü s¡ _Ûqïdü«uÛ≤eeTT\T ø±eìj·TT, ˇπø \ø£´å kÕ<Ûqä ≈£î ìπs•› +#·ã&çq _Ûqï_Ûqï e÷s¡eZ TT\ìj·TT Á>∑V≤æ +#ê*. yêì eT<Û´ä >∑\ #·øÿ£ ì düeTq«j·TeTT |ü{øºÏ >£ ± <ä]Ù<ë›+. Áø£.dü+. 1. 2. 3. 4. 5. 6. 7. 8. 9.
sπ U≤Á|ü|+ü #·eTT eè‘·eÔ TT, düeT‘·\+ eè‘·Ô πø+Á<äeTT( . ) _+<äTe⁄ ( . ) düsfi¡ sπ¯ K düe÷+‘·sd¡ sü fi¡ sπ¯ K\T ø√DeTT düeTu≤VüQ Á‹uÛTÑ »eTT düeT#·‘T· s¡ÁdüeTT \+ã#·‘·Ts¡ÁdüeTT(Rhombus)
10. Bs¡eÈ è‘·eÔ TT (Ellipse) 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. X¯+≈£îe⁄(cone) 21. |ü]~Û
dü+U≤´Á|ü|+ü #·eTT nq+‘·eTT (∝) ‘=$Tà~ (9) X¯Sq´eTT, düTqï (0) ˇø£{Ï (1) s¬ +&ÉT (2) eT÷&ÉT (3)
|ü<Áä |ü|+ü #·eTT |üse¡ TT`ÁãVü≤à n|üs`¡ áX¯«s¡ n$<ë´X¯øÔÏ >∑TD
;»Á|ü|+ü #·eTT z+, dü+eè‘· nø±s¡eTT z+, $eè‘· nø±s¡eTT _+<äTe⁄ (0)
>∑TD
dü`‘·`s¡
‘=$Tà~ (9) |üHÓï+&ÉT (12) |üHïÓ +&ÉT (12)
Á|üøè£ ‹ e÷j·T n$<ä´
ÁV”≤+ ÁV”≤+ ÁV”≤+
mì$T~ (8) ˇø£{Ï (1) s¬ +&ÉT (2) eT÷&ÉT (3) Hê\T>∑T (4) ◊<äT 5) Äs¡T (6) @&ÉT (7) mì$T~ (8) ‘=$Tà~ (9) nq+‘·eTT (∝) nq+‘·eTT (∝)
uÛ÷Ñ ‘·`ø√X¯eTT Äø±X¯eTT yêj·TTe⁄ n–ï Ä|üdTü ‡\T (»\eTT) |üè~∏« zwü
Vü≤ j·T s¡ e \
nVü≤yéT zyéT
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
35
düMTø£sD¡ eTT\T (Equations) : 1. zyéT nqTq~ ` 9, 12,18,19 \qT dü÷∫düT+Ô ~. 2. j·T+Á‘· ` #·Áø£ ` ‘ês¡ø£ ` |ü⁄s¡Twü ` •e ` Ä~ ` »|ü ` nVü≤yéT ` >∑s“¡ ¤ Äq+<ä ` X¯Øs¡ ` s¡dü ` >∑‹ ` |ü<ä ` n» ` uÛ÷Ñ e÷ ` ø£sÔ¡ ` áùwº ` j·T»„ ` |ü⁄]X¯jT· ` ‘·TØj·T ` Çe˙ï qedü+K´ (9)qT dü÷∫kÕÔsTT. 3. ÁãVü≤à ` Á|üC≤|ü‹ ` $X¯«yéT ` düs«¡ yéT ` <äV≤ü s¡ ` dü«|æ‹ Ç$ 18ì dü÷∫kÕÔsTT. 4. ∫‘Y, ‘·‘Y ` Je ` <˚e ` Ä‘·à ` 12qT dü÷∫kÕÔsTT. |ü<,ä ;» dü+K´\ |üsd¡ Œü s¡ dü+ã+<Ûë˙ï ÁøÏ+~ $<Û+ä >± <ä]Ù+#· e#·TÃqT. es¡Tdüd+ü K´ |ü±j·TÁ‹ 9`24 2. sêe÷j·TD+ wü&øÉ ]å£ `>±j·TÁ‹ 6 (ø±+&É\T) ` 24000 (XÀ¢ø±\T) 3. uÛ≤s¡‘+· nVü≤yéT`|üsy¡ Té 18 (|üs«¡ eTT\T) ` 1,25000 ( XÀ¢ø±\T) 4. uÛ≤>∑e‘·+ <ë«<äXÊø£å]`nVü≤yéT 12 düÿ+<Ûë\T 18000 XÀ¢ø±\T 5. ^‘· nVü≤yéT dübÕÔø]å£ 18 n<Ûë´j·÷\T 700 XÀ¢ø±\T ñ|üdü+Vü‰s¡eTT (Conclusion) : πsU≤, |ü<ä, ;», dü+U≤´ Á|ü|ü+#·eTT\qT <ä>sZ∑ >¡ ± |ü]o*+∫q#√ neìïj·TT ì‘·´eTT XÊX¯«‘·eTT |üse¡ TT |üPs¡eí TT ÁãVü≤àeTT>± ø°]+Ô #·ã&ÉT#·Tqï ˇπø jÓTTø£ eT÷\ ø±s¡DeTT qT+&ç Áø£eTeTT>± eè‘·eÔ TT, dü+eè‘· nø±s¡eTT, Á|üDeeTT, nq+‘·eTT (∝)\T>± Ä$s¡“$¤ +∫qeì ‘Ó*j·TTqT. eT]j·TT düeT‘·\eTTô|’ qTqï Á|ür sπ Fj·÷ø£è‹, <Ûqä , ãTTD≤‘·àø£ $\Te\‘√ Á‹|üŒã&çq|ü⁄&ÉT Äø£è‹˝À Ä~Ûø´£ q÷´q‘·« s¡÷|üeTT\qT bı+<äT‘·T+~. Á|ü‹ dü+K´ düe÷Vü‰s¡, ãVüAø£s¡D, $uÛ≤^ø£s¡D\ eT÷\+>± q÷´Hê~Ûø£´‘·\qT dü+‘·]+#·T≈£î+≥T+~. _+<äTe⁄ jÓTTø£ÿ #·se¡ T $düèÔ ‘· |ü]~Û eè‘·eÔ TT. _+<äTe⁄ jÓTTø£ÿ #·se¡ T $düèÔ ‹ Final Ô TT ˝Ò<ë nq+‘·eTì uÛ≤$ùd,Ô eè‘·eÔ TT jÓTTø£ÿ dü÷ø£àå dü+eè‹ Final evolution eè‘·e involution _+<äTe⁄ ˝Ò<ë <ëìjÓTTø£ÿ dü÷ø£àå |ü]~Û nì #Ó|Œü e#·TÃqT. y˚<ë+‘·
36
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
|üs+¡ >± dü+uÛ≤$ùdÔ ø±s¡D ÁãVü≤àeTTqT |üPs¡eí TT nq+‘·eTT nsTTqfÒ¢ ø±s¡´s¡÷|üyTÓ qÆ »>∑‘T· ≈Ô L£ &Ü |üPs¡eí TT nq+‘·eTT\#˚‘H· ˚ ìπs•› +|ü ã&ÉT#·Tqï~. ø±>± ø±s¡D (ÁãVü≤à) y˚T ø±s¡´ (ÁãVü≤à)yÓTqÆ »>∑Á<ä÷|üeTTq Hê$s¡“$¤ +∫q<äì kÕsê+X¯eTT. The objective Poornam is the effect of Subjective Poornam. ø±s¡D ÁãVü≤àeTTqT Micro Cosm (Je⁄&ÉT) >±qT ø±s¡´ÁãVü≤àeTTqT »>∑‘·TÔqT Macro Cosm >±qT e´eVü≤]+#·T≈£î+fÒ n$ s¬ +&É÷ ˇπø |üPs¡í ÁãVü≤àeTT jÓTTø£ÿ |üPs¡‘í «· Á|ü‹bÕ<äøe£ TT˝Òqì ‘Ó\TdüT+Ô ~. »>∑‘T· Ô Je⁄&ÉT, ÁãVü‰àD¶ |æD≤¶De¶ TT\T Macro Cosm & Micro ¬ +&É÷ ì‘·´eTT dü‘´· eTTHÓq’ |üPs¡‘í «· eTTqT kÕ~Û+∫q≥¢sTTq n$ s¬ +&É÷ Cosm s |üPs¡eí TT‘√ ø£*dæ @ø£yTÓ bÆ ˛‘êsTT. ˝Ò<ë |üPs¡eí TT˝À \sTTkÕÔjT· ì uÛ≤e+. eTs¡Tø£Då y˚T |üPs¡yí TÓ Tø£ÿ{Ï>±H˚ uÛ≤dædTü +Ô ~. á $wüj÷· ìï X¯è‹ e÷‘· |üse¡ T |ü$Á‘·yTÓ qÆ XÊ+‘· eT+Á‘·+>± ` |üPs¡eí T<ä' |üPs¡$í T<ä+ |üPsêí‘÷· Œs¡í eTT<ä#´· ‘˚ |üPs¡dí ´ü |üPs¡eí ÷<ëj·T |üPs¡yí T˚ yêe•wü´‘˚ ˆˆ nì m\T¬>‹Ô #ê{Ï+~. Je⁄&ÉT »>∑‘T· Ô |æD≤¶D¶ ÁãVü‰àD¶eTT\T s¬ +&ÉT |üPs¡+í ˝À \sTT+∫ |üPs¡eí TT>± |ü]D$TùdÔ Ä nqTuÛÑeeTT |üPsêíqTuÛÑeeTT. Ä j·÷q+<äeTT XÊX¯«‘·yÓTÆq ÁãVü‰àq+<ëqTuÛeÑ eTT. á #·se¡ T |ò˝ü ≤ìï X¯è‹ ` ªªÁãVü≤à$Å<“ä ôV≤’ àeuÛeÑ ‹μμ ÁãVü≤ày˚‘Ô· ÁãVü≤ày˚T nsTTb˛‘ê&ÉT ~e´yÓTqÆ XÊX¯«‘êqTuÛ÷Ñ ‹ì ìs¡‹X¯j÷· q+<ëqTuÛeÑ s¡÷|ü+˝À nqTuÛ$Ñ +∫ ªÄq˙›ueÑÛ ‹μ Äq+<äd«ü s¡÷|üyT˚ nsTTb˛‘ê&Éì |ò\ü X¯è‹>± ñ|ü<•˚ düT+Ô ~. ø±e⁄q |üPs¡Mí Te÷+kÕ $#ês¡D düsT¡ «\≈£î düs«¡ <ë ñbÕ<˚jT· yÓTqÆ <äì |æ+&ç‘ês¡eú TT. n+<äT\πø á |üPs¡Mí Te÷+kÕ yê´U≤´q $X‚w¢ Dü MT $<Ûeä TT>± ÁbÕs¡+_Û+#· ã&çq~. ª Vü≤]' z+ ‘·‘·‡‘Y ` X¯óuÛÑ+ uÛÑ÷j·÷‘Y.μ
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
37
4.|üPs¡íMTe÷+kÕ<äs¡ÙqyéT düeè‹Ôøy£ Té (ø£˝≤´DlbÕ<äTø±) yê´U≤´düyT˚ ‘·eTT eT÷\+ XÀ¢ˆˆ
ªj·Tdæàì«es¡+Ô |ü<;ä »dü+U≤´ sπ U≤eTj·T+ $X¯«eTq+‘· uÛ<Ò +ä ˆ ‘·Á<ä“Vü≤à |üPD9+ |üse¡ T~«rj·T+ $C≤„qe÷q+<ä |òTü q+ qe÷$Tμ ˆˆ ÇVü≤K\T dü∫Ã<ëq+<ë<ä«j·÷|üs√ø£¸C≤„q X¯SHê´HêeT $<ë´ |ü]ø£*Œ‘ê H˚ø±q<Ûä9 dü+≈£î\ dü+kÕs¡yê<ÛÍ9 ã+ÁuÛeÑ T´e÷D≤Hê+ y˚<$ä s¡T<ë∆_˝Û ≤wü ø£\Twæ‘ê+‘·' ø£sD¡ ≤Hê+ »HêHêeTT~›BÛs¡¸j·÷ düø£\y˚<ë+‘· kÕeTs¡dü´ Á|ü‹bÕ<äHêj·T Á|üeè‘·dÔ ´ü uÛ≤e $eTXÊ9‘·àø£d´ü |üPD9 MTe÷+kÕ<äXH¯ é qùd´ <äe÷~eT+ dü÷Á‘·+ ` lbÕ<äTø±yê´K´ : ªÁ>∑+<∏ë<˚ eTvZfi¯ eTeX¯´+ ø£s¡Ôe´yéTμ ` nqT XÊÁdüeÔ #·qeTT qqTdü]+∫ »>∑∑+<∏ës¡+uÛÑ XÀ¢ø+£ ˝À ‘·eT <äsÙ¡ q Á|ü‹bÕ<ä´yÓTqÆ ÁãVü≤àeTTH˚ qeTÁdæÿj·÷, edüTìÔ sπ X› ¯ |üse¡ TT>± Á|üdTü ‹Ô +#·T #·THêïs¡T. nq«j·TeTT : j·TdæàHé nq+‘·u<ÒÛ +ä |ü<;ä » dü+U≤´πsU≤eTj·T+ $X¯«+ $es¡+Ô ‘·‘Y |üPs¡+í , |üs+¡ , n~«rj·T+, $C≤„q+, Äq+<ä|Tüò q+ ÁãVü≤àqe÷$T. Á|ü‹|ü<ës¡eú TT : j·TdæàHé ` <˚ìj·T+<äT— nq+‘·u<ÒÛ +ä ` nbÕs¡yTÓ qÆ uÛ<Ò Áä |ü‹|ü‹>Ô \∑ — |ü<ä;» dü+U≤´πsU≤ eTj·T+ ` |ü<ä, ;»dü+U≤´ πsU≤‘·àø£yÓTÆq— $X¯«+ ` Á|ü|+ü #·eT+‘·jT· T, $es¡+Ô ` Ä<Ûës¡u÷ÑÛ ‘·yTÓ qÆ n<˚ edüTeÔ ⁄ jÓTTø£ÿ s¡÷bÕ+‘·se¡ TT>± qTqï<√— ‘·‘Y ` Ä$<Ûeä TT>± HêÁX¯jT· uÛ÷Ñ ‘·yTÓ qÆ ~j·TT— |üPs¡+í ` dü+|üPs¡yí TÓ qÆ ~j·TT (‘·q≈£î ‘êqT>± |ü]|üPs¡yí TÓ qÆ edüTeÔ ⁄ ‘·q˝À @ edüTeÔ ⁄HÓq’ qT ©qeTT #˚døæ =qTqT)— |üs+¡ ` ìd”‡eTyÓTqÆ ~j·TT (nq>± q+‘·≈î£ qT <äèX¯´edüTCÔ ≤‘·eTT Äe\qT+&ÉTq~j·TT) n~«rj·T+ ` ‘êqT ‘·|Œü y˚s=ø£{Ï ˝Òì~j·TT, (nq>± düs«¡ eTT ‘êH˚jTÆÓ q~j·TT)— $C≤„q+ ` XÊÁdüuÔ À<Ûqä #˚ ‘Ó*dæø=q<ä–q~j·TT (düs«¡ XÊÁkÕÔ>e∑ T y˚<´ä yÓTqÆ ~j·TT ˝Ò<ë y˚± dü+uÛ≤$+∫ n+»* |òTü {Ï+#·T #·THêïqT.
38
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
yê´K´ : yê≈£îÿ\≈£î }Vü≤\≈£î n+<äì $wüjT· eTTqT uÀ~Û+#·&ÜìøÏ ˝Ò<ë <ä]Ù+|ü #˚jT· T≥≈£î XÊÁdüeÔ TT ø=ìï |ü<‘∆ä T· \qT ªf…ø±ï\JdtμqT nqTdü]düT+Ô ~. XÊU≤#·+Á<ä Hê´j·TeT≥Te+{Ï uÀ<ÛHä ê |ü<‘∆ä T· \˝À H=ø£{.Ï #·+Á<äTì dü«s¡÷|ü, dü«uÛ≤eeTT\qT #Ó|Œæ Á|ü‘´· ø£eå TT>± ãT~∆˝À <ä]Ù+|ü #˚jT· T≥ kÕ<Û´ä eTTø±<äT ø±e⁄q ‘êH=ø£ Á|ü± Ä düeTj·T+˝À ø£ì|ædTü qÔ ï #·+Á<äTì ‘êqT #·÷∫, yÓqTyÓ+≥H˚ Ä XÊKô|q’ ˝Ò<ë <äèX¯´e÷qeTT˝…q’ Ä eèø£Xå ÊK\ q&ÉTeT Á|üø±•+#·T#·Tqï es¡T˝Ô ≤ø£è‹˝À qTqï edüTyÔ ˚ #·+Á<ä_+ãeTì õC≤„dTü yÓq’ •wüß´q≈£î #·÷|ü⁄≥ XÊU≤#·+Á<äHê´j·T eTqã&ÉT‘·T+~. n<˚$<Û+ä >± Á|üdTü ‘Ô · |üPs¡Mí Te÷+kÕ <äsÙ¡ q Á|ü‹bÕ<ä´yÓTqÆ ÁãVü≤àeTT jÓTTø£ÿ dü«s¡÷|ü dü«uÛ≤eeTT\qT, düs«¡ »„ X‚Ks¡T\T, |üse¡ T>∑Ts¡Te⁄\THÓq’ »>∑∑+<∏ës¡+uÛÑ XÀ¢øe£ TT˝À, XÊU≤ #·+Á<ä Hê´j·TeTT qqTdü]+∫ <ä]Ù+|ü #˚dTü HÔ êïs¡T. ª‘·Å<“ä Vü≤àqe÷$Tμ ` Ä ÁãVü≤àeTTqT qeTdüÿ]+#·T #·THêïqT. nH˚~ Á|ü<ëÛ q yêø£´eTT. qe÷$T nH˚~ qeTÅdÿæ j·T q_Ûe´ø£eÔ TT #˚ùd ñ‘·eÔ T |ü⁄s¡Tôwø’ £ e#·qeTT>± Á|üjT· Tø£yÔ TÓ qÆ |ü± ˙e⁄ n~Û≈î£ &Ée⁄ H˚qT n\TŒ&ÉqT nH˚ uÛ≤eqqT ‘Ó*j·TCÒùd n+»© dü+|ü⁄{° ø£sD¡ s¡÷|üyTÓ qÆ ˇø±H=ø£ eTTÁ<ë Á|ü± >∑Ts¡TeT÷]Ô ÁãVü≤ày˚T õC≤„dTü e⁄\+<äs≈¡ î£ @¬øø’ £ ñbÕ<˚jT· eTì ‘·‘‡· «s¡÷|ü \ø£Då ìπsX› e¯ TTqT #˚jT· T#·THêïs¡ì ‘ê‘·Œs¡´eTTqT Á>∑V≤æ +#ê*. ‘·‘Y ` Ä ÁãVü≤àeTTqT nì ‘·‘Œ· <ä ìπsX› e¯ TT XÊU≤#·+Á<äTì e˝… ø£qã&ÉT#·Tqï, nq>± nqTuÛeÑ >√#·sy¡ TÓ qÆ n_Ûe´øÏj Ô TÆÓ ÁãVü≤àeTì ‘Ó*j·TCÒjT· T #·Tqï≥T¢ Á>∑V≤æ +#ê*. Á>∑+<∏ës¡+uÛÑ XÀ¢øe£ TT Äos¡ïeTÅdÿæ j·÷ edüTìÔ sπ X› Êq´‘·sy¡ TÓ Æ j·TT+&Ü\ì dü+Á|ü<ëj·T+. á XÀ¢øe£ TT ª‘·Å<“ä Vü≤àqe÷$Tμ nì qeTÅdÿæ j·÷ s¡÷|ü+>± ø£ì|ædüTÔHêï, Bì˝À Á|ü‹bÕ<ä´ edüTÔ ìπs›X¯+ ≈£L&Ü düŒwüº+>± ‘Ó\¢eTT #˚kÕÔs¡T l ø£˝≤´DbÕ<äT\T.. n+<äT˝À ñ|üìwü± >√#·]düT+Ô ~. ªdü∑ Äd”‘Y ` ndü∑Äd”‘μY ` nì X¯è‹ »>∑‘êÿs¡D uÛ÷Ñ ‘·yTÓ qÆ ÁãVü≤àeTTqT
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
39
dü± dü+uÛeÑ y˚T q+≥T+~ XÊÁdüeÔ TT. m˝≤>∑+fÒ ` ñqï~ nq_Ûe´ø£Ô dæ‹ú ˝Àqì Á>∑V≤æ +#ê\+≥T+~. m˝≤>∑T+fÒH+˚ ! n_Ûe´ø£yÔ TÓ qÆ ÁãVü≤àeTT ‘·q˝À ` ãVüQs¡÷|ü‘q· T bı+<ë\ì dü+ø£*Œ+∫+~. HêHê$<Ûä HêeTs¡÷bÕ\‘√ $XÊ\ $X¯«+>± Á|üd]Ôü +∫ n+<äT˝À nqTeDTe⁄˝À ì+&ç ì_&ûøè£ ‘·yTÓ Æ ì\∫b˛sTT+~. nq>± ÁãVü≤àeTT »>∑Á<ä÷|üeTT>± |ü]D$T+∫q<äì uÛ≤eeTT. |ü]D$T+∫q<äì #Ó|Œü &És #˚‘· ø±s¡DyÓTqÆ ÁãVü≤àeTTq≈£î ø±s¡´‘·«eTT q+^ø£]+#· e\dæ edüT+Ô ~. n˝≤+≥|ü &ÉT n‘·´+‘· dü÷ø£àå s¡÷|ü+˝À nq_Ûe´ø£Ô dæ‹ú ˝À qTqï ÁãVü≤à, ø±s¡D ÁãVü≤àeTì˙ï C>∑Á<ä÷|ü+>± uÛ≤dæ+#˚ ÁãVü≤àeTT ø±s¡´ÁãVü≤àeTì˙ï e´|ü± ø±s¡D edüTeÔ ⁄ ø±s¡´s¡÷|ü+>± |ü]D$T+#·&+É $es¡qÔ eT+{≤s¡T. ÁãVü≤àeTT jÓTTø£ÿ $es¡yÔ T˚ »>∑‘T· Ô ˝Ò<ë Á|ü|+ü #·eTH˚ e÷≥øÏ˝≤ ns¡eú TTqT dü+uÛ≤$+#ê*. düsπ ` á $es¡+Ô |ü<;ä » dü+U≤´ sπ U≤‘·àø£+ >± Hê\T>∑T Á|ü|+ü #·eTT\T>± ÁãVü≤àeTTq+<äT uÛ≤dædTü +Ô ~. Ç˝≤+{Ï Á|ü|+ü #· Á|üu<ÒÛ ë\ HÓìï+{ÏHH’Ó ê ÁãVü≤àeTT˝À \sTTkÕÔsTT. n+<äTøπ n~ nq+‘·eTT, |üse¡ TT, |üPs¡eí TT, n~«rj·TeTT nì #Ó|Œü ã&ç+~. kÕ+Á<ëq+<ä dü«s¡÷|üyTÓ qÆ <ëìì, @e+ $<Ûyä TÓ qÆ W‘·ÿèwü´º eTTqT dü+uÛ≤$dü÷Ô n+»* |òTü {ÏdTü HÔ êïqì ‘ê‘·Œsê´s¡+ú . `` »>∑<äTZs¡Te⁄\T ˝Àø£ø£˝≤´DeTTq¬ø’ |üPs¡íMTe÷+kÕ <äs¡ÙqeTTqT ÁbÕs¡_Û+|ü uÀe⁄#·THêïs¡eTì dü÷Á‘ês¡+uÛÑ uÛ≤wü´eTTqT Á|ü‹bÕ~+#·T #·THêïs¡T. á Á>∑+<∏ä yÓTe]ø√dü+ m+<äT≈£î Áyêj·Tã&ÉT#·Tqï<äH˚ $wüj÷· ìï yês¡T ` Á|üdTü ‘Ô e· TT dü∫Ã<ëq+<ä dü«s¡÷|üyÓTÆq n<ä«j·T |üs¡ÁãVü≤àeTT jÓTTø£ÿ n|üs√ø£å C≤„qeTTqT ˝ÒXe¯ ÷Á‘·eTT>±HÓq’ T jÓTiT>∑ìyê¬s,’ nHê~>± dü+ÁbÕ|æ+Ô ∫q n$<ä´#˚ |ü]ø£*Œ+|üã&çq, nH˚ø±H˚øe£ TT˝…q’ nqs¡eú TT\#˚ ø£˝À¢*‘·yTÓ qÆ dü+kÕs¡ düeTTÁ<äeTT˝À |ü&ç ø=≥Tº$T{≤º&TÉ #·T, y˚<$ä s¡T<äe∆ TT˝…q’ n<Ûsä à¡ j·TT‘·eTT˝…q’ ø√]ø£\#˚ eT*qyÓTqÆ n+‘·'ø£sD¡ Á|üeè‹Ôø\£ , Bq »qT\qT ø£sT¡ D‘√ qT<ä]∆ +|ü>√], düø\£ y˚<ë+‘· kÕeTs¡kÕ´s¡ú Á|ü‹bÕ<äqeTTq¬ø’ j·TT<ä´$T+∫, uÛ≤eHê$eTs¡ÙHê‘·àø£eTT>± s¡∫+#·T |üPs¡Mí Te÷+kÕ <äsÙ¡ qeTTqT ` »>∑± `
40
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
4(i)Á|ü<∏äe÷Væ≤ïø£eTT n<∏ë‘·' |üPs¡õí C≤„kÕ nì ÁbÕs¡+_Û+#·T#·THêïs¡T.
dü÷Á‘·+ ˆˆ1ˆˆ n<∏ë‘·' |üPs¡íõC≤„kÕ eè‹Ô' ˆˆ nÁ‘ê<∏Xä 㯠› Äq+‘·sê´<Û9ä ø£' ˆ qø£è‘·´<Û9ä ø£' ˆ |üPD9 õC≤„kÕj·÷' ø£è‘·´BÛq‘ê«‘Y ˆ y˚<ë<Û´ä <Û´ä j·Tqk˛´uÛj Ñ T· ø±s¡D‘˚« Hêq+‘·s´¡ Á|ü‹jÓ÷–‘ê« uÛ≤yê<ä‘√ j·T<äq+‘·s+¡ |üPs¡õí C≤„kÕ ‘·<«ä ø£eÔ ´yéT ˆ ñ#·´‘˚ ˆ ì‘ê´ ì‘·´edüT$Ô y˚ø'£ ˆ ÇVü‰eTTÁ‘ê<Û9ä |ò\ü uÛÀ>∑$sê>∑' ˆ X¯e÷~ dü+|ü‘Y ˆ eTTeTT≈£îå ‘·«+#· ˆˆ ‘˚wßü Væ≤dü‘T· ‡|üPD9 õC≤„øs£ T¡ +Ô X¯ø´£ ‘· Ç‘·´<ÛXä u¯ q›Ò ìs¡Tø£kÔ Õ<Ûqä #·‘T· wüj º T· dü+|ü‘ê´q+‘·s´¡ eTT|ü~X¯´‘˚. n‘·XÙ¯ uÀ› ùV≤‘·«s¡øú £ j·TkÕà<˚«<ä@e, ‘·<´ä <Ûù˚ V≤, ‘ê´~ÁX¯ó‘ê´, n–ïôVAÁ‘êBHêeTì‘·´ |ò\ü ‘·«+ ‘·<ëÛ ªª|üPs¡eí T<ä, Ç‘ê´~ÁX¯ó ‘ê´ |üPs¡$í <ä' |üPs¡‘í «· + <äX¯9j·T‹, ‘·kÕà<ä´<∏√ø£Ô kÕ<Ûqä #·‘T· wüj º T· dü+|ü‘´Ô· q+‘·s+¡ |üPs¡õí C≤„kÕ uÛeÑ r‹, |üPs¡õí C≤„ùd‘·´Á‘· ˆ |üPs¡dí ´ü õC≤„ùd‹e⁄´‘·Œ‘êÔ´|üPs¡dí ´ü ø£sà¡ ‘·«+, nÁ‘·øs£ à¡ DÏ wüw,˜” qX‚ùw j·T<ä´|æ X‚wü wüw˜” |ü]Á>∑ùV≤|æ |üPs¡dí ´ü ø£sà¡ ‘·«e÷j·÷‹, ‘·<ë∏ |æ kո屑·ÿs¡à ‘·«eTT‘·‡è»´|üs√ø£+å ø£sà¡ ‘·«+ ˆ ø£\Œj·T‘√e´s¡'∆ Á|üj÷· dükÕ‡´‘Y ‘·<ëÛ #·ìs¡Tø£Ô kÕ<Ûqä #·‘T· wüj º T· dü+|ü‘´Ô· q+‘·s+¡ n‘√ùV≤‘√' |üPs¡õí C≤„kÕ uÛeÑ r‹ uÛeÑ ‹ |ü<ë<Ûë´Vü‰sπ D dü÷Á‘·+ jÓ÷»˙j·T+ ˆˆ qqT øÏ+‘·‘÷· ŒD9+ j·Tdü´õC≤„kÕø£sà¡ ‘·« eTT#·´‘· Ç‘·´‘·nVü≤ ˆˆ Ç~ |üPs¡Mí Te÷+kÕ <äsÙ¡ qeTTq≈£î ÁbÕs¡+uÛÑ dü÷Á‘·eTT. ãTTwæ Á|üD‘° e· T>∑T XÊÁdüÔ Á>∑+<∏eä TTqT ª<äsÙ¡ qeTTμ ` nì dü÷\ú eTT>± ìs¡«∫+|ü e#·TÃqT. ªãTTw”`>∑‘Íμ nqT >∑‘´· s¡øú £ <Ûë‘·Te⁄ qT+&ç ãTTwæ X¯ãe› TT ìwüŒqïeTT. ø±e⁄q ãTTwæ j·Tq>± >∑‘'· ` yÓ[flqyê&ÉT nH˚ ns¡+ú dæ~d∆ Tü +Ô ~. ‘·q<Óq’ ‘·|Xü Ù¯ øÏ#Ô ˚ eTq≈£qï ñqï‘· kÕúsTTì #˚] ‘êq≥ qT+&ç <ä]Ù+∫q e÷+>∑[ø£eTT˝…q’ $X¯«»˙q dü‘·´eTT\qT (Universal Truths), ˝Àø±qTÁ>∑Vü≤ ø±+ø£å‘√ düs¡T«\T ‘·]+#ê\ì ñ|ü<˚•+#˚ >∑Ts¡TeT÷]Ô ãTTwæ X¯ã›yê#·T´&ÉT. yê] j·TT|ü<˚X¯eTT ª<äs¡ÙqeTTμ nqã&ÉT‘·T+~. n{Ϻ ãTTwæì ªÁ<äwμºü n+{≤s¡T. Ä $<Ûyä TÓ qÆ Á<äw\ºü ø√e≈£î #Ó+~q »>∑∑V≤æ +#·T≥ ø=s¡ø¬ ’ sT÷ |üPs¡Mí Te÷+kÕ <äsÙ¡ qeTTq düs«¡ y˚<ëqÔkÕs¡eTTqT dü+Á>∑V≤ü eTT>± dü÷Á‘·s÷¡ |ü+˝À ñ|ü<•˚ +∫Hês¡T. dü÷Á‘·eTq>± ªn˝≤Œø£så e¡ TT\˝À nq˝≤Œs¡ú s¡#q· μ ` j·Tì \ø£D å eTT #Ó|Œü H=|ü qT.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
41
ªªn˝≤Œø£så ¡ eTdü+~>∑+∆ kÕs¡e ~«X¯«‘√eTTKyéT nk˛ÔueÑÛ Tqe<ä´+#· dü÷Á‘·+ dü÷Á‘· $<√ $<äT' ˆˆμμ ` nì XÊÁdüøÔ ±s¡T\T dü÷Á‘· \ø£D å ≤ìï ìs¡«∫+#˚sT¡ . C≤Á>∑‘>Ô· ± sT÷ \ø£D å ≤ìï |ü]o*ùdÔ dü÷Á‘·s#¡ q· ` 1.n‹ ‘·≈î£ ÿe nø£så e¡ TT\˝À ñ+&Ü*. 2.<ëì Á|üe÷D $wüjT· +˝À dü+X¯j÷· ìøÏ ‘êe⁄+&É≈L£ &ɱ ~qeTì ns¡úeTT. ˇø£s√E˝À ÁX¯eDeTqqeTT\ s¡÷|üeTTq n<Ûä´j·Tq n<Ûë´|üqeTT\≈£î jÓ÷>∑´eT>∑T Ø‹˝À s¡∫+|üã&çq+<äTq Ç+<ä* n<Ûë´j·T $uÛÑ»qeTTq≈£î ÄVæ≤ïø£eTT\ì HêeTø£s¡DeTT #˚j·Tã&çq~. Ç~ uÛ≤wü´s¡#·Hê dü+Á|ü<ëj·TeTT. |ü‘·+»* eTVü≤]¸ ` ‘·q eTVü‰uÛ≤wü´eTTqT ÄVæ≤ïø£eTT\T>∑H˚ s¡∫+∫Hês¡T. uÛ≤wü´ dü+Á|ü<ëj·÷ìï nqTdü]dü÷Ô, dü÷Á‘·s¡÷|üeTT˝À eè‹Ô nq>± \|òTü Tyê´U≤´qeTTqT≈£L&Ü »‘·|sü ∫¡ , eTVü‰$wüj÷· ìï n‹∫qï Á|üøs£ D¡ $uÛ≤>∑+‘√ s¡∫+#·ã&çq @¬ø’ø£ eT¨Å<äZ+<ÛäeTT á |üPs¡íMTe÷+düj·Tì ìdü‡+X¯j·TeTT>± ìs¡«› +<ä«eTT>± #Ó|Œü e#·TÃqT. á dü÷Á‘·+˝À ªn<∏`ä n‘·' |üPs¡õí C≤„kÕμ nì eT÷&ÉT |ü<ë\THêïsTT. eTT+<äT>± ªn<∏μä ` nH˚ |ü<ësêúìï >∑T]+∫ ‘Ó\TdüT≈£î+<ë+. ªÁ>∑+<∏ë<˚ eT+>∑fie¯ TeX¯´+ ø£seÔ¡ ´+μ nH˚ dü+Á|ü<ëj·÷qïqTdü]+∫ Á|ü‹bÕ<ä´yÓTÆq ÁãVü≤àeTTqT edüTÔìπs›X¯ >∑]“¤‘·+>± kÕ«$Tyês¡T qT‹+∫q yÓ’q+ #Ó|ü ≈£îHêï+. dü÷Á‘ês¡+uÛÑ+˝À ≈£L&Ü yês¡T dü+Á|ü<ëj·÷ìï #·øÿ£ >± bÕ{Ïd÷ü Ô ªn<∏μä X¯ã+› ‘√ ÁbÕs¡+uÛÑ dü÷Á‘êHêïs¡+_ÛkÕÔsT¡ . Ç<=ø£ $X‚w+ü . n<∏Xä 㯠+› Á|üDe düeT+>± Á|üÁ|ü± ÁãVü≤à>±] eTTK+ qT+&ç yÓ\Te&ç+~. ªªz+ø±s¡XÊÃ<∏ä X¯ãX› ï <ë«y˚‘Í ÁãVü≤àD' |ü⁄sê ø£+sƒ+¡ _Û‘ê« $ìsê´‘Í ‘·kÕàHêà+>∑[ø± e⁄ uÛÖˆˆμμ z+ø±s¡+‘√bÕ≥T>± n<∏Xä 㯠e› TT ≈£L&Ü ‘·q≈£î ‘êqT>± ÁãVü≤à>±] ø£+sƒe¡ TTqT
42
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
uÛ~Ò +#·T≈£îì yÓ\Te&ç+~ ø±e⁄q á s¬ +&ÉT X¯ãe› TT\T (|ü∑fiø¯ s£ y¡ TÓ qÆ $>± dü+Á|ü<ëj·T $<äT\#˚ Á>∑V≤æ +|üã&ç XÊÁkÕÔs+¡ uÛ+Ñ ˝À Á|üdTü ‹Ô +|ü ã&ÉT#·THêïsTT. Ä $<ÛäeTT>∑H˚ »>∑<äTZs¡Te⁄\#˚ dü÷Á‘ês¡+uÛÑeTT e÷+>∑[ø£yÓTÆq ªn<∏äμ X¯ã›eTT#˚ >±$+|üã&çq<äì Á>∑V≤æ +#ê*. n<∏Xä u¯ ≤›ìøÏ ø£è‹|üs+¡ >± ªÁ|üdTü μÔ ‘·eTìj·TT, Äq+‘·s´¡ yê#·ø+£ >± ª|æeTà≥μ nì˙ï s¬ +&Éseú¡ TT\THêïsTT. Á|üdTü ‘Ô · Á|üøs£ D¡ +˝À Äq+‘·sê´sêúHï˚ Á>∑V≤æ +#ê* ø±ì ø£è‘·´s¡eú TTqT ø±<äT ` ªnÁ‘· n<∏Xä 㯠'› Äq+‘·sê´s¡'ú ` qø£è‘·´s¡'ú μ nì düŒwü+º >± ‘Ó*j·TCÒkÕÔsT¡ kÕ«$Tyês¡T. n<∏Xä u¯ ≤›ìøÏ Äq+‘·sê´sêúìï #Ó| ü ≈£îHêï+. ø±>± n<∏ä ` nq>± |æeTà≥ ˝Ò<ë ‘·sT¡ yê‘· nì ns¡+ú dæ~d∆ Tü +Ô ~. Ç~ eTs¡\ kÕù|ø£eå TT nq>± y˚s=ø£ nsêú+‘·se¡ TTqT nù|øÏdå Tü +Ô ~. ‘·sT¡ yê‘· nq>±H˚ <˚ì‘·sT¡ yê‘· ! nì dü+X¯jT· eTT ø£\T>∑ø£ ‘·|Œü <äT. BìH˚ nù|ø£å n+{≤s¡T. BìøÏ düe÷<Ûëq+>± XÊÁdüÔeTsê´<äqqTdü]+∫ ` ªkÕ<Ûqä #·‘T· wüj º T· dü+|ü± Á>V∑ ≤æ +∫q |æeTà≥ nì eè‹Ô˝À, Ä kÕ<Ûqä #·‘T· wüj º ÷· ìï ` 1. ì‘ê´ì‘·´ edüT$Ô y˚øe£ TT 2. ÇVü‰eTTÁ‘· |ò˝ü uÛÀ>∑ $sê>∑eTT 3. X¯e÷~ wü≥ÿ dü+|ü<ä 4. eTTeTTø£‘å «· eTT ` nì $e]kÕÔsT¡ . ø±>±, n<∏Xä u¯ ≤›ìøÏ ` kÕ<Ûqä #·‘T· wüj º T· dü+|ü‹ìÔ bı+~q ‘·sT¡ yê‘· ` nì ns¡+ú #Ó| ü ø√yê*. ‘·sT¡ yê‘· |ü<+ä ªn‘·'μ ` nH˚~. Ç~ ùV≤‘·«s√ú|bü Õ<äøy£ TÓ qÆ |ü<+ä . kÕ<Ûqä #·‘T· wüj º T· dü+|ü<ä dæ~ù∆ dHÔ ˚ |üPs¡õí C≤„dü kÕ<Û´ä eTÚ‘·T+<äH˚ nsêúìï ` n‘·XÙ¯ ã›+ düŒwü+º #˚dTü +Ô <äì Á>∑V≤æ +#ê*. dü÷Á‘·+˝À ø£&|É {ü <Ï q’Ó eT÷&Ée|ü<+ä ª|üPs¡í õC≤„kÕμ ªõC≤„kÕμ n+fÒ ªC≤„‘T· $T#êäμ nH˚ e⁄´‘·Œ‹Ô #Ó| ü ≈£î+fÒ ‘Ó\TdüTø√yê\H˚ rÁeyÓTqÆ ‘·|qü ˝Ò<ë yê+#Ûj · T· ì dü÷\ú +>± ns¡+ú #Ó| ü ø√e#·TÃ. ø±ì y˚<ëqÔ XÊÁdüÔ dü+Á|ü<ëj·T+˝À á|ü<+ä ªõC≤„kÕ |ü±, á dü+<äs“¡ +¤ ˝À õC≤„kÕ X¯ãe› TTq≈£î ª$#ês¡D`düe÷˝À#·qμ nì nsêúìï #Ó| ü ø√yê\ì Á>∑V≤æ +#ê*. eTTU≤´s¡eú TTq≈£î u≤<Ûä @s¡Œ&çq|ü &ÉT Á|üj÷Ó »q dæ~ø∆ √dü+ Ç˝≤ nsêú+‘·se¡ TTqT, Äs√|æ+∫ uÛ≤$+#˚ Á|üÁøÏjT· qT ª\ø£D å μ n+{≤s¡T.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
43
Ç#·≥ $#ês¡D |üPs¡õí C≤„dü >∑T]+∫ #˚jT· ã&ÉT‘·Tqï<äì Á>∑V≤æ +#ê*. ª|üPs¡dí ´ü õC≤„kÕ ` |üPs¡õí C≤„kÕμ nì e⁄´‘·Œ‹Ôì #Ó| ü ≈£î+fÒ ` Çø£ÿ&É |üPs¡Xí u¯ À›‘sÔ· ¡ wüw˜” $uÛøÑ øÔÏ Ï ªªX‚ùwwüwμ˜” ` nì wüw´˜ü s¡eú TTqT #Ó|Œü ≈£î+&Ü \ø£D å ≤eè‹Ô qqTdü]+∫ ªø£sà¡ DÏ wüwμ˜” nì ìπs•› +#·ã&çq ø£sêàs¡eú TTH˚ \øå±´s¡eú TT>± Á>∑V≤æ +#ê*. Ä ø£sêàs¡eú TT ≈£L&Ü, |üPs¡í X¯ãe› TTq≈£î kո屑·ÿs¡à‘·«e÷? |üs√ø£å ø£sà¡ ‘·«e÷? nH˚ MTe÷+dü˝À |üs√ø£å ø£sà¡ ‘·«y˚Tqì dæ<ë∆+‘·#d˚ ,æ Ç+‘·>± eè<∏ëÁ|üj÷· dü |ü&TÉ ≥ø£qï ªuÛeÑ ‹μ nH˚ |ü± n+fÒ |ü]|üPs¡ø+£ >± n<äq+>± ‘Ó#T· Ã≈£î+fÒ ` ªªìs¡Tø£Ô kÕ<Ûqä #·‘T· wüj º T· dü+|ü‘´Ô· q+‘·s+¡ ` n‘√ ùV≤‘√' |üPs¡í õC≤„kÕ uÛeÑ ‹μμ nì dü÷Á‘ês¡+ú |üs´¡ edædTü +Ô ~. ø±>± ` ì‘ê´ì‘·´ edüTÔ$y˚ø£eTT, ÇVü‰eTTÁ‘· |òü\uÛÀ>∑ $sê>∑eTT, X¯e÷~ wü≥ÿdü+|ü‹Ô, eTTeTT≈£îå ‘·«eTT nH˚ kÕ<Ûqä #·‘T· wüj º T· dü+|ü‹Ô \_Û+∫q|ü⁄ &É<ë›ì e\q |üPs¡õí C≤„dü ªÁãVü≤à$#ês¡D ø£sΩ¡‘)· (uÛeÑ ‹) ø£\T>∑T‘·T+<äì |æ+&ç‘ês¡eú TTqT Á>∑V≤æ +#ê*. Ä|üø+å£ ˝À ` |üPs¡õí C≤„dü j·TqH˚$T? <ëìøÏ ø£sêàs¡ú $eø£j å TÓ ≥T¢ bıdü>T∑ ‘·T+<äH˚ ÄX¯+ø£\≈£î düe÷<Ûëq+>± s¬ +&Ée dü÷Á‘· $T˝≤ ñ|ü<•˚ +|ü ã&ÉT#·Tqï~ `
dü÷Á‘·+ ˆˆ 2 ˆˆ ªªj·T#·ÃÁø±D≤eT~ÛcÕ˜q+μμ eè‹Ô' ˆˆ #·Áø±D≤ eT~ÛcÕ˜q+ #·Áø£ø\£ ŒHê~ÛcÕ˜q+ j·T‘·Ô ‘·÷Œs¡í $T‘·´qTwü»´‘Ó, #·Áø±DÏ uÛ÷Ñ |ü⁄sê~uÛ<Ò q˚ ~«<Ûë, ‘·Á‘·u÷ÑÛ |ü⁄sêDÏ Á‹uÛTÑ », eè‘·,Ô B|òTü 9, eè‘êÔBì, y˚Ts¡TÁ|ükÕÔsêDÏ >√fi≤Bì ‘·Á‘· uÛ÷Ñ |ü⁄sê#·Áø±D≤ eT~ÛcÕ˜q+ ‘·\$T‹ kÕe÷q´‘√ >∑D‘Ï · XÊÁùdÔ ìs¡÷|æ‘· eT|æ y˚Ts¡TÁ|ükÕÔs¡ #·Áø±~ÛcÕ˜q+ qìs¡÷|æ‘+· . nÁ‘· Á|ü<]ä Ù‘· |üPs¡dí ´ü ‘·T uÛ÷Ñ |ü⁄sê~uÛ<Ò ä _Ûqï düø\£ #·Áø±~ÛcÕ˜q‘·« dü÷#·Hêj·T j·T#·ÃÁø±D≤ $T‘·´Á‘· ãVüQe#·q eTTbÕ‘·+Ô ˆˆ ‘·<∏ë#· düø£\ #·Áø±~ÛcÕ˜q‘·«+ |üPs¡ídü´ ‘·≥düú\ø£åD $T‹ uÛ≤e' ˆˆ düø\£ #·Áø±~ÛcÕ˜q‘·«dü´ |üPs¡\í ø£Då ‘˚« $X‚wDü C≤„q $<Ûj ä ÷· #·Áø£C≤„qkÕ´eX¯´ø£ ‘˚«q #·Áø£+ ‘êe\¢øj å£ T· ‹. øÏ+‘·‘·÷Œs¡í+? j·Tdü´ õC≤„kÕø£s¡à‘·«+ ñ#·´‘˚ ` Á|üdüTÔ‘· $#ês¡Dø£+‘·≈£î ø£sà¡ ‘·«eTT˝À ø±s¡DuÛ÷Ñ ‘·yTÓ Æ |üPs¡Xí 㯠e› TT#˚ ìπs•› +|üã&çq ÁãVü≤àeTT jÓTTø£ÿ ìπsX› ¯ MT dü÷Á‘·eTT˝À Á|ü<]ä Ù+|ü ã&ÉT‘·Tqï~.
44
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Ç+<äT ` ªj·T‘Y #·Áø±D≤+ n~ÛcÕ˜qyéTμ nì eT÷&ÉT |ü± ªj·T‘Y #·Áø±D≤ eT~ÛcÕ˜qyéT ‘·‘÷· Œs¡yí Té μ nq>± @~ #·Áø£eTT\ø£~cÛ Õ˜qyÓ÷ n~ |üPs¡eí TT nì ns¡+ú dæ~d∆ Tü +Ô ~. #·Áø£eTT\≈£î, #·Áø£ø\£ ŒqeTTq≈£î H˚~ j·T~ÛcÕ˜qyÓ÷ n~ |üPs¡eí Tì Ä#ês¡´ kÕ«$Tyês¡T ` ªª#·Áø±D≤eT~ÛcÕ˜q+ #·Áø£ ø£\ŒHê~ÛcÕ˜q+ #· j·T‘·‘Ô ÷· Œs¡μí μ ` eTì yê´U≤´ì+∫ <ëìì >∑D‘Ï X· ÊÁdüÔ |üs+¡ >± ‘·\eTH˚ X¯ã+› #˚ bÕ]uÛ≤wæø+£ >± dü÷∫kÕÔsT¡ . ª‘·\$T‹ kÕe÷q´‘√ >∑D‘Ï · XÊÁùdÔ ìs¡÷|æ‘y· Té μ nH˚~ yê] eø£ÿD. n+fÒ ~«|ü]e÷D (Two Dimensional) sπ U≤#·Áø£eTT˝…q’ , Á‹uÛTÑ », #·‘T· s¡Ádü, eè‘·,Ô Bs¡eÈ è‘êÔ± kÕe÷q´+>± dü÷∫+|üã&çHê, dü÷Á‘·+˝À ª#·Áø±D≤+μ nì ãVüQe#·q ìπs›X¯+ e\¢, >√fi≤<äT\T, y˚Ts¡TÁ|ükÕÔs¡eTT\T Á‹|ü]e÷D (eT÷&ÉT ø=\‘·\Tø£\) (Three Dimensonal) #·Áø£eTT\T ≈£L&É |üPs¡Xí 㯠› |ü]~Û˝Àπø ekÕÔjT· ì dü÷∫+#·ã&çq~. á $wüj÷· ìï dü«j·T+>± yêπs eè‹ÔÁ>∑+<∏+ä ˝À ` ªªnÁ‘· Á|ü<ä]Ù‘· |üPs¡dí ´ü ‘·T uÛ÷Ñ |ü⁄sê~ uÛ<Ò _ä qÛ ï düø\£ #·Áø±~ÛcÕ˜q‘·« dü÷#·Hêj·T j·T#·ÃÁø±D≤$T‘·´Á‘· ãVüQe#·q eTTbÕ‘·yÔ Té μμ nì Á|ü‹bÕ~dü÷HÔ ˚ ` ªdüø\£ #·Áø±~ÛcÕ˜q‘·«+ |üPs¡dí ´ü ‘·≥düú \ø£Då $T‹ uÛ≤e'μμ ` nq>± ÁãVü≤àyê∫jÓTÆ q |üPs¡‘í ‘· «Ô· y˚T düs«¡ #·Áø£eTT\≈£î, nq>± j·T+Á‘·eTT\ìï{ÏøÏ n~ÛcÕ˜qeTì dæ<ë∆qeÔ TT. Çø£ÿ&É eTq+ >∑eTì+#· e\dæq $wüjT· yÓTTø£{Ï j·TTqï~. |üPs¡‘í «· eTTq≈£î düø\£ #·Áø±~ÛcÕ˜q‘·«eTì #Ó|Œæ q~ ‘·≥düú \ø£D å y˚T ø±ì düeTÁ>∑yTÓ qÆ ìs¡«#·q+ ø±<äT. ÁãVü≤àeTTqT >∑÷]à ` ªø±ì~~j·Tì #Ó|Œü +>∑ >∑\eTT >±ì ÁãVü≤à$T~j·Tì #Ó|Œü +>∑ e\qT |ü&<É Tä dü‘´· ì‘·´eTT C≤„qeT q+‘·eTsTTq <ä~jÓT ÁãVü≤à+ãT yê≈£îÿ\ø£+<ä<~ä j·Tμ ` nì #ÓãT‘ês¡T. ø±e⁄qH˚ lyês¡T ª#·Áø±~ÛcÕ˜q‘·«+‘·T |üPs¡dí ´ü ‘·≥düú \ø£Då $T‹ uÛ≤e'μ ` nì X¯\$∫ÃHês¡ì Á>∑V≤æ +#ê*. ``` ne‘ê]ø£ : düø\£ #·Áø±~ÛcÕ˜q eTì |üPs¡eí TTq≈£î ‘·≥düú \ø£Då eTT #Ó|Œæ q kÕ«$Tyês¡T #·Áø£\ø£D å ìπsX› e¯ TTq ≈£î|üÁø£$Tdü÷Ô eTT+<äT>± dü÷\ú s¡÷bÕìï ‘Ó*j·TCÒkÕÔsT¡ .
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
45
dü÷Á‘·+ ˆˆ 3 ˆˆ uÛ≤ee´+»ø£+ sπ U≤s¡÷|ü+
eè‹Ô' ˆˆ uÛ≤ee´+»ø£+ sπ U≤s¡÷|ü+#· j·T‘·#Ô Ã· Áø£$T‘·´<∏ä9' uÛ≤edü´ e´+»ø£+ sπ U≤@q s¡÷|ü+ j·Tùd´‹ e⁄´‘·Œ‘ê´ uÛ≤ee´+»ø£‘«˚ dü‹ sπ U≤s¡÷|ü‘«· + #·Áø£\ø£Då $T‹|ò*ü ‘·+, ìs¡<∏ä9ø£ sπ U≤j·÷+ #˚cÕº<Í #ê‹yê´|æÔ yês¡D≤j·T $X‚wDü $X‚w´ü jÓ÷ s¡TuÛj Ñ ÷Ó s¡TbÕ<ëq+, nôd´’ |ü j·T+Á‘· $T‹ HêeT ˆˆ qqT uÛ≤ee´+»ø£‘«· dü´ #·Áø£\ø£Då |òTü ≥ø£‘«˚ |üPs¡uí ≤Û e e´+»ø£+ øÏ$T‘ê´ X¯+ ø±j·÷ e÷Vü≤ ˆˆ á dü÷Á‘·+˝À kÕ«$Tyês¡T #·Áø£\ø£åD≤ìï dü÷ú\+>± ¬s+&ÉT \ø£åDeTT\‘√ ìs¡«∫kÕÔsT¡ . n$ ` uÛ≤ee´+»ø£‘«· eTT sπ U≤dü«s¡÷|üeTT nH˚$. Ç$ s¬ +&É÷ #·Áø£‘«· eTTqT ìs¡÷|æ+#˚ u§eTà u§s¡TdüT˝≤¢+{Ï$. ˇø£<ëìø=ø£{Ï dü+|üPs¡øe£ TT\T. XÊÁdüeÔ Tsê´<ä˝À á $wüj÷· ìï kÕ«$Tyês¡T ` ªuÛ≤ee´+»ø£‘«˚ dü‹ sπ U≤s¡÷|ü‘«· + #·Áø£\ø£Då yéTμ ` nì Á|ü‹bÕ~kÕÔsT¡ . á s¬ +&ÉT \ø£Då ≤\˝À <˚ìì #Ó|Œü ≈£îHêï \ø£Då eTT n‹ yê´|æÔ ˝Ò<ë nyê´|æÔ <√wüeTT\ ø±ø£se¡ TÚ‘·T+~. ªuÛ≤edü´e´+»ø£‘«· +μ ` uÛ≤eeTTqT Á|üø{£ +Ï #·T \ø£D å eTT ø£\~ sπ U≤s¡÷|üeTT. uÛ≤ee´+»ø£eTT nH˚ \ø£Då + ˝Ò≈î£ +fÒ |æ∫Ã^‘·\˙ï ÁãVü≤àyê#·øj £ T· +Á‘ê \qe\dæ edüT+Ô ~. n˝≤>∑ì <ëìH˚jT· T+∫ s¬ +&Ée<Óq’ sπ U≤dü«s¡÷|üeTTqT e÷Á‘·yT˚ $eøÏùå dÔ uÛ≤ee´+»ø£eTT˝…q’ #˚w\ºü ˙ï |üPs¡dí ÷ü #·øj £ T· +Á‘· dü+»„øe£ TT\T ø±e\dæ edüT+Ô ~. á$<Û+ä >± \ø£Då <ä«j·T düeTì«‘·yTÓ qÆ uÛ≤ee´+»ø£ sπ U≤s¡÷|üyT˚ #·Áø£\ø£Då +>± Á>∑V≤æ +#ê\ì »>∑± Á>∑V≤æ +#ê*. ``` ne‘ê]ø£ : Ä|üø+å£ ˝À uÛ≤ee´+»ø£ sπ U≤dü«s¡÷bÕ\T mH√ï ñqï$. ne˙ï |üPs¡eí TT, dü∫Ã<ëq+<ä|Tüò qeTTHÓq’ ÁãVü≤àeTTqT dü÷∫kÕÔj÷· ? n~ dü+uÛeÑ e÷? Ç˝≤+{Ï dü+X¯jT· eTT\T ø£\T>∑&ÜìøÏ ‘êMj·T≈£î+&Ü yÓqTyÓ+≥H˚ |üPs¡‘í «· uÛ≤ee´+»ø£yTÓ qÆ #·Á≈£eTTqT eè‘·eÔ TT>± Ç˝≤ ìπs•› kÕÔsT¡ kÕ«$Tyês¡T.
dü÷Á‘·+ ˆˆ 4 ˆˆ ‘·~∆ eè‘·Ôs¡÷|üyéT
eè‹Ô' ˆˆ ‘·‘Y |üPs¡eí ´+»ø£+ eè‘·sÔ ÷¡ |ü+ eè‘·yÔ T˚ y˚‘´· <∏ä9' Væ≤' Á|üd<æ Í∆, ˝Àπø ns¡ÃHê<Í j·T+Á‘êD≤+ uÛ>Ñ e∑ ‘·‡«s¡÷|ü e´+»ø£‘ê« ‘·ÁÔ ‘·Œdæ~› <√´‘·Hêj·T V”≤‹ ˆˆ qeT|üPs¡dí ´ü eè‘êÔs÷¡ |ü‘«˚ øπ cÕ+∫‘·÷Œs¡« |üø±å D≤ eTeø±X¯', j·T<∏ë ~«rj·T dü÷Á‘˚ düø\£ #·Áø±~ÛcÕ˜q+ |üPs¡í $T‘·T´ø£+Ô , ‘·d´ü ìs¡ej·Te $T‘ê´~ ÁX¯ó‘ê´ ìs¡ej·Te‘·«dæ<Í∆ eè‘·Ôdü´ düø£\
46
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
#·Áø±+‘·s¡Z‘·‘ê« ‘ê‡ej·T‘ê«#·Ã‘· <√“<Ûäø£‘·«+ <äTs¡È≥ $T‹ #˚‘Y ñ#·´‘Ó, >∑D‘Ï X· ÊÁôdÔ y˚Ts¡TÁ|ükÕÔs¡ #·Áø±D≤eT~ÛcÕ˜q kÕ´ ìs¡÷|æ‘· ‘˚«|æ uÛ÷Ñ |ü⁄s#¡ Á· ø±D≤eT~ÛcÕ˜q+ ìs¡÷|æ‘y· T˚ e, ‘·kÕà‘êÔ<èä X¯ uÛ÷Ñ |ü⁄s¡ #·Áø±~ÛcÕ˜qdü´ ø£«∫Á‘·Œdæ<‘∆ä «˚ q ‘ê<äèXÀ|ü] uÛ≤>∑kÕ´\Œdü« s¡÷|ü ‘ê«‘Y õC≤„d÷ü Hê eT‘·´+‘√ |üøs£ êj·T dü÷˝ú ≤s¡T+<Ûrä Hê´j˚Tq |üPs¡kí Õ´|æ eè‘·sÔ ÷¡ |ü‘«· ø£\ŒHÓ u≤<Ûøä ±uÛ≤e', ñ|ü]uÛ≤>∑d´ü ‘·\ $T‹ dü+C≤„, j·T<äT´|ü]uÛ≤>∑kÕ´\Œ eT~Ûø+£ yê s¡÷|ü eTÁ|üd<æ $∆ä T‹Áã÷j·÷‘·+Ô Á|ü‹Áã÷j·÷‘Y, ìsêes¡D Á|ü∑d´ü eè‘êÔø±s¡‘ê«<ä«è‘·sÔ ÷¡ |ü‘«· eT<Ûä9dæ<$∆ä T‹ q|üè<∏ä >∑Tø£+Ô , @‘· <˚ yê˝ÀŒ|ü] uÛ≤>∑‘«˚ q $C≤˙j·÷~‹ ˆˆ qqT ‘·~∆ eè‘·sÔ ÷¡ |ü $T‹ dü÷Á‘˚D |üPs¡dí ´ü eè‘·sÔ ÷¡ |ü‘«˚ eè‘·dÔ ´ü |ü]~ÛHêeTø£ sπ U≤|ü]eè‘· <˚Xs¯ ÷¡ |ü‘«˚ q ‘·C≤„Hêù|øå±j·÷+ $X‚wDü u° ÷ÑÛ ‘· sπ U≤C≤„q kÕ´eX¯´ø£‘«˚ q ‘·∑eTT. ‘·‘Y nq>± Ä ÁãVü≤àyê∫jÓTÆ q |üPs¡eí TT, eè‘·sÔ ÷¡ |üyTé eè‘êÔø±s¡eTT>± Væ≤ ` Á|üd<æ e∆ä TT nì ns¡eú TT. ª‘·‘Y |üPs¡eí ´+»ø£+ eè‘·sÔ ÷¡ |ü+ Væ≤ eè‘·@Ô y˚‘´· s¡'ú μ` nì eè‹Ôyêø£´eTT. nq>± Ä |üPs¡eí TT eè‘·sÔ ÷¡ |üyT˚ qì uÛ≤eeTT. Á|üd~æ ì∆ dü÷∫+#˚ Væ≤ X¯ãe› TT j·T+Á‘·eTT\≈£î uÛ>Ñ e∑ ‘·‡«s¡÷|ü e´+»ø£‘«· eTTqT ‘Ó*j·TCÒdTü +Ô ~. |üPs¡eí TTq≈£î eè‘·dÔ «ü s¡÷bÕqï+^ø£]+∫q |üø+å£ ˝À ø=ì|üPs¡«|üøeå£ TT\T ‘·\jÓT‘˚Ô neø±X¯eTTqï~. m˝≤>∑+fÒ ` dü÷Á‘·+˝À |üPs¡eí TT düø\£ #·Áø±~ÛcÕ˜qeTì s¬ +&Ée dü÷Á‘·+˝À #Ó|Œü ã&çq~. <ëìøÏ ìs¡jT· e‘·« ÁX¯ó‹#˚‘,· ìs¡ej·Te‘·«+ dæ~+∆ ∫+~. n˝≤+≥|ü &ÉT düø£\#·Áø±+‘·s¡÷“¤‘·yÓTÆq eè‘·ÔeTTq≈£î kÕej·Te‘·«y˚Tø±ì ìs¡ej·Te‘·«yÓT˝≤ ≈£î<äTs¡T‘·T+<äì |üPs¡«|üø+å£ . <ëìøÏ düe÷<Ûëq+>± kÕ«$Tyês¡T >∑DÏ‘·XÊÁdüÔ+˝À uÛÑ÷|ü⁄s¡#·Áø£eTT\≈£î n~ÛcÕ˜q‘·«+ ~«|ü]e÷Ds¡÷|ü+ ( Two dimentional form) ˝À ìs¡÷|æ+#·ã&çq~. Ç~ XÊÁdüÔ Á|üd< æ y∆ä TÓ qÆ $wüjT· +. á $<Ûeä TT>± düs«¡ e÷q´yÓTÆ Á|üd<æ y∆ä TÓ qÆ eè‘√Ô|]ü uÛ≤>∑eTT n‘·´+‘· dü«\ŒyÓTqÆ ~ ø±e⁄q >öDeTT>±, dü÷˝ú ≤s¡T+<Ûrä Hê´j·TeTT#˚ |üPs¡eí TTq≈£î õC≤„dTü e⁄\≈£î düT\uÛeÑ TT>± $wüj·TeTTqT uÀ~Û+#·T≥ø=s¡≈£î eT÷&Ée |ü]e÷DeTTqT (3rd dimention) |ü]>∑D+Ï |üøj £ T˚ ~«|ü]e÷DeTT (2nd dimentional)>± ‘·\s¡÷|üeTT˝À eè‘·eÔ TTH˚ dü«s¡÷|üeTT>± Á>∑V≤æ +∫s¡ì ‘ê‘·Œs¡´eTT>± Á>∑V≤æ +#ê*.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
47
düT$XÊ\yÓTqÆ ìsêes¡D Á|ü∑eTT ~ø£ÃÁø£|]ü ~Û>± es¡T\Ô +>± >√#·]+#·&+É düsT¡ «\≈£î nqTuÛeÑ >√#·sy¡ TÓ qÆ $wüjT· y˚T. á uÛ÷Ñ e÷´ø±X¯eTT\ dü+jÓ÷>∑eTT øπ e\eTT <äèÅ>“∑ e¤ T (Optical illusion) e÷Á‘·yT˚ . n˝≤ #·÷∫q es¡T˝Ô ≤ø±s¡eTT øπ e\eTT e÷qdæøy£ TÓ qÆ nqTuÛeÑ »q´ sπ U≤ s¡÷|üeT>∑T eè‘·yÔ T˚ . ì»eTTq≈£î áj·TqTuÛeÑ eTT˝À <ä]Ù+#˚ uÛ÷Ñ e÷´ø±X¯eTT\ ø£\sTTø£ j·T<∏ës¡eú TT ø±<äT. nsTTqqT <ëìì eè‘·eÔ TT>± ~và+&É\eTT ~ø£ÃÁø£eTT nì e´eVü≤]+#·T#·TH˚ j·TTHêïeTT. n≥T\H˚ eè‘·eÔ TT j·T<∏ës¡eú TT>± qej·T$jÓTÆ qqT |üPs¡yí ê∫jÓTÆ nK+&ÉyTÓ qÆ ÁãVü≤àeTTqT ìπs•› +#·T Á|ürø£jTÆÓ q<äì ‘ê‘·Œs¡´eTT. ❋❋❋
eè‘·eÔ TT jÓTTø£ÿ ìs¡«#·q+ Á|üøÿ£ |ü≥eTT˝À Çe«ã&çq~. A
B 900
900
C
ne‘ê]ø£ : eè‘·eÔ TT kÕej·T$ nq>± nej·TeeTT\T ø£*–q<äì eTT+<äT #Ó| ü ≈£îHêï+. eè‘êÔìï sπ U≤>∑D‘Ï +· nq+‘· uÛTÑ C≤\T ø£\ ãVüQuÛTÑ õ>± ìs¡÷|æ+∫+~. ø±>±, <ëì |ü]~Û #·÷&É&ÜìøÏ @ø£sπ U≤‘·àø£+>± ø£ì|ædTü HÔ êï, <ëì j·T<∏ës¡ú dü«s¡÷bÕe>∑‹ sπ U≤ø√D |ü]C≤„q+#˚‘· düT\uÛeÑ Te⁄‘·T+<äì Ä $wüj÷· ìï Á|üdTü ‘Ô d· ÷ü Á‘·+ <ë«sê Ç˝≤ Á|ü‹bÕ~kÕÔsT¡ l kÕ«$Tyês¡T.
dü÷Á‘·+ ˆˆ 5 ˆˆ sπ U≤ø√D kÕe÷´ekÕú
eè‹Ô' ˆˆ sπ U≤D≤+ ø√D≤Hê+#· j·÷ kÕe÷´ekÕúôde’ sπ UÒ‘´· <∏9ä , sπ U≤ø√D kÕe÷´ekÕú s¡÷|ü sπ U≤C≤„HÓ C≤‘Ó‘‘· Œ· ]eè‘·CÔ ≤„qkÕ´|æ dü+uÛyÑ ê ‘êÔ<èä X¯ eè‘·yÔ T˚ e |üPs¡$í T‹ uÛ≤e' j·T<ä´|æ eè‘·Ôy˚Tø£ eÁø£ πsU≤|ü]eè‘· $Te<äèX¯´‘Ó ‘·<∏ë|æ ‘ê<äèX¯ eÁø£πsU≤ eTq+‘· ãTTEπsU≤ düeTwæsº ÷¡ bÕ eTdü+UÒ´j·T ø√Dj·TT‘ê+#· >∑D‘Ï · XÊÁdüÔ $<√e<ä+‹ ‘·<ë∏ #· eè‘·kÔ Õ´q+‘·sπ U≤ ø√D |ü]eè‘·‘«˚ |æ ‘˚cÕ+ kÕe÷´ekÕú|qü ï ‘ê« <ä«´ø£Ô ‘ê Hêd”‹Ô uÛ≤e' ˆ qHÓ«‘êe‘ê |üPs¡dí «ü s¡÷|ü+ ‘·\ø¢ Då£ + #ê_Û<ëÛ j·T õC≤„d÷ü Hê eT‘·´+‘√ |üø±sêj·T dü÷˝ú ≤s¡T+<Ûrä Hê´j˚Tq eè‘·Ô s¡÷|ü‘«· + |ü]ø£*Œ‘·+, Ç‘·s¡ #·Áø±D≤+ #√‘·Œ‘êÔ´~ø£+ ø£<ä∏ $T‘ê´X¯+ø±j·÷ e÷Vü≤ ˆˆ
48
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Ç~ @ø£|<ü ä dü÷Á‘·+. ªªπsU≤D≤+ ø√D≤Hê+#·j÷· kÕe÷´ekÕúμμ nì $Á>∑V≤ü yêø±´ìï Á>∑V≤æ +∫ <ëìøÏ ªôde’ sπ U≤μ nì n<Ûë´Vü‰s¡+ #˚dTü ø√yê*. Ä |üø+å£ ˝À ` sπ K\≈£î, ø√DeTT\≈£î kÕe÷´edüú @~ ø£\<√ n~j˚T sπ Kj·Tìj·TT, <ëìì ‘Ó*dæø=q&É+ <ë«sê |ü]~Ûs÷¡ |ü |ü]eè‘·CÔ ≤„q+ ø£*– Ä eè‘·yÔ T˚ |üPs¡eí TH˚ uÛ≤e+ ø£\T>∑T‘·T+~. ªªπsU≤ø√D kÕe÷´ekÕú s¡÷|üsπ U≤C≤„H˚ ‘·‘Œ· ]eè‘·Ô C≤„q kÕ´|æ dü+uÛeÑ ‘Y ‘ê <äèX¯´eè‘·yÔ T˚ e |üPs¡$í T‹ uÛ≤e'μμ nì eè‹Ô Á|üe#·q+. eè‘·Ô |ü]~Û ˇπø eÁø£sπ U≤ø£è‹˝À ø£ì|ædTü HÔ êï >∑D‘Ï X· ÊÁdü+Ô <ëìì nq+‘· ãTTEπsK\ jÓTTø£ÿ ndü+UÒ´j·T ø√DeTT\ düeTwæº dü«s¡÷|ü+>± $X‚w¢ +æ ∫ $e]+∫+~. ø±e⁄qH˚ kÕ«$Tyês¡T ` ªªeè‘·dÔ ´ü nq+‘·sπ U≤ ø√D |üØeè‘· ‘˚«|æ ‘˚cÕ+ kÕe÷´ekÕú |üqï‘ê« <ä«´ø£‘Ô ê Hêd”‹Ô uÛ≤e'μμ eè‘·eÔ TT nq+‘· sπ U≤ø√DeTT\ düeTwæ>º ± |ü]eè‘·yTÓ Æ j·TTqï+<äTq Äj·÷ sπ Kø√D ø√DeTT\ kÕe÷´edü˝ú À Ä sπ K\Tø±ì, ø√DeTT\T ø±ì e´ø£eÔ TT\T>± uÛ≤dæ+#·T≥˝Ò<ìä uÛ≤eeTT. kÕ«$Tyê] yÓ~’ ø£ <Ûsä à¡ dü+Jeì j·÷+>∑y¢ ê´U≤´q+˝À á $wüjT· + yê´eVü‰] ø±+>∑¢ uÛ≤wü˝À >∑D‘Ï · XÊÁdüÔ |ü]uÛ≤wü˝À sTT˝≤ $e]+|üã&ç+~. sπ K ø√D kÕe÷´ekÕú nH˚ düeTdü|Ô <ü +ä ˝À sπ K, ø√D, kÕe÷´edü\ú H˚ eT÷&ÉT |ü± n~ ˇø£ _+<äTe⁄ e<ä› (y˚s=ø£ sπ U≤+‘·se¡ TT#˚) H˚sŒ¡ s¡T#·T ø√DeTT, kÕe÷´edüú ` nq>± Ä s¬ +{ÏjTÓ Tø£ÿ nq_Ûe´ø£Ô dæ‹ú (unmanifested state) nì ìs¡«∫+|ü ã&çq~. eè‘·|Ô ]ü ~Û ˝Ò<ë |ü]sπ K N uÛTÑ »eTT\T ø√DeTT\T ø£\ ãVüQuÛTÑ õ>± }Væ≤+|üã&ç+~. Ç˝≤ uÛ≤$ùdÔ eè‘·eÔ TTq≈£î ˇπø |ü]sπ K#˚ |ü]Áø£$T+|ü&qç ‘·©j·TyÓTqÆ Äø£è‹, N uÛTÑ »eTT\T ø£\ ãVüQuÛTÑ õ>± s¬ +&ÉT$<Ûeä TT\T>± dü+uÛ≤$+#·ã&ç+~. nq+‘·yTÓ qÆ $XÊ«ìï uÛ≤eq˝À dü+<ä]Ù+#˚ düeTj·T+˝À ~vàD¶\+ ‘=\T‘· ns¡>ú √fi¯+>± (Hemisphere)>± >√#·]düT+Ô ~. Ç~ áX¯«s¡TìøÏ Á|ürø£. |üPs¡Áí ãVü≤àeTT kÕ<Û≈ä î£ \ Væ≤‘ês¡yú TÓ qÆ ˇø±H=ø£ s¡÷|ü+˝À <ä]Ù+#· ã&ÉT‘·÷ ñ+≥T+~. ìC≤ìøÏ ÁãVü≤àeTTq≈£î s¡÷|üeTT >±ì HêeTeTT>±ì ˝Ò<äT nsTTHê kÕ<Ûä≈£î\T kÕ<ÛäHê kÂ\uÛÑ´+ø√düeTì HêeTs¡÷|üs¡Væ≤‘·yÓTÆq ÁãVü≤àeTTq≈£î HêeTs¡÷|üeTT\qT dü+uÛ≤$düTHÔ êïs¡T. á $wüjT· + ªªn∫+‘·´k´Á|üyT˚ j·Tdü´ ìwüÿ\dü´ ∫<ë‘·àq' kÕ<Ûøä ±Hê+ Væ≤‘êsêújT· ÁãVü≤àD√ s¡÷|üø\£ ŒHêμμ nì #Ó|Œü ã&ç+~.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
49
Ä$<Û+ä >±H˚ |üPs¡Áí ãVü≤àeTTq≈£î Á|ürø£jTÆÓ q eè‘·eÔ TTq≈£î ÁãVü≤àeTTq≈£î nq+‘·>T∑ D ˝≤*‘·´eTTqT dü+uÛ≤$+∫q≥T¢>H∑ ˚ nq+‘· uÛTÑ »eTT\qT ø√DeTT\qT $$<Ûeä TT˝…q’ Äø£è‘·T\qT dü+uÛ≤$+#·&+É »]–+~. ÁãVü≤àyê∫ dü+K´ qedü+K´>± eTT+<äT $e]+#·T≈£îHêï+. n<˚$<Ûä+>± πsU≤>∑DÏ‘·+˝À eè‘·ÔeTT˝Àì (N) uÛÑT»eTT\qT ãVüQuÛTÑ õ jÓTTø£ÿ Á|ükÕÔsêìï <ä]ÙùdÔ >∑qTø£ N $\Te 1 nsTTq#√ Äj·÷ø£è‹ sπ U≤ (_) s¬ +&ÉT nsTT‘˚ Äø£è‹ ø√DeTT (<), eT÷&ÉT nsTTq#√ düeTu≤VüQ Á‹uÛTÑ »eTT, 4 nsTTq#√ #·‘·Ts¡ÁdüeTT yÓTT<ä˝…’q ‘·©j·Ts¡÷|üeTT\T (Lateral figures). kÕø±s¡s÷¡ |ü+˝À dü+uÛ≤$+#·ã&çq ÁãVü≤àeTT áX¯«s¡T&Éqã&É‘ê&ÉT. n‘·ìøÏ Á|ürø£ eè‘·eÔ TT. ªª‘·~e∆ è‘·sÔ ÷¡ |üyTé μμ nìø£<ë dü÷Á‘·eTT. ne‘ê]ø£ : Ç+‘·es¡≈î£ nsTT<äT dü÷Á‘·eTT\˝À |üPs¡eí TT jÓTTø£ÿ dü«s¡÷|ü \ø£Då ≤<äT\qT dü÷˝ú ≤s¡T+<Ûrä Hê´j·TeTT#˚ qT|ü<•˚ +∫q Ä#ês¡T´\yês¡T Ç‘·se¡ TT˝…q’ #·Áø±<äT\ ñ‘·Œ‘êÔ´<äT\qT $e]+#·&Üì ≈£î|üÁø£$TdüTHÔ êïs¡T.
dü÷Á‘·+ ˆˆ 6 ˆˆ eè‘êÔ‘‡· s¡« e´eVü‰s¡ e´+»ø£+ düeT Á‹uÛTÑ »yéT eè‹Ô' ˆˆ eè‘êÔ ‘·÷Œs√«ø±Ô ‘·‡s¡«e´eVü‰s¡e´+»ø£+ düeTdüeÔ ´eVü‰s√|üj÷Ó >∑ kÕ<Ûä Hê_Ûe´+»ø£+ düeTÁ‹uÛÑT»+ düe÷'Á‘·j·T' uÛÑTC≤' πsU≤s¡÷bÕ' j·Tdü´‘·‘·‡eT Á‹uÛTÑ »+‘·<ëK´+ #·Áø£ eTT‘·Œqï $T‘·´<∏9ä ', ñ‘·Œqï X¯u≤›<ëÛ ´Vü‰sπ D dü÷Á‘·+ jÓ÷»˙j·T+. nÁ‘· kÕ<ÛHä êì ø√DãTTE sπ ø±_+<äe' düeTÁ‹uÛTÑ » y˚TeÁ‹ø√DX¯uq›Ò XÊÁùdeÔ ´eÁVæ≤j·T‘˚ ˆˆ ‘·‘d· ÷ü ‘Ô Œ· ‹ÔÁø£eT ñ‘·sÔ ¡ dü÷Á‘ê‘·T‡Œ¤{u° $ÑÛ wü´‹ ˆˆ qqT eè‘êÔÁ‹ÔuTÑÛ » eTT‘·Œqï $T‘·´H˚q eè‘·dÔ ´ü Á‹uÛTÑ CÀbÕ<ëq‘·« eT_ÛV≤æ ‘·+ ‘·#÷ øÏ+|üse¡ ÷D÷Hê$T yês¡+uÛøÑ ‘£ «· s¡÷|ü eT‘· Á|üøè£ ‘˚ ]e |ü]D≤$T‘·«s¡÷|ü e÷ôVAdæ«Á<ä“Vü≤àDÇe $es¡‘«Ô· $T‘ê´X¯+ø±j·÷ e÷Vü≤ ˆˆ eè‘êÔ‘Y ` düs«¡ e´eVü‰s¡ s¡+»ø£+ ` düeTÁ‹uÛTÑ »yéT nì |ü<$ä uÛ≤>∑+. |üPs¡«\ø£Då \øÏ‘å y· TÓ qÆ eè‘·eÔ TT qT+&ç, düeTdüÔ e´eVü‰sês√|ü jÓ÷>∑kÕ<ÛHä ê e´+»ø£yTÓ qÆ , düeTu≤VüQ Á‹uÛTÑ »eTT ñ‘·ŒqïyÓTqÆ ~ uÛ≤eeTT. Çø£ÿ&É ªñ‘·ŒqïμeTH˚ |ü<ëìï n<Ûë´Vü‰s¡+ #˚dTü ø√yê*. ‘·<ë«sê ns¡eú TTjÓTTø£ÿ dü+|üPs¡yí TÓ qÆ ne>±Vü≤q/uÀ<Ûä ø£\T>∑T‘·T+<äì uÛ≤$+#ê*. düe÷qyÓTqÆ ãTTEπsU≤ ø√DeTT\#˚ Hê$s¡“$¤ +∫q düeTÁ‹ø√D+ ˝Ò<ë düeTu≤VüQ Á‹uÛTÑ »+ e÷Á‘·yT˚ $eøÏ‘å e· Tì Á>∑V≤æ +#ê*. ❋❋❋
50
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ne‘ê]ø£ : eè‘·eÔ TT qT+&ç düs«¡ e´eVü‰sê_Û e´+»ø£eTT>± düeTu≤VüQ Á‹uÛTÑ » eTT‘·ŒqïyÓTqÆ <äì |üPs¡«dü÷Á‘·eTT\˝À #Ó|Œü ã&çq~. Ç˝≤ #Ó|Œü &É+ e\q eè‘·eÔ TTq≈£î Á‹uÛTÑ »eTTq ≈£îbÕ<ëq ø±s¡DeTH˚ ns¡+ú dæ~d∆ Tü +Ô ~. nsTT‘˚ á ø±s¡D‘·«eTT |üse¡ ÷DTe⁄\ Äs¡+uÛøÑ ‘£ «· eTT e+{Ï<ë? Á|üøè£ ‹ e˝… |ü]D≤$T‘·« s¡÷|üe÷? ˝Òø£ ÁãVü≤àeTT jÓTTø£ÿ $es¡eÔ TT e+{Ï<ë? nì eT÷&ÉT $<Ûeä TT˝…q’ dü+X¯j÷· \T ø£*>π neø±X¯eTTqï~. á dü+X¯jT· Á‘·jT· eTTq≈£î düe÷<Ûëq+>± ` á ÁøÏ+~ @ø£|<ü ä dü÷Á‘êìï kÕ«$Tyês¡T Á|ü‹bÕ~kÕÔsT¡ .
dü÷Á‘·+ ˆˆ 7 ˆˆ n<Ûë´kÕ‘Y eè‹Ô' ˆˆ ‘·<Ûë #êDT‘ê«uÛ≤y˚ Hês¡+uÛÑø£‘·«dü´ ≈£L≥düú‘˚«q |ü]D≤$T‘·«dü´ #êdü+uÛÑe' |üs+¡ ‘·«<Ûë´kÕ Á<ä“Vü≤àD Çe$es¡‘Ô «· + dü+uÛeÑ r‹uÛ≤e' q q«<Ûë´dü kÕeTÁ>∑´uÛ≤yê ‘·ÿ<∏eä T<Ûë´dü' ‘·<ë∏ Væ≤˝Àπø X¯óø±Ô'<ä+ s¡»‘· $T‘·´Á‘· s¡»‘êqT uÛeÑ »q´ dü+kÕÿsê‘·àø£ Á|üe÷‘·è<√wüd´ü ˙\|üèwü˜ Á‹ø√D‘ê«~Hê $X‚cÕC≤„Hê‘·àø£ Á|üe÷D<√wüd´ü HÓ>’ ì∑ >±´~s¡÷|ü $wüjT· <√wüd´ü #· dü‘êÔ« ‘ê‡eTÁ^dü‘êÔ«Á<“ä e¤ T ñ|ü|<ü ´ä ‘˚ Á|øü è£ ‘˚ X¯ó<˚∆ eè‘ÓÔ Á‹ø√D≤<Ûë´dükÕeTÁ>∑´ uÛ≤yê‘·Œs¡dŒü s¡$s¡T<ä∆ <Ûsä êàÁX¯jT· ‘ê«#êÃ<Ûë´kÕuÛ≤e Ç‹#˚qï. nÁ‘ê|ü´<Ûë´dü kÕ´qTuÛ÷Ñ j·T e÷q‘˚«q q|üPs¡«|üø±å eø±X¯' j·T<∏ë eÁø± ø±sêø±]‘· ~và+&É˝ø’… <£ X˚ d¯ ´ü ‘êsê<ä«j·T eT<Û´ä e]ÔH√ eÁ‘·«kÕ´eX¯´ø£ ‘˚«|æ ãTTE‘·« eTqTuÛ÷Ñ j·T‘˚ ‘·<«ä ~‹uÛ≤e' ˆˆ qq«<Ûë´kÕ ~‘·T´ø£+Ô ø√j·TeT<Ûë´k˛Hêy˚T‘·´‘· ÄVü≤ ˆˆ lbÕ<äTø£ : eè‘·eÔ TTqT düeTu≤VüQ Á‹uÛTÑ »eTT>± dü+uÛ≤$+#·&+É ˝À Äs¡+uÛyÑ ê<ä+ ≈£î<äs<¡ Tä . ø±s¡D+ ` nDT‘·«+ ˝Ò
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
51
˝Àø£+˝À X¯óøÏsÔ »¡ ‘· ÁuÛ≤+‹˝ÀqT nq>± eTT‘·´|ü⁄ ∫|üŒqT #·÷∫ <ëìjÓTTø£ÿ HÓ>’ ì∑ >∑´ (ì>∑ì>∑˝≤&ÉT dü«uÛ≤eeTT) <Ûë>∑<>äÛ ´∑ (<Û>ä <∑ >äÛ ˝∑ ≤&ÉT dü«uÛ≤eeTT#˚) yÓ+&çjT· H˚ ÁuÛ≤+‹ Á|üe÷‘·è $wüjT· +˝À dü+uÛ$Ñ +#·&Üì ø£eø±X¯eTTqï~. á $T<∏ë´C≤„Hêìπø n<Ûë´dü nì XÊÁd”j Ô T· yÓTqÆ e´eVü‰s¡+. ø±ì Á|üdTü ‘Ô · $wüjT· + y˚sT¡ . $X¯ó<äy∆ TÓ qÆ eè‘·eÔ TTq+<äT Á‹ø√D‘·«eTTqT n<Û´ä edæ+#·Tø=ì ÁuÛ$Ñ T+#·&ÜìøÏ ÄkÕÿs¡yT˚ ˝Ò∑<øäÛ ´£ , HÓ>’ ì∑ >∑´eTT\H˚ yÓTs¡T|ü⁄ dü«uÛ≤e+ ø±s¡D+>± X¯óøÏÔ (eTT‘·´|ü⁄∫|üŒ) j·T+<äT s¡»‘· ÁuÛ≤+‹ ø£\T>∑T‘·Tqï~. ø±ì |üsd¡ Œü s¡ $s¡T<ä∆ <Ûsä êàÁX¯jT· eTT˝…q’ eè‘·Ô Á‹ø√D≤\ $wüjT· +˝À Ä$<Ûyä TÓ qÆ kÕeT´y˚T$Tj·TT ˝Òq+<äTq XÊÁd”j Ô T· +>± #Ó| ü ≈£î+fÒ n<Ûë´dü≈î£ ø±s¡D kÕeTÁ– ˝Òq+<äTq n<Ûë´dü eT÷\ø£yTÓ qÆ ÁuÛeÑ Tø£eø±X¯yT˚ ˝Ò<ìä |üPs¡«|üø+å£ dü«s¡÷|ü+. Bìì K+&çd÷ü Ô lkÕ«$Tyês¡T ` ªnÁ‘êdü´ <Ûë´düd´ü nqTuÛ÷Ñ j·Te÷q‘˚«q q |üPs¡«|üøkå£ Õ´eø±X¯'μ ˙e⁄ #Ó|Œæ q~ ì»y˚T. n<Ûë´dü kÕeTÁ– ˝Ò≈î£ +fÒ n<Ûë´kÕqTuÛeÑ + ˝Ò≈î£ +fÒ eè‘·eÔ TTq≈£î Á‹ø√D $es¡dÔ +ü uÛ≤eq ≈£î<äs<¡ Tä . ø±ì Çø£ÿ&É n<Ûë´kÕqTuÛeÑ eTT düŒwüeº TT>± <ä]Ù+#·ã&ÉT‘·Tqï~. es¡T˝Ô ≤ø±s¡+>± ñqï~ ~vàD¶˝≤ìï <ä]ÙdüTqÔ ï|ü &ÉT <ëìô|’qT ¬s+&ÉT _+<äTs¡÷|üeTT˝…’q ‘êsê<Ûä«j·T eT<Ûä´e]Ô eÁø£‘·«eTTqT dü+uÛ≤$+#˚≥|ü &ÉT Ä eÁø£‘˝· À ãTTE‘·«y˚T nqTuÛeÑ eTTq≈£î edüT+Ô ~. Ä ‘êsê<ä«j·T _+<äT |ü±H˚ dü+uÛ≤$kÕÔeTT ‘·|Œü eÁø£‘«· <äèw摺 √ uÛ≤$+#·+. es¡T\Ô ‘·«eTT˝À á$<Ûyä TÓ qÆ Äs¡e® (ãTTE‘·«) dü+uÛ≤eqeTT n<Ûë´düùV≤‘·Te⁄ ˝Ò<ë n<Ûë´dü kÕeTÁ–j·Tì Á>∑V≤æ +#ê*. ø±ã{Ϻ ªn<Ûë´düμ Á|üdTü ‘Ô +· ˝À Á|üdTü ‘Ô y· T˚ ø±ì nÁ|üdTü ‘Ô +· ø±<äì kÕsê+X¯+. ...
ne‘ê]ø£ : n<Ûë´dü jÓTTø£ÿ dü+uÛ≤e´‘·qT dæ<ë∆+rø£]+∫q ‘·sT¡ yê‘· <ëì dü«s¡÷bÕìï˝≤ ìs¡«∫kÕÔsT¡ >∑Ts¡T<˚e⁄\T.
dü÷Á‘·+ ˆˆ 8 ˆˆ |üs¡Á‘· |üsêeuÛ≤dü'
eè‹Ô' ˆˆ |üs¡Á‘· eè‘ÓÔ|üs¡dü´ Á‹Áø√D≤<Ó' neuÛ≤dü' Äs√|ü' n<ë´düÇ‘·´<∏ä9' n<Ûë´k˛Væ≤~«$<Û'ä ø±sê´<∏ë´dü' ø±s¡D≤<Ûë´düXÃË ‹. ‘·Á‘· ø±sê´<Ûë´düd´ü $T<Ûë´‘˚« dü‹ kո屑Y C≤„q ìes¡´Ô ‘·«+ \ø£Då +. nÁ‘·$X‚wDü ≤ìy˚XË Ç#êÃuÛ≤y˚ $X‚cÕ´ìy˚X‚ eTè<ë<Í kո屑êÔ«ìy˚X‚ ã+<Û˚ #ê‹yê´|”Ô s¡‘√$X‚wDü $X‚cÕ´D≤+ Á‘·j÷· D≤ eT|ü⁄´bÕ<ëq+.
52
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ø±s¡D≤<Ûë´düdü´ ‘·T <√cÕ~Á‘·j·T »q´‘·«+ \ø£åD+. nÁ‘êj·T eTqT>∑eT' edüTÔ$•wüº‘·«eT<Ûë´dü kÕe÷q´\ø£åD+ yÓ’•wüº´+ kÕ«~∏ø£s¡D‘ê $•wüº kÕ«uÛ≤yê ~Ûøs£ D¡ ‘êe‘·´e uÛ≤dü´‘·« dü+ã+<Ûq˚ . n~Ûøs£ D¡ ‘êyÓ•’ wü´º +#· kÕ«e#˚Ã<¤ øä £ <˚XÊe∫äqï‘·« kÕ«e#˚Ã<¤ øä £ ø±˝≤e∫äqï‘√« uÛj Ñ T· dü+ã+<ÛH˚ ‹˚ ˆˆ Á‹uÛTÑ C≤q+‘·s¡ düèwæeº ÷kÕ.
á dü÷Á‘·+˝À |üsÁ¡ ‘·, |üsêeuÛ≤dü' nì s¬ +&ÉT |ü<ë\THêïsTT. n<Ûë´dü' nH˚ |ü<ëìï dü+|üPs¡ø+£ >± ô|’ dü÷Á‘·+ qT+&ç n<Ûë´Vü‰s¡+ #˚dTü ≈£îì nq«sTT+#·Tø√yê*. ø±>± ªª|üs¡Á‘· ` eè‘˚Ô, |üsêeuÛ≤dü' ` |üs¡dü´ neuÛ≤dü', |üs¡dü´ Á‹ø√D≤<Ís¡quÛ≤dü' n<Ûë´dü Ç‹ dü÷Á‘ês¡'ú .μμ |üsy¡ TÓ qÆ eè‘êÔ± Äs√|üeTT n<Ûë´dü nì dü÷\ú +>± ìs¡«∫+#·Tø√e#·TÃ. ˇø£ edüTeÔ ⁄q+<äT y˚s=ø£ dü<èä X¯ edü«Ô +‘· <Ûsä à¡ eTT\qT Äs√|æ+∫ #·÷#·T≥ e\q ø£*>π ÁuÛeÑ TqT n<Ûë´dü>± uÛ≤$+#·e#·TÃqT. á n<Ûë´dü ø±sê´<Ûë´düjT· ì, ø±s¡D≤<Ûë´düjT· ì s¬ +&ÉT $<Ûë\T. $T<Ûë´C≤„q+ e\¢ kո屑Y C≤„q+ ìe]Ô+#·&+É ø±sê´<Ûë´dü. <√cÕ~Á‘·jT· »q´‘·«+ ø±s¡D≤<Ûë´dü \ø£D å +. X¯óøÏÔ s¡»‘· ÁuÛ≤+‹, s¡E® düsŒ¡ ÁuÛ≤+‹ ñ<ëVü≤s¡DeTT\T. ˇø£ edüTeÔ ⁄q+<äT y˚s=ø£ edüTÔ <Ûsä à¡ eTT\qT Äs√|æ+∫ <ä]Ù+#·&+É e\¢ ø£*>π ÁuÛ≤+‹ n<Ûë´dü>± #Ó| ü ≈£îHêï+. X¯óøÏÔ s¡»‘· ÁuÛ≤+‹˝À X¯óøÏj Ô T· +<äT s¡»‘· <Ûsä à¡ eTT Äs√|æ+#· ã&ÉT‘·T+~. s¡»‘·eTT Äs√|ü´eTT. nq>± Äs√|æ+#·ã&˚ edüTeÔ ⁄. X¯óøÏÔ n~ÛcÕ˜qeTT. <˚ìj·T+<äT edü«Ô +‘·s¡ <Ûsä à¡ e÷s√|æ+#· ã&ÉT‘·T+<√ n~ n~ÛcÕ˜q eTqã&ÉT‘·T+<äì Á>∑V≤æ +#ê*.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
53
Äs√|ü´edüTÔ <Ûsä à¡ eTT\T n~ÛcÕ˜qeTTq+<äT uÛ≤dækÕÔjT˚ ‘·|Œü <ëìøÏ dü+Áø£$T+#·e⁄. ñ<ëVü≤s¡D≈£î n~ÛcÕ˜qyÓTqÆ X¯óøÏÔ ˝Ò<ë eTT‘·´|ü⁄ ∫|üŒj·T+<äT s¡»‘· <Ûsä à¡ eTT uÛ≤dædTü +Ô <˚ ‘·|Œü <ëìøÏ dü+Áø£$T+#· s¡E® düsŒ¡ ÁuÛ≤+‹ eT÷\ø£yTÓ qÆ n<Ûë´dü˝À n~ÛcÕ˜q+ s¡Ee® ⁄ ˝Òø£ Á‘ê&ÉT. Á‘ê&ÉTj·T+<äT düsŒ¡ \ø£Då eTT neuÛ≤dæ+∫ düsŒ¡ ÁuÛ≤+‹ ø£\T>∑T‘·T+<˚ ‘·|Œü Á‘ê&ÉT düsŒ¡ \ø£D å eTT\T ø£\~ ø±C≤\<äT. Á‘ê&ÉT≈£î düsŒ¡ \ø£D å ≤\T j·T<∏ës¡+ú >± dü+Áø£$T+#·eì uÛ≤e+. ÁãVü≤àdü÷Á‘ê\≈£î uÛ≤cÕ´Hêïs¡+_dü÷Ô lX¯+ø£s¡T\T eTT+<äT>± n<Ûë´dü dü+ã+<Ûyä TÓ qÆ $#ês¡DqT ` n<Ûë´dü n+fÒ @$T≥ì ÁbÕs¡+_ÛkÕÔsT¡ . ø±s¡D≤<Ûë´düqT yês¡T ` düàè‹ s¡÷|ü' |üsÁ¡ ‘· |üPs¡«<äècÕºeuÛ≤dü' ` nì ìs¡«∫kÕÔsT¡ . Á|üdTü ‘Ô · dü÷Á‘·eTT˝À Ä#ês¡´ kÕ«$Tyês¡T ≈£L&Ü Ç<˚ $wüj·÷ìï dü]>±Z Çy˚e÷≥\‘√ Á|ü‹bÕ~kÕÔs¡T. X¯óøÏj Ô T· +<äT s¡»‘·eTTqT, s¡Ee® ⁄q+<äT düsêŒìï Äs√|æ+#·Tø=ì ÁuÛ≤+‹ bı+<ä&eÉ Tì uÛ≤e+. á $<Ûyä TÓ qÆ Äs√|üDø±s¡D+>± s¬ +&ç+{Ï uÛ<Ò ëìï Á>∑V≤æ +#·ø£ b˛e&ÉeTT e\¢ ø£*>π ÁuÛeÑ T n<Ûë´dü nì #Ó|Œü ã&çq~. edüTeÔ ⁄ jÓTTø£ÿ |üPs¡« düàè‹j˚T ˝Òø£ b˛sTTq#√ á ÁuÛ≤+‹ ø£d\ü T ÄkÕÿs¡eTT+&˚~ ø±<äT. s¡»‘· C≤„q+ >±ì, düsŒ¡ C≤„q+ >±ì ˝Ò≈î£ +fÒ n~ÛcÕ˜qeTT˝…q’ X¯óøÏ,Ô s¡Ee® ⁄\j·T+<äT s¡»‘·, düsŒ¡ eTT\ ÁuÛ≤+‹ ø£\T>∑H˚ ø£\T>∑∑T#·Tqï~ ø±e⁄q Ç~ ø±s¡D≤<Ûë´dü≈î£ <ëVü≤s¡DeTT\T. eè‘êÔ´s¡+uÛ+Ñ ˝ÀH˚ Ä#ês¡´kÕ«$Tyês¡T ø±sê´<Ûë´düqT ` ªª‘·Á‘· ø±sê´ <Ûë´düdü´ $T<Ûë´‘˚«dü‹ kո屑Y C≤„q ìes¡´Ô ‘·«+ \ø£Då yéTμμ ` nì ìs¡«∫kÕÔsT¡ . Ç~ uÛ≤wü´+˝Àì ªn‘·dàæ +düÔ <äT“¤~]∆ ‘·´y√#êeTμ nH˚ n<Ûë´dü\ø£D å ≤ìøÏ <ä>sZ∑ >¡ ± <ëì‘√ dü+e~dü÷Ô ø£ì|ædTü +Ô ~. ªªnÁ‘êj·T eTe>∑eT'μμ ` n+fÒ Çø£ÿ&É á $wüj÷· ìï˝≤ Á>∑V≤æ +#ê\+≥÷ eT÷&ÉTe÷≥\˝À eTTø±ÔsTT+|ü⁄>± n<Ûë´dü $#ês¡Dì˝≤ eTT–kÕÔsT¡ . 1. edüTÔ $•wü‘º «· eT<Ûë´dü kÕe÷q´ \ø£Då yéT. nq>± edüTeÔ ⁄q+<äT edü«Ô +‘·s¡ <Ûsä à¡ e÷s√|æ+#·ã&ç nq´<Ûë uÛ≤dæ+#·&eÉ TT n<Ûë´dü kÕe÷q´ \ø£D å eTì ns¡eú TT. 2. ªyÓ•’ wü´º + ` dü« n~Ûøs£ D¡ ‘ê $•wüº kÕ«uÛ≤yê~Û ø£sD¡ ‘ê e‘·‡euÛ≤dü dü+ã+<Ûq˚ μ yÓ•’ wü´º eTT ˝Òø£ nq´<ÛëeuÛ≤düeTT n~ÛcÕ˜qeTTq+<äT, dü«uÛ≤eeTTq≈£î ã<äT\T kÕ«uÛ≤eeTT (y˚s=ø£ edü«Ô +‘·s<¡ säÛ à¡ eTT) uÛ≤dæ+#·T≥.
54
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
3. n~ÛcÕ˜q dü+ã+~ÛjTÆÓ q n~Ûøs£ D ¡ ‘ê yÓ•’ wü´º eTT edüTeÔ ⁄q≈£î dü+ã+~Û+∫q <˚Xø¯ ±˝≤e∫äqïyÓTÆ Á|ü‹uÛ≤dæd÷ü Ô ñ+≥T+~. Á|üdüTÔ‘·+˝À n<Ûë´düeT÷\ø£yÓTÆq düàs¡D ø±s¡D+>± eè‘·Ô|ü]~Û˝À nH˚ø£ uÛTÑ »ø√DeTT\ dü+uÛ≤e´‘· @s¡Œ&ÉT#·Tqï<äì |æ+&ç‘ês¡+ú Á>∑V≤æ +#ê*. ne‘ê]ø£ : düeTu≤VüQ Á‹uÛTÑ »eTTqT+&ç nq+‘·sπ U≤ Á|ü|+ü #·dèü wæº nsTT<äT dü÷Á‘ê˝À¢ (9 qT+&ç 13) $e]+|ü ã&ÉT#·Tqï~. ❋❋❋
dü÷Á‘·+ ˆˆ 9 ˆˆ Á‹uÛÑTC≤ ‘·Œ+#· ‘·HêàÁ‘êDÏ ‘·HêàÁ‘˚uÛÑ´' |ü+#·eTVü‰Á‹ø√D≤ì ‘˚uÀÛ ´œ\#·Áø±DÏ ˆˆ eè‹Ô' ˆˆ Á‹uÛÑTC≤‘·ÔHêïeTø±#·ÃÁø±‘Y |ü+#·‘·HêàÁ‘êDÏ |ü+#· düeTÁ‹uÛÑTC≤ì ‘˚uÛÑ´' |ü+#·eTVü‰Á‹ø√D≤ì ‘˚uÀÛ ´ œ\#·Áø± D´C≤j·T+‘Ó ‘·´<∏ä9' qqT Á‹uÛ÷Ñ C≤‘·ÿ<∏eä Tœ\ #·Áø±D≤ eTT‘·Œ‹Ô ]‘ê´X¯+ ø±j·÷ e÷Vü≤ ˆˆ Á‹uÛÑT»eTT qT+&ç |ü+#·‘·HêàÁ‘·\T, |ü+#·‘·HêàÁ‘·\ qT+&ç |ü+#· eTVü‰ Á‹ø√DeTT\T, yêìqT+&ç $T>∑‘ê #·Áø£eTT\T Ä$s¡“$¤ +∫Hêj·Tì uÛ≤eeTT. Çø£ÿ&É Á‹uÛTÑ »eTq>± düeTu≤VüQ Á‹uÛTÑ »eTH˚ nsêúìï Á>∑V≤æ +#ê*. düeTu≤VüQ Á‹uÛTÑ »eTT qT+&ç |ü+#·‘H· êàÁ‘·\T nsTT<äT düeTu≤VüQ Á‹uÛTÑ »eTT\ s¡÷|ü+˝À Ä$s¡“$¤ +#êsTT. yêì qT+&ç nsTT<äT eTVü‰Á‹ø√D≤\T ` düeT~«u≤VüQ Á‹uÛTÑ »eTT (Isoceles Triangle), 2. $wüeT u≤VüQ Á‹uÛTÑ »eTT (The Scalene), 3. \+ãø√D Á‹uÛTÑ »eTT (The Rightangled Triange) 4. n~Ûø£ ø√D Á‹uÛTÑ »eTT (The obtuse angled Triangle) 5. n\Œø√D Á‹uÛTÑ »eTT (The Acute angled Triangle)@s¡Œ&çHêsTT. yêì qT+&ç $T–*q ‘· © j· T π s U≤ ∫Á‘· e TT\T ( Lateral Figures) #·‘T· s¡T“¤»eTT\T (Quadrilateral), |ü+#·uTÑÛ C≤\T (pentagon), wü&TÉ “¤C≤\T (Hexagon) yÓTT<ä˝q ’… $ @s¡Œ&çHêsTT. nì dü÷Á‘ês¡eú TT. ø±>± ` ❋❋❋
ne‘ê]ø£ : düeTu≤VüQ Á‹uÛTÑ »eTT qT+&ç á #·Áø±\˙ï m˝≤ @s¡Œ&çHêj·TH˚ dü+X¯jT· + dü>≥ ∑ T eTìwæøÏ ø£\>∑&+É düV≤ü »+. <ëìì ìe]Ô+|ü#j ˚ T· &É+ ø√düeTì ‘·sT¡ yê‹ dü÷Á‘·eTT Á|ü‹bÕ~+#· ã&ÉT#·Tqï~.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
dü÷Á‘·+ ˆˆ 10 ˆˆ ñÁ<˚ø±‘Y
55
eè‹Ô' ˆˆ |ü]D≤e÷~‘·´<∏ä9' |ü]D≤e÷ ‘·‡ø£\#·Áø±D≤eTT‘·Œ‹Ô∑DÏ‘·XÊÁùdÔ ñÁ<˚ø£ |ü<ädü´ÁuÛÑeTD |üs¡‘ê«uÛÑT´|ü>∑e÷ ~‹ ˆˆ qqT Á‹uÛTÑ CÀÁ<ëø± <äœ\ #·Áø±D≤ eTT‘·Œ‘êÔ e|üd<æ ë∆+‘· Ç‘ê´X¯+ø±´Vü≤ ˆˆ ñÁ<˚ø£ X¯u≤›ìøÏ eTT+<äT |ü]D≤eTeTH˚ nsêúìï #Ó|Œæ |ü]D≤eTeTT e\qH˚ düø\£ #·Á≈£eTT\T Ä$s¡“$¤ kÕÔjT· ì ñÁ<˚ø£ ˝Ò<ë |ü]D≤eT\ø£Då ≤ìï ` ªª|ü]D≤$T‘·«+#· ñbÕ<ëq‘ê«_ÛeT‘· edüTdÔ ‘ü êÔ düeTdü‘êÔø‘£ «˚ dü‹, ‘·± nq´eTTq ø£H√´bÕ<˚jT· ‘·«eTTqT yê]+#·&+É ø√dü+ s¬ +&Ée <äfik¯ Õs¡øú ±´ìï $e]dü÷Ô á s¬ +&çø° eT÷\+ >∑D‘Ï · XÊÁdü+Ô ˝À ñÁ<˚ø|£ <ü ëìï ÁuÛeÑ TD|üsy¡ TÓ qÆ nsêúìï $eøÏ+å #·&yÉ T˚ qì $X‚w¢ kæ ÕÔsT¡ . ªª>∑D‘Ï X· ÊÅùdÔ ñÁ<˚ø|£ <ü dä ´ü ÁuÛeÑ TD |üs‘¡ ê«uÛTÑ ´|ü>e∑ ÷~‹μμ ` nH˚~ yê] ø£+sƒ√øÏ.Ô á $wüj÷· ìï ø=~›>± $e]+#·T≈£î+<ë+ ` >∑D‘Ï · XÊÁdü+Ô ˝À ñÁ<˚ø|£ <ü ëìøÏ ÁuÛeÑ TDeTs¡eú Tì #Ó| ü ≈£îHêï+. á ÁuÛeÑ TD+ <Ûqä (Positive) ãTTD (Negetive) Á|üu<ÒÛ ë\#˚ $kÕÔs¡ (Evolution) dü+ø√#·eTT (Involution) dæú‘·T\qT dü÷∫dü÷Ô e´eVü≤]+|ü ã&ÉT‘·Tqï~. Mì˝À eTq+ $düèÔ ‘· ÁuÛeÑ TDeTTH˚ (Positive revoluÔ ê+X¯+. tion) $wüjT· +>± $y˚∫+#·T≈£î+{≤eTT. Ç<˚ eTqøÏøÿ£ &É Á|üdTü ‘ á <äèø£Œ<∏+ä ˝À eTq+ düeTu≤VüQ Á‹uÛTÑ » ÁuÛeÑ TD≤ìï Á>∑V≤æ ùdÔ n~ eTq≈£î eTs¡\ s¬ +&ÉT Á|üø±sê\T>± dü+uÛ≤e´‘·qT dü÷∫düT+Ô ~. ÁuÛeÑ TDeTT ˇø£ nø£eå TT (Axis) Ä<Ûës¡+>± kÕ~Û+|üã&ÉT‘·T+~. á nø£å_+<äTe⁄ (Axis point)>± Á‹uÛTÑ »eTT˝Àì @ø√D _+<äTe⁄HÓH’ ê Á>∑V≤æ +#·e#·TÃqT. Á|ü± Á>∑V≤æ +∫q _+<äT>∑‘· uÛTÑ »eTT q≈£eå TT>± Á>∑V≤æ +∫ Á‹uÛTÑ »eTTqT düeTÁ>∑eTT>± Á‹|ü ≥ $wüjT· +>± Á>∑V≤æ +#ê*.
56
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
s¬ +&Ée Á|üø±s¡+˝À nø£_å +<äT ø√DeTTqT #˚ùd @ ˇø£ uÛTÑ »eTTHÓH’ ê Á‹|üŒ&É+ $wüjT· +>± Á>∑V≤æ +#·ã&Ü*. á¬s+&ÉT $<Ûeä TT˝…q’ $kÕÔs¡ ÁuÛeÑ TDeTT\˝À eTs¡\ eTq+ sπ U≤>∑D‘Ï +· ˝À eTT+<äT #Ó| ü ≈£îqï sπ Fj·T ∫Á‘ê\ qT‘êŒ~+#·&+É ø√dü+ düeTu≤VüQ Á‹uÛTÑ »eTT jÓTTø£ÿ sπ Fj·T |ü]ÁuÛeÑ TDeTTH˚ nq>± s¬ +&Ée Á|üø±sêH˚ï ÄÁX¯sTTkÕÔ+. sπ Fj·T C≤´$T‹ dæ<ë∆+‘·Áø£e÷ìï Á|üe÷D°ø]£ +#ê\+fÒ (To bear the tes£ TT ˝Ò<ë ÁuÛeÑ TDeTT timony to the law of geometrical continuity) eTq+ ñÁ<˚øe jÓTTø£ÿ s¬ +&Ée Á|üø±sêH˚ï düMTøÏ+å #·Tø√yê*. á $wüj÷· ìï k˛<ëVü≤s¡D+>± 5 $<Ûë\T>± sTT˝≤ $X‚w¢ +æ #·Tø√e#·TÃ. Á|ü± ABC nH˚ düeTu≤VüQ Á‹uÛTÑ C≤ìï Ä\+ãq+ #˚døæ =ì, C øπ +Á<ä+>± CA nø£s πå KqT ABC, ACB ø√D≤\‘√ düe÷q+>± ACD ø√D+ #˚ùd˝≤ Á‹|æŒq≥T¢>± uÛ≤$ùd,Ô CA düsfi¡ ¯ sπ K CD ∫Á‘·eTT 1 >± |ü]D$T+∫, A _+<äTe⁄ D _+<äTe⁄>± kÕúHê+‘·s¡ #·\qeTTqT bı+<äT‘·T+~. AC ì K+&çdü÷Ô BD _+<äTe⁄\qT ø£\T|ü>± eTq≈£î ø=ìï $wüj·÷\T |ü]o\Hês¡ΩeTT˝…q’ $ Ç˝≤ >√#·]kÕÔsTT. 1. ∠BEC ` \+ãø√DeTT (900) (Right Angle) 2. ∠ABC ` n\Œø√DeTT (Acute angle) (<90 ) 900\ø£qï ‘·≈î£ ÿe ø√DeTT 3. BCD ` n~Ûøø £ √DeTT (Obtuse Angle) (>90 ) 900\ ø£qï m≈£îÿe ø√DeTT 0
0
∫Á‘·eTT 2
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
57
BEC
` BEC \+ãø√D Á‹uÛTÑ »eTT (Right angle triangle) ABC ` ABC n\Œø√D Á‹uÛTÑ »eTT (Acute angled triangle) BCD ` BCD n~Ûøø £ √D Á‹uÛTÑ »eTT (Obtuse angled triangles) B,D _+<äTe⁄\qT ø£\T|ü⁄‘·÷ ^dæq düsfi ¡ sπ¯ K ø±s¡D+>± á ø√DeTT\T Á‹uÛTÑ »eTT\T @s¡Œ&ܶjT· ì Á>∑V≤æ +#ê*. s¬ +&ÉT _+<äTe⁄\qT ø£\T|ü⁄‘·÷ n<äq+>± ^dæq Çìï n<äT“¤‘ê\qT düèwæ+º ∫+<äì Á>∑V≤æ +#ê*. 2.Ç|ü &ÉT A,D _+<äTe⁄\qT ø£\T|ü⁄‘÷· y˚s=ø£ düs¡fi¯πsKqT ^ùdÔ eTs√ n<äT“¤‘·+ >√#·]düT+Ô ~. n~ ABCD nH˚ düT+<äsy¡ TÓ qÆ dü e ÷+‘· s ¡ dü e Tu≤Vü Q #· ‘ · T s¡ T “¤ » eTT. m<äT¬s<äTs¡T ø√D≤˝…’q ∠ABC ∠ADC\T s¬ +&ÉT düe÷qeTT\T (600) n\Œ ø√DeTT\T ∫Á‘·eTT 3 ∠BAD, ∠BCD ø√DeTT\T düe÷qeTT\T (1200) n~Ûø£ ø√DeTT\T á $<Ûyä TÓ qÆ sπ Fj·T ∫Á‘êìï sê+ãdt (Rhombus) n+{≤s¡T. ~«rj·T $X‚w¢ Dü ` Á|üj÷Ó >∑eTT (Second Experiment) : 3e ∫Á‘·eTTqT j·T<∏ë‘·<+ä∏ >± uÛ ≤ $dü ÷ Ô H ˚ C π ø +Á<ä + >± CD ∠ABC ø√D+‘√ düe÷q+>± ñ +&˚˝≤ Á‹|挑˚ CD jÓTTø£ÿ $πø|å +ü CF ne⁄‘·T+~. C,F ø£ * |æ ‘ ˚ eT]jÓTTø£ n<äT“¤‘y· TÓ qÆ $wüjT· + BC düsfi¡ sπ¯ K jÓTTø£ÿ BØÈøs£ D¡ eTT (Prolongation ) CF nì˙ï BF ∫Á‘·eTT 4 BØÈ ø £ è ‘· d ü s ¡ fi ¯ π s K Prolonged Ô ~. straight line nìj·TT ‘Ó\TdüT+ n+‘˚ø±<äT, Á‹uÛTÑ »eTT˝À uÛ÷Ñ uÛTÑ »eTT (Base line)ô|’ Ç‘·s¡ uÛTÑ »eTT\ $πø|å eü TT\T uÛ÷Ñ uÛTÑ »|ü]e÷DeTTqT Á|üd]Ôü +|ü #˚kÕÔsTT nH˚ $wüjT· eTe>∑‘· eTÚ‘·T+~.
58
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
düsπ ! Ç|ü &ÉT D,F _+<äTe⁄\qT ø£\T|ü>±, ABFD düe÷+‘·s¡ ~«u≤VüQ #·‘T· s¡T“¤»eTT @s¡Œ&ÉT‘·T+~. Bìì >∑D‘Ï X· ÊÁdü+Ô ˝À Áf…|õ” j·T+ (Trapezium) nì e´eVü≤]kÕÔsT¡ . (∫Á‘·eTT 4) ‘·sT¡ yê‘· á Áf…|õ” j·T+˝À m<äT{Ï ø√D_+<äTe⁄\qT ø£\T|ü⁄‘·÷ AF sπ KqT ^j·÷*. Bì e\q Áø=‘·Ô Äø£è‹ @~j·T÷ dü+uÛ$Ñ +#·∑eTT (Third Experiment) : 4e ∫Á‘·eTT˝Àì CF sπ KqT |üPs¡«eTTe˝… C øπ +Á<äeTT>± 600 ñ+&ÉTq≥T¢ ÁøÏ+<äT>± Á‹|æŒq#√ F jÓTTø£ÿ $øÏ|å Ôü _+<äTe⁄ G @s¡Œ&ÉTqT. CF jÓTTø£ÿ $πø|å eü TT CG n>∑Tqì uÛ≤eeTT. BG, GF\qT ø£\T|ü>± ABGF nH˚ #·‘T· s¡T“¤»eTT (Bs¡# È ‘· T· s¡ÁdüeTT); eT]j·TT ABGFD nqT |ü+#·uTÑÛ õ (Pentagon) @s¡Œ&ÉTqT. ‘·sT¡ yê‘· ` DG\qT ø£\T|üe˝…qT. Áø=‘·Ô s¡÷|üyT˚ $Tj·TT >√#·]+|ü∑eTT (Fourth Experiment) : CGqT |üPs¡«eTTe˝… j·T<∏ëÁ|üø±s¡eTT>± 600\ ø√DeTT #˚jT· Tq≥T¢ $øÏ| å eÔü TT #˚jT· >± H $øÏ|å Ôü _+<äTe⁄ @s¡Œ&ÉT‘·T+~. BH, HG\qT ø£*|æq#√ ADFGHB wü&ÉT“¤õ (Hexagon) @s¡Œ&ÉT‘·T+~. (∫Á‘·+`5) |æeTà≥ AH, HF\qT ø£\T|üe˝…qT. Áø=‘·Ô ∫Á‘·yT˚ $Tj·TT ø£ì|æ+#·± CH jÓTTø£ÿ $πø|å eü TT CB>± #·÷|ü≥TºqT. ∫es¡>± 6e ÁuÛeÑ TDeTT˝À CA ‘·q ÁbÕs¡+uÛd Ñ ‹úæ øÏ e#·TÃqT. nq>± ‹]– ‘·q dü«kÕúqeTT‘√ H˚øu° $ÑÛ +#·TqT. ˝Ò<ë Äs√|æ‘e· T>∑Tqì uÛ≤eeTT. Ç+‘·≈î£ $T+∫ Áø=‘·Ô sπ Fj·T ∫Á‘·eTT ˝ÒsŒ¡ &ÉTqeø±X¯eTT ˝Ò<ìä ‘Ó*j·TTqT.
∫Á‘·eTT 5
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
59
|ü+#·eT $X‚w¢ Dü ` Á|üj÷Ó >∑eTT (Fifth Experiment) : Ç|ü &ÉT CA jÓTTø£ÿ $øÏå|üÔ _+<äT |ü<∏äeTTqT #·Tø£ÿ\^‘·‘√ ø£*|æq#√ CA yê´kÕs¡eú TT>± C øπ +Á<äeTT>± ADFGHB\ >∑T+&Ü #·]+#·T |ü]πsK (|ü]~Û)>± >∑\ |ü]eè‘·yÔ T˚ s¡Œ&ÉTqT. (∫Á‘·+ 6) Ç~ eè‘·eÔ TT ˇø£ øπ +Á<äeTTqT+&ç m+‘·<÷ä s¡eTT˝ÀHÓq’ qT düe÷qeTT>± Á|üj÷· DÏ+#·T _+<äT |ü∑T#·Tqï~. ∫Á‘·eTT 6 á$<ÛäeTT>± ô|’ $X‚¢wüDeTT\qT dü e Tq« sTT+∫q#√ ˇø£ dü e Tu≤Vü Q Á‹uÛTÑ »eTT, ‘·q ø√DuÛTÑ »eTT\ dü+j·TTø±Ôøeå£ TT Ä<Ûës¡eTT>± ñÁ<˚øe£ TTq+~ (ÁuÛ$Ñ T+∫) q|ü⁄&ÉT eTqeTT |ü]o*+∫q sπ Fj·T ∫Á‘·eTT\ì≥T¢ dü+Á>∑V≤æ +|üe#·TÃqT. n$ ` 1. düsfi¡ sπ¯ K (Straight Line) 2. Á‹uÛTÑ »eTT\T (Triangles) 3. #·‘T· s¡T“¤»eTT\T (Quadriletarals) 4. |ü+#·uTÑÛ õ (Pentagon) 5. wü&TÉ “¤õ (Hexagon) 6. eè‘·eÔ TT (Circle) nì #Ó|Œü H=|ü qT. dü÷πøåàøÏåø£‘√ <ä]Ù+∫q#√ á s¡÷|üeTT\˙ï Á‹uÛÑT»eTT jÓTTø£ÿ dü+j·TTø£Ô s¡÷|üeTT\T>∑H˚ ø£ì|ækÕÔsTT. ø±>± á sπ Fj·T s¡÷|üeTT\ìïj·TT düeTu≤VüQ Á‹uÛTÑ »eTT jÓTTø£ÿ Äs√|æ‘· Á|ü‹s¡÷|üeTT˝Ò (Super imposed forms) nsTT eTs¡\ |ü]eè‘·eÔ TT (circum circle)˝À |üs´¡ edæ+#·T#·Tqï$. Ç~ s π Fj·T Áø£eT |üsêes¡qÔ eTT geoí TÓ qÆ düeTÁ>∑yTÓ qÆ dü‘´· ìs¡÷|æ‘· dæ<ë∆+‘·eTT. metrical continuity. Ç~ dü+|üPs¡y ❋❋❋
ne‘ê]ø£ :- ñÁ<˚øe£ TTe\q düeTdüÔ #·Áø£eTT\ j·÷$sꓤeeTT #Ó|Œü ã&çq~. $kÕÔs¡ dü+ø√#·eTT\T (Evolution and Involutin) mfÒs¢ Œ¡ &ÉT#·TqïeqT dü+X¯jT· eTTqT |ü]wüÿ]+#·T≥¬ø’ Á|üdTü ‘Ô · dü÷Á‘·eTT Á|ükÕÔ$+|üã&ÉT#·Tqï~.
60
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü÷Á‘·+ ˆˆ 11 ˆˆ düeTq«j·÷‘Y eè‹Ô' ˆˆ düeTdüÔ >∑DÏ‘·XÊÁdüÔ düeTq«j˚T ÁøÏj·Te÷D… Á‹uÛÑTCÀÁ<˚ø± <äœ\ #·Áø√‘·Œ‹Ô <äXH¯ ê ~‘·´<∏ä9' ˆˆ qq÷Á<˚ød£ ´ü düø\£ #·Áø√‘êŒ<äø‘£ «˚ dü+ø√#· $ø±k ø£<$ä∏ T‘ê´ X¯+ø±j·÷ e÷Vü≤ ˆˆ
ne‘ê]ø£ :` á$<ÛäyÓTÆq πsFj·T πøåÁ‘·>∑DÏ‘· dæ<ë∆+‘·eTT jÓTTø£ÿ Ä$wüÿè‹ }Vü‰e÷Á‘·eTT>±ì, ‘·s¡Tyê‘· ‘Ó*j·Tã&çq |ü]C≤„qeTTø±ì ø±<äT. á Á|ü‹bÕ<äqeT+‘·jT· T øπ Áå ‘·>D∑ ‘Ï · |ü]C≤„qeTT‘√H˚ düŒwüeº TT>± >±$+#·ã&çq<äH˚ $wüjT· + dü÷Á‘·ÁbÕj·T+>± Ç˝≤ ‘Ó*j·TCÒjT· ã&ÉT#·Tqï~. düeTu≤VüQ Á‹uÛTÑ »eTT (Equiletaral Trinagle) jÓTTø£ÿ ñÁ<˚ø£eTT ˝Ò<ë |ü]ÁuÛÑeTDeTT#˚‘·H˚ nœ\ #·Áø√‘êŒ<äqeTT düeTq«j·TeTT e\q Á|ü<]ä Ù+|üe#·TÃqH˚ $wüj÷· ìï á dü÷Á‘·eTT Á|üuÀ~ÛdTü qÔ ï~. á $wüj÷· ìï eè‹ÔÁ>∑+<∏eä TT˝À ˇπø ˇø£ yêø£´+ <ë«sê kÕ«$Tyês¡T ªªdüeTdüÔ >∑D‘Ï X· ÊÁdüÔ düeTq«jÓT ÁøÏj÷· e÷DÒ Á‹uÛTÑ CÀÁ<˚ø±<äœ\ #·Áø√‘·Œ‹Ô Á|ü∑+;Ûsy¡ TÓ qÆ Á|ü‹bÕ<äq. düeTdüÔ >∑D‘Ï X· ÊÁdüÔ |ü]C≤„qeTTø£\ nkÕ<Ûës¡D Á|ü‹uÛ≤XÊ*jÓTÆ q >∑Ts¡T<˚e⁄\πø á$<Ûyä TÓ qÆ Á|ü‹C≤„yêø£´ Á|ü‹bÕ<äqeTT #Ó*q¢ ~. á $wüj÷· ìï j·T<∏ëeT‹ >∑Ts¡T<˚e⁄\ nqTÁ>∑V≤ü eTT‘√ $y˚∫+#·T≈£î+<ë+ ` j·T<∏ës¡yú TÓ qÆ $wüjT· eTTqT dæ<ë∆+rø£]+#·&ÜìøÏ k˛|ü|‹ü øÔ y£ TÓ qÆ , XÊÁdüÔ düeTà‘·yTÓ qÆ #˚ùd ÁbÕe÷DÏøy£ TÓ qÆ $#ês¡D≈£î XÊÁd”j Ô T· +>± ªªdüeTq«j·TeTTμμ (#˚jT· T≥) nì bÕ]uÛ≤wæø+£ >± e´eVü≤]kÕÔsT¡ . ªdüeTq«j·÷‘Yμ dü÷Á‘·+˝Àì düeTq«j·T X¯ãM› T j·Ts¡+ú ˝ÀH˚ Á|üj÷Ó –+#·ã&çq<äì Á>∑V≤æ +#ê*. XÊÁdüÔ <äèw摺 √ |ü]o*ùdÔ øπ Áå ‘· >∑D‘Ï e· TT jÓTTø£ÿ eTÚ*ø£ Á|ü‹bÕ<äqeTT\T (Elements of geometric laws) eTq Á|ü d ü T Ô ‘ · $#ês¡ D ≈£ î yÓ H Ó ï eTTø£ (Backbone)>± ì\TkÕÔsTT. øπ Áå ‘·>D ∑ ‘Ï E · ì„ sT÷ |ü$Á‘·eè‘·Ô Á‹uÛTÑ » <äsÙ¡ qeTT˝Ò XÊÁdüÔ ìsêàD≤ìøÏ ‘·–q Á|ü#√<äqqT ø£*–+∫q~. ˇø£ düeTu≤VüQ Á‹uÛTÑ »eTTqT <ëìjÓTTø£ÿ ˇø£ uÛTÑ »eTT nø£eå TT>±>=ì Ä sπ Fj·T uÛTÑ »eTTHê<Ûës¡eTT>± $e]Ô+∫q 31 Á|ükÕÔeq\T düsfi¡ sπ¯ K\T, Á‹uÛTÑ »eTT\≈£î #Ó+~q mHÓïH√ï $wüj÷· \qT ‘Ó*j·TCÒkÕÔsTT. 33 qT+&ç 45 es¡≈î£ #˚j·Tã&çq Á|ü‹bÕ<äq\˝À á düe÷+‘·s¡ #·‘·Ts¡T“¤»eTT\T Á‹uÛÑT»eTT\≈£î dü+ã+~Û+∫q $wüj÷· \T #·]Ã+#·ã&çHêsTT. 46e Á|ü‹bÕ<äq eT]j·TT ~«rj·T
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
61
Á>∑+<∏eä TT˝Àì 14 Á|ü‹bÕ<äq\T #·‘T· s¡ÁdüeTT\T, Bs¡#È ‘· T· s¡ÁdüeTT\≈£î dü+ã+~Û+∫q $wüj÷· \T #·]Ã+#·ã&çHêsTT. ‘·sT¡ yê‹ eT÷&ÉT, Hê\T>∑T Á>∑+<∏ä $uÛ≤>±\˝À yêìøÏ‘s· ¡ $wüjT· eTT\‘√ dü+ã+<Ûeä TT ˝Ò<ë dü+>∑‹ (concurrence) ‘Ó*j·TCÒjT· ã&çq~. Hê\T>∑e Á>∑+<∏äeTT˝Àì ªÁø£eT wü&ÉT“¤õμ Hexagon\ jÓTTø£ÿ ìsêàDeTT‘√ Ç+#·T$T+#·T>± $#ês¡D |üPs¡sÔ TTq≥T¢>H∑ ˚ uÛ≤$+|üe#·TÃqT. @\qq øπ Áå ‘·>D∑ ‘Ï · XÊÁdüE Ô &„ TÉ ‘·q Á|ü‹bÕ<äqqT düeTu≤VüQ Á‹uÛTÑ » ìsêàD $y˚#q· eTT (Discussion of the constructin of the Equilateral Trinagle) ‘√ ÁbÕs¡+_Û+∫, $kÕÔsÁ¡ ø£eT+˝À (as regular Evolution) Áø£eT wü&TÉ “¤õ ì]à‹‘√ eTT–+#·&+É (conclusion with the construction of Regular Hexagon) <ëìì ∫e]<Óq’ düsfi¡ ¯ sπ U≤‘·àø£yTÓ qÆ ∫Á‘·eTT>± (Rectilinial Figure) ù|s=ÿq&É+, <ëìì $ÁdüèÔ ‹ Evolution≈£î dü+ã+~Û+∫q #·se¡ ÷ø£è‹ (Last Figure) >± Hê\T>∑e Á>∑+<∏eä TT˝À $#ês¡D (Discussion) |üPs¡sÔ TTq $wüj÷· ìï ‘Ó*j·TCÒdTü +Ô ~. ∫es¡>± $#ês¡DqT eTT–dü÷Ô |ü+#·±qT, eTs¡\ eT]jÓTTø£ |üsê´j·TeTT düeTu≤VüQ Á‹uÛTÑ » yÓ•’ cÕº´ìï Á|ü‹bÕ~+#·&+É øπ Áå ‘·>D∑ ‘Ï · Á|ü|+ü #·eTT˝À eè‘·Ô Á‹>∑TDeTT\ ÁbÕX¯kÕÔ´ìï dü÷∫düT+Ô ~. ‘·sT¡ yê‹<Óq’ 5 qT+&ç 10 es¡≈î£ >∑\ Á>∑+<∏eä TT˝À nH˚ø£ ;»>∑D‘Ï ,· n+ø£>D∑ ‘Ï ,· |òüTqπøåÁ‘·$T‹ (Algebraic, Arithematic, Solid geometrical) $wüj·÷\≈£î dü+ã+~Û+∫q $y˚#q· >±$+|üã&çq~. á düeTq«j·TeT+‘·jT· T eTq+ |üPs¡«dü÷Á‘·eTT˝À $y˚∫+#·T≈£îqï ñÁ<˚øe£ TT ˝Ò<ë düeTuÛÑT» Á‹uÛÑT» $es¡ÔqeTT ˝Ò<ë ÁuÛÑeTD+‘√ düeTÁ>∑+>± dü+e~dü÷Ô düeTq«sTTdüT+Ô ~. á ñÁ<˚ø+£ ˝À <Ûqä |ü]ÁuÛeÑ TD≤ìï e÷Á‘·yT˚ Á>∑V≤æ +#ê\ì eTT+<äT #Ó| ü ≈£îqï $wüj÷· ìï á dü+<äs“¡ +¤ ˝À düà]+#·Tø√yê*.◆ ❋❋❋
◆á > Á +∑ <∏ë\ $es¡D 'EUCLIDELEMENTS' ˝Àì$. nqTã+<Ûeä TT˝À n$ <=s¡T≈£î yÓudôŸ {’ Ÿ Çe«ã&ç+~.
62
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü÷Á‘·+ ˆˆ 12 ˆˆ ‘˚H√|ü#j · ÷· |ü#j · T· Ú #·Áø±D≤yéT eè‹Ô' ˆˆ ‘˚q`ñÁ<˚øπ D, #·Áø±D≤+ Á‹ø√D≤~ uÛ<Ò _ä HÛ êïHê+ ñ|ü#j · ÷· |ü#j · T· Ú uÛeÑ ‘· Ç‹X‚w'ü ˆˆ ñÁ<˚øX£ ï $ø±dü dü+ø√#· uÛ<Ò ë~«$<Û'ä $ø±kÕ <äT‘·Œ‹Ôd‡ü +ø√#ê ‘·øåj·T Ç‹ $y˚ø'£ ˆˆ q ì«‘·s¡ #·Áø±D≤ $Te |üPs¡dí ´ü s¡÷|üd´ü eè‘·´kÕ´|æ $ø±düd+ü ø√#Í øÏ+ qkÕ´‘ê $T‘·´‘· ÄVü≤ ˆˆ ‘˚q ` ñ|ü#j · ÷· |ü#j · T· Ú ` #·Áø±D≤yéT nì |ü<ä $uÛ≤>∑eTT. ñ|ü#j · ÷· |ü#j · T· Ú nì <ä«+<ä« düe÷düeTT $eøÏ+å #·ã&çq+<äTq dü+|üPs¡øe£ TT>± ªªdü+uÛeÑ ‘·'μμ nH˚ |ü<ëìï n<Ûë´Vü‰s¡+ #˚dTü ø=ì ` ª‘˚q #·Áø±D≤+ ñ|ü #·j÷· |ü#j · T· Ú dü+uÛeÑ ‘·'μ ` nì nq«j·T+ #Ó| ü ø√yê*. Ä |üø+å£ ˝À ` ‘˚q ` nq>± Ä j·TTÁ<˚øe£ TT ˝Ò<ë ÁuÛeÑ TDeTT#˚ #·Áø±D≤+ ` #·Áø£eTT\≈£î ñ|ü#j · ÷· |ü#j · T· eTT\T nq>± $kÕÔs¡ dü+ø√#·eTT\T dü+uÛÑ $kÕÔjT· H˚ ns¡+ú dæ~d∆ Tü +Ô ~. ñÁ<˚øe£ TT, <ÛHä ê‘·àø£, ãTTD≤‘·àø£ (Positive and Negative) Á|üu<ÒÛ ë\#˚ s¬ +&ÉT $<Ûeä TT\T>± Á|üe]Ôd÷ü Ô ñ+≥T+<äì #Ó| ü ≈£îHêï+. <ÛHä ê‘·àø√Á<˚ø+£ e\¢ $kÕÔse¡ TT (Evolution), ãTTD≤‘·àø√Á<˚ø+ £ e\¢ dü+ø√#·eTT (Involution) dü+uÛ$Ñ kÕÔjT· ì uÛ≤eeTT. eT]ø=~›>± dü÷ø£åà<äèw溑√ |ü]o*ùdÔ <ÛäHê‘·àø√Á<˚ø£eTTe\¢ (By positive revolution) »ì+∫q $kÕÔse ¡ TT (Evolution) ø±s¡D+>±, ˇø£ sπ Fj·T øπ Áå ‘·∫Á‘·eTT ãVüQeTTFq+>± (compound figure)>± Á|üd]Ôü düT+Ô <äì, n˝≤π> ãTTD≤‘·àø√Á<˚ø+£ e\¢ ˇø£ ãVüQeTTFqyÓTÆq πøåÁ‘·∫Á‘·eTT dü÷øå±àø£è‹ ø£\~>± dü+ø√#·eTTqT bı+<äT‘·Tqï<äì ‘Ó\TdüT+Ô ~. ø±>± sT÷ øπ Áå rj·T ∫Á‘ê\ $kÕÔs¡ dü+ø√#ê\≈£î ñÁ<˚øy£ T˚ Á|ü<ëÛ q ø±s¡DeTì |æ+&ç‘ês¡eú TT. ne‘ê]ø£ :- eè‘·eÔ TT≈£L&É sπ Fj·T øπ Áå ‘·$T‹øÏ dü+ã+~Û+∫q ˇø£ ∫Á‘·yT˚ ø±e⁄q Ç~ ≈£L&É ñÁ<˚øe£ TT jÓTTø£ÿ Á|üu≤Û eeTT#˚ Á|üu≤Û $‘·yTÓ qÆ $kÕÔs¡ dü+ø√#·eTT\qT bı+<äe˝…qH˚ uÛ≤eq ø£\>∑&+É düV≤ü »+. düV≤ü »yÓTqÆ dü>≥ ∑ T eTìwæøÏ ø£*>π á uÛ≤eHê $wüjT· +˝À dü]jÓTÆ q |ü]cÕÿs¡eTTqT sT÷ ÄVæ≤ïø£eTTjÓTTø£ÿ ø£&|É {ü Ï dü÷Á‘·+˝À Ç˝≤ dü÷∫kÕÔsT¡ l ø£˝≤´D≤q+<ä <˚•≈£î\T.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
63
dü÷Á‘·+ ˆˆ 13 ˆˆ q‘·T ìc˛ÿDdü´ ìc˛ÿDdü´ eè‹Ô' ˆˆ ìc˛ÿDdü´ ` ø√Ds¡V≤æ ‘·d´ü , $ø±düd+ü ø√#Í ` eè~∆øj å£ T· Ú, qdüÇÔ ‹X‚w'ü ˆˆ ‘·<ë∏ #· j·T ‘√ÿDs¡V≤æ ‘·+ q ‘·k˛´Á<˚ø£ Ç‹ yê´bÕÔ´ eè‘·dÔ ´ü H√Á<˚ø£ Ç‘·´\+ |ü\$¢ ‘˚q'~«s¡TøÏÔ sêVæ≤ïø£ |ü] düe÷bÂÔ ' ˆˆ q`‘·T`ìc˛ÿDdü´`ìc˛ÿDdü´ nì |ü<ä $uÛ≤>∑eTT. dü÷Á‘ê+‘·eTTq+<ä* ìc˛ÿDdü´ nH˚ |ü± dü+ø√#· $kÕÔse¡ TT\T dü+uÛ$Ñ +#·e⁄ nì ns¡eú TT. ø√Dj·TT‘·yTÓ qÆ |ü &˚ ø√D _+<äTe⁄ eT]j·TT ø√DπsKqT nø£eå TT>± #˚døæ =qï <ÛHä ê‘·àø£ ˝Ò<ë ãTTD≤‘·àø£yTÓ qÆ ñÁ<˚øe£ TT, <ëì Á|üu≤Û e+e\¢ ñ|ü#j · ÷· |ü#j · T· eTT\T ($kÕÔs¡ dü+ø√#·eTT\T` Evolution and Involution) dü+uÛ$Ñ kÕÔsTT. |üsÁ¡ ãVü≤à dü«s¡÷|ü ìs¡÷|üøy£ TÓ qÆ eè‘·eÔ TT ìc˛ÿDeTT. Bì˝À ø√Dy˚T ˝Ò
Á|ü<∏äe÷Væ≤ïø£eTT düe÷|üÔeTT. ❋❋❋
64
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
4(ii) ~«rj·÷Væ≤ïø£eTT l|üPs¡í MTe÷+kÕ<äX¯9HÓ düeè‹Ôøπ ~«r j·÷Væ≤ïø£ ÁbÕs¡+uÛ'Ñ eè‹Ô : Á|ü± $e]+∫q dü÷Á‘·øs£ Ô¡ Á|üdTü ‘Ô y· TÓ qÆ á ~«rj·÷Væ≤ïø£+˝À ` _+<ë«<äT\≈£î düø\£ #·Áø£ ø±s¡D‘ê«ìï #Ó|Œæ q ø=+<ä] eT‘·eTTqT |üPs¡«|üø+å£ >± ìπs•› +∫ ìs¡dkæ ÕÔsT¡ . |üPs¡Áí ãVü≤à e´+»ø£yTÓ qÆ eè‘·eÔ TT >∑D‘Ï X· ÊÁdüÔ Á|ü‹bÕ~‘·eTT˝…q’ ‘·©j·T sπ U≤ ∫Á‘·eTT\ìï+{ÏøÏ Ä<Ûës¡u÷ÑÛ ‘·yTÓ qÆ n~ÛcÕ˜qeTH˚ $wüj÷· ìï, ñÁ<˚ø£ ø±s¡D+>± düeTuÛTÑ » Á‹uÛTÑ »ø√D sπ U≤<Ûë]‘·yTÓ qÆ ÁuÛeÑ TDeTTe\q düs«¡ $<Ûeä TT˝…q’ Á‹uÛTÑ », #·‘T· s¡T“¤», düe÷+‘·s¡ #·‘T· s¡T“¤C≤<äT˝…q’ nH˚ø±H˚ø£ sπ U≤∫Á‘·s÷¡ |üeTT\ $kÕÔs¡ dü+ø√#·eTT\T (Evolution and Involutions) nH˚ $wüj÷ · ìï eTq+ $e]+#·T≈£îHêï+. eè‘·eÔ TT ø√DπsU≤\+ãq+>± ñÁ<˚øe£ TTqT bı+<äC≤\<äì˙ï ø±e⁄q n~ $kÕÔs¡ dü+ø√#·eTT\ |ü]~Û˝ÀìøÏ sê<äì dæ<ë∆+rø£]+#·&+É ≈£L&É »]–+~. ø±ì, BìøÏ $s¡T<ä+∆ >± ` _+<äTe⁄ (Point), sπ K (Line), ‘·\eTT (Plane) nH˚ eT÷&ÉT eTÚ*ø£ $wüj÷· ˝Ò @$<Ûyä TÓ qÆ sπ U≤∫Á‘ê$sꓤeeTTq¬øH’ ê ø±s¡DeTT˝Ö ‘êj·TH˚ eTs√ dæ<ë∆+‘·+ $&É÷s¶ +¡ >± ÁuÛ$Ñ T+|ü#ù˚ d~˝≤ (Queer and confusive) Ä$s¡“$¤ +∫+~. Bìe\q me¬sH’ ê ÁuÛ$Ñ T+∫ ‘=+<äs|¡ &ü ç ìs¡j í ÷· \qT (Hasty π Fj·÷ ∫Á‘ê\≈£î 1. _+<äTe⁄˝Ò ø±s¡DeTT 2. düsfi¡ sπ¯ K\T ø±s¡DeTT conclusions) s 3. ‘·\eTT ø±s¡DeTT nì rdæø=H˚ neø±X¯eTTqï~. |ü]o*ùdÔ Ç$ ø±s¡D≤ uÛ≤düeTT˝Òqì ‘Ó\TdüT+Ô ~. _+<äTe⁄qT <˚ìø¬ H’ ê eT÷\ø±s¡D+>± Á>∑V≤æ +#ê\+fÒ <ëìì Ç<ä$T‘·+ú >± ìs¡÷|æ+∫ #·÷|æ+#˚ bı&Ée⁄, yÓ&\É TŒ, m‘·T,Ô |ü]~∏, |ü]e÷D (Magnitude)Á|üe÷D+ (Unit) ñ+&Ü*. Ç+ø± s π Fj·T >∑D‘Ï X· ÊÁdüyÔ T˚ _+<äTe⁄qT nq+‘· yê´kÕs¡eú TT\ øπ +Á<äeTT Centre at which thousand radii meet Bìì sπ Fj·T ∫Á‘·eTT\ Ä$sꓤyêìøÏ eT÷\ø±s¡DeTq&É+ n$#ê]‘· s¡eTD°j·TeTT ns¡ús¡Væ≤‘·eTT (rigmorale) ne⁄‘·T+~. düs π `
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
65
Çø£ s¬ +&Ée<Óq’ sπ U≤ $wüjT· +, eT÷&Ée<Óq’ ‘·\eTT $wüjT· + Á|ü‘´˚ ø£+>± ìs¡d+æ |üqedüs+¡ ˝Ò± _+<äT (Point) πsK (Line) ‘·\eTT (Plane) πsU≤∫Á‘·eTT\ Ä$sꓤyêìøÏ eT÷\ø±s¡DeTT\H˚ yê<äeTT (Contradiction)qT <ëì dü+uÛ≤e´‘·\qT ùV≤‘·Tã<ä+∆ >± dü‘´· <ä÷s¡eTT\ì ìs¡÷|æ+#·&ÜìøÏ ~«rj·÷Væ≤ïø£eTT Á|ü‹bÕ~+|üã&ÉT#·Tqï~. ne‘ê]ø£ '- _+<äT ø±s¡Dyê<ëìï n&É+¶ >± K+&ç+#˚~ (Diametrically Antagonestic)>± |üP»´ >∑Ts¡T<˚e⁄\T ÁbÕs¡+uÛÑ dü÷Á‘êìï˝≤ Á|ü‹bÕ~kÕÔsT¡ . dü÷Á‘·+ ˆˆ 1 ˆˆ _+<äT ]‹ #˚Hêï jÓ÷>∑´‘ê«‘Y eè‹Ô' ˆˆ Á|ü∑´‘ê« ~‹ ˆˆ düø\£ #·Áø£ ø±s¡D ‘ê«qVü≤9‘ê« ~‘·´<Û9ä ', ‘·<ë∏ Væ≤, _+<äT ø±s¡D yê~H√ _+<√' ˆˆ sπ U≤kÕÔu´ÑÛ ÁdæuÔ TÑÛ »+ ‘·‘· X¯Ã‘·Ts¡T“¤» $T‹ Ø‘√´ ‘·Œ‹Ô eTTs¡Ø#·Á≈£î' ˆˆ ‘·qï dü+>∑#÷ ‘¤ ,Ó _+<√ ]ïwüŒ]e÷D‘˚«q sπ U≤BHê+ dü|]ü e÷D‘ê« ‘·‡|ü]e÷DùV≤‘·T‘·«dü´ ìwüŒ]q÷DÒ dü‘êÔ«‘·Ô <äTù|øÏ‘å +· , j·T<ä´Hêj·T‘êÔ´ ìwüŒ]e÷Ddü´ dü|]ü e÷D ùV≤‘·T‘·« $T‹Áã÷j·÷ ‘·VÔ ≤æ 9 ø±s¡´ ø±s¡D uÛ≤ekÕ´ì j·T‘·‘ê« ‘·‡sπ «uÛ´Ñ dü‡sπ « e⁄´‘·Œ<˚´s¡ ìï‘ê´~ <ä÷wüDqÒ <ä÷wæ‘√ j·T+ _+<äTø±s¡Dyê<ä Ç‹ ˆˆ qqT _+<√ ]ïwüŒ]e÷D‘·«eT‘˚ düø£\#·Áø£ ø±s¡D‘ê« dü+uÛÑy˚|æ HÓj Ô ÷· sTTø±~_Û]e |ü]e÷D eT+^ø£è‘·´≈£î‘·d‡ü ø£\ #·Áø£ø±s¡D‘·«+ H√ø£$Ô T‘ê´ X¯+ø±j·÷ e÷Vü≤ ˆˆ düø£\ #·Áø±‘·àø£ Á|ü|ü+#·eT+‘·≈£î ñ‘·Œ‹Ô $HêX¯eTT\T nqTuÛÑedæ<ä∆+>± ø£ì|ædTü qÔ ï+<äTq yêìøÏ ø±s¡´‘·« ø±s¡DeTT\T n+^ø£]+∫ rsê*. Ä |üø+å£ ˝À _+<äTe⁄qT ø±s¡D+>± Á>∑V≤æ +#ê*. m≥¢q ` _+<äTe⁄ qT+&ç sπ K\T, yêì qT+&ç Á‹uÛTÑ C≤<äT\T...
66
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Ç˝≤ ø±s¡D kÕeTÁ–ì }Væ≤+#·Tø√yê* nH˚ _+<äT ø±s¡D yê<ëìï düeT÷\+>± ìs¡÷à*+#ê\H˚ dü+ø£\Œ+‘√ kÕ«$TyêØ dü÷Á‘êìï˝≤ ñ|ü<•˚ +#˚sT¡ . ªª_+<äT' ` Ç‹`#˚‘`Y q`njÓ÷>∑´‘ê«‘Yμμ nì |ü<ä $uÛ≤>∑eTT. ø±>± Ç~ |ü+#·|~ü . n+fÒ Ç+<äT˝À nsTT<äT |ü∑´‘ê«‘Y nH˚~ ùV≤‘·T|ü⁄s¡d‡ü s¡yTÓ qÆ |ü]cÕÿs¡+. Bìì˝≤ $e]+#·Tø√yê*. sπ Fj·T ∫Á‘·eTT\≈£î _+<äTe⁄ ø±s¡DeTq&É+ ≈£î<äs¡<äT. m+<äTø£+fÒ _+<äTe⁄≈£î |ü]e÷DeTH˚~ ˝Ò<äT. πsU≤<äT\˙ï dü|]ü D≤eTeTT\T. n+fÒ, ø=\Te<ä–q eqïe÷≥. |ü]e÷Dj·TT‘·eTT˝…q’ sπ U≤<äT\≈£î |ü]e÷Ds¡V≤æ ‘·yTÓ qÆ _+<äTe⁄q≈£î ø±s¡D‘·«jÓ÷>∑´‘· ˝Ò∑´‘ê«‘Y nH˚ |ü∑‘êÿs¡D‘·«eTTe˝… n+^ø£]+#·e#·TÃμμqì e÷ eT‘·+ ` n+{≤πsyÓ÷. nB ≈£î<äs<¡ Tä . ÁãVü≤àeTT>±ì »>∑‘T· >Ô ±ì ìwüŒ]e÷D≤\T ˝Ò<ë |ü]e÷D s¡V≤æ ‘·eTT\T ø±e⁄. n$ n|ü]∫äqï |ü]D≤eTeTT\T n+fÒ Ç+‹+‘·eì ø=\Te X¯ø´£ eTTø±ìeì uÛ≤eeTT. ø±e⁄q MTs¡T #·÷|æq <äècÕºqeÔ TT dü]jÓTÆ q~ ø±<äT. b˛˙! MT |üøyå£ TÓ HÆ ê n+^ø£]<ë›e÷ n+fÒ nB ≈£î<äs<¡ Tä . Ä |üø+å£ ˝À ø±s¡´ø±s¡D uÛ≤eeTT nìj·T‘·eTT n+fÒ ˇø£ ìj·T‹ ˝Ò<ë ìj·TeTeTT ˝Òì<Í‘·T+~. n+^ø£]ùdÔ nìï{ÏqT+&û n˙ï Ä$s¡“¤$+#·e#·Tà nH˚ eT]jÓTTø£ ndü+>∑‘·yê<ä+ ‘·\jÓT‘˚Ô neø±X¯eTTqï~. ø±e⁄q _+<äTø±s¡D yê<ä+ düT‘·sêeTT ˇ|üŒ<ä+{≤s¡T Ä#ês¡´ kÕ«$T. ªªj·T<ä´Hêj·T‘ê´`ìwüŒ]e÷Ddü´ |ü]e÷D ùV≤‘·T‘·«$T‹ Áã÷j·÷‘Y ` ‘·]Ω, ø±s¡´ø±s¡D uÛ≤edü´ nìj·T‘·‘‘· ê«‘Y ` düsπ «uÛ´Ñ düsπ «|ü⁄´‘·Œ<˚´s¡Hé ` Ç‹ <ä÷wüDqÒ <ä÷wæ‘√j·T+ _+<äTø±s¡D yê<ä'μμ nH˚~ yê] ø£+sƒ√øÏ.Ô Ç~ XÊÁdüuÔ ≤Û wü˝À lyê] dæ<ë∆+‘·+. Bìì eTq uÛ≤wü˝À n+fÒ yê´eVü‰]ø£+>± Ç˝≤ $e]+#·Tø√e#·TÃ. _+<äTe⁄qT sπ Fj·T >∑D‘Ï X· ÊÁdü+Ô ˝À n‹dü÷ø£àå |ü]e÷D+ ø£\ #·Tø£ÿ (Point)#˚ ìπs›•kÕÔs¡T. n+ø£>D ∑ ‘Ï +· ˝À <ëìì Cipher (düTqï) X¯SHê´+ø£eTT (Zero) >± e´eVü≤]kÕÔsT¡ . uÛ≤cÕ|üs+¡ >± <ëìì nqTkÕ«s¡eTì ìs¡«∫kÕÔsT¡ . @ |ü]uÛ≤wü˝À m˝≤ #·÷∫Hê
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
67
_+<äTe⁄ q≈£î ‘·q<Óq’ ndæ‘Ô «· eTT>±ì, kÕeTs¡´ú eTT>±ì (Individual status or ä ‘Ó\TdüT+Ô ~. Potency) ˝Ò<ì sπ U≤>∑D‘Ï X· ÊÁdü+Ô ˝À _+<äTe⁄q≈£î |ü]e÷DeTT Magnitude #·÷|ü⁄≥ ≈£î<äs<¡ Tä . n+ø£>D∑ ‘Ï +· ˝À düTqï (Cipher) ≈£î X¯Sq´eTT ˝Ò<ë n‘·´+‘· dü÷ø£àå ‘·eT‘·«eTT (NegÆ ˝Ò<ë ligible infinitesimal) |ü]>∑Dq #Ó|Œü ã&çq~. uÛ≤wü˝À _+<äT|üPs¡«ø£yTÓ q _+<äT|üse¡ TT˝…q’ es¡eí TT\πø kÕs¡øú ‘£ ,· kÕeTs¡´ú eTT (Potency) #Ó|Œü ã&çq~. Ç˝≤ @ <äèø√ÿD+˝À #·÷∫Hê _+<äTe⁄q≈£î X¯Sq´‘·«y˚T nqTuÛeÑ |üPs¡«ø£yTÓ qÆ \ø£D å + ø£ì|ædTü +Ô ~. ø±>± _+<äTe⁄ |ü]e÷Ds¡V≤æ ‘·yTÓ qÆ ~ (Non Magnitude) X¯Sq´eTT (Nothing-Zero) ndüeTs¡yú TÓ qÆ ~ (Impotent) nq>± ‘·q<Óq’ ‘·q ‘·qeTT˝Òì~ nì ìsêú]+#·ã&çq~. sπ U≤<äT\T Ç+<äT≈£î _ÛqïeTT>± |ü]e÷DeTT (Magnitude) Ç+‹+‘· ˝Ò<ë Ç{Ï<º Hä &Ó ç Shape and Potency \qT ø£*–j·TTqï$. ø±>± s¡÷|ü|]ü e÷D kÕeTs¡´ú s¡V≤æ ‘·yTÓ qÆ _+<äTe⁄q≈£î s¡÷|ü|]ü e÷D kÕeTs¡´ú j·TTø£eÔ TT˝…q’ sπ U≤<äT\ jÓTTø£ÿ ø±s¡D‘·«eTT ≈£î<äsì¡ K∫Ñ·eTT>± e´eVü‰s¡ dæ± ªªnjÓ÷>∑´‘ê«‘Y!μμ nì ìπs•› kÕÔsT¡ . »>∑
68
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Á<äy´˚ D Á|ü‘X˚ e¯ ‘√Á<äe´dü´ dü+jÓ÷>√qTuÛ÷Ñ j·T ‘˚q‘·TìÁwüŒ<˚Xd¯ ´ü . ‘·<ë∏ #· _+<√ ]ïwüŒ]e÷D‘˚«q |üsd¡ Œü s¡ dü+jÓ÷ >±uÛ≤yê‘êÿs¡D‘·«+ q dü+uÛeÑ r‹ uÛ≤e' q#·ø±s¡´kÕ´qT uÛ Ñ ÷ j· T e÷q‘˚ « q ÁbÕ<˚ X ¯ ø £ ‘ · « eT|æ ≈ £ î ‘√ qø£ \ Œ´‘· ‚‹yê#· ´ +, ‘· < ∏ ë dü ‹ j·TÁ‘êŒ<˚Xø¯ +£ ‘·<ìä ‘·´$T‹ Hê´jÓTHêì‘·´‘·« dæ<Í∆‘k· Õ´|æ ø±s¡D≤+‘·s¡ õC≤„kÕj·÷ eTqekÕú ‘·∑+ Á|ü‹ ø£sà¡ D' ø±s¡D‘˚«q ‘·‘êÿs¡Du° ÷ÑÛ ‘·+ ø£sà¡ ø£\Œ˙j·T+, ‘·Á‘ê|æ ø±s¡D õC≤„kÕj·÷ eT<äèwüº $T‹#˚‹ÿeT<äèwüº e÷‘·àìwü+˜ dü‘êÿs¡D e÷ôVAdæ«~“+<äTìwü+˜ Hê<ä´', e´~Ûøs£ D¡ jÓ÷' ø±s¡´ø±s¡D uÛ≤yêdü+uÛyÑ ê‘Y, q~«rj·T', n<äèwüdº ´ü _+<äT ìwü‘˜ ê«uÛ≤yê ‘·bÔ Õà <äqT|ü|Hü √ïj·T e÷s¡+uÛyÑ ê<ä' ˆˆ n~Ûø+£ ‘·T u≤<äsêj·TD<äX9¯ Hê <äe>∑+‘·e´+, Á>∑+<∏ä $düsÔ ¡ uÛj Ñ ÷· H˚ïVü≤ Á|ü|+ü ∫+‘·+ ˆˆ qqT e÷kÕÔ«s¡+uÛøÑ ‘£ «· + _+<√]«es¡sÔ «¡ + øÏ+ qbÕ´~‘ê´X¯+ø±j·÷ e÷Vü≤ˆˆ dü÷Á‘·+˝À ªnDT‘ê«‘Y ` #·μ ` nì s¬ +&ÉT |ü<ë\THêïsTT. #· nH˚~ düeTT#·Ãj·÷s¡ú uÀ<Ûøä y£ TÓ qÆ ne´j·TeTT. #· ` n+fÒ ≈£L&Ü (also) nì ns¡+ú . _+<äTø±s¡Dyê<ëìï ìs¡ddæ ÷ü Ô ÁbÕs¡+uÛdÑ ÷ü Á‘·+˝À ªnjÓ÷>∑´‘ê«‘Yμ nì ˇø£ K+&ÉqeTT dü÷∫+#·ã&çq~. ª#·ø±sêqT dü+<Ûëq+ e\¢ nDT‘ê«‘Yμ ` nH˚ eTs√K+&É ùV≤‘·Te⁄ á dü÷Á‘·+˝À Á|ü<]ä Ù+|üã&çq<äì Á>∑V≤æ +#ê*.
❋❋❋
ne‘ê]ø£ : |ü]e÷DeTT ˝Òì~ (Non Magnitude) ø±e⁄q _+<äTe⁄q≈£î jÓ÷>∑´‘· ˝Ò∑´‘· dæ~d∆ Tü +Ô ~ø£<ë ` nH˚ yê<ëìï ≈£L&Ü ìs¡ddæ ÷ü Ô s¬ +&Ée dü÷Á‘êìï˝≤ dü÷∫kÕÔsT¡ >∑Ts¡T<˚e⁄\T.
dü÷Á‘·+ ˆˆ 2 ˆˆ nDT‘ê«#·Ã eè‹Ô' ˆˆ Ç‘·Xï q _+<√'ø±s¡D‘·«+ dü+uÛeÑ ‹, ≈£î‘·', nDT‘ê«#·Ã, #·X㯠'› |üPs¡« |üø+å£ yê´es¡j Ô T· ‹, nDT‘ê«‘Y, _+<√s¡DT‘ê« <äDT|ü]e÷D$•wü‘º ê« ‘êÿs¡D‘·«+ qdü+uÛeÑ r‹ ˆˆ q#·_+<√s¡DT‘˚«|æ_+<ä«+‘· s¡d+ü j·TTø£+Ô dü‘êÿs¡D+ øÏ+qkÕ´~‹ yê#·´+ ˝À¬øÁ|ü
ª_+<äTe⁄μ nqT |ü
yÓTT<ä{Ï dü÷Á‘·+˝À _+<äT|ü]e÷D |ü]o\q dü+<äs¡“¤+˝À _+<äTe⁄q≈£î X¯Sq´‘·«eTT ˝Ò<ë n‘·´+‘· dü÷ø£àå ‘·«eTT (Infinitesimal) |ü]e÷DeTT>± #Ó|Œü ã&çq≥T¢ #Ó| ü ≈£îHêï+. á n‹ dü÷ø£àå ‘·qT ‘ê]ÿ≈£î\T nDT‘·«eTT>± e´eVü‰s¡+ ø√dü+ n+^ø£]+#ês¡T. á $<Ûä+>± _+<äTe⁄q≈£î nDT‘·«|ü]e÷D $•wüº‘ê«ìï n+^ø£]+#·&+É e\¢ sπ U≤<äT\≈£î _+<äTø±s¡D‘·«+ dæ~d∆ Tü +Ô ~ nì Á|ü‹|üøåÏ eTs¡\ |üPs¡«|üø+å£ #˚kÕÔ&ìÉ dü+uÛ≤$+∫ Ä#ês¡T´\yês¡T Ä yê<ëìï ªªnDT‘ê«‘Yμμ nì Ä yê<ä+˝ÀH˚ Á|üXï¯ ≈£î Á|üXï‚ düe÷<ÛëqeTqï≥T¢>± s¬ +&Ée dü÷Á‘êìï ñ|ü<•˚ kÕÔsT¡ . Ç~ ≈£L&Ü XÊÁdü|Ô ]ü uÛ≤wüjT˚ ! Bìì ª‘·Twü´‘·T <äTs¡®qμ Hê´j·TeT+{≤s¡T. Á|ü‹yê~ e÷≥q+^ø£]dü÷HÔ ,˚ <ëì‘√H˚ n‘·ì yê<ëìï ìs¡d+æ #·&+É . _+<äTe⁄\T |üsd¡ Œü s¡eTT dü+j·TTø£eÔ TT˝…’
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
69
sπ U≤<äT˝ÒsŒ¡ &ÉT‘êsTT nì ø£<ë MT yê<äeTT. _+<äTe⁄q≈£î n‹dü÷ø£àå ‘· ˝Ò<ë nDT‘·«eTT (Infinitesimality)ì n+^ø£]+∫q |üøeå£ TT˝À á |üsd¡ Œü s¡ dü+jÓ÷>∑eTT ≈£î<äs<¡ Tä . ≈£î~]+<ä+fÒ <ëìøÏ _+<äT‘·« \ø£D å y˚T ˝Ò≈î£ +&Ü b˛‘·T+~. ˝Àø£+˝À kÕs¡«»˙qyÓTqÆ nqTuÛyÑ êìï ‘Ó*ù| ÁbÕe÷DÏø£ $wüj÷· ìï XÊÁdüuÔ ≤Û wü˝À ªyê´|æμÔ nì bÕ]uÛ≤wæø+£ >± e´eVü≤]kÕÔsT¡ . ˝Àø£+˝À ø=+‘· Á|ü∑+ dü+uÛeÑ eTÚ‘·T+~. Ç<˚ yê´|æÔ e#·HêïqT<äV≤ü ]dü÷Ô ` Ä#ês¡´kÕ«$T ` ªª˝Àπø Á|ü∑', nqTuÛ÷Ñ j·T‘˚, q‘·T ìÅwŒü <˚Xd¯ ´ü μμ ` ‘·<ë∏ #· _+<√' ìwüŒ]e÷D‘˚«q |üsd¡ Œü s¡ dü+jÓ÷>± uÛ≤yê‘Y ø±s¡D‘·«+ q dü+uÛeÑ r‹uÛ≤e' ` nì _+<äTø±s¡D‘ê«ìï ìs¡dkæ ÕÔsT¡ . Ç˝≤H˚ dü÷Á‘·ÁbÕj·T+>± düs«¡ »HêqTuÛ÷Ñ j·T e÷qyÓTqÆ ÁbÕ<˚•ø£‘«· eTT\ dü+jÓ÷>∑ø±s¡D‘·«eTTqT, ø£sà¡ ø±s¡D‘·«eTTqT dü÷∫+∫ ìs¡dqü Á|üø±s¡eTT\qT|ü<•˚ +∫, $X‚weü TT\ ø√dü+ u≤<äsêj·TD <äsÙ¡ qeTTqT dü+Á|ü~+#ê\ì ªªn~Ûø+£ ‘·T u≤<äsêj·TD <äs¡ÙHê<äe>∑qÔe´+μμ nì e÷s¡Z<äs¡Ùq+ #˚dæ, ªªÁ>∑+<∏ä$düÔs¡uÛÑj·÷H˚ïVü≤Á|ü|ü+∫‘·'μ Á>∑+<∏$ä düsÔ ;¡ ‹Û #˚ Ä $wüj÷· ìïø£ÿ&É |üsêeT]Ù+#·˝<Ò ìä eTT–kÕÔsT¡ . á $wüj÷· ìï yê´eVü‰]ø£+>± Ç˝≤ dü+Á>∑V≤æ +#·e#·TÃ. nDT‘·«eT+fÒ n‘·´+‘· dü÷ø£àå ‘·«eTT ˝Ò<ë dü÷ø£àå ‘·eT‘·«eTì #Ó| ü ø√e#·TÃ. nDT‘·«eTTqT, _+<äT\ø£D å +>± Á>∑Væ≤ùdÔ<ëìø=ø£ |ü]e÷DeTT (Magnitude)qT, ˇø£ Äø£è‹ (Shape)qT n+^ø£]+#ê*‡ edüT+Ô ~. Ç~ kÕ<Û´ä e÷? n+fÒ e´eVü‰s¡+ ø√dü+ ª_+<äTeè‘·eÔ TTμ Point Circle nH˚<ëìï }Væ≤+#·Tø√yê*. }Væ≤+#·Tø√yê\ì m+<äTø£+≥THêïeT+fÒ Ç~ øπ e\+ ÁbÕ‹uÛ≤dæø£ dü‘´· eTT. dü‘ê´uÛ≤dü e÷Á‘·yT˚ . Ç~ eè‘·eÔ Tì uÛ≤$<ë›e÷ n+fÒ <ëì yê´kÕs¡eú TT (Radius) Js√ düTqïø±e\dæ ñ+≥T+~. n≥Te+≥|ü &ÉT <ëì ÁbÕ<˚•ø±eè‹ s¡÷|üeTT (shape) X¯Sq´‘·qT dü+‘·]+#·Tø=ì nuÛ≤es¡÷|üeTTqT (voidness) bı+<äT‘·T+~. Ç~ ˇø£ dü+X¯j·÷‘·àø£yÓTÆq uÛ≤eqj˚T‘·|üŒ ÁbÕe÷DÏøy£ TÓ qÆ dæ<ë∆+‘·eTT ø±C≤\<äT. ø±e⁄q _+<äTe⁄q≈£î Äs¡+uÛøÑ ±s¡D‘·«eTT q+^ø£]+#·T≥ ≈£î<äs<¡ ìä kÕsê+X¯eTT. ❋❋❋
70
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ne‘ê]ø£ : _+<äT ø±s¡Dyê<ëìï ìs¡d+æ ∫q |æeTà≥ _+<äTe⁄jÓTTø£ÿ X¯Sq´‘·« eT÷\ø£‘«· e÷<Ûës¡+>± $es¡yÔ ê<ëìï Á‘√dæ|⁄ü #·TÃ≥ ø√düeTì eT÷&Ée dü÷Á‘êìï˝≤ Á|ükÕÔ$düTHÔ êïs¡T dü÷Á‘·øs£ .Ô¡
dü÷Á‘·+ ˆˆ 3 ˆˆ n~Ûø£s¡D‘ê«jÓ÷>±#·Ã
eè‹Ô' ˆˆ nÁ‘ê|æ #·X㯠'› |üPs¡«|üøyå£ ê´eè‘·´Ô <∏ä9' n~Ûøs£ D¡ ‘ê«jÓ÷>± ~‹ n~Ûøs£ D¡ ‘ê« dü+uÛyÑ ê ~‘·´<∏9ä ' ˝À¬øX¯óø±Ô$<ä+s¡»‘· $T‘·´Á‘· X¯óøöÔ s¡»‘· ÁuÛ≤+‹s¡jT· + düsŒ¡ Ç‘ê´<Í s¡CÖ® düsŒ¡ ÁuÛ≤+‹X¯Ã kÕ~ÛcÕ˜q‘˚« H√|ü |ü<´ä ‘Ó, ìs¡~cÛ Õ˜q ÁuÛ≤+‘Ó s¡qqTuÛ÷Ñ ‘·‘ê«~« es¡‘Ô «· +q dü+uÛeÑ r‹ @‘Óq X¯Sq´yê<√|æ ìsêø£è‘· @e ˆˆ qqT e÷düTÔ _+<√ s¡DT‘˚«q ø±s¡D‘·«+ Á‹ø√Ddü´ ‘·<ë∏ ‘·«+ øÏ+qkÕ´ <ë“<Ûøä ±uÛ≤yê ~‘ê´X¯+ø±´Vü≤ ˆˆ Ç+<äT ` n~Ûøs£ D¡ ‘ê«jÓ÷>±‘Y, #· ` nì s¬ +&ÉT |ü∑V≤æ +#ê*. ø±>±, ªn~Ûøs£ D ¡ ‘·« njÓ÷>±‘Y ` nH˚~ eT]jÓTTø£ K+&ÉqùV≤‘·Teì uÛ≤e+. n~Ûøs£ D¡ ‘·« njÓ÷>±<äH˚ <ëìøÏ n~Ûøs£ D¡ ‘·« ndü+uÛyÑ ê‘Y nì ns¡+ú #ÓãT‘ês¡T Ä#ês¡´kÕ«$Tyês¡T. n~Ûøs£ D ¡ eTq>± n~ÛcÕ˜qeTì uÛ≤eeTT. ªX¯óø±Ô$<ä+ s¡»‘·yTé μ nq>± eTT‘·´|ü⁄∫|üŒj·T+<äT s¡»‘·eTT (yÓ+&ç) j·THÓ&ç ÁuÛ≤+‹ ªs¡CÖ® düsŒ¡ ÁuÛ≤ìÔ'μ s¡Ee® q>± Á‘ê{ÏjT· +<äT düsŒ¡ ÁuÛ≤+‹ nH˚ s¬ +&ÉT $<Ûeä TT˝…q’ ÁuÛ≤+‘·T\qT (Illusions) >∑÷]à ˝À>∑&É eTq+ #Ó| ü ≈£îHêï+. X¯óøÏsÔ »¡ ‘·ÁuÛ≤+‹øÏ eT÷\eTT X¯óøÏÔ ˝Ò<ë eTT‘·´|ü⁄ ∫|üŒj·TH˚ n~ÛcÕ˜qeTT.(Substratum) nfÒ¢ s¡Ed® sü Œ¡ ÁuÛ≤+‹˝À ÁuÛ≤+‹øÏ n~ÛcÕ˜qeTT (Substratum) s¡Ee® ⁄ ˝Ò<ë Á‘ê&ÉT. ÁuÛ≤+‹ ñqï+‘· ùd|üP s¡Ee® ⁄ ˝Ò<ë Á‘ê&ÉT düsŒ¡ +>±qT, X¯óøÏÔ ˝Ò<ë eTT‘·´|ü⁄ ∫|üŒ yÓ+&ç>±qT $es¡+Ô #Ó+~ ø£ì|ædTü qÔ ï<äì uÛ≤e+. Çø£ÿ&É ÁuÛ≤+‹øÏ s¡E,® X¯óøÏ\Ô T n~ÛcÕ˜qeTT (Substratums). Ç<˚$<Û+ä >± sπ U≤<äT\≈£î _+<äTe⁄ (Point) n~ÛcÕ˜qeTì #Ó_‘˚ _+<äTe⁄≈£î $es¡øÔ ±s¡D‘·«+ dæ~d∆ Tü +Ô ~. ø±ì <ëìøÏ Ä jÓ÷>∑eTT ˝Ò<ë jÓ÷>∑´‘· ˝Ò∑Ts¡T<˚e⁄\T. ø±s¡D+ n~ _+<äTe⁄ ø±ã{Ï.º nDT‘·«eTT X¯Sq´‘·«eTT <ëì \ø£Då ≤\T. nDTe⁄ X¯Sq´eTTHÓ’q edüTÔe⁄ y˚s=ø£<ëìøÏ n~Ûø£s¡DeTT ˝Ò<ë n~ÛcÕ˜qeTT (Substratum) ø±C≤\<äT. á $<Û+ä >± kÂ>∑‘T· \ X¯Sq´yê<ä+ ‘·<‘∆˚ T· uÛ÷Ñ ‘·yTÓ qÆ $es¡yÔ ê<ä+ s¬ +&É÷ ìs¡deÔü TT˝…b’ ˛j·÷sTT.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
71
ne‘ê]ø£ : á$<Û+ä >± sT÷ eT÷&ÉT dü÷Á‘ê\˝ÀqT Ä#ês¡´kÕ«$T Äs¡+uÛyÑ ê<ä, $es¡yÔ ê<ë\qqTdü]+∫ _+<äTe⁄q≈£î sπ U≤<äT˝ÒsŒ¡ &ÉT≥≈£î ø±s¡D‘·«eTTqT ìsêø£]+∫ ` njÓ÷>∑´‘·«, niT‘·«, n~Ûø£s¡D‘·« njÓ÷>∑´‘·«eTT\ ø±s¡DeTT>± _+<äTe⁄ ø±s¡D+ø±ø£b˛‘˚ ø±ø£b˛e#·TÃ, ø±ì Á‹ø√D+ ø±s¡D+ ø±e#·TÃø£<ë nH˚ dü+X¯jT· eTTqT Ä X¯+øÏ+∫ düe÷<Ûëq+>± Hê\T>∑e dü÷Á‘êìï `
dü÷Á‘·+ ˆˆ 4 ˆˆ Á‹ø√D$T‹#˚Hêï dü+uÛyÑ ê‘Y eè‹Ô' ˆˆ Á‹ø√Ddü´ dü|]ü e÷D‘ê«‘êÿs¡D‘·«+ dü+uÛeÑ r‹ ‘·ìïwæ<´äÛ ‹. H˚‹ ndü+uÛyÑ ê~‹. ãTTE sπ U≤Á‘·jT· $•wüuº ÷ÑÛ |ü⁄s¡ #·Áø£s÷¡ |ü Á‹ø√D ôd´’ yêdü+ uÛeÑ ~‘·´<Ûä9' qqT Á‹ø√Ddü´ düs«¡ »˙q‘ê« ‘·Tÿ‘·dkÔü Õ´dü ‘·«Ô $T‘ê´X¯+ ø±j·÷ e÷Vü≤ ˆˆ nì Á|ü‹bÕ~düTÔHêïs¡T. ªÁ‹ø√DyéT`Ç‹`#˚‘Y`q` ndü+uÛÑ÷‘Yμ nì |ü<$ä uÛ≤>∑eTT. ªÁ‹ø√DyéTÇ‹#˚‘μY ` nH˚~ |üPs¡«|üøå£ u≤>∑eTT. ªqμ ` nH˚~ K+&Éqyê#·ø|£ <ü +ä . ndü+uÛyÑ ê‘Y nH˚~ ùV≤‘·Te⁄. ø±>± ` (|ü]D≤eTX¯Sq´yÓTqÆ _+<äTe⁄ø£+fÒ) Á‹ø√D+ |ü]e÷DeTT (Magnitute) ø£*–j·TT+&ÉT≥#˚ <ëìøÏ ø±s¡D‘·«+ dü+uÛeÑ y˚T ne⁄‘·T+<äì |üPs¡«|üø+å£ . q`≈£î<äs<¡ Tä . ndü+uÛeÑ eTT ø±ã{Ϻ nì düe÷<ÛëqeTT. á ndü+uÛ≤e´‘·qT kÕ«$Tyês¡T ` ªªãTTEπsU≤Á‘·jT· $•wüuº ÷ÑÛ |ü⁄s¡ #·Áø£s÷¡ |ü Á‹ø√Dôd´’ e ndü+uÛyÑ ê~‘·´s¡'ú μμ ` n+fÒ eT÷&ÉT düsfi¡ sπ¯ K\‘√ H˚sŒ¡ &çq uÛ÷Ñ |ü⁄s¡#Á· ø£yTÓ qÆ Á‹ø√D≤ø£è‹πø ìj·T‘·yTÓ qÆ dü+uÛ≤e´‘· ˝Ò<ìä uÛ≤e+. ❋❋❋
ne‘ê]ø£ : Á‹ø√DeTT jÓTTø£ÿ dü+uÛ≤e´‘· ˝Ò<ë ñìøÏ düs«¡ »HêqTuÛeÑ eTT ø£*–j·TTqï~. Ç{Ϻ kÕs¡«»˙q (Universal) nqTuÛeÑ eTT (experience) qT ø±<äqTf…≥T¢ nì j·÷X¯+øÏ+∫ nsTT<äe dü÷Á‘êìï˝≤ ne‘·]+|ü#k˚ ÕÔsT¡ dü÷Á‘·øs£ Ô¡ `
dü÷Á‘·+ ˆˆ 5 ˆˆ X¯X$¯ cÕDe <äèEπsU≤ eè‹Ô' ˆˆ ˝ÀπøX¯X¯dü´ $cÕDdü´#· Á|ü‘˚´ø£+ Á|üdæ<ä∆ ‘˚«|æ X¯X¯$cÕD s¡÷|ü$•wüºdü´ j·T<∏ëndü‘«Ô· + ‘·<ë∏ ãTTE‘·«dü´ sπ U≤j·÷X¯Ã Á|ü‘´˚ ø£+ Á|üd<æ ‘∆ä «˚ |æãTTE‘·« $•wüº sπ U≤j·÷XÊÃÁ|üd<æ ‘∆ä ê« ‘·<Ô {Èä ‘Ï · Á‹ø√DkÕ´|æ >∑>q∑ ≈£îdüTe÷j·T e÷q‘˚« Hêdü‘'· ø±s¡D‘·«+ ø£\Œj·T‘Ó øÏeTT‘·sÔ +¡ <ë‘·e´$T‹ düT~Ûj÷Ó $uÛ≤ej·T+‘·T. qqT ãTTEπsU≤j·÷XÊÃÁ|üd<æ ë∆ e|üd<æ ë∆+‘· Ç‘ê´Vü≤.
72
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ªX¯X$¯ cÕDe‘Y ` ãTTEπsU≤μ ` nì |ü<$ä uÛ≤>∑eTT. X¯Xe¯ Tq>± ≈£î+<˚\T. $cÕDeTq>± ø=eTTà nì, X¯X`¯ $cÕD X¯ãe› TT\≈£î $&ç$&ç>± nsêú\T e´eVü‰s¡+˝À ñHêïsTT. á s¬ +&ç{˙Ï ø£*|æ dü+uÛ≤$ùdÔ ªªX¯X$¯ cÕDeTTμ nq>± ≈£î+<˚{øÏ =eTTà nH˚ ns¡+ú dæ~d∆ Tü +Ô ~. düe÷düeTH˚ eè‹Ô Á|üu≤Û e+ ø±s¡D+>± ª≈£î+<˚{øÏ =eTTàμ ` nH˚ X¯ã+› ˝Ò<ë |ü<+ä yê´ø£sD¡ XÊÁdü|Ô sü +¡ >± dæ~+∆ ∫Hê ≈£î+<˚{øÏ =eTTà ˝Àø£e´eVü‰s¡+˝À ndü+uÛeÑ +>±H˚ >√#·]düT+Ô ~. <ëìøÏ dü+uÛ≤e´‘· ˝Ò± dü‘ê´s¡ú Á|ü‹bÕ<äø£eTT˝Ò. ø±ì ãTTE‘·« $•wüºyÓTÆq πsU≤‘·«eTT e÷Á‘·eTT dü‘ê´qTuÛeÑ <ä÷s¡yTÓ qÆ ~. ‘ê‹Ô«ø£+>± >∑DÏ‘·XÊÁdüÔ |ü]uÛ≤wüqqTdü]+∫ düMTøÏåùdÔ eè‘·ÔeTT jÓTTø£ÿ eÁø£‘\· eTT˝Àì eÁø£sπ K jÓTTø£ÿ n‹dü÷ø£àå uÛ≤>∑yT˚ ãTTEπsK>± >√#·]düT+Ô ~. Ç~ nqTuÛeÑ dæ± ãTTE‘·«eTT‘√ nqTuÛyÑ êìøÏ ø£qã&çq+‘· e÷Á‘êq <ëìì es¡T\Ô eTì e´eVü≤]kÕÔyT˚ >±ì ãTTEπsU≤‘·àø£eTì uÛ≤$kÕÔe÷? uÛ≤$ùdÔ e÷Á‘·+ n~ e´eVü‰s¡+˝À düeT‘·\+>± kÕs¡«»˙q+>± dü+uÛ≤$+|üã&ÉT‘·T+<ë? Ç<˚ $<Ûä+>± ãTTEπsKjÓTTø£ÿ ‘ê‹Ô«ø£ $X‚¢wüD (Realistic Analysis) #ê˝≤ dü+~>∑∆+>± (Ambiguous) dü+X¯j·÷‘·àø£+>± ( Confusive/doubtful)>± >√#·]düT+Ô ~. ø±>± düsfi¡ sπ¯ K jÓTTø£ÿ dü+uÛ≤e´‘· X¯X$¯ cÕDeTT e+{Ï∑V≤æ +#ê*. ❋❋❋
ne‘ê]ø£ : Ç+ø£qT düŒwü‘º · ø=s¡ø¬ ’ ãTTEπsKjÓTTø£ÿ nÁ|üd~æ ì∆ s¬ +&ÉT dü÷Á‘·eTT\ <ë«sê Á|üe÷D°ø]£ kÕÔsT¡ >∑Ts¡TbÕ<äT\T.
dü÷Á‘·+ ˆˆ 6 ˆˆ Á|üe÷D≤‘Y ˆˆ eè‹Ô' ˆˆ Á|üe÷D≤<˚e ãTTEπsU≤j·÷ XÊÃÁ|üd~æ ∆ ]‹uÛ≤e' øÏ+‘·Á‘·Œe÷D $T‘ê´ X¯+ø±j·÷e÷ e÷Vü≤ ˆˆ
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
73
ªÁ|üe÷D≤‘Yμ ` nH˚~ ˇπøˇø£|<ü +ä . ø±e⁄q Ç~ @ø£|<ü dä ÷ü Á‘·+. Äø£è‹˝À n\ŒyÓTqÆ <Óq’ Bì Á|üu≤Û e+ e÷Á‘·+ nq\Œ+. n˝≤Œø£så e¡ TT\˝À nq˝≤Œs¡ú s¡#q· eT+fÒ Ç<˚ ! Á|üe÷D X¯u≤›ìøÏ |ü]e÷D Á|üe÷DeTT (Unit) ˝Ò<ë ø=\‘· Magnitude nì, C≤„qìsêúsø¡ y£ TÓ qÆ n‘·T´qï‘· Á|üu≤Û e|üPs¡yí TÓ qÆ ø±s¡Ddæ<ë›+‘·eTì˙ï nsêú\T e´eVü‰s¡+˝À ñHêïsTT. n˙ï á _+<äTø±s¡D‘·« ìsêdüÁ|üøs£ D ¡ +˝À nq«sTTkÕÔsTT. _+<äTe⁄ X¯Sq´eTT nq>± ìwüŒ]e÷DeTT ø±e⁄q Ä<Ûës¡eT>∑T≥≈£î ‘·–q n~Ûøs£ D ¡ ‘·« jÓ÷>∑´‘· ˝Ò∑<äTZs¡T eT¨|ü<˚X¯+. ãTTEπsK\T eT]j·TT yêì#˚ H˚s¡Œ&çq ‘·©j·T πsU≤∫Á‘·eTT\T (Straight lines and Lateral figures)≈£î ôd’<ë∆+‹ø£yÓTÆq ñ |ü|‹ü ‘Ô √≈£L&çq @$<Ûyä TÓ qÆ Á|üe÷DÏø£ dæ<ë∆+‘·yTÓ HÆ ê ìs¡÷|æ+#ê\+fÒ <ëìøÏ sπ Fj·T ˝Ò<ë ‘·©j·T >∑D‘Ï X· ÊÁdüeÔ TT (Lenier or Lateral geometrical Mathamatics) Á|üe÷DeT÷s¡úq´yÓTÆq XÊÁdüÔ+>± Á>∑Væ≤+#·ã&ÉT#·Tqï~. Ä XÊÁdüÔy˚T πsU≤∫Á‘·eTT Lenier figures $wüj·T+˝À @$<ÛäyÓTÆq ÁbÕe÷DÏø£yÓTÆq ñìøÏì (positive existance) ì Ç<ä$T‘·+ ú >± ìsêú]+#·˝<Ò Tä . ø±e⁄q _+<äTø±s¡Dyê<äeTT dü]jÓTÆ q<äì ø±<äì dæ<ë∆+‘·eTT. ❋❋❋
ne‘ê]ø£ : ‘ê‘·Œs¡´ ìs¡j í T· +#˚d,æ ‘·‘êÔ«ìï dæ<ë∆+‘·|sü +¡ >± ìs¡÷|üD #˚jT· &ÜìøÏ XÊÁdü+Ô ‘√bÕ≥T, Á|ü‘´· øå±<ä´qTuÛyÑ ê\qT Ä|üyÔ êø£´s¡÷|üeTT˝…q’ ÁX¯ó‹, düàè‹, |ü⁄sêD≤<äT\qT ≈£L&Ü Á|üe÷D+>± Á>∑V≤æ +#˚ dü+Á|ü<ëj·TeTTqT |ü⁄s¡dÿü ]+#·T≈£îì ªXÊÁkÕÔ
dü÷Á‘·+ ˆˆ 7 ˆˆ XÊÁkÕÔ<äj·TXÊÙÁkÕÔ<äj·T' eè‹Ô' ˆˆ XÊÁkÕÔ~ø£ y˚Te ãTTEπsU≤j·÷ XÊÃuÛ≤y˚ Á|üe÷D $T‘·´<∏9ä ' ˆˆ ‘·<∏ë#· ãTTEπsU≤j·÷XÊÃdü‘«Ô˚ ‘·<{Èä ‘Ï · Á‹ø√DkÕ´|ü´ Á|üd~æ ∆ ]‹ uÛ≤e'. q#·Á‹ø√D≤<ä´ uÛ≤yÓ
74
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
eè‘êÔ‘‡· s¡«e´eVü‰s¡ e´+»ø£+ düeTÁ‹uÛTÑ » $T‹ dü÷Á‘·kÕ´ÁbÕe÷D´+ Á|üd»ü ´‘· Ç‹ yê#· ´ +. ‘· d ü ´ bÕs¡ e ÷~Û 9ø£ ‘ ê«uÛ ≤ yÓ | æ yê´eVü ‰ ]ø£ dü ‘ ê´ ‘ê«+^ø±π s D HêÁbÕe÷D´$T‹dü÷#·HêjÓTÆ ‘·∑V≤ü ', |ü⁄qs¡TøÏÔ Á|üj÷Ó »q+‘·T |üPs¡«e<˚y‹˚ . Ç‹ l |üPs¡í MTe÷+kÕ<äX¯9H˚ ~«rj·÷Væ≤ïø£ eè‹Ô dü‡e÷bÕÔ ˆˆ Ç~ ≈£L&É |üPs¡«dü÷Á‘·eTTe˝… @ø£|<ü dä ÷ü Á‘·yT˚ ø±ì ÄVæ≤ïø£ |ü]düe÷|æìÔ dü÷∫+#·&Üì¬ø’ Äeè‹Ô #˚jT· ã&çq<Ó’ ~«|ü~>± uÛ≤dædTü qÔ ï~. ÄVæ≤ïø£|]ü düe÷|æÔ dü÷#·qy˚T Äeè‹Ô Á|üj÷Ó »q ‘ê‘·Œs¡´eTT. ô|’ dü÷Á‘·eTTqT+&ç Á|üe÷D X¯u≤›ìï n<Ûë´Vü‰s¡+ #˚düT≈£î+fÒ XÊÁkÕÔ<äT\T Á|üe÷DeTH˚ ns¡+ú dæ~d∆ Tü +Ô ~. á $wüj÷· ìï $es¡+>± Ä#ês¡´kÕ«$T ` ªªXÊÁkÕÔ~ø£yT˚ e ãTTEπsU≤j·÷XÊÃuÛ≤y˚ Á|üe÷D $T‘·´s¡'ú μμ ãTTEπsK\qT <ëìøÏ Á|üe÷D°u÷ÑÛ ‘·eTT˝…q’ >∑D‘Ï X· ÊÁdüÔ $uÛ≤>∑eTT˝ÒM Ç<ä$T‘·+ú >±>±ì, @ø£ø+£ sƒ+¡ >± >±ì ìs¡÷|æ+#·˝<Ò Tä . y˚<ë+‘· XÊÁdü+Ô XÊU≤#·+Á<äHê´j·T+ #˚‘· ÁãVü≤àeTT jÓTTø£ÿ ‘·≥düú \ø£Då eTT\qT ìπs•› +∫q≥T¢>±, >∑D‘Ï · XÊÁdüE Ô \„ T ãTTEπsKqT ` 1. "We mean a straight line in its entirety, extending both ways to infinity" ` nq>± ãTTEπsKqT düeTÁ>∑+>± ` Çs¡T Á|üøÿ£ \≈£î nq+‘· <ä÷s¡+ es¡≈î£ bı&ç–+#· >∑\ düsfi¡ sπ¯ K nì ìs¡«∫+|ü>\∑ eTT nìj·TT 2. "Parallel straight lines are such are in the same plane ever so far produced both ways do not meet" ` nq>± ˇπø‘·\eTTô|’ ì]à+|üã&çq düe÷+‘·s¡ düsfi¡ sπ¯ K\qT @yÓ|’ ⁄ü q m+‘· <ä÷s¡eTT bı&ç–+∫qqT nì |üsd¡ Œü s¡eTT ø£*dæø=qe⁄ nìj·TT, 3. "Parallel lines are lines which meet at infinity" nq+‘· <ä÷s¡eTT˝À e÷Á‘·yT˚ |üsd¡ Œü s¡eTT ø£*dæø=qT≥ ø£eø±X¯eTT>∑\ düsfi¡ sπ¯ K\qT düe÷+‘·s¡ düsfi¡ sπ¯ K\T n+{≤s¡ì˙ï BìH˚ $˝ÀeT+>± `
75
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
4. Lines which meet at infinity are called parallel ` nìj·TT 5. In the confocal system, the straight line is called the line π Fj·T >∑D‘Ï X· ÊÁdüeÔ TTq≈£î dü+ã+~+∫ XÊ+ø£e K+&Ü\qT ìs¡÷|æ+#˚ ellipse nq>± s dü+<äs“¡ +¤ ˝À dæsú y¡ TÓ qÆ sπ K≈£î dæsú <¡ ÷ä s¡+˝À dü+#·]+#˚ kÂwüe˜ düsfi¡ sπ¯ KqT sπ Fj·T Bs¡eÈ è‘·eÔ TT (Lenier ellipse) n+{≤s¡ì˙ï .... Ç˝≤ mHÓïH√ï ìs¡«#·qeTT\qT dü÷∫+#˚s¡T. Ç<˚ düs¡fi¯πsK≈£î dü+ã+~Û+∫q @¬ø’ø£ ÁbÕe÷DÏø£ ìs¡«#·qeTì kÕ~Ûø±]ø£+>± mes¡÷ ìs¡ísTT+#·˝Ò<äT. ø±e⁄qH˚ >∑Ts¡TbÕ<äT\T ãTTEπsK jÓTTø£ÿ ñìøÏì ìsêú]+#˚ Á|üe÷Dy˚TB˝Ò<ìä #Ó|Œæ ` ªªãTTEπsU≤j·÷X¯Ã ndü‘˚Ô«, ‘·<äÈ{Ï‘· Á‹ø√DkÕ´|ü´ Á|üd~æ ]∆ ‹ uÛ≤e'μμ n+fÒ ãTTEπsK jÓTTø£ÿ ñìøÏøπ ÁbÕe÷DÏø‘£ · ˝Ò≈î£ +fÒ ‘·<들e e´+»ø£eTT˝…q’ Á‹ø√D≤<äT\≈£î ÁbÕe÷D´dæ~∆ düT‘·sêeTT ndü+uÛeÑ eTH˚ uÛ≤e+ ø£\T>∑T‘·T+~. Ç~ ì»y˚T nsTTHê yê´eVü‰]ø£ dü‘qÔ· T uÛ≤$+∫q |üø+å£ ˝À Á‹uÛTÑ » sπ U≤<äT\T jÓTTø£ÿ ñìøÏ ø£ì|æd÷ü Ô ñ+≥T+~. á ñìøÏ dü‘´· eTT (real) ø±<äT øπ e\ ÁbÕ‹uÛ≤dæøy£ T˚ (apparent) e÷Á‘·yT˚ . j·T<∏ësêúìï ˝À‘·T>± |ü]o*+∫q eTq y˚<ë+‘· >∑D‘Ï · XÊÁdü»Ô ‘„ · sT÷ sπ U≤ Á‹ø√DeTT\≈£î ø=+‘·es¡≈î£ j·T<∏ës¡yú TÓ qÆ ìs¡÷|üDqT ø£qT>=Hêïs¡ì|ædTü +Ô ~. eTq+ Ç+‘·≈î£ |üPs¡«+ dü+uÛ≤$+#·T≈£îqï ~và+&É\ |ü]sπ K (Lenier Horizon) düs¡fi¯πsK>± ø£ì|ædüTÔHêï ìC≤ìøÏ~ n~ es¡TÔ\ eÁø£πsKj˚TqH˚ C≤„q+ ≈£L&Ü düe÷+‘·s+¡ >± eTq˝À uÛ≤dædTü +Ô ~. á uÛ≤eqqT <äèwæ˝º À qT+#·T≈£îì eTq >∑D‘Ï · XÊÁdüÔE„\T Á|üø£è‹ì Á‹>∑TD≤‹àø£>± ìs¡«∫+∫, dü‘´· <ëìì Á‹ø√Ds¡ ÷ |æ D Ï > ± ∫Á‹+#ês¡ T . á Á‹ø√DeTT˝Àì eT÷&É T ø√DeTT\T eT÷&É T >∑TD≤\T>± ù|s=ÿq&É+ »]–+~. >∑TDeTq>± s¡»dt ‘·eTdt string (Hê]`eÁø£s π K) nì ns¡+ú eÁø£sπ K jÓTTø£ÿ ãTTEø√D (1800) $es¡Ôy˚T ãTTEπsK ˝Ò<ë ○
○
○
○
○
○
76
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
düsfi¡ sπ¯ K. Ä$<Ûeä TT>± dü+uÛ≤$+|üã&çq |üøeå£ TT˝À Á‹>∑TD≤‘·àø£yTÓ qÆ Á|üøè£ ‹ Á‹uÛTÑ »+>± uÛ≤dædTü +Ô ~. eÁø£sπ U≤‘·àø£+>± dü+uÛ≤$ùdÔ Ä _+<äTe⁄\qT ø£*ù| (AB, BC, CA πsK˝Ò eÁø°uÛÑ$+∫ @ø£πø+Á<äeTT‘√ Á‹uÛÑTC≤ìøÏ |ü]eè‘·eTT>± O. ABC >± |ü]D$TdüT+Ô ~. (dü)
(s¡)
(‘·)
ø±>± eè‘·eÔ TH˚~ Á|üøè£ ‹øÏ eT÷\uÛ÷Ñ ‘·yTÓ qÆ ÁãVü≤àeTT. dü‘´· eTT ì‘·´eTTHÓq’ ˇø£ dü+uÛ≤$‘êø£è‹. Á‹ø√DeTH˚~ e÷qe ãT~∆øÏ uÛ≤dæ+#˚ ˇø£ ÁuÛ≤+‹(Illusion). ø±e⁄qH˚ sπ Fj·TyÓTqÆ Á‹ø√D≤<äT\T ÁãVü≤àeTTqT Á|ü‹bÕ~+|üC≤\eì ‘ê‘·Œs¡´eTT. á$<Û+ä >± y˚<ë+‘· >∑D‘Ï X· ÊÁdü+Ô Á‹ø√Dø±s¡Dyê<ä ìsêø£sD¡ + (By the refutation of Trikonakarna Vada) <ë«sê kÕ+KT´\ eT]j· T T jÓ ÷ >∑ X ÊÁdü Ô e TT\#˚ Á|ü‹bÕ~+|üã&çq Á|üøè£ ‹ ø±s¡Dyê<ëìï ìs¡d+æ #ês¡T. á $<Û+ä >± sπ Fj·T ∫Á‘ê<äT\≈£î _+<äTe⁄‘√ Äs¡+uÛ,Ñ $es¡øÔ ±s¡Dyê<äeTT\ ìs¡÷|üD+‘√ ~«rj·÷Væ≤ïø£+ eTT>∑TdüT+Ô ~. ❋❋❋
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
77
4.(iii)‘·èrj·÷Væ≤ïø£eTT l|üPs¡í MTe÷+kÕ<äX¯9HÓ düeè‹Ôøπ ‘·èr j·÷Væ≤ïø£ ÁbÕs¡+uÛ'Ñ @‘êe‘ê Á>∑+<∏ä dü+<äs𠓤D #·Áø±D≤ eTT‘·Œ‹Ôsπ e düeTq«j·T $s√<Ûä |ü]Vü‰sêuÛ≤´+ Á|ü|+ü ∫‘ê ‘˚cÕ+ ÁãVü≤à$<√´|üj÷Ó –‘·« dü÷#·HêjÓTÆ ‘·èrj·÷Væ≤ïø£ e÷s¡ueÑÛ ÷D' |üPs¡dí «ü s¡÷|ü+ ‘êe\¢ø‘å£ ê‹ ˆˆ >∑&∫É q s¬ +&ÜVæ≤ïø£eTT\˝À Ç‘·s¡ eT‘·ìsêdü |üPs¡«≈£eTT>± eè‘·yÔ T˚ nìï sπ Fj·T ∫Á‘·eTT\≈£î Á|ü<ëÛ qø±s¡DuÛ÷Ñ ‘·yTÓ qÆ Ä\+ãqeTì˙ï n~j˚T |üPs¡eí TTqT ÁãVü≤àyê∫>± ìs¡÷|æ+#·T #·Tqï<äìj·TT ìsêú]+#·ã&çq~. eè‘·eÔ TT jÓTTø£ÿ yÓu’ eÑÛ eTT (grandeur) <ëìjÓTTø£ÿ y˚<ëqÔ>∑DÏ‘·XÊÁdüÔ |ü]C≤„qeTT e\q, <ëìøÏ Ç‘·s¡ ∫Á‘·eTT\‘√&ç dü+ã+<Ûeä TTqT ‘·T\Hê‘·àø£eTT>± (comparative) |ü]o*+#·T≥ e\q e´ø£eÔ T>∑TqT. ø±e⁄q á eT÷&Ée ÄVæ≤ïø£eTT˝À õC≤„dTü e⁄\≈£î Ç+ø£qT düT\uÛeÑ TT>± ne>±Vü≤q @s¡Œ&ÉT≥¬ø’ Äj·÷ sπ Fj·T∫Á‘·eTT\ y˚<ëìÔø£ <äèø√ÿDeTT˝À |ü]#·jT· eTT #˚jT· T≥≈£î Á|üjT· ‘·ïeTT #˚jT· ã&çq~. eè‘·Ô yÓTTø£ÿ{Ï e÷Á‘·yT˚ |üPs¡eí TTqT, ‘·<ë«#·´yÓTqÆ ÁãVü≤àeTTqT ìs¡÷|æ+#·>\∑ sπ Fj·T ∫Á‘·eTT\ Á|ü‹ì~Û ˝Òø£ Á|ürø£. ªj·T#·ÃÁø±D≤eT~ÛcÕ˜qyéTμ nì Á|ü± ø=+‘·es¡≈î£ ìπs•› +#·ã&çHê n~ (dü÷.2 düeTÁ>∑yTÓ qÆ |ü]|üPs¡yí TÓ qÆ ìs¡«#·qeTT ø±<äT. ø±e⁄q eè‘·Ô ìs¡«#·qeTT á ‘·èrj·÷Væ≤ïø£ ÁbÕs¡+uÛeÑ TT˝À s¬ +&ÉTdü÷Á‘·eTT\˝À ì≥T¢ $e]+#·ã&ÉT#·Tqï~.
dü÷Á‘·+ ˆˆ 1 ˆˆ ìs¡ej·Te+ ìs¡TDZ + ìÁwæÿj·T+ ∫HêàÁ‘·+ |üPs¡yí Té ˆˆ eè‹Ô ˆˆ ìs¡‘Z ê' nej·Tyê' n+XÊ' j·Tdü´ ‘· ìïs¡ej·Te+, ìs¡+X¯ $T‘·´<∏ä9', ìs¡TDZ + sê>±~ <√wüsV¡ ≤æ ‘·+, n‘·@e ìÁwæÿj·T+ ÁøÏj÷· s¡V≤æ ‘·+, >∑>H∑ ê~ yê´eè‘·´Ô <Û9ä +, ∫HêàÁ‘·$T‹, C≤„qdü«s¡÷|ü$T‘·´s¡'ú nH˚qì‘·´C≤„qdü«s¡÷|ü‘«· + |üPs¡dí ´ü dü«s¡÷|ü\ø£Då + dü÷∫‘·$T‹uÛ≤e' qqTj·T#·ÃÁø±D≤eT~ÛcÕ˜q$T‘·´H˚qdüø\£ #·Áø±~ÛcÕºq‘·« s¡÷|ü\ø£Då eT_Û<ëÛ j·T |ü⁄q]ï s¡ej·Te$T‘ê´~Hêø£∑V≤” ‘·T+ X¯ø´£ ‘˚«q e⁄´‹Œ‘·÷‡Hê eTeuÀ<ÛHä êj·T Á|ü
78
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÁuÛeÑ T ìyês¡D≤j·T |üè<Ûvä ïÏ s¡ej·Te $T‘ê´~Hê dü«s¡÷|ü \ø£Då eTTø£+Ô . qqT düø\£ #·Áø±~yê´|üød£ ´ü eè‘·sÔ ÷¡ |üø‘£ «· ø£\Œq+ $s¡T<∏´ä ‘· Ç‹ #˚qï j·T<∏ë uÛ÷Ñ e÷´ø±X¯ dü+<Ûs˚ Á¡ |üd<æ ‘∆ä «˚ |æ ‘ê<äèX¯ dü+~Û+ ø£\ŒsTT‘ê« ‘êe<ë«´|üÔ $T‹e⁄´‘·‡‘·÷‡Hê eTT|üø±sêj·T ìs¡÷|ü´‘˚ ‘·<«ä Á‘·Œ<Ûeä T‘· @e düø\£ #·Áø±r‘·+ |üPs¡í $T‘·T´Ô ø¬ ‘Ô b· Õ´qqTuÛ÷Ñ j·T e÷q‘˚«q e⁄´‹è‘·÷‡Hê+ ‘·Á‘êÁbÕe÷D´+ Á|üdCü ´Ò ‘˚‹ ‘·‘Œ· ]Vü‰sêj·T düT>∑eT‘·j÷· u≤\uÀ<Ûëj·T#· uÛ÷Ñ e÷´ø±X¯ dü+~ÛkÕ<äèX‚´q eè‘·sÔ ÷¡ |ü‘«· + |ü]ø£*Œ‘·+ ‘·<ëÛ #ê\Œ‘·s¡ ‘·\dü«s¡÷|üd´ü eè‘êÔ‘à· ø£ |ü]<Û˚ sπ yêÁ|üd<æ ‘∆ä «Ó qdüT‘·sê+ |üPs¡dí ´ü |ü]~Û ]‹ dü÷#·HêjÓTÆ ìs¡ej·Te $T‘ê´~Hê Á|ü|+ü ∫‘·+. qqT j·T<∏ë ˝À¬ø eèø£då ´ü eèøå±+‘·sê ‘·‡C≤rj·TuÛ<Ò ä •Ù˝≤~‘√ $C≤rj·T uÛÒ<ä' |üÁ‘·|ü⁄wüŒ |òü˝≤~Hêdü«>∑‘·uÛÒ<äX¯Ã dæ<ä∆düÔ<Ûë |üPπsí|æ øÏ+ qkÕ´ ~‘ê´X¯+ ø±´Vü≤. á dü÷Á‘·+ |ü+#·|~ü . Ç+<äT nsTT<äT |ü± ÁuÛ$Ñ TkÕÔyT˚ yÓ÷qì ` 1. ìs¡ej·Te+ ` nq>± nej·TeeTT\T ˝Ò<ë n+X¯eTT\T ˝Òì<äì uÛ≤eeTT. 2. ìs¡TDZ + ` sê>±~ <√wüsV¡ ≤æ ‘·yTÓ qÆ ~ ø±e⁄qH˚ 3. ìÅwÿæ j·T+ ` ÁøÏj÷· s¡V≤æ ‘·yTÓ qÆ ~ 4. ∫HêàÁ‘·yéT ` C≤„qdü«s¡÷|üyTÓ qÆ ~ 5. |üPs¡yí Té ` |ü]|üPs¡yí TÓ qÆ ~ ` #Ó|Œæ ªnH˚q ì‘·´ C≤„q dü«s¡÷|ü‘«· + |üPs¡dí «ü s¡÷|ü \ø£Då $T‹ uÛ≤e'μ ` Ç˝≤ #Ó|Œü &É+ e\¢ Ç<˚ ì‘·´yÓTqÆ dü«s¡÷|ü\ø£Då eTì ‘Ó\TdüT+Ô <ä+{≤s¡T. Ç+<äT˝À ô|’ eT÷&ÉT \ø£D å eTT\T Äø±X¯eTTq+<äTqï$. n~ ` ª‘·#ÃÓ øÌ √ $uÛTÑ ì‘·´+#·μ ` @ø£eTT, ì‘·´eTT, $uÛTÑ e⁄ (nìï≥qT yê´|æ+∫j·TTqï~) ` nì ìs¡«∫+|üã&çq~. ø±e⁄q Äø±X¯eTTq+<äT n‹yê´|æÔ ìyê]+#·T≥¬ø’ ∫HêàÁ‘·yTé ` |üPs¡yí Té nì C≤„qdü«s¡÷|ü |üPs¡‘í «· eTT Á|ü‘´˚ ø£ \ø£D å eTT\T>± #Ó|Œü ã&çq$.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
79
Ç~ Ç˝≤ #Ó|üŒ<ä\#·T≈£îqï|ü &ÉT ` ªj·T#·ÃÁø±D≤+ n~ÛcÕ˜qeTì eTT+<äT ‘·≥düú \ø£D å eTTqT m+<äT\≈£î #Ó|Œæ q≥T¢? nì dü>≥ ∑ T eTìwæøÏ dü+<˚V≤ü + ø£\T>∑&+É düVü≤»+. õC≤„düT •wü´Vü≤è<äj·÷ìï Á>∑Væ≤+∫q >∑Ts¡T<˚e⁄\T sT÷ $wüj·÷ìï eTT+<äT>±H˚ }Væ≤+∫ ` ªª#·Áø£ X¯uÒ›q uÛÑ÷‘·düeTT<ëj·Tdü´ ø±s¡´C≤‘·dü´ yêÁ>∑V”≤‘·T+ X¯ø´£ ‘˚«q e⁄´‹Œ‘·÷‡Hê+ neuÀ<ÛHä êj·T Á|ü± uÀ~ÛkÕÔsT¡ . »>∑<√´ì‘ê«ìï #Ó|Œü &É+ ø√düeTì ÁãVü≤àyê∫ |üPs¡‘í «· Á|ü‹bÕ<äø£ sπ Fj·T ∫Á‘·yTÓ qÆ eè‘êÔìøÏ, düs«¡ #·Áø±~ÛcÕ˜Hê‘·«+ ‘·≥dü\ú ø£Då +>± #Ó|Œü ã&çq~. #·Áø£X㯠+› #˚‘· düø\£ uÛ÷Ñ ‘·deü TT<ëj·TeTT, ø±s¡´C≤‘·eTT ≈£L&É Á>∑V≤æ +#·ã&ÉT‘·T+<äì uÀ~Û+#·&Üìπø ‘·≥dü\ú ø£Då + #Ó|Œü ã&ç+~. n<˚ |üse¡ ÷s¡yú TÓ qÆ dü«s¡÷|ü\ø£åDeTì ÁuÛÑeT|ü&É≈£î+&Ü ñ+&É&É+ ø√düeTì ªìs¡ej·Te $T‘ê´~ dü«s¡÷|ü\ø£D å eTT á $<Û+ä >± #Ó|Œü ã&çq~ $e]kÕÔsT¡ . eè‘·sÔ ÷¡ bÕìï Á|ü‘´· ø£+å >± uÀ~Û+#·&É+ ø√dü+ yÓTÆ<ëq+˝ÀøÏ rdæø=ì yÓ[¢ uÛÑ÷e÷´ø±X¯ dü+~Ûì #·÷|æ+∫ ‘ê<äèX¯es¡T˝Ô ≤ø±s¡ dü«s¡÷|üyT˚ eè‘·eÔ Tì uÀ~Û+∫q≥T¢>± eTT+<äT>± #·Áø±~ÛcÕ˜q‘·« \ø£Då eTTqT ìπs•› +∫q≥T¢ eè‹Ô Á>∑+<∏+ä ˝À Á|ükÕÔ$kÕÔsT¡ . uÛ÷Ñ e÷´ø±X¯ dü+~Û nÁ|üd<æ e∆ä TT n~eè‘·Ô dü«uÛ≤e ìs¡÷|üD≤ìøÏ ‘·≥düú \ø£D å eTT>± #·÷|üã&çqfÒ¢ Á|üdTü ‘Ô +· ˝À düø\£ #·Áø±~ÛcÕ˜q‘·«+ ‘·≥düú \ø£D å eTì uÛ≤eeTT. á \ø£D å $y˚#q· ˝À ˇø£Áø£eTã<äy∆ TÓ qÆ , düùV≤‘·Tø£ $X‚w¢ D ü Logical Analysis >√#·]düT+Ô ~. eè‘·MÔ TX¯«s¡' nì eè‘·eÔ TTqT ÁãVü≤àeTTq≈£î Á|ürø£>± ìπs•› +∫ <ëìøÏ ìs¡ej·Te, ìs¡TZD, ìÅwæÿj·T, ∫HêàÁ‘·, |üPs¡í‘·«eTT\qT düe÷Vü‰s¡\ø£åD+>± dü÷Árø£]+#·ã&ç+~. eè‘·ÔeTT nq+‘·πsK\T ø√DeTT\T>∑\ ãVüQuÛÑTõ>± ˝Òø£ es¡TÔ˝≤ø±s¡ πsU≤|ü]eè‘·+>± dü+uÛ≤$+|üã&ç <ä]Ù+|üã&ÉT #·T+&É>± <ëìì ìs¡ej·T$>± uÛ≤$+#·&yÉ TÓ ˝≤? á nq+‘·sπ K\qT ø√DeTT\qT nq+‘·>T∑ DeTT\T>± ù|s=ÿì |üPs¡eí TTqT nq+‘·>T∑ D ì<ÛëqeTT>± ø°]+Ô #·&+É »]–+~. n˝≤+≥|ü &ÉT ìs¡ej·T‘·« \ø£åDyÓT˝≤ ≈£î<äTs¡T‘·T+<äì Á|üX¯ï. <ëìøÏ ô|’q eTq+ #Ó|ü ≈£îqï uÛÑ÷e÷´ø±X¯ dü+~Û|]ü sπ U≤ <äècÕºqyÔ T˚ dü]jÓTÆ q~. uÛ÷Ñ e÷´ø±X¯ dü+~Û nÁ|üd<æ e∆ä TT. <ëì |ü]sπ K>±ì, <ëìj·T+<äT |üø*£ Œ+#·ã&çq nq+‘· sπ U≤ø√D≤<äT\T ≈£L&É }Vü‰>∑eT´eTT˝Ò ø±ì yêdüeÔ eTT\T ø±e⁄. Çeìïj·TT |üPs¡eí TT $wüjT· eTT˝À }Vü‰r‘·eTT˝…q’ $ Beyond
80
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
the limitations and imaginations
ø±e⁄q |üPs¡íeTT ìs¡ej·Tey˚T ‘·|üŒ kÕej·TeyÓTqï{ÏøÏì ø±<äT. <ëì nej·T$‘·«eTT n+‘·j·TT ÁuÛÑeT»ì‘·yÓTÆq uÛ≤eHê<Ís¡“\¤ ´y˚T weakness of intellect created by Micsconception or Illusion.
❋❋❋
ne‘ê]ø£ : nr+Á~j·T C≤„q #Ó’‘·q´ s¡÷|üeTT
Supreme Intelligence>±
\øÏ+å |üã&çq sT÷ |üPs¡dí «ü s¡÷bÕìï wüDà‘·eTT\yês¡T kÕ+K´, jÓ÷>∑, MTe÷+kÕ~ <äs‡¡ Hê\˝À yê]yê] <äèø√ÿDeTT\˝À <ä]Ù+#ês¡T. yê{Ïqìï+{Ïø° @ø£yêø£´‘·qT dü ø £ * Œ+∫, _Û q ï‘· « eTT˝À @ø£ ‘ ê«ìï ìs¡ ÷ |ü D #˚ ù d~>± ¬ s +&É e dü ÷ Á‘· T Á|ükÕÔ$+|üã&ÉT#·Tqï~.
dü÷Á‘·+ ˆˆ 2 ˆˆ @ø£y˚Tyê~«rj·T+ eè‹Ô' ˆˆ ˝Àπø j·T<∏ë eè¬øå düC≤rj·T eèøå±+‘·s¡uÛÒ<ä' $C≤rj·T •˝≤~uÛÒ<ä' dü«>∑‘· |üÁ‘·|⁄ü wŒü |ò˝ü ≤~ uÛ<Ò Xä ï $<ä´‘Ó ‘·∑Ts¡TeTTU≤ <˚«<ë+‘· yêø£´ ÁX¯eD+. ‘·<<ä äÛ9dü´ j·TTøÏ_Ô Û s¡qT∫+‘·q+ eTqq+. ‘Ó\’ <Ûësêe <ä$∫äqï <Ûë´q |üs+¡ |üsê s¡÷|ü+ ì~<Ûë´düq+. @‘êe‘ê |üPs¡í dü«s¡÷|ü+ ‘·C≤®q„ kÕ<Ûqä +#· Á|ü‹bÕ<ë´es¡D $πø|å ü X¯ø√Ô´ dü‡dü«s¡÷|ü+ ~<äX¯9sTTwüß sê<ëyêes¡D X¯ø+ÔÏ ìs¡÷|üjT· ‹ ˆˆ ª@ø£yTé `@e`n~«rj·TyéTμ ` nì |ü<$ä uÛ≤>∑eTT. @ø£yTé @e ` (|üPs¡eí TT) ˇø£ÿ{Ï>± e÷Á‘·yT˚ j·TTqï~. n~«rj·TyéT ` (<ëìø£qï) s¬ +&Ée~ ˝Ò∑‘u· <ÒÛ eä TT nì eT÷&ÉT $<Ûeä TT\T. Bìì lkÕ«$Tyês¡T Ç˝≤ $e]kÕÔsT¡ .
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
81
1.˝Àπø j·T<Ûëeèπøå düC≤rj·T uÛ<Ò 'ä ñ<ëVü≤s¡D≈£î ˇø£ eTiÏ#¿ ≥ Ó TºqT rdæø=+fÒ ` #Ó≥˝¢ À Ç~ eTiÏ#¿ ≥ Ó Tº nì düC≤rj·T (eèø£)å uÛ<Ò ëìï #Ó| ü ø√e#·TÃ. 2.ªª$C≤rj·T •˝≤~uÛ<Ò 'ä μμ eèø£å C≤‹ø£qï _ÛqïyÓTqÆ •˝≤<äT\T n+fÒ sêfi¯ófl s¡|Œü \T yÓTTˆˆq$. n{Ϻ $C≤rj·T edüTeÔ ⁄\ø£qï Ç~ (eTiÏ#¿ ≥Ó Tº) _ÛqïyÓTqÆ ~ (y˚s¬ q’ ~) nì #Ó| ü ≥ s¬ +&Ée<Óq’ $C≤rj·T uÛ<Ò eä TT. 3.ªªdü«>∑‘· |üÁ‘·|⁄ü wüŒ|ò˝ü ≤~uÛ<Ò 'ä μμ Ä≈£î\T, |ü⁄e⁄«\T, |üfió¯ ,¢ }&É\T Ç˝≤ dü«>∑‘· uÛ<Ò $ä eø£å eT÷&É |ò\ü , |ü⁄cÕŒ~ $eø£å dü«>∑‘· uÛ<Ò eä Tì uÛ≤eeTT. Ç˝≤ #Ó|Œæ ªª|ü<Áä ‘·jT˚ D j·T<∏ëÁø£eT+ uÛ<Ò 'ä ìyês¡´‘· Ç‹ uÛ≤e'μμ dü÷Á‘·+˝Àì eT÷&ÉT |ü<ë\T Áø£eT+>± eT÷&ÉT uÛ<Ò ë\qT ìyê]kÕÔsTT nì á ‘·‘«Ô· |ü]C≤„qeTT jÓTTø£ÿ |ò\ü ÁX¯ó‹ì ` ªÇ‘·+ú düC≤rj·÷~ uÛ<Ò sä V¡ ≤æ ‘·+ ì‘·´X¯ó<ä∆ ` ãT<äe∆ TTø£Ô dü«uÛ≤e+ |üPs¡+í $C≤qqTàø√Ô uÛeÑ r‹ ‘ê‘·Œs¡´yéT.μ nq>± á$<Ûyä TÓ qÆ düC≤rj·T, $C≤rj·T, dü«>∑‘· uÛ<Ò eä TT\T ˝Òì~>± |üPs¡eí TTqT ˝…d‡ü >± ‘Ó*dæø=qT≥ e\q Je⁄&ÉT eTT≈£î&Ô TÉ ø±>∑\&Éì ñ|ü<•˚ kÕÔsT¡ . yê]uÀ<Û˝ä Àì $X‚wyü T˚ $T≥+fÒ \ø£D å eTT˝Àì ª$C≤qHé ` ˝…d‡ü >± ‘Ó*dæø=ìqyê&Óμ’ ` nH˚ |ü<ëìï eTs¡\ ÁX¯eD eTqq ì~<Ûë´düqeTT˝H˚ kÕ<Ûqä eTT\ quÛ´Ñ dæ+#·&+É <ë«sê nì $e]kÕÔsT¡ . 1.>∑Ts¡Te⁄\ qT+&ç y˚<ë+‘· yêø£´eTT\qT yêì‘ê‘·Œs¡´eTT\qT ÁX¯<>∆ä ± $qT≥qT ÁX¯eDeTT n+{≤s¡T. 2.á ÁX¯eDeTTqT nqTÁX¯ó‹ yêø£´eTT\ ‘ê‘·Œs¡´ $X‚cÕ\qT yês¡T #Ó|Œæ q j·TT≈£î\Ô qT eTs¡\ eTs¡\ dü+uÛ≤$+#·T≈£î+≥÷ ∫+‘·q #˚jT· &É+ eTqq eTqã&ÉT‘·T+~. 3.á$<ÛäyÓTÆq ∫+‘·qeTTqT ‘Ó’\<Ûës¡e˝… nqTdü÷´‘·+>± ìs¡+‘·s¡eTT @ø±Á>∑eTeTqdüTÿ&Ó’ <Ûë´ìdü÷,Ô <ëì˝À s¡$Tdü÷Ô nqTuÛeÑ |üPs¡«ø£+>± Äq+~+#·&+É ªì~<Û´ä düqeTTμ ne⁄‘·T+~. á$<Û+ä >± sT÷ dü÷Á‘·+˝À |üPs¡dí «ü s¡÷|ü, C≤„HêqTuÛeÑ eTT\T $e]+#·ã&çqeì Á>∑Væ≤+#ê*. ❋❋❋
ne‘ê]ø£ : |üPs¡eí TT jÓTTø£ÿ dü«s¡÷|ü, C≤„qkÕ<Ûqä eTT\qT ñ|ü<•˚ +∫ ‘·sT¡ yê‘· <ëìjÓTTø£ÿ Äes¡D, $πø|å ü X¯≈î£ \Ô qT eT÷&ÉT, Hê\T>∑T dü÷Á‘·eTT\˝À Ç˝≤ $e]kÕÔsT¡ .
82
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü÷Á‘·+ ˆˆ 3 ˆˆ |ü]~Û sêes¡D+ eè‹Ô ˆˆ |ü]~Û' eT+&É\ sπ U≤ Äes¡D+ Äes¡DX¯ø'ÔÏ ‘·<ë∏ #· |ü]~Û dü<èä XÊes¡D X¯ø]ÔÏ ‘·´<Û9ä ', j·T<∏ë uÛ÷Ñ e÷´ø±X¯ dü+~Ûs÷¡ |ü |ü]~Û s¡q+‘·s¡ edüTÔ dü«s¡÷|ü |ü]~Û e÷#êä<´ä ‘·C≤®q„ + Á|ü‹ã<Ûëï‹ ‘·<«ä <ëes¡D X¯øsÔÏ |¡ æ |üPs¡í C≤„q+ Á|ü‹s¡TD B∆‘ê´X¯jTÓ H√ø£+Ô |ü]~Û sêes¡D$T‹ $<ä´e÷q edü«Ô qeuÛ≤düq düeT<∏ä9 ‘·« e÷es¡D X¯øÔÏ \ø£Då $T‹uÛ≤e' $πøå|üX¯øÏÔ dü«s¡÷|ü e÷Vü≤ ˆˆ |ü]~Û', Äes¡DyéT ` nì |ü<$ä uÛ≤>∑eTT. |ü]~Û ` ª|ü]‘·' BÛjT· ‘˚` Ç‹ |ü]~Û'μ #·T≥Tºq÷ ñ+&ç <Û]ä +#·Tq~ nì uÛ≤eeTT. >∑D‘Ï · XÊÁdü+Ô ˝À eè‘·|Ô ]ü sπ K (circumference) qT |ü]~Û>± |ü]>∑DkÏ ÕÔsT¡ . ~vàD¶\ |ü]sπ K (Horizon)>± ≈£L&Ü ì|òTü +≥Te⁄ ù|s=ÿ+~. (P,979 (V.S.Apte) Äes¡DeTq>± ø£|Œæ j·TT+#·Tq~. ˝Ò<ë eT÷dæyj ˚ T· Tq~. Äe]+∫ j·TT+&ÉTq~ nì uÛ≤eeTT. ø±>± Äe]+∫j·TT+&ÉT |ü]sπ K ˝Ò<ë |ü]~Û Äes¡DeTT>± #Ó|Œü ã&çq~. Äe]+∫ j·TT+&ÉTq~ nH˚ |ü± y˚s=ø£ |ü±H˚ $T–*b˛‘·T+<äì uÛ≤e+. Äes¡D eTq>±H˚ <˚ìøÏ Äes¡DeTH˚ dü+X¯jT· + ø£\T>∑T‘·T+<äqï e÷≥. ø±e⁄q dü«dü«s¡÷|üyTÓ qÆ ªnVü≤+‘· ˝Ò<ë Ä‘·à C≤„Hêìï Äe]+∫ ñ+≥T+<äì nù|øÏ‘å ês¡eú TT (Implied Meaning) Á>∑V≤æ +#ê*. Äe]+#·T≥ nH˚~ ˇø£ X¯øÏÔ (Force). e÷j·T ˝Ò<ë n$<ä´>± jÓTTø£ÿ X¯øÏÔH˚ Äes¡DX¯ø>ÔÏ ± y˚<ëqÔXÊÁdü+Ô ˝À bÕ]uÛ≤wæø+£ (Technical)>± e´eVü≤]+|üã&ÉT‘·Tqï~. ø±>±, nHê~>±, nqTdü÷´‘·+>± eTq≈£î dü+Áø£$TdüTqÔ ï e÷j·T ˝Ò<ë n$<ä´ (nC≤„qeTT) jÓTTø£ÿ Äes¡DX¯øÔÏ (|ü]~Û) eTq jÓTTø£ÿ dü«dü«s¡÷|ü C≤„Hêìï Supreme Ô ï~ dü÷Á‘êsêú+>± Á>∑V≤æ +#ê*. Intelligence of Ones own self Äe]düTq á Äes¡DX¯øÔÏ eTq ì»dü«s¡÷|üyTÓ qÆ ªnVü≤+‘·μqT ndü˝q’… H˚qTqT, ÄÁø£$T+∫, eTs¡>T∑ |üs∫¡ ‘·q<Óq’ ÁbÕø£è‹ø£ |ü]~Û˝À (within the limits of Nature) nH˚øe£ TT˝…q’ ∫‘·$Ô ÁuÛeÑ TeTT\qT (vagaries)qT ø£*Œdü÷Ô y˚TqTH˚ H˚qì ÁuÛ$Ñ T+|ü #˚d÷ü Ô eTqqT |ü]|ü] $<Ûë\T>± |ü]ÁuÛ$Ñ T+∫, |ü]‘·|+æ #˚˝≤ |ü#]· düTqÔ ï<äì uÛ≤e+.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
83
84
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
rÁe eTTeTTø£,å >∑Ts¡«qTÁ>∑V≤ü eTT, <Óy’ êqTÁ>∑V≤ü eTT\#˚ e÷Á‘·yT˚ á Äes¡D |ü]~Ûì <ë{Ï ãj·T≥|ü&TÉ ≥ kÕ<Û´ä eTe⁄‘·T+~. ne‘ê]ø£ : nHê<ä´qTdü÷´‘·+>± dü+Áø£$TdüTqÔ ï e÷j·T ˝Ò<ë n$<ä´ jÓTTø£ÿ Äes¡DX¯øìÔÏ ìs¡÷|æ+∫q l ø£˝≤´D >∑Ts¡TbÕ<äT\T <ëìøÏ ø±s¡DuÛ÷Ñ ‘·yTÓ qÆ eT]jÓTTø£ÿ X¯øÔÏ Á|üu<ÒÛ ëìï $πø|å Xü ø¯ >ÔÏ ± k˛<ëVü≤s¡D+>± Ç˝≤ uÀ~ÛkÕÔsT¡ `
y˚<ëqÔ $#ês¡D≈£î dü+ã+~Û+∫ sπ Fj·T ∫Á‘· ÁbÕ<∏$ä Tø£ dü÷Á‘·eTT*+#·T$T+#·T>± düŒw”øº ]£ +|üã&çq$. nsTTqqT õC≤„dTü e⁄˝…q’ kÕ<Û≈ä î£ \ ne>±Vü≤Hê kÂ\uÛ´Ñ eTTq¬ø’ $πø|å Xü ø¯ ÔÏ Á|üu≤Û e $\düqeTT\T ø=ìï sTT≥T¢ Á|ü<]ä Ù+|üã&çq$.
dü÷Á‘·+ ˆˆ 4 ˆˆ Á‹uÛTÑ »+ $πø|å 'ü
eè‹Ô' ˆˆ |ü+#· ‘·HêàÁ‘êDÏ |ü+#· düeT Á‹uÛÑTC≤ì Ç+Á~j·÷DÏ C≤„H+˚ Á~j·÷DÏ ø£sπ à+Á~j·÷DÏ ÁbÕD |ü+#·ø+£ #· dü÷#·jT· +‹. ÁbÕD |ü+#·øe£ T|æ dü÷ø£àå uÛ÷Ñ ‘· ø±s¡´‘˚« H˚+Á~j·TX¯uq›Ò >∑èVü≤´‘· Ç‹ uÛ≤e' ‘·HêàÁ‘êDÒ´e |ü+#· dü÷ø£àå uÛ÷Ñ ‘êì dü÷#·jT· +‹ ˆˆ ˆˆ n<∏ä |ü+Nø£è‘· uÛ÷Ñ ‘· dü«s¡÷|ü e÷Vü≤ ˆˆ |ü+#·‘H· êàÁ‘êDÏ, Ç+Á~j·÷DÏ ` nì |ü<$ä uÛ≤>∑eTT. |ü+#·‘H· êàÁ‘êDÏ nqT#√ ‘·HêàÁ‘· X¯ãe› TTq≈£î n<˚ |ü]e÷DeTT ø£\ ns¡eú TTqT $eøÏ+å ∫q#√ |ü+#· düeTuÛTÑ » Á‹uÛTÑ »eTT\T nqTqs¡eú TT dæ~+∆ #·TqT. düeTuÛTÑ » Á‹uÛTÑ »eTT˝Àì ø√DπsKqT nø£eå TT>± #˚døæ =ì Á‹uÛTÑ »eTT jÓTTø£ÿ $πø|å eü TT\ qTÁ<˚ø£ Á|üu≤Û eeTT#˚ ÁuÛ$Ñ T+|ü#d˚ qæ #√ |ü+#· Á‹uÛTÑ »eTT ˝ÒsŒ¡ &çq yÓq’ eTTqT eTqeTT #·]Ã+#·Tø=HêïeTT. (#·÷.dü÷. 1/10 ` ñÁ<˚ø±‘Y) ªÇ+Á~j·÷DÏμ ` nqT|ü∑V≤æ +|üq>∑TqT. ∫Á‘·eTTq+<ä* nsTT<äT Á‹uÛTÑ EeTT\T 11 ãTTEπsK\qT düeTwæ>º ± dü÷∫kÕÔsTT. Mì˝À 10 sπ K\T C≤„H+˚ Á~j·T, ø£sπ à+Á~j·T |ü+#·øe£ TT\qT dü÷∫kÕÔsTT. $T–*q ãTTEπsK dü÷ø£àå uÛ÷Ñ ‘·ø±s¡´‘·«eTT#˚ ì+Á~j·T yê#·´yÓTÆ Á>∑V≤æ +|üã&ÉT‘·Tqï<ä+{≤s¡T eè‹Ô Á>∑+<∏+ä ˝À. Äes¡D $πøbå Õ\≈£î eTH√ãT<äT\∆ T Á|ürø£\T. <äX+‚ Á~j·TeTT\T, ÁbÕD|ü+#·øe£ TT, eTH√ãT<äT\∆ T yÓsd¡ æ á 17 ‘·‘«Ô· eTT\T düeTwæ>º ± ø±s¡D X¯Øs¡eTT ˝Ò<ë *+>∑Xد s¡eTì e´eVü≤]+|üã&ÉT#·Tqï$. á ø±s¡D X¯Øs¡eTT eT]j·TT <ëì‘·‘·Ô«eTT\ìïj·TT |üè~∏e´ù|ÔCÀyêj·÷«ø±X¯eTT\HÓ&ç |ü+#·u÷ÑÛ ‘·eTT\ jÓTTø£ÿ n|ü+Nø£è‘· s¡÷|üeTT\T ø±>± á Á‹uÛTÑ »eTT˝…<’ Tä n|ü+Nø£è‘· |ü+#·u÷ÑÛ ‘·eTT\qT dü÷∫kÕÔjT· ì ‘ê‘·Œs¡´+ Á>∑V≤æ +#ê*.
eè‹Ô ˆˆ Á‹uÛÑT» dü<äèo$πøå|üX¯øÏÔ ]‘·´<∏ä9, n$<ä´e÷q edü«Ô euÛ≤düq düeT<Ûäø9‘·«+ $πø|å Xü ø¯ ÔÏ \ø£Då + Á‹uÛTÑ C≤ <˚y‘˚ s· ¡ #·Áø±D≤ eTT‘·Œ‹Ô <äXø ¯ 9Hê ~«πø|å ü X¯øsÔÏ ÷¡ |ü‘«· + Á‹uÛTÑ » ùd´‹ uÛ≤e' ˆˆ ˆˆ n<∏ä dü÷ø£àå uÛ÷Ñ ‘· ìs¡÷|üD e÷Vü≤ ˆˆ Á‹uÛ Ñ T »+, $π ø å | ü ' ` nì |ü < ä $ uÛ ≤ >∑ e TT. ªÁ‹uÛTÑ »dü<èä o $πø|å Xü ø¯ ]ÔÏ ‘·´s¡'ú μ ` $πø|å Xü ø¯ øÔÏ Ï Á‹uÛTÑ »eTT Á|ürø£. ªn$<ä´e÷q edü«Ô euÛ≤düq düeTs¡ú‘·«+ $πøå|üX¯øÏÔ \ø£åDyéTμ ñìøÏ (Existance) ˝Òq{Ϻ edüTeÔ ⁄qT ñqï≥T¢>± #·÷|æ+|ü>\∑ kÕeTs¡´ú eTTqT $πø|å Xü ø¯ ÔÏ n+{≤s¡T. Ç~ ≈£L&Ü e÷j·÷$\düyT˚ . e÷j·T ˝Ò<ë n$<ä´ jÓTTø£ÿ Á|üu≤Û ey˚T! Äes¡DeTT dü«dü«s¡÷|üeTTqT eTs¡>T∑ |üs∫¡ ø£|Œæ j·TT+∫‘˚, $πø|å eü TT ˝Òì <ëìì ñqï≥T¢>± #·÷|æ ÁuÛ≤+‹ì ø£*–düT+Ô ~. eTè>∑‘è· wüí ˝Ò<ë m+&Ée÷$ (Mirage) $πø|å Xü ø¯ øÔÏ Ï ñ<ëVü≤s¡D. m+&Ée÷$ øπ e\eTT ÁuÛ≤+‹j·TqT $wüjT· eTT eTqyÓTiÏ–q<˚. |ü]o*+∫q#√ Á‹uÛTÑ »eTT ≈£L&É ÁuÛ≤+‹ eT÷\ø£yT˚ . Á‹uÛTÑ »y˚T ñÁ<˚øe£ TT ø±s¡DeTT>± Bs¡eÈ è‘·,Ô #·‘T· s¡T“¤», |ü+#·uTÑÛ C≤<äT˝…q’ ∫Á‘· dü«s¡÷|üeTT\qT $πø|å Xü ø¯ #ÔÏ ˚ H˚sŒ¡ s¡T#·T #·Tqï~. ‘·qøπ dü]jÓTÆ q ñìøÏ ˝Òì~ eT]ø=ìï dü«s¡÷bÕuÛ≤düeTT\qT Á|ü<ä]Ù+#·T≥ $πøå|ü X¯øÏÔ ø±ø£ eTπseT>∑TqT? ø±e⁄qH˚ ªÁ‹uÛÑT»+ $πøå|ü'μ nì dü÷Árø£]+|üã&çq<äì ‘ê‘·Œs¡´eTT. ❋❋❋
ne‘ê]ø£ : Ç|üŒ{ÏøÏ |üPs¡dí «ü s¡÷|üeTT düŒwüeº TT>± ìπs•› +|üã&çq~. e÷j·T ˝Ò<ë n$<ä´ jÓTTø£ÿ Äes¡D, $πø|å ü X¯≈î£ \Ô T ≈£L&Ü k˛<ëVü≤s¡DeTT>± $e]+|üã&çq$.
dü÷Á‘·+ ˆˆ 5 ˆˆ |ü+#·‘·HêàÁ‘êD°+Á~j·÷DÏ
❋❋❋
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
85
ne‘ê]ø£ : n|ü+Nø£è‘· |ü+#·u÷ÑÛ ‘·eTT\qT Á|ü‹bÕ~+∫q ‘·sT¡ yê‘· |ü+Nø£è‘· uÛ÷Ñ ‘·d«ü s¡÷|üeTTqT Á|ükÕÔ$kÕÔsT¡ >∑Ts¡TbÕ<äT\T.
dü÷Á‘·+ ˆˆ 6 ˆˆ eTVü‰Á‹ø√D≤ì uÛ÷Ñ ‘êì eè‹Ô' ˆˆ |ü+#·‘H· êàÁ‘√Ô‘Œ· Hêïì |ü+#·eTVü‰Á‹ø√D≤H˚´e |ü+#·eTVü‰uÛ÷Ñ ‘êì dü÷#·jT· +‹ ˆˆ e´wæºdü«s¡÷|üeT_Û<Ûëj·T düeTwæº dü«s¡÷ E |üe÷Vü≤ ˆˆ ô|’q $e]+#·T≈£îqï |ü+#·‘·HêàÁ‘·\ n|ü+Nø£è‘· uÛ÷Ñ ‘·eTT\ |ü+Nø£sD ¡ eTT e\q H˚sŒ¡ &çq eTVü‰Á‹ø√DeTT˝Ò AHF, BGD, ABG, AFG, DBH, DGH nqTq$ |ü+#·eTVü‰uÛ÷Ñ ‘·eTT\qT dü÷∫kÕÔjT· ì Á>∑V≤æ +#ê*. ❋❋❋
ne‘ê]ø£ : |ü+Nø£è‘·, n|ü+Nø£è‘· uÛ÷Ñ ‘·d«ü s¡÷|üeTTqT e´wæ>º ± ìs¡÷|æ+∫q |æeTà≥ düs«¡ #·Áø£eTT\ jÓTTø£ÿ düeTwædº «ü s¡÷|ü ìs¡÷|üDeTTqT s¬ +&ÉT dü÷Á‘·eTT\˝À Ç˝≤ ìπs•› kÕÔsT¡ .
dü÷Á‘·+ ˆˆ 7 ˆˆ düs«¡ #·Áø£ düeTwæsº ÷¡ b˛ $sê{Ÿ eè‹Ô ˆˆ düsê«DÏ j·÷ì #·Áø±DÏ eè‘·Ô Á‹uÛTÑ C≤~ uÛ<Ò _ä HÛ êïì, ‘˚cÕ+ düeTwæsº ÷¡ |ü+ ‘·T ãVüQ$<Û+ä wü{ÀÿD eè‘êÔ‘à· ø£yT˚ ø£+ |ü+#·ø√DeTq´#·Ã ˆˆ düs«¡ #·Áø£ düeTwæsº ÷¡ |ü', $sê{Ÿ ` nì |ü<$ä uÛ≤>∑eTT.
86
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
düs«¡ #·Áø£ düeTwæº s¡÷|ü' ` nq>± eè‘·,Ô Á‹uÛTÑ C≤~ |üPs¡«ìs¡÷|æ‘e· TT˝…q’ $$<Ûä dü«s¡÷|ü uÛ<Ò _ä qÛ ïeTT˝…q’ düs«¡ sπ Fj·T ∫Á‘·eTT\ìï{ÏjTÓ Tø£ÿ düe÷Vü≤è‘· dü«s¡÷|üeTT nì uÛ≤eeTT. $sê{Ÿ ` Ä düeTwædº «ü s¡÷|üeTT ª$sê{Ÿμ nì e´eVü≤]+|ü ã&ÉT#·Tqï~. n~ (1) l+ ;»>∑]“¤‘y· TÓ qÆ wü{ÀÿD |ü]eè‘·Ô s¡÷|üeTT>∑qT (2) ÁV”≤+ ;C≤+‘·s«¡ ]Ô |ü+#·ø√D |ü]eè‘·Ô s¡÷|üeTT>∑qT s¬ +&ÉT $<Ûeä TT\T>± Á|ü<]ä Ù+|ü ã&ÉT#·Tqï~. ❋❋❋
ne‘ê]ø£ : á düs«¡ #·Áø£ düeTwæsº ÷¡ |üeTTqπø ÁãVü≤à#·Áø£eTHÓ&ç eT]jÓTTø£ n_Û<ëÛ qeTTqT >∑Ts¡T<˚e⁄\T dü÷∫+#·T#·THêïs¡T.
dü÷Á‘·+ ˆˆ 8 ˆˆ ÁãVü≤à#·Áø£ $T‹ øπ ∫‘Y eè‹Ô' ˆˆ düs«¡ #·Áø£ düeTwæsº ÷¡ |ü+ ÁãVü≤à#·Áø£ $T‹πø∫‘Y. X‚«‘êX¯«‘·s¡ XÊœH√ e<ä+r‘·´<Û6ä ' ˆˆ ˆˆ n<∏ä Jedü«s¡÷|üe÷Vü≤ ˆˆ ÁãVü≤à#·Áø£yTé ` Ç‹ ` øπ ∫‘Y nì |ü<$ä uÛ≤>∑eTT. á düeTwæº #·Áø£eTTH˚ ø=+<äsT¡ ÁãVü≤à#·Áø£eTì e´eVü≤]düTHÔ êïs¡ì uÛ≤eeTT. Ç#·Ã≥ øπ ∫‘Y`ø=+<äsT¡ nì #Ó|ü ≥ e\q #ê\eT+~ $sê≥ÃÁø£eTìj˚T e´eVü≤]düTÔHêïs¡ì uÛ≤eeTT. Ç˝≤ #Ó|Œü &É+ XÊÁdüdÔ +ü Á|ü<ëj·T+. X‚«‘êX¯«‘·sX¡ ÊK≈£î #Ó+~q ø=+<äsT¡ ÁãVü≤à#·Áø£eTì uÛ≤$düTHÔ êïs¡T. ``` ne‘ê]ø£ : Jedü«s¡÷|üyTÓ qÆ eè‘·dÔ «ü s¡÷|üeTT ìs¡÷|æ+|üã&ÉT#·Tqï~.
dü÷Á‘·+ ˆˆ 9 ˆˆ _+<äTqeø£ eè‘·+Ô C…e’ + #·Áø£+
l+
ÁV”≤+
eè‹Ô' ˆˆ qe _+<äT düV≤æ ‘·+ eè‹Ôs÷¡ |ü+ #·Áø£+ Jedü«s¡÷|ü+ $T‘·´<∏ä9'ˆˆ ‘·Á‘· _+<äT qeø£+ <äèX¯´‘˚, ‘·kÕà ~“+<äTqeø£ $T‹ e´eÁVæ≤j·T‘˚, qe _+<äe' <˚V≤ü düú qes¡+Á<ÛëDÏ dü÷#·jT· +‹ ˆˆ Jedü«s¡÷|ü ìs¡÷|üD≤q+‘·s+¡ Væ≤s¡D´>∑s“¡ ¤ dü«s¡÷|ü e÷Vü≤ ˆˆ _+<äTqeø£eè‘·+Ô ` C…q’ + ` #·Áø£yTé ˆˆ nì |ü<$ä uÛ≤>∑eTT. qe_+<ë« ‘·àø£yTÓ qÆ eè‘·Ô
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
87
ø±eTø£fi≤eè‘·eÔ TT
s¡÷|üeTT˝À qTqï #·Áø£eTT. C…e’ yéT ` nq>± Jedü+ã+<Ûyä TÓ qÆ nq>± Jedü«s¡÷|ü uÀ<Ûøä y£ TÓ qÆ #·Áø£eTT>± e´eVü≤]+|ü ã&ÉT#·Tqï~. Ç+<äT 9 _+<äTe⁄\T Á|ü<ëÛ qeTT>± dü÷∫+|üã&ç q+<äTq Ç~ _+<äTqeø£ #·Áø£eTì dü+uÛ≤$+|ü ã&çq~. Ç+<ä* ‘=$Tà~ _+<äTe⁄\T <˚V≤ü eTTq+<ä* qe s¡+Á<Ûeä TT\qT dü÷∫kÕÔjT· ì Ä#ês¡´ bÕ<äT\T ` ªqe _+<äe' <˚V≤ü düú qes¡+Á<ÛëDÏ dü÷#·jT· ìÔμ ` nqTq~ yê] ø£+sƒ√øÏ.Ô y˚<ë+‘· XÊÁdüÔ Á>∑+<∏äeTT\˝À ªdü‘·´+ C≤„qeTq+‘·+ ÁãVü≤àμ ` nì Á|ü‹bÕ~+|üã&çq (|üPs¡Áí ãVü≤àeTT) ‘êqT ãVüQ<Ûë Á|üd]Ôü +|ü dü+ø£*Œ+∫q<ä≥! (k˛ø±eTj·T‘·`ãVüQkÕ´+ Á|üC≤j˚Tj˚Ty˚T‹). n~ >∑D‘Ï · XÊÁdüE Ô \„ #˚ yÓC’ ≤„ìø£eTT>± ABCD nqT |ü]eè‘·e Ô TT#˚ dü÷∫+|üã&çq~. Ä\+ø±]ø£ |ü]uÛ≤wü˝À <ëìeè‘·eÔ TT düTqï(Ciper)>± #Ó|Œü ã&çq~. Á|üdTü ‘Ô +· ˝À Ç~ e÷j·T jÓTTø£ÿ ÁbÕ<∏$ä Tø£ dü+ø£\ŒeTT>± eTVü‰_+<äTe⁄>± ªnVü≤+‘·μqT ªX¯óø£¢s¡ø£Ô _+<äT düe÷Vü≤è‘· s¡÷ù| ãVüQkÕ´yéTμ ` ªnC≤j·Te÷H√
88
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ãVüQ<Ûë$C≤j·T‘˚μ ` Ç‘ê´~ ÁX¯ó‹ yêø£´eTT\#˚ dü+düT‹Ô +|üã&çq≥T¢>±, nq+‘· s¡÷|üeTT\T>± Á|üd]Ôü +∫q~. ªªqy√qy√ uÛeÑ ‹ C≤j·Te÷q'μμ á Á|ükÕÔse¡ TT s¬ +&ÉT qedü+K´\#˚ y˚<ë+‘· >∑D‘Ï e· TT (G9) <Ûqä , ãTTD (`9) Posititive and Negative eT÷\ø£eTT>± dü÷∫+∫q~. ø±e⁄q eè‘·eÔ TqTq~ ‘=$Tà~ jÓTTø£ÿ nÁ|üø{£ ‘Ï · s¡÷|üeTT (unmanifested form) >± #Ó|üŒã&çq~. (KLMN) eè‘·Ô ì]›wüºyÓTÆq Äeè‹. 1. áX¯«s¡, 2. eTVü‰_+<äT, 3. nVü≤+‘·, 4.‘=$Tà~\≈£î Á|ürø£. eTVü‰_+<äTe⁄ ø±s¡D X¯Øs¡eTT. <ëìøÏ ô|q’ Tqï eè‘·eÔ TT os¡¸eè‘·eÔ TT. yêeT<äøDåÏ bÕs¡Ù«eTT\+<äTqï s¬ +&ÉT eè‘·eÔ TT\T s¬ +&ÉT |üøeå£ TT\T (¬sø£ÿ\T). n<Û√eè‘·eÔ TT |ü⁄#÷ e¤ TT>± #Ó|Œü ã&çq~. eTVü‰_+<äTe⁄ Ä‘·àø±s¡D uÛ÷Ñ ‘·yTÓ qÆ ~. ø±e⁄q ø±s¡D X¯ØsêìøÏ eT÷\eTì #Ó| ü ≈£îHêï+. eTVü‰_+<äTe⁄ $T–*q Hê\T>∑T _+<äTe⁄\‘√ ø£*dæ dü÷ø£àå X¯Øs¡eTTqT dü÷∫düTqÔ +~. Hê\T>∑T eè‘·eÔ TT\ K+&Éq _+<äTe⁄\qT ø£\T|ü⁄‘·÷ ^j·Tã&çq eè‘·eÔ TT EFGH dü÷\ú X¯Øsêìï dü÷∫düT+Ô ~. Bìì ÁãVü‰àD¶ |æD≤¶De¶ TT\≈£î s¬ +{Ïø° nq«sTT+#·e#·TÃ. n+<äTπø Bìì ø±eTø£fi≤j·T+Á‘·+>±qT Jedü+ã+~Û C…’e#·Áø£+>±qT ≈£L&Ü e´eVü≤]kÕÔs¡T. eè‘·ÔeTT˝À C…’e #·Áø£eTT˝À _+<äTqeø£ Á|ü<äs¡ÙqeTT ≈£L&Ü XÊÁd”j Ô T· eTT>±>±$+|ü ã&çq~. eTVü‰_+<äTe⁄ nìï{ÏøÏ eT÷\πø+Á<äyTÓ Æ 9#˚ dü÷∫+|üã&çq~. >∑D‘Ï X· ÊÁdüeÔ TT˝À n+¬ø\ìï+{ÏøÏ eT÷\ø£+<äeTT ‘=$Tà~j˚Tqì k˛|ü|ü‹Ôø£eTT>± Ç+‘·≈£îeTT+<äT ìs¡÷|æ+#·ã&çq~. á eTVü‰_+<äT Á|ükÕÔse¡ TTq ø£qT>∑TDeTT>± ABCD, EFGH, ú , dü÷ø£àå , ø±s¡D X¯Øsê\qT dü÷∫kÕÔsTT. KLMN ` dü÷\ yÓTT‘·+Ô ø±eTø£fi≤j·T+Á‘êìï C≤Á>∑‘>Ô· ± |ü]o*ùdÔ 8`1`6`4 ≈£î&çy|’Ó ⁄ü |ü]sπ KqT 8`3`2`4 m&ÉeTyÓ|’ ⁄ü sπ KqT ø£*|æq#√ øÏ‹å » düe÷+‘·s¡ Bs¡eÈ è‘·eÔ TT (Horizontal ä >± Ellipse) @s¡Œ&ÉT‘·T+~. n<˚$<Û+ 5`1`3`7 os¡¸eTTyÓ|’ ⁄ü |ü]sπ Kq+ 5`6`2`7 |ü⁄#·Ãe¤ TTyÓ|’ ⁄ü |ü]sπ KqT ø£*|æq#√ ì\Te⁄>±qT+&ÉT Bs¡eÈ è‘·eÔ TT (Vertical Ellipse) @s¡Œ&ÉT‘·T+~. á s¬ +&ÉT Bs¡eÈ è‘·eÔ TT\T |üsd¡ Œü s¡eTT K+&ç+#·Tø=qT#·T ABCD |ü]eè‘·eÔ TT#˚ Hêe]+|üã&çq≥T¢ <ä]Ù+#·e#·TÃqT. os¡¸_+<äTe⁄ 'B' ÁãVü≤às¡+Á<Ûeä TTqT, n<∏√_+<äTe⁄ 'D' bÕ<ë+>∑Tfi¯ó\ eT<Ûä´ _+<äTe⁄qT, Çs¡TbÕs¡Ù«eTT\T ¬s+&ÉT yÓ÷#˚‘·T\jÓTTø£ÿ
89
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
eT<Û´ä _+<äTe⁄\qT dü÷∫kÕÔsTT. á Hê\T>∑T _+<äTe⁄\ eTs¡\ |ü]eè‘·Ô |ü]~Û (ABCD)ì dü÷∫kÕÔsTT. πø+Á<äuÛ≤>∑eTT Hê_Ûì, <ëìøÏ ô|’uÛ≤>∑eTTqqTqï 1,6 _+<äTe⁄\T uÛTÑ C≤Á>∑eTT\qT, ÁøÏ+~ uÛ≤>∑eTTqqTqï 3,2 _+<äTe⁄\T ‘·T+{Ïøfi° fl¯ qT dü÷∫+#˚ $wüj÷· ìï dü÷Á‘·u≤Û >±ìøÏ eTT+<äTqï ñb˛<ëÈ‘+· ˝À Á|ü± _+<äT qeø£eTT‘√ ≈£L&çq C…e’ #·Áø£eTT qes¡+Á<Ûä dü+j·TT‘·yTÓ qÆ |æ+&Ü+&Üìï ≈£L&É düeTq«j·T |üPs¡«ø£+>± düeT]údTü +Ô ~. ø±e⁄qH˚ Bìì ªC…’e+μ Jedü+ã+<ÛäyÓTÆq~ ≈£L&Üqì yê#·´+>± Á|üdüTÔ‹kÕÔs¡T l ø£˝≤´D≤q+<ä uÛ≤s¡r >∑Ts¡TbÕ<äT\T. ❋❋❋
ne‘ê]ø£ : á $<Û+ä >± Je⁄q≈£î dü+ã+~Û+∫q sπ Fj·T ∫Á‘· düeTq«j·T |üPs¡«ø£+>± Je#·Áø£dü«s¡÷bÕìï $e]+∫q |æeTà≥ Væ≤s¡D´>∑s¡“¤ Á|ü‹bÕ<äø£yÓTÆq #·Áø±ìï dü÷Á‘·s÷¡ |ü+>± sTT˝≤ Á|ü‹bÕ~kÕÔsT¡ .
dü÷Á‘·+ ˆˆ 10 ˆˆ eè‘·Ô Á‹ø√D+ Væ≤s¡D´>∑s¡“¤' eè‹Ô' ˆˆ Á‹uÛÑT» düVæ≤‘· eè‘·Ôy˚Te Væ≤s¡D´ >∑s¡“¤ dü«s¡÷|ü+ uÛÑe‹, Væ≤s¡D´>∑s¡“¤dü´ $πøbå Ões¡D s¡÷|ü X¯ø<ÔÏ «ä j·T j·TTø£‘Ô «˚ q eè‘·Ô Á‹uÛTÑ »jÓ÷ sêeD $πøå|ü X¯øÏÔs¡÷|ü‘ê« <ä«è‘·Ô Á‹ø√D≤‘·àø£‘·«+ Væ≤s¡D´>∑s“¡ ù¤ d´‹ uÛ≤e' n<Ûä Væ≤s¡D´>∑s“¡ ¤ dü«s¡÷|ü+ ìs¡÷ ù|´X¯«s¡ dü«s¡÷|ü+ ìs¡÷|üjT· ‹' ˆˆ eè‘· Ô Á‹ø√D+ ` Væ ≤ s¡ D ´>∑ s ¡ “ ¤ ' ` nì |ü<$ä uÛ≤>∑eTT. ªÁ‹uÛÑT» düVæ≤‘· eè‘·Ôy˚Te Vü≤s¡D´ >∑s¡“¤ dü«s¡ ÷ |ü + uÛ Ñ e ‹μ nì dü÷Á‘êsêúìï $e]kÕÔs¡T >∑Ts¡TbÕ<äT\T. Á‹uÛTÑ »eTT‘√ ≈£L&çq eè‘·dÔ «ü s¡÷|üyT˚ Væ≤s¡D´>∑sT¡ “¤&ìÉ dü÷Á‘ês¡eú TT. ª$πøbå Ões¡D s¡÷|üXø¯ ÔÏ <ä«j·Te‘·«+ Væ≤s¡D´>∑s“¡ ¤ dü«s¡÷|üyTé μ ` Væ≤s¡D´>∑sT¡ “¤q≈£î Äes¡D $πø|å eü TT\H˚ s¬ +&ÉT X¯≈î£ ˝Ô Ò X¯Øs¡eTT ˝Ò<ë dü«s¡÷|üeTT. eè‘·+Ô Äes¡D X¯øøÔÏ Ï Á‹uÛTÑ »eTT $πø|å Xü ø¯ øÔÏ Ï Á|ürø£\T>± eTT+<äT $e]+#·T≈£îHêï+. ø±e⁄q s¬ +&ç+{Ï dü$Twæº s¡÷|üyTÓ qÆ Á‹ø√D |ü]eè‘·sÔ ÷¡ |ü sπ Fj·T ∫Á‘·eTT Væ≤s¡D´>∑sT¡ “¤ìøÏ dü+øπ ‘·eTe⁄‘·T+<äì uÛ≤eeTT. ●
90
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ne‘ê]ø£ : ∫es¡>± eè‘·eÔ TT ˙X¯«s¡ dü+øπ ‘·+>± dü÷Á‹dü÷Ô áX¯«s¡ X¯ã~› «s¡TøÏ‘Ô √ á ÄVæ≤ïø±ìï eTT–düTHÔ êïs¡T l >∑Ts¡TbÕ<äT\T.
dü÷Á‘·+ ˆˆ 11 ˆˆ eè‘·ÔMTX¯«s¡ áX¯«s¡¤' eè‹Ô' ˆˆ |ü]~Û |ü]eè‘· ‘·\dü«s¡÷|ü+ eè‘·Ô+, |ü]~Ûsêï e÷es¡DX¯ø'ÔÏ , ‘·\+ #Ó‘’ q· ´+, ‘·<ë∏ #· e÷j·÷+‘·T Á|üøè£ ‹+ $<ë´HêàsTTq+‘·T eTùV≤X¯«s¡, $T‹ÁX¯ó‘ê´ j·T<∏ë#êes¡D X¯øsÔÏ ÷¡ |ü e÷j·÷|ü]eè‘·‘«· MTX¯«s¡d´ü ‘·<«ä ‘·Œ]~Û s¡÷bÕ es¡D X¯øÏÔ j·TTø£Ô‘˚«q eè‘·Ô ùd´X¯«s¡ dü«s¡÷|ü‘«· $T‹uÛ≤e' ˆˆ ~«s¡TøÏÔ sêVæ≤ïø£ |ü]düe÷bÂÔ' ˆˆ Ç‹ l |üPs¡í MTe÷+kÕ <äs¡9HÓ ‘·èrj·÷Væ≤ïø£ eè‹Ôd‡ü e÷bÕÔ eè‘·yÔ Té ` áX¯«s¡' ` áX¯«s¡' ` nì |ü<$ä uÛ≤>∑eTT. eè‘·ÔeTT |ü]~Û |ü]eè‘· ‘·\dü«s¡÷|üeTT>± #Ó|üŒã&çq~. eè‹Ô˝À ª‘·\+ #Ó‘’ q· ´yéTμ nHêïs¡T >∑Ts¡TbÕ<äT\T. nq>± Surface is defined as consciouness y˚<ë+‘· dü+øπ ‘·s÷¡ |ü+>± <ä]ÙùdÔ ` ªª|ü]~Ûsêï e÷es¡DX¯ø'ÔÏ μμ Äes¡D X¯øøπÔÏ |ü]~ÛjT· ì ù|s¡T. Äes¡D X¯øÔÏ j·TqTq~ e÷j·T jÓTTø£ÿ s¡÷bÕ+‘·sy¡ T˚ ªªe÷ j·÷+‘·T Á|üøè£ ‹+ $<ë´‘Y e÷ sTTq+‘·T eTùV≤X¯«s¡yTé μμ ` nì ÁX¯ó‹Á|üe÷D+. ø±>± Äes¡D X¯øsÔÏ ÷¡ |ü e÷j·÷|ü]eè‘·‘«· + áX¯«s¡Tì \ø£D å eTT, Ä |ü]~Û |ü]eè‘·yTÓ qÆ eè‘·yÔ T˚ áX¯«s¡d«ü s¡÷|üeTT>± #Ó|Œü ã&çq~. |üPs¡«eTTe˝…H˚ áX¯«s¡ |ü
l|üPs¡Mí Te÷+kÕ <äsÙ¡ qeTTq+<ä* ‘·èrj·÷Væ≤ïø£eTT eTT–dæq~. ❋❋❋
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
91
|üPs¡Mí Te÷+dü
4(iv)#·‘·TsêúVæ≤ïø£eTT |üPD9MTe÷+kÕ <äX¯9H˚ düeè‹Ôπø #·‘·T<∏ë9Væ≤ïø£ ÁbÕs¡+uÛ'Ñ |üPDÒ9X¯«s¡j÷Ó ' dü«s¡÷|üeT_Û<ëÛ j·T‘·j÷Ó sê«#·ø£ e÷Vü≤' >∑&∫É q eT÷&É<ëÛ ´j·TeTT\˝À ` eè‘êÔ‘Y düs«¡ e´eVü‰s¡ e´+»ø£yTé düeTÁ‹uÛTÑ »yéT (dü÷ˆˆ1`6) nì ÁbÕs¡+_Û+|üã&ç, ªeè‘·MÔ TX¯«s¡ áX¯«s¡'μμ (dü÷ˆˆ3`11) es¡≈î£ eè‘·yÔ T˚ áX¯«s¡ Á|ü‹s¡÷|üeTì˙ï, n~j˚T qìï sπ Fj·T ∫Á‘·eTT\≈£î eT÷\ø±s¡DeTì˙ï ‘Ó*j·TCÒjT· ã&çq~. yÓ~’ ø£ yêvàj·T+˝À |üPs¡Áí ãVü≤àeTTqT ìπs•› +#˚ @¬øø’ £ sπ Fj·÷ø£è‹ eè‘·yÔ T˚ qì ìs¡÷|æ+|üã&çq~. ÁX¯ó‹ düàè‹ düeTà‘·yTÓ qÆ Ø‹˝À sπ U≤Á|ü|+ü #·eTTqT, |ü]o*+∫ á πsFj·T∫Á‘·s¡÷|üeTT\≈£î ‘·–q HêeTeTT\ Á|ü‹bÕ<äqeTT Á|üdTü ‘Ô êVæ≤ïø£eTT˝Àì Á|ü<ëÛ q $wüjT· eTT. HêeTs¡÷|üeTT\T s¬ +&ÉTqT kÕ<Ûës¡DeTT>± n$HêuÛ≤e dü+ã+<Ûeä TT‘√ e´eVü≤]+|üã&ÉT#·Tqï+<äTq Ä s¬ +{ÏjT· +<äTqT kÕ«u≤$ø£ düeT‘Í\´eTT Natural Harmony #·÷&Éq>∑TqT. á$<Ûyä TÓ qÆ HêeTs¡÷|üeTT\ jÓTTø£ÿ düeT‘Í\´eTTqT ÁX¯ó‹düàè‹ Á|üe÷DeTT\‘√ Á|ü<]ä Ù+∫ uÀ~Û+#·T≥j˚T sT÷ Hê\T>∑e ÄVæ≤ïø£eTTjÓTTø£ÿ Á|ü‹bÕ<ë´+X¯eTT. HêeTeTT |ü<ä (Word) ;» (Mantra) dü+U≤´ (Number) Á|üu<ÒÛ eä TT\#˚ eTT$«<Ûeä TT\T>± ù|s=ÿqã&çq|üŒ{ÏøìÏ , |ü<;ä »eTT\T s¬ +&ÉTqT es¡sí ÷¡ |üeTT˝Ò ø±e⁄q yêìì ¬s+{Ï˙ es¡í$uÛ≤>∑eTT˝À #˚]à es¡ídü+U≤´‘·àø£‘·«eTT $uÛ≤>∑eTT ≈£L&Ü #Ó|Œü ã&çq~. XÊÁdü|Ô sü e¡ TT>± |ü<;ä »eTT\ eT<Û´ä $•wüyº TÓ qÆ n+‘·s+¡ >√#·]düT+Ô ~. |ü± n_Û<ëÛ X¯øìÔÏ yê#·ø‘£ «· eTT <ë«sê edüTuÔ À<Ûøä e£ TT ìs¡«Væ≤düT+Ô ~. ;»+ ñ#êÃs¡D, <Ûë´q, »|üeT÷\ø£yTÓ qÆ eT+Á‘·Xø¯ ìÔÏ dæ~+∆ |ü #˚dTü +Ô ~. |ü∑qT, ;»eTT X¯øeÔÏ T+‘·yTÓ qÆ es¡dí +ü |ò÷ü ‘·eTT jÓTTø£ÿ dü÷ø£àå dü«s¡÷|üeTT Subtle and Technical representation >∑qT XÊÁdü+Ô ˝À ìπs•› +#·ã&çq~. ñ<ëVü≤s¡D≈£î >∑D‘Ï X· ÊÁdüÔ |ü]uÛ≤wü˝À (ABC) Á‹uÛÑT»eTT nH˚~ |ü<äyÓTÆ‘˚, ABC nH˚ ìπs›X¯+ ;»eTqïe÷≥. nfÒ¢ s¡kÕj·TqXÊÁdü+Ô ˝À kÕ<Ûës¡D ñ|ü nH˚~ |ü±qT 2Nacl nì bÕ]uÛ≤wæø+£ >± ;»s¡÷|ü+˝ÀqT e´eVü≤]kÕÔsT¡ .
92
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
|ü<Áä |ü|+ü #·+ dü>≥∑ T eTqTwüß´\≈£î ;»Á|ü|+ü #·+ ìcÕí‘T· ˝…q’ ñ‘·eÔ ÷~Ûø±s¡T\≈£î, $<ë«+düT\≈£î ìπs•› +#·ã&çqeì Á>∑V≤æ +#ê*. Ç˝≤π> ˙s¡T nH˚ es¡sí ÷¡ |üeTTq≈£î H O (Hydrozen Hydroxide) nH˚~ kÕ+πø‹ø£yTÓ q Æ _+<äT|ü]uÛ≤wü ìπs•› +#·ã&çq~. esêí‘à· ø£yTÓ qÆ n_Ûe´øÏÔ kÕe÷qT´\≈£î, ;»s¡÷|üyTÓ qÆ n_Ûe´øÏÔ $X‚wE ü \„ ≈£î nqTuÛeÑ >√#·se¡ TÚ‘·T+~. ø±>± |ü<Áä |ü|+ü #·eTT (Pada World) kÕ<Ûës¡D »Hê˙ø£eTTq≈£î, ;» ˝Ò<ë eT+Á‘· Á|ü|+ü #·eTT (Beeja World) s¡V≤ü dü´ õC≤„dTü e⁄˝…q’ ÁãVü≤à$<äT˝…q’ C≤„qT\≈£îqT ñbÕ<˚jT· eTT\>∑T #·Tqïeì ‘ê‘·Œs¡´eTT. kÕ<Ûës¡D |ü±$+#·Tø=q e#·TÃqT. ø±ì ;C≤‘·àø£yTÓ qÆ eT+Á‘· Á|ü|+ü #·eTT ÁãVü≤à$<äT˝…q’ >∑Ts¡Te⁄\ qT+&çjT˚ bı+<ä<–ä q<äì Á>∑V≤æ +|ü e\dæ j·TTqï~. ø±e⁄q sT÷ ÄVæ≤ïø£eTT˝À HêeTs¡÷|ü $#ês¡D‘√ Äs¡+_Û+|üã&ÉT#·Tqï~. 2
dü÷Á‘·+ ˆˆ 1 ˆˆ ‘·dü´yê#·ø£' Á|üDe' eè‹Ô' ˆˆ ‘·dü´ |üPD9ùd´X¯«s¡d´ü yê´#·ø'£ n_Û<ëÛ q+ Á|üDe' Á|üøè£ c˛ºqe' |ü⁄wüÿ\ k˛ÔÁ‘·$T‘·´<Ûä9' ˆ DTdüT‘Ô ê$‹<Ûë‘√' ˆˆ j·T<ë«Á|üd÷ü j Ô T· ‘˚-qj·÷ÁãùV≤à‹ Á|üDe' ˆˆ ø√j·T+Á|üDe' jÓTqÁãVü≤à Á|üd÷ü j Ô T· ‘Ó Ç‘ê´ø±+ø±¸j÷· + ‘·d«ü <Ó«’ $<Û´ä e÷Vü≤ˆˆ ‘·d´ü ` yê#·ø'£ , Á|üDe' nì |ü<$ä uÛ≤>∑eTT. ‘·d´ü nq>± |üPsê«Væ≤ïø£|⁄ü ∫e] dü÷Á‘·eTT˝À $e]+#·ã&çq Ä áX¯«s¡Tì jÓTTø£ÿ yê#·ø£ |ü± nsêúìï ‘·‘Œ· <ës¡ú yê#·T´&Óq’ Ä |üPs¡Áí ãVü≤àeTTq≈£î yê#·ø|£ <ü eä TT, ˝Ò<ë ‘Ó*j·T|üs#¡ T· |ü± z+ø±s¡eTì e´eVü‰s¡+ ˝Àø£+˝À ãVüQfi¯+>± >√#·]düTÔ+~. á Á|üDe X¯u≤›ìøÏ >∑Ts¡TbÕ<äT\T ` 1.n_Û<ëÛ q+ Á|üDe' 2.Á|üøè£ c˛º qe' |ü⁄wüÿ\ k˛ÔÁ‘·eTs¡'ú 3.Á|üd÷ü j Ô T· ‘˚ nqj·÷ ÁãùV≤à‹ Á|üDe' nì eT÷&ÉT$<Ûeä TT˝…q’ e⁄´‘·Œ‘·T\Ô qT dü÷∫+#ês¡T. ‘·‘Œ· <ä yê#·´yÓTqÆ |üPs¡eí TT ˝Ò<ë áX¯«s¡Tì uÀ~Û+#˚ yê#·ø£ X¯ãy› T˚ Á|üDeeTT
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
93
nì yÓTT<ä{Ï e⁄´‘·Œ‹Ô. ªDT`düT‘Ô Íμ nq>± DT ` <Ûë‘·Te⁄q≈£î düT‹Ô +#·T≥ nì j·Ts¡eú TT. Ä|üøeå£ TTq ªÁ|üμ nH˚ ñ|üdsü ‘Z¡ √ ≈£L&çq DT <Ûë‘·Te⁄qT+&ç ìwüŒqïyÓTqÆ Á|üDe X¯ãe› TTq≈£î |ü⁄wÿü \yÓTqÆ k˛ÔÁ‘·eTì j·Ts¡eú TT ` nì s¬ +&Ée e⁄´‘·Œ‹Ô. ªÁ|üd÷ü j Ô T· ‘˚ nqj·÷ ÁãùV≤à‹μ ` Á|üDe' ` nq>± ÁãVü≤àeTT Bì#˚ $X‚weü TT>± qT‹+|üã&ÉT#·Tqï<äì eT÷&Ée e⁄´‘·Œ‹ÔøÏ ns¡eú TT. ❋❋❋
ne‘ê]ø£ : Á|üDe X¯u≤›ìï ìs¡«∫+∫, dü÷Á‘·ø±s¡T\T ‘·sT¡ yê‘· dü÷Á‘·+˝À <ëì dü«s¡÷bÕìï˝≤ Á|ü<]ä ÙkÕÔsT¡ .
dü÷Á‘·+ ˆˆ 2 ˆˆ dü+U≤´s¡÷b˛ es¡sí ÷¡ |üX ‹ eè‹Ô' ˆˆ ~«$<Û√Væ≤dü' ˆ |üPs√«ø£ÁÔ ãVü≤àyê#·ø'£ , Á|üDe'~«Á|üø±s¡'ˆ dü+U≤´ j·T‘Óqj˚T‹ dü+U≤´n+ø£' s¡÷|ü+j·Tdü´dü' dü+U≤´s¡÷|ü' ˆ qeHêeTø£' n+ø£ @ø£' ˆˆ eD´9‘˚-qj˚T‹ e⁄´‘·Œ‘êÔ´D9' nø£så '¡ s¡÷|ü+ dü«s¡÷|ü+ j·Tdü´dü' eD9s¡÷|ü' z+ø±s¡' ~«rj·T' Ç‹ ˆ #·X㯠'› düeTT#·Ãj·÷<Ûä9' ˆˆ Ç‹X¯ã'› ìX¯Ãj·÷<Ûä9' ˆˆ dü+U≤´Hê+eT<Û´˚ qedü+U≤´, eD≤9Hê+eT<Û´˚ z+ø±s¡X ‹ Á|üDedü´<Ó«’ $<Û´ä $T‹ ìs¡j í T· 'ˆˆ qeT z+ø±s¡d´ü Á|üDe‘·«dü+<˚ôVAHêdæÔ ˆ ÁX¯ó‹ düàè‘ê´~wüß düs«¡ Á‘· $<ä´e÷ì‘ê«‘Y ˆ ø£<+äÛ qedü+U≤´j·÷' Á|üDe‘·« dæ~]∆ ‹#˚‘Y ˆ ñ#·´‘˚ ˆ Á|üøè£ c˛º qe' Á|üDe' Ç‹e⁄´‘·Œ‘êÔ´qe dü+U≤´|æ uÀ<äy∆ ê´ ªªj·T‘·Œs¡' X¯ã'› düXu¯ ≤›<Ûä9'μμ Ç‹ Hê´j·÷‘Y ˆ øÏ+#· ªª˝Àø±e>∑‘· kÕeT<∏ä9' X¯uÀ›y<˚ ˚ |æuÀ<Ûøä '£ μμ Ç‹Hê´jÓT qe⁄´‘·Œ‘·´Ô qT kÕπsD y˚<ë<Û9ä dü´eD9˙j·T ‘˚«qø£•Ã<ä|<æ √wü' dü+uÛeÑ ‹ ˆ øÏ+‘·T õC≤„d÷ü HêeTT |üø±sêjÓTÆ e uÛeÑ ‹ ˆ ªªÁX¯ó‹eT‘· düsÔ √ÿqT dü+BÛjT· ‘êμμ $T‹ uÛ≤wü´ø±s¡deü Tà‘˚' ˆ n‘√qe dü+U≤´jÓ÷' Á|üD‘·«+ j·TTø£Ôy˚Ty˚‘·´\+ Á|üø£è‘·dü´ ˆˆ áX¯«s¡d«ü s¡÷|ü+ ˆ ‘·<ë«#·ød£ ´ü dü«s¡÷|ü<«ä j·T+ #·deü T´ Áø£Œ‹bÕ<ä´ ˆ yê#·´ yêj·Tø£j÷Ó ' ~«$<Ûsä ÷¡ |üyê#·´jÓ÷ XÊÃ$HêuÛ≤e dü+ã+<Û+ä Á|ü‹C≤˙‘Ó ˆˆ dü+U≤´s¡÷|ü', es¡sí ÷¡ |ü', #·, Ç‹ ` nì |ü<$ä uÛ≤>∑eTT. |üPs¡«dü÷Á‘·eTT qT+&ç Á|üDe|ü<äeTTqT n<Ûë´Vü‰s¡+ #˚düT≈£î+fÒ ` Á|üDeeTT dü+U≤´s¡÷|üeTT, es¡sí ÷¡ |üeTT nì s¬ +&ÉT $<Ûeä TT\T>± qT+&ÉTqì dü÷Á‘ês¡+ú dæ~d∆ Tü +Ô ~. ªdü+U≤´j·T‘˚
94
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
qj·÷ Ç‹ dü+U≤´.μ nq>± ˝…d‡ü >± Ç<ä$T‘·eú TT>± ‘˚*à #Ó| ü q~ dü+K´ ˝Ò<ë n+¬ø nì uÛ≤eeTT. ªdü+U≤´s¡÷|ü+ j·Tdü´dü' ` dü+U≤´s¡÷|ü'μ nq>± dü+K´ ˝Ò<ë n+¬øs¡÷|üeTT˝À qT+&ÉTq~ nì ns¡eú TT. ø±>± dü+U≤´ Á|üDeeTT ˇø£ n+¬ø. n~ `9, Á|üøè£ c˛º qe'`Á|üDe' ÁX‚wy˜ü TÓ qÆ 9 qe dü+K´ nH˚ ns¡+ú ≈£L&Ü Á|üDe X¯u≤›ìøÏ #Ó| ü ø√e#·TÃ. qe dü+K´ jÓTTø£ÿ Á|üøè£ wü‘º «· eTT ˝Ò<ë >=|üŒ‘·qeTT eT]j·TT <ëìjÓTTø£ÿ dü+U≤´ Á|ü|ü+#· (Number World) eT÷\ø£‘·«eTT ñb˛<ëÈ‘· uÛ≤wü´eTT˝À $e]+#·T≈£îHêï+. ø±>± dü+K´\˝À ‘=$Tà~ ˝Ò<ë qedü+K´ Á|üDedü«s¡÷|üeTì kÕsê+X¯eTT. es¡sí ÷¡ bÕìï >∑T]+∫ $y˚∫+#·T≈£î+<ë+. ªes¡´í ‘˚ nqj·÷ Ç‹ es¡'í ` nø£så '¡ .μ e]í+#˚~ (yê≈£îÿ\#˚) es¡eí TT/nø£så e¡ TT nH˚ e⁄´‘·Œ‹Ô qqTdü]+∫ ªes¡í' dü«s¡÷|ü+ j·Tdü´ dü'μ nø£så y¡ T˚ dü«s¡÷|üeTT ˝Ò<ë Äø£è‹>± ø£\~ es¡dí «ü s¡÷|üeTT nì j·Ts¡eú TT. ø±>± es¡eí TT\˝À ˝Ò<ë nø£så e¡ TT\˝À z+ø±s¡eTT Á|üDeeTì ns¡+ú . á es¡sí ÷¡ |üyTÓ qÆ Á|üDeeTT eTs¡\ |ü<,ä ;» Á|üu<ÒÛ eä TT#˚ s¬ +&ÉT $<Ûeä TT\T>± ø£ì|ædTü +Ô ~. es¡sí ÷¡ |üyTÓ qÆ ªz+μø±s¡eTTqT |ü± eT+Á‘·eTT>± ≈£L&Ü uÛ≤$+#·e#·TÃ. ªªdüsπ « y˚<ëj·T‘·Œ<äe÷eTqìÔ ....... ‘·‘Ô˚ |ü<+ä dü+Á>∑ùV≤D ÁãMyÓ÷´$T‹μμ ` nH˚ düàè‹ e#·qeTT ªz+μ qT |ü<+ä >± ø°]+Ô ∫+~. Á|üDeeTTqT eT+Á‘·eTT>± <Ûë´ì+#˚ Á|üDy√bÕdüqqT ñ|üìwü‘T· Ô Á|ü‹bÕ~+∫q~. ø±>± z+qT |ü<+ä >±qT eT+Á‘·+>±qT ≈£L&Ü uÛ≤$+#· e#·TÃqT. eT+Á‘·+>± uÛ≤$+∫q|ü &ÉT n~ ;»eTq ã&ÉT‘·T+~. á $<Û+ä >± |ü<Áä |üDeeTT, ;»Á|üDeeTT, dü+U≤´ Á|üDeeTT nì Á|üDeeTTqT eT÷&ÉT $<Ûeä TT\T>± dü+uÛ≤$+#· e#·TÃqT. ;»eTT |ü<ä dü+K´\ s¬ +&ç+{ÏøìÏ eT÷\ø±s¡DyÓTqÆ ~ >±e⁄q Á|ü<ëÛ qyÓTqÆ ~ ( Primary ) nìj· T T, |ü < ä d ü + K´\T >öDeTT\T ( Secondaries ) >∑ q T jÓTqïã&ÉT#·Tqï~. ❋❋❋
ne‘ê]ø£ : yÓTT<ä{Ï ¬s+&ÉTdü÷Á‘·eTT\˝À Á|üDeeTTqT |üPs¡í|ü<äyê#·T´&Ó’q áX¯«s¡TìjÓTTø£ÿ yê#·ø£ X¯ãs› ÷¡ |ü+>±qT, |ü∑\ n$HêuÛ≤e dü+ã+<Ûeä TTqT uÀ~Û+#·T #·THêïs¡T.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
95
96
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü÷Á‘·+ ˆˆ 3 ˆˆ ‘·j÷Ó s¡$HêuÛ≤e'
dü÷Á‘·+ ˆˆ 4 ˆˆ ø±s¡D…Æø±´‘Y
eè‹Ô' ˆˆ ‘·+Á‘˚D√#·Ã]‘·yT˚ ‘·‘÷· ‡Á‘·+ ‘·j÷Ó 'yê#·´yê#·øj £ ÷Ó ' n$HêuÛ≤e' dü+ã+<Û+ä @e ˆ n_Û<ëÛ q‘·+Á‘·eT_Û∑eTT. dü+ã+<Û'ä nH˚ |ü± yê#·´yê#·ø£ dü«s¡÷|üeTT\ s¬ +&ç+{ÏøÏ n$HêuÛ≤e dü+ã+<Ûeä Tì dü÷Á‘ês¡eú TT. ª‘·dü´ yê#·ø£' Á|üDe'μ nì yê#·ø£ X¯ã›s¡÷|üeTT>± #Ó|üŒã&çq Á|üDeeTT (z+ø±s¡eTT)q≈£î, ‘·<ë«#·´eTT˝…q’ ;»dü+U≤´ ì]›w,ºü Á|üDedü«s¡÷|üeTT\≈£î n$HêuÛ≤e dü+ã+<Ûeä Tì Á>∑V≤æ +#ê*. uÛ≤eeTT nq>± ñìøÏ ˝Ò<ë ñ+&ÉT≥ (Existance) nì ns¡eú TT. $HêuÛ≤eeTT nq>± ˝Ò≈î£ +&Ü ñ+&ÉT≥ ˝Ò<ë ˝Ò≈î£ +&Ü ñ+&É>\∑ T>∑T≥ nì ns¡eú TT. n$HêuÛ≤eeTq>± ˇø£{Ï ˝Ò≈î£ +&Ü y˚s=ø£{Ï eTqC≤\ì, ˝Ò<ë ñ+&ÉC≤\ì s¬ +&ÉTedüTeÔ ⁄\ eT<Û´ä >∑\ |üsd¡ Œü s¡ dü+ã+<Ûeä TTqT n$HêuÛ≤e dü+ã+<Ûeä TT n+{≤s¡T. yê#·ø£ yê#·´dü«s¡÷|üeTT˝…q’ |ü∑\ dü+ã+<Ûä eT$HêuÛ≤e dü+u+<ÛäeTì nq>± n$ |üs¡düŒs¡eTT dü<ë ø£\dæj˚T j·TT+&ÉTqT. X¯u≤›seú¡ TT\ e˝…, •eX¯≈î£ \Ô e˝…, n–ï<ëVü≤ø£ X¯≈î£ \Ô e˝… dü<ë ˇø£<ëì‘√ H=ø£{Ï ø£*dæjT˚ j·TT+{≤j·Tì ‘ê‘·Œs¡´eTT. ne‘ê]ø£ : >∑Ts¡TbÕ<äT\T XÊÁdüuÔ ≤Û wü˝À Çø£ÿ&É |üPs¡«|üøeå£ TT H=ø£<ëìì ñ‘·sÔ ¡ (‘·sT¡ yê‹) dü÷Á‘·eTTq ≈£îbÕ<˚jT· +>± Ç˝≤ $e]kÕÔsT¡ . ªªqqT ÁãVü≤à#·Áø£d´ü yê#·ød£ ´ü , Á|üDedü´#· n$Hê uÛ≤y√´düT.Ô ø£<ä∏ eT‘·´+‘· $s¡T<ä‘∆ «˚ q Á|ürj·Te÷qjÓ÷' dü+U≤´ es¡j í ÷Ó ' n$HêuÛ≤e' Ç‹ #˚‘Y ` ñ#·´‘˚μμ nq>± yê#·´yÓTqÆ ÁãVü≤à #·Áø£eTTq≈£î, yê#·øy£ TÓ qÆ Á|üDyêìøÏ yê#·´yê#·ø£ dü+ã+<Ûëìï |ü⁄s¡düÿ]+#·T≈£îì n$HêuÛ≤e dü+ã+<ÛäeTT dæ~+∆ #·e#·TÃqT. ø±ì n‘·´+‘· $s¡T<äe∆ TT\T>± e´eVü≤]+|üã&ÉT#·Tqï dü+U≤´es¡eí TT\≈£î n$HêuÛ≤e dü+ã+<Ûä yÓT≥T¢ bıdü>T∑ ‘·T+~? nH˚ Á|üXï¯ ˝Ò<ë dü+X¯j÷· ìøÏ düe÷<Ûëq+>± Hê\T>∑e dü÷Á‘êìï˝≤ Á|ü‹bÕ~kÕÔsT¡ >∑Ts¡TbÕ<äT\T.
eè‹Ô' ˆˆ ‘·<∏ë|æ dü+U≤´eDs¡÷|üjÓ÷' yê#·ø£jÓ÷'ø±s¡D≤‘·à Hêyê#ê´‘·àHê @ø£‘«· dü´$<ä´e÷q‘ê«<ä $HêuÛ≤y√-$s¡T<ä∆ @ y˚‘´· <∏ä9' ˆˆ ˆˆ n$HêuÛ≤y˚ Á|üe÷De÷Vü≤ ˆˆ Ç~ @ø£|<ü ä dü÷Á‘·eTT. |üPs¡«dü÷Á‘·eTT qT+&ç ªn$HêuÛ≤e'μ nH˚ |ü<+ä nqTe]ÔdTü +Ô ~. ø±>± ªø±s¡DøÆ… ±´ <ä$HêuÛ≤e'μ nì dü÷Á‘· dü«s¡÷|ü+ dæ~d∆ Tü +Ô ~. BìH˚ Ä#ês¡´kÕ«$T ªdü+U≤´es¡sí ÷¡ |üj÷Ó ' yê#·øj £ ÷Ó ' ø±s¡D≤‘·àHê R yê#ê´‘·àHê @ø£‘«· dü´ $<ä´e÷q‘ê«‘Y n$HêuÛ≤e' n$s¡T<ä∆ @πø‘·´s¡'ú μ nì $e]kÕÔsT¡ . yê#·´yê#·øe£ TT˝…q’ dü+U≤´|ü
ne‘ê]ø£ : dü+U≤´|ü<ä Á|üDeeTT\ jÓTTø£ÿ n$HêuÛ≤e dü+ã+<Ûeä TT e÷ n_Ûqe ø£\ŒqeTT ø±<äT Ç~ ÁX¯ó‹ düàè‹ Á|üe÷D dæ∑Ts¡TbÕ<äT\T.
dü÷Á‘·+ ˆˆ 5 ˆˆ ÁX¯ó‘˚X¯Ã eè‹Ô' ˆˆ ÁX¯ó‘˚'ÁX¯ó‹Á|üdæ<˚∆s¡|æ‘·jÓ÷ s¡$HêuÛ≤e Ç‘·«<∏ä9'ˆ #·ø±sê‘·‡àè‹ Á|üd~æ ∆ s¡|æ dü÷#·´‘Ó ˆˆ ‘·<´ä <Ûëˆ ªªz$T‹ÁãVü≤à ˆ z$Tr<ä>d¥ sü «¡ +μμˆ ªªz+ø±s¡@y˚<>ä d¥ sü «¡ +μμ ªªz$T‘˚´ø±ø£så +¡ ÁãVü≤à, Ç‘ê´~ÁX¯ó‹düàè‹uÛ´Ñ ' yê#·´yê#·øj £ ÷Ó s¡$HêuÛ≤edü+ã+<Û'ä uÀ<Û´ä ‘Ó ˆˆ dü+U≤´eD9 jÓ÷dü‡+ã+<Û'ä ~«$<Û'ä ˆ #Û+· <√s¡÷|ükÕ‡+ øπ ‹ø£X ‹ ˆ #Û+· <√s¡÷b˛wü$º <Û'ä Äw”9, <ÓM’ ÄdüTØ, ÁbÕC≤|ü‘ê´, j·÷Ew”, kÕMTïÄØÃ, Áu≤V”≤à, Ç‹ˆ kÕ+πø‹ø√Væ≤ ~«$<Û'ä ˆ uÛ≤ekÕeT´+ eD9kÕeT´+#˚‹ˆˆ j·T<Ûë>±j·TÁr #·‘T· cÕŒ‘Y, ‘·±j·TÁrÁãôV≤’ àyÓ‹ uÛ≤ekÕeT´+ˆˆ ø±~qe {≤~qej·÷<ä´wüº bÕ~|ü+#˚‹eD9kÕeT´+ˆˆ nq´#·Ã, ªªesêZøså£ êDÏe>¬ 9-esêZøså£ êDÏ ø±v±àj·÷K ~«qe¬ø dü«sêqee¬sZ e¬sqZ yê+‘·´e¬syZ êμμ Ç‹ˆˆ yê#·´dü´ #·Áø£d´ü yê#·øj £ ÷Ó dü‡+U≤´eD9 jÓ÷XÊÃ$HêuÛ≤e dü+ã+<Û+ä ìs¡÷|ü´ˆ ‘˚cÕ+‘·‘«Ô· õC≤„kÕj·÷kÕ‡<Ûqä ‘·«+ <äX¯9 j·T‹ˆˆ
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
97
ÁX¯ó‘˚' ` #· ` nì |ü<$ä uÛ≤>∑eTT. n$HêuÛ≤eeTT nqT|ü± Á>∑Væ≤+∫, düeTT#·Ãj·÷s¡ú uÀ<Ûäø£yÓTÆq #·ø±s¡T\#˚ düàè‹ |ü⁄sêD≤<äT\qT ≈£L&É $eøÏ+å ∫q#√, ÁX¯ó‹ düàè‹ |ü⁄sêD≤<äT\ìïj·TT Á|üDeeTT jÓTTø£ÿ yê#·´yê#·ø£ uÛ≤eeTTqT Á|üe÷D°ø]£ +∫qy˚ j·Tì dü÷Á‘ês¡eú TT dæ~d∆ Tü +Ô ~. ªªz$T‹ ÁãVü≤à ` z$Tr<ä>"¥ düs«¡ yéT ` z+ø±s¡ @ y˚<>ä "¥ düs«¡ +... z$T‘˚´ø±ø£så +¡ ÁãVü≤àμμ Ç‘ê´~ ÁX¯ó‹ e#·qeTT\T yê#·´yê#·øe£ TT\ n$HêuÛ≤e dü+ã+<Ûeä TTqT Á|üe÷D°ø]£ +#·T#·Tqï$. á dü+U≤´es¡eí TT\ dü«s¡÷|üeTT #Û+· <√s¡÷|üeTT (yÓ~’ ø£eTT), kÕ+πø‹ø£eTì s¬ +&ÉT $<Ûeä TT\T>± dü÷∫+∫, >∑Ts¡TbÕ<äT\T #Û+· <√s¡÷|üeTTqT ` ÄØ¸` <ÓM’ ` ÄdüTØ ` ÁbÕC≤|ü‘ê´ ` j·÷Ew” ` kÕMTï ` ÄØÃ ` Áu≤V”≤à ` nì mì$T~ $<Ûeä TT\T>±qT, kÕ+πø‹ø£eTTqT ` uÛ≤ekÕeT´, es¡kí ÕeT´eTT\ì s¬ +&ÉT$<Ûeä TT\T>±qT $X‚w¢ +æ ∫ Á|üu<ÒÛ ë\qT Á|ü<]ä ÙkÕÔsT¡ . ÁãVü≤àeTT #·‘T· cÕŒ‘Y, >±j·TÁ‹ ≈£L&Ü #·‘T· cÕŒ‘Y>±H˚ ø°]+Ô #·ã&ÉT#·Tqï~. ø±e⁄q á s¬ +{ÏøìÏ uÛ≤ekÕeT´eTT. Ç+ø£qT uÛ≤ekÕeT´eTTqT |ü⁄s¡dÿü ]+#·Tø=ì n+¬ø\≈£î ` 1øÏ`#·+Á<äT&ÉT, 2≈£î` H˚Á‘·, 3≈£î`>∑TD, 4≈£î`y˚<,ä 5≈£î`u≤D, 6≈£î`s¡d,ü 7øÏ`|üs«¡ ‘·, 8`>∑»,9`ì~Û ` Ç˝≤ |üsê´j·T |ü<ìä sπ X› e¯ TT e´eVü‰s¡eTT˝À qTqï~. es¡í kÕeT´$TfÒ¢ ` ªªø±~qe ` {≤~qe ` bÕ~|ü+#· ` j·÷<ä´cºμμ Ç‘ê´~>± #Ó|Œü ã&çq~. ø±>± yê#·´#·Áø£eTT\≈£î dü+U≤´es¡eí TT\≈£î n$HêuÛ≤e dü+ã+<Ûeä TT ÁX¯ó‹ düàè‹ düeTà‘·yT˚ qì ìs¡÷|æ+|üã&çq~. ❋❋❋
ne‘ê]ø£ : es¡|í <ü ä dü+U≤´<äT\≈£î ‘·‘«Ô· õC≤„kÕ kÕ<Ûqä ‘·«eTT Á|ü‹bÕ~+#· ã&ÉT#·Tqï~.
dü÷ˆˆ6ˆˆ‘·kÕà‘˚ÔVæ≤ ‘·+Á‘·+ e興 j·TkÕà<ë«#·´yê#·øj £ ÷Ó s¡$HêuÛ≤e' ‘·kÕà‘ÓÔ dü+U≤´;»πsU≤' ‘·+Á‘·+ kÕ<Ûqä + ‘·‘êÔ«H˚«wüD Ç‘·´<Û9ä ' ˆ ‘·+Á‘·$T‹C≤‘ê y˚øe£ #·q+ ˆ V”≤‹ìX¯Ãj·÷<Ûä9'ˆˆ -$HêuÛ≤y√ìs¡÷|æ‘'· ˆ ø±sê´‘·àHê|æ‘j dü+U≤´eD9jÓ÷' ø±s¡D≤‘·àHê· ÷Ó s¡$HêuÛ≤e+ Á|ü∑eTT. Ç#·Ã≥ ‘·kÕà‘Y nqT ‘·‘·Œ<äìπs›X¯eTT |üPs¡«ì]›wüºeTT ˝Ò<ë Á|üdüTÔ‘ê+X¯yÓTÆq n$HêuÛ≤e dü+ã+<Ûëìï
98
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü÷∫düT+Ô ~. nfÒ¢ ‘˚`j·TH˚ ‘·‘Œ· <äìsπ X› e¯ TT#˚ dü+U≤´ ;»πsU≤<äT\T Á>∑V≤æ +#·ã&ÉT‘êsTT. ‘·+Á‘·|<ü eä TT >∑Ts¡TbÕ<äT\#˚ ` ª‘·+Á‘·+ kÕ<Ûqä + ‘·‘êÔ«H˚«wüDμÒ ` nì ìs¡«∫+|üã&çq~. ªVæ≤μ ` nH˚~ ìX¯Ãj·÷s¡ú <√´‘·øy£ TÓ qÆ ne´j·TeTT. ø±>± yê#·´eTT˝…q’ #·Áø£sπ U≤<äT\≈£î yê#·øe£ TT˝…q’ |ü<ä es¡;í C≤<äT\≈£î n$HêuÛ≤e dü+ã+<Ûeä TT ìX¯ÃsTT+|üã&çq+<äTq, n$ nq>± Ä dü+U≤´;» sπ U≤<äT\ìïj·TT ‘·‘«Ô· õC≤„kÕ kÕ<Ûqä eTT\>∑T#·Tqï eqT≥ ìX¯Ãj·TeTT ` nì dü÷Á‘ês¡eú TT |üs´¡ edæ+#·TqT. á$<ÛäeTT>± dü+U≤´esêí<äT\≈£î ø±s¡D≤‘·àHê (‘ê+Á‹ø£+>±) n$HêuÛ≤e dü+ã+<Ûeä TT ìs¡÷|æ+#· ã&çq~. |æeTà≥ ` ❋❋❋
ne‘ê]ø£ : ø±sê´‘·àHê ≈£L&Ü yê#·´yê#·øe£ TT\≈£î n$HêuÛ≤e dü+ã+<Ûëìï ìs¡÷|æ+#˚ Á|üjT· ‘·ï+˝À uÛ≤>∑+>± Á|üDe ø±s¡´eTT\ dü«s¡÷bÕìï˝≤ ìπs•› düTHÔ êïs¡T >∑sT¡ bÕ<äT\T. dü÷ˆˆ7ˆˆ Á|üDyê <äwÁºü |üøè£ ‘·jT· ' ‘êuÛÀ´-j·T+ Á|ü|+ü #·' eè‘·Ô'ˆˆ Á|üDyê<ë«#·ø£ s¡÷bÕ~‘·´<∏ä9' ˆ dü+U≤´s¡÷bÕÅ‘·ŒDyê<äwüº Á|üø£è‘·j·T', @ø£+<˚«ÁrDÏ#·‘ê«] |ü+#·wü{Ÿ dü|üÔncÕº$‘·´cÕº+ø±' ˆ nø£ås¡s¡÷bÕ<√+ø±sê<ä ø£#≥· ‘·|j ü T· XÊ Ç‘·´wüeº D≤9' ñ‘·ŒHêï Ç‹|ü<ë<∏ë´Vü‰s¡' ˆ ‘êuÛ´Ñ ' Á|üøè£ ‹uÛ´Ñ ' nj·T+ düs«¡ + dü+U≤´‘·àø£+ eD≤9‘·àø£+#· Á|ü|+ü #·' $X¯«eTT‘·Œqï $T‘·´<Ûë´Vü‰s¡' ˆˆ Á|üDyê‘·ÿ<Û+ä Á|üøè£ ‹ $ø£èrHêeTT‘·Œ‹Ô ]‹#˚∑eTT. dü÷Á‘·eTTqT eTs¡\ ` ªÁ|üDyê<äwºü Á|üøè£ ‘·jT· ' ` ‘êuÛ´Ñ ' nj·T+ Á|ü|+ü #·'μ ` nì s¬ +&ÉT yêø±´\T>± ≈£L&Ü $+>∑&+ç #· e#·TÃqT. s¬ +&ÉT yêø£´eTT\≈£î ∫es¡ ñ‘·Œqï X¯ã›eTTqT n<Ûë´Vü‰s¡+ #˚düTø√yê*. nq>± n<äq+>± dü+uÛ≤$+#·T ø√yê\qïe÷≥. yê#·Áø£ Á|üDeyÓTqÆ dü+K´ 9 qT+&ç ` nwüº Á|üøè£ ‘·T\q>± ` @ø£+ (1), <˚« (2), ÁrDÏ 3), #·‘ê«] (4), |ü+#· (5), wü{Ÿ (6), dü|Ôü (7), ncº (8) ` dü+K´\T ‘·ŒqïeTT˝…q’ $. (#·÷ˆˆ|ü⁄ˆˆ ) nø£så s¡ ÷¡ |üyTÓ qÆ z+ø±s¡eTT qT+&ç ` n, ø£, #·, ≥, ‘·, |ü, j·T, X¯ ` nì nwüeº s¡eZ TT\ es¡eí TT ˝≤$s¡“$¤ +∫q$. dü+U≤´, es¡í yê#·´eTT˝…q’ á Á|üDe ì'düè‘·eTT˝…q’ eT÷\eTT\≈£î nwüÁº |üøè£ ‘·T\ì e´eVü‰s¡eTT.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
99
kÕ+K´ Á|üøè£ ‘·T\ qT+&ç ` düs«¡ dü+U≤´ Á|ü|+ü #·eTT (All the Numerical World) es¡í Á|üøè£ ‘·T\ qT+&ç ` düs«¡ es¡,í ;C≤‘·àø£yTÓ qÆ |ü<ä Á|ü|+ü #·eTT (Pada World) Ä$s¡“$ ¤ +#êj·Tì dü÷Á‘ês¡eú TT. ❋❋❋
ne‘ê]ø£ : Á|üDeeTT qT+&ç Á|üøè£ ‘·´wüøº e£ TT, <ëì qT+&ç $ø£è‹ s¡÷|üeTT>± Á|üd]Ôü +∫ $dü]Ô +∫q $<ÛëqeTTqT|ü<•˚ +#·T #·THêïs¡T.
dü÷ˆˆ8ˆˆ|ü]D≤e÷‘Y eè ˆˆ >∑TDVü‰s¡s÷¡ |ü $ø±sê~‘·´_ÛÁbÕj·Tj·T' ˆˆ |ü]D≤eT|ò\ü e÷Vü≤ ˆ Ç~ @ø£ |ü<ä dü÷Á‘·eTT. |ü]D≤e÷‘Y ñ‘·ŒqïyéT ` nq>± ñ‘·Œqï |ü<ë<Ûë´Vü‰s¡eTT#˚ |ü]D≤eTeTT e\q Ä$s¡“¤$+∫q<äì dü÷Á‘ês¡úeTT. Bìì >∑Ts¡TbÕ<äT\T ªª>∑TDVü‰s¡ s¡÷|ü$ø±sê‘Yμμ ` nì dü÷#·q ÁbÕj·T+>± yê´U≤´ìkÕÔsT¡ . Ç<=ø£ #·eT‘êÿs¡ |üPs¡íyÓTÆq ñ|ü<˚X¯ |ü<ä∆‹. Ç~ ~XÊ ìπs›X¯q |üPs¡«ø£yÓTÆq ñ|ü± ` >∑TDVü‰s¡ s¡÷|ü$ø±s¡eTì ìπs•› +#· ã&çq~. dü+U≤´ Á|ü|+ü #·|⁄ü {≤$sꓤyêìï dü+uÛ≤$+∫ >∑TDVü‰s¡ ìπsX› e¯ TT (Direction of Multiplications and Division) #˚XÊs¡ì uÛ≤$+#ê*. Ä |üø+ å£ ˝À #·‘T· ]«<Ûä eTÚ[ø£ >∑D≤+ø£ Á|üÁøÏjT· \qT (Four Fundamental Numerical Applications) ≈£L&Ü |ü]>∑Dq˝ÀìøÏ rdæø√yê*. n$ Áø£eT+>± dü+ø£\q (Addition) e´eø£\q (Subtration) >∑TD (Multiplication) Vü‰s¡ (Division) nH˚$. Ç˝≤H˚ es¡í Á|ü|+ü #ê$sꓤe+˝À ≈£L&Ü #·‘T· ]«<Ûä ÁbÕ<∏$ä Tø£ Á|üÁøÏjT· \T u≤Vü≤´ Á|üjT· ‘·ï Á|üu<ÒÛ ë\T>± X¯ãX› ÊÁdü+Ô ˝À ` düŒèwü,º áwü‘dY Œü èwü,º dü+eè‘·, $eè‘· s¡÷|üeTT˝À $X‚w¢ +æ |üã&ç $e]+#·ã&çHêsTT. á $<Û+ä >± eTÚ*ø£ Á|üøè£ ‘·T\ |ü]D≤eT eT÷\ø£eTT>± dü+U≤´ es¡í Á|ü|+ü #·eTT \T‘·ŒqïeTT˝…q’ eì kÕsê+X¯eTT. ❋❋❋
ne‘ê]ø£ : |ü]D≤eT Á|üø±s¡eTT |òü*‘ê\qT ‘·s¡Tyê‹ dü÷Á‘·+˝À $e]+|ü ã&ÉT#·Tqï~.
100
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü÷ˆˆ9ˆˆ‘êkÕ eTT|ü#j · ÷· |ü#j · T· Ú ˆˆ eè‹Ô' ˆˆ |ü]D≤e÷~‘·´qTeè‹Ô' ˆ ‘êkÕ+Á|üøè£ ‹ $ø£è‹Ô'HêeTeTT|ü#j · ÷· |ü#j · T· Ú eè~∆ÁVü‰kÕ$‘·´<Ûä9'ˆ >∑TDÒqeè~∆' Vü‰sπ DÁVü‰düX ‹ $uÛ≤>∑' ˆˆ |ü]D≤eTkÕ´|üyê<äe÷Vü≤ ˆ ªª‘êkÕ+ ` ñ|ü#j · ÷· |ü#j · T· Úμμ ` nì |ü<$ä uÛ≤>∑eTT. ª|ü]D≤e÷‘Yμ nH˚~ nqTeè‹Ô #˚dTü ≈£î+fÒ ª‘êkÕ+μ nq>± ÄeT÷\ Á|ü≈è£ ‘·T\T, yêìøÏ dü+ã+~Û+∫q $ø£è‘·T\ jÓTTø£ÿ ñ|ü#j · ÷· |ü#j · T· Ú ` nq>± eè~∆øj å£ T· eTT\T dü+uÛ$Ñ +#·T #·Tqïeì uÛ≤eeTT. dü+U≤´ Á|ü|+ü #· |üø+å£ ˝À dü+ø£\q, >∑TD (By Addition and Multiplication) Á|üÁøÏj·T\ e\q eè~∆j·TT, e´eø£\q, Vü‰s¡ Á|üÁøÏj·T\ (Substraction and Division) e\q ø£j å T· eTT ˝Ò<ë Vü‰düeTT ø£\T>∑T#·Tqï$. nfÒ¢ es¡,í |ü<ä Á|ü|+ü #·+˝À $eè‘·, dü+eè‘· Á|üu<ÒÛ eä TT\T eè~∆øj å£ T· eTT\≈£î ø±s¡DeTT˝Ö‘êj·Tì Á>∑V≤æ +#ê*. ❋❋❋
ne‘ê]ø£ : |ü]D≤eT Á|üu≤Û eeTT˝…q’ eè~∆øj å£ ÷· <äT\T |üPs¡eí TTq≈£î e]Ô+|üeHÓ&ç uÀ<Ûëq+<äT\ yê] ÄX¯jT· eTTqT n_Ûe´ø°øÔ ]£ +#· #·THêïs¡T.
dü÷ˆˆ10ˆˆ ‘ÍH˚‘·s¡‘·' |üPD9ùd´‹uÀ<Ûëq+<ä' eè‹Ô' ˆˆ ‘Í>∑TDVü‰s¡ Á|üjT· Tø£eÔ è~∆ ÁVü‰kÂ|üPD9dü´ Ç‘·s‘¡ '· ùd«‘·s¡ dü+U≤´ø£è‘·>T∑ DVü‰s¡‘'· quÛeÑ ‘· Ç‹ l uÀ<Ûëq+<ä uÛ≤s¡‘ê´#ês¡´' eTq´‘Ó ˆ uÀ<Ûëq+<äÁ>∑V≤ü D+|üPC≤<Ûä9+ˆˆ Á|üd+ü >±qT Á|üdøü ±Ô´-|ü‹‘·+ X¯Sq´yê<äe÷X¯+ø£´ìsêø£s√‹ ˆ ‘Í, q, Ç‘·s‘¡ '· , |üPs¡dí ´ü , Ç‹, uÀ<Ûëq+<ä' ` nì |ü<#ä Ã˚ <¤ eä TT. ‘Í ` nq>± dü+ø£\q, >∑TDeTT\#˚ HÓq’ eè~∆ eT]j·TT e´eø£\q, uÛ≤>±Vü‰s¡eTT\ e\qHÓq’ ÁVü‰düeTT nH˚ s¬ +&ÉTqT, ª|üPs¡dí ´ü qμ ` nq>± |üPs¡eí TTq≈£î dü+uÛ$Ñ +|üe⁄. ªÇ‘·s‘¡ '· Ç‹ uÀ<Ûëq+<ä'μ ` |üPs¡eí TTø£qï _ÛqïyÓTqÆ dü+K´\πøqì luÀ<Ûëq+<äT\yê] eT‘·eTì ns¡eú TT. kÕ<Ûës¡DeTT>± XÊÁdüeÔ TT˝À Ç~ |ò˝ü ≤Hêyê] eT‘·eTT n+fÒ e÷≈£î düeTà‘·eTT ø±<äH˚ n_ÛÁbÕj·T+ n_Ûe´ø£Ô eTÚ‘·T+~. ø±ì Çø£ÿ&É uÀ<Ûëq+<äX㯠e› TT |üPC≤s¡eú TT˝À
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
101
Á>∑Væ≤+|üã&çq~. Ä#ês¡´kÕ«$T dü«j·T+>± ` ªuÀ<Ûëq+<äÁ>∑Vü≤D+ |üPC≤s¡úμeTì ‘·eT Ä<äsê‹X¯jT· eTTqT Á|üø{£ kÏ ÕÔsT¡ . »>∑∑Ts¡Te⁄\T. Ms¡T l X¯è+π>Ø l $s¡÷bÕø£å l|”sƒêìøÏ 41e |”sƒê~Û|ü‘·T\T. yês¡T eT+Á‘·dæ~∆ H=+~q eTVü‰eT+Á‘·y˚‘·Ô. CÀ´‹wüeTT˝À nkÕe÷qT´\T, yês¡T ˝Àø√|üø±sês¡yú TÓ Æ mH√ï n<äT“¤‘ê\qT Á|ü<]ä Ù+#ês¡T. n+<äTøπ >∑Ts¡Te⁄qT düà]+#·T≈£î+≥÷ ª|üPC≤s¡+ú μ nì #ÓbÕŒs¡T. l ø£˝≤´DbÕ<äT\T |üPC≤s¡eú TìHê yês¡T |”sêƒ ~Û|‘ü T· \T. yê] eT‘·eTT düsT¡ «\≈£î düeTà‘·yT˚ . Ä#·sD¡ j ° T· y˚T nì #Ó| ü #·THêïs¡T l ø£˝≤´DbÕ<äT\T. ``` ne‘ê]ø£ : kÕ<Ûës¡D+>± düTqïqT ˇø£ ∫qïeè‘·sÔ ÷¡ |ü+˝À >∑T]Ô+#·&+É <ë«sê, eè‘·eÔ TTqT X¯Sq´eTT (Zero)>± ÁuÛ$Ñ T+#˚ neø±X¯eTTqï~. õC≤„dTü e⁄\ ˙ ÁuÛeÑ T˝À |ü&≈É î£ +&Ü ôV≤#·Ã]+#·&+É ø√düeTì Á|üdTü ‘Ô · dü÷Á‘·$T˝≤ ne‘·]+∫+|ü CÒjT· ã&ÉT#·Tqï~. dü÷ˆˆ11ˆˆ X¯Sq´‘·«$T‹ #˚Hêï q+‘·´Á|ür‘˚' eè‹Ô' ˆˆ eè‘·sÔ ÷¡ bÕ+ø£d´ü X¯Sq´‘·«+ ‘·T#·Ã‘¤ «· e´eVü‰s¡ Ç‹#˚‘Y ˆ q‘·qï dü+ uÛeÑ ‹ ˆ ≈£î‘·Ç‹#˚‘Y ˆ ‘·d´ü Äq+‘·´Á|üd<æ ]∆˚ «<ä´ e÷qe‘ê«~‘·´<Ûä9' ˆ qHê«q+‘·´ Á|üd~æ '∆ eè‘·<Ô «ä j·T$•cÕº+ø£ôd´’ e ˆ q‘·Teè‘·ùÔ d´‹#˚∑' ˆˆ øÏ+‘·T˝ÒKø£ Á|üe÷<ä»ì‘·<√wü uÛj Ñ ÷· <äq+‘·d´ü $•wü‘º «· e´|ü∑eTT. ªeè‘·dÔ ´ü μ nH˚ |ü<ëìï n<Ûë´Vü‰s¡+ #˚dTü ≈£î+fÒ ` eè‘·eÔ TTq≈£î X¯Sq´‘·«eTTqT Á>∑V≤æ +#·T≥ ≈£î<äs<¡ Tä . @\q <ëìøÏ Äq+‘·´y˚T Á|üd<æ e∆ä TT>± n+^ø£]+|üã&çq<äì dü÷Á‘ês¡eú TT. dü+U≤´ Á|ü|+ü #·eTT (Number World) ˝À |üPs¡eí TTq≈£î Á|ürø£jTÆÓ q eè‘·eÔ TTq≈£î Äq+‘·´eTT (Infinity) <√´‘·ø£ \ø£D å eTT>± Á>∑V≤æ +|üã&çq~. düTqï≈£î ˇø£ ì\Tyê{Ï
102
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Bs¡eÈ è‘·eÔ TT ª0μ dü÷#·ø£ ∫Vü≤ïeTT>± Á>∑V≤æ +|üã&çq~. á ÁuÛeÑ TqT yê]+#·T≥¬ø’ Äq+‘·´∫Vü≤ïeTT (Icon of Infinity) ª ∝ μ ¬s+&ÉT eè‘·ÔeTT\ ø£\sTTø£>± Á|ü<]ä Ù+|üã&çq~. ø±e⁄q düTqï (X¯SHê´+ø£eTT)qT eè‘·eÔ TT>± ÁuÛ$Ñ T+#·T≥ nC≤„qy˚T ‘·|Œü y˚sT¡ ø±<äT. ø±e⁄q uÖ<äT\∆ X¯Sq´yê<äeTTq≈£î >∑D‘Ï X· ÊÁdüeÔ TTq s¡e«+‘Óq’ qT ÁbÕe÷D´‘· ø£ì|æ+#·<ìä ìX¯Ãj·TeTT>± #Ó|Œü e#·TÃqT. ❋❋❋
ne‘ê]ø£ : Bs¡eÈ è‘·eÔ TT (Ellipse) ≈£L&É eè‘·Ô Á|üu<ÒÛ eä TT>∑H˚ |ü]>∑D+Ï |üã&ÉTq≥T¢>± >√#·]+#·T≥ e\q n~ X¯Sq´‘·«eTT ø£\<ä>T∑ ≥ m˝≤ düeTs¡˙ú j·TeTH˚ |üPs¡«|üø±å ìøÏ düe÷<Ûëq+>± ø£&|É {ü <Ï q’Ó 12e dü÷Á‘·eTT ne‘·]‘·eT>∑T#·Tqï~.
dü÷ˆˆ12ˆˆ e÷sTTø£‘ê« <ëj·T‘·d´ü #êj·T‘·d´ü #· eè‹Ô' ˆˆ Äj·T‘·eè‘·dÔ ´ü e÷sTT ø£‘ê« Hêàj·÷ø±s¡´‘ê«‘Y ˆ X¯Sq´‘·« $T‘·´qT eè‹Ô' |üPs¡«dü÷Á‘ê‘Y ˆ ªªX¯Sq´+e÷j·÷ø±s¡´ $T‹Á|ür‘˚' ˆˆ #·ø±sê‘·÷ŒD9‘·«e´|ü∑eTT. |üPs¡« dü÷Á‘·eTT qT+&ç X¯Sq´‘·«eTTqqT eè‹Ô #˚dæø=qï |üø£å+˝À ªÄj·T‘·dü´μ nq>± Bs¡eÈ è‘·eÔ TTqT X¯Sq´‘·« dü+U≤´qeTT e÷sTTø£‘ê«‘Y ` e÷j·÷ø±s¡´ $\düqeTT
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
103
e\qH˚ ª#·μ nH˚ düeTT#·Ãj·÷s¡øú £ ne´j·TeTT Bs¡È eè‘·eÔ TTq≈£î e÷j·÷ø±s¡´ $\düeTT #˚‘H· ˚ |üPs¡‘í «· eTTqT uÀ~Û+#·T #·Tqï<äì dü÷Á‘ês¡eú TT dæ~d∆ Tü +Ô ~. ø±>± ` Bs¡eÈ è‘·eÔ TTq≈£î ª|üPs¡$í Te<äèX¯´‘˚μ |üPs¡eí TT e˝… ø£qã&ÉT#·Tqï<äqT e´eVü‰s¡yT˚ Á|üd<æ e∆ä TT>±ì, |üPs¡í eTHÓ&ç e´eVü‰s¡eTT ˝Ò∑TD≤\T ø±s¡´eTTq≈£î dü+Áø£$TkÕÔsTT. (ñ<ë' eT{Ϻ \ø£D å eTT\T ≈£î+&É≈î£ dü+Áø£$T+∫q≥T¢) ªª_+<äTX¯SÙq´+μμ _+<äTe⁄ X¯Sq´eTH˚ e´eVü‰+ ø=+‘·es¡≈î£ n+^ø£]+#·ã&ÉT#·Tqï~. @\qq ªª_+<äT' kÕúq e´+»ø£'μμ kÕúq dü÷#·øe£ TT>± _+<äTe⁄ nDT dü<èä X¯eTT>± ìs¡ej·T$ (nej·TeeTT\T ˝Òì~)>± ø£ì|æ+#·T #·Tqï~. ª_~`nej·TH˚μ nH˚ <Ûë‘·Te⁄ qT+&ç ìwüŒqïyÓTÆq _+<äTX¯ã›eTTq≈£î nej·Te sêVæ≤‘·´eTTqT |ü⁄s¡düÿ]+#·Tø=ì X¯Sq´‘·« $eø£å bıdü>T∑ ‘·T+~. ø±ì, nq+‘·yTÓ qÆ |üPs¡eí TTq≈£î, ì‘·´ dæ<‘∆ä «· e´eVü‰sêr‘·‘«· \ø£Då y˚T ‘·|Œü |ü]∫äqï |ü]e÷De‘·« y˚T$<Ûeä TT>∑qT #Ó| ü ≥ ≈£î<äsì¡ dæ<ë›+‘·eTT #˚d÷ü Ô ªÄj·T‘·d´ü #·μ nH˚ |ü<~ä «sêeè‹Ô‘√ 4e ÄVæ≤ïø£eTTqT eTT–kÕÔsT¡ . á ~«sêeè‹Ô ÄVæ≤ïø£ |ü]düe÷|æìÔ dü÷∫düT+Ô ~.
❋❋❋
104
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
4(v)|ü+#·e÷Væ≤ïø£eTT l|üPs¡í MTe÷+kÕ <äX¯9HÓ düeè‹Ôø¬ |ü+#·eT e÷Væ≤ïø£yTé Á|ü∑+<∏ä Á|üj÷Ó »q+ |üPs¡Cí ≤„qdü´ |ò\ü +#· ìs¡÷|üsTT‘·T+ |ü+#·e÷Væ≤ïø£ e÷s¡u´ÑÛ ‘˚. Ç|üŒ{ÏøÏ Hê\T>∑<ëÛ ´j·TeTT\T ˝Ò<ë Hê\T>±Væ≤ïø£eTT\T eTT–dæ ø£&|É {ü <Ï q’Ó |ü+#·e÷Væ≤ïø£+˝ÀøÏ Á|üy•˚ düTHÔ êï+. Ç~ |ò\ü ÁX¯ó‹ s¡÷|üyTÓ qÆ |ü+#·e÷Væ≤ïø£eTì #Ó|üŒe#·TÃqT. yÓTT<ä{Ï eT÷&É<Ûë´j·TeTT\˝À y˚<ä>∑DÏ‘· XÊÁkÕÔ˝≤<Ûës¡+>± ÁãVü≤àyê∫jÓTÆ q |üPs¡í dü«s¡÷|üeTTqT dü÷∫+#·&ÜìøÏ eè‘·yÔ TÓ Tø£ÿ{ÏjT˚ düeTs¡yú TÓ qÆ sπ Fj·T ∫Á‘·eTì ìs¡÷|æ+#· ã&çq~. XÊU≤#·+Á<ä Hê´j·TeTT#˚ dü‘´· C≤„Hêq+‘· >∑TDdü«s¡÷|üeTT, dü∫Ã<ëq+<ä |òTü qeTT e≈£îeÔ TX¯ø´£ eTT, yê>∑$wüjT· eTT HÓq’ ÁãVü≤àeTTqT ìs¡÷|æ+∫ <ä]Ù+|ü#ù˚ d Á|üjT· ‘·ï+˝À uÛ≤>∑+>±, s¡÷bÕìï πsFj·T ∫Á‘·yÓTÆq eè‘·ÔeTT>±qT, yê#·´+>± Á|üDyê‘·àø£ X¯ãs› ÷¡ |ü+˝ÀqT yê#·ø+£ >± dü+U≤´, ;», s¡÷|üeTT\˝ÀqT düT|ü]#·jT· + #˚ùd Á|üjT· ‘·ï+ »]–+~. á <äsÙ¡ qeT+‘ê HêeT, s¡÷bÕ‘·àø£+>±, X¯ã,› <äèXÊ´‘·àø£+>± m˝≤ ø£qã&ÉT‘·THêï dü$Twæ>º ± |ü+#˚+Á~j·T Á>±Vü≤´y˚T. ø±e⁄q Bìì Á|ü|+ü #·eTT>± <ä]Ù+#êeTT. X¯ã› Á|ü|+ü #·eTT, dü+U≤´ Á|ü|+ü #·eTT, sπ U≤ Á|ü|+ü #·eTT Çe˙ï Ä ÁãVü≤àeTT jÓTTø£ÿ $es¡dÔ «ü s¡÷|üeTT˝Ò. düeTwæ>º ± ÁãVü≤àyÓTTø£ÿfÒqì dæ<ë∆+‘·eTT. Ç+‘· es¡≈î£ eTqeTT |ü]o*+∫q Á|ü<ëÛ Hê+X¯eTT\qT $wüjT· |ü+#·øe£ TT>± dü+Á>∑V≤æ +∫ Ç˝≤ Á|ü|+ü ∫+#·Tø√e#·TÃqT. 1.|üPs¡í ÁãVü≤àeTT dü‘´· C≤„Hêq+‘·eTT, n~«rj·TeTT. 2.|üPs¡í ÁãVü≤àeTT jÓTTø£ÿ ø±s¡´s¡÷|üeTT áX¯«s¡T&ÉT. eè‘·eÔ ÷‘·ì <äèX¯´ s¡÷|üeTT (Visible form) Á|üDe e÷‘·ì jÓTTø£ÿ ÁXÊe´s¡÷|üeTT (Audible form). 3.<äèX¯´s¡÷|üyTÓ qÆ eè‘·yÔ T˚ qe_+<äT dü+j·TT‘·yTÓ Æ os¡¸|⁄ü #·Ã|¤ øü <å£ «ä j·T s¡÷|üyTÓ qÆ Á|ü|+ü #·+>± Á|üDe dü«s¡÷bÕìøÏ yê´U≤´ÁbÕj·TyÓTqÆ ~. 4.X¯ã› ÁãVü≤àyÓTqÆ Á|üDeeTT yê#·´yê#·ø£ Á|üu<ÒÛ ë\‘√ dü+U≤´ (Number) |ü<ä Á|ü|+ü #ê\qT Á|üu$ÑÛ +|ü#d˚ qæ ~.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
105
5.πsU≤X¯ã› Á|ü|+ü #ê\T s¬ +&É÷ s¡÷|üHêe÷_Û e´+»ø£eTT˝…’ ø£s√àbÕdüHê \uÛ´Ñ yÓTqÆ áX¯«s¡‘‘· êÔ«ìï ñ|üìwüÅ‘«· ‹bÕ~‘·yTÓ qÆ nr+Á~j·TC≤„q (By supreme knowledge beyond the senses) \uÛ´Ñ yÓTq Æ |üPs¡Áí ãVü≤àeTT>± ìs¡÷|ædTü HÔ êïsTT. @e+ $<Ûä |üPs¡Mí Te÷+kÕ <äsÙ¡ q |ü]C≤„qeTT jÓTTø£ÿ |ò\ü ÁX¯ó‹ ìs¡÷|üø+£ >± |ü+#·e÷<Ûë´j·T+ ÁbÕs¡+_Û+#· ã&ÉT#·Tqï~. ``` ne‘ê]ø£ : |üPs¡Mí Te÷+kÕ <äsÙ¡ q e÷Vü‰‘êà´ìï ‘Ó*j·TCÒd÷ü Ô ÁbÕs¡+uÛdÑ ÷ü Á‘·+˝ÀH˚ BìH=ø£ eT¨|üìwü‘T· >Ô ± ø°]kÔ ÕÔsT¡ l ø£˝≤´D≤q+<ä uÛ≤s¡r eTVü‰kÕ«$Tyês¡T.
dü÷ˆˆ1ˆˆ @‘·<«’Ó eT¨|üìwü‘Y eè‹Ô' ˆˆ @‘·‘Y ÄVæ≤ïø£ #·‘T· wüj º ÷· ‘·àø£+ |üPs¡Mí Te÷+kÕ <äX9¯ q+ eT¨|üìwü ‘·‡«s¡÷|ü $T‘·´<Û9ä ' eTVü≤‘·«Ô + #êkÕ´~«rj·TedüTÔ Á|ü‹bÕ<äø‘£ «˚ q yÓX’ u¯ À›‘´· +‘ê‹ X¯jT· <√´‘·Hêj·T. q q«kÕ´~«rj·÷|üs√ø£å ÁãVü≤àÁ|ü‹bÕ<äø± H˚øX£ ÊU≤uÛ<Ò _ä Û H√ï|üìwü <äù|ø£j å ÷· ø£<+ä∏ eTVü≤‘·«Ô $T‘ê´X¯+ø±j·÷ e÷Vü≤. ª@‘·‘`Y yÓ`’ eT¨|üìwü‘μY ` nì |ü<$ä uÛ≤>∑eTT. ª@‘·<μé ` nq>± Ç~ nì ns¡eú TT. Ç~ ìπsX› ¯ yê#·ø£ |üsZ∑ ˝¡ ÀqTqï <ëìì Ç~ nì #Ó|Œæ #·÷|ü⁄≥ e´eVü‰s¡eTT˝ÀqTqï $wüjT· y˚T. ø±>± Á|üdTü ‘Ô e· TTq ` @‘·<é ` nq>± eTq$T+‘·es¡≈î£ #·]Ã+#·T≈£îqï Hê\T>±Væ≤ïø£eTT\ j·T+<ä* $wüjT· C≤‘·eTT nì ns¡eú TTqT Á>∑V≤æ +#ê*. Ç~ eT¨|üìwü‘·Ô≥. eTVü‰`ñ|ü`ì`wü‘Y nì Bìì dü+uÛ≤$ùdÔ ñ|ü`ì nH˚ ñ|üdsü \Z¡ T eTT+<äTqï ªwü<`®é XÊ‘·Hμ˚ nH˚ <Ûë‘·Te⁄ qT+&ç <ä>sZ∑ >¡ ± n‘·´+‘· düMT|üeTT˝À (ˇ&ç˝À) ≈£Ls¡TÃ+&Éu≥… Tºø=ì, n$<ä´ ˝Ò<ë nC≤„qeTTqT |üP]Ô>± q•+|ü#d˚ æ C≤„qeTTqT uÀ~Û+#˚ ñ|ü∑+<∏eä TT ñ|üìwü‘T· Ô nì˙ï, eTVü≤~«X‚wD ü +. <ëì jÓTTø£ÿ nì‘·s¡ kÕ<Ûës¡D‘·«eTTqT ‘Ó*j·TCÒkÕÔsTT. ªyÓμ’ nH˚~ ìX¯Ãj·÷s¡øú y£ TÓ qÆ ne´j·TeTT. ø±>± Ç+‘· es¡≈î£ eTqeTT Hê\T>∑T ÄVæ≤ïø£eTT\˝À #·]Ã+#·T≈£îqï $wüjT· eTT nC≤„qeTTqT |üP]Ô>± q•+|üCdÒ ,æ dü«dü«s¡÷|ü C≤„qeTTqT ø£*–+#˚ nì‘·sk¡ Õ<Ûës¡DyÓTqÆ n~«rj·TyÓTqÆ ñ|üìwü‘·TÔ ` nì dü÷Á‘ês¡úeTT dæ~∆düTÔ+~. ÁãVü≤à$<ä´ ˝Ò<ë Ä‘·à$<ä´qT uÀ~Û+#˚ ñ|üìwüÅ<+Zä <∏eä TT ªªá |üPs¡Mí Te÷+düμ ` nì ‘ê‘·Œs¡´eTT. ❋❋❋
106
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ne‘ê]ø£ : ñ|üìwü‘T· \Ô ˙ï ≈£L&Ü n$<ë´ ìes¡øÔ e£ TT\T, C≤„qÁ|ü± ìπs›•+#·&É+˝À $X‚wüy˚T$T≥H˚ dü+X¯j·÷ìøÏ ø±s¡DeTTì˝≤ Á|ü‹bÕ~kÕÔsT¡ . s¬ +&Éedü÷Á‘·+˝À l ø£˝≤´DuÛ>Ñ e∑ ‘êŒ<äT\T
dü÷ˆˆ2ˆˆ ‘·<ä<∏ä9 <äX9¯ Hê‘Y eè‹Ô' ˆˆ ‘êkÕ eTT|üìwü<ë+ jÓ÷<∏ä9' ‘·Á‘·Œ‹bÕ<äø‘£ ê« ~‘·´<Ûä9'. q q«kÕ´|ü⁄´|üìwü <ä<ä∏6Á|ürbÕ<äø£‘˚« ‘êdüT dürwüßøÏeT<Ûä9 eT|üPs√«j·T+ ÁøÏjT· ‘· Ç‘ê´X¯+ø£´ìùw<Û‹ä ˆˆ ª‘·∑V≤ü yêø±´ìï #Ó| ü ≈£î+fÒ ` y˚<ä y˚<ëqÔ Á|ü‹bÕ<ä´yÓTqÆ |üPs¡í ÁãVü≤àeTT jÓTTø£ÿ düeTÁ>∑yTÓ qÆ ns¡eú TTqT Á|ü<]ä Ù+∫ uÀ~Û+#·T≥ e\q nì ‘ê‘·Œs¡´eTT. |ü<,ä ;», dü+U≤´ Á|ü|+ü #· Á|ü|+ü ∫‘·yTÓ qÆ |üPs¡‘í ê«ìï ÁX¯e´ <äèXÊ´‘·àø£+>± Audio visual Analyisis ìs¡÷|æ+#·&É+ e\q nì ≈£L&Ü <äsÙ¡ qX¯u≤›ìøÏ ns¡eú TT #Ó| ü ø√e#·TÃ. ne‘ê]ø£ : Á>∑+<∏eä TVü‰‘·à´ ø±s¡DeTTì˝≤ $e]+∫ eT] s¬ +&ÉT ø±s¡DeTT\qT ≈£L&Ü $e]+∫ á Á>∑+<∏eä TT jÓTTø£ÿ n|üPs¡«yÓTqÆ n|ü⁄s¡÷|üø‘£ «· eTTqT >∑Ts¡TbÕ<äT\T ìs¡÷|ædTü HÔ êïs¡T. ne‘ê]ø£ : ô|’ dü÷Á‘·eTT˝À Á|ü‹bÕ~+∫q≥T¢>± MTÁ>∑+<∏eä TT düs√«|üìwü∑eTT>± Á|ü‹bÕ~+∫q Á|ü‹bÕ~+#·e#·TÃ. n+‘·e÷Á‘·eTTq eTVü≤‘·« $X‚wDü eTT BìøÏ kÕs¡øú y£ TÓ ≥¢e⁄‘·T+~ ` nH˚ dü+X¯j÷· ìøÏ düe÷<Ûëq+>± eT÷&Ée dü÷Á‘êìï˝≤ Á|ükÕÔ$kÕÔsT¡ kÕ«$Tyês¡T.
dü÷ˆˆ3ˆˆ øÏ+‘·s¡Ω´dü+~>∑∆+ eè‹Ô' ˆˆ ‘·Væ≤9ndü´ Á>∑+<∏ädü´ düø£˝À|üìwü <ä<∏ä9 Á|ü‹bÕ<äø‘£ «˚ øÏ+ øÏ+Á|üj÷Ó »q $T‹ #˚ <äd+ü ~>∑+ú ñ|üìwü<ë+ dü+~Û>±∆<ä∏6‘˚« |ü´kÕ´ dü+~>∑‘∆ ê« <ë<äsD¡ j ° T· $T‹ uÛ≤e' ˆ ùV≤‘·«+‘·se¡ ÷Vü≤
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
107
øÏ+`‘·]Ω`ndü+~>∑y∆ Té ` nì |ü<$ä uÛ≤>∑eTT. øÏ+?‘·]Ω! ` nH˚~ dü+düÿè‘·|⁄ü HêqT&ç . C≤rj· T eTqïe÷≥. ªªnsTT‘˚ @+?μμ nì eTq+ ‘Ó \ T>∑ T ˝À dü+uÛ≤wæ+#·T≈£îH˚≥|ü &ÉT Á|ü‹yê~ì Á|ü•ï+#˚ kÕ<Ûës¡D√øÏÔ øÏ+‘·]Ω? n+‘·e÷Á‘êq <ëìø£+‘· >=|üŒ $X‚wD ü e÷? nì sT÷ |ü]Á|üXï¯ ≈£î ns¡eú TT. <ëìøÏ düe÷<ÛëqeTT ndü+~>∑e∆ TH˚e÷≥. ñ|üìwüÅ‘Œ· ‹bÕ<äqeTT\T eø£èÔ uÛ<Ò ëqïqTdü]+∫ _Ûqï_Ûqï s¡÷bÕ˝À¢ >√#·]+∫ dü‘´· ìs¡j í T· $wüjT· +˝À dü+~>∑‘∆ q· T ø£*–düTHÔ êïsTT. ø±e⁄qH˚ ÁX¯ó‹]«_ÛHêï düàè‘·jT· X¯Ã_ÛHêï' eTVü‰ãTTw”D≤+ eT‘·jT· X¯Ã_ÛHêï' ‘·‘ê‡s¡ uÛ÷Ñ ‘·+ düeTTbÕdæ‘e· ´+ eTVü‰»H√j˚Tq>∑‘'· dü|+ü <∏ë' ! nH˚ •wüº e´eVü‰sêqTdüsD ¡ + dü+Á|ü<ëj·T $<äT\#˚ Á|üe÷D°ø]£ +|üã&çq~. ø±e⁄qH˚ >∑Ts¡T<˚e⁄\T á |üPs¡Mí Te÷+kÕ Á>∑+<∏eä TTqT düs√«|üìwü‘ê‡s¡eTTqT dü+Á>∑V≤æ +∫ dü÷Á‘·Á>∑+<∏eä TT>± s¡÷bı+~+∫Hês¡T. n˝≤Œø£så y¡ TÓ qÆ qT ndü+~>∑e∆ TT>± düs«¡ »q düeTà‘·eTT>± Vü≤è<ä´eTT>± ìs¡e<ä´eTT>± eTVü‰$wüjT· eTTqT kÕs¡u÷ÑÛ ‘·eTT>± uÀ~Û+#·T≥ dü÷Á‘·s#¡ q· ˝Àì >=|üŒ<äqeTT. n~ eTVü‰y˚T<Ûëe⁄˝…q’ »>∑Ø l$s¡÷bÕø£l å |”s¡ƒ dü+Á|ü<ëj·T$<äT\+<äse¡ TT dü>s∑ «¡ eTT>± dü+uÛ≤$+#·T≈£î+≥÷ ñ+{≤+. düsπ ø±>± ñ|üìwü‘T· \Ô ìï{Ïøq£ ï $Tqï>± n‘ê´<ÛTä ìø£yTÓ qÆ ÁXÊe´<äèX¯´ •ø£Då ≤ Á|üÁøÏjT· (Audio visual Technology) qT|üj÷Ó –+∫ dü÷Á‘· s¡÷|üeTT˝À á $<Ûeä TT>± $wüjT· eTTqT Á|ü‹bÕ~+#·T≥ á Á>∑+<∏eä TT jÓTTø£ÿj·TT »>∑
108
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ne‘ê]ø£ : s¬ +&Ée<Óq’ ùV≤‘·«+‘·s$¡ T≥T¢ dü÷Árø£]+|ü ã&ÉT#·Tqï~.
dü÷ˆˆ4ˆˆkÕMTbÕ´‘Y eè‹Ô' ˆˆ kÕMTbÕ´‘Y ne´eVæ≤‘· ø±s¡D‘ê« ~‘·´<∏9ä ' |ü<ä ;»dü+U≤´Hê+ |üs+¡ |üsj ¡ ÷· ùV≤‘·T‘˚«|æ sπ U≤j·÷ kÕ‡øå± <˚‘∆ T· ‘ê« ~‹uÛ≤e' ˆˆ
ne´eVæ≤‘·‘·«yÓTyêVü≤ Ç~ ≈£L&Ü @ø£|<ü ä dü÷Á‘·yT˚ . eT¨|üìwü‘Y nqT|üsZ∑ >¡ ± #·÷|æ+∫ sπ Fj·T Á|ü|+ü #·+˝À ∫Á‘·eTT\ <ë«sê Ç+ø± <ä>sZ∑ >¡ ± \ø£´å +~X¯>± rdæø=ì yÓfi‘¯ êsTT. á $wüj÷· ìï sTT+ø± düŒwü+º >± lkÕ«$Tyês¡T ` ª|ü<;ä » dü+U≤´Hê+ |üs+¡ |üsj ¡ ÷· ùV≤‘·T‘˚«|æ sπ U≤j·÷' kÕøå±<˚‘∆ T· ‘ê«~‹ uÛ≤e'μμ ` n+fÒ |üPs¡Áí ãVü≤àeTH˚ \øå±´ìï ìs¡÷|æ+#·&+É ˝À |ü<,ä es¡,í ;», dü+U≤´<äT\≈£î bÕs¡+|ü]ø£ ùV≤‘·T‘·‘«· + #Ó|Œü ã&çHê sπ K≈£î Á|ü‘´· ø£øå ±s¡D‘·«eTTqï+<äTq, n~j˚T Á|ü<ëÛ q Á|ü‹bÕ<ä´yÓTqÆ |üPs¡Mí Te÷+kÕÁ>∑+<∏eä TT \ø£´å eTTq ø£‘´· +‘· #˚sT¡ e≈£î #˚sT¡ Ã≥j·THÓ&ç kÕMT|ü´ø±s¡DeTT e\q eTVü≤‘·«Ô |üPs¡yí TÓ qÆ ~>± |ü]>∑D+Ï |üã&ÉT#·Tqï~. ❋❋❋
ne‘ê]ø£ : \ø£´å yÓTqÆ |üPs¡Áí ãVü≤àeTTq≈£î kÕMT|ü´ $wüjT· eTT˝À ne´eVæ≤‘·‘«Ô· eTT ` n‘·´+‘· kÕìïVæ≤‘·´eTTqT |ü⁄s¡dÿü ]+#·Tø=ì sπ K≈£î düsê«‹XÊsTT ÁbÕ<Ûëq´eTT dü÷Árø£]+|üã&ÉT#·Tqï~.
dü÷ˆˆ5ˆˆ|ü<;ä »dü+U≤´ sπ U≤D≤ eTT‘·sÔ √‘·sÔ +¡ ã©j·T' eè‹Ô' ˆˆ |ü<+ä ÁX¯ó‹düàè‘ê´~ Á>∑+<∏sä ÷¡ |ü+. ;»+ eT+Á‘·s÷¡ |ü+. dü+U≤´ø±~ qy˚‘ê´~ Á|üd<æ ë∆. sπ U≤#· #·Áø±~s¡÷bÕ. ‘êkÕ eTT‘·sÔ √‘·sÔ +¡ ã©j·T' |üPs¡Cí ≤„q+ Á|ü‹|üPs¡« |üPsê«ù|ø£j å ÷· ñ‘·sÔ √‘·sÔ +¡ ã©j·T' kո屑êÿs¡D $T‘·´<∏9ä '. qqT dü+U≤´j·÷ dü‡s¡« Á‘êqTdü÷´‘·‘«˚ q‘·kÕ´ @e≈£î‘√ qÁbÕ<Ûeä T´ $T‹ #˚qï j·T<∏ë |òTü {≤~ø£+Á|ü‹ eTè<äkÕ‡<Ûës¡D‘˚«|æ ø£bÕ˝≤Hê+ kÕøå±<˚‘∆ T· ‘·«+ ‘·<«ä ‘·‡+U≤´j·÷ dü‡s¡«Á‘êqTdü÷´‘· ‘˚«|ü´ kÕ<Ûës¡D. ø±s¡D‘·«+ sπ U≤j·÷ @y˚‘ê´y˚
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
109
|ü<;ä » dü+U≤´πsU≤D≤+, ñ‘·sÔ √‘·sÔ +¡ , ã©j·T' ` nì |ü<$ä uÛ≤>∑eTT. ÁX¯ó ‹düàè‘ê´~ Á>∑+<∏eä TT\ìïj·TT |ü<ä Á|ü|+ü #·eTT. ;»eTT eT+Á‘·s÷¡ |üeTT. ø±~qe, {≤~qe ... Ç‘ê´~>± dü÷∫+|üã&çq<ä+‘·jT· T dü+U≤´ Á|ü|+ü #·eTT. sπ U≤ |ü∑Væ≤+|üã&ÉTqT. Mì˝À |üPs¡í ÁãVü≤àC≤„q ùV≤‘·T‘·«<äècÕº´ |üPs¡«|üPsê«ù|ø£j å ÷· ñ‘·sÔ √‘·sÔ e¡ TT ã©j·TeTT\T>± #Ó|Œü ã&çq$. ø±>± |üPs¡í ÁãVü≤à‘·«eTTq≈£î ne´eVæ≤‘·‘«· eTT ˝Ò<ë n‘·´+‘· kÕìïVæ≤‘·´ kÕMT|ü´eTT\qT |ü⁄s¡düÿ]+#·Tø=ì |ü<äeTTø£qï ;»eTTq≈£î <ëì ø£+f… dü+K´≈£î nìï{Ïø£qï πsK≈£î ñ‘·sÔ √‘·sÔ ¡ ã©j·÷dü«Ô eTT #Ó|Œü ã&çq~. kÕøå±<˚‘∆ T· ‘·« ø±s¡DeTT>± sπ K≈£î nìï{Ïøq£ ï $•wüyº TÓ qÆ ÁbÕ<Ûëq´eTT |üø*£ Œ+|üã&çq<äì uÛ≤eeTT. Äs¡+uÛeÑ TT qT+&ç ‘·T~es¡≈î£ nqTdü÷´‘·eTT>± nqTe]ÔdTü qÔ ï dü+K´≈£î Á|ü<ëÛ q ø±s¡D‘·«eTT m+<äT\≈£î Á>∑V≤æ +|üã&É˝<Ò Tä ? nH˚ |üPs¡«|üøeå£ TTq≈£î düe÷<ÛëqeTT>± eè‹Ôø±s¡T\T ` |òTü {≤<äT ˝ÒsŒ¡ &É&ÜìøÏ eT{Ïeº T÷\ø±s¡Dy˚T nsTTHê ne´eVæ≤‘· ˝Ò<ë n‘·´+‘· düìïVü≤‘· ø±s¡DeTT˝…q’ ø£bÕ\eTT\πø kո屑êÿs¡D‘·«eTT m≥T¢ #Ó|Œü ã&çq<√ nfÒ¢ dü+K´≈£î düs«¡ Á‘ê nqTeè‹Ô j·TTqï|üŒ{ÏøìÏ sπ Kπø kո屑êÿs¡D‘·«eTT #Ó|Œü ã&çq<äì ‘ê‘·Œs¡´eTT. á $wüjT· eTTqT ‘Ó*j·TCÒjT· T≥πø |ü<;ä » dü+U≤´πsK\ ≈£î‘·sÔ √‘·sÔ ¡ ã©j·÷dü«Ô eTT á dü÷Á‘·eTT <ë«sê Á|ü‹bÕ~+#·ã&çq<äì Á>∑V≤æ +#ê*. ❋❋❋
ne‘ê]ø£ : Ç+‘·es¡≈£î |üPs¡íMTe÷+kÕ<äs¡Ùq e÷Vü‰‘·à´eTTqT dü+kÕú|æ+∫q >∑Ts¡TbÕ<äT\T @‘·Å<+Zä <∏>ä ‘∑ · $wüjT· yÓX’ <¯ ´ä eTTqT miTø£|sü #¡ T· #·THêïs¡T. dü÷ˆˆ6ˆˆ Ç<ä+‘·TbÕs¡e÷~Û9ø£+ eè‹Ô' ˆˆ Ç<ä+ |üPs¡Mí Te÷+kÕ<äX¯9q+ bÕs¡e÷~Û9ø£+ |üse¡ ÷<Ûä9uÀ<Ûäø£ y˚Te‘·T X¯uq›Ò y˚<ë+‘êHê+ ‘·Á‘· ‘·Á‘êHê´<∏ä9ø£‘«˚ |ü´ôd´’ ø±+X¯ uÀ<Ûøä ‘£ «· + dü÷#·´‘Ó. qq«dü´ |üse¡ ÷<∏ä9 uÀ~Ûø‘£ «Ó Ç‘·sê+X¯C≤„q+ ø£<äÛ $T‘ê´X¯+ø±j·÷e÷Vü≤. Ç<ä+, ‘·T, bÕs¡e÷]úøy£ Té ` nì |ü<$ä uÛ≤>∑eTT. Ç<ä+ ` á |üPs¡«MTe÷+kÕ <äsÙ¡ qeTT ‘·T`e÷Á‘·yT˚ , bÕs¡e÷]úøy£ Té ` |üse¡ ÷s¡ú ‘·‘«Ô· eTT HÓiTø£|sü #¡ T· q~. Bìø£qï _ÛqïeTT˝…q’ <äsÙ¡ q Á>∑+<∏eä TT\ìïj·TT y˚∑
110
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
|üsêeT]ÙkÕÔsTT. n≥T¢>±≈£î+&Ü á |üPs¡Mí Te÷+kÕ<äsÙ¡ qeTT øπ e\ bÕs¡e÷]úøy£ TÓ qÆ |üPs¡Áí ãVü≤à‘·‘«Ô· eTTqT e÷Á‘·yT˚ Á|ü‹bÕ~+#·T≥ #˚‘· Ç~ e÷Á‘·yT˚ eTôVA|üìwü‘Ô· q<ä–q<äì ‘ê‘·Œs¡´eTT. ❋❋❋
ne‘ê]ø£ : ªyêø±´s¡Cú ≤„H˚ |ü<ës¡Cú ≤„qdü´ ø±s¡D‘ê«‘Yμ nH˚ XÊÁd”j Ô T· |ü]uÛ≤wü qqTdü]+∫ bÕs¡e÷]úø£ $wüjT· eTT jÓTTø£ÿ |ü]C≤„qeTTq≈£î yê´eVü‰]ø£ $wüjT· |ü]C≤„qeTT ≈£L&É ÄeX¯´ø£yT˚ qqT $wüjT· eTTqT |üs√ø£eå TT>± Ç˝≤ Á|ükÕÔ$kÕÔsT¡ . dü÷ˆˆ7ˆˆ düs«¡ eTq´ <ë“<äsêj·TD≤‘Y eè‹Ô' ˆˆ düs«¡ eTq´‘Y |üPs¡Cí ≤„q <äq´ ‘·‡s¡«+ u≤<äsêj·TD≤‘Y yê´kÕ <äe>∑+‘·e´$T‹ X‚wü' ˆˆ yê´düÁ|üD°‘· y˚<ë+‘· <äX¯9HÓ düs«¡ eT‘êHê eTT|üq´dü‘Ô «˚ q ‘·Å<+Zä <∏Cä ≤\+ <äècÕº« CÒj „ T· $T‹ ‘ê‘·Œsê´<Ûä9'ˆˆ qqT ∫s¡ø±\+ ÁX¯eD≤~Hê |üPs¡Cí ≤„HÓ C≤‘Ó øÏ+Á|üj÷Ó »q eTH˚H‘˚ ê´ X¯+ø±j·÷ e÷Vü≤ˆˆ düs«¡ yéT, nq´‘Y, u≤<äsêj·TD≤‘Y nì |ü<$ä uÛ≤>∑eTT. Ç~ øπ e\ |üse¡ ÷s¡ú ‘·‘«Ô· Á|ü‹bÕ<äøy£ TÓ qÆ Á>∑+<∏eä Tì |üPs¡Áí ãVü≤àC≤„q |üse¡ ÷s¡eú TT HÓiT>∑T≥ø£edüsy¡ TÓ qÆ yê´eVü‰]ø£ |ü]C≤„qeTTq+‘·qT ªnq´‘Y düs«¡ +μ nì ‘Ó*|æ <ëìì u≤<äsêj·TD≤‘Y nq>± u≤<äsêj·TD ø£è‘· ÁãVü≤àdü÷Á‘· <äsÙ¡ qeTT ˝Ò<ë y˚<ëqÔ <äsÙ¡ qeTT qT+&ç Á>∑Væ≤+#·e\dæq<äì ~XÊìπs›X¯eTT #˚kÕÔs¡T. Äj·÷ $wüj·÷+‘·s¡eTT\qT ‘Ó*dæø=q>√s¡Tyês¡T düs«¡ eT‘√|üHê´dü ìsêdü |üPs¡«ø£eTT>∑ bÕs¡e÷]úø£ ‘·‘«Ô· eTTqT dü+kÕú|æ+∫q y˚<ëqÔ MTe÷+kÕ<äs¡ÙqyÓTÆq u≤<äsêj·TD dü÷Á‘·uÛ≤cÕ´<äT\qT dü+Á|ü~+#· e#·TÃqì dü÷∫+#·ã&çq~. á dü÷#·q bÕs¡e÷]úø£ C≤„qeTTq≈£î yê´eVü‰]ø£ |ü]C≤„qeTT ≈£L&Ü ÄeX¯´ø£yT˚ nqT $wüjT· eTTq Ä#ês¡´ bÕ<äT\≈£î $Á|ü‹|ü‹Ô ˝Ò± |üPs¡íMTe÷+kÕ Á>∑+<∏äeTT |üPs¡ÔsTTqfÒ¢ uÛ≤$+#·e#·TÃ. ❋❋❋
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
111
112
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
e\¢ |üPs¡í ÁãVü≤àeTT jÓTTø£ÿ miT≈£ ø£\T>∑T‘·T+<äì @‘êyê‘ê ‘Ó*dæq $wüjT· +. á miTø£ ˝Ò<ë |üse¡ ÷s¡ú |ü]C≤„qeTT e\q eTqø=]π><˚$T{Ï? ˝Ò≈î£ +fÒ b˛j˚T<˚$T{Ï? nH˚ dü+X¯j÷· \≈£î düe÷<Ûëq+>± á dü÷Á‘êìï˝≤ Á|ü‹bÕ~kÕÔsT¡ .
‘·<Ó∆Ì‘·‘·ŒX¯´Hé ãTTwæsê«eT<˚e' Á|ü‹ù|<˚ nVü≤+ eTqTs¡uÛÑe+ ...@‘·<˚e ÁãVü≤à$<ëb˛ï‹ |üs$¡ T‘ê´<Í |üPs¡eí T<ä' .. Ç‘ê´~ eT+Á‘êìï <ä]Ù+∫ yêeT<˚e⁄&ÉT |üPs¡T&í H’Ó ê&ÉT. ø±q ªÁãVü≤à$<ëb˛ï‹ |üsy¡ Té μ Ç‘ê´~ ÁX¯ó‹ Á|üe÷DeTT *#·≥ nqTdü+<Ûj ˚ T· eTT\ì ‘ê‘·Œs¡´eTT.
dü÷ˆˆ 8 ˆˆ |üPs¡í $‘·÷Œs¡íy˚Te uÛÑe‹
ne‘ê]ø£ : ÁX¯ó‹ Á|üe÷DeTT‘√bÕ≥T>± düàè‹ ÁbÕe÷D´‘·qT ≈£L&É Ç˝≤ Á|ükÕÔ$kÕÔsT¡
ne‘ê]ø£ : |üse¡ ÷s¡ú C≤„q Á|ü‹bÕ<äq |üsy¡ TÓ qÆ á Á>∑+<∏ëìï eTqq+ #˚døæ =q&É+
eè‹Ô' ˆˆ |üPs¡$í ‘Y. |üPs¡Cí ≤„˙, |üPs¡yí T˚ e. |üPs¡dí «ü s¡÷|ü@e uÛeÑ r‹kÕe÷H˚´q|ü⁄+düø+£ . |üPs¡$í <ä' |üPs¡dí «ü s¡÷|ü‘«Ó Á|üe÷D+ <äX¯9j·T‹ |üPs¡$í ‘Y ` |üPs¡+í @e ` uÛeÑ ‹ nì |ü<$ä uÛ≤>∑eTT. |üPs¡+í y˚r‹Ô |üPs¡$í ‘Y nì $Á>∑V≤ü yêø£´eTT. |üPs¡yí TÓ qÆ ÁãVü≤àeTT HÓ]+–qyê&ÉT |üPs¡$í <äT&Éq ã&ÉT‘ê&ÉT. n≥Te+{Ï |üPs¡yí ‘˚ Ô· |üPs¡yí Té nq>± Ä |üPs¡Áí ãVü≤ày˚T nsTTb˛‘ê&Éì uÛ≤eeTT. Ç~ ªÁãVü ≤ à$Å<ä “ ôV’ ≤ àe uÛ Ñ e ‹μ ÁãVü ≤ ày˚ ‘ · Ô ÁãVü ≤ ày˚ T nsTTb˛‘ê&É H ˚ ñ|üìwü<«ä #·q+‘√ dü+e~düT+Ô ~. á $<Ûyä TÓ qÆ |üPs¡‘í «· eTT ˝Ò<ë Áu≤V”≤àdæ‹ú ì bı+<ä&yÉ T˚ Jeq |üse¡ ÷s¡eú TT. Bì q+~#·TÃ≥j˚T á Á>∑+<∏ä \ø£´å eTT. ❋❋❋
ne‘ê]ø£ : |üPs¡yí ‘˚ Ô· |üPs¡T&í ˚ nsTTb˛‘ê&Éq&ÜìøÏ y˚<Áä bÕe÷D´eTTqT Á|üdTü ‘Ô · dü÷Á‘·+˝À Á|ükÕÔ$+#·ã&çq~.
dü÷ˆˆ 9 ˆˆ ÁX¯ó‘·‘ê«#·Ã
eè‹Ô' ˆˆ ÁX¯ó‘·‘ê«‘Y ÁX¯ó‘ê´ Á|ü‹bÕ<ä´ e÷q‘ê«~‘·´<Ûä9' ˆˆ ÁX¯ó‹XÊÃÁ‘· ªª|üPs¡eí T<ä'|üPs¡$í T<ä+ |üPsêí‘÷· Œs¡í eTT<ä#´· ‘Ó |üPs¡dí ´ü |üPs¡eí ÷<ëj·T |üPs¡yí TÓ yêe•wü´ ‘Ó‘<· ‘Ì∆Ó · ‘·ŒX¯´qïèwæsê«eT<˚e' Á|ü‹ù|<Ó nVü≤+ eTqTs¡ueÑÛ + dü÷s¡´ XËÑê´~ø£ eT÷Vü≤˙j·T+ @‘·∑èVü≤´‘· Ç‹uÛ≤e' ˆˆ q øπ e\+ ÁX¯ó‹'øÏ+‘·T düàè‹s¡|‘” ê´Vü≤ ˆˆ ÁX¯ó‘·‘ê«‘Y ` #· nì |ü<$ä uÛ≤>∑eTT. |üPs¡«eTT˝À e˝… Ç#·Ã≥ ≈£L&É #·ø±s¡eTTqT düeTT#·Ãj·÷s¡øú e£ TT>∑ uÛ≤$+#ê*. ª|üPs¡$í ‘·÷Œs¡yí T˚ e uÛeÑ ‹μ nH˚ $wüjT· + ÁX¯ó‹ düeTà‘·eTT ≈£L&Ü ` q+≥÷ yêeT<˚e eTVü≤]¸ |üPs¡$í <äT&Ó’ |üPs¡‘í «· eTT q+~q ÁX¯ó ‹Á|üe÷DeTTqT eè‘·ÁÔ >∑+<∏eä TT˝À >∑Ts¡T<˚e⁄\T j·T<∏ë‘·<+ä∏ >± ` ªª|üPs¡eí T<ä' |üPs¡$í T<ä+ |üPsêí‘÷· Œs¡eí TT<ä#´· ‘˚, |üPs¡dí ´ü |üPs¡eí ÷<ëj·T |üPs¡yí T˚ yêe•wü´‘˚ˆˆμμ
❋❋❋
>∑Ts¡TbÕ<äT\T.
dü÷ˆˆ10ˆˆ düàè‘˚X¯Ã eè‹Ô' ˆˆ düs√«‘·ÿèwü+º |ü<+ä |üPs¡»í d„ ´ü dü÷#·jT· ‹. düàè‹X¯Ã ªª@cÕ Áu≤V”≤àdæ‹ú ' bÕ<Û9ä HÓH’ ê+ ÁbÕ|ü´ $eTTVü≤´‹ dæ‘∆ ê«kÕ´ eT+‘·ø±˝Ò|-æ ÁãVü≤àìsê«D eTè#·Ã‹¤ μμ dü«ã+<Û÷ä ìïVü≤ìwü´qÔ+ XÀ#·+‘·+ bÕ<Ûä9+ luÛÑ>∑yêHêïsêj·TD' ÁbÕVü≤. @cÕ Áu≤V”≤à ÁãVü≤àdü+ã+<Û˙ä dæ‹ú ' @yê+dæ‹ú + ÁbÕ|ü´ düeTTVü≤´‹qø√|æ yÓ÷Vü≤+ ÁbÕb˛ïr ‘·´<Ûä9' ˆ nkÕ´+ dæ‘ú Í dæ‘ú ê« n+‘·ø±˝Ò-|æ ÁãVü≤àìsê«DeTè#·Ã‹¤ ÁbÕb˛ïr‘·´<Ûä9'. |ò˝ü ≤+‘·s¡ e÷Vü≤ düàè‘˚' #· ` nì |ü<$ä uÛ≤>∑eTT. düàè‹ jÓTTø£ÿ ÁbÕe÷D´eTT ≈£L&É |üPs¡E í &„ TÉ |üPs¡yí T˚ nsTTb˛‘ê&ÉH˚ $wüj÷· ìï Á<ÛTä Mø£]düTqÔ ï<äì dü÷Á‘ês¡eú TT. eè‹Ô Á>∑+<∏eä TT˝À >∑Ts¡TbÕ<äT\T ^‘êdüàè‹˝Àì @cÕ Áu≤V”≤àdæ‹ú ' bÕs¡!ú HÓH’ ê+ÁbÕ|ü´ $eTTVü≤´‹ ˆ dæ‘ú ê«kÕ´ eT+‘·ø±˝Ò|æ ÁãVü≤àìsê«DeTè#·Ã‹¤ ˆˆ (uÛ.Ñ ^.) |üPs¡‘í «· dæ~ì∆ bı+~qyê&ÉT u≤Vü‰´uÛ´Ñ +‘·se¡ TT\+<äT <ëìH˚ <ä]Ùdü÷Ô <ëì qT+&ç eTs¡\ $&çe&É≈î£ +&Ü ñ+{≤&ÉT. á $wüjT· eTTq lX¯+ø£sT¡ \ |üse¡ T>∑Ts¡Te⁄˝…q’ >ö&ÉbÕ<ë#ês¡T´\yê] jÓTTø£ÿ ªª‘·‘·Ô«e÷uÛÑ´+‘·s¡+ <äècÕº« ‘·‘·Ô«+ <äècÕº«‘·T u≤Vü≤´‘·' ‘·rÔ« uÛÑ÷‘·düÔ<ësêeT' ‘·‘êÔ«<ä Á|ü#·T´‘√ uÛÑy˚‘Yμμ nH˚ eT¨|ü∑H˚ Äq+<ä|Tüò qT&ÉT>∑H˚ $T–*b˛‘ê&Éì »>∑
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
113
114
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ne‘ê]ø£ : ô|q’ #Ó|Œü ã&çq |ò\ü ÁX¯ó‹H˚ nq>± ÁãVü≤ày˚‘Ô· ÁãV”≤àuÛ÷Ñ ‘·T&Ó’ XÊX¯«‘·+>±
OM
Ä‘êàsêeTT&ÉT>∑H˚ ì*∫b˛‘ê&ÉH˚ $wüj·÷ìï ª~«s¡“<ä∆+ dü+ã<ä∆+ uÛÑe‹μ nH˚ Hê´j·÷qïqTdü]+∫ nHêeè‹Ôì ~«sêeè‘·+Ô #˚dæ |ü]düe÷|æÔ dü÷Á‘êìï˝≤ Á|ü<]ä ÙkÕÔsT¡ >∑Ts¡TbÕ<äT\T.
5.PURNA MIMAMSA
dü÷ˆˆ11ˆˆ nHêeè‹Ô s¡Hêeè‹Ô' eè‹Ô' ˆˆ |üPs¡$í <ä' ÄHêeè‹Ô' |ü⁄qsêeè‘·´Ô uÛ≤e @e uÛeÑ r‹X‚w'ü ‘·Á‘· ÁX¯ó‹ C≤\+ ˆˆ ªª‘·jÓ÷s¡∆« e÷j·T qïeTè‘·‘·«y˚T‹. qdü|ü⁄qsêe¬sÔ‘˚ qdü|ü⁄qsêes¡Ô‘˚, @‘˚q Á|ü‹|ü<´ä e÷HêÇeT+ e÷qe e÷es¡+Ô Hêes¡+Ô ‘˚ ÁãVü≤à˝Àø£eT_dü+|ü<´ä ‘·, Ç‘ê´~ ÁX¯ó‘·´<Û9ä dü´ düTŒ¤≥‘ê« H˚ïVü≤Á|ü|+ü ∫‘·+. nÁ‘ê|æ ~«s¡TøÏÔ sêVæ≤ïø£ |ü]düe÷bÂÔ. eT+>∑fi+¯ eTVü≤' ˆˆ
nHêeè‹Ô' nHêeè‹Ô' ` nì |ü<ä $uÛ≤>∑eTT. ª|üPs¡$í ‘Y |üPs¡yí T˚ e uÛeÑ ‹μ nì |üPs¡«eTT #Ó|Œü ã&çq≥T¢ |üPs¡T&í q’Ó |üPs¡yí ‘˚ Ô· Ä |üPs¡dí ‹úæ qT+&ç |ü⁄qsêeè‹Ôì bı+<ä&HÉ ˚ $wüj÷· ìï ªnHêeè‹Ô'μ nì ~«sêeè‹Ô #˚dæ Á|ükÕÔ$kÕÔs¡T. XÊÁdüÔ dü+Á|ü<ëj·T+ Á|üø±s¡+ á ~«sêeè‹Ô XÊÁdüÔ |ü]düe÷|æÔì ‘Ó*j·TCÒdTü +Ô ~. eè‹Ô Á>∑+<∏+ä ˝À >∑Ts¡T<˚e⁄© $wüj÷· ìï ÁX¯ó‹yêø±´\ s¡÷|ü+˝À ` ªª‘·j÷· }s¡«ú e÷j·TqïeTè‘·‘«· y˚T‹, q dü |ü⁄qsêes¡‘Ô ,˚ qdü|⁄ü qsêes¡‘Ô ˚ ` @‘˚q Á|ü‹|ü<´ä e÷Hê ÇeT+ e÷qee÷es¡+Ô Hêes¡HÔ Ô˚ ÁãVü≤à˝Àø£ eT_Ûd+ü |ü<´ä ‘˚μμ ` nì Á|ü<]ä ÙkÕÔsT¡ . ªªqdü|ü⁄qsêes¡Ô‘˚ ` q dü|ü⁄qsêes¡Ô‘˚μμ nH˚ ÁX¯ó‹ yêø±´\ Á|ü‹s¡÷|üy˚T ªªnHêeè‹ÔsH¡ êeè‹Ô'μμ ` nH˚ dü÷Á‘·+ Ç˝≤ |üPs¡«+ MTe÷+kÕ<äsÙ¡ qeTT Hês¡+_Û+∫q~ yÓTT<ä\T |ü]düe÷|æÔ |üs´¡ +‘·eTT ÁX¯ó‹, düàè‹, XÊÁdüÔ dü+Á|ü<ëj·÷\qT bÕ{Ïd÷ü Ô »>∑∑Ts¡T<˚e⁄\qT Á>∑V≤æ +∫q eTVü‰‘·|'ü |ò\ü eTì Hê q$Tàø£. X¯óuÛ+Ñ uÛeÑ ‘·T. lbÕ<äTø£ ø±oyêdæ
It is admitted on all hands tht Sruti and Smruti, Purna and Itihasa, the sacred Spiritual Lore of Aryavarta, proclaim in thundering voices that "One who knows Brahma achieves the highest goal of life", "Brahmavit apnoti Param." Brahma is not a thing that can be cognizised by means of senses or Manas, but is One without a Second, which should be realised by one's own Supreme Intelligence, through the Initiation of a Sadguru, that has come in the line of Bhagavan Narayana, the first Jagadguru, that has given the Nine Prajapatis, the Pravrutti form of Dharma, and the five Holy Sages, the Nivrutti form of Dharma. Pravrutti Dharma is otherwise termed Yoga or Karma, whereas Nivrutti Dharma, Sankhya or Jnyana. Both these kinds of Dharma lead to the Highest Goal, the true followers. Brahma is incomprehensible and inconceivable, hence words, however nice and grand they may be, would fail to make the recipients grasp the real Status. So Bhagavan has put before His Disciples, a good many Holy Means, by which He wished to convey the Real Knowledge. All these methods of knowledge can be systematically and scientifically classified into the four kinds 1. Pa da (Word), 2. Bija (Root cause) 3. Sankhya (Number), and 4. Rekha (figure). Pada is the Huge Kalpataru of Knowledge, whose main branches are the Rik, the Yajus, the Sama, and the Atharva Vedas, sub-branches are the Smruti, leaves and flowers and the Purna and Itihasa and fruits are the Darsanas. Bija is the Holy Mantra, the root cause, nay the seed, from which the huge tree of knowledge evolves; Samkhya is the Holy Number that stands as a mark of representation. And the Rekha is the Holy figure that stands as the perfect graph of
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
115
the holy thought. The Rekha is technically called the Chakra or the Yantra, and it is revered as the very object of Worship. Even though the Number is here reckoned separate from the Bija for the sake of better understanding; both the Bija and Samkhya are one and the same as they are closely related to each other, for practical purposes. It is no wonder to a true aspirant on the path if it is sail that these four forms, the Pada, the Bija and Samkhya, and the Rekha are the keys of knowledge. Every aspirant, nay every student, nay every Brahmachari, is initiated into the Holy Mantra, is given the Holy Yantra as the very object of Worship, and is required to study the Holy Veda. Bija and Samkhya fall under the category of Mantra. To unveil the mysteries of Pada, Mantra and Rekha, three sciences have been developed and entrusted to the care of the Brahma Rishis, which are a mystery to the ordinary pale of students and aspirants. The three sciences are technically called the Pada sastra, Mantra sastra, and the Yantra sastra. Pada sastra has given birth to the science, Grammar of Panini, Mantra sastra to the science of Numbers, Arithmetic and Algebra, and Rekha sastra or Yantra sastra to the sciences Geometry, Conic sections and Trigonometry. The three sciences Pada sastra, Mantra sastra and Yantra sastra, have each for their end and aim the presentation of the fundamental Goal, the Brahma, bearing the nice harmony one with the other among themselves. In one word these three sciences are no more than three brilliant rays of light, proceeding from the same fountain head of Light, nay three rays of brillian light converging into the same Grand focus. The fountain head of knowledge, from which the three rays of Science are proceeding and the Grand focus into which the three rays of Science converge, is the Holy Purna Mimamsa Darsana of Jagat Guru Sri Kalyanananda Bharati Manthacharya Swami. Sringeri Sri Virupaksha Sri Peetham.
116
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
The Purna Mimamsa Darsana consists of 54 short aphorisms, called Sutrams divided into 5 Chapters called Ahnikams. The Sutrams are very laconic as such they are beyond the comprehension of all readers, however grand their intellects may be So an exposition of the Holy grand thoughts is essential, in the light of the Holy Sampradaya of the Brahma Rishis, to facilitate the true aspirants on their path. Hence a short and clear commentary of the Darsanam will be placed before the recipients. The commentary will be better equipped, if it is introduced with a short dissertation, representing the way in which the three sciences are focussed in the Purna Mimamsa. Vedic Literature :- The whole of Vedic Literature has for its end and aim the gist of two grand and holy teachings :- 1. The teaching of Brahma Rishi Varuna, to his dutiful son Bhrugu, and 2. The teaching of Brahma Rishi Uddalaka to his dutiful son Swetaketu. These two teachings expound in full the fundamental Doctrine of the Vedic Lore, in its systematic form, hence contain in them the rationale of each and every query of each and every science. Both these teachings proclaim in roaring voices that the multifarious objects (Bhutani) perceived, evolve from the fundamental cause only without a second, and that it is absolutely necessary for one to realise the fundamental cause to realise the Highest Goal of Life, and that by the knowledge of the Supreme fundamental Cause, one would acquire the knowledge of one and all. Objective World : The objective world, however variegated and diverse it may appear at the very outset, is merely two fold in its nature. 1. Nama (name) and 2. Rupa (Form). Under the Nama come the Pada, Bija, and Samkhya, whereas Rupa is Rekha. Both the Nama and Rupa are so closely linked to each other that the idea of the one will not go without the other under any circumstances. Strictly speaking, both the Nama and Rupa are only phases of one and the same thing or object.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
117
Observation : Vedic Lore proclaims that the fundamental Cause of the Objective World is One only without a second. Let us therefore make a scientific scrutiny of the various phases of the Objective World, and verify the truth of the Vedic Doctrine. To be brief, the phases of the Objective World are four and four only, Pada, Bija, Samkhya, and Rekha. Thus We have before us, four Worlds, to all practical purposes, 1 The Pada World, 2. The Bija World, 3. The Samkhya World, and 4 The Rekha World. Hence let us take one World after another for our observation. Rekha World : Of the four Worlds, Rekha World is the foremost to be taken into consideration, for the reason that it represents the form perceptible of the Objective World. The perceptible form is technically called the Rupa, and the graphic representation of the Rupa is technically called the Chakra, (the figure). It is no Wonder to any observer that a good number of Chakrams of various descriptions are worshipped every day by worshippers of Veda, as the very forms of the Deity which they adore. These Chakrams, the very objects of worship of various descriptions, are here technically called the Rekha World. To place before our readers, the grandeur of the Rekha World, as the very prominent means to realise the Highest Goal. We herein expound the mysteries of the simplest forms of the Chakrams, that are within the ordinary reach of one and all. The simplest forms of chakrams are technically called, 1. Bindu Chatushtaya, 2. Pancha Kona, and 2. Shat Kona. To all practical purposes, these Chakrams should naturally inclosed in a Circle, which is technically Called Maryada Vrutta (bounding circle) Thus we have before us.
118
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ending with Sthamba (Jarayuja, Andaja, Swedaja and Udbhija) take their birth (evolve) from the Brahma. And Brahma Valli commences with the evolution of the Purusha thus :- Form Brahma (which is otherwise termed Atma) Akasa evolved; from Akasa, Vayu; from Vayu, Agni; from Agni, Apaha; from Apaha, Prithvi; form Prithvi herbs; from herbs, Annam (Food); and from food evolved into Rethas, evolved the Purusha - the perceptible corporeal Rind with head, hands, trunk and legs. And this Purusha is said to be the final product of evolution from Atma or Brahma. To avoid confusion and misconstruction, Mother Sruti, with the tip of the pointed finger, is pointing out the Purusha thus :- This is the head of that Purusha, this is the right wing; this is the left wing; this is the atma (Middle); and this is the tail. Thus the perceptible human form is pointed out by Mother Sruti, as consisting of five parts, akin to the five parts of a bird - head, two wings, body and tail. To understand the similarity in the human form, a little nicety in the arrangement of the human form should be observed. Arrangement of the human form :- Let the Observer, calmly go alone, and lie flat with his back downwards, and face upwards, upon a vast sandy plain, with head towards the East, and feet towards the West. And then let him open his eyes wide, and observe on all sides around him with a Mathematical Intellect. It goes without a saying that he feels himself to be at the centre of one and only one Circle without a second, with the Horizon as the Circumference. N.B:- It is this observation of the first Geometrician, that blessed him with the conception and definition of the Circle. Posture 1:- Let the Observer place his right palm close to the right
To understand the mysterious knowledge which these chakrams graphically represent, one should have a clear knowledge of the Tittiriya Upanishat.
hip joint, and the left palm close to the left hip joint, with the hands
Gist of Tittiriya Upanishat :- Varuna taught to Bhrugu, that these perceptible Bhutani, commencing with Brahma (Prajapati) and
face.
lying flat on the ground, bulging like a bow; and let the legs also be placed flat on the ground, with the feet touching each other face to
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
119
Observation:- Now the teaching of the Tittiriya Upanishat, can be fully realised by the observer correct to the very letter. His head, the head, right arm, right wing, left arm, left wing, the middle trunk, the middle Atma, and the legs the tail. Now, let the observer draw a nice graph of his own posture, as directed herein - Commencing with Brahma Randhra, (the centre of the head) passing through the left arm-pit, touching the left side and knee-cap, the central fingers of the feet, right knee-cap and side, and passing through the right arm-pit to Brahma Randhra. This graph, if nicely traced with a little mathematical intelligence, would assume the form of an Ellipse. Let another be drawn from the centre of the net, passing along the left shoulder, elbow and palm, touching the Linga (penis) and passing along the right palm, elbow and shoulder, to the centre of the neck. And this graph too, assumes the form of another Ellipse. Thus the whole graph appears as if it were made up of two Ellipses cutting each other cross-wise. The figure clearly exhibits the five portions :1. The head, 2. The right wing, 3. The left wing, 4. The body and 5. The tail. It is plain that this figure is the graphic representation of the Annamaya Kosha or the Sthula Sarira. This figure can as well represent any of the other Koshas, for the reason that every Kosha is described by the Sruti, as consisting of the same five parts, though with relative characteristic Significance; further meditation of the other Koshas in the light of Brahmavalli, would gradually lead the observer, to forget, rather neglect the 4 koshas, Annamaya, Pranamaya, Manomaya and Vijnyanamaya, and identify himself with the Anandamaya kosha, when he thinks of himself as having the 4 points of his form huge the Brahmarandhra, the tips of the right and left elbows, and the tip of the central fingers of the feet, touched and four cardinal points of the Huge Circle, whose circumference is the Horizon. And this is no more than the Chakram, No 1. In brief this figure, or Chakram, is the graphic representation of the Microcosm, (Purusha), as taught in Brahmavalli. Microcosm is an epitome of the Macrocosm nay Macrocosm is analogous to the Microcosm. So
120
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
this simple graph is as well the representation of the Macrocosm, Purusha, described in Purusha Sukta, of Vedic renown. Hence this Chakram is prescribed as the very object of worship, to those who are authorised to worship the Purusha of the Purusha Sukta. Posture 2 :- Let the observer, now straighten his hands a little, and place the tips of the middle fingers of both the hands a little near the knee-caps on both the thighs. And let a nice graph be written as directed :- from the Brahma Randhra trace the course along the left shoulder joint, elbow, knee cap tips, of the middle fingers of the feet, right knee cap, elbow, shoulder joint, to the Brahma Randhra. Now the course of the mathematical line would place before the observer a fine Ellipse. Now let the observer conceive a straight line, passing through the three points - 1. Brahma Randhra, 2. Muladhara (Annus) and 3. Tips of the middle fingers of the feet, and another straight line passing through the navel, perpendicular to the above, crossing the elbows both ways. These straight lines are called the axes of the ellipse. Let the two straight lines be produced both ways to meet the horizon. They would naturally touch the cardinal points of the Horizon. And the wonderful feature of the ellipse under consideration, The navel (Manipura) is the centre, whereas, the Swadhishtana (near Linga), and Anahata (near the heart), are the two foci : - or Muladhara (near the annus), and Visuddha (near the collar), are the foci. A little more meditation of the Pranamaya, Manomaya Vijnyanamaya, and Anandmaya Koshas, in the light of the Brahma Valli, would make the observer feel highly astonished to see the wonderful Confocal Conics flash before him in dazzling colours. The Horizon, the circle, the five koshas the Ellipses, and Sushumna, the line ellipse. Thus the following equation of a system of confocal conics is favoured by Brahma Valli :-
x2 a2 + λ
Plus
y2 b2 + λ
= constant (1)
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
121
Posture 3 :- Let the observer assume another peculiar posture as directed herein :- Let the two legs be straightened stiff, and separated from each other, so that the tips of the toes, the tips of the teats, on either side should be in the same straight line with the Brahma Randhra. The two straight lines should resemble to all practical purposes the two equal sides of an Isosceles triangle. Let the right palm be placed on the right teat, close and the left palm upon the left teat with the elbows straightened. A nice mathematical graph of this posture would bless the observer with the Chakram, 2. This chakram also exhibits the pentafold classification of Brahma Valli, in another way; hence can be deemed as another representation of the Purusha, the Microcosm. This Chakram is generally worshipped by those who worship the Purusha in the form of Siva. Chakram 3 :- The Shatkona is widely known as the Sudarsanam. The word 'Darsanam' means a clear exposition of Philosophical truths, nay the doctrines of Philosophy. The prefix Su means perfect or complete. Hence Sudarsanam means perfect and clear exposition of Upanishadic Philosophy. This Sudarsanam is revered as the very Chakram, which Bhagavan Sri Krishna holds ever and anon, in His right hand. It goes without any say that Gita is the perfect Darsanam of Sri Krishna Bhagavan, in the form of Pada, whereas this Chakram is the Darsanam of Sri Krishna Bhagvan in the form of Rekha. Hence the whole of Bhagavat Gita, is merely an exposition of this Simple Chakram the Shatkona, nay, this Shatkona is Gita in a nut-shell. Such is the grandeur of the various Holy Chakrams that have been the objects of worship from time immemorial in India. Mathematical Significance :- All these Holy Chakrams appear to all practical purposes, as if they were formed by the combination of the Mathematical figures to be seen in Geometry and Conic Sections, in harmony with the Mathematical laws. Hence close study of the light of the Mathematical laws would make the students of Philosophy, realise the lofty philosophical problems easily without any confusion,
122
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
for the reason that the first Mathematicians developed their Science from these Chakrams and laws of Philosophy only. In one word, the whole of the elements of Geometry, was simply developed out of the Shatkona (Sudarsanam), while the Panchakona contributed to the development of Conic Sections. Every Mathematical wonder and rarity is no more than the representation of some philosophical truth or other; and every Mathematical Problem is no more than an image of some philosophical problem or other. Vedanta and Figures:- It is said that the Mathematical figures have had their birth from the philosophical (Vedantic) conceptions; and it will not be out of place, if a few illustrations are shown in favour of the argument. The fundamental plane figures of the Mathematical Science are 1. The Point, 2. The straight line, 3. The angle, 4. The lateral, the type of which is the Euailateral triangle, and Square, 5. The Circle, 6. The Parabola, 7. The Hyperbola and 8. The Ellipse. In strict logical sense, these eight, rather nine forms, can be termed the Conics, or Conic Sections. What is a Conic, or Conic Section, then? Conic Sections are the figures formed by the outlines of the cut surfaces, when a cone is cut by a plane. What is the Cone, that ever stood before the first Geometrician, to have a copy of all the figures, necessary for the building up of his Science? It is no more than the Majestic and Holy Cone, that has been the object of Worship of holy sages in Aryavarta, from time immemorial; which is generally revered as The Sri Chakra, Meruprastara. From this definition of the Conics, we can very easily conceive, that all the Mathematical figures have had their origin nay, birth, from a single form, the cone. Hence the Cone can be easily realised as the fundamental cause of all the Scientific figures, of multifarious kinds. Even the highly polished definition of the conic, bears testimony to the same fact. The definition runs thus :"One definition which is of especial value in the geometrical treatment
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
123
of the conic sections in plano, is that a conic is the locus of a point whose distances from a fixed point (termed the focus) and a fixed line (the directrix) are in constant ratio. This ratio, known as the eccentricity, determines the nature of the curve; if equal to unity, a parabola; and if less than unity an ellipse. In the case of a circle the centre is the focus, and the line at infinity the directrix; we therefore see that a circle is a conic of zero eccentricity." The definition of a conic in projective geometry, leads us to still more wonders. A conic section is defined as the projection of a circle "the particular conic into which the circle is projected depends upon the relation of the Vanishing line" to the circle; if it intersects in real points, then the projection is hyperbola, if in imaginary points an ellipse, and if it touches the circle, the projection is a parabola. From this it can be fairly argued that the conics have had their origin, rather birth, from the circle and circle alone. It can as well be argued that the lateral figures, also have had their origin, from the circle and circle alone. It is a well-known problem in the science, that the circle is only a polygon of N sides. Polygon means many-sided figure. Many means more than one in vernaculars, and more than two, in classics. By substituting the values, 2,3,4,5 and so on, to N, we reaslise, one after another, an angle, a triangle, a quadrilateral, a pentagon and so on, the various figures of the science. If solid be taken into consideration, the cone stands as the fundamental cause of all the figures; and if plane be taken into consideration the circle stands as the fundamental cause of all the figures. Whether it is the solid or the plane, it is immaterial, for the seekers of Vedic knowledge. It is sufficient if they can realise that the fundamental cause of all the forms is one, and only One, without a second. They can as well realise that Brahma, the Purnam is the fundamental cause of all forms perceive; and that Brahma is One, and One only without a second.
124
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT Now, coming to the various forms perceived in the science, we
describe here in brief, what Vedantic conceptions are represented, by the fundamental forms described above. 1. The Point :- The point stands for Avidya, Avidya is deemed as Midhya. Midhya is that which has no positive existence, but appears to exist for the time being. A point is defined as that which has no parts or which has no magnitude. To all practical purposes, a point has wide application in the science, but in its real aspect, it displays no single property of a figure, which is expected to have some dimension, or other for it to be taken into consideration. Hence the mathematical aspect of the point is a mere echo of the Vedantic aspect of Avidya midhya. The equation, that the point is a circle with zero radius, also corroborates the same Vedantic Law. 2. Straight Line :- The straight line represents the Guna. The conception of the straight line is derived from the popular "guna" which means the string of a bow. Guna in Vedanta is any one of the three, Satwa, Rajas, and Tamas, which are considered as the component parts of Prakruti. Straight line is a fundamental illustration, that bears testimony of the Law of Adhyasa (Superimposition), of the Vedanti. It is the fundamental illustration that brings to the mind of the observer, the conception of Adhyasa, in a concrete form perceptible to the same eye. The observer sees the horizon circular, that is completely curved. Hence any part of the horizon, should naturally be a curved line being the part of the curvature. But the observer perceives only a straight line, between any two points of the horizon, within a short range of observation. It is this observation that had led the first scientist to frame his problem "That a circle is a polygon of N sides. Now what is the figure that is within the range of the observer who perceives the horizon complete in one range of observation? It is no more than the plane figure, circle contained by one line horizon, which is called the circumference. What is that the observer feels in his second observation, with reference to the same figure? A polygon of N sides. How can it be possible for one and
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
125
the same space to be bounded by one curved line and N lines, whether curved or straight? surely, it is impossible. The horizon should be one curved line, or N lines; and not both. Which is correct? If one is correct, the other is false. As far as direct perception is taken into consideration, one curved line is the reality; hence, N sides, is mere superimposition. Yet Superimposition is not without purpose. Along the reality, superimposition works hand in hand with the reality to facilitate the Yyavaharica (the worldly life), and to realise the mysteries of the Paramarthica (The Reality). It is only through the superimposed straight line and the polygon that we have to realise the various measurements of the curved figures. One word of importance with reference to the superimposition of the straight line. the observer perceives the circular space and the horizon directly, but observes not any point or straight line, to present him with the ideas of a point, the centre, or a straight line, the radius or the diameter. The definition of the circle, clearly shows the superimposed nature of the point and the straight line. A circle is a plane figure contained by one line which is called the circumference, and is such that all straight lines drawn from a certain point within the figure are equal to one another. Here straight lines are said to be drawn; hence, they are nothing but; the work of human superimposition. And similar is the case with the point which is described as a certain figure. Hence the centre, the diameters, the cardinal points on the circumference (Horizon) and the radius are no more than the work nay superimposition of the scientific thought. 3. Angle:- Strictly speaking, the Angle stands for the Guna of the Vedanta. It is for the reason that the angle is the inclination of two lines, that the lines, also are reckoned as the marks, nay representation of the Gunas. The classic name, Gonia for the angle, shows clearly the real origin and significance of the figure. The Greek Gonia is a simple derivative of the Sanskrit Kona; and kona is the Vedantic representation of the Guna. We may even think that the term Gonia is a directive of the term Guna itself.
126
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
4. The Triangle (equilateral) :- The Gregerian term for the triangle will place us on a more safe ground. The term is Trigon. It is nearly allied to its parent Sanskrit term Trigunam. The term Trigunam means the congregation of the three guna, Satwa, Rajas and Tamas. Prakuti is defined as being made up of the three gunas. Hence Triangle equilateral stands for the Vedantic Prakruti. 5. The Square :- The square stands for the cardinal points of space. It is called Bhupura; and Bhupura means the plane superficies, with regular dimensions, and boundaries. 6. The Circle :- Circle is said to be the fundamental cause of all figures; hence it should naturally stand for Brahma, the Purnam. What is the Circle? It is the maximum space that falls within the range of observation complete, on the plane superficies of the Earth, with horizon as its boundary. And this space is called Akasa. It is no wonder if it is said that the Circle represents aptly this Akasa visible. Tittiriya Sruti proclaims that Brahma is that which has Akasa for his body - "Akasasariram Brahma". Another Sruti speaks of the Brahma as "Gagana Sadrusam", (resembling the Akasa) And visible Akasa is the Circle. Hence the circle is no more than Brahma the Visible. That is why the Circle is termed the Purnam, in Sanskrit, a synonym of the word Brahma, so that it may serve the two-fold purpose, the Vyavaharica, in the Science, and Paramarthica, in Vedanta Philosophy. Strictly speaking, the Circle is the only available form, by which Brahma can be realised. It is the representation of the Visible Brahma, and not of the Real Brahma, which is above all planes of perception, and representation. For the reason that the Circle is the representation of the Visible Brahma, it is the nearest possible representation of the Real Brahma. Visible Brahma is technically called the Iswara, so that the observers may keenly realise the distinction between the two forms of Brahma, the Visible, and the Invisible.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
127
The centre of the Circle is called the Avidya, and the Circumference, the Avaranam, a form of Avidya, which has the supernatural power of covering the Original Supreme Intelligence. This Avaranam is two-fold- Maya and Avidya in the View of certain sages. Then the circumference of the circle represents the Maya, Whereas the circumference of the Ellipse, the Avidya. Here the readers should not confound the Avidya, genus, with Avidya, species. This Avidya is deemed as the Avaranam of the Jiva, in contrast with Maya, which is deemed as the Avaranam of Iswara. The singularity of the Circle bears testimony to the Oneness of the Iswara, and the variety of the Ellipses to the manifold variety of the Jivas. Parabola, and Hyperbola, too as the projections of the circle, similar to the ellipse, can be easily realised as the representations of some forms of Avidya, after the manner of the ellipse, hence they can be very easily argued as the Avaranams of some forms of Jivas (Living beings). This Avaranam is generally called the Karana Sarira of the Iswara, as well as of the Jiva. Variety in the Jivas, (Living Beings) is due to the variety of Avidya, the jiva-karanam, and the Oneness of Iswara is due to the singularity of the Iswara Karanam, the Maya. And Brahma Supreme is above all conception, and representation. So far with reference to the Rekha World; the Rupa, for the present. Now let us proceed to the Pada World, the plainest and foremost of the Nama. The Pada World:- The Pada world is twofold - Sruti and Smruti. Sruti is the Cause, and Smruti, the Effect. Sruti is otherwise called the Veda. It is Nitya Apourusheya, and Swathahpramana. The real nature of the Sruti should be known only through the Sruti. Smruti is Anitya. Pourusheya, and parathahpramana. Both the Sruti and Smruti are revered as the highest authority of Knowledge. Let us see what these highest authorities of Knowledge proclaim.
128
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Sruti proclaims in a stentorian voice, that all the Vedas are only the connotation of the Single word - 'Om' "Sarve Veda yetpadamamananti Tapamsi sarvani cha yedvadanti; Yedichechanto Brahmacharyam charanti Tat the Padam samgrahena bravime - "Om ityetat'. Here the word 'Padam' means the word, and the Sthana (place). This 'Om' is said to be the Brahma, as well as the Sarvam. "Omiti Brahma, Omitidam Sarvam." Vedanta Darsanam of Bhagavan Krishnadvipayana Bharati, Veda Vyasa, proclaims for ever that the holy Literature of Aryavarta, the Sruti and Smruti, have for their end and aim, only the Brahma. This can be realised from the opening sutra of the grand Darsana "Athatho Brahmajijnyasa." Bhagavan Narayana, (Sri Krishna) proclaims through His world wide Smruti, the Gita, the "Aham" is the fundamental goal of all the Vedas - "Vedaiseha sarvairahameva vedyaha." And that Brahma is represented by three words - "Om, Tat, Sat". "Om Tat Sat iti nirdeso brahmanaha trividhaha smrutaha." A close observation of the above, and similar other statements of Sruti and Smruti, will make the observer that the fundamental Goal is specially represented by the three Holy Words, 1 Om, 2. Brahma and 3. Aham, and generally by a good many words, the prominent of which are as follows :1. Purusha, 2. Sarvam, 3. Ananda, 4. Dahara, 5. Sarira, 6. Rasa, 7. Gati, 8. Siva, 9. Pranava, 10. Pada, 11. Aja, 12. Atma, 13. Sat, 14. Bhuma, 15. Karta, 16. Ishte, 17. Garbha 18. Yajnya 19. Swapiti 20. Purisaya 21. Prajapati 22. Taraka 23. Tat, 24. Purnam, 25. Turiya 26. Param, 27. Gayatri, 28. Yantra, 29. Chakra, 30. Sudarsanam. All these words are synonymous, with the Word, Brahma, or Om, to express whose connotation, the holy Sruti and Smruti, have been ushered into the World.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
129
Bija World :- Bija is described as the Mantra, and that it is also a form of the Nama. It is the real Nama, from which the Pada world has taken its birth. It is no wonder if it is said that the holy Sruti and Smruti, have for their final Goal the two Sacred Mantras, the Pranava, and the Gayatri : "Om itit idam Sarvam" - "Gayatree va idam Sarvam." "Om ityekaksharam Brahma." Origin of the Nama :- It is no wonder if it is said that both the Pada and the Bija worlds, whatever their relative significance, may be, are only the outcome of the combinations of the letters in the Sanskrit Alphabet (Akshara Samamnaya). The Akshara Samamnaya is two fold - 1. Narayana, and 2. Maheswara. Narayana Samamnya consists of the eight groups (Vargas), commencing respectively with the letters : A ka, Cha, Ta, Tha, Pa, Ya, Sa and they are as follows :-
ˇˇ
n Ä Ç á ñ } ãTT ãT÷ ± @ ◊ z W n+ n' ˆ ø£ K >∑ |òTü v, #· #Û· » s¡a x ˆ ≥ sƒ¡ &É &É D ˆ ‘· <∏ä <ä <Ûä q ˆ |ü |òü ã uÛÑ eT ˆ j·T s¡ \ e X¯ wü dü Vü≤ ø£å ˆ Maheswara Samamnaya is that which is given to Panini, by Maheswara and it consists of the following fourteen Aphorisms (Sutrams), which are as follows :-
ˇ
n Ç ñ DY ˆ ãTT ø˘ ˆ @ z vŸ ˆ ◊ W #Y ˆ Vü≤ j·T e s¡ {Ÿ ˆ \ DY ˆ x eT v D q yéT ˆ s¡a uÛÑ xŸ ˆ |òTü s¡a <Ûä wt ˆ » ã >∑ &É <ä XŸ ˆ K |òü #Û· sƒ¡ <∏ä #· ≥ ‘· yé ˆ ø£ |ü jYT ˆ X¯ wü dü sY ˆ Vü≤ ˝Ÿ ˆ Narayana Samamnya consists of the 50 letters, commencing with A, and closing with Ksha, rather, 40 closing with Ha; whereas the Maheswara Samamnya consists of only 42 letter Both the Samamnayams differ a good deal in the arrangement and order of the letters, yet, a nice similarity is observed in having A and Ha, as the first and last letters of the Samamynya, while the others are blended within the two letters. From this, it can be fairly argued that the Varna Samamnaya is only the Pratyahara of Aham and only Aham. What is Aham then?
130
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Aham :- The word "Aham" is known to the World, as a Pronoun, First Person, Singular, of the Vedic Language. In the Vedic Language, it is known as "Sarvanama." The word Sarvanama is a compound of two words - Sarva and Nama. The meaning of the word Nama, can be easily understood from its English derivative Name. The word Sarva can be literally translated as 'All.' Hence the term Sarvanama means 'The name of All'. In Vedic Language, the Word Sarvam means Brahma, or the Jagat. Hence the word Sarvanama means the name of Brahma, or the name of the Jagat. Hence it looks not strange if it is taught that the word Aham, stands for the Brahma, or the Jagat. Is it for the reason that Aham is a Sarvanama, that it is the name of Brahma? No. It is for the reason that it is the name of Brahma, it is called Sarvanama in Grammar. Bruhadaranyaka Sruti proclaims thus - "Sohamasityagre vyaharat tatohamnamabhavat." Brahma manifested into Virat or Prajapati, after the fashion of Man, and pronounced, at first "Ahamasmi" - I am. Hence He is named Aham. The first Proper Noun has become the first Pronoun in the World. The tone that Aham is the name of the first person manifested, is also seen in as much as the word Aham (1) is reckoned as a pronoun of the First Person. How could the Manifested Brahma, the First Person think of Himself as The Aham? What is Aham? Aham is a compound of the three letters, A, Ha, and Bindu. In the light of Sanskrit Grammarian thought, the Aham is the abbreviated form rather the shortened representation of the 49 or 42 letters commencing with Aa and closing with Ha together with Bindu. Prajapati observed that His Body was made up of the Varna Samamnya, and gave vent to the expression, Aham. The mystery behind this Vedic Truth, can be fully realised from the Secrecy of Matruka Nyasa of Mantra Sastra. Root Cause :- These letters, however variegated, they may appear to all practical purposes, are only the modifications of one
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
131
and only one Letter, which is above all the sphere of Language. And this Letter is called the "Samvruta Akara." The Grandeur of the Samvruta, is proclaimed by the Mother Sruti, thus - Akarovaisarva Vak saishasya sparsanthasthoshmabhirvyajyamana bahvi nanarupa." Sri Krishna Bhagavan proclaims the same, thus 'Aksharanamakaosmi." The grandeur of this Akara can be better understood from a close observation of the System of Panini's Grammar. Panini's Grammar :- Panini's Grammar is the Summum bonum of Sanscrit Language. There is no word of Sanscrit, which can escape the sphere of Panini. The work, really commences with the Maheswara Sutras, fourteen and closes with the Sutra 'AA'. As such the whole work has for its beginning, the Swara, (vowel) 'Aa', and for its close, the Swara 'A'. This arrangement of the whole work, within the two Swaras, is a mere copy of the arrangement of the Veda, which has the same Swaras, for its beginning and its end, as taught by the Sruti " Yo Vedadow Swarah procto Vedante eha pratishtitaha; tasya prakrutileenasya yah Parassa Maheswaraha." "AA" :- The closing sutra of Panini is intended to convey that there is One and only One Akara. Samvruta, which is above the sphere of his Language. The position of the sutra itself shows that this Akara is the Root, nay, Bija of the whole Language. This Samvruta Akara is the Varna? (letter), that represents Brahma. With reference to Language, it exhibits the same relation, which Brahma bears to the Universe. Brahma is above all the objects of the Universe, but blends with all the objects to give them stability. Similarly this "Aa", keeps itself aloof from the Words of the Language, giving potency to all the letters for their stability of pronunciation. Without the aid of this "Aa" no letter of the language, can be really pronounced, It is highly astonishing, and wonderful to hear that a single letter "Aa" has given birth to the various letters of the Varnasamamnaya, the
132
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
multifarious combinations of which are the huge forest of words, that form the Body of the holy Sruti and Smruti. Yet truth is truth. Similarly, it can be argued that Brahma alone, is the fundamental cause of this variegated universe. Bindu and Visarga :- Two vowels are seen in Sanscrit, which display wonderful features, they are, the Bindu and the Visarga. These two cannot be pronounced, as they are, under any circumstances, individually, but should be aided by 'Aa'. In brief, they are nothing without the aid of "Aa(n)" but display wonderful phenomena, under the support of "Aa(n)". As such, they represent, the Prakruti, and the Vikruti, respectively. The word "Aham" is no more than the combination, of the three vowels, Akara, Visarga and Bindu. From this it can be realised that the Aham is a compound of the three, Brahma, Prakruti and Vikruti. Sankhya World :- Sankhya World is a simple, rather general form of Nama. It is the connecting link between Pada, and Rupa. The Samkhya world has for its purpose the exposition of the variety of the Rupa in relation of Nama. To be brief, Sankhya stands midway between the Akruti and Vyakti. Hence it serves the purpose of explaining the relation between the Genus and the Species, or the cause and the effect. Vedic Language is so mysterious, that every word of it, nay every letter of it, has a peculiar numerical value. Some words are very popular as referring to numbers, while every letter has its special number of represent. The relation between the letters and numbers is plainly seen in the Aphorisms, "Kadi Nava; Tadi Nava; Yadyashta; and Padi Pancha." These Aphorims are not merely conventional, but are quite natural and scientific, that by the application of these values of the synonymous nature of different words can be easily realised, It is by this mysterious relation between the Sanscrit letters and the Numbers, that the Divine Glory of the Vedic Literature can be easily established. The above aphorisms have for their support, a good many Vedic Equations. The inseparable
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
133
relation, between Vedic Literature and the Samkhya World is such that the Veda is popularly called the Chandas. It is a well known fact that the word Chandas in Veda, means only the Number. Every Mantra is known to have some Chandas, that represents the holy numerical importance of the Mantra. Hence the investigation of the mysteries of the Samkhya world are not of little importance in the field of Vedanta. Let us therefore observe the general features of the Numbers, a little, and see how far the Doctrines of Vedanta, are corroborated by the Science of Numbers. Hitherto, we have observed that all the Mathematical figures, are only the modifications, rather superimpositions upon the Circle, as such the Circle is the Main Causes of all the figures. And similarly the whole Pada World, has for its focus the Word Om. If we can see a number that is the fundmental Cause of all the Numbers, then our ambition will be fulfilled to the very letter. It requires no proof to say that all the Numerical World, however majestic and grand it may be, is only a modification of the Nine Integers, and the Zero. There is also another Number which is called the Infinity, which is above the pale of all calculations. This number Infinity, is called "Param" or "ara", which is also a prominent word, that stands for Brahma. The word "Param" exhibits a peculiar status in Sanscrit. It is used in the three Genders, with characteristic Significance. Masculine "Paraha" represents the Purusha (The Man), who conceives himself as the "Aham", and who is called by the Vedic Sages, the "Pranava." Feminine "Para" represents the Number Infinity; and Neuter "Param" represents the Figure. Circle. Above all Vedic Param represents the Brahma Supreme. Hence the Number Infinity should naturally represent Brahma. Purusha :- Purusha is called Pranava by the Sages for the reason that the Sruti "Navo navo bhavati Jayamanaha", calls the Purusha "Navaha." Neuter "Nava" is Number Nine. Hence Number Nine represents the Purusha, the Prajapati, the Iswara, the First Man, and the Man, as well. But the Purusha thinks of himself as the
134
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Aham. Aham is a word composed of the three letters Aa, Ha, and Bindu, of which A stands for 1 (One). Ha for 8 (Eight) and Bindu or Zero. Hence Aham is equal to 180. Just as the Word Aham is indicative of the Holy Idea that I am "Akaradi Hakaranta Varna Rupa, together with Bindu", the word is also indicative of the Holy Idea that I am "Ekadyashtantarupa", together with Zero. Thus Aham is the fountain Head of all the letters of the Sanscrit Alphabet as well as that of all the numbers of Arithmetic. Aham has a twofold significance, the significance of a word, and the significance of a letter. There is the usage of the word Ahmkara, in Sanscrit. Ahamkara means the letter Aham, when the whole of Aham should be treated as a single letter. Similar is the case with Om. Om is a word and a letter. It is also called Omkara. When Om is taken as a word, it should be considered as being comosed of the three letters, A,00? and Ma when it means the Purusha, or the Prajapati, the Apara Brahma, the Cognizable. When it is considered as a letter Vedic, it is Only one letter, that stands as a mark for Brahma, the Supreme. When Om is a word, its numerical value is 135, which is equal to Nine. If it is taken as single letter, then it represents the Para, hence its numerical value is Infinity. Similarly, the values of Aham are twofold. If Aham be a word, then its numerical values are 180 or 90, 18 or 9. If it be a letter, its numerical value is Nine, only. And this value of Aham is in harmony with the dictates of the Sruti "Navo navo bhavati Jayamanaha", and the Smruti "Tasya Vachakaha Pranavah." Development of the Science :- It is this wonderful value of Aham, 180 that has given birth to all the fundamental principles of Mathematical Science, a citation of a few of which, will not be out of place. Number 18 has given birth to the eighteen place of Aryan Numerical Notation, namely 1. Eka, 2. Dasa, 3. Sata, 4. Sahasra, 5.Ayuta, 6. Laksha, 7. Prayuta, 8.Koti, 9. Arbuda, 10. Abja, 11. Kharva, 12. Nikharva, 13. Mahapadma, 14. Sanku, 15. Jaladhi, 16. Antyam, 17. Madhyam and 18. Parartham, with a tenfold multiplicative
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
135
significance. Thus a parartham is one followed by seventeen Zeros, and Para (Infinity) is One followed by thirty five zeros. And this thirty six, the number of places in Para (Infinity), is only the sum total of the eight numbers, commencing with One, and ending with Eight. It is this 180, alone that has given birth to the conception of the 180 degrees of the Parartha, (Hemisphere) and the 360 degree of the Celestial Sphere, the Circle. Similar is the case with the Ninety Degree of the Right Angle and so on. Other Numbers :- Now that we have found out the Number representing Iswara, the development of the other numbers can be easily traced. It is said that Iswara wills that He should multiply, ("Sokamayata Bahusym"). So by multiplying Nine with Nine, we get all the numbers one after another, or by the splitting of the Nine after the fashion of Aham (18), we get right kinds of pairs, wherein we see the evolution of the eight integers, only. In the highest philosophical sense, every Integer is only a superimposition upon the Number Nine, for the reason that behind every number we can trace out the existence of Nine. This can be better understood by means of illustration, thus - Take the number two, for example, Split up 2 into its component parts, then 2 equals 11; which is 9 plus 2. Thus we see 9 behind the 2. In this way every number can be proved to have 9 behind it, 3 equal 12 or 21. Divide the numbers by 9 and you will see the remainder, 3 only. Again 4 equals 13, 31 or 22, Divide the numbers by 9, and the remainder is 4 only. The aw holds good to all the numbers, without any exception. In considering One, we should split it up as 10; and we get 1 as remainder. This system is in harmony with the teaching of Bhagavan, "Iswarassarva bhutanam hruddeserjuna tishtati." Zero : It is generally called the Cipher (Sunyam). It is two-fold, in its nature, one representing "Absolute nothing, whereas the other a "Negligible quantity. The equation (a/a) equals 1, bears testimony to the value of Nothing; and the equation (a/o) equals infinity to the value of the negligible quantity. Both these values are pertinent to
136
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
the significance, that the cipher represents the Avidya, for the reason that Avidya is absolute nothing, in the light of Paramartha, and completely negligible, in the light of Reason. Nice Harmony : Now that we have explained in brief the mysteries of the Samkhya world, as well as the mysteries of the worlds, Rekha; Pada; and Bija, let us summarise in brief the gist of the above so that the harmony among the different worlds, and the harmony of the different worlds with the Real Vedic Knowledge, may be realised to the full. Rekha
Samkhya
Pada
1
Circle, plain
Infinity
Brahma Param
2
Circle & Centre
Nine (9)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Point St. Line St. Lines Parallel Angle Equ. Triangle Square Rhombus Ellipse
Cipher One (1) Two (2) Three (3) Nine (9) Twelve (12) Twelve (12) Eight (8) One (1) Two (2) Three (3) Four (4) Five (5) Six (6) Seven (7) Eight (8) Nine (9) Infinity Infinity
Cone Circumference
Bija
Om&A (Aa) (Samvruta) Iswara Aparam Om&A (Aa) (Vivruta) Avidya Sakti Bindu (0) Guna Guna Prakruti Maya Avidya Bhuta or Kosa Akasa Vayu Agni Apaha Pruthvi Oshadhis Annam Rethas Purusha Brahma Avarana
Sa; Ta; Ra Hreem Hreem Hreem Ha Ya Ra Va La
Aham Om
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
137
Equations : 1.
Om; is equal to 9; 12; 18; 19.
2. Yantra; Chakra; Taraka; Purusha; Siva; Adi; Japa; Aham; Garbha; Ananda; Sarira; Rasa; Gati; Pada; Aja; Bhuma; Karta; Ishate; Yajrya; Turiya; each equals to Nine (9). 3. Brahma; Prajapati; Viswam; Sarvam; Dahara; Swapiti; each equals to Eighteen (18). 4.
Chit; Tat; Jiva; Deva; Atma; each equal to Twelve (12).
The relation between Pada, Bija and Samkhya can be realised from the following:Pada
Bija
Samkhna
1. Veda
Pranava & Gayatri
(9) & (24)
2. Ramayana Shadakshari & Gahatri
(6) Kandaas & (24) 000, Verses
3. Bharata
(18) Parvams & (1) 00000 Verses
Aham & Param
4. Bhagavata Dwadasakshari & Aham
(12) Skandhams (18) 000, Verses
5. Gita
(18) Cantos & (7) 00, Verses
Aham & Saptakshari
Conclusion : A close observation of the four worlds would clearly show how each of them have had their birth from one and Only One Real cause, Param, Brahma, Purnam, which has manifested into the four forms;- 1. The Circle, 2. The Infinity; 3. The A(Aa), and 4. The Om. It can as well be observed that every lateral figure can be raised to the status of a higher figure, or lower one, by Revolution, positive or negative, and that every number can be raised to the status of a higher number, or lower one by multiplication or division, the final evolution being the Circle, or the Infinity, and the final involution being, the Point, or the Cipher. It is an admitted fact that the Real Cause is Purnam. Infinity; and the Effect, the World is perceived to be Purnam, Infinity. This Objective Purnam, is the effect of the Real Subjective Purnam. Hence, the Microcosm, the Macrocosm in a nut-shell, can as well be said to be Purnam. If the
138
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Microcosm, and the Macrocosm, be raised to the Status of the Real Purnam, both the Microcosm and the Macrocosm become One with the Purnam; and the Purnam One and Only One remains without a second, in harmony with the Proclamation of the Holy Sruti, Supreme, - "Purnamadaha Purnamidam Purnat Purnamudachyate; Purnasya Purnamadya Purnamevavasishyate" Consequence : Sruti 'Brahmavit Brahmaiva bhavati', proclaims that the knower of Purnam, become One with Purnam, and enjoys Supreme Bhss Eternal. Hence Purna Mimamsa is absolutely necessary. Hence a brief common ary of it will be commenced. Om.
❋❋❋
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
139
OM
6.PURNA MIMAMSA by Jagadguru Sri Kalyanananda bharati Mantacharya Swami Maharaj Terror of Theosophy & Defender of Vaidika Dharma
140
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
"Purnajijnyas" is a compound word, the component words being Purnam and Jijnyasa. Purnam is that which is defined as "Yachchakranamadhishtanam"and Jijnyasa is "The desire to know". It is but natural for one who is equipped with Sadhana chatushtayasampat, to entertain sincere thoughts to enter into the realms of Purnamimamsa, for the reason that the knowledge of Purnam dispels the bondage of Samsara, and brings forth Supreme Bliss Eternal.
Sutra 1 : Adhatah Purnajijnyasa
What is the Purnam, then, that is proclaimed to be the highest aspiration of the holy life, that is equipped with Sadhana chatushtayasampat? The Purnam is defined as :-
ÃÓfi™Ω @@1@@ EsÁo: úÓm|u\rÁÃÁ dü÷Á‘·+ ˆˆ 1 ˆˆ n<∏ë‘·' |üPs¡íõC≤„kÕ
Sutra 2 :- Yachachakranamadhishtanam
In the Sutra, the word "Jayate" or "Bhavati" should be considered as being understood. The Sutra literally means, "Then, the premises being settled, the desire to know the Purnam, arises"
ÃÓfi™Ω @@2@@ ÆÄÁN¿˛ÁmÁ™uá…eÁå™ Ω dü÷Á‘·+ ˆˆ 2 ˆˆ ªªj·T#·ÃÁø±D≤eT~ÛcÕ˜q+μμ
"Atha" is introduced here with a double purpose, to serve the purpose of Mangalam, at the very beginning of the work and to convey the necessary equipment that is essential for the person to enter into the field of Purnajijnyasa. Atha serves the purpose of Mangalam by the simple pronunciation of the word, and the argument upon the meaning of the term leads to the conception of the competency on the part of the student. The necessary equipment is technically called, the Sadhanachatushtaya Sampat. (the 'Four fold equipment') : 1. Nitya nityavastuviveka, 2. Ihamutrarthaphalabhogaviraga, 3. Samadi Sampat, and 4. Mumukshutva.
The word Chakara is defined in the next sutra. Adhishtanam is the substratum upon which something or other is superimposed. Now
The word "Ataha" is introduced to show the necessary premises, for the commencement of Purnajijnyasa only :- the premises being the supremacy of Purnajnyana, as the very means of salvation from the bondage of Samsara of births and deaths, and of the acquisition of the Supreme Bliss Eternal.
In the Sutra, the words, "Tat and Purnam" are complementary.
the sutra literally means, "That Substratum, upon which chakrams are superimposed, is Purnam."
Sutra 3: Bhavavyanjakam rekharupam
ÃÓfi™Ω @@3@@ ßÁƒ√ƱÁNÊ˛ ∫zQÁøú™ Ω dü÷Á‘·+ ˆˆ 3 ˆˆ uÛ≤ee´+»ø£+ sπ U≤s¡÷|ü+ The word "Chakram" is complementary in the sutra. Bhavavyanjakam means that which represents an idea or thought. Rekharupam means that which has lines for its form. The sutra literally menas that form of lines which represents an idea or thought is called a chakram. To be brief, it is called a figure, mathematically,
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
141
and form generally. mathematical figures, are "- 1. The point, 2. The line, 3. The angle, 4. The triange, 5. The quadrilateral, and other lateral ones; 6. The Circle, 7. The ellipse, 8. The parabola, 9. The Hyperbola and combinations of these in various forms. Purnam is defined as the Substratum of superimposition of all the figures or forms. The substratum of figures is called the Superficies in Mathematics. Superficies is only desbribed in a general way by the scientists and not any special attention is paid in its special nature. The general conception of it is that it is some space with only two dimensions, length and breadth, without any consideration of thickness. Even though it is considered as space having the two dimensions, the real form of it is not all described, hence the conception seems to be weak. If it be defined as space without thickness or height, it would be more sound. A wide range of observation, convince us that the Cone is the Substratum of all the figures; but the Circle can be realised as the very Substratum of all the forms, plane, that have their status upon the Superficies. Now that the Chakram is defined as the graphic representation of some idea or the other, by means of lines. It excites one's curiosity to know whether the Purnam can be represented, by any chakram; and to satisfy such curiosity, the next sutra is introdued.
Sutra 4 : Taddhi Vruttarupam
ÃÓfi™Ω @@4@@ tuÜt ƒwøú™Ω dü÷Á‘·+ ˆˆ 4 ˆˆ ‘·~∆ eè‘·sÔ ÷¡ |üyTé 'Tat' means that; 'Hi' is an interjection indicative of surety' Vruttarupam is a compound of the words :- Vrutta and Rupa. 'Vrutta' means the Circle, and Rupa, the form' the term as a whole means "That which has the form akin to that of a circle. The sutra means 'That-purnam is surely of the form which is akin to that of the circle. The surety is the proclamation of the Sruti, "Akasasariram Brahma",
142
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
and that of the Smruti, "Gaganasadrusam" and similar ones. Sruti and Smruti proclaim that Brahma bears Akasa as the body or that Brahma resembles Akasa, in form. It requires no special teaching to say that the space without thickness, that is the plane superficies perceptible to the human eye, is simply circular; as such the Akasa visible to the eye, can aptly be represented by the Circle; nay the circle is only a representation of the Akasa, visible and notheing more. For the reason that the Sruti proclaims that Brahma has Akasa for its body Vedic scholars pictured Brahma, the Purnam, by the Circle. Hence the circle is the only figure that can stand as a mark or representation of the Purnam. We can as well realise that the plane Superficies, can also be represented by the Circle, so far as the visible form is taken into consideration. Hence, to think of the superficies as having two dimensions, length and breadth, is rather a mis-conception, and superimposition. If the superficies is conceived to have two dimensions, then it would be represented by a squae, whose form is absolutely imperceptible in Nature; for the reason that Nature presents everywhere; only a circle and not any other figure. It is only upon the visible superficies circular, that the square form, with equal dimensions of length and breadth has been superimposed; hence the first observer was puzzled to fix any form for his superficies and that is the reason of silence on the part of all the Scientists even to present day with regard to the question. The curvature of the Sky :- The plane superficies, within the range of complete human observation, appears circular, with the Harozon, as the circumference; and the complete space, within the range of observation, merely spherical, the form being a hemisphere. It is highly curious to know the why of the curvature. The unhindered rays of light proceeding from the Antahkarana of the observer, proceed uniformely throught the Eye in straight lines, as far as possible, and stop at a distance, when they are incapable of further
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
143
procedure; when the extrimities of these obstructed uniform straight lines of rays, assume the form of the curvature visible. This phenomenon can as well be inferred from the definition crude, of the circle. A circle is a plane figure contained by one line, Horizon, which is called the circumferene, and is such that all straight lines of light, proceeding from a certain point, Antahkarana, within the figure to the horizon, are equal to one another. It is Universal that the Horizon, is a single curved line, and the vault of the Sky, a curvature, resembling a hemisphere, with the superficies of the Earth as the Base. This special hemisphere is due to the highest possible expansion of the Antahkarana, through the Eye. It is the light of Antahkarana, that is obstructed on all directions, that makes the observer feel the maximum space within his complete range of observation, a hemisphere. It is the weakness, of the human perception through the sense of vision, that is the cause of this hemispherical conception unreal, of the unlimited space, and nothing more. Yet the ignorant think it to be true. Weakness of other Senses :- It is clearly shown that the sense of sight, the foremost of all the senses is absolutely week; and as such perceives only false state of things. It can as well be observed that the other senses are equally weak in their perceptions, presenting unreal perceptions and forms only. Hence one should not entirely depend upon one's own perceptions of the senses, but correct them throught higher knowledge of the Sruti and Smruti. It is said that Purnam is represented by the Circle; and the circle is defined as a plane figure, contained by one line which is called the circumference. And human perception of sight is said to be weak. The weakness of the observation can be plaintly realised by another observation of the same thing in a higher plane. In the higher plane, the circle is proved to be a polygon on N sides, the sides being straight or curved, as the observer perceives; when the circumference is not merely a single line, but something more as described in the sutra, following :-
144
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Sutra 5:- Rekhakona samyavasta
ÃÓfi™Ω @@5@@ ∫zQÁN˛ÁzmÃÁ©ÆÁƒÀsÁ dü÷Á‘·+ ˆˆ 5 ˆˆ sπ U≤ø√D kÕe÷´ekÕú 'Rekha' means line; 'kona' means angle; and 'samyavasta' means the unmanifested state or condition. The single line that is perceived as the circumference of the circle, is the unmanifested state of a good number of lines and angles, for the reason that a circle is reckoned as a polygon of N sides; where the value of N depends upon the intellectual perception of the observer, and not upon any other thing. Two Aspects of the Circle :- We now see two peculiar forms of the Circle :- 1. A plane figured bounded by one line; and 2. A plane figure bounded by N lines (A polygon). The one is what is actually perceived, whereas the other is what is actually superimposed by the Geometor. In fact, the Space unlimited has neither the shape of hemisphere, or a circle, nor the shape of a polygon. Unlimited, rather Infinite Space assumes the shape of the Hemisphere, or a circle, before the observer, and the observer superimposes infinite lines, and angles, upon it. From these phenomena of the Space, it is easier to grasp the various forms of Purnam, the Brahma. Infinite Brahma presents to the observer the form of Iswara; and the Observer superimposes infinite numnber of gunas (Anantaguna), upon the Iswara. The manifestation of Brahma, as Iswara, is clearly put forth by the Sruti, thus :- "Upasakanam soukaryartham Brahmanorupakalpanam". Iswara is the Visible form of Brahma, just as the circle is the visible form of Space. Anantaguna is the Superimposition of the observer, after the fashion of the polygon of N sides. And this Anantaguna is called the Virat Purusha. Geometrical continuity :- The circle is said to be a polygon of N sides. By substituting numerical values for N, the law of geometrical continuity, as observed in the sections of the cone, can as well be
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
145
observed in the elements of Geometry. Value 1, makes the circumference an imaginary line; 2. an angel, 3. a triangle equilateral; 4. a square, 5 a pentagon; 6 a hexagon; 7. a septagon; 8. a octagon; and lastly 9. the Circle. Nine is the highest number which can be possibly conceived with certainty, beyond which no decided opinion can be formed. What is true to the nine numbers, will always prove true to any number, for the reason that it is only an offspring of Nine only. What is adopted by the sanscrit Mathematicians as "Na" the contracted form of Nine, has been copied out as N, by others. Conic Sections :- In projective geometry, conic sections are defined as the projections of a circle; hence, the figures, hyperbola, parabola and the ellipse, also come under the genus of the Circle. Thus, we have under the Genus of the Circle the species 1. The line, 2. The angle, 3. the triangle, the square, and similar lateral figures, 4. The hyberbola, 5. The parabola, and 6. The ellipse. It was observed by a learned geometer of the 17th century, that 'From the line-pair we pass through an infinity of hyperbolas to the parabola, and thence through an infinity of ellipses, to the Circle." His observations would have been perfect, had he observed the remaining things as the species. The Circle and the Purnam :- Now that we have realised that the Circle is the Genus of the universe of figures, we can aptly realise that it stands as a perect representation of Iswara, the Genus of the Universe at large. It is for the reason that the Circle represents the Iswara, that it can be the only plane figure, that can stand as the correct symbol of the Purnam, and none else. Hence the validity of the sutra "Taddhi Vruttarupam." In fact Purnam cannot find any tru representation, either in thought, word, or form after the manner of the space unlimited. It is only through the possibilities, that Purnam should be realised; and the only possibility is The Circle.
146
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT It is said that the Circle is the genus of all the figures to be
found in the Mathematical World. It is clear from the observation of th confocals, or the fundamental conclusions of the Projective Geometry, that the Circle is the Genus of the Line-pair, Hyperbola, Parabola and the Ellipse; but it is not sound to say that the Circle is the Genus of the lateral figures, for the reason that they belong to entirely different category, the lateral figure, the Genus of which being the Equilateral Triangle. If the Equilateral Triangle can be proved to be the effect of the Circle, then the law of geometraical continuity proves perfect and the Circle would gain the glory of being the fundamental cause of all the Mathematical figures, bearing testimony to the Holy Doctrine of the Vedanta, that Purnam Brahma is the Only cause of the variegated objective World. The answer to the querry is clearly put forth in the sutras following :-
Sutra 6 :- Vruttat sarvavyavaharavyanjakam Samatribhujam
ÃÓfi™Ω @@6@@ ƒwnÃ|√ƃ“Á∫√Æ`\NÊ˛ ÙufißÏ\™Ω dü÷Á‘·+ ˆˆ 6 ˆˆ eè‘êÔ‘‡· s¡« e´eVü‰s¡ e´+»ø£+ düeT Á‹uÛTÑ »yéT The word "Sambhutam' is complementary in the sutra, "Vruttat" means from the Circle; 'Sarvavyavaharavyanjakam" means that which presents all the forms of usage; "Samatribhujam" means the equilateral triangle; "Sambhutam" means took its birth; Vruttam is the visible plane superficies of the Earth, bounded by the horizon. The forms of geometrical usage are :- the point, the straight line, the angle, and the lateral figure. The sutra literally means that the equilateral triangle, that presents, all the forms of geometrical usage, has taken its birth, from the circular plane superficies of the Earth only. That means that the conception of the Equilateral triangle is formed out of the circular superficies natural, before the observer.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
147
The natural superficies is simply circular, bounded by the single curved line, the horizon; and the equilateral triangle is a plane figure bounded by three equal straight lines, presenting three angles and three points, which are not to be seen at all in the Circle. How is it possible for one to think of the circular plane superficies as the Equitalteral Triangle? The why of the conception and the answer to the querry is given in the sutra following :-
Sutra 7 :- Adhyasat
ÃÓfi™Ω @@7@@ EÜÆÁÃÁoΩ dü÷Á‘·+ ˆˆ 7 ˆˆ n<Ûë´kÕ‘Y "Adhyasa" means Superimposition. By superimposition the observer is led to conceive the plane superficies, an equilateral triangel. How could it be possible for the observer to think of the circular one and lateral one? It is only after the manner in which he conceived the circle a polygon of N sides, A partial vision of the horizon led the observer think, rather misconceive that part is only a straight line. It is but quite natural to perceive the portions of the horizon that fall within a glance, as mere straight lines; and hence the superimposition or misconception. Conception of the triangle, merely conventional :- It is true that portions of the horizon, curved as they are, appear straight only; and one will be led away to think of it, rather misconceive that it is a lateral figure, the sides not being reckoned with certainly. That is why the geometers call it only a polygon of N sides. How can it be possible for one to maintain that the circle gives rise to the conception of the equilateral traiangle only? We do not wish to maintain the Circle gives rise to the conception of an equilateral triangle only; but maintain with surety that the circle gives rise to the conception of a lateral figure bounded by any number of sides; the number being generalised by N. hence it can be plaintly argued that the different
148
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
kinds of lateral figures have the circle only as the cause of their origin, to maintain the law of geometrical continuity. It can be freely maintained that all the lateral figures whatever their real origin may be, are only the work of the evolution of the equilateral triangle, as the type of the lateral figure, and substituting 3 for N, sutra 6 pronounces the rise of the triangle from the circle. In fact the equilateral triangle is rather a conventional representative of the lateral figure. Hence it can be freely maintained that every lateral figure, whatever the number of the sides may be, is only the result of superimposition, upon the plane Superficies, the Circle. Now that the lateral figures are said to be the work of Adhyasa What is Adhyasa then, the wonderful phenomenon? The sutra following defines Adhyasa in brief, thus :-
Sutra 8:- Paratra Paravabhasaha
ÃÓfi™Ω @@8@@ ú∫fi ú∫ÁƒßÁÃ: dü÷Á‘·+ ˆˆ 8 ˆˆ |üsÁ¡ ‘· |üsêeuÛ≤dü' The word Adhyasa is complementary in the sutra. Adhyasa means superimposition; Paratra means upon another; Paravabhasaha means the appearance of one. The sutra means that Superimposition is the appearance of one upon another, similar to the silver upon a pearl oyester, the serpent upon a rope, the straight line upon a curved one, the lateral figure upon a circle, and lastly though not least, the Universe upon Purnam Brahma. The superimposed thing is generally called by the technical name, "Aropyam", and the substratum upon which a thing is superimposed, "Adhishtanam." It should be clearly observed that the good or bad of the Aropyam would in no way affect the Adhishtanam and the Adhishtanam remains pure and uncontaminated. It is plain and clear that any kind of superimpositon upon the plane superficies of the Earth, would in no way affect the
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
149
150
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
plane superficies; similarly, the multifarious phenomena of the universe, the rise, the existence, and the anihilation, together with all the intermediate phenomena, cannot under any circumstances, affect even an iota of change upon the Purnam Brahma.
e. From the Equilateral triangle, develop five equilateral triangles; from them the five kinds of triangles; the Isosceles, the Scalene, the Right angled, the obtuse angled, and the acute angled; and from these all the varieties of the lateral figures.
It has clearly been shown that all the lateral figures have been
How the equilateral triangle, so trivial in nature, gives rise to so many forms of figures wonderful, is explained by the sutra coming.
developed out of the plane superficies, the Circle; and similar is the case with the figures, hyperbola, parabola, and the ellipse. Yet it is maintained by some thinkers and observers that all the lateral figures are only the result of the evolution of the equilateral triangle, and that the equilateral triangle is the result of superimposition. How the lateral figures are the development of the equilateral triangle, is clearly shown in the sutras following :-
Sutra 10 : Udrekat
ÃÓfi™Ω @@10@@ G¸zN˛ÁoΩ dü÷Á‘·+ ˆˆ 10 ˆˆ ñÁ<˚ø±‘Y Udreka means Revolution.
In the sutra, the words,
Sambhutani and Tribhujat are complementary. The sutra means
Sutra 9:- Tribhujat Pancha Tanmatrani Tanmatrebhyaha Pancha Mahatrikonani Tebhyokhilachakrani.
that from the triangle, all the figures have developed by Revolution.
ÃÓfi™Ω @@9@@ ufißÏ\Ánú`YYã™ÁfiÁum oã™Áfiz•Æ: ú`Y™“ÁufiN˛ÁzmÁuå oz•ÆÁzDuQ¬YN¿˛Áum
revolution is called the Evolution, whereas the Negative Revolution,
dü÷Á‘·+ ˆˆ 9 ˆˆ Á‹uÛTÑ C≤ ‘·Œ+#· ‘·HêàÁ‘êDÏ ‘·HêàÁ‘˚u´ÑÛ ' |ü+#·eTVü‰Á‹ø√D≤ì ‘˚uÀÛ ´œ\#·Áø±DÏ ˆˆ
Evolution, rather the postitive revolution, only should be taken into
'Tribhujat' means from the equilateral triangle; 'Pancha Tanmatrani', five forms having the same for as the equilateral triangle; from the Tanmatras, is the meaning of Panchatanmatrebhyaha; 'Pancha Mahatrikonani', five great triangles, "Tebhyaha", from the five great triangles, 'Akhilachakrani', all the figures, the word 'Sambhutani' which means "have evolved", is complementary in the Sutra.
the revolution of a side of the triangle, on the axis, "the axis in both
Five Tanmatras are five equilateral triangles; five Mahatrikonani are :- 1. the Isoceles, 2. the Scalene, 3. the Right angled, 4. the Obtuse angled, and 5. the Acute angled; Akhila Chakrani are the other lateral figures, such as the quadrilaterals, Pentagons, Haxagons, &
This revolution is two fold - Positive and Negative; Positive Involution. With reference to the development of the figures, the consideration. The revolution of the triange, under consideration, is two fold : -1. The revolution of the triangle as a whole, on the axis, or the cases being any one of the angular points of the triangle." The processes of Joining, extension, and addition, come under Evolution, whereas Division and Subraction fall under Involution.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
151
152
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Of the two kinds of evolution, for the development of the Geometric figures, the second form only should be adopted; whereas for the devolopment of the Vedantic figures, the first should be adopted. To bear testimony to the law of geometraical continuity, we here in described in brief the second form of the Udreka of the Equilateral Triangle.
Experiment 1:- Let ABC be an Equilateral triangle. Fig.1 Revolve the straight line C A , about the point C. So as to make an
Experiment 2 :- Fig 4. - in the same figure, revolve CD, in the
angle CA, equal ot the angle ABC or ACB. The straight line CA, no w occupies the position CD. Fig.2 1. Join BD, cutting AC, in E; and observe what new features the
same way as to make an angle with the straight line CD, equal to the angle ABC. Now the straight line CD, occupies the position CF. 1. Now join the point B with F; and you will be astonished to see
figure presents before you. Angle BEC, which is Right; angle BCD, which is Obtuse; and angle ACB, which is acute. Triangle CBD,
that B is nothing but the prolongation of BC to F.
which is Isosceles, triangle BEC, which is Scalene. Triangle BEC,
And it is this joining in this deflection of CA, that blessed the
Which is Right-angled; triangle BED, which is Obtuse angled, and
Geometer, with the 2nd Postulate, "That a finite, that is to say, a
triangle ABC, which is Acute-angled.
terminated straight line may be produced to any length in that straight
All these things the Geometer obtained by simply drawing the straight line BD from the Point B to D. Had it not been for this straight line, he would not have had so much knowledge; as such he should be more grateful to the straight line joining B & D. So he gives expression to his gratitude in the postulate which he ranked as the first; "That a straight line may be drawn from any one point to any other point." 2. Now Join AD, and you will be surprised to see a beautiful figure ABCD, (fig.3) a quadrilateral, whose four sides are equal to one another, but whose angles are not right angles. It is called a Rhombus.
line." 2. Join DF, and the new figure formed is the quadrilateral ABFD, which is a Trapezium. 3. And join A; no new feature is to be observed.
Experiment 3 :- Fig. 4 - Revolve again CF in the same manner as above. Now you will see that it occupies the position CG. 1. Now join BF & GF and and the figures newly obtained are :1. the quadrilateral ABGF, which is a rectange (an oblong) and 2. Pentagon ABGFD. 2. And join DG, no new figure is obtained.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
153
154
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
C. The Simple revolution of the straight line CA, about the point C, resulted in the end in producing a circle to the great surprise and entire satisfaction of the Geometer, that he venerates the straight line CA, and the point C, by giving expression to his deep debt of gratitude in Postulate the third. "That a circle may be described from any centre at any distance from the centre." A side of the Equilateral Triangle is revolved, and the changes
Experiment 4 :- 5 - Revolve again the straight line CG in the same way as above and it now occupies the position CH. 1. Now join BH & HG; and the new figure obtained is ADFGHB, which is called a Hexagon. 2. Join AH & HF as well; and no new figure is obtained. Now you will be surprised to see that in the next deflection or Revolutin CH (CA) coincides with CB, and in the last and the 6th Revolution or deflection, the straight line CA occupies its own position; and as such in the next two revolutions, there is no possibility for further formation of any figures.
are observed one after another; as such we observe the development rather evolution of figures as follows :1. Straight lines, 2. Triangles, 3. Quadrilateral, 4. Pentagon, 5. Hexagon and 6. the Circle and its accompaniments; as well as the order of the postulates, one after the other. We can as well observe that all other forms of figures are merely the combinations of the different kinds of trianges only, which are the result of the evolution of the Equilateral Triangle. And the Equilateral triangle is the result of superimposition upon the Circle. Hence the geometrical continuity is perfect. This Geometrical continuity is neither a conjecture, nor an after thought, but is supported by the elements of Geometry, with all accuracy of thought and arrangement; and this harmony is proclaimed by the sutra, following:-
Sutra 11 : Samanvayat
ÃÓfi™Ω @@11@@ Ã™ãƒÆÁoΩ dü÷Á‘·+ ˆˆ 11 ˆˆ düeTq«j·÷‘Y 'Samnvayam' means a lucid investigation and discussion. A
Experiment 5:- Fig 6 - Now trace the course of the revolution of CA about the point C, by marking the course with dots. The consequence is the Circle; a circle with the radius CA, and the centre
lucid investigation and argument of the logical sequence of the arrangement of the Elements of Geometry, clearly shows that this Evolution forms the backbone of the grand work.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
155
156
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
The Geometer places the Holy figure, which guided him in his
The figure evolved bears testimony to the illustration of all the
observations, in the very beginning of his work, framing the very first
definitions, axioms, and forms the chief basis for the framing of most
proposition thus:- "To describe an Equilateral Triangle upon a given
of the propostions in Geometry.
finite Straight line. Then the next 31 propositions deal mainly with
Hence it can be plainly realised that the whole world of
straight lines and triangles. From the 33rd to the 45th, triangles and
Lateral figures is nothing but the Evolution of the Equilateral
parallelograms are discussed. Proposition 46th and the only 14
Triangle.
propositions of Book II, treat of squares and rectangled. Books III and IV, treat of the Circle and its relation to the other kinds of figures; and Book IV, nearly closes with the constrution of a regular Hexagon. So the Geometer commences his work with the construction of an Equilateral Triangle, and finishes that portion of it, which treats in
It is now clearly shown that the world of lateral figures, is the result of the positive revolutionof the Triangle, as such Udreka may be considered as mere positive revolution only. To avoid such misconceptin, the sutra following, clearly puts forth the functions of the two forms of Udreka:-
general as well as in special of the properties of all the figures which he obtained in his Evolution, after the same manner and order, and nearly concludes the work by the construction of a regular Haxagon, the last rectilineal figure; and as such the last but one of his Evolution. The Geometer also hints the Hexagon as the last figure but one in the Evolution, by simply closing the Book IV with the construction of a Quindecagon, as the last proposition, where in also he places the Equilteral Triangle once more.
Sutra 12 :- Tenopachayapachayau Chakranam
ÃÓfi™Ω @@12@@ ozåÁzúYÆÁúYÆÁ{ YN¿˛ÁmÁ™Ω dü÷Á‘·+ ˆˆ 12 ˆˆ ‘˚H√|ü#j · ÷· |ü#j · T· Ú #·Áø±D≤yéT The word "Sambhavataha", which means happen, is comple mentary,
in
the
Sutra.
'Tena'
means
by
Udreka.
'Upachayapachayau' means Evolution and Involution; 'Chakranam'
We can boldly say that Plane Geometry is complete by this
means to the figures. The sutra means that Evolution and Involution
time as the stock of the plane figures and their properties are finished
happen to the figures by Udreka. Postitive revolution tends to the
in these four books, for the reason that no new figure is desbribed or constructed in the other books. Book V is Algebraical; book VI treats of the Algebraical relations of the figures described in the first four books only, even then the squence is not missed at all. Books VII, VIII and IX, are purely Arithmetical; while book X containes an ingenious treatment of Geometraical irrational quantities. The remaining three books treat of the figures in space; as such are generally called solid Geometry.
Evolution, whereas Negative revolution to the Involution of figures. By Evolution a simple figure develops to a compound figure; and by Involution, a compound figure will be reduced to a simple figure, whether it is development or reduction, it is all Udreka; hence it is said that Udreka tends to the development or reduction of the figures. It is said that Udreka effects either Evoltuin or Involution in figures; the Circle is also considered as a figure; hence, one may be led away to think that Udreka may as well effect the changes of
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
157
158
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Evolution and Involution in the Circle. To prevent such misconception,
PURNA MIMAMSA
the closing sutra of the Ahnica (Chapter) proclaims that Udreka
Second Ahnica
cannot under any Circumstances, effect the Circle.
It has been clearly shown, how the visible Plane Superficies, the Circle has given birth to the variegated
Sutra 13:- Natu Nishkonasya Nishkonasya
Geometrical figures, without itself undergoing any change
ÃÓfi™Ω @@13@@ å oÏ uå…N˛ÁzmÀÆ uå…N˛ÁzmÀÆ dü÷Á‘·+ ˆˆ 13 ˆˆ q‘·T ìc˛ÿDdü´ ìc˛ÿDdü´
whatever, by the mere Superimposition of the observer; and that Udreka, Revolution positive or negative, cannot under any circumstances, exert any kind of changes evolutionary or
The word "Udreka" is complementary in the sutra.
involutionary, upon the Circle, for the reason that it is devoid
'Nishkonasya' means for that which is devoid of angles; reiteration
of any kind of angle. But it is likely that thinkers, often misconceive
of the term Nishkonasya is indicative of the closing of the chapter.
and misconstrue the real aspect, and fall a prey to false theories and
The sutra means that Udreka cannot effect the changes of Evolution
doctrines, the type of which, we here put forth in the very words of an
or Involution to a figure that is devoid of any angle. It is only the Circle
authoritative mathematician :- "We consider space as filled with
that is devoid of any kind of angle; hence Udreka has nothing to do with th Circle or the Ellipse. It is only the figures that contain any kind of angle, that are subject to the influences of Udreka. Hence any figure is liable to the changes of Evolution and Involution, when it is not developed to the status of the Circle. If any figure evolves to the stae of the Circle, then it remains unchangeable for ever. And this is what is called the Salvation or Mukti of the figures. Unless and until the figures achieve that holy stage they are liable to the chances
points, lines and planes, and these we call the elements out of which our figures are to be formed, calling any combination of these elements of "figure". A simple analysis of the above statement, would sho how queer and confusive it is. Herein it is stated that the points, lines and planes, are the elements, and that any combination of these elements, is a figure. Thus one is led to conceive that any combination of points is a figure; or any combination of planes, is figure. From this a hasty reader may conclude that, 1. the points are the cause of the figures; 2. the lines are the cause of the figures; and 3. the planes
of Evolution and Involution. And the status of the Circle is above
are the canse of the figures. Thus the cause of the figures cannot
all the influences of Udreka.
be positively described as some thing or the other, but creates a dilemma as to which of the three, is the real cause of figures. Even then it is meaningles. If a point is defined as that which has no parts
Purnamimamsayam Prathamamahnikam
or which has no magnitude, then there would be no possibility for
And thus closes the first day of the Purnamimamsa.
such points to combine for the production of a figure with parts or magnitude. We know full well that the centre at which thousand radii
❋❋❋
meet will remain a point only, and never produce any kind of figure
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
159
worth the name. Hence to say that any combination of points is a figure is a mere rigmarole. Again if the line is considered as the path of a moving point, a surface, that is plane, the path of moving line, and a solid, the path of a moving surface, then it would be sufficient to say that a point is the cause of all figures; then the whole statement proves only a meaningles rigmarole and not a crude theory even. Whatever may be the sanity or insanity of the above theory, it is likenly that it puts forht three different things as the causes of the
160
no magnitude; whereas lines, angles, and etc. are magnitudes. Nonmagnitude can never be the cause of some magnitude or the other. Similarly a cipher can never be the cause of some number or the other; similarly an Anuswara can never be the cause of a letter. Even if the Bindu is considered to be some negligible infinitesimal even it is not at all potential to be the cause, proclaims the sutra folloiwng :-
figures : 1. point, 2. line, and 3. plane, which are entirely different
Sutra 2 :- Anutvachcha
from what is hitherto justified and affirmed. Unless and until the
ÃÓfi™Ω @@2@@ EmÏnƒÁXY dü÷Á‘·+ ˆˆ 2 ˆˆ nDT‘ê«#·Ã
contradictions are removed, truth cannot be established; hence to remove all possible contradictions, the second Ahnica is commenced. The Ahnica starts with the refutation of the 'Bindukaranavada' which appears diametrically antagonistic to the fundamental doctrine.
Sutra 1:- Binduritichennayogyatva
ÃÓfi™Ω @@1@@ u§ãtÏu∫uo YzëÁÁÆÁzSÆnƒÁoΩ dü÷Á‘·+ ˆˆ 1 ˆˆ _+<äT ]‹ #˚Hêï jÓ÷>∑´‘ê«‘Y The word Karanam which means cause, is complementary in
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Anutva means the property of being infinitely small, similar to the atom of the scientists. If the point were to be cosidered to have some magnitude, then it would have some form; what form can be fixed to it then? The form of a circle, for the reason that it is called the point-circle. If it were to be a circle, then what is its radius? It is zero. Then it is all the more to say that it is mere nothing, and no more. If any magnitude were to be thought of to the point, it would be confusion worse confounded. Under any circumstance it is impotent to be the subsratum of any thing, urges the sutra following:-
the sutra. Bindu means, Point in Geometry, Cipher in Arithmetic, and Anuswara in Sanscrit language. A point is defined as that which has no parts or which has no magnitude, Cipher is two-fold. Absolute nothing, the negligible infinitesimal. Anuswara is that which is pronounced along with others, but has no independent status of its own. Ayogyatva means impotency. The sutra means that if Bindu is considered to be the cause, it is not, for the reason that it is not potential. bindu is simply nothing, in whatever aspect it may be viewed. Nothing can never be the cause of something. Point is
Sutra 3:- Adhikaranatvayogachcha
ÃÓfi™Ω @@3@@ EuáN˛∫mnƒÁÆÁzTXY dü÷Á‘·+ ˆˆ 3 ˆˆ n~Ûøs£ D¡ ‘ê«jÓ÷>±#·Ã Adhikaranatva means the capacity to be the substratum. There cannot be a superimposition, without something or other as the substratum. Point is nothing; hence nothing can be superimposed upon it.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
161
162
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
To all intents and purposes, nay in fact, Bindu is only a conception of absolute nothing, which is in its nature, a mere superimposition; as such can never be potential to be the fundamental cause.
for the reason that it is the outcome of superimposition upon the
By the refutation of the Bindukaranavada, the atomic theory
the Earth, it would prove a perfect curved line in its entirety, for the
of the Nayyayikas, and the Sunyavada of the Saugatss, are as well
reason that the Earth's surface, however plane one thinks of it, is a
refuted.
perfect curvature. Why so much? The conceptios of the straight
curved line of the horizon. It is only the part of a curved line that appears as a straight line; and even if one were to try one's utmost to draw a straight line with all accuracy upon the plane superficies of
Seeing the circle as the final object in the Evolution of the
lines are in themselves contradictory, and no sure idea can be
Equilateral Triangle, one may be led to conclude that the Triangle is
achieved of a straight line. Hence it is hihgly impossible to arrive at
the fundamental cause; to avoid such misconception, the following
any correct definition of a straight line, eve though it cannot be
sutra proceeds :-
observed in nature, with a characteristic form. And the triangle is defined as a plane figure bounded by three
Sutra 4 :- Trikonamitichennasambhavat
ÃÓfi™Ω @@4@@ ufiN˛Ázmu™uo YzëÁÁé߃ÁoΩ dü÷Á‘·+ ˆˆ 4 ˆˆ Á‹ø√D$T‹#˚Hêï dü+uÛyÑ ê‘Y In the sutra, the word Karanam is complementary. Trikona, means triangle; Asmbhava means out of existence, that is
straight lines. How can it be possible for one to think of a triangle, without any correct idea of a straight line, or a curved line? Hence it can be affirmed with surety that a triangle has not positive existence whatsoever. The authority upon which the non-existence of the triangle, is maintained, is proclaimed by the following sutras :-
impossible. The Sutra means that if the triangle be considered as the cause, it is not, for the reason that it has no real existence at all. The argument for the unreality of the triange is advanced by the sutra coming :-
Sutra 5 :- Sasavishanavt Rujurekha
ÃÓfi™Ω @@5@@ ∆∆uƒ Ámƒtw\Ï∫zQÁ dü÷Á‘·+ ˆˆ 5 ˆˆ X¯X$¯ cÕDe <äèEπsU≤ 'Sasavishana' means here's horn; a hare is popular, and a horn is as popular; but a hare's horn is an impossibility in nature, that is out of existence. Similar is the case with Rujurekha, straight line;
Sutra 6:- Pramanat
ÃÓfi™Ω @@6@@ ü™ÁmÁoΩ dü÷Á‘·+ ˆˆ 6 ˆˆ Á|üe÷D≤‘Y ˆˆ 'Pramanam' means the highest authorities of knowledge. The sutra proclaims that the highest authorities of Knowledge, bear testimony to the fact that straight lines or lateral figures have no positive existence whatever. The next sutra proclaims the fundamental authorities of knowledge :-
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
163
Sutra 7:- Sastradayassastadayaha
ÃÓfi™Ω @@7@@ ∆ÁÀfiÁtÆ≈∆ÁÀfiÁtÆ: dü÷Á‘·+ ˆˆ 7 ˆˆ XÊÁkÕÔ
164
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
three bows both straightened strings, and adjusted the three bows so that they may appear as a circle. The similarity of the word "Guna" in conveying the two ideas, the string of a bow, and the quality of the Prakruti, has led them to the wonderful issustration, that has been
The word Pramanam is complementary in the Sutra.
the fundamental cause of the Elements of Geometry. The figure
Sastradayaha means Sruti, Smruti, Reason and Direct Perception.
present an Inscribed equilateral triangle, wherein the strings
The reiteration of the term is indicative of the closing of the Ahnica.
represent the three straight lines nay, the sides of the triangle, and
The highest authorities of Knowledge are the Struti and Smruti etc.
the bows, the Circle. The Circle is ever present in nature as the
With reference to the straight line; we have before us the testimony of the mathematicians, thus :"These notions (the simplest line - the straight line, the simplest surface) we possess, but to difine them accurately, is difficult. The Definition "A straight line is that which lies evenly between its extreme points" must be meaningless to any one who has not the notion of straightness in his mind. Neither does it state a property of the straight
Horizon, whereas the Equilateral Triangle is the production of the Human intellect. Hence the Triangle has no positive existence, and so is the case with a straight line. Hence the triangle cannot under any circumstances have the potency to be the cause fundamental. By the refutation of the Trikonakaranavada, the Prakrutikaranavada of the Sankhyas and Yogis, and the similar theories of others have been entirely refuted.
line which can be used in any further investigation." "By a line we mean a straight line in its entirety, extending both ways to infinity." "Parallel straight lines are such as are in the same plane, ever so far being produced both ways do not meet." "Parallel lines are lines which meet at infinity." "Lines which meet at infinity are called parallel." In the confocal system, the straight line is called the Line ellipse. These notions of the Geometers are in themselves, unsound, and unprincipled. It is only the illustration adopted by the Vedantic Geometers that can be the specific illustration to place before the observers, the ideas of a straight line, an equilateral triangle, and their relation to the Circle. The vedantic Geometers who aimed at a picture of Prakruti, which is defined as Trigunatmika, caught hold of
Purnamimamsayam Dwitiyam Ahnicam Thus closes the second day of Purnamimamsa.
❋❋❋
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
165
PURNA MIMAMSA Third Ahnica It has been clearly established, by the refutation of the contradictions, that the Circle is the fundamental cause of all the Mathematial figures; and it is proclaimed, as well, that it is the finest possible graphical representation of the Purnam, Brahma. The grandeur of the Circle can be fully realised beyond doubt, from a knowledge of the Vedantic significance of the other figures, as well. hence the third Ahnica proceeds with the exposition of the Vedantic conceptions represented by the prominent figures for the guidance of the aspirants. The Circle is said to be the possible representation of the Purnam; as such the real nature of the Purnam, cannot be perfectly comprehended from the Circle itself, without any guidance. So the first two Sutras are introduced to define the real nature of the Purnam, The definition of Purnam, "Yachachakranamadhishtanam" given in Ahnica I, is only a secondary one; whereas the definition given here, is primary.
Sutra 1 : Niravayavam Nirgunam Nishkriyam Chinmatram Purnam
ÃÓfi™Ω @@1@@ uå∫ƒÆÊ uåTÏ|mÊ uåu…N¿˛ÆÊ uYã™ÁfiÊ úÓm|™Ω dü÷Á‘·+ ˆˆ 1 ˆˆ ìs¡ej·Te+ ìs¡TDZ + ìÁwæÿj·T+ ∫HêàÁ‘·+ |üPs¡yí Té ˆˆ A 'Niravayavam' means devoid of limbs (lines); 'nirgunam', devoid of qualities (angles); 'nishkriyam', devoid of any action (Udreka); 'Chinmatram', pure Intelligence only' 'Purnam' All-pervading. The sutra means that the All-pervading Purnam, Brahma, is devoid of any limbs or qualities, or actions; but it is Pure Intelligence, Supreme.
166
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
How can it be possible for one to maintain that the Purnam is Niravayavam? It is said that it is represented by the Circle, and the Circle is observed to have a wonderful curved line, for its Avayavam, which is proved to be composed of infinite number of lines and angles; and these lines and angles represent the Gunas. hence it can be fairly maintained that the Purnam is Anantagunarupa, or Anantasaktimat. So the sutra appears to be fallacious. No. A little more observation of the nature of the circumference, would place the observer on a higher plane, and the truth of the sutra can be realised to the very letter. What is the circumference, then? It is the Horizon bounding Earth and Skies. The horizon is said to be an immaginary line; as such it has no positive existence whatever. Weakness of the vision of sight has given birth to the immaginary curved line, and further weakness of intellect, rather ignorance has led to the misconception of lines and angles, in multifarious ways. In fact all these conceptions are the result of the short-minded nature of the observer and there is not an iota of any line or angle in the horizon. Hence it can be maintained with all rhyme and reason that the space is beyond all limitations; as such Purnam is all the more above all limitations of avayava (limb). Hence Purnam is Niravayavam; hence nirgunam; hence nishkriyam. in order that the Purnam may not be misconstrued as the space unlimied, it is described as Chinmatram - Supreme Intelligence. Now that the Purnam is defined as Intelligence, one will naturally be led away to think of the multitude of Purnams, after the fashion of the Sankhyas or the yogis or similar schooolmen. To warn such misconceptions, the sutra following proceeds :-
Sutra 2 :- Ekamevadwitiyam
ÃÓfi™Ω @@2@@ LN˛™zƒÁu˚oyÆ™Ω dü÷Á‘·+ ˆˆ 2 ˆˆ @ø£yT˚ yê~«rj·T+ 'Ekam' means One; 'Eva' only; 'Adwitiyam', without a second. The stura means that Purnam is one only without a second. Every
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
167
object is freely observed to display a three-fold variety; namely - 1 Swagata, 2. Sajatiya, and 3. Vijatiya. Swagata variety is that which is observed in the very body of the object; that is the variety of the leaf flower, fruit and etc. in a tree. Sajatiya variety is that which is observed in the very many objects of the same species; that is the variety of the tree from other trees. Vijatiya variety is that which is observed in the object of a different species; that is the variety of the tree from the stone and etc. The sutra refutes the three-fold variety with reference to the Purnam, through the three words respectively. This can be well established from a close observation of the Circle. Every observer feels the existence of one and only one superficies without a second, whatever may the relative conception of the centre be. He observes not any variety in the plane superficies itself, nor observes any other superficies of a similar type, or any other thing widely different from the supreficies. Hence it can be argued and realised that Purnam is One and only One, without a second. The real status of the Purnam being justified from the holy graphic representation of the superficies, the Circle; the next sutra describes the real aspect of the imaginary line, the horizon:-
168
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
that the horizon shuts up all the unlimited space from the range of vision of the observer. It forms a complete boundary as it were between the observer and the unlimited space, and makes him feel the simple superficies only. The Avarana Sakti of the Avidya, in a similar manner, shuts up the Real Supreme Intelligence of One's own Self, and makes him feel that he is some simple "Aham", and no more. It is this wonderful force, that minimises the scope of the Self, and makes it confine within the limites of nature and its mysteries, for its own playful vagaries. Asprusyata : ... Untouchbility : This Avarana Sakti is the huge power that makes various orders of creation confine to their limits, without trepssing. It is this Sakti that makes all the orders of creation feel the plane superficies as the only space, left for their scope of living, and confine them to their small birth places and abodes, without any harm possible, to the weaker ones. The potency of the Avarana is seen to its full, in the foul and brute kinds of creation. It is this Avarana that assumes the form of Asprusyata, for the safety and protection of the multifarious species in the Universe. If Avaranam is so powerful, then there would be no possibility
Sutra 3:- Paridhiravaranam
ÃÓfi™Ω @@3@@ úu∫uá∫Áƒ∫m™Ω dü÷Á‘·+ ˆˆ 3 ˆˆ |ü]~Ûsêes¡D+
for any trespasing; yet we observe a good lot of trespass in the Univese. What is it that is the cause of such trespass then? To explain the cause of such trespass, the sutra following proceeds :
Sutra 4:- Tribhujam Vikshepaha.
ÃÓfi™Ω @@4@@ ufißÏ\Ê uƒqzú: dü÷Á‘·+ ˆˆ 4 ˆˆ Á‹uÛTÑ »+ $πø|å 'ü 'Paridhihi' means the circumferecne; 'Avaranam' is that form of force of Avidya, or Maya, that makes the original nature of the Purnam shut up from the ordinary course of observation. It is clear
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
169
'Tribhujam' means the triangle; Viksepa is that form of force of Avidya, or Maya, that gives rise to unknown forms wonderful, similar to mirage. It is not uncommon that wild beasts, which generally confine to their limited areas, trespass their limits in hot summers, and remove themselves to unacquainted regions, and suffer a good deal causing damage to others as well. This is simply due to the severe thirst due to summer heat, which makes the animal widely follow the Mirage in pursuit of water to quench the thirst. That is why the Mirage is aptly called "Mrugatrustna", for the reason that it creates uncontrollable desire to the beast and brute. It is a well known fact that the mirage is a mere phantom. We see full well that the triangle is no more than a phantom, for the reason that it is the result of superimposition, and that it gives rise to the wonderful lateral figures. Hence it aptly represent the Vikshepa Sakti of Avidya. It has already been said that the superimposition of the triangle is rather conventional; hence every other geometrical fiture worth consideration, can be considered as some form or other of the Vikshepa. Thus the ellipse, the parabola, and the hyperbola, can as well be taken as the forms of Vikshepa.
170
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT Panchatanmatrani are the five equilateral triangles, that are the
result of the revolution of the equilateral triangle as a whole upon any of the vortices as the axis; Indriyani are the five Jnyanendriyas; the five Karmendriyas the five fold Prana, the Manas, and the Bhudhi. The five triangles display only eleven straight lines, and two porcesses, even though they are expected to have fifteen straight lines. Of which ten straight lines represent the ten Indriyas, and one the five-fold Prana, while the two processes, the Manas and the Bhudhi. The seventeen principles are together called the Sukshama or the Linga Sareera; and these are the effects of the Apanchikruta pancha Bhutani, the five Bhutas: - Akasa, Vayu, Agni, Apaha, and Prithvi. Hence the five triangles represent as well the Apanchikruta Bhutas.
Sutra 6:- Mahatrikonani Bhutani
ÃÓfi™Ω @@6@@ ™“ÁufiN˛ÁzmÁuå ßÓoÁuå dü÷Á‘·+ ˆˆ 6 ˆˆ eTVü‰Á‹ø√D≤ì uÛ÷Ñ ‘êì
Now that the Purnam is clearly established and the two functions of Avarana and Vikshepa of the Avidya or Maya, have been fully explaiined, the fundamental doctrines of Vedanta are fully justified; yet for the sake of better understanding of the students, the effects of Vikshepa are described by the sutras following.
Sutra 5:- Panchatanmatraneendriyani
ÃÓfi™Ω @@5@@ ú`Yoã™ÁfiÁmÎu¸ÆÁum dü÷Á‘·+ ˆˆ 5 ˆˆ |ü+#·‘H· êàÁ‘êD°+Á~j·÷DÏ
Mahatrikonani or the five triangles formed by the five Tanmatras. These are of various types; yet all represent the Panchikruta Bhutani, in some schools of thought and Bhutani only in some schools.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
171
Sutra 7:- Sarvachakrasamashtirupo Virat
ÃÓfi™Ω @@7@@ Ã|YN¿˛Ã™u…bøúÁz uƒ∫ÁbΩ dü÷Á‘·+ ˆˆ 7 ˆˆ düs«¡ #·Áø£ düeTwæsº ÷¡ b˛ $sê{Ÿ 'Sarvachakramashtirupaha' means the combination of the different kinds of these figures, is generally called the representation of the Virat Purusha. These chakrams are a good many displaying different notions, rather aspects of the Viratpurusha; for an elaborate study of these various forms of Virat the students are referred to a special study of the Author's Srichakradarsanam.
Sutra 8:- Brahmachakramiti Kechit
ÃÓfi™Ω @@8@@ §¿÷YN¿˛u™uoNz˛uYoΩ dü÷Á‘·+ ˆˆ 8 ˆˆ ÁãVü≤à#·Áø£ $T‹πø∫‘Y The Virat chakra is called by some Brahmavadins, Brahma chakram. Brahmachakra means the graphic representation of Brahma. Hitherto the Purnam and its relation to the Unvierse, has been clearly represented, and nothing is spoken of the representation of the Jiva, the realisation of whose nature is the highest possible complexity in the field of Vedanta, or philosophy. The sutra following, enunciates the graphic representation of Jiva.
Sutra 9:- Bindunavakavruttam Jaivam Chakram
ÃÓfi™Ω @@9@@ u§ãtÏåƒN˛ƒwÊ \{ƒÊ YN¿˛™Ω dü÷Á‘·+ ˆˆ 9 ˆˆ _+<äTqeø£ eè‘·+Ô C…e’ + #·Áø£+ 'Bindunavakavruttam' means the circle containing nine points Jaivam, pertaining to Jiva. The figure, that is the circle containing the nine points, can be generally termed "The nine-point-circle", for
172
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
the sake of convenience. The name of the figure is merely are attempt to describe in a few words; the notions which we obtain by inspection of and abstration from the figure. These notions we perceive, but to define them accurately is difficult. So the figure though called by the same name, differs a good deal in form and construction. The geometers have their own conception of the nine point circle, whereas the Vedantins and Schoolmen have their respective representations relative to their thoughts. The geometers think of it as the circle whose circumference passes through the peculiar nine points with reference to a triangle namely, the three middle points of the sides, the three feet of the perpendiculars drawn from the vortices to the opposite sides, and the three middle points of the lines joining the ortho centre to
the
vertices.
In
Bhavanopanishat
it
is
called
"Navarandhrarupaha". The crudest form of the representation is the four pointed star, geneally called the Chatushkona. By Chatushkona one should not mistake the Square, which is called the Chaturbhuja. The wonderful form of the nine-point circle can be seen in representation of Kamakala; a description of which will be of much advantage practical to the studens. Kama Kala : (Fig. vide page next). The Supreme Everlasting Intelligence Infinite, the Purnam Brahma of the Upanishadic lore in His deep Desire to multiply into the Many, can be scientifically represented by the Circle A B C D. The centre is figuritively termed the Point, which has no parts or magnitude, and numerically the Cipher. The Centre here represents the philosophical Maya, the cause of the first thought. The point is deemed in the light of the conic sections, circular, hence can be supposed to be a graphic representaiton of a Mirror, concave through which the Supreme Intelligence Infinite, produces the Holy focus of the first thought, which
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
173
174
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
is technically termed the Mahabindu, Whose graphic representaiton
Numerical representation : It is already said that the number
is the Circle K L M N. This Maha Bindu is the Aham, that entertained
Nine is as well represented by the Mahabindu, as such number Nine
the first thought, "Bahusyam" which means 'I multiply'. This
should be said to have undergone some harmonious evolution, rather
Mahabindu is considered in another light as the representation of the
multiplication, along with the figures. This multiplication is represented
unmanifested form of the Sukla (White) and the Sonita (Red), the
by the numbers observed in the respective places in the figure, thus:
immediate cause of the Living forms. This Circle, rather the Mahabindu, is as well supposed to be the graphic representation of the numerical infinity where the extremities are the two Nines, positive and negative. Hence this circle can as well be supposed to be the unmanifested form of number Nine. Thus the Circle K L M N, is the graphic representation of : 1. The Iswara, 2. The Mahabindu, 3. The Aham, 4. The number of Nine. This Iswara the Mahabindu with the holy curiosity to multiply, evolved out of the Mahabindu, four similar bindus into the four directions to become parts and parcel of his holy body. The four bindus are represented by four circles having their centres in the
At E 4, F 5, G 8, H 7; At K 4, L 5, M 8, N 7: - At the pints of interesections of three lines, between E & F, 6; between F & G 1; between G & H, 3; between H & E, 2. At the extremities of the tangents, to the right of G3, left of G, 1; to the right of K, 6; left of K, 2 to the right of M, 1; left of M, 3, and to the right of E, 2; and to the left of E, 6; and lastly on the circumference of the Circle ABCD, at A 4; at B 5, at C 8; and at D 7 The whole figure, the representative of the huge and giagantic evolution, finds its abridged form in the Bindu Shatushtaya, the production of the curves drawn in the figure, thus :Curve I
Along the points, 8 1 6 4, on the right side.
same line with the centre of the Mahabindu, at the same time co-
Curve II Along the points 8 3 2 4, on the left side.
tangential with the Mahabiindu; as represented in the diagram. The
Curve III Along the points 5 1 3 7, towards the head.
circle at the top, is termed the head, the circles on both the sides, the right and left wiings, the circle below, the Puchcha (Support), while the Mahabindu forms the central body (Atma). The Mahabindu represents the Karana Sareera; and the Mahabindu together with the other four bindus, represents the Sukshma Sareera. By joining the centres of the bindus, and drawing cotangents, through the points of contact of the bindus with the Mahabindu, the representation of the Sthula Sareera is observed. And this can be observed as the beautiful form enclosed within the circle, EFGH: and the remaining curvatures of the bindus can be ignored for purposes of observation and meditation.
Curve IV Along the poiints 5 6 2 7, towards the Pucheha. And this form is the simplest rather the most concise form scientific. The concise form appears to all practical purposes, as being formed, by two Ellipses cutting each other cross-wise, enclosed within a circle. The nine points are those represented by the centre and the eight numbers of these nine points. The point at the top, represents the Brahmarandhra, at the bottom, the tip of the middle fingers of the feet; the two points on both sides, the elbowjoints. These four points are to be seen on the Circumference of the circle; of the five points to be seen on the plane of the circle, the
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
175
centre represents the Navel; the two points above the centre, the shoulder joints; and the two points below the centre, represent the hip-joints. Thus the Sruti "Navarandhrarupaha" is as well represented. This Nine-point Circle; rather this representation of the Ninepoint Circle, present a good many phases, relative to the individual observations, a description of which can be had from the Author's Srichakradarsanam. Now that the graphic representation of Jiva is described, the representations of Hiranyagarbha and Iswara are enunciated by the closing sutras of the Ahnika:
176
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Sutra 11:- Vruttameeswara Iswaraha
ÃÓfi™Ω @@11@@ ƒw™yæÁ∫ F|æÁ∫: dü÷Á‘·+ ˆˆ 11 ˆˆ eè‘·ÔMTX¯«s¡ áX¯«s¡¤' It is already shown that the Circumference represents the Avarana form of Maya, which is considered as the body of Iswara; hence the Circle represents the Iswara, Purnam is described as Vruttarupam, and Iswara, Vruttam, Purnam should be realised through the Iswara; hence Purnam is represented only after the fashion of Iswara. That is why Purnam is called Vruttarupam. The reiteration of the word Iswara represents the grandeur of joy felt at the close of the Ahnica.
Sutra 10:- Vruttatrikonam Hiranyagarbhaha
ÃÓfi™Ω @@10@@ ƒwufiN˛ÁzmÊ u“∫lÆTß|: dü÷Á‘·+ ˆˆ 10 ˆˆ eè‘·Ô Á‹ø√D+ Væ≤s¡D´>∑s¡“¤'
Purnamimamsay am Truteeyamahnicam, Thus ends the third day of Purnamimamsa.
❋❋❋
'Vruttatrikonam' means a circle with a triangle. The circumference represents the Avaranam, and the triangle, the Vikshepam. Avaranam and Vikshepam are the bodies of Hiranyagarbha; hence Vruttatrikonam represents the Hiranyagarbha.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
177
PURNA MIMAMSA Fourth Ahnica It has been proclaimed, in the three Ahnicas commencing with the sutra; "Vruttat Sarvavyavaharavyanjakam samatribhujam", and closing with the sutras, "Vruttameeswara Iswaraha", that the Circle, as the Fundamental Cause of all the mathematical forms, is the graphic representation of Iswara, and as such is the best possible representation of the Purnam Brahma of the Vedic Lore. In fact the circle is the visible form of Iswara, nay the very form of Iswara; as such the highest possible visible manifestation of Purnam Brahma, assumed by the Purnam Brahma itself, for the facility of the aspirants. This Holy Doctrine is established in these Ahnicas, by a rational observation of the Rekha World, the Rupa of the Divine Art, with the highest authority of Sruti and Smruti. To establish the same holy Doctrine by a rational observation of the Nama of the diviine Art as well, for the firm assurance of the students, the fourth Ahnica proceeds. Name is the vocal representation of the Rupa. Both the Nama and Rupa are so closely connected with each other, that any consideration of the one would naturally bring in the consideration of the other. Hence the laws guiding the Rupa and Nama, should always, have natural harmony. And this harmony holy, that is seen between Rupa and Nama, this Ahnica establishes with the highest authority of Sruti and Smruti. Nama is three-fold, - Pada (World), Bija (Manatra), and, Samkya (Number). Pada and Bija fall under the category of Varna, Letters. Both the Pada and the Bija are the combinations of letters only, but with characteristic significance. The Pada can be called a mechanical mixture, whereas the Bija a chemical compound, of Varnas. To cite another concrete illustration, of the two forms of letters, "Water", and "H2O" representing the same object, "Water" is called the word (Pada), & "H2O", the Bija or the Mantra. Such is the
178
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
difference between a Pada and a Bija. The ordinary world knows the word, water, only, whereas the scientist alone is expected to know the significance of the formula and its truth. Similarly the ordinary world knows the Pada world only and the Brahmavadin alone is expected to know the mysteries of the Bija. Chemical formulas and chemical preparations are not within the ordinary reach of all people; and so is the case with the Mantras. The mysteries of the Bija or Mantra are to be specially learnt direct from the mouth of the blessed Brahmavadin; hence they will be reserved here for the special interest and attention of the aspirant. For the reasoon that this Ahnica proceeds to expound the rationale of the Nama, it begins with the proclamation of the "Nama" singular, of Purnam and Iswara.
Sutra 1:- Tasya Vachakah Pranavaha
ÃÓfi™Ω @@1@@ oÀÆ ƒÁYN˛: ümƒ: dü÷Á‘·+ ˆˆ 1 ˆˆ ‘·d´ü yê#·ø'£ Á|üDe' Tasya means of that, or of His; Vachakaha, Nama (Name); the sutra means that the Name of That, or of His, is Pranava. That means Purnam Brahma, as dictated by the Sruti "Tat Brahma". The word that is a simple derivitive of Sanskrit "Tat" only. He means Iswara, with whose proclamation, the third Ahnica is closed. Pranava fiinds its explanation in the sutra following:
Sutra 2:- Sankhyarupo Varnarupascheti
ÃÓfi™Ω @@2@@ ÃÊPÆÁøúÁz ƒm|øú≈Yzuo dü÷Á‘·+ ˆˆ 2 ˆˆ dü+U≤´s¡÷b˛ es¡sí ÷¡ |üX ‹ The word Pranavaha is complementary in the sutra. Sankhyarupaha means having the form of number; Varnarupaha,
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
179
180
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
having the form of Varna. The sutra means that Pranava is two-
that we observe mutual and constant relation between the Vachya
fold; One having the form of number and the other having the form of
and Vachaka, as well as between the number and the Varna (Pada
Varna; and Varna is again two-fold, - Pada and Bija. Hence it can
and Bija).
be easily grasped that Pranava is three-fold, to all practical purposes:viz., Pada, Bija and Samkhya. Pada Pranava is the word Om; Bija Pranava is the Mantra Om; and the Samkhya Pranava is the number Nine. It is universally approved that Om is the Pranava whether it is the word or Bija, but it appears quite new to hear that NIne is also a Pranava. To speak the truth it is rather difficult to realise that Pranava is Om; and it is easier to grasp that Pranava is Nine, for the reason that the real word Nava in Pranava actually represents the number Nine. Thus we have the three Pranavams, the Pada Om, the Bija Om, and the number Nine; of which the Bija is the cause of the Pada and the Samkhya (Number). Hence the Bija is the direct Vachaka, rather the primary, and the Pada and the number, the secondary.
The relation between the Vachya and Vachaka is admitted on all hands to be mutual and constant; How can it be possible to realise the mutual relation that exists between the number and the Varna? The sutra following advances the argument:
Sutra 4:- Karanaikyat
ÃÓfi™Ω @@4@@ N˛Á∫m{MÆÁoΩ dü÷Á‘·+ ˆˆ 4 ˆˆ ø±s¡DøÆ… ±´‘Y The word Avinabhavaha is complementary in the sutra. Karanam is the Vachya or the Bija; Ikyam means the state of being one with; the sutra menas that the relation between the Vachya and the Vachaka as well as the relation between the Number and the
Relative to the word Vachaka, Rupa is called the Vachya; and
Pada (Word) is mutual and constant, for the reason that the two are
the relation between the Vachya and Vachaka is mutual and
one and only one with the Karanam, which is Brahmaor Iswara in
coonstant, says the Sutra following:-
case of Vachya & Vachaka, from which they have emanated, and Biija in case of the number and the word for the same reason.
Sutra 3:- Tayoravinabhavaha
ÃÓfi™Ω @@3@@oÆÁz∫uƒåÁßÁƒ : dü÷Á‘·+ ˆˆ 3 ˆˆ ‘·j÷Ó s¡$HêuÛ≤e' The word Sambandhaha which means relation, is complementary in the stura. Tayoh means of the two; Avinabhavaha, constant and relative. The 'Two' here many mean the Vachya and Vachaka, or the Number and the Varna; the two forms of Vachaka. In either case the meaning of the sutra holds good, for the reasoon
This Avinabhavasambandha is not a new invention, but is backed up by the holy authorities as well, advances the sutra, following.
Sutra 5:- Srutescha
ÃÓfi™Ω @@5@@ »wo≥Á z≥Á dü÷Á‘·+ ˆˆ 5 ˆˆ ÁX¯ó‘˚Xï The sutra means that the Sruti and Smruti maintain the theory of the relation of the Avinabhava. The Sruties:- 'Omiti Brahma',
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T 'Omiteedam
Sarvam',
'Omkara
evadam
181
Sarvam',
'Omityekaksharam Brahma', and the like, clearly show the Relation of the Vachya and Vachaka. The relation between the number and Varna, is two-fold:- Technical and Metrical. Metrical is eight fold:Arshi, Daivi, Asuri, Prajapatya, Yajushi, Samni; Archi and Brahmi. Technical is two-fold:- 1. relative to the idea, and 2. relative to the Varna. The words, Chandra for 1. netra, 2. guna, 3. veda, 4. bana, 5. rasa, 6. giri, 7. gaja; 8, nidhi for 9, and similar ones are the illustrations of numbers relative to the ideal and the universal aphorisms:- Kadi nava, Tadi nava. Yadyashta; and Padi Pancha show the numbers relative to the Varna, And these relations show full well the mutual and constant relation, that exists between the number and the Varna. The next sutra proclaims the importance of the number, Bija and Pada, and Rekha, as the factors of, rather means of investigation:
Sutra 6:- Tasmattehi Tantram
ÃÓfi™Ω @@6@@ oÀ™Á{ u“ oãfi™Ω dü÷ˆˆ6ˆˆ ‘·kÕà‘˚VÔ ≤æ ‘·+Á‘·+ Tasmat means for that reason, te, they (Pada, Bija, Sankhya, & Rekha); tantram means the instrument or means. The sutra menns that, for the reason that mutual and constant relation exists between the Vachya and Vachaka, the Vachya Rekha, and the Vachaka-Pada, Bija and Samkhya, are the prominent factors of investigation, for the aspirants. Hi shows the surety of the means. The Avinabhava relation between the number and Varna is hitherto maintained on the ground that the wto are one with the Karana, the Bija. The sutra following, maintains the same on the similarity of their results or consequence:
182
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Sutra 7:- Pranavadashta prakrutayastabhyoyam Prapanchaha
ÃÓfi™Ω @@7@@ ümƒÁt…büNw˛oÆ: oÁ•ÆÁz2ÆÊ üúØÁ: dü÷ˆˆ7ˆˆ Á|üDyê <äwÁºü |üøè£ ‘·jT· ' ‘êuÛÀ´-j·T+ Á|ü|+ü #·' 'Pranavat' means from Pranava; "Ashta Prakrutayaha" eight prakruties; 'prakruti' means an element; 'tabhyaha' from the elements; 'Ayam' the perceptible; Prapanchaha means the Universe. Pranava is two-fold:- Sankhya and Varna. From the Sankhya Pranava have emanated the eight integers: 1 2 3 4 5 6 7 8: and from the Varna pranava, the eight Varnas:- A Ka Cha Ta Tha Pa Ya Sa. The Sruti "A Ka Cha Ta Tha Pa Ya San srujate" proclaims that the eight letters have emanated. The wonderful proces by which the Varnas have emanated can be fully realised from the author's Matrukadarsanam. It is within the experience of all that the whole of the Sankhya world, and the Varna world are only the development of the eight prakruties only; as such it is not worth while for further treatment. How the development of the Prakruties and the perceptible Prapancha from them, has taken place, the sutra following, explains"-
Sutra 8:- Parinamat
ÃÓfi™Ω @@8@@ úu∫mÁ™ÁoΩ dü÷ˆˆ8ˆˆ |ü]D≤e÷‘Y 'Parinama' means the processes of Multiplicaiton and Division; with reference to numbers, and the four fold prayatna of the vocal organs, with reference to Varnas. The effects, rather the consequence of the parinama is described in the sutra following:-
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
183
184
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Sutra 9:- Tasamupachayapachayau
Sutra 11:- Sunyatvamitchennanantyaprasiddheh
ÃÓfi™Ω @@9@@ oÁÃÁ™ÏúYÆÁúYÆÁ{ dü÷ˆˆ9ˆˆ ‘êkÕ eTT|ü#j · ÷· |ü#j · T· Ú ˆˆ
ÃÓfi™Ω @@11@@ oÁ{∆ÓãÆnƒu™uo YzëÁÁåãnÆüuÃÜtz: dü÷ˆˆ11ˆˆ X¯Sq´‘·«$T‹ #˚Hêï q+‘·´Á|ür‘˚'
'Parinama' tends to the development or decrease of the
The word Vruttasya is complementary in the sutra. The sutra
numbers or letters. Multiplication tends to the development and
means, that if the Vruttam were to be considered as mere Zero, it is
division to the decrease of numbers; in a similar manner, the
absolutely not, for the reason that the Purnam is well known as the
differences in Prayatna tends to the changes in Varnas.
Infinity. Circle is the Infinity in the world of numbers, and not the zero;
The sutra following proclaims that Parinama has no influence whatever upon Purnam:-
Sutra 10:- Tou netaratah Purnasyeti Bodhanandaha
and the zero is represented by an oval similar to that of the ellipse. It is only to avoid confusion in writing that the infinity is represented by two circles combined together. Hence to think of the circle as the cipher is rather ignorance polished and nothing more. Hence there is no scope of an iota even for the Sunyavada of the
ÃÓfi™Ω @@10@@ oÁ{ åzo∫o: úÓm|ÀÆzuo §ÁzáÁåÁãt: dü÷ˆˆ10ˆˆ ‘ÍH˚‘s· ‘¡ '· |üPD9ùd´‹uÀ<Ûëq+<ä' 'Tou' means evolution and involution; 'na' no, 'itarataha' from another; 'Purnasya' to the Purnam. The sutra means that
Buddhists in the Mathematical world. The ellipse is considered also as a kind of the circle, Deerghavrutta; how can it be the symbol of Zero or the Cipher, then? The closing sutra advances the argument:-
Jagadguru Sri Bodhananda bharati Maha Swamy is the Guru of the Author. He was a great Mantravetta obtained Mantra
Sutra 12:- Mayikatvadayatasyachayatasyacha
Siddhi and shown miracles only when needed by people. He
ÃÓfi™Ω @@12@@ ™ÁuÆN˛nƒÁtÁÆoÀÆ YÁÆoÀÆ dü÷ˆˆ12ˆˆ e÷sTTø£‘ê« <ëj·T‘·d´ü #êj·T‘·d´ü #·
was also as grate Jyotisha Pandit. Bodhananda Bharati observes that purnam is above all the influences of development by multiplicaiton, or decrease by division from
The sutra means that the Ayatavrutta (Ellipse) represents only
any other number. Hence Purnam is above all forms of evolution
the Cipher for the reason that it is the consequence of Maya. The
and involution, for the reason that it is Infinite.
word Sunyatvam is complementary in the sutra. The conjunction,
Seeing that the Cipher is represented as a small circle, one will be led away to mistake the Circle as mere Sunyam (Zero). To warn the aspirants from such misconoception, the sutra following proceeds:-
'cha' indicates that the ellipse is often mistaken for the Purnam, for the reason of its resemblance to the Circle. That is why some thinkers represented the Purnam as the Cipher. The ellipse exhibits the properties of the Purnam, for the reason that it has emanated from the Circle. It is but scientific that the properties of the cause manifest
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
185
in the effect. That is why the ellipse or the Cipher is often mistaken for the Purnam.
186
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT PURNA MIMAMSA Fifth Ahnica
The word 'Cha' is intended to supplement similar notions that are not touched upon here. We should consider Bindu as mere cipher, even if it is considered as the smallest quantity, for the reason that the negligible quantity is considered as simple zero to all practical purposes even. Hence it is highly objectionable to drag such insignificant negligible quantity into the higher planes of demonstrations. The reiteration of the word 'Ayatasyacha' is indicative of the closing of the Ahnica.
Purnamimamsayam Chaturthamahnicam, Thus ends the fourth day of Purnamimamsa.
❋❋❋
It has been clearly shown by a close investigation of the Rekha Prapancha, that the Circle is the highest possible perceptible Manifestation of the Purnam Brahma of the Vedic Lore, in the first three Ahnicas of Purnamimamsa. It is as well established that the whole of the Rekha Prapancha has emanated from the Circle and the Circle alone. This Rekha Prapancha is the Rupa that has emanated from Purnam Brahma. In the fourth Ahnica, it is explicitly taught that the Samkhya Prapancha, and the Varna Prapancha, have emanated from the Pranava, the Vachaka of the Circle. The Samkhya and Brahma. Hence it can be plainly comprehended that Rupa and Nama, have emanated from the Circle and its Vachaka. The Circle is said to be the Visible Manifestation of Purnam, which is generally conceived as the visible form of the Akasa (Space), Infinite. Akasa is defined to have Sabda (Sound) for its property. What is this Sabda then? It is that Sabda audible to the observer, that makes him separate the Akasa from the other Bhutas; Vayu; Agni, Apaha, and Pruthvi. What is the form of that holy Sabda, from which Akasa can be indentified? It is no more than the Holy Pranava, that is audible everywhere in the Circle ever and anon unceasingly. Both the Circle and the Sabda are so mutually related to each other that they are above all processes of separation; as such the visible Rupa and the audible Sabda are only one and the same, different as they appear under the perceptions of different senses. It is from this status of the Circle and Pranava, that the doctrine of the mutual relation constant, of Nama and Rupa has been realised by the Brahmavadins. In the View of the Vedantin, the Circle and Pranava the Sabda, are one and the same but appears differently under different perceptions. Whereas the Nayyayika thinks that the two are two different things inseparably linked to each other. Whether one is visible through the Eye, or audible through the Ear, it is all
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
187
Perception of the One to the Seer (Self), through Manas, and nothing more. Hence, whether the Sabda (Pranava) is audible or the Rupa (Circle) visible, it is only one and only one to the Seer, the Perceptible Manifestation of Purnam Brahma. Hence the Visible Circle and the Audible Pranava are one and only one giving birth to Rupa and Nama, under different perceptions, in variegated colours. And these variegated colours are the wonderful Prapancha, observed through the five senses. The whole Universe is observed to display only five varieties of colours perceptible through the five senses; hence it is aptly called the Prapanchaha. The word Prapanchaha means numerically the Number five, after the fashion Pranava, which represents the Number Nine. Thus, from a close observation of the four Ahnicas, we have the following summary: 1. 2.
3.
4.
5.
Purnam Brahma Satyam Jnyanam Anantham, is One only without a second. Purnam has manifested into the Perceptible Iswara, whose visible form is the Circle, and the audible form, the Pranava. The visible form has given birth to the Pranava form, the Nine-point Circle, which the observer perceived as the Prapancha of the head, and tail; body and the two wings. The audible form has given birth to the two Pranavams, Samkhya and Varna, from which have emanated the two Prapanchas. Samkhya and Varna, respectively. The Rekha Prapancha and the Sabdha Prapancha are the Rupa and Nama, that have emanated from the Iswara of the Vedic Lore, by whose Upasana, one would gain the Supreme Knowledge of Purnam Brahma, the highest Goal of the Holy Veda.
188
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Thus this Purnamimamsa proclaims the wonderful mysteries and secrecies of The Vedic Lore; hence the first sutra of this Ahnica proceeds with the praise of the holy Purnamimamsa thus:
Sutra 1:- Etadvai Mahopanishat
ÃÓfi™Ω @@1@@ Lo˚{ ™“Ázúuå oΩ dü÷ˆˆ1ˆˆ @‘·<«’Ó eTôVA|üìwü‘Y 'Etat' menas the Purna Jnyana, the Supreme Knowledge of Purnam; 'Vai' menas surely as 'Mahopanishat', holy secrecy; or holy Brahmavidya. The reason for calling this knowledge, Mahopanishat is advanced by the sutra following:
Sutra 2:- Tadarthadarsanat
ÃÓfi™Ω @@2@@ ots|t∆|åÁoΩ dü÷ˆˆ2ˆˆ ‘·<<ä ä∏9 <äX9¯ Hê‘Y The sutra means that this is called Mahopahishat for the reason that this presents the knowledge of the Purnam Brahma; as well as the knowledge of the Sruti and Smruti. If this represents the same knowledge as the Sruti and Smruti, what special importance does this play in the world, says the sutra coming:-
Sutra 3:- Kintarhyasandigdham
ÃÓfi™Ω @@3@@ uN˛ão÷|ÃuãtSá: dü÷ˆˆ3ˆˆ øÏ+‘·sΩ´¡ dü+~>∑+∆ The Sutra means that this vividly represents the knowledge; whereas the other works are too voluminous and elaborate with intricacies and puzzles, for the aspirants to catch hold of the accurate meaning.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
189
The next sutra advances another argument as to the grandeur of the work.
Sutra 4:- Sameepyat
ÃÓfi™Ω @@4@@ ÃÁ™yõÆÁoΩ dü÷ˆˆ4ˆˆ kÕMTbÕ´‘Y For the reason that the knowledge is nearer to the goal, this is termed the Mahopanishat. The nearness to the Goal is explained in the sutra following:-
Sutra 5:- Padabijasamkhyarekhanamuttarottaram Baliyaha
ÃÓfi™Ω @@5@@ útƒy\ÃÊPÆÁ∫zQÁmÁ™Ï∫Áz∫Ê §¬yÆ: dü÷ˆˆ5ˆˆ |ü<;ä »dü+U≤´ sπ U≤D≤ eTT‘·sÔ √‘·sÔ +¡ ã©j·T' This sutra dictates the relative importance of the pada, the bija, the samkhya, and rekha in the field of investigation; and the individual superiority of one over the other, and the highest superiority of the Rekha over all the others. For the reason that this Purnamimamsa handles the Rekha as the prominent factor of investigation, it is the highest authority; as such it is Mahopanishat. Now that the superiority of the Purnamimamsa is established, the next sutra declares the important questions discussed in it, for the guidance of the students and observers:-
Sutra 6:- Idantu Paramarthicam
ÃÓfi™Ω @@6@@ FtÊ oÏ úÁ∫™Áus|N˛™Ω dü÷ˆˆ6ˆˆ Ç<ä+‘·TbÕs¡e÷~Û9ø£+ This Darsanam treats of the Paramarthika knowledge of the Veda only and not the multifarious aspects of the Vyavaharika portions.
190
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
The various aspects of the Vyavaharika that have concern with the Paramarthika are the same as taught by the Vedanta mimamsa of Sri Krishna Dwaipayana Bharati, to expopund the holy mysteries of His Holy work, this Purnamimamsa Darsana is intended, says the sutra coming:-
Sutra 7:- Sarvamanyadbadarayanat
ÃÓfi™Ω @@7@@ Ã|™ãÆÍÁt∫ÁÆmÁoΩ dü÷ˆˆ7ˆˆ düs«¡ eTq´ <ë“<äsêj·TD≤‘Y The sutra means that that which is not touched upon here, should be learnt from Badarayanadarsana, Vedantamimamsa. Now that the Purnamimamsa is finished, the closing sutras proclaim the utility, rather the benefit derived from Purnajnyana.
Sutra 8:- Purnavit purnameva bhavati
ÃÓfi™Ω @@8@@ úÓm|uƒnúÏm|™zƒ ߃uo dü÷ˆˆ 8 ˆˆ |üPs¡í $‘·÷Œs¡yí T˚ e uÛeÑ ‹ One who knows the Purnam becomes Purnam only; that is, achievers the highest Goal proclaimed by the Sruti and Smruti.
Sutra 9:- Srutatvaccha
ÃÓfi™Ω @@9@@ ∆wonƒÁXY dü÷ˆˆ 9 ˆˆ ÁX¯ó‘·‘ê«#·Ã By the proclamations of Sruti, one can fully realise that one who realises the Purnam, becomes one with the Purnam, that is, becomes himself The Purnam. And the same truth is as well taught by the Smruti says the next sutra :
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
191
Sutra 10:- Smrutesccha
ÃÓfi™Ω @@10@@ À™woz≥Á dü÷ˆˆ10ˆˆ düàè‘˚X¯Ã The greatest benifit achieved by the knower of Purnam is proclaimed by the closing sutra of the Purnamimamsa Darsana :-
Sutra 11:- Anavruttiranavruttihi
ÃÓfi™Ω @@11@@ EåÁƒwu∫åÁƒwu: dü÷ˆˆ11ˆˆ nHêeè‹Ô s¡Hêeè‹Ô' 'Anavruttihi' means the perfect salvation from the samsara of Deaths and Births. The reiteration of the word 'Anavruttihi' is due to exhilaration of the highest bliss felt at the perfect completion of the Holy Purnamimamsa Darsana.
Purnamimamsayamahnicam Panchamam
192
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
C 7 C TmÁåÁÊ nƒÁ Tmúuo “ƒÁ™“z N˛uƒÊ N˛ƒyåÁ™Ïú™»ƒÀo™™Ω [Æz…e∫Á\Ê §¿÷mÁÀúo EÁ å: »wmYëÁÓyuoußÀÃyt ÃÁtå™Ω å™: úÓm™| y™ÁÊÃÁt∆|å™Ω ÃwuN˛Ω »y úye™Ω TÏãbÓª öÁz @@ ÆuÀ™ãƒƒo˙ út§y\ÃÊPÆÁ∫zQÁ™ÆÊ uƒæÁ™åãoßzt™Ω @ otΩ§¿÷ úÓm˙ ú∫™u˚oyÆÊ uƒrÁå™ÁåãtVåÊ å™Áu™ @@ F“Q¬Ï ÃuXYtÁåãtÁ˚ÆÁú∫Áz q rÁå ∆Ó ã ÆÁåÁ™uƒ˘Á úu∫N˛u¡úoÁåzN˛Áås|ÃÊNÏ˛ ¬ÃÊÃÁ∫ƒÁáÁ{| §Êß¿©Æ™ÁmÁåÁÊ ƒztuƒøÒÁu߬Á ¬Ïu oÁãoN˛∫mÁåÁÊ \åÁåÁ™Ïu“u˚áy |ÆÁ ÃN˛¬ƒztÁãoÃÁ™∫ÀÆüutúÁtåÁÆ üƒwÀÆ ßÁƒƒy™∆Á|n™N˛ÀÆ úÓm|™y™ÁÊÃÁt∆|åÀÆzt™Áut™Ê ÃÓfi™Ω -
Thus the fifth day of the Purnamimamsa is complete. Purnamadaha Purnamidam Purnat Purnamudachyate Purnasya Purnamadaya Purnamevavasishyate. Om santissantissanthihi.
❋❋❋
ÃÓfi™Ω @@1@@ EsÁo: úÓm|u\rÁÃÁ ƒwu:@@ EfiÁs∆£t EÁåãoÆÁ|s|N˛: @ å Nw˛nÆs|N˛: @ úÓm|u\rÁÃÁÆÁ: Nw˛nÆáyånƒÁoΩ @ ƒztÁáÜÆÆåÀÆÁzßN˛Á∫mnƒzåÁåãoÆ|üuoÆÁzuTnƒÁßÁƒÁtoÁzÆtão∫Ê úÓm|u\rÁÃÁ o˚OÏ˛√Æ™Ω @ GXÆoz @ uånÆÁuånÆÀoÏuƒƒzN˛: @ F“Á™ÏfiÁs| ¢˛¬ßÁzTuƒ∫ÁT: @ ∆™t™Áut ÃÊúoΩ @ ™Ï™ÏqÏnƒãY @@ oz Ï u“ ÃnÃÏ úÓm| u\rÁN˛oÏ| ∆MÆo FnÆs∆£tzå uåªO˛ÃÁáåÁYoÏ…bÆÃÊnÆÁåãoÆ|™úÏ ut∆Æoz @ Eo∆∆£tÁz “znƒs|N˛:, ÆÀ™Á˚zt Lƒ <
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
193
úÓm|u\rÁÃznÆfi úÓm|ÀÆ u\rÁÃÁzuo √ÆÏnúnÆÁ úÓm|ÀÆ N˛™|nƒÊ, Efi N˛™|um …ey, å ∆z z Æ˘uú ∆z …eyúu∫T¿“z3uú úÓm|ÀÆ N˛™|nƒ™ÁÆÁoΩ osÁuú ÃÁqÁnN˛™|nƒ™ÏnÃw[Æ ú∫ÁzqÊ N˛™|nƒÊ N˛¡úÆoÁz √Æs|: üÆÁÃÀÀÆÁoΩ Y uåªO˛ÃÁáåYoÏ…bÆ ÃÊú‹Æåão∫™oÁz “zoÁz: úÓm|u\rÁÃÁ ߃oyuo ߃uo útÁÜÆÁ“Á∫zm ÃÓfiÊ ÆÁz\åyÆÊ @@ ååÏ uNÊ˛ onúÓm| ÆÀÆ u\rÁÃÁN˛™|nƒ™ÏXÆo FnÆo EÁ“ @@ ÃÓfi™Ω @@2@@ ÆÄÁN¿˛ÁmÁ™uá…eÁå™ Ω ƒwu:@@ YN¿˛ÁmÁ™uá…eÁåÊ YN¿˛N˛¡úåÁuá…eÁåÊ ÆnúÓmu| ™nÆåÏ [Æoz, YN¿˛Áum ßÓúÏ∫Áutßztzå u˚áÁ, ofißÓúÏ∫Áum ufißÏ\-ƒw-tyV|§wÁtyuå, ™zªüÀoÁ∫Áum TÁzpÁtyuå @ ofi ßÓú∫Ï YN¿˛ÁmÁ™uá…eÁåÊ o¬u™uo ÃÁ™ÁãÆoÁz Tumo∆ÁÀfiz uåøuúo™uú ™zøüÀoÁ∫YN¿˛Áuá…eÁåÊ å uåøuúo™ Ω @ Efi ütu∆| o úÓ m | À Æ oÏ ßÓ ú Ï ∫ Áutßz t ußëÁÃN˛¬YN¿ ˛ Áuá…eÁånƒÃÓ Y åÁÆ ÆÄÁN¿˛ÁmÁu™nÆfi §“σYå™ÏúÁÊ @@ osÁ Y ÃN˛¬YN¿˛Áuá…eÁånƒÊ úÓm|ÀÆ obÀs¬qmu™uo ßÁƒ: @@ ÃN˛¬YN¿ ˛ Áuá…eÁånƒÀoÆ úÓ m | ¬ qoƒz uƒ∆z mrÁåuƒáÆÁ YN¿˛rÁåÀÆÁƒ≈ÆN˛nƒzå YN¿˛Ê oÁƒ®qÆuo @@ ÃÓfi™Ω @@3@@ ßÁƒ√ƱÁNÊ˛ ∫zQÁøú™ Ω ƒwu:@@ ßÁƒ√ƱÁNÊ˛ ∫zQÁøú`Y ÆÄÁN¿˛u™nÆs|: @ ßÁƒÀÆ √ÆØÁNÊ˛ ∫zQÁ Æzå øúÊ ÆÀÆzuo √ÆÏnúnÆÁ ßÁƒ√Æ`\N˛nƒz Ãuo ∫zQÁøúnƒÊ YN¿˛¬qmu™uo ¢˛u¬o™Ω @ uå∫s|N˛∫zQÁÆÁÊ Yz…bÁtÁ{ YÁuo√ÆÁuõoƒÁ∫mÁÆ uƒ∆z muƒ∆z…ÆÆÁzøßÆÁzøúÁtÁå™Ω, EÀÆ{ƒ Æãfiu™uo åÁ™ @@ ååÏ ßÁƒ√Æ`\N˛ÁnƒÀÆ YN¿˛¬qmVbN˛nƒz úÓm|ßÁƒ√Æ`\NÊ˛ uN˛u™nÆ∆gΩN˛ÁÆÁ™Á“ @@
194
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÃÓfi™Ω @@4@@ tuÜt ƒwøú™Ω ƒwu:@@ ooΩ úÓm√| ƱÁNÊ˛ ƒwøúÊ ƒw™zƒnz Æs|: @ u“ üuÃÜtÁ{ @ ¬ÁzN˛z DY|åÁtÁ{ ÆãfimÁÊ ßTƒnÀƒ øú√Æ`\N˛nƒÁnüuÃuÜt˘ÁzoåÁÆ “yuo @@ ååÏ úÓm|ÀÆ ƒwøúnƒz Nz˛ Áa|YnúÓƒú| qÁmÁ™ƒN˛Á∆:, ÆsÁ u˚oyÆÃÓfiz ÃN˛¬YN¿˛Áuá…bÁåÊ úÓm|u™nÆÏnOÊ˛, oÀÆ >>uå∫ƒÆƒ<< u™nÆÁut«ÁwnÆÁ uå∫ƒÆƒnƒuÃÜtÁ{ ƒwÀÆ ÃN˛¬YN¿˛ÁãoT|onƒÁnÆÁƒÆƒnƒÁXYÁ o£tÁzáN˛nƒÊ tÏV|bu™uo YztÏXÆoz, Tumo∆ÁÀfiz ™z ø üÀoÁ∫YN¿ ˛ ÁmÁ™uá…eÁåÀÆÁuåøúonƒz 2 uú ßÓúÏ∫YN¿˛ÁmÁ™uá…eåÊ uåøuúo™zƒ, oÀ™ÁÁ–∆ßÓúÏ∫ YN¿˛Áuá…eåÀÆ ≤˛uYnüuÃÜtnƒzå oÁ–∆Ázúu∫ßÁTÀÆÁ¡úÀƒønƒÁoΩ u\rÁÃÓåÁ™nÆãoÁzúN˛Á∫ÁÆ ÀsÓ¬ÁøãáoyãÆÁÆzå úÓmÀ| ÆÁuú ƒwøúnƒN˛¡úåz §ÁáN˛ÁßÁƒ:, Gúu∫ßÁTÀÆ o¬u™uo ÃÊrÁ, ÆVÏÏúu∫ßÁTÀÆÁ¡ú™uáNÊ˛ ƒÁ øú™üuÃÚu™uo§ÓÆÁnoÊüuo úÓ Æ ÁoΩ uå∫Áƒ∫m ütz ∆ ™Áuáªÿ Ãz fi YqÏ u üÃÁu∫o osÁ ˘ÁƒÁúwus√ÆÁzÀÃÊuáøúÁ ƒ¬ÆÁN˛Á∫Á N˛ÁYåÁ™ÁåuÃN˛∫zQÁåÏ ßÓÆoz, oÁ–∆ßÓ©ÆÁN˛Á∆ øúúu∫uáúu∫ƒzu…boÀÆÁzúu∫ßÁTÀÆ ƒwÁN˛Á∫nƒÁoΩ ƒwøúnƒ™á|uÃÜtu™uo å úwÆTÏnO˛™Ω @ LotzƒÁ¡úÁzúu∫ßÁTnƒzå uƒ\ÁåyÆÁutuo @@ ååÏ ouÜt ƒw øúu™uo ÃÓ fi z m úÓ m | À Æ ƒw øúnƒz ƒw ÀÆ úu∫uáåÁ™N˛∫zQÁúu∫ƒwotz∆øúnƒzå o[rÁúzqÁÆÁÊ uƒ∆z myßÓo∫zQÁrÁåÀÆÁ ƒ≈ÆN˛nƒzå otßÁƒz N˛sÊ ƒwrÁåu™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@ ÃÓfi™Ω @@5@@ ∫zQÁN˛ÁzmÃÁ©ÆÁƒÀsÁ ƒwu:@@ ∫zQÁmÁÊ N˛ÁzmÁåÁÊ Y ÆÁ ÃÁ©ÆÁƒÀsÁ Ã{ƒ ∫zQznÆs|: @ ∫zQÁN˛ÁzmÃÁ©ÆÁƒÀsÁø ú∫zQÁrÁåz \Áoz onúu∫ƒwoƒwrÁåÀÆÁuú ÃÊ߃ÁÁ–∆ƒw™zƒ úÓmu| ™uoßÁƒ:, Æ˘uú ƒw™zN˛ƒN¿˛∫zQÁúu∫ƒwou™ƒ –≈Æoz osÁuú oÁ–∆ƒN¿˛∫zQÁ™åãoJ \Ï∫zQÁ ÙÁu…bøúÁ™ÃÊPÆzÆN˛ÁzmÆÏoÁ`Y
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
195
Tumo∆ÁÀfiuƒtÁz ƒtuão @ osÁ Y ƒwÀÆÁåão∫zQÁN˛Ázmu∫ƒwonƒzDuú oz ÁÊ ÃÁ©ÆÁƒÀsÁúëÁnƒÁtΩ√ÆO˛oÁ åÁÀoyuo ßÁƒ: @ åãƒzoÁƒoÁ úÓmÀ| ƒøúÊ o®qmÊ YÁußáÁÆ u\rÁÃÓåÁ™nÆãoÁzúN˛Á∫ÁÆ ÀsÓ¬ÁªãáoyãÆÁÆzå ƒwøúnƒÊ úu∫N˛u¡úo™Ω @ Fo∫YN¿˛ÁmÁÊ YÁznú‹ÆÁutNÊ˛ N˛sÁu™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@ ÃÓfi™Ω @@6@@ ƒwnÃ|√ƃ“Á∫√Æ`\NÊ˛ ÙufißÏ\™Ω ƒwu:@@ ƒwÁnúÓƒÁz|O˛ÁnÃ|√ƃ“Á∫√Æ`\NÊ˛ ÙÀo√ƃ“Á∫ÁzúÆÁzT ÃÁáåÁuß√Æ`\NÊ˛ ÙÁufißÏ\Ê ÃÁ™Á: fiÆÁz ßÏ\Á: ∫zQÁøúÁ: ÆÀÆ onÙufißÏ\Ê otÁPÆÊ YN¿˛™ÏnúëÁu™nÆs|: @ GnúëÁ∆£tÁÜÆÁ“Á∫zm ÃÏfiÊ ÆÁz\åyÆ™Ω @ Efi ÃÁáåÁuå N˛ÁzmJ \Ï∫zQÁu§ãtƒ: @ ÙufißÏ\™zƒ ufiN˛Ázm∆£tzå ∆Á≈fiz √ƃuŸÆoz @ ooÀoÓnúuN¿˛™ G∫ÃÓfiÁnÀ¢Ï˛by ßuƒ…Æuo @@ ååÏ ƒwÁoΩ ufi§Ó\™ÏnúëÁu™nÆåzå ƒwÀÆ ufißÏ\ÁzúÁtÁånƒ™ußu“oÊ oXY uNÊ˛ ú∫™ÁmÓåÁu™ƒÁ∫©ßN˛nƒøú™Ïo üNw˛ozu∫ƒ úu∫mÁu™nƒøú™Á“ÁzuÀƒoΩ §¿÷m Fƒ uƒƒo|nƒu™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@
196
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
u∫ouoWïlg¬{N˛tz∆ÀÆ oÁ∫Á˚Æ™ÜÆƒuo|åÁz ƒN¿˛nƒÀÆÁƒ≈ÆN˛nƒzDuúJ \Ïnƒ™åÏßÓÆoz o˚utuo ßÁƒ: @@ åãƒÜÆÁ ÃÁutnÆÏO˛Ê N˛ÁzÆ™ÜÆÁÃÁz åÁ™znÆo EÁ“ @@ ÃÓfi™Ω @@8@@ ú∫fi ú∫ÁƒßÁÃ: ƒwu:@@ ú∫fi ƒwz ú∫ÀÆ ufiN˛ÁzmÁtz∫ƒßÁà EÁ∫ÁzúÁzDÜÆÁà FnÆs|: @ EÜÆÁÃÁz u“ u˚uƒá: @ N˛ÁÆÁ|ÜÆÁÃ: N˛Á∫mÁÜÆÁÃ≈Yzuz o @ ofi N˛ÁÆÁ|ÜÆÁÃÀÆ u™·ÆÁnƒz Ãuo ÃÁqÁ[rÁåuåƒnÆ|nƒÊ ¬qm™Ω @ Efi uƒ∆z ™Áuåƒz∆z FXZßÁƒz uƒ∆z…ÆÁuåƒz∆z ™wtÁtÁ{ ÃÁqÁnƒuåƒz∆z §ãáz YÁuo√ÆÁuõo∫oÁz uƒ∆z mÁuƒ∆z…ÆÁmÁÊ fiÆÁmÁ™õÆÏúÁtÁå™Ω @ N˛Á∫mÁÜÆÁÃÀÆÀoÏ tÁz ÁutfiÆ\ãÆnƒÊ ¬qm™Ω @ EfiÁÆ™åÏT™: @ ƒÀoÓuƒu∆…bnƒ™ÜÆÁà ÃÁ™ÁãÆ ¬qmÊ @ ƒ{u∆…bÆÊ ÀƒÁuáN˛∫moÁ uƒu∆…bÀƒÁßÁƒutN˛∫m oÁƒnƃßÁÃnƒÃÁ©§ãázå @ EuáN˛∫moÁƒ{u∆…b∞`Y ÀƒÁƒXZztN˛tz∆ÁuƒXZëÁnƒÀƒÁƒXZztN˛N˛Á¬Á ƒuXZëÁnƒÁzßÆÃ©§ãázåzuo @ ufißÏ\Áåão∫Ãwu…b™Á“ @@
ÃÓfi™Ω @@7@@ EÜÆÁÃÁoΩ ƒwu:@@ osÁ YÁmÏnƒÁßÁƒzåÁ∫©ßN˛nƒÀÆ NÓ˛bÀsnƒzå úu∫mÁu™nƒÀÆ YÁé߃: ú∫ãnƒÜÆÁÃÁoΩ §¿÷Ám Fƒ uƒƒo|nƒÊ é߃oyuo ßÁƒ:, åãƒÜÆÁà ÃÁ™ÁT¿ÆÁßÁƒnN˛s™ÜÆÁÃ: ? osÁ u“ ¬ÁzNz˛ ∆ÏO˛ÁuƒtÊ ∫\ou™nÆfi ∫\oÁåÏ߃\ãÆÃÊÀN˛Á∫Án™N˛ ü™ÁowtÁz ÀÆ, åy¬úw…eufiN˛ÁzmnƒÁutåÁ uƒ∆z ÁrÁåÁn™N˛ ü™ÁmtÁz ÀÆ, å{TuåSÆÁutøú uƒ ÆtÁz ÀÆ Y ˃ÁnÃÁ™T¿y ˃Áß¿™ Gúú˘oz @ üNw˛oz ∆ÏÚz ƒwz ufiN˛ÁzmÁÜÆÁà ÃÁ™¿Ty E߃Ánú∫Àú∫ uƒªÚá™|»ÆnƒÁXYÁÜÆÁÃÁßÁƒ Fuo YzëÁ @ EfiÁõÆÜÆÁ ÃÁÀÆÁåÏ ß Ó Æ ™Áånƒz å å úÓ ƒ | ú qÁƒN˛∆: @ ÆsÁ ƒN¿ ˛ ÁN˛Á∫ÁN˛Á
ÃÓfi™Ω @@9@@ ufißÏ\Ánú`YYã™ÁfiÁum oã™Áfiz•Æ: ú`Y™“ÁufiN˛ÁzmÁuå oz•ÆÁzDuQ¬YN¿˛Áum ƒwu:@@ ufißÏ\ÁëÁÁ™N˛ÁXYN¿˛ÁoΩ ú`Yoã™ÁfiÁum ú`Y ÙÁufißÏ\Áuå oz•Æ: ú`Y™“ÁufiN˛ÁzmÁuå oz•ÆÁzDuQ¬YN¿˛ÁlÆ\ÁÆãoznÆs|: @ ååÏ ufißÏ\ÁnN˛s™uQ¬YN¿˛ÁmÁ™Ïnúuu∫nÆÁ∆gΩN˛ÆÁ™Á“ @@
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
197
198
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÃÓfi™Ω @@10@@ G¸zN˛ÁoΩ
»y “ÆT¿yƒÁÆ å™:
ƒwu:@@ úu∫mÁ™ÁutnÆs|: @ úu∫mÁ™ÁnÃN˛¬YN¿˛ÁmÁ™Ïnúu t∆|åÁutuo ßÁƒ: @ úu∫mÁu™nƒÊ YÁzúÁtÁånƒuß™oƒÀoÏÃÁÙÃÁN˛nƒz Ãuo otƒÀsÁuƒ∆z øúnƒÊ @ ofi uƒƒo| ƒ Á∫mÁÆ ÃnÆãoÊ , VbÀÆ oãoÏúu∫mÁu™nƒƒÁ∫mÁÆ uƒ∆z…ÆÊ, Tumo∆ÁÀfiz G¸zN˛útÀÆ ß¿™mÁú∫nƒÁ•ÆÏ úT™Áutuo @@
»yúÓm|™y™ÁÊÃÁt∆|åz ÃwuNz˛ u˚oyÆÁu’N˛ üÁ∫©ß: üs™úÁtz ÆXYN¿ ˛ ÁmÁ™uáÁ…eÁåu™nÆåz å ÃN˛¬YN¿ ˛ Áuá…eÁåÊ úÓm|u™nÆÏO˛™Ω @ oÀÆ √ÆÁúN˛nƒÁuá™Á|: üuoúÁutoÁ ߃uão @ LƒÊ uÀsoz u§ã˚ÁtyåÁÊ ÃN˛¬YN¿˛N˛Á∫mnƒÊ ƒtoÁÊ Nz˛ ÁayYã™oÁãÆÏúãÆÀÆ uå∫uÃoÏÊ u˚yÆÁu’N˛™Á∫•Æoz @ ofi oÁƒu£tÏN˛Á∫mƒÁt™ÏúãÆÀÆ uå∫ÀÆ @@
ååÏ ufißÏ\Áz¸Nz ˛ÁtuQ¬YN¿˛ÁmÁ™ÏnúƒúuÃÚÁão FnÆÁ∆gΩMÆÁ“ @@ ÃÓfi™Ω @@11@@ Ã™ãƒÆÁoΩ
ÃÓfi™Ω @@1@@ u§ãtÏu∫uo YzëÁÁÆÁzSÆnƒÁoΩ
ƒwu:@@ ÙÀoTumo∆ÁÀfiÃ™ãƒÆz uN¿˛Æ™Ámz ufißÏ\Áz¸zN˛ÁtuQ¬ YN¿˛Áznúut∆|åÁutnÆs|: @@
ƒwu:@@ ÃN˛¬YN¿˛Án™N˛üú`YÀÆÁznúÁtåuƒåÁ∆ÆÁz∫åÏ߃uÃÚnƒzå oÁtw∆üú`YÊ üuo N˛Á∫mz N˛¡úåyÆz u§ãtÏÁ∫z ƒz N˛Á∫mnƒÊ uNÊ˛ å ÀÆÁtzN˛∆Áz ÀÆ N˛oÏ™| ∆MÆnƒÁutnÆÁ∆gΩN˛oz u§ãtÏu∫uo @ ouëÁ∫ÀÆÁuo, åzuo @ EÆÁzSÆnƒÁutuo @ ÃN˛¬YN¿˛N˛Á∫mÁnƒÁå“|nƒÁutnÆs|: @ osÁu“ u§ãtÏN˛Á∫mƒÁutåÁz u§ãtÁz: ÃzQÁÀoÁ•ÆuÀfißÏ\Ê oo≥ÁoÏß\ | u™uo ∫ynÆÁznúu™Ï∫∫yYNÏ˛: @ oëÁ ÃgΩTXYoz, u§ÊtÁz: uå…úu∫™Ámnƒzå ∫zQÁtyåÁÊ Ãúu∫™ÁmnƒÁnúu∫™Ám“zonÏ ƒÀÆ uå…úu∫™Ámz ÃnƒÁtÏúuz qoÊ, Æ˘åÁÆ‹ÆÁ uå…úu∫™ÁmÀÆ Ãúu∫™Ám“zonÏ ƒu™ou §ÓÆÁu“| N˛ÁÆ|N˛Á∫mßÁƒÀÆÁuåÆonƒÁnÃz•| Æ: ÃzD| nÆÏnú˘z∫uëÁnÆÁuttÓ mzå tÓu oÁzDÆÊ u§ÊtÏN˛Á∫mƒÁt Fuo @@ ååÏ u§ãtÁz u å| … úu∫™Ámnƒ™oz ÃN˛¬YN¿ ˛ N˛Á∫mnƒÁé߃z 2 uú å{ Æ ÁuÆN˛Áutußu∫ƒ ú∫u™Ám™gΩ T yNw ˛ nÆ NÏ ˛ oÀÃN˛¬YN¿ ˛ N˛Á∫mnƒÊ åÁzO˛u™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@
ååÓ¸zN˛ÀÆ ÃN˛¬YN¿˛ÁznúÁtN˛nƒz ÃgΩN˛ÁzYuƒN˛ÁÃÁ{ N˛sÁu™nÆÁ ∆gΩN˛ÆÁ™Á“ @@ ÃÓfi™Ω @@12@@ ozåÁzúYÆÁúYÆÁ{ YN¿˛ÁmÁ™Ω ƒwu:@@ ozå - G¸zN˛z m, YN¿˛ÁmÁÊ ufiN˛ÁzmÁutßztußëÁÁëÁÁ ™ÏúYÆÁúYÆÁ{ ߃o Fuo ∆z : @ G¸zN˛≈Y uƒN˛ÁÃÃgΩN˛ÁzYßztÁu˚uƒá: @ uƒN˛ÁÃÁtÏnúu: ÃgΩN˛ÁzYÁoΩ qÆ Fuo uƒƒzN˛: @@ åuãƒo∫YN¿˛ÁmÁu™ƒ úÓmÀ| Æ øúÀÆ ƒwÀÆÁuú uƒN˛ÁÃÃÊN˛ÁzYÁ{ uNÊ˛ å ÀÆÁoÁu™nÆ u™nÆo EÁ“ @@ ÃÓfi™Ω @@13@@ å oÏ uå…N˛ÁzmÀÆ uå…N˛ÁzmÀÆ ƒwu:@@ uå…N˛ÁzmÀÆ N˛Ázm∫u“oÀÆ, uƒN˛ÁÃÃgΩN˛ÁzYÁ{ ƒwuÚqÆÁ{ å Ào Fuo ∆z : @ osÁ Y ÆnN˛Ázm∫u“oÊ å oÀÆÁz¸Nz ˛ Fuo √ÆÁõnÆÁ ƒwÀÆ åÁz¸Nz ˛ FnÆ¬Ê ú®uƒozå @@ u˚ªuO˛∫Áu’N˛úu∫ ÙÁõoÁ{ @@ Fuo »yúÓm|™y™ÁÊÃt∆|åz üs™Áu’N˛ƒwu: ÙÁõoÁ @@ ✦✬✦
ÃÓfi™Ω @@2@@ EmÏnƒÁXY ƒwu:@@ Fo≥Á å u§ÊtÁz: N˛Á∫mnƒÊ é߃uo, NÏ˛o: ? EmÏnƒÁXY @ Y∆£t: úÓƒú| qÊ √ÆÁƒo|Æuo, EmÏnƒÁoΩ, u§ãtÁz∫mÏnƒÁtmÏúu∫™Ámuƒu∆…bnƒÁoΩ N˛Á∫mnƒÊ å é߃oyuo @ å Y u§ãtÁz∫mÏnƒzDuú u§ã˚ão∫ÃÊÆOÏ ˛Ê ÃnN˛Á∫mÊ
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
199
uNÊ˛ å ÀÆÁutuo ƒÁXÆÊ ¬ÁzNz˛ ütz∆ƒoÁ ¸√Æzm ütz∆ƒoÁz¸√ÆÀÆ ÃÊÆÁzTÁzDåÏßÓÆoz å oÏ uå…ütz∆ÀÆ @ osÁ Y u§ãtÁzuå|…úu∫™Ámnƒzå ú∫Àú∫ ÃÊÆÁzTÁ§ÁƒÁnN˛Á∫mnƒÊ å é߃oyuo ßÁƒ:, å Y N˛ÁÆ|ÀÆÁåÏßÓÆ™Áånƒzå ützu∆N˛nƒ™uú NÏ˛oÁz å N˛¡õÆo Fuo ƒÁXÆ™Ω @ osÁÃuo ÆnüÁtzu∆NÊ˛ otuånÆu™uo ãÆÁÆzåÁuånÆnƒuÃÚÁ{ oÀÆÁuú N˛Á∫mÁão∫u\rÁÃÁÆÁ™åƒÀsÁ otƒÀs{ƒ @ uNÊ˛ Y ÃÊÆÁzTÊ üuo N˛™|m: N˛Á∫mnƒzå onN˛Á∫myßÓoÊ N˛™| N˛¡úåyÆÊ, ofiÁuú N˛Á∫mÁu\rÁ™ÁÆÁ™tw…bu™uo YzunN˛™tw…b™Án™uå…eÊ ÃnN˛Á∫m™Á“ÁzuÀƒu…tãtÏuå…eÊ åÁ˘:, √ÆÁuáN˛∫mÆÁz: N˛ÁÆ|N˛Á∫mßÁƒÁé߃ÁoΩ, Etw…bÀÆ u§ãtÏuå…enƒÁßÁƒÁÀ™ÁtåÏúúëÁÁzDÆ™Á∫©ßƒÁt: @ EuáNÊ˛ oÏ §Át∫ÁÆmt∆|åÁtƒTãoÀÆ™Ω @ T¿ÊsuƒÀo∫߯ÁëÁz“ üú`uYo™Ω @
200
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÃÓfi™Ω @@5@@ ∆∆uƒ Ámƒtw\Ï∫zQÁ ƒw u :@@ ¬Áz N z ˛ ∆∆ÀÆ uƒ ÁmÀÆ Y ünÆz N Ê ˛ üuÃÚnƒz D uú ∆∆uƒ Ámøúuƒu∆…bÀÆ ÆsÁ EËƒÊ osÁ J \ÏnƒÀÆ ÃzQÁÆÁ≥Á ünÆzNÊ˛ üuÃÚnƒzuú J \Ïnƒuƒƒu∆…b∫zQÁÆÁ≥ÁüuÃÚnƒÁoΩ otΩVÁuboufiN˛ÁzmÀÆÁuú TTåNÏ˛ÃÏ™ÁÆ™Áånƒz åÁÃo: N˛Á∫mnƒÊ N˛¡úÆoz uN˛™Ï∫Ê tÁo√Æu™uo ÃÏuáÆÁz uƒßÁƒÆãoÏ @ ååÏ J \Ï∫zQÁÆÁ≥ÁÁüuÃÚÁƒúuÃÚÁão FnÆÁ“ @@ ÃÓfi™Ω @@6@@ ü™ÁmÁoΩ ƒwu: @@ ü™ÁmÁtzƒ J\Ï∫zQÁ≥ÁÁõuÃuÚu∫uo ßÁƒ: @@
ååÏ ™ÁÀnƒÁ∫©ßN˛nƒÊ u§ãtÁzuƒ|ƒo|nƒÊ uNÊ˛ å ÀÆÁutnÆÁ∆gΩN˛ÆÁ™Á“ @@ uNÊ˛ onü™Ámu™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@ ÃÓfi™Ω @@3@@ EuáN˛∫mnƒÁÆÁzTXY ÃÓfi™Ω @@7@@ ∆ÁÀfiÁtÆ≈∆ÁÀfiÁtÆ: ƒwu:@@ EfiÁuú Y∆£t: úÓƒú| qnƒÁƒw‹Æs|:, ∫\ou™nÆfi EuáN˛∫mnƒÁ ÆÁzTÁutuo, EuáN˛∫mnƒÁé߃ÁutnÆs|: @ ¬ÁzN˛z ∆ÏO˛ÁuƒtÊ ∆ÏO˛Á{ ∫\oß¿Áuão∫ÆÊ Ãú| FnÆÁtÁ{ ∫¶ÁÁ{ Ãú|ßÁ¿ uão≥Á ÃÁuá…eÁånƒz åÁzúú˘oz @ uå∫uá…eÁåß¿Áãoz∫ ååÏßÓonƒÁu˚ƒo|nƒÊ å é߃oynÆzozå ∆ÓãÆƒÁtÁzDuú uå∫ÁNw˛o Lƒ @@ ååÏ ™ÁÀoÏ u§ãtÁz∫mÏnƒzå N˛Á∫mnƒÊ ufiN˛ÁzmÀÆ osÁ nƒÊ uNÊ˛ å ÀÆÁÍÁáN˛ÁßÁƒÁutnÆÁ∆gΩMÆÁ“ @@
ƒwu: @@ ∆ÁÀfiÁutN˛™zƒ J\Ï∫zQÁÆÁ≥ÁÁ߃z ü™Ámu™nÆs|: @ osÁ Y J\Ï∫zQÁÆÁ≥ÁÁÃnƒz otΩ VuboufiN˛ÁzmÀÆÁõÆüuÃuÜtu∫uo ßÁƒ: @ å Y ufiN˛ÁzmÁ˘ßÁƒz ƒwÁnÃ|√ƃ“Á∫√ƱÁNÊ˛ ÙufißÏ\u™uo ÃÓfiÀÆÁü™ÁlÆÊ üÃ[Æo Fuo ƒÁXÆ™Ω @ oÀÆ úÁ∫™Áus|N˛nƒßƒzDuú √ÆÁƒ“Áu∫N˛ÃnÆ nƒÁgΩTyN˛Á∫zm åÁüÁ™ÁlÆu™uo ÃÓYåÁÆ{ otÏO˛u™uo @ EÁutútzå ÆÏO˛ÆåÏ߃ÆÁz: úu∫T¿“: úÏåÃÏuO˛üÆÁz\åÊ oÏ úÓƒ|ƒtzƒzuo @@
ÃÓfi™Ω @@4@@ ufiN˛Ázmu™uo YzëÁÁé߃ÁoΩ Fuo »yúÓm|™y™ÁÊÃt∆|åz u˚oyÆ™Áu’N˛ƒwuÀÙÁõoÁ @@ ƒwu:@@ ufiN˛ÁzmÀÆ Ãúu∫™ÁmnƒÁnN˛Á∫mnƒÊ é߃Áoyuo ouëÁu ÜÆuo åzuo @ EÃÊ߃Áutuo @ J \Ï∫zQÁfiÆuƒu∆…bßÓúÏ∫YN¿˛øúufiN˛ÁzmÃÆ{ ƒÁé߃ÁutnÆs|: @ ååÏ ufiN˛ÁzmÀÆ Ãƒ|\åyånƒÁnNÏ˛oÀoÀÆÁ˃u™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@
✦✬✦
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
201
»yúÓm|™y™ÁÊÃÁt∆|åz ÃwuNz˛ owoyÆÁu’N˛ üÁ∫©ß: LoÁƒoÁ T¿ãsÃãtßzm | YN¿˛ÁmÁ™ÏnúÁu∫zƒ Ã™ãƒÆuƒ∫Ázáúu∫“Á∫Á•ÆÁÊ üúu`YoÁ oz ÁÊ §¿÷uƒ˘ÁzúÆÁzuTnƒÃÓYåÁÆ{ owoyÆÁu’N˛™Á∫©ß™Ám: úÓmÀ| ƒøúÊ oÁƒ®qÆuo @@ ÃÓfi™Ω @@1@@ uå∫ƒÆÊ uåTÏ|mÊ uåu…N¿˛ÆÊ uYã™ÁfiÊ úÓm|™Ω ƒwu:@@ uåT|oÁ: EƒÆƒÁ: EÊ∆Á: ÆÀÆ ouëÁ∫ƒÆƒÊ, uå∫Ê∆u™nÆs|:, uåTÏm | Ê ∫ÁTÁuttÁz ú∫u“o™Ω, Eo Lƒ uåu…N¿˛ÆÊ uN¿˛ÆÁ∫u“oÊ, TTåÁut √ÆÁƒw‹Æs|, uYã™Áfiu™uo rÁåÀƒøúu™nÆs|: @ Eåzå uånÆrÁåÀƒøúnƒÊ úÓm|ÀÆ Àƒøú¬qmÊ ÃÓuYou™uo ßÁƒ: @ ååÏ ÆXYN¿˛mÁ™uá…eÁåu™nÆåzå ÃN˛¬YN¿˛Áuá…eÁånƒøú¬qm™ußáÁÆ úÏåuå|∫ƒÆƒu™nÆÁutåÁ N˛såÊ uƒªÜÆo Fuo YzëÁ, YN¿˛∆£tzå ßÓoÙÏtÁÆÀÆ N˛ÁÆ|\ÁoÀÆ ƒÁ T¿“yoÏÊ ∆MÆnƒzå √ÆÏunúnÃÏåÁ™ƒ§ÁzáåÁÆ üs™o: N˛¡úßztußëÁ ÃN˛¬YN¿˛Áuá…eÁ onƒøúobÀs¬qm™ußáÁÆ oÀÆ Àƒøú¬qmnƒß¿™uåƒÁ∫mÁÆ úwsN˛Ω uå∫ƒÆƒu™nÆÁutåÁ Àƒøú¬qm™ÏO˛™Ω @ ååÏ ÃN˛¬YN¿˛Áut√ÆÁúN˛ÀÆ ƒwøúnƒN˛¡úåÊ uƒª·Æo Fuo YzëÁ ÆsÁ ßÓ©ÆÁN˛Á∆Ããáz∫üuÃÚnƒz2uú oÁtw∆ÃuãáÊ N˛¡úuÆnƒÁ oÁƒ˚dÆÁõou™uo √ÆÏunúnÃÓåÁ™ÏúN˛∫ÁÆ uåøõÆoz o˚nüs™o Lƒ ÃN˛¬YN¿˛ÁoyoÊ úÓmu| ™nÆÏO˛z oÀÆÁååÏßÆÓ ™Áånƒzå √ÆÏunúnÃÓåÁÊ ofiü™ÁlÆÊ üÃ[Æz o z u o onúu∫“Á∫ÁÆ ÃÏ T ™oÆÁ §Á¬§Áz á ÁÆ Y ßÓ © ÆÁN˛Á∆ÃuãáÃÁtw D Æz å ƒw øúnƒÊ úu∫N˛u¡úo™Ω @ osÁ YÁ¡úo∫o¬ÀƒøúÀƃwÁn™N˛úu∫áz∫ƒz ÁüuÃÚnƒzå ÃÏo∫ÁÊ úÓmÀ| Æ úu∫uáu∫uo ÃÓYåÁÆ{ uå∫ƃu™nÆutåÁ üúu`Yo™Ω @@ ååÏ ÆsÁ ¬ÁzN˛z ƒwqÀÆ ƒwqÁão∫ÁnÃ\ÁoyÆßzt: u∆¬ÁutoÁz uƒ\ÁoyÆßzt: úfiúÏ…ú¢˛¬ÁutåÁ ÀƒToßzt≥Á uÃÚÀosÁ úÓmD| uú uNÊ˛ å ÀÆÁutunÆÁ∆ÊMÆÁ“ @@
202
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÃÓfi™Ω @@2@@ LN˛™zƒÁu˚oyÆ™Ω ƒwu:@@ ¬ÁzNz˛ ÆsÁ ƒwqz Ã\ÁoyƃwqÁão∫ßzt: ÀƒToúfiúÏ…ú¢˛¬Áut ßzt≥Á uƒ˘oz os{ƒ úÓmD| uú üÁõoÀÆ ÆsÁN¿˛™Ê uåƒÁ∫N˛™Ω <
ƒwu:@@ úu∫uá: ™lg¬∫zQÁ, EÁƒ∫m™Áƒ∫m∆uO˛:, osÁ Y úu∫uáÃtw∆Áƒ∫m∆uO˛nÆs|: @ ÆsÁ ßÓ©ÆÁN˛Á∆Ãuãáøúúu∫uá∫åão ∫ƒÀoÏÀƒøú™ÁXZÁ˘ o[rÁåÊ üuo§ÜåÁuo o˚tÁƒ∫m∆uO˛∫uú úÓm|rÁåÊ üuoªmÒynÆÁ∆ÆzåÁzOÊ˛ úu∫uá∫Áƒmu™uo @ uƒ˘™ÁåƒÀnƒåƒßÁÃå Ùs|nƒ™Áƒ∫m∆uO˛¬qmu™uo ßÁƒ: @ uƒqzú∆uO˛Àƒøú™Á“ @@ ÃÓfi™Ω @@4@@ ufißÏ\Ê uƒqzú:
203
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
ƒwu:@@ ufiß\Ö∆y uƒqzú∆unO˛u∫nÆs|: @ Euƒ˘™Áå ƒÀnƒƒßÁÃå Ùs|nƒÊ uƒqzú∆unO˛¬qmÊ ufißÏ\Átzƒzo∫YN¿˛ÁmÁ™Ïnúu t∆|åÁu˚qzú ∆unO˛øúnƒÊ ufißÏ\ÀÆzuo ßÁƒ: @@
204
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÃÓfi™Ω @@7@@ Ã|YN¿˛Ã™u…bøúÁz uƒ∫ÁbΩ
Es ÃÓfl™ßÓouåøúm™Á“ @@ »Î
ŸÎ
ÃÓfi™Ω @@5@@ ú`Yoã™ÁfiÁmÎu¸ÆÁum D
F C H
G
ƒwu:@@ úØÁoã™ÁfiÁum ú`Y ÙufißÏ\Áuå, Fuã¸ÆÁum rÁåzuã¸ÆÁum N˛™zu| ¸ÆÁum ümúØÁNÊ˛ Y ÃÓYÆÊuo @ üÁmúØÁN˛™uú ÃÓfl™ßÓoN˛ÁÆ|nƒzåuz ã¸Æ ∆£tzå Tw÷o Fuo ßÁƒ: @ oã™ÁfiÁlÆzƒ ú`YÃÓfl™ßÓoÁuå ÃÓYÆuão @@
ƒwu:@@ ÃÁ|um ÆÁuå YN¿˛Áum ƒwufißÏ\ÁutßztußÁëÁÁuå @ oz ÁÊ Ã™u…bøúÊ oÏ §“Ïuƒá™Ω @ bΩN˛ÁzmƒwÁn™N˛™zNÊ˛ ú`YN˛Ázm™ÁãÆXY @@ ÃÓfi™Ω @@8@@ §¿÷YN¿˛u™uoNz˛uYoΩ ƒwu:@@ Ã|YMÙu…bøúÊ §¿÷YN¿˛u™uo Nz˛uYoΩ @≥ÁzoÁ≥Ázo∫∆ÁuQÁåÁz ƒtãoynÆs|: @ Es \yƒÀƒøú™Á“ @@
Es úØÁyNw˛oßÓoÀƒøú™Á“ @@ ÃÓfi™Ω @@9@@ u§ãtÏåƒN˛ƒwÊ \{ƒÊ YN¿˛™Ω ÃÓfi™Ω @@6@@ ™“ÁufiN˛ÁzmÁuå ßÓoÁuå ƒwu:@@ åƒu§ãtÏÃu“oÊ ƒwøúÊ YN¿˛Ê \yƒÀƒøúu™nÆs|: @ ofi u§ãtÏåƒNÊ˛ –≈Æoz, oÀ™ÁoΩ u§ãtÏåƒN˛u™uo √ƃuŸÆoz @ åƒ u§ãtƒ: tz“Às åƒ∫ãá¿Áum ÃÓYÆuão @@ \yƒÀƒøúuåøúmÁåão∫Ê u“∫lÆTß|Àƒøú™Á“ @@ ÃÓfi™Ω @@10@@ ƒwufiN˛ÁzmÊ u“∫lÆTß|:
ƒwu:@@ ú`Yoã™ÁfiÁznúëÁÁuå ú`Y™“ÁufiN˛ÁzmÁãÆzƒ ú`Y™“ÁßÓoÁuå ÃÓYÆuão √Æu…bÀƒøú™ußáÁÆ Ã™u…bÀƒøú™Á“ @@
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
205
ƒwu:@@ uqßÏ\Ãu“oƒw™zƒ u“∫lÆTß|ÀƒøúÊ ßƒuo @ u“∫lÆTq|ÀÆ uƒqzúÁƒ∫møú∆unO˛˚ÆÆÏnO˛nƒzå ƒwufißÏ\ÆÁz∫Áƒ∫m uƒqzú∆unO˛øúnƒÁ˚ ufiN˛ÁzmÁn™N˛nƒÊ u“∫lÆTß|ÀÆzuo ßÁƒ: @@
206
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
úÓm|™y™ÁÊÃÁt∆|åz ÃwuNz˛ YoÏsÁ|uŸN˛üÁ∫©ß: úÓmz|æÁ∫ÆÁz: Àƒøú™ußáÁÆ oÆÁzƒÁ|YN˛™Á“ @@ ÃÓfi™Ω @@1@@ oÀÆ ƒÁYN˛: ümƒ:
Es u“∫lÆTß|ÀƒøúÊ uåøõÆz≈ƒ∫ÀƒøúÊ uåøúÆuo @@ ƒwu:@@ oÀÆ úÓm|ÀÆzæÁ∫ÀÆ ƒÁ ƒÁYN˛ÁzDußáÁåÊ ümƒ: üNw˛…bÁz åƒ: úÏ…N˛¬ÀoÁzfiu™nÆs|: @ mÏ ÀoÏoÁuƒuo áÁoÁz: @ Æ˚Á üÀoÓÆozDåÆÁ §¿÷zuo ümƒ: @@
ÃÓfi™Ω @@11@@ ƒw™yæÁ∫ F|æÁ∫:
N˛ÁzDÆÊ ümƒ- Æzå §¿÷ üÀoÓÆoz FnÆÁN˛ÁgΩqÁÆÁÊ oÀÆ ˚{uƒÜÆ™Á“ @@ ÃÓfi™Ω @@2@@ ÃÊPÆÁøúÁz ƒm|øú≈Yzuo
ƒwu:@@ úu∫uáúu∫ƒwoo¬ÀƒøúÊ ƒw™Ω @ úu∫uáåÁ|™Áƒ∫m∆unO˛:, o¬Ê Y{oãÆÊ, osÁ å >>™ÁÆÁÊ oÏ üNw˛uoÊ uƒ˘Áã™ÁuÆåÊ oÏ ™“zæÁ∫<< u™uo«ÁwnÆÁ ÆsÁYÁƒ∫m∆unO˛øú™ÁÆÁúu∫ƒwonƒ™yæÁ∫ÀÆ o˚núu∫uáøúÁƒ∫m∆unO˛nƒzå ƒwÀÆzæÁ∫Àƒøúnƒu™uo ßÁƒ: @ u˚øunO˛∫ÁuŸN˛úu∫ÙÁõoÁ{ @@ Fuo »yúÓm|™y™ÁÊÃÁt∆|åz owoyÆÁuŸN˛ƒwu: ÙÁõoÁ @@ ✦✬✦
ƒwu:@@ u˚uƒáÁz u“ Ã: @ úÓƒÁz|nO˛§¿÷ƒÁYN˛: ümƒ: u˚üN˛Á∫: @ ÃÊPÆÁÆoz DåÆzuo, ÃÊPÆÁ EWî: øúÊ ÆÀÆ Ã: ÃÊPÆÁøú: åƒåÁ™N˛ÁzDWî LN˛: @ ƒlÆ|ozDåÆzuo √ÆÏnúÆÁ ƒm|: Eq∫: øúÊ ÀƒøúÊ ÆÀÆ Ã: ƒm|øú: CN˛Á∫Áz u˚oyÆ Fuo @ Y∆£t: ÙÏÄÁÆÁs|: @ Fuo∆£t: uå≥ÁÆÁs|: @ ÃÊPÆÁåÁÊ ™ÜÆz åƒÃÊPÆÁ, ƒmÁ|åÁÊ ™ÜÆz CN˛Á∫≈Yzuo ümƒÀÆ ˚{uƒÜÆu™uo uåm|Æ: @ ååÏ CN˛Á∫ÀÆ ümƒnƒÃãtz“Áz åÁuÀo @ «ÁwuoÀ™wnÆÁut Ï Ãƒ|fi uƒ˘™ÁånƒÁoΩ @ N˛sÊ åƒÃÊPÆÁÆÁ: ümƒnƒuÃuÜtu∫uo YzoΩ @ GXÆoz @ üNw˛…bÁz åƒ: ümƒ Fuo √ÆÏnúnÆÁ åƒÃÊPÆÁuú §ÁzÜt√ÆÁ <<Ænú∫: ∆£t: Ã∆£tÁs|:<< Fuo ãÆÆÁoΩ @ uNÊ˛ Y <<¬ÁzN˛ÁƒToÙs|: ∆£tÁz ƒzztzDuú §ÁzáN˛:<< Fuo ãÆÁÆzå √ÆÏnú‹ÆåÏÃÁ∫zm ƒztÁs|ÀÆ ƒm|åyÆnƒzå N˛u≥Átuú tÁz : é߃uo @ uNÊ˛ oÏ u\rÁÃÓåÁ™ÏúN˛Á∫ÁÆ{ å ߃uo @ <<»Ïuo™oÀoN˛Áz| åÏ ÃãáyÆoÁ<< u™uo ßÁ…ÆN˛Á∫é™oz: @ EoÁz åƒÃÊPÆÁÆÁ: ümƒÁnƒÊ ÆÏnO˛™zƒznÆ¬Ê üNw˛oÀÆ @@ F|æÁ∫ÀƒøúÊ, o˚ÁYN˛ÀÆ Àƒøú˚ÆÊ Y éÆMüuoúÁ˘ ƒÁXƃÁYN˛ÆÁz: u˚uƒáøúƒÁXÆ ÆÁz≥ÁÁuƒåÁßÁƒÃ©§ãáÊ üuo\Áåyoz @@ ÃÓfi™Ω @@3@@oÆÁz∫uƒåÁßÁƒ :
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
207
ƒwu:@@ oãfizmÁzÄÁu∫o™zonÃÓfi™Ω @ oÆÁz: ƒÁXƃÁYN˛ÆÁz∫uƒåÁßÁƒ: é§ãá Lƒ @ EußáÁåoãfi ™ußázÆu™uo ãÆÆÁoΩ @ oÆÁz: ÃÊPÆÁøúƒm|øú ümƒÆÁz∫õÆuƒåÁßÁƒ Lƒ é§ãá: @@ åãƒußáÁåoãfi™ußázÆu™uo ãÆÁÆÁ˚ÁXÆÀÆ §¿÷YN¿˛ÀÆ ƒÁYN˛ÀÆ ümƒÀÆ YÁuƒåÁßÁƒzDÀoÏ @ N˛s™nƒãouƒø˚nƒzå üoyÆ™ÁåÆÁz: ÃÊPÆÁ ƒm|ÆÁz∫uƒåÁßÁƒ Fuo YztÏXÆYz @@
208
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÃÓfi™Ω @@6@@ oÀ™Á{ u“ oãfi™Ω ƒwu: @@ ÆÀ™Á˚ÁXƃÁYN˛ÆÁz∫uƒåÁßÁƒ: oÀo™Á{ ÃÊPÆÁ§y\∫zQÁ: oãfiÊ ÃÁáåÊ o‹ƒÁãƒz m FnÆs|: @ oãfiu™uo \ÁoÁƒzN˛ƒYå™Ω @ “yuo uå≥ÁÆÁs|:@@ ÃÊPÆÁƒm|ÆÁ{: N˛Á∫mÁn™åÁDuƒåÁßÁƒÁz uåøuúo: @ N˛ÁÆÁ|n™åÁuú oÆÁz∫uƒåÁßÁƒÊ üt∆|ÆåΩ ümƒN˛ÁÆÁ|mÁÊ Àƒøú™Á“ ÃÓfiN˛Á∫: @@
ÃÓfi™Ω @@4@@ N˛Á∫m{MÆÁoΩ ÃÓfi™Ω @@7@@ ümƒÁt…büNw˛oÆ: oÁ•ÆÁz2ÆÊ üúØÁ: ƒwu:@@ osÁuú ÃÊPÆÁƒm|øúÆÁz: ƒÁYN˛ÆÁz: N˛Á∫mÁn™åÁ ƒÁXÆÁn™åÁ LN˛nƒÀÆ uƒ˘™ÁånƒÁtuƒåÁßÁƒÁz2uƒªÜt LƒznÆs|: @ EuƒåÁßÁƒz ü™Ám™Á“ @@ ÃÓfi™Ω @@5@@ »wo≥Á z≥Á ƒwu:@@»Ïoz: »ÏuoüuÃÜtz∫uú oÆÁz∫uƒåÁßÁƒu™nÆs|: @ YN˛Á∫ÁnÀ™wuo üuÃuÜt∫uú ÃÓXÆoz @@ o˘sÁ @ <
ƒwu:@@ ümƒÁ˚ÁYN˛øúÁutnÆs|: @ ÃÊPÆÁøúÁnümƒÁt…büNw˛oÆ:, LN˛ã˚zfiyumYnƒÁu∫úØÁ bΩ ÃõoÁ…bÁuƒnÆ…bÁgΩN˛Á: @ Eq∫øúÁtÁzWîÁ∫ÁtN˛YboúÆ∆Á FnÆ…bƒmÁ| GnúëÁÁ Fuo útÁÜÆÁ“Á∫: @ oÁ•Æ: üNw˛uo•ÆÁzDÆÊ Ã˙ ÃÊPÆÁn™NÊ˛ ƒmÁ|n™NÊ˛ Y üúØÁ: uƒ≈ƒ™ÏnúëÁu™nÆÜÆÁ“Á∫: @@ ümƒÁnN˛sÊ üNw˛uouƒNw˛oyåÁ™ÏnúëÁu™uo YztÏXÆoz @@ ÃÓfi™Ω @@8@@ úu∫mÁ™ÁoΩ ƒwu:@@ TÏm“Á∫øúuƒN˛Á∫ÁutnÆußüÁÆ: @@ úu∫mÁ™¢˛¬™Á“ @@ ÃÓfi™Ω @@9@@ oÁÃÁ™ÏúYÆÁúYÆÁ{ ƒwu:@@ úu∫mÁ™ÁutnÆåσwu: @ oÁÃÁÊ üNw˛uouƒNw˛oyåÁ™ÏúYÆÁúYÆÁ{ ƒwuÜtŸÁ uƒnÆs|: @ TÏmzå ƒwuÒ: “∫zm–ÁÃ≈Yzuo uƒßÁT: @@ úu∫mÁ™ÀÆÁú ƒÁt™Á“ @@ ÃÓfi™Ω @@10@@ oÁ{ åzo∫o: úÓm|ÀÆzuo §ÁzáÁåÁãt: ƒw u :@@ oÁ{ TÏ m “Á∫üÆÏ O ˛ƒw u Üt“ÁÃÁ{ úÓ m | À Æz o ∫o: Àƒzo∫ÃÊPÆÁNw˛oTÏm“Á∫o: å ߃o Fuo §ÁzáÁåãtßÁ∫nÆÁYÁÆ|: ™ãÆoz @ §ÁzáÁåãtT¿“mÊ úÓ\Ás|™Ω @ üÃÊTÁåÏüÃOΩ ÆÁDúuooÊ ∆ÓãÆƒÁt™Á∆ÊMÆ uå∫ÁN˛∫Ázuo @@
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
209
ÃÓfi™Ω @@11@@ oÁ{∆ÓãÆnƒu™uo YzëÁÁåãnÆüuÃÜtz: ƒwu:@@ ƒwøúÁgΩN˛ÀÆ ∆ÓãÆnƒÊ oÏXZnƒ√ƃ“Á∫ Fuo YzoΩ, å oëÁé߃uo @ Nw˛o Fuo YzoΩ @ oÀÆ EÁåãnÆüuÃÜtzuƒ|˘™ÁånƒÁutnÆs|: @ åãƒÁåãnÆüuÃuÜt: ƒw˚Æuƒu∆…bÁgΩN˛ÀÆ{ƒ å oÏ ƒwÀÆzuo YztÏXÆoz @ ∆ÓãÆnƒ™ÁÆoÀÆ @ EÁÆoƒwøúÁgΩN˛ÀÆ{ƒ ∆ÓãÆnƒ√ƃ“Á∫: @ å oÏ ƒw øúÀÆzuo uƒßÁT: @ uNÊ˛ oÏ ¬zQN˛ü™Át\uåotÁz ߯ÁtåãoÀÆ uƒu∆…bnƒ √Æútz∆: √ÆÁƒ“Áu∫N˛: @ å oÏ ƒÀoÏo FnÆtÁz : @ oÁƒã™Áfizm ƒwøúÁgΩN˛ÀÆ ∆ÓãÆnƒÊ N˛¡úÆo: √Æs|üÆÁÃ: ÀÆÁoΩ @ EoÁz å ∆ÓãÆnƒÁtÁúúuu∫u∫o ∫ÁÁÜtÁão: @@ åãƒÁÆoÀÆÁuƒ ƒwnƒ√ƃ“Á∫: @ N˛sÊ oÀÆ ∆ÓãÆnƒ√Æútz∆ Fuo YztÁ“ ÃÓfiN˛Á∫: @@ ÃÓfi™Ω @@12@@ ™ÁuÆN˛nƒÁtÁÆoÀÆ YÁÆoÀÆ ƒwu:@@ EÁÆoƒwÀÆ ™ÁuÆN˛nƒÁã™ÁÆÁN˛ÁÆ|nƒÁoΩ @∆ÓãÆnƒu™nÆåσuw : úӃà | fiÓ ÁoΩ @ >>∆ÓãÆÊ ™ÁÆÁN˛ÁÆ|<< u™uo üoyoz: @@ Y N˛Á∫ÁnúÓmn| ƒ√Æútz∆ÁzDuú ß¿ãnÆÁ ÆÏ[Æo Fuo @ úÓm|u™ƒ–≈Æo FnÆÁÆÏoÀÆ úÓm|nƒ√Æútz∆: @ å oÏ úÁ∫™Ás|o: @ N˛Á∫má™Á|: N˛ÁÆz| ÃgΩN¿˛Á™ãoyuo ãÆÁÆÁoΩ @ EoÁz å tÁz : @ EåÏO ÃÏXÆoz ÙÏÄÁÆÁs|≥Á∆£t: @ o˘sÁ @ u§ãtÏ≈∆ÓãÆ™Ω @ u§ãtÏ: ÀsÁå√ƱÁN˛ÁzDmÏÖ∆ÁzDƒÆƒ uƒ∆z : @ u§ut EƒÆƒ Fuo áÁoÁz: @ ∆ÓãÆÊ oÏ oÏXZnƒ√ƃ“Á∫˘ÁzoN˛u™nÆs|: @ Nz˛ ÏuYnütz∆z Ï u§ãtÁz∫uú ∆ÓãÆnƒ√Æútz∆ FnÆußüÁÆ: @ ÃÊPÆÁ™Óuo|∆z ÁÊ∆≥Á @ ÃÊPÆÁ™Óuo|∆z ÁÊ∆ÀÆõÆüÆÁz\ånƒÁoΩ ∆ÓãÆnƒ√ƃ“Á∫ Fuo úÃzÜt:, Eo: ∆ÓãÆÀÆ{oÀÆ u§ãtÏu∫uo ÃÊPÆÁ™Óuo|∆Áz ÁÊ∆ Fuo Y √Æútz∆ FnÆußüÁÆ: @ Eåão™oyo™Ω @ EåãoÀÆ úÓm|ÀÆ uånÆuÃÜtÀÆ √ƃ“Á∫Áoyonƒ™zƒzuo uå≥ÁÆ: @@
210
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
»yúÓmu| y™ÁÊÃÁt∆|åz ÃwuNz˛ ú`Y™ÁuŸN˛™Ω üs™u˚oyÆ–oyÆYoÏsÁ|uŸNz˛ Ï úÓmÀ| ƒøúÁutNÊ˛ Ã˙ üúu`Yo™Ω @ FtÁåÎ T¿ãsüÆÁz\åÊ úÓm|u\rÁÃÀÆ ¢˛¬Ê Y uåøúuÆoÊÏ úØÁ™ÁuŸN˛™Á∫•Æoz @@ ÃÓfi™Ω @@1@@ Lo˚{ ™“Ázúuå oΩ ƒwu:@@ LotÁuŸN˛YoÏ…bÆÁn™NÊ˛ úÓm|™y™ÁÊÃÁt∆|åÊ ™“Ázúuå nÀƒøú u™nÆs|: @ ™“nƒÊ YÁÀÆÁu˚oyƃÀoÏüuoúÁtN˛nƒzå ƒ{∆£tÁzDnÆãoÁuo ∆Æ˘ÁzoåÁÆ @@ åãƒÀÆÁu˚oyÆÁú∫zq§¿÷üuoúÁutN˛ÁåzN˛∆ÁQÁßztußëÁÁzúuå túzqÆÁ N˛sÊ ™“ƒu™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@ ÃÓfi™Ω @@2@@ ots|t∆|åÁoΩ ƒwu:@@ oÁÃÁ™Ïúuå tÁÊ ÆÁzDs|: onüuoútN˛nƒÁutnÆs|: @ åãƒÀÆÁõÆÏúuå ts|üuoúÁtN˛nƒz oÁÃÏ Ãoy Ï uN˛™s|™úÓƒÁzD˙ ÆÊ uN¿˛Æo FnÆÁ∆gΩMÆ uå záuo @@ ÃÓfi™Ω @@3@@ uN˛ão÷|ÃuãtSá: ƒwu:@@ o÷|ÀÆ T¿ãsÀÆ ÃN˛¬Ázúuå ts|üuoúÁtN˛nƒz uNÊ˛ üÆÁz\åu™uo YztÃuãtSá™Ïúuå tÁÊ ÃuãtSáÁs|nƒzDõÆÀÆÁ ÃuãtSánƒÁtÁt∫myÆu™uo ßÁƒ: @@ “znƒão∫™Á“ @@ ÃÓfi™Ω @@4@@ ÃÁ™yõÆÁoΩ ƒwu:@@ ÃÁ™yõÆÁt√ƃu“oN˛Á∫mnƒÁutnÆs|: @ út§y\ÃÊPÆÁåÁÊ ú∫©ú∫ÆÁ “zoÏnƒzDuú ∫zQÁÆÁ: ÃÁqÁÜtzoÏnƒÁutuo ßÁƒ: @@ E√ƃu“onƒ™zƒÁ“ @@
Fuo úÓm|™y™ÁÊÃÁt∆|åz YoÏsÁ|uŸN˛ƒwu: ÙÁõoÁ @@ ✦✬✦
ÃÓfi™Ω @@5@@ útƒy\ÃÊPÆÁ∫zQÁmÁ™Ï∫Áz∫Ê §¬yÆ: ƒwu:@@ útÊ «ÁwuoÀ™wnÆÁutT¿ãsøú™Ω @ §y\Ê ™ãfiøú™Ω @ ÃÊPÆÁ
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
211
212
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
N˛ÁutåƒznÆÁut üuÃÜtÁ @ ∫zQÁ Y YN¿˛ÁutøúÁ @ oÁÃÁ™Ï∫Áz∫Ê §¬yÆ: úÓm|rÁåÊ üuoúÓƒ|úÓƒÁ|úzqÆÁ G∫Áz∫Ê §¬yÆ: ÃÁqÁnN˛∫mu™nÆs|: @ ååÏ ÃÊPÆÁÆÁÀÃ|fiÁåÏÀÆÓonƒzå oÀÆ Lƒ NÏ˛oÁz å üÁáÁãÆu™uo YzëÁ ÆsÁ VbN˛ÁutNÊ ˛ üuo ™w t ÀÃÁáÁ∫mnƒz D uú N˛úÁ¬ÁåÁÊ ÃÁqÁÜtz o Ï n ƒÊ o˚nÃÊPÆÁÆÁÀÃ|fiÁåÏÀÆÓonƒzõÆÃÁáÁ∫mN˛Á∫mnƒÊ ∫zQÁÆÁ LƒznÆÁƒztuÆoÊÏ út§y\zuo ÃÏfi™ÏO˛™Ω @@
úÓ m | u ™tÊ úÓ m Á| n úÓ m | ™ Ï t XÆoz úÓ m | À Æ úÓ m | ™ ÁtÁÆ úÓ m | ™ z ƒ Áƒu∆…Æoz o˚{onú≈ÆëÁwu ƒÁ|™tzƒ: üuoúztz E“Ê ™åÏ∫߃™Ω<< ÃÓÆ≈| YznÆÁutN˛™Ó“åyÆ™Ω @ Lzotzƒ <<§¿÷uƒtÁõåÁzuo ú∫<< u™nÆÁtÁ{ Twÿo Fuo ßÁƒ: @@
ÃÓfi™Ω @@6@@ FtÊ oÏ úÁ∫™Áus|N˛™Ω ƒwu:@@ FtÊ úÓm|™y™ÁÊÃt∆|åÊ úÁ∫™Áus|NÊ˛ ú∫™Ás|§ÁzáN˛™zƒ oÏ∆£tzå ƒztÁãoÁåÁÊ ofi ofiãÆÁs|N˛nƒzDõÆ{N˛ÁÊ∆§ÁzáN˛nƒÊ ÃÓXÆoz @@ åãƒÀÆú∫™Ás|§ÁzáN˛nƒz Fo∫ÁÊ∆rÁåÊ N˛su™nÆÁ∆gΩN˛ÁÆÁ™Á“ @@
ƒwu:@@ ÃÁz|nNw˛…bÊ útÊ úÓm|rÀÆ ÃÓYÆuo @ À™wuo≥Á <
ÃÓfi™Ω @@7@@ Ã|™ãÆÍÁt∫ÁÆmÁoΩ ƒwu:@@ Ã|™ãÆoΩ úÓmr | ÁåÁtãÆnÃ˙ §Át∫ÁÆmÁoΩ √ÆÁÃÁtƒTão√Æu™uo ∆z : @ √ÆÁÃümyoƒztÁãot∆|åz Ã|™oÁåÁ™ÏúãÆÀonƒzå otΩTã¿ á\Á¬Ê tw…bûÁ rzÆu™uo oÁnúÆÁ|s|: @@ ååÏ uY∫N˛Á¬Ê »ƒmÁutåÁ úÓm|rÁåz \Áoz uNÊ˛ üÆÁz\å™åzåznÆÁ ∆gΩN˛ÁÆÁ™Á“ @@
å Nz˛ƒ¬Ê «Áwuo: uNÊ˛ oÏ À™wuo∫úynÆÁ“ @@ ÃÓfi™Ω @@10@@ À™woz≥Á
¢˛¬Áão∫™Á“ @@ ÃÓfi™Ω @@11@@ EåÁƒwu∫åÁƒwu: ƒwu:@@ úÓm|uƒt: EåÁƒwu: úÏå∫Áƒw‹ÆßÁƒ Lƒ ߃oyuo∆z : @ ofi »Ïuo\Á¬Ê <
ÃÓfi™Ω @@8@@ úÓm|uƒnúÏm|™zƒ ߃uo ™gΩT¬Ê ™“: @@ ƒwu:@@ úÓm|uƒoΩ úÓm|råy úÏm™zƒ úÓm|Àƒøú™zƒ ߃oyuo ÃÁ™ãÆz åúÏÊÃN˛™ @@
\TËÏ ª »yN˛¡ÆÁmÁåãtßÁ∫oy ™ÁãoÁYÁÆ| ÀƒÁu™ uƒ∫uYoÊ úÓm™| y™ÁÊÃÁt∆|å™Ω
úÓm|uƒt: úÓm|Àƒøúnƒz ü™ÁmÊ t∆|Æuo @@ “u∫: C onÃoΩ ÃÓfi™Ω @@9@@ ∆wonƒÁXY ƒwu:@@ ∆wonƒÁoΩ ∆wnÆÁ üuoúÁ˘™ÁånƒÁutnÆs|: @ »Ïuo≥Áfi <<úÓm™| tÊ:
The original Sanskrit text was written in Telugu script. It was rewritten in Devanagari script by Gurjada Suryanarayana Murthy, Hyderabad.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
213
8(n) nqTã+<Ûeä TT ` 1 y˚<ë+‘· |ü]uÛ≤cÕ|ü<ä $es¡DeTT n
: es¡dí eü ÷ïj·T+˝À yÓTT≥ºyTÓ T<ä{Ï es¡eí TT. ˇø£ X¯u≤›ìøÏ eTT+<äT #˚]‘˚ <ëìøÏ e´‹πsø±s¡+ú #ÓãT‘·T+~. n~ ˝Òøb£ ˛e≥yÓTHÆ ê ø±e#·Tà ˝Òø£ ø±ø£b˛e≥yÓTHÆ ê ø±e#·TÃ. (ñ<ë :n$y˚ø+£ , n$#ês¡+) n˝≤π> nø±j·T eTÁeDeTT n+fÒ ø±j·T+ ø±ì<äì ÁeD+ø±ì<äì ns¡+ú . n+fÒ dü÷\ú dü÷ø£àå X¯Øsê\T s¬ +&É÷ ø±ì Ä‘·à #Ó‘’ q· ´+. n nH˚<˚ ªz+μ ø±s¡+˝À yÓTT<ä{Ï nø£så +¡ . nq>± dü÷\ú X¯ØsêìøÏ C≤Á>∑±Vü≤´ : Á>±Vü ≤ ´+ ø±ì~. nq>± @ Ç+Á~j· T +‘√ |ü ≥ Tº ø √sêì~. Incomprehensible. Ä‘·à‘·‘·Ô«+. ªj·T‘·< Ô Áä <˚X´¯ eTÁ>±Vü≤´yéTμ n>√#·s¡ : >√#·s+¡ ø±ì~. >√ n+fÒ Ç+Á~j·T+ ˝Ò<ë C≤„q+. <ëì |ü]~Û˝À ñ +fÒ n~ >√#·s¡+. Objective to knowledge. n˝≤ ø±≈£î+fÒ n>√#·s+¡ . Ç+Á~j·÷r‘·eTì uÛ≤e+. n#·\ : #·*+#·ì~. ø£<\ä ì~. dæsú y¡ TÓ qÆ ~. ªÄ‘·à‘·‘«Ô· +μ. ªn#·˝Àj·T+ düHê‘·q'μ n∫+‘·´ : ∫+‹+#·&ÜìøÏ ˝Ò<ë eTqdüT‘√ }Væ≤+#·Tø√e&ÜìøÏ X¯ø´£ yÓT‘Æ ˚ ∫+‘·´+. }Vü‰ø£r‘·yTÓ ‘Æ ˚ n∫+‘·´+. Unthinkable. n» : » ` »ìà+#˚~. n»`»qà˝Òì~. Unborn. Ä‘·à. ø±s¡DeTT+fÒ <˚ìø¬ q’ »qà ø£\T>∑T‘·T+~. Ä‘·à≈£î ø±s¡D+ ˝Ò± e<äT\Tø√e&É+. ñ<ë ' }s¡+‘ê |ü>\∑ ã&ç q$«+~. }]øÏ ã<äT\T }]˝À ñqï »qT\ì ns¡+ú #Ó| ü ø√yê*. Ç~ »Vü≤‘·TÔ \ø£åD+. n˝≤ø±ø£ Ä ‘Ó\¢~ |üs¡T¬>&ÉT‘·Tqï~ nqï|ü &ÉT ‘Ó\¢>∑TÁs¡eT~. n+<äT˝À ‘Ó\T|ü⁄qT e~˝Òj·T >∑÷&É<äT <ëì‘√ düVü‰ >∑TÁs¡eTì ns¡+ú . Ç~ n»Vü≤‘Y \ø£D å +.
214
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
nC≤j·Te÷e : ªnC≤j·Te÷y√ ãVüQ<Ûë $C≤j·T‘˚μ ` »ìà+#·≈£î+&ÜH˚ nì ns¡ú+. »ìà+#·≈î£ +&ÜH˚ ãVüQs¡÷bÕ\˝À uÛ≤dædTü qÔ ï~. n<˚ Ä‘·à‘·‘«Ô· +. n‘·sÿ¡ ´ : ‘·]ÿ+#·sêì~. }Væ≤+#·sêì~. Ä‘·à‘·‘Ô «· +. ªn‘·sÿ¡ ´eTDT Á|üe÷DyéTμ nì XÊÁdü+Ô . nr+Á~j·T : Ç+Á~j·÷\≈£î >√#·s+¡ ø±ì~. Incomprehensible. Ç+Á~j·TeTT\T ˝Òe⁄ ø£qTø£ Ä‘·à dü«s¡÷|ü+. n<ä«j·T/n<Ó’« ‘· : <ä«j·T+ ø±ì~ <Ó«’ ‘·+ ø±ì~. n+fÒ s¬ +&Ée~ ˝Ò± Je⁄&ÉT ˝Ò&TÉ »>∑‘T· ˝Ô <Ò Tä , áX¯«s¡T&ÉT˝Ò&TÉ . n~«rj·T : ª@ø£yT˚ yê~«rj·TyéTμ. s¬ +&Ée~ ˝Ò∑‘· uÛ<Ò ë\T ˝Òì<äì n<Ó«’ ‘· dæ<ë∆+‘·+. nÁ<˚X¯´ : n<äèX¯´eTì uÛ≤e+. ø£fifl¯ ≈£î ø£qã&Éì~. |üse¡ ÷‘·à‘·‘Ô «· +. n<äèwüº : ø£qã&Éì~. eTq+ #˚düT≈£îqï ø£s¡à|òü\+. n~ eTs¡D+ es¡≈£L |ò ü * ‘· $ Te«<ä T . ø£ q ã&É ≈ £ î +&Ü eTs¡ D ≤q+‘· s ¡ + eTq‘√bÕ≥T ˝Àø±+‘·eTT\≈£î »Hêà+‘·sê\≈£î e∫à nø£ÿ&É <äèwüºyÓTÆ eTq≈£î |òü*‘·$TdüTÔ+~. BìH˚ ªn|üPs¡«μeTì MTe÷+dü≈£î\T #Ó|ü⁄‘ês¡T. Ä‘·à#Ó‘’ H· ê´ìøÏ ≈£L&Ü n<äèwüeº Tì ù|s¡T. ªn<äèwüyº Té qVæ≤ <äèX¯´‘˚.μ n<Û´ä ekÕq / : ìX¯Ãj·÷‘·àø£yÓTÆq C≤„q+. Ä‘·àC≤„q ìwü˜. A strong coviction n<Û´ä ekÕj·T : regarding the supreme self. e´ekÕj·TeTì≈£L&Ü Hêe÷+ ‘·s+¡ ø£\<äT. ªe´ekÕj·÷‹àø±ãT~∆'μ. Ç~ ÁX¯eDeTqHê\ ‘·sT¡ yê‘· ø£*>π eT÷&Ée<äX.¯ C≤„qìwü.˜ n<Ûë´dü/n<Ûë´s√|ü : Super Imposition ˇø£ |ü < ës¡ ú + MT<ä eTs=ø£ < ëìï ‘Ó∫Ã|ü&yÉ j ˚ T· &É+. n+<äT˝À yÓTT<ä{~Ï edüTeÔ ⁄. Substance. s¬ +&Ée~ edüTeÔ ⁄ ø±<äT. <ëì nuÛ≤dü Appearance. ñ<ë : »\+MT<ä ‘·s+¡ >∑+, ãT<äT“<ä+ (ãT&É>)∑ yÓTT<ä˝q’… $. á nHê‘·à Á|ü|+ü #·eT+‘ê Ä‘·à#Ó‘’ q· ´+ MT<ä n<Ûë´s√|üeTsTTq<äì n<Ó’«‘·T\+{≤s¡T. Ä‘·à n~ÛcÕ˜qyÓTÆ‘˚ basic nHê‘·à n<Ûë´s√|æ‘+ · . nHê‘·à Ä‘·à MT<äHø˚ ±<äT. yÓTT<ä≥ nHê‘·à Ä‘·àMT<ä nsTT+~. <ëì ø£V≤ü +ø±s¡eTì ù|s¡T. <˚V‰ü ‘êà_Ûe÷qeT+fÒ Ç<˚. ‘·sT¡ yê‘· eTs¡˝≤ nHê‘·à Ä‘·àMT<ä nsTT+~. eTeTø±s¡eTì Bìq+{≤s¡T. Ç<ä+‘ê ndü\T »s¡T>∑˝<Ò Tä . uÛ≤eH˚ Notional n+{≤s¡T n<Ó«’ ‘·T\T.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
215
n<Ûë´‘·à / n~Ûu÷ÑÛ ‘·/ : eTqdüT‡≈£L X¯Øsêìø° dü+ã+~Û+∫+~ n<Ûë´‘·à. u≤Vü≤´+>± n~Û∑‹ ` Äπø|å +ü ` düe÷<Ûëq+. nq+‘· : n+‘·+ ˝Òì~. Vü≤<äT˝› ìÒ ~. $C≤rj·T uÛ≤eyÓTø£ÿ&É m<äTs¡e⁄‘·T+<√ nø£ÿ&É n+‘·+ @s¡Œ&ÉT‘·T+~. ñ<ë' |üè~∏$øÏ »\+ $C≤rj·T+ nø£ÿ&çø£~ n+‘·+. nHê‘·à Á|ü|+ü #·+˝À ˇø£ $X‚cÕìøÏ eTs=ø£ $X‚w+ü $C≤rj·T+. ø£qTø£ n˙ï ˇø£<ëìø=ø£{Ï n+‘·y˚T. n˙ï kÕ+‘·y˚T. n˝≤ø±ø£ mø£ÿ&çøø£ ÿ£ &É ‘Ó–b˛ø£ nìï $X‚cÕ\q÷ yê´|æ+∫q<˚<√ n~ nq+‘·+. <ëìH˚ kÕe÷q´eTì Universal nì ù|s¡T. ã+>±s¡T q>∑\˝À ã+>±s¡+ nìï{≤ yê´|æ+∫ j·TT+≥T+~. n~ nVü≤eTH˚ Ä‘·à#Óq’ ´+. ndæuÔ ≤Û ‹ nH˚ yê´|æ˝Ô ìÒ $X‚wyü T˚ particular ˝ÒT∑ DyÓT‘Æ ˚ n|üs+¡ , ø±s¡´ÁãVü≤àeTì, X¯ã\ ÁãVü≤àeTì n+{≤s¡T. BìH˚ áX¯«s¡T&ÉT God n+{≤s¡T. nbÂs¡Tùwj·T : bÂs¡Tùwj·TeT+fÒ |ü⁄s¡Twüß&ÉT ø£*Œ+∫+~. ø£*Œ+#·ì~ nbÂs¡Tùwj·T+. Super human. e÷qey˚T<Ûd ä Tü ‡≈£î nr‘·yTÓ qÆ ~. Beyond mind. y˚∑T]Ô+#·&+É . eTs¡T>∑Tq |ü&qç Ä‘·à ‘·‘êÔ«ìï eTs¡˝≤ ÁX¯eD eTqHê<äT\‘√ >∑T]Ô+#·&+É . n˝≤ #˚dqæ yê&ÉT n_ÛE&„ TÉ . neTTÁ‘· : ÇVü≤+ ø±ì~ |üs¡+. á ˝Àø±ìøÏ dü+ã+~Û+∫q~ ◊Væ≤ø£eTT. |üs˝¡ Àø±ìøÏ dü+ã+~Û+∫+~ neTTÁ‘· ˝Òø£ ÄeTTwæàø£+. ÇVü‰eTTÁ‘· |ò\ü uÛÀ>∑+ : ÇVü‰ìøÏ |üsêìøÏ dü+ã+~Û+∫q ø£sà¡ |ò˝ü ≤ìï nqTuÛ$Ñ +#·&+É . ø£sà¡ #˚dTü ≈£îH˚ ø=B› |ò˝ü ≤qTuÛeÑ + ÇVü≤|üsê\˝À ‘·|Œü ìdü]. ø±ì n<Ûë´‹àø£
216
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
kÕ<Ûqä ˝À Ç~ nyê+#Û˙· j·T+. kÕ<Û≈ä î£ &ÉT $s¡øÔÏ #Ó+<ë*. Ç˝≤+{Ï $ø±s¡+ kÕ<Ûqä #·‘T· wüj º ÷· \˝À ˇø£{.Ï n$<ä´ : $<ä´ ø±ì~. $<ä´ n+fÒ C≤„q+. eTTK´+>± ÁãVü≤àC≤„q+ ˝Ò<ë Ä‘·à C≤„q+. n~˝Òøb£ ˛‘˚ nC≤„q+. eTq≈£îqï C≤„qeT+‘ê $X‚wü C≤„qy˚T. Ç~ düeTdü´≈£î |ü]cÕÿs¡+ ø±<äT. ñ<ë' mH√ï $wüj÷· \qT ‘Ó\TdüTø√e&É+. y˚<ë+‘·T\T Bìì $<ä´ nì C≤„qeTì nq˝Ò± #ÓbÕŒs¡T. y˚*∑ –‘˚ Ç~ Ä‘·à dü«s¡÷|üyT˚ . n˝≤ø±ø£ k˛bÕ~Ûø£yÓTÆ‘˚ n~ nHê‘·à ne⁄‘·T+~. ø£s¡Ôès¡÷|üyÓTÆq~ nVü≤+ø±s¡yÓTÆ‘˚ kÕøÏås¡÷|üyÓTÆq #Ó’‘·q´eTT Ä‘·à. nVü≤+ø±sêìïø£ÅsêÔ‘·à n+{≤s¡T y˚<ë+‘·T\T. Ç~ ∫<ëuÛ≤düT&˚ ø±ì øπ e\ ∫Á<ä÷|ü+ ø±<äT. n+fÒ Je⁄&ÉH˚ ns¡ú+. Ç˝≤+{Ï Je⁄&çH˚ Ä‘·à nì ÁuÛÑ$TkÕÔs¡T |üPs¡«MTe÷+dü≈£î\T. Ä‘êà : H˚qT nH˚ uÛ≤e+ düTŒ¤sD ¡ . Consciousness. n<˚ dü«s¡÷|üeTT á nHê‘·à Á|ü|+ü #êìø£+‘·{øÏ .° ø£qTø£ Ä‘·à n+fÒ dü«s¡÷|ü+ self or É . ∫‘·TÔ ñqï≥T¢ düTŒ¤]+#·&+É . Ç$ s¬ +&˚ substance. dü‘T· Ô ñ+&É&+ Bì \ø£åD≤\T. Ç$ Ä‘·àH˚ø±ø£ <ëìøÏ >√#·]+#˚ nHê‘·à≈£î ≈£L&Ü ø£ì|ækÕÔsTT. ø√{Ï Ä‘·àHê‘·à\T>± uÛ≤dæ+#˚ s¬ +&É÷ ìC≤ìøÏ Ä‘˚àqì n<Ó«’ ‘·T\ dæ<ë∆+‘·+. BìH˚ @ø±‘·à düsê«‘·à nì n+{≤s¡T. Ä‘êàHê‘·à $y˚øe£ TT : Ä‘·à@<√ nHê‘·à @<√ ‘˚&Ü ‘Ó\TdüTø√e&É+ <˚ùV≤+Á~j·÷<äT\ <ä>sZ∑ ¡ qT+&ç u≤Vü≤´ Á|ü|+ü #·+ es¡≈L£ á nHê‘·à‘√ @ø£yTÓ bÆ ˛sTT+~. ndü˝q’… Ä‘·àqT <ëì qT+&ç y˚s¡T #˚j·÷*. á y˚s¡T #˚j·T&Éy˚T ªkÕ+K´ jÓ÷>∑μeT+{≤s¡T. uÛ>Ñ e∑ BZ‘˝· À kÕøÏ>å ± uÛ≤$ùdÔ Ä‘·à. kÕø£´å yÓT‘Æ ˚ nHê‘·à. Äq+<ä : q+<äeTHêï, Äq+<äeTHêï düTKeTì ns¡+ú . Ç~ $wüjT· »q´+ ø±<äT. $wüjT· s¡÷|üyTÓ qÆ Ä‘·à»q´+. ‘Ó‹’ ØÔ j·T+˝À Äq+<ä+ >∑T]+∫q MTe÷+dü
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
Çwæº Äes¡D
217
m≈£îÿe>± ø£\<äT. eTqTcÕ´q+<ä+ qT+&ç |üsÁ¡ ãVü≤àkÕúsTT es¡≈L£ mH√ï Äq+<äu÷ÑÛ $Tø£\T e]í+#ês¡T. -ªôdc’ Õ---q+<äd´ü MTe÷+kÕuÛeÑ ‹μμ nì j·TTe≈£î&ÉTqT, kÕ<ÛäTe⁄qT, y˚<ë<Ûä´j·Tq dü+|üqTï&ÉTqT, XÊdæ+|ü düeTs¡T&ú TÉ qT, <äè&Û>É ±Á‘·T&ÉTqT, ã*wüß&˜ TÉ qT, #·‘T· kÕ‡>∑s¡ |ü]y˚w‘ºæ +· ã>∑T |üè~∏$q+‘·qT düø˝£ X’… «¯ s¡´eTT\#˚ |ü]bÕ*+#·Tyê&ÉTq>∑T kÕs¡«uÖeTT&çì (#·Áø£e]Ô) jÓTTø£ÿ Äq+<äeTT e÷qTcÕq+<äeTTq≈£î Hê<äsÙ¡ eTT. 1. n≥Te+{Ï j·÷q+<äeTT ˇø£ e÷qTcÕq+<äeTT. 2. q÷s¡T eTqTcÕ´q+<äeTT\T ` ˇø£ eTqTwü´>∑+<Ûsä ê«q+<äeTT 3. q÷s¡T eTqTwü´>∑+<Ûsä ê«q+<äeTT\T ` ˇø£∑+<Ûsä ê«q+<äeTT 4. q÷s¡T <˚e>∑+<Ûsä ê«q+<äeTT\T ` ˇø£ |æ‘è· <˚e‘êq+<äeTT 5. q÷s¡T |æ‘è· <˚e‘êq+<äeTT\T ` ˇø£ nC≤q<˚e‘êq+<äeTT 6. q÷s¡T nC≤q<˚e‘êq+<äeTT\T ` ˇø£ ø£sà¡ <˚e‘êq+<äeTT 7. q÷s¡T ø£sà¡ <˚e‘êq+<äeTT\T ` ˇø£± ∫e]kÕ]>± e÷qe⁄ìøÏ #˚ùd~. : es¡DeT+fÒ ø£|Œü &É+. #·T{Ïyº &˚ j É T· +. nìïyÓ|’ ⁄ü \ qT+N ø£eTTà≈£î+fÒ n~ Äes¡D+. e÷j·÷X¯øÏÔ≈£îqï ¬s+&ÉTeTTU≤\˝À Ç~ yÓTT<ä{Ï~. düTwüß|æ˝Ô À ø£ì|ædTü +Ô ≥T+~. Ä‘·à #Ó‘’ H· ê´ìï nø£ÿ&É u§‹Ô>± ø£qã&É≈î£ +&Ü ø£|Œæ y˚d+æ ~ e÷. Ç~ nHê~. n$<ä´. yêdüHê X¯Øs¡eTì, ø±s¡D X¯Øs¡eTì Bìπø ù|s¡T.¢ Äes¡D Ä‘·àC≤„Hêìï ˝Ò≈î£ +&Ü #˚ùdÔ BìøÏ _Ûqï+>± $πø|å eü TH˚~ nHê‘·à »>∑‘T· qÔ T ãj·T≥ô|&ÉT‘·T+~. yÓTT<ä{~Ï contraction s ¬ +&Ée~ distraction. JeuÛ≤yêìøÏ ˇø£{,Ï »>∑<들yêì ø=ø£{Ï <ë] rkÕÔsTT.
218
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Äes¡D`$πø|å Xü ≈¯ î£ \Ô T : 1. Äes¡DX¯øÔÏ : edüTeÔ ⁄qT Äe]+∫ ˝Òìq≥T\ #˚jT· Tq~. Ç~ s¬ +&ÉT $<Ûeä TT\T n) ndü‘êÔ«es¡DeTT : edüTeÔ ⁄ ˝Ò∑‘·TÔ≈£î u≤Vü≤´+>±, Ä+‘·s¡´+>± #˚]<ëìï ‘·q eX¯+˝À ñ+#·Tø=ì q&ÉT|ü⁄#·Tqï~ áX¯«s¡T&˚. Äj·TqqT n+‘·sê´$T nì n+{≤s¡T. ªªáX¯«s¡' düs«¡ uÛ÷Ñ ‘êHê+ Vü≤è<˚X› μ‚ μ nì ^‘êe#·q+. ‘·q e÷j·÷X¯øÏÔì nBÛq+˝À ñ+#·Tø=ì düèwæº, dæú‹, \j·÷<äT\T #˚düTÔqï yê&ÉT me&ÉT ø£\&√ yê&˚ áX¯«s¡T&ÉT. ªáXÊyêdü´$T<ä+μ nì áXÊyêk˛´|üìwü‘T· Ô e#·q+. Ç<ä+‘ê áX¯«s¡Tì #˚‘H· ˚ yêdæ‘+· nsTT ñqï~ ø£qTø£ eTq+ Bìì áX¯«s¡uÛ≤eq‘√H˚ #·÷&Ü\+≥Tqï~ ñ|üìwü‘T· .Ô |üse¡ ÷‘·à y˚sT¡ áX¯«s¡T&ÉT y˚sT¡ . ìs¡TD Z ‘·‘«Ô· yÓT‘Æ ˚ n~ |üse¡ ÷‘·à ˝Ò<ë ÁãVü≤à+. n~ dü>T∑ DyÓTÆ »>∑Hêï≥ø£+ ìs¡«Væ≤ùdÔ áX¯«s¡T&ÉT. e÷j·÷X¯øÔÏ ìs¡TDZ +˝À >∑T|üyÔ TÓ Æ ñ+≥T+~. áX¯«s¡T&ç˝À Á|üø≥£ yÓTÆ n‘·ìøÏ nBÛq+˝À düècÕº´<äT\T #˚dTü +Ô ≥T+~ nì s¡V≤ü dü´+. l \*‘êdüV≤ü Ádü Hêe÷\˝À áX¯«Ø |ü<+ä #ê˝≤ #√≥¢ edüT+Ô ~. Ç<˚ ns¡+ú ˝À. ñ|ü<Ûëq/ñbÕ~Û : ˇø£<ëì˝À eTs=ø£<ëìï ñ+#·&+É . Ç$ s¬ +&É÷ edüTeÔ ⁄˝Ò n+{≤s¡T ˝À≈£î\T. $T>∑‘ê XÊÁdüÔE„\T. ñ<ëVü≤s¡D≈£î ã\¢MT<ä |ü⁄düÔø£+ ñ +#·T‘˚, ã˝≤¢yêdüÔy˚T, |ü⁄düÔø£eT÷ yêdüÔey˚T. Çø£ÿ&É ã\¢ Ä<Ûës¡yÓTÆ‘˚ <ëìMT<ä ô|{Ïqº |ü⁄düøÔ +£ ñbÕ~Û. ø±ì n<Ó«’ ‘·+ Bì q+^ø£]+#·∑+. C˝≤ìøÏ y˚sT¡ >± dü«‘·+Á‘·yTÓ qÆ |ü<ës¡+ú ø±<äT. »\y˚T ‘·s+¡ >∑+>± uÛ≤dædTü qÔ ï~. ø£qTø£ »\+ MT<ä ñbÕ~Û>± Äs√|æ‘y· TÓ qÆ ~ »\y˚Tqì #Ó|Œü e\dæ ñ +≥T+~. »\+ Á<äe´yÓT‘Æ ˚ substance. ‘·s+¡ >∑+ <ëì s¡÷|ü+ (Form).
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
z+ø±s¡+
>∑‹
>∑TD
219
s¡÷|ü+ Á<äyê´ì¬ø|ü &É÷ y˚sT¡ ø±<äì n<Ó«’ ‘·T\ dæ<ë∆+‘·+. ø£qTø£ ñbÕ~Û n+fÒ nuÛ≤dü nì ns¡+ú #˚dTü ø√yê*. ñbÕ~Û <ë«s¡eTT Medium. Á|üD≤[ø£ nì ≈£L&É ns¡+ú ø£\<äT. HêeTs¡÷bÕ\T #Ó‘’ H· ê´ìøÏ ñbÕ<ÛTä \T. <˚ùV≤+Á~j·÷<äT\T Ä‘·à≈£î ñbÕ<ÛTä \T. n+fÒ ˝À|ü* #Ó‘’ q· ´+ M{Ï <ë«sê Á|üd]ü düTqÔ ï<äì, edüTeÔ ⁄ Á|üd]ü +#˚ kÕ<Ûqä y˚T ñbÕ~Û nH˚ e÷≥ø£s+ú¡ . : ªk˛Vü≤+μ nH˚ e÷≥˝À düø±s¡ Vü≤ø±sê\T ˝À|æùdÔ n~ ªz+μ nsTT+ <ä+{≤s¡T. dü' nVü≤+ k˛Vü≤+. yê&˚ H˚qT. n+fÒ Ä áX¯«s¡T&˚ H˚qT. Hê≈£î yê&çø° uÛ<Ò +ä ˝Ò<ìä uÛ≤e+. Ç~ nqTuÛyÑ êìøÏ ‘Ó#T· Ãø√e{≤ìøÏ Bìï eT÷&ÉT esêí\T>± $uÛõÑ +#ês¡T. n`ñ`eT. ªnμ nH˚~ C≤Á>∑∑]D° dü«|ü+r ‘Ó»’ kÕ‹àø± düTbÕÔ ÁbÕC≤„‹àø± ‘·Tsê´ esê«ekÕú $e]®‘êμ nì e]í+#ês¡T. dü+øπ ‘êìï ñ#·Ã]+#˚≥|ü &˚ nekÕúÁ‘·j÷· ìï n+<äT˝À ã+B nsTTq Je⁄DÏí uÛ≤eq#˚dæ ø£&|É ≥ ü eT ø±s¡eTH˚ Hê<äyTÓ ø£ÿ&É Ä–b˛‘·T+<√ <ëìï ‘·TØj·÷edüú>± >∑T]Ô+#·>∑*–‘˚ n|ü &˚ Je uÛ≤eeT+‘ê m–]b˛sTT Je⁄&ûX¯«s¡T&˚ nH˚ @ø±‘·àuÛ≤e+ nqTuÛÑyêìøÏ edüTÔ+~. ø£qTø£H˚ ªz$T‘˚´ø±ø£så +¡ ÁãVü≤à yê´Vü≤s¡Hé e÷eTqTdüàs¡Hμé nì ^‘· uÀ~Û+∫+~. ªz+μ nH˚~ <ëìøÏ øπ e\yÓTTø£ Ä\+ãq+ ˝Ò<ë Á|ürø£. Symbol. : >∑eTq+. b˛e≥+, q&Ée≥+, <äX,¯ Stable nedü.ú Ç+‘˚ø±ø£ C≤„qeTì ≈£L&Ü ˇø£ ns¡+ú ø£\<äT. ªnqq´Áb˛πøÔ >∑‹s¡Á‘·HêdæμÔ Çø£ÿ&É n>∑‹ nì $]∫ #ÓbÕŒs¡T. n>∑‹ n+fÒ C≤„q+ ˝Òø£b˛e&É+. düeTs¡Tú&Ó’q yê&ÉT uÀ~ÛùdÔ C≤„q+ ˝Ò≈î£ +&Ü b˛<äì uÛ≤e+. ªkÕø±cÕº kÕ|üsê>∑‹'μ n+fÒ ne>∑‹j˚T >∑‹ nì uÛ≤wü´+˝À e]í+#ês¡T. ne>∑‹ n+fÒ C≤„qy˚T. n<Ó«’ ‘·+˝À C≤„yT˚ nqTuÛeÑ +. : Á<äe´+ ‘ê\T≈£î <Ûsä à¡ +. Quality, property or a substance. |üè~∏$øÏ >∑+<Û>ä T∑ D+ ø£\<äT. dü‘«· , s¡» düeÔ TdüT‡\H˚ Á|üøè£ ‹ >∑TD≤\T ≈£L&Ü ø±e#·TÃ. HêeTs¡÷|ü ÁøÏj·T\T ≈£L&Ü (>∑TD≤˝Ò) ø±e#·TÃ. M{Ï‘√ ø£*dæq<Ó’‘˚ Ä‘·àdü>T∑ D+. ø£\eø£b˛‘˚ ìs¡TD Z +. Ç+<äT˝À ìs¡TD Z + dü«s¡÷|üyTÓ ‘Æ ˚ dü>T∑ D+ $uÛ÷Ñ ‹. >∑TDeT+fÒ nÁ|ü<ëÛ qyÓTqÆ <äì ≈£L&Ü secondary
220
>∑s“¡ ¤
>∑Ts¡÷|ü
>∑TVü≤´
∫‘Y/∫‹
#˚‘·Hé #Ó’‘·q´
#Û·Á‹Hê´j·T
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
nH˚ ˇø£ ns¡+ú ø£\<äT. Á|ü<ëÛ qyÓT‘Æ ˚ eTTK´eTì, nÁ|ü<ëÛ qyÓT‘Æ ˚ >∑TDeTì ù|s=ÿ+{≤s¡T XÊÁdü+Ô ˝À. : ñ<äs+¡ . ˝À|ü* uÛ≤>∑+. Væ≤s¡D´>∑s“¡ .¤ Væ≤s¡D´eT+fÒ dü«j·T+Á|üø±X¯yTÓ qÆ Ä‘·à #Ó‘’ q· ´+. n~ ‘·q˝À >∑T|ü+Ô >± ñqï yê&ÉT Væ≤s¡D´>∑sT¡ “¤&TÉ . Je⁄&ÉT düeTwæº Je⁄&ÉT. ÁãVü≤à<˚e⁄&ÉT. : jÓ÷>∑T´&Óq’ >∑Ts¡Te⁄ jÓ÷>∑T´&Óq’ •wüß´&çøÏ #˚ùd uÀ<Û.ä eTTK´+>± s¡V≤ü dü´yÓTqÆ ÁãVü ≤ à‘· ‘ êÔ « ìï •wü ß ´&ç nqTuÛ Ñ y êìøÏ ‘Ó # ˚ à Á|ü u À<Û ä + . Bìπ ø dü+Á|ü<ëj·TeTì, Ä>∑eTeTì ù|s¡T. Initiation. : >∑TVü≤˝À ñqï~. >√|ü´yÓTqÆ ~. s¡V≤ü dü´+. nìï{ÏøH£ êï s¡V≤ü dü´yÓTqÆ ~. Ä‘·à$C≤„q+. >∑TVü≤´+ ÁãVü≤à düHê‘·q+ nqïe÷≥. ªsê»$<ë´ sê»>∑TVü≤´+μ nì ^‘êe#·qeTT. The top secret nì ns¡+ú . l \*‘êdüVü≤ÁdüHêe÷\˝À |üs¡y˚TX¯«] >∑TVü‰´ (653) >√Å|”Ô (278) >∑TVü≤´s¡÷|æD° (743) yÓTT<ä˝q’… Hêe÷\˝À qT‹+#·ã&ÉT#·Tqï~. : #Ó’‘·q´+ consciousness. Self awareness H˚qTHêïqT nH˚ uÛ≤e+. Ç<˚ Ä‘·à. #Ó‘’ q· ´y˚T <ëì dü«s¡÷|ü+. Ä‘·à #Ó‘’ q· ´eTì ù|s=ÿq≥+, ø=j·T´ u§eTà nq≥+ ˝≤+{Ï~. s¬ +&É÷ ˇø£fÒ yêdüeÔ +˝À. nsTTHê yê´eVü‰]ø£+>± áe÷≥ e∫Ã+~. : #˚‘q· ø£*–q~. eTqdü‡H˚ ns¡+ú . C≤„qeTì ≈£L&Ü (n<Ó«’ ‘·T\T) ns¡+ú . ªdüT#˚‘ê'μ n+fÒ eT+∫ C≤„q+ ø£\yê&ÉT. : Consciousness dü÷Œ¤],Ô düTŒ¤sD ¡ , C≤„q+. n<Ó«’ ‘·T\T #Ó‘’ q· ´eT+fÒ ÁbÕD+ ø±<ä T C≤„ q + awareness n+{≤s¡ T . l\*‘ê düV≤ü ÁdüHêe÷\˝À |üsy¡ T˚ X¯«] á#Ó‘’ q· ´+ ∫‹` Ç˝≤ nH˚ø£ Hêe÷\˝À qT‹+|üã&ÉT#·Tqï~. : |ü~eT+~ #ÛÁ· ‘ê\T <Û]ä +∫yÓfió¯ ‘·T+fÒ ˇø£&øç Ï #ÛÁ· ‘·+ ˝Òøb£ ˛sTTHê n+<ä]˙ ø£*|æ #ÛÁ· ‹ nì n+{≤s¡T. n˝≤π> Jy˚X«¯ s¡T*<äs› ÷¡ X¯Øs¡+˝À ñ+&ç ø£sà¡ |ò\ü + nqTuÛ$Ñ düTHÔ êïs¡ì #Ó|Œæ Hê Je⁄&˚ ø±ì áX¯«s¡T&ÉT Ä ø£sà¡ |ò\ü + nqTuÛ$Ñ +#·&+É ˝Ò± rdüTø√eTHêïs¡T yê´U≤´‘·\T. nq>± #ÛÁ· ‘·+ ˝Òì yê&çøÏ ≈£L&É #ÛÁ· ‹ nH˚ ù|s¡T e∫Ãq≥T¢ ø£sà¡ |ò\ü eTT+&Éø£ b˛sTTHê áX¯«s¡TDÏí ≈£L&Ü Je⁄&ç‘√ »‘·#d˚ æ e]í+#ês¡ì uÛ≤e+.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
221
: ÁbÕD+. Life, living being. <˚V≤ü + es¡øπ |ü]$T‘·yTÓ qÆ n<˚Hq˚ ì ‘ê<ë‘·à´+ identity #Ó+~q Ä‘·à #Ó‘’ q· ´+. Bìπø Jyê‘·à nì ù|s¡T. ø£sèÔ¡ ‘·«eT÷, uÛÀø£èÔ ‘·«eTT Bì \ø£D å ≤\T. #˚ùdyê&É÷ nqTuÛ$Ñ +#˚yê&É÷ Je⁄&ÉT. BìøÏ $\ø£åDyÓTÆq kÕøÏå #Ó’‘·Hê´ìøÏ |üs¡e÷‘·à nìù|s¡T. n+‘·'ø£s¡D≤e∫äqï`n+‘·'ø£s¡D Á|ü‹_+_‘· Ä‘·à #Ó’q´eTT. Jyê‘·à |üse¡ ÷‘·à nuÛ<Ò ä C≤„qy˚T eTTøÏÔ kÕ<Ûqä eTT. nVü≤ n»Vü≤ »Vü≤<ä »Vü≤\¢øDå£ eTT\T : »Vü≤\¢ø£åDeTT : Á|üe÷D≤+‘·s¡ $s√<Ûeä TT e\q eTTU≤´s¡eú TTqT d”«ø£]+|üø£ ‘ê‘·Œsê´qT Á>∑TDeTT>± eTTU≤´s¡eú TT‘√ dü+ã+<Ûeä TTø£\ nHê´s¡eú TTqT Á>∑V≤æ +#·T≥ »Vü≤\¢øD å£ eTT. ñ<눈 >∑+>±j·÷+ |òTü Àwü' ( >∑+>∑jT· +<äT >=\¢|˝ü ¢… ø±ø£ >∑+>± rs¡eTTq >=\¢|˝ü j ¢… T· ì ns¡eú TT.) n»Vü≤\¢øDå£ eTT: yêø±´s¡eú TTqT $&ÉTeø£jT˚ j·THê´s¡eú TTqT rdüTø=ìq n»Vü≤\¢øD å£ eTT. (ñ<눈 XÀD√<Ûëe‹' XÀD nq s¡øeÔ£ s¡eí TT. >∑TDyê#·øe£ TT. >∑TDeTT n#˚‘q· eT>∑T≥#˚ <ëìøÏ <ÛëeqÁøÏj÷· ø£sèÔ¡ ‘·«eTT ≈£î<äs<¡ Tä . ªs¡øÔ£ es¡eí TT |üsT¡ >¬ ‘·T#Ô T· qï~μ nqT ns¡eú TT bıdü><∑ Tä . n+<äTe\q ‘ê‘·Œs¡´ dæ~ø¬∆ ’ yê#ê´s¡úeT>∑T s¡ø£Ôes¡íeTTqT M&Éø£ s¡ø£Ôes√í ù|‘·eT>∑T nXÊ«~ #˚‘·q |ü± Á>∑V≤æ +|üe˝…qT. n|ü⁄Œ&ÉT mÁs¡ì >∑TÁs¡eTT |üsT¡ yÓ‘T· #Ô T· qï~ nqT ns¡eú TT e#·TÃqT. »Vü≤<ä»Vü≤\¢DeTT :yê#ê´s¡eú TT˝À yêø£´ ‘ê‘·Œs¡´ $s¡T<ë∆+X¯eTTqT $&ç∫ ‘·~‘·sê+X¯eTTqT e÷Á‘·eTT Á>∑V≤æ +#·T≥ »Vü≤<ä»Vü≤\¢øDå£ eTT. ñ<ë' k˛2j·T+~«»' |üPs¡«eTT Á>±e÷+‘·s¡eTTq #·÷∫q Áu≤Vü≤àDT&˚ Ç|ü⁄Œ&ÉT eTs¡\ Ç+ø=ø£#√≥ #·÷dæq, ªn‘·&˚ sT÷ Áu≤Vü≤àDT&ÉTμ nì #Ó|⁄ü Œ<äTs¡T. dü'R (n‘·&TÉ ). á |ü± Ä<˚Xe¯ TTq, Äø±\eTTq |üs√ø£eå TT>± qTqï Áu≤Vü≤àDTì ìπs•› +#·TqT. nj·T+RÇ‘·&ÉT. ª‘·‘«Ô· eTdæμ nqï|ü &ÉT ‘·‘Y |ü<ës¡yú TÓ qÆ |üse¡ ÷‘·à˝À ‘·«+ |ü<ës¡yú TÓ qÆ Jyê‘·à˝À |ü]∫äqï‘·«+ |üs√ø£å‘·«+ nH˚ $s¡T<ä∆ <Ûäsêà\T eTqdüT‡≈£î ‘Ó#T· Ãø√ø£ #Ó‘’ q· ´eTH˚ kÕe÷q´<Ûsä êàìï e÷Á‘·yT˚ |ü≥Tº≈î£ ì Ç<äs› ÷¡ @ø£eTH˚ JeÁãVü≤à ◊ø±´ìï uÛ≤$+#·&yÉ T˚ á »Vü≤<ä/»Vü≤/\ø£D å Á|üj÷Ó »q+. C≤„qeTT : s¬ +&ÉT $<Ûeä TT\T 1) eè‹Ô Á|üjT· Tø£Ô C≤„qeTT nq>± dü$wüjT· ø£eTT. 2) dü«s¡÷|ü C≤„qeTT R Ç~ ì]«wüjT· ø£ C≤„qeTT. |üse¡ ÷‘·à dü«s¡÷|üyTÓ qÆ ~.
Jyê‘·à
222
C≤„qeTT
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
: Ç+ø=ø£ $<Ûeä TT>± eT÷&ÉT $<Ûeä TT\T>± Á|üd<æ e∆ä TT. 1) XÊÁdüÁÔ |ür‹ : u…\e¢ TT eT<ÛTä s¡eTT>± qT+&ÉTqì XÊÁdüeÔ TT\ <ë«sê ‘Ó\TdüTø=qT≥ 2) >∑Ts¡TÁ|ür‹ : <ä÷s¡eTT>± u…\e¢ TTqT #·÷|æ+∫ $e]+#·T≥ e\q ø£\T>∑T C≤„qeTT 3) Ä‘·à Á|ür‹ : u…\e¢ TTqT ‹ì dü«j·TeTT>± eT<ÛTä sêqTuÛ÷Ñ ‹ì bı+<äT≥. Ç~ $C≤„qeTT. C≤„q X¯u≤›seú¡ TT ` dü«s¡÷|üeTT : Ç~ eè‹Ô C≤„qeTì, dü«s¡÷|ü C≤„qeTì ¬s+&ÉT $<Ûeä TT\T. 1) eè‹Ô C≤„qeTT : eTH√ yê´bÕs¡eTT\ <ë«sê e´ø£eÔ T>∑T C≤„qeTT. Bìì dü$wüjT· ø£ C≤„eTì ≈£L&É n+<äTs¡T. 2) dü«s¡÷|ü C≤„qeTT : #·≈îå£ sê~ Ç+Á~j·TeTT\ <ë«sê ‘Ó*j·Tã&ÉTqT. eTqdüT‡ u≤ùV≤´+Á~j·TeTT\≈£î dü+ã+~Û+#·ì n+‘·s‘Z¡ e· TT\>∑T düTK<äT'K uÛj Ñ T· sê>∑<«˚ wüeTT\‘√ nqTã+<Ûeä TT bı+~ H˚qT düTœì, H˚qT <äT'œì nì n+‘·s¡ C≤„q $X‚weü TT\qT Á|üø±•+|ü #˚jT· T#·TqïqqT n~ dü«s¡÷|ü C≤„qeTT ˝Òø£ ì]«wüjT· C≤„qeTT, ì]«ø£\Œ C≤„qeTT ˝Òø£ »„|eÔæ ÷Á‘· C≤„qeTT n+<äTs¡T. Je⁄&ÉT : yÓX’ Ê«qs¡T&ÉT R C≤Á>∑π |ò\ü +. M{ÏH˚ ªÁ|üe÷‘·è, Á|üyT˚ j·T, Á|üe÷D, Á|ü$T‹μ nì ≈£L&Ü n+{≤s¡T. C≤„qeT+fÒ Çø£ÿ&É ˝ÖøÏø£ C≤„q+ (common sense) ø±<äT, XÊÁdüÔC≤„q+ (Scientic sense) ø±<äT. ø£fi≤C≤„q+ (Aesthetic sense) ø±<äT. <Ûs ä à¡ C≤„qeTT (Religious sense) ø±<äT. Çe˙ï $X‚wü C≤„Hê˝Ò. Äj·÷ HêeTs¡÷bÕ\≈£î #Ó+~q C≤„Hê\ì ns¡+ú . M≥ìï{Ï˙ yê´|æ+∫ ($T+∫) ‘·q dü«s¡÷|ü+>± uÛ≤$+#˚ C≤„qyÓTTø£{Ï ñqï~. Ç$ $X‚wü C≤„qyÓT‘Æ ˚ n~ kÕe÷q´C≤„q+. Ç$ nHê‘·àC≤„qyÓT‘Æ ˚
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T (objective)
223
n~ Ä‘·àC≤„q+ Subjective. Ç~ ã+<ÛëìøÏ <ë]rkÕÔsTT. n˝≤ø±ø£ yÓ÷øå±ìøÏ #˚sπ à kÕ<Ûqä C≤„qy˚T ì»yÓTqÆ C≤„q+. BìøÏ _Û q ïyÓ T Æ q C≤„ H ê\˙ï C≤„ q + ø±<ä T . nC≤„ q eTì n+{≤sTT ñ|üìwü‘·TÔ\T. ‘·‘·Ô«C≤„qeTT : |üs√ø£eå TT, n|üs√ø£eå TT nì s¬ +&ÉT $<Ûeä TT\T. |üs√ø£Cå ≤„qeTT ' >∑Ts¡Te⁄ <ä>sZ∑ ¡ ≈£Ls¡TÃì y˚<ë+‘·+ $q&É+ e\q $#ês¡D e\q ø£*>π C≤„qeTT |üs√ø£+å . n|üs√ø£Cå ≤„qeTT ' >∑Ts¡T uÀ<Ûqä \ e\q ÁX¯eD eTqHê<äT\T #˚jT· T#·T Á>∑+<∏ä |üsq¡ƒ + e\q, Je⁄&ÉT ÁãVü≤àeTT ˇø£ÿ&˚ nì ìs¡sí TT+|ü#ù˚ d C≤„qeTT n|üs√ø£åeTT. ‘ê|üeTT\T : u≤<Û\ä T, ‘ê|üÁ‘·jT· eTT\T. Ä<Ûë´‹àø£ ‘ê|üeTT\T ' Ç#·≥ Ä‘·àj·Tq <˚V≤ü eTT dü÷\ú dü÷ø£àå <˚V≤ü eTTq≈£î dü+ã+~Û+∫q ‘ê|üeTT Ä<Ûë´‹àø£ ‘ê|üeTT. dü÷\ú <˚V≤ü ‘ê|üeTT\T : »«sê~ø£eTT\>∑T yê´<ÛTä \T. dü÷ø£àå <˚V≤ü ‘ê|üeTT\T : ø±eTÁø√<Ûë<äT\T. Ä~ÛuÖÛ ‹ø£ ‘ê|üeTT : uÛ÷Ñ ‘·eTT\ e\q ø£\T>∑T u≤<Û\ä T. <=+>∑\T, »+‘·Te⁄\T yÓTT<ä\>∑T yê{Ï e\q ≈£î\T>∑T u≤<Û\ä T. uÛ÷Ñ ‘·eTT\q>± Ç+Á~j·TeTT\≈£î ø£ì|æ+#Ó&$ç (ñ<눈 <=+>∑\T, |ü⁄\T\T yÓTT<ä˝q’… $.) Ä~Û <Ó$’ ø£ ‘ê|üeTT\T : n–ï, yêj·TTe⁄, dü÷s¡T´&ÉT, #·+Á<äT&ÉT yÓTT<ä\T>± >∑\ <˚e‘·\ e\q ø£\T>∑T ‘ê|üeTT\T (ñ<눈y˚&,ç #·*, es¡¸eTT) ‘·Ts¡´/‘·TØj·T : #·‘T· s¡´, #·‘T· Øj·T nH˚ e÷≥\˝À yÓTT<ä{Ï nø£så +¡ #·ø±s¡+ ˝À|æ+∫ á s¬ +&ÉT e÷≥\÷ @s¡Œ&ܶjT· +{≤s¡T uÛ≤cÕy˚‘\Ô· T. Hê\T>∑e<äì ns¡+ú . C≤Á>∑‘,Y dü«|üï, düTwüß|ü⁄\Ô T eT÷&É÷ <ë{Ï b˛sTTq ‘·sT¡ yê‘· ø£*>π ~ ø£qTø£ Hê\T>∑e~. @<√ø±<äT düe÷~Û <äX.¯ Fourth dimension. Ç<ä+‘ê <äèw溑√ø±ø£ nVü≤+‘ê<äèw溑√ #·÷ùdÔ nekÕúÁ‘·j·T+ ≈£L&Ü yêdüeÔ +˝À ‘·TØj·Ty˚T. Ä e÷≥≈£î eùdÔ ‘·TØj·Ty˚T ndü\Tqï<äX.¯ n<˚ nC≤„q eXÊ‘·÷Ô eTq≈£î nekÕúÁj·T+>± uÛ≤dædTü qÔ ï<ä+{≤s¡T n<Ó«’ ‘·T\T. C≤„H√<äjT· yÓT‘Æ ˚ nekÕúÁ‘·jT· y˚T eTs¡˝≤ ‘·TØj·T+>± eTq nqTuÛyÑ ê*øÏ sê>∑\<äT.
224
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Bìì l$<ë´ |üs¡+>± $X‚¢wæùdÔ l#·Áø£+˝À mì$T<äe Äes¡D düs«¡ dæ~Á∆ |ü<ä #·Áø£+. Á‹ø√D+ BìøÏ Á|ürø£. nÁ>∑ø√D+ C≤Á>∑± #ê‘·Ts¡«s¡í´ |üs¡+>± yÓTT<ä≥ X¯SÁ<ä, yÓ’X¯´, ø£åÁ‹j·T, <äX¯\qT+&ç Áu≤Vü≤àD <äX¯˝Òø£ Áu≤V”≤à<äX¯#˚s¡&É+ nqTø√e#·Tà ˝Òø£ yÓ÷ø£<å ëj·Tø£yTÓ qÆ <äX.¯ Á‹ø£s¡D : ø£sD ¡ eT+fÒ Ç+Á~j·T+. |üì #˚jT· &ÜìøÏ kÕ<Ûqä +. Instrument of ¡ eTì action. Ç~ eT÷&ÉT $<Ûë\T. ˇø£{Ï eTqdüT‡. Bìπø n+‘·'ø£sD ù|s¡T (The inner orgen). s¬ +&ÉT yê≈£îÿ (Speech). eT÷&ÉT ø±j·T+ ˝Òø£ X¯Øs¡+ (body). á eT÷&ç+{Ïe\¢H˚ Á|ü‹|ü˙ kÕ–b˛‘·Tqï~. ø£sà¡ qT Á‹ø£sD¡ X¯ó~∆>± #˚ùdÔ dü‘Œ· *¤ ‘·$TdüT+Ô ~. ø±≈£î+fÒ <äTwüŒ*¤ ‘êìïdüT+Ô ~. eT÷&ç+{Ï˝À @ø£yTÓ qÆ ‘·‘êÔ«H˚ï eTqdüT‡˝À <Ûë´ìdü÷Ô n<˚H√≥ ñ#·Ã]dü÷Ô Ä <äèw溑√H˚ X¯Øs¡ yê´bÕs¡+ kÕ–dü÷Ôb˛e&Éy˚T n<Ó’«‘·kÕ<Ûä≈£î&ÉT #˚jT· e\dæq kÕ<Ûqä . n<˚ yÓ÷ø£>å e∑ ÷´ìøÏ m|üŒ{Ïø¬ H’ ê #˚sT¡ düT+Ô ~. ‘Ó’»dü : ‘˚»düT‡ Á|ü<ëqyÓTqÆ Je⁄&ÉT. ‘˚»dü‡+fÒ Á|üø±•+#˚ düTŒ¤]+#˚ dü«uÛ≤e+. n<˚ eTqdüT‡. eTqdüT‡˝ÀH˚ e∫à Á|üy•˚ +∫+~ Je#Ó‘’ q· ´+. C≤Á>∑<ä edü˝ú À BìøÏ $X¯ó«&Éì, dü«bÕïedü˝ú À ‘Ó»’ düT&Éì, düTwüß|æ˝Ô À ÁbÕE„&ìÉ ù|s¡T.¢ dü«bÕïedü˝ú ÀqTqï Je⁄&˚ ndü˝q’… Je⁄&ÉT. |ü+#˚Á~j·÷\ø£ÿ&É |üì#˚j·Te⁄. düTwüß|æÔ˝À eTqùd \j·TeTe⁄‘·T+~. b˛‘˚ Ç+Á~j·T yê´bÕsê˝≤–b˛sTTHê eTH√yê´bÕs¡+‘√ ñqïyê&˚ dü«|üï+˝À ñqï á ‘Ó»’ düT&ÉT. <äèÁ>∑÷|üeTT : <äèX¯´eTT, <äèX¯´ Á|ü|+ü #·eTT jÓTTø£ÿ dü‘êÔ`dü÷Œ¤]Ô nqTuÛeÑ eTT\T. H˚Á‘·eTT e\q ø£\T>∑TqT. n+<äTe\q <äèX¯´ »>∑‘T· Ô jÓTTø£ÿ <äè≈£îÿ (Á<äwºü ` #·÷#·Tq~, <˚ì‘√ düeTdüeÔ TT #·÷&Éã&ÉTH√ j·T~ <äèø˘) H˚Á‘·eTT. á eTqdüT‡ ìX¯Ãj·÷‘·àø£ ãT~∆øÏ <äèX¯´eT>∑TqT. Äj·÷ $wüj÷· ø±s¡eTT\T>± |ü]D$T+∫q ãT~∆ eè‘·T\Ô T >∑÷&É kÕøÏj å T· >∑T Ä‘·à≈£î <äèX¯´eTT\>∑TqT. ø±q düs¡«Á|üø±X¯q düeTs¡Tú&ÉT, düs¡«kÕøÏåj·T>∑T Ä‘·àj˚T ª<äèø˘μ s¡÷|ü⁄&ÉT. <˚V≤ü eTT\T : e´wæº <˚V≤ü eTT\≈£î eT÷\eTT n$<ä´, düeTwæº <˚V‰ü <äT\≈£î eT÷\eTT e÷j·T. e´wæº <˚V≤ü eTT\T : düs«¡ ˝Àø£dúü düs«¡ JesêX¯ó\ jÓTTø£ÿ <˚ùV≤+Á~ j·÷<äT\‘√ ≈£L&ÉTø=ìj·TTqï |üsy¡ T˚ X¯«s¡Tì ($sê≥TŒs¡Twüßì) <˚ùV≤+Á~j·÷<äT\T.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
225
<äVü≤s¡`<äÁuÛÑ : ∫qï~. n\ŒyÓTqÆ ~. <äV≤ü sêø±X¯+ n+fÒ dü«\ŒyÓTqÆ U≤∞. Limited π |ü]$T‘Ó’ ø£ì|ædTü +Ô ~ space. mø£ÿ&É ñ+<ä~. Vü≤è<äjT· +˝À. Ä y˚Ts¡ø eTq C≤„q+ ø±˙ n~ Ä y˚Ts¡øπ ˝Ò± düs«¡ Á‘ê yê´|æ+∫ e⁄+~. Vü≤è<äjT· + øπ e\+ <ëìø=ø£ ñbÕ~Û. Medium. á ñbÕ~Û˝À n~ e´ø£yTÓ Æ Manifetst ø£ì|ædTü +Ô ~. Bìì ã{Ϻ <ëì eTVü≤‘êÔ«ìï eTq+ Á>∑V≤æ +#·e#·TÃ. Ç~ <äV≤ü sêø±X¯ eTsTT‘˚ n~ eTVü‰ø±X¯+ ˝≤+{Ï~. <äV≤ü sêìøÏ eTs√ù|s¡T <äÁuÛ+Ñ . Small, Limited, Congested nì ns¡+ú . <˚V≤ü : X¯Øs¡eTì ns¡+ú . <˚–∆ *+|ü‹ @<äsTT‘˚ |üPdæq≥Tº ø£|Œæ q≥Tº ø£ì|ædTü +Ô <√ n~ <˚V≤ü +. eTq Ä‘·à #Ó‘’ H· ê´ìï #·T≥÷º ø£|Œæ y˚dæ <ëìï ‘·q uÛÖ‹ø£ >∑TD≤\‘√ |ü⁄*$T |ü⁄#·TÑ·Tqï~. ø£qTø£ <˚V≤ü eTH˚ ù|s¡T BìøÏ kÕs¡øú +£ >± ô|{≤ºsT¡ . Ç<˚ eTq #Ó‘’ H· ê´ìøÏ ñbÕ~Û, *$T{Ÿ. dü÷\ú eTì dü÷ø£àå eTì ø±s¡DeTì Ç~ eT÷&ÉT s¡÷bÕ\T. eT÷&ç+{Ï˙ ‘êqT>± uÛ≤$+#·øb£ ˛‘˚ yê&ÉT dü<˚Vü≤ eTT≈£îÔ&ÉT. n~ ≈£L&Ü ÁbÕs¡ã∆+ B] sê*b˛‘˚ $<˚Vü≤ eTT≈£îÔ&ÉT. <Ûsä à¡ : <Ûës¡jT· ‹ <Ûës¡´‘˚. Ç‹ <Ûsä à¡ '. @~ Je⁄&ÉT <Û]ä kÕÔ&√ n+fÒ Hê~ nqTø=ì Ä#·]kÕÔ&√ Ä#·]ùdÔ @~ yê&çì n<äèwüºs¡÷|ü+>± <Ûä]+∫ ñ +≥T+<√ n~ <Ûäs¡à+. <˚Vü≤bÕ‘êq+‘·s¡+ e÷dæb˛≈£î+&Ü ˝Àø±+‘·s¡ »Hêà+‘·sê\≈£î rdüT¬ø[fl |òü˝≤qTuÛÑe+ ÇdüTÔ+~ Ç~. nqT≈£L\yÓTÆ‘˚ <Ûäs¡à+. Á|ü‹≈£L\yÓTÆ‘˚ n<Ûäs¡à+. $~Û#√~‘·yÓTÆq ø£s¡à <Ûäs¡à+. ˝ÖøÏø£+>± #˚ùdÔ ø£s¡à. XÊÁk˛Ôø£Ô+>± #˚ùdÔ <Ûäs¡à+. Duty enjoined by the scripture. <Ûs ä à¡ eT+fÒ Äj·÷ |ü<ësêú\≈£î+&˚ >∑TD≤\ì ≈£L&Ü Properties ns¡yú T˚ . düs«¡ <Ûsä êàHé |ü]‘·´»´ n+fÒ XÊÁk˛ÔøyÔ£ TÓ qÆ <Ûsä êà˝Ò ø±<äT. Á|ü|+ü #· <Ûsä êà˝…q’ HêeTs¡÷bÕ\qT ≈£L&Ü nì ns¡+ú . Á‹>∑TD≤\T ≈£L&Ü <Ûsä êà˝Ò. düs«¡ <Ûsä êàHé n+fÒ >∑TDÁ‘·j÷· ìï ≈£L&Ü ø±<äì Á‘√dæ|⁄ü ∫à ìs¡TD Z yÓTqÆ eTy˚Tø£+ n+fÒ @¬øø’ y£ TÓ qÆ Ä‘·à‘·‘êÔ«H˚ï X¯sD¡ + Áe» ÄÁX¯sTT+#·eTì kÕ<Û≈ä î£ &çøÏ ^‘· Ç#˚à dü\Vü‰. q+<ä : Äq+<ä nì ≈£L&Ü nqe#·TÃ. düTKeTì ns¡+ú . n~ ˝ÖøÏø+£ ø±e#·TÃ, n˝ÖøÏø£+ ø±e#·TÃ. $wüj·T »q´yÓTÆ‘˚ ˝ÖøÏø£+. Physical $wüj·T »q´yÓT‘Æ ˚ n˝ÖøÏø+£ . Spiritual. n˝ÖøÏøy£ T˚ XÊX¯«‘·+. <ëìøÏ u≤Vü≤´yÓTqÆ Á|ürø£ ˝ÖøÏø+£ . $C≤„q e÷q+<ä+ ÁãVü≤à. nHêïs¡+fÒ nø£ÿ&É n˝ÖøÏøy£ TÓ qÆ
226
ì‘·´ ì~Û<Ûë´dü
ìj·TeT
|üä bÕ<ä
bÕ<ä
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
düTKeTì ns¡+ú . Äq+<äeTø£ÿ&É >∑TD+>±<äT. dü«s¡÷|üyT˚ . n~ X¯Øs¡+˝À e´ø£yÔ TÓ ‘Æ ˚ Äq+<ä+ ø±<äT. Äq+<äeTj·T+. : m|üŒ{Ïø° ì*∫ ñ+&˚~. Eternal. e÷s¡TŒ ˝Òì~. Immutable. : ìs¡+‘·s<¡ ëÛ ´düHê ìØøÏ+å #˚ <äèwæ.º ì<Ûë´‘·T+ Ç#êä. ì|ò÷ü ô|{Ϻ #·÷&Ü\H˚ ø√]ø£. n<Ó«’ ‘· <äsÙ¡ HêuÛ≤´dü+˝À ÁX¯eD eTqHê\ ‘·sê«‘· eT÷&Ée~. ÁX¯eD+ nC≤„Hêìï b˛>=&ç‘˚ eTqq+ dü+X¯j·T ìeè‹Ô #˚ùdÔ Ç~ $|üs¡´j·TeTH˚ <√cÕìï ‘=\–düTÔ+~. $C≤rj·T eè‘·TÔ˝ÒM <ë&ç #˚j·T≈£î+&Ü düC≤rj·TyÓTÆq Ä‘êàø±s¡ eè‹ÔH˚ ì\u…fÒº nuÛ≤´kÕìøÏ ì~<Ûë´dü nì ù|s¡T. yÓTT<ä{Ï s¬ +&É÷ |üs√ø£å kÕ<ÛHä ê˝…‘’ ˚ Ç~ n|üs√ø£å kÕ<Ûqä + Ä‘·à kո屑êÿsêìøÏ. : ˇø£ $wüj÷· ìøÏ ø£≥Tº|&ü ≥ É +. XÊÁdü+Ô $~Û+∫q $<ÛTä \˝À ˇø±H=ø£ $~Û. ìj·TeT $~Û. ìj·TeT' bÕøÏøπå dü‹. ˇø£ ø±s¡´+ ˇø£ |üø+å£ ˝À ø±≈£îHêï eTs=ø£ |üø+å£ ˝À ‘·|Œü ø£ e]Ô+#·≥+. Á|üC≤„+ ≈£îØ«‘· Áu≤Vü≤àD'. Ä‘·àqT >∑T]Ô+#·{≤ìøÏ ø±≈£îHêï >∑T]Ô+∫q uÛ≤yêìï n˝≤π> ì\T|ü⁄ø√eTì #Ó|Œü ≥$T~. jÓ÷>∑ XÊÁdü+Ô ˝Àì ncÕº+>∑ e÷s¡+Z ˝À s¬ +&Ée eTõ©øÏ ≈£L&Ü ìj·TeTeTì ù|s¡T. j·TeT ìj·Te÷düq. : bÕ<ä+. ø±\T leg nì ˇø£ ns¡+ú . |ü<´ä ‘˚ Ç‹ bÕ<ä'. bı+<˚ kÕ<Ûqä +. n|ü &ç~ ñ|üøs£ D ¡ eTe⁄‘·T+~. bı+<äã&˚ kÕúq+ ≈£L&Ü nì #Ó_‘˚ >∑eT´ eTe⁄‘·T+~. The means and also the end. ˇø£{Ï >∑eTø£+. eTs=ø£{Ï >∑eT´+. Hê\T>∑e uÛ≤>∑eTì ≈£L&Ü Quarter ns¡yú T˚ . Ä‘·àqT #·‘T· cÕŒ‘Y nì e]í+∫+~ e÷+&É÷ø£´+. Hê\T>∑T bÕ<ë\THêïj·T≥ Ä‘·à≈£î C≤Á>∑‘Y ˇø£{.Ï dü«|üï+ s¬ +&Ée~. düTwüß|æÔ eT÷&Ée~. b˛‘˚ ‘·TØj·TyÓTqÆ düe÷~Û Hê\T>∑e~. yÓTT<ä{Ï eT÷&É÷ >∑eTø£+. n+fÒ #˚sπ à kÕ<ÛHä ê\T. Hê\T>∑e~ >∑eT´+. #˚sã¡ &˚ kÕúq+. bÕ<√dü´ düsê«uÛ÷Ñ ‘êì. Hê\T–+{Ï˝À ˇø£ uÛ≤>∑MT e´ø£yÔ TÓ qÆ Á|ü|+ü #·+ Ä‘·à≈£î. $T>∑‘ê eT÷&É÷ ne´ø£+Ô . neTè‘·+. Unchanged. |ü∑eT´+. Hê\T>∑e uÛ≤>∑+. nedü.ú State. ø£sD¡ ≤s¡+∆ ˝À nsTT‘˚ >∑e÷´ìï #˚sπ à kÕ<Ûqä +. ø£sêàs¡+ú ˝À nsTT‘˚ #˚sπ kÕúq+ ˝Ò<ë kÕ<Û´ä +. Destination. Ä‘·à≈£î #Ó|Œæ q Hê\T>∑T bÕ<ë\˝À yÓTT<ä{Ï eT÷&ÉT kÕ<ÛHä ê˝…‘’ ˚ Hê\T>∑e~ yê{Ï#‘˚ · n+<äTø√ e\dæq kÕ<Û´ä +. n<˚ ‘·TØj·÷edü.ú
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
227
: nqq´yÓTqÆ ~. ‘·q~ ø±ì~. Another. ÇVü≤+ ø±ì~ |üs˝¡ Àø£+. s¬ +&ÉT $wüj÷· \˝À s¬ +&Ée~. yÓTT<ä{~Ï |üPs¡«+. s¬ +&Ée~ |üs+¡ . Second between the Two. ø±s¡´ø±s¡D≤\˝À ø±s¡D+ |üPs¡«yÓT‘ Æ ˚ ø±s¡´+ |üs+¡ . Subsequent. n+‘˚ø±<äT, nìï{ÏøH£ êï nr‘·yTÓ qÆ <äì ≈£L&Ü ns¡yú T˚ . |üs¡‘·'|üs¡' |üse¡ ÷‘·à nì ns¡+ú . The supreme Ô ¡ |ü<+ä >± Á|üj÷Ó –ùdÔ n<˚ ˝Àø£eTì ≈£L&Ü being. düe÷dü+˝À ñ‘·s ns¡+ú edüT+Ô ~. ‘·‘|Y sü ¡ n+fÒ n<˚ <Û´˚ j·T+>± ø£\yê&Éì uÛ≤e+. |üse¡ ÷‘·à : |üse¡ TyÓTqÆ Ä‘·à. n+fÒ ìs¡TD Z yÓTqÆ áX¯«s¡ ‘·‘«Ô· +. Je⁄&ÉT X¯Øs¡+ y˚Ts¡øπ ñqïyê&ÉT >∑qTø£ Jyê‘·à. The individual soul. X¯Øs¡ ã+<Û+ä ˝Òìyê&ÉT >∑qTø£ áX¯«s¡T&ÉT |üse¡ ÷‘·à. The Universal soul. |üse¡ TeT+fÒ Çø£ÿ&É ñbÕ<ÛTä \qT <ë{Ïb˛sTTq ‘·‘«Ô· eTì uÛ≤e+. |üse¡ ÷‘·à : n+&É|+æ &Ü<äT\ìï{Ïø° kÕøÏj å TÆÓ q #Ó‘’ q· ´+. nìï ñbÕ<ÛTä \q÷ yê´|æ+∫ nìï{Ï˙ ‘·q˝À ø£\Tø=qï kÕe÷q´ #Ó’‘·q´+. ìs¡ïDyÓTÆq ‘·‘·Ô«+. ÁãVü≤à+. Á|üC≤„/Á|üC≤„q : Á|üC≤„ Á‘Óø’ ±*ø° eT‘ê. Á‹ø±˝≤\≈£î dü+ã+~Û+∫q C≤„q+. $X‚wü C≤„q+ø±ø£ kÕe÷q´yÓTqÆ C≤„q+. düeTwæº C≤„q+. |üPs¡Cí ≤„q+. Ç˝≤+{Ï |ü]|üPs¡í C≤„qy˚T ÁãVü≤àdü«s¡÷|ü+. Á|üC≤„q+ ÁãVü≤à. ‘·yT˚ e BÛs√ $C≤„jT· Á|üC≤„+ ≈£îØ«‘· Áu≤Vü≤àD'. Ä ÁãVü≤à‘·‘êÔ«ìï eTT+<äT $C≤„q s¡÷|ü+>± Á>∑V≤æ +∫ ‘·sT¡ yê‘· Á|üC≤„qs¡÷|ü+>± <ëì˝À dæsú |¡ &ü Ü\ì ñ|üìwü‘T· Ô #Ó|Œæ q e÷≥. Á|üC≤„q|òüTq : ÁãVü≤àdü«s¡÷|ü+. eTT+<äT #Ó|Œæ q≥Tº Á|üCj „Ò T· y˚T e÷Á‘·eT÷ ˝Òì øπ e\ Á|üC≤„qy˚T nì ns¡+ú . |òTü qeTH˚ e÷≥ kÕ+Á<äyTÓ qÆ |ü<ësêúìï #ÓãT‘·T+~. n+<äT˝À Ä |ü<ës¡ú \ø£D å y˚T ‘·|Œü <ëìøÏ $C≤rj·TyÓTqÆ \ø£D å +ñ +&Ésê<äT. ñ+fÒ n~ |òTü q+ ø±<äT. Á|üdTü ‘Ô +· ÁãVü≤à‘·‘«Ô· +˝À Á|üC≤„qy˚T ‘·|Œü Á|üCj „Ò T· + ˝Ò∑qTø£ n~ Á|üC≤„q |òTü qeTHêïs¡T. Pure Un |üs¡
adulterated Consciousness.
Á|üDe
: Á|üø£πs¸D q÷j·T‘˚. dü÷Ôj·T‘˚ Ç‹. m≈£îÿe>± ñ#·Ã¤]+#·ã&˚~. düT‹Ô +#·ã&˚~ nì nø£så ês¡+ú . Á|üDeeT+fÒ z+ø±s¡yT˚ . ªÄ ñ eTμ á eT÷&Éøså£ ê\ dü+|ü⁄{° ø£sD ¡ y˚T z+ nH˚ eT+Á‘·+. Ç~ düø\£ y˚<ä kÕs¡eTì y˚<ë+‘·T\ e#·q+. |üsê|üs¡ ÁãVü≤à‘·‘êÔ«\qT |ü≥Tºø√e{≤ìøÏ Ç~ kÕ<Û≈ä î£ \≈£î Ä\+ãq+ nì ≈£L&Ü yês¡T ù|s=ÿ+{≤s¡T.
228
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Á|ü‘·´ø˘/Á|ü‘·´>±‘êà : |üsêø˘≈î£ e´‹πsø£|<ü +ä . |üsêø˘ n+fÒ ãj·T≥≈£î yÓfifl‚ ~. Á|ü‘´· ø˘ n+fÒ yÓqTø£≈î£ eTfi‚fl~. Introvert n+‘·sT¡ àKeTì ns¡+ú . Ä‘·à m|ü &É÷ Á|ü‘´· øπ ÿ. n~ nìï+{Ïì >∑eTì+#˚ #Ó‘’ q· ´+ ø±ã{Ϻ yê{ÏøÏ yÓqø±˝Ò ñ +&ç rsê*. n+<äTøπ n~ Á|ü‘´· >±‘·à nsTT+~. The inner most self. n+‘·sê‘·à nì ≈£L&Ü ù|s=ÿ+{≤s¡T. Á|ü‘ê´Vü‰s¡ : ncÕº+>∑ jÓ÷>∑+˝À ˇø£ n+>∑+. Ç+Á~j·T eè‘·T\Ô qT yÓq≈£îÿ eT[fl+#˚ Á|üÁøÏjT· . Withdrawal. ñ|üs‹¡ nì n<Ó«’ ‘·T\ |ü]uÛ≤wü. Á|üeT/Á|üe÷‘ê/Á|üe÷D/Á|üyT˚ j·T/Á|ü$T‹ :Á|üeT n+fÒ C≤„q+. Ä‘·à C≤„qeTì Çø£ÿ&É ns¡+ú . n~ ø£\yê&ÉT Á|üe÷‘·. <ëìøÏ kÕ<Ûqä + Á|üe÷D+. <ëì<ë«sê n+<äTø=H˚ |ü<ës¡+ú Á|üyT˚ j·T+. <ëìe\¢ ø£*>π |ò\ü + Á|ü$T‹. M{ÏH˚ s¡øs£ ø¡ ±\T>± e´eVü≤]kÕÔsT¡ y˚<ë+‘·+˝À. C≤„q+ C≤„‘ê C≤„q kÕ<Ûqä + CÒ„j·T+ C≤„|æÔ nì ≈£L&Ü M{ÏH˚ ù|s=ÿqe#·TÃ. Ç~ ˝Àø£+˝Àq÷ XÊÁdüÔ+˝Àq÷ ‘·|üŒì dü]>± ñ+&Ée\dæq ìj·TeT+. @<Ó’Hê ˇø£ $wüj÷· ìï ns¡+ú #˚dTü ø√yê\+fÒ #˚dTü ≈£îH˚yê&=ø£&TÉ #˚dTü ø√ã&˚~ ˇø£{Ï #˚dTü ≈£îH˚+<äT≈£î ‘√&ÉŒ&˚ kÕ<Ûqä yÓTTø£{.Ï #˚dTü ø=+fÒ ø£*>π Á|üj÷Ó »q yÓTTø£{Ï ñ+&ç rs¡e\dæ+<˚ >∑<ë. Ç~ ˝Àø£+˝À m˝≤>√ y˚<ë+‘·+˝À ≈£L&Ü n˝≤π> ÄeX¯´ø£+. nø£ÿ&É Á|üe÷‘· Je⁄&ÉT. ˙eP H˚q÷. Á|üe÷D+ eTq Ç+Á~j·÷\T eTqdüT‡. Á|üyT˚ j·T+ |üse¡ ÷‘·à ‘·‘«Ô· +. <ëìï Á>∑V≤æ ùdÔ ø£*>π nqTuÛeÑ + Á|ü$T‹. M{Ï |üsd¡ Œü s¡ dü+ã+<Ûëìï #·øÿ£ >± uÛ≤eq#˚dæ kÕ<Ûäq m&É|ü&É≈£î+&Ü #˚j·T>∑*–‘˚ ‘·|üŒ≈£î+&Ü kÕ<Ûä≈£î&ÉT dæ~∆ì bı+<ä>\∑ &Éì XÊÁdüE Ô \„ T uÀ~ÛkÕÔsT¡ . Ç+<äT˝À ˇø£ dü÷ø£àå y˚TeT+fÒ n<Ó«’ ‘·+˝À á Hê\T–+{Ïø° uÛ<Ò +ä ˝Ò∑÷ ø£*dæ ˇπø ˇø£ Ä‘·à‘·‘«Ô· y˚T. n<˚ $ø£*Œ+∫ #·÷ùdÔ Hê\T>∑T s¡÷bÕ\˝À uÛ≤dædTü qÔ ï~. $eT]Ù+∫ #·÷ùdÔ Hê\T>∑÷ Á|üe÷‘· nsTTq Je⁄&ç dü«s¡÷|ü+>±H˚ kո屑·ÿ]düT+Ô ~. ÇB n<Ó«’ ‘· dæ<ë∆+‘·+. Á|üeè‹Ô : eTT+<äT≈£î b˛e≥+. ÁbÕ|ü+∫ø£yTÓ qÆ e÷s¡+Z . ø£sà¡ e÷s¡+Z . <Ûsä à¡ |ü⁄s¡TcÕs¡+ú . BìøÏ e´‹]ø£Ô yÓTqÆ ~ ìeè‹Ô. yÓ÷ø£eå ÷s¡+Z . ˇø£{Ï ø£sêà#·sq¡ <ë«sê dü+kÕsêìøÏ <ë]#·÷|æ‘˚ eTs=ø£{Ï C≤„HêuÛ≤´dü+ <ë«sê kÕj·TTC≤´ìøÏ e÷s¡+Z #·÷|ü⁄‘·T+~. y˚<ä yêvàj·T+ s¬ +&ÉT XÊK˝Ò. yÓTT<ä{~Ï Á|üeè‹Ô <Ûäs¡à+ uÀ~ÛdüTÔ+~. Bìπø <Ûäs¡àeTì ≈£L&Ü eTs=ø£ù|s¡T. ¬s+&Ée~ ìeè‹Ô <Ûsä à¡ + uÀ~ÛdTü +Ô ~. Bìπø yÓ÷ø£eå Tqì ù|s¡T. yÓTT<ä{~Ï es¡yZ TÓ ‘Æ ˚ s¬ +&Ée~ n|ües¡eZ Tì ù|s=ÿ+{≤s¡T.
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
229
: bı+<ä≥+. #˚s≥ ¡ +. uÛ]Ñ +#·≥+. X¯sD ¡ T y˚&≥ É +. Surrender. j˚T j·T<ë e÷yéT Á|ü|<ü ´ä +‘˚. mes¡T m˝≤>∑ qqTq X¯sD ¡ Ty˚&TÉ ‘ês√ nì ns¡+ú . n˝≤π> C≤„qyêHé e÷+ Á|ü|<ü ´ä ‘˚. C≤„ì qqTï bı+<äT‘ê&ÉT. Hê dü«s¡÷|ü+‘√H˚ @ø£eTe⁄‘ê&Éì Çø£ÿ&É ns¡+ú . Á|ü$˝≤|üq : u≤>± ø£]–+∫ y˚jT· ≥eTì ns¡+ú . Á<äyêìï ø±<äT. |òTü q|ü<ësêúìï. Á|üdüTÔ‘·+ á Á|ü|ü+#·eT+‘ê #Ó’‘·q´s¡düy˚T. |òüT˙uÛÑe+∫ Ç˝≤ HêeTs¡÷bÕ‘·àø£+>± ø£ì|ædTü qÔ ï~. ø£qTø£ Bìì eTs¡˝≤ #Ó‘’ H· ê´‘·àø£+>± <ä]Ù+#·≥y˚T ø£]–+#·≥+. edüTeÔ ⁄HÓ‘’ ˚ ø£]–+#·≥+ nkÕ<Û´ä +. ÄuÛ≤dü nsTT‘˚H˚ eTs¡˝≤ yÓqTø£≈î£ rdüTø√e≥+ düT\uÛeÑ Te⁄‘·T+~. Ç~ edüTeÔ ⁄ ø±<äT >∑qTø£H˚ ø£]–ùdÔ ø£]– b˛>∑\<äT. ø£]–+#·≥ eT+fÒ nuÛÖ‹ø£+>± ø±<äT. ÁøÏj÷· s¡÷|ü+>± ø±<äT. uÛ≤es¡÷|ü+>±. ÄuÛ≤dü m|ü &É÷ uÛÖ‹ø£+>± »s¡><∑ Tä . s¡E® düsŒ¡ +˝À düsŒ¡ + uÛÖ‹ø£+>± sê˝Ò á Á|ü|+ü #·+ ≈£L&Ü uÖ‹ø£+>± düèwæº ø±˝Ò± <ä]ÙùdÔ ‘·|Œü ≈£î+&Ü ø£]–b˛‘·T+~. n+fÒ #Ó‘’ q· ´ s¡÷|ü+>± uÛ≤dædTü +Ô <äì uÛ≤e+. Ç<˚ n<Ó«’ ‘·T\T #Óù|Œ Á|ü$˝≤|üq e÷s¡+Z . Ç<˚ kÕ<Ûqä e÷s¡+Z . Á|ükÕúqÁ‘·j·T : ªÁ|üj÷· D+ Á|ü‹wü‘˜ ˚ nH˚q Ç‹ Á|ükÕúq+μ. <˚ìMT<ä q&É∫b˛‘êyÓ÷ n˝≤+{Ï e÷s¡eZ Tì ns¡+ú . Á|üøè£ wü+˜ kÕúq+ nì ≈£L&Ü #Ó|Œü e#·TÃ. n+fÒ Äj·TTe⁄|ü≥Tº. Stronghold. Ç˝≤+{Ï Äj·TTe⁄ |ü≥T¢ y˚<ë+‘·+˝À eT÷&˚ eT÷&ÉTHêïsTT. ñ|üìwü‘T· \Ô T. ÁãVü≤àdü÷Á‘ê\T. uÛ>Ñ e∑ BZ‘.· M{ÏøÏ Á|ükÕúq Á‘·jT· eTì ù|s¡T. Ç+<äT˝À yÓTT<ä{~Ï ÁX¯ó‹. s¬ +&Ée~ Hê´j·T+. eT÷&Ée~ düàè‹ ÁøÏ+~øÏ ekÕÔsTT. n+‘˚ø±<äT. yÓTT<ä{~Ï <ëìe\¢ ÁX¯eD+ s¬ +&Ée<ëì eT÷\+>± eTqq+ eT÷&Ée<ëì <ë«sê ì~ <Ûë´dü kÕ–dü÷Ô b˛‘˚ ‘·|Œü ≈£î+&Ü ÁãVü≤àC≤„q+ ø£*– rs¡T‘·T+<äHêïs¡T. ø£qTø£ á Á|ükÕÔqÁ‘·j·T+ y˚<ë+‘· kÕ<Ûäq e÷s¡Z+˝À m+‘Ó’Hê ñ|üø£]+#˚ Á|üe÷D+. eT÷&É÷ eT÷&ÉT e÷sêZ\ì ÁuÛeÑ T |ü&sÉ ê<äT. ø±s¡q+ eT÷&É÷ ø£*dæ ˇπø ˇø£ ÁãVü‰àqTuÛÑyêìï eTq≈£î n+~düTÔHêïsTT. ø£qTø£ Á|ükÕúqeT+fÒ eT÷&ÉT e÷sêZ\ì >±ø£ ˇπø ˇø£ e÷s¡Z+˝À eT÷&ÉT eTõ©\ì #Ó| ü ø√e≥+ m+‘ÓH’ ê düeT+»dü+. Á|üC≤„/ÁbÕ»„ : Á|üø£èwüºyÓTÆq C≤„q+ Á|ü»„. |üPs¡í C≤„q+. Ç~ ø£\yê&ÉT ÁbÕE„&ÉT. düTwüß|æ˝Ô Àì Je⁄&ç~ ÁbÕE„&ìÉ ù|s¡T. n|ü &É‘&· TÉ eT÷&ÛTÉ &ÉT ø£<ë. Á|üeè‹Ô
230
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ÁbÕE„&˝Ó ≤ nj·÷´&ÉT. uÛ÷Ñ ‘·eè‹Ô ˝Ò<ë uÛ≤$ eè‹Ô #Ó| ü ø√yê˝Hêïs¡T XÊÁdüøÔ ±s¡T\T. yÓTT<ä≥ áX¯«s¡T&˚ yê&ÉT. eTT≈£î&Ô ‘’Ó ˚ eTs¡\ áX¯«s¡T&˚. ø£qTø£ ÁbÕE„&TÉ . n~ ≈£L&Ü ø±<äT. düTwüß|æ˝Ô À Á|üCj „Ò T· yÓTqÆ Á|ü|+ü #·+ ˝Ò∑ì @B ˝Òøb£ ˛˝Ò∑s¡T“¤&ÉT. dü>∑TDyÓTÆq ÁãVü≤à‘·‘·Ô«+. Bìπø áX¯«s¡T&Éì ≈£L&Ü Hêe÷+‘·s+¡ . ÁãVü≤à : ãèVü≤‘·TÔ ô|<ä~› . ãè+Vü≤D+ nìï{Ï˙ ÇeTT&ÉTÃø=H˚~. ãs¡ΩD+ ‘·q˝À ø£\T|ü⁄ø=H˚~ @<√ n~. |üse¡ ÷‘·à ìs¡TD Z yÓTqÆ X¯ó<ä∆ #Ó‘’ q· ´+. The Ultimate Reality. e÷j·÷X¯øÔÏ Ç+<äT˝À z‘·Áb˛‘·yTÓ Æ ìÁwæÿj·TyÓTÆ ñ +≥T+~. n<˚ düÁøÏjT· yÓT‘Æ ˚ ãj·T{ÏøÏ e∫à ìs¡TDZ yÓTqÆ ÁãVü≤à+ dü>T∑ D+>± e÷s¡T‘·T+~. n|ü &É~ ÁãVü≤à ø±<äT ÁuVü‰à. ÁãVü≤à˝Àø£ : ÁãVü≤à<˚e⁄&ç ˝Àø£+. dü‘´· ˝Àø£+. øπ e\ |üse¡ ÷‘·à nì ns¡+ú #Ó| ü ≈£î+fÒ n˝≤+{Ï ‘·‘êÔ«ìï mø£ÿ&É Ä˝ÀøÏkÕÔy÷Ó nq>± <ä]ÙkÕÔy÷Ó n~ ÁãVü≤à˝Àø£+. ˝Àø£+>±ì ˝Àø£+ Ç~. ÁãVü≤à #Ó‘’ q· ´ Á|üø±X¯eTì ns¡+ú . ÁãVü‰à‘·àuÛ≤e+ : Jyê‘·à ÁãVü≤à+>± e÷]b˛e≥+. øπ e\ e÷‘·à nsTT‘˚ <˚V≤ü e÷Á‘· |ü]∫äqïyÓTqÆ #Ó‘’ q· ´eTì ÁuÛeÑ T|ü&eÉ #·TÃ. øπ e\ ÁãVü≤àyÓT‘Æ ˚ |üs√ø£yå TÓ HÆ ê ø±e#·TÃ. ÁãVü‰à‘·àeT+fÒ ¬s+&ÉT <√cÕ\÷ ‘=\–b˛sTT n|ü]∫äqï n|üs√ø£yå TÓ qÆ n<Ó«’ ‘êqTuÛeÑ + dæ~d∆ Tü +Ô ~. <ëìï dü÷∫+#·{≤ìπø s¬ +&É÷ ø£*|æ ÁãVü‰à‘·à nì #ÓãT‘·Tqï~ XÊÁdü+Ô . ÁãVü≤ày˚T Ä‘·à. Ä‘˚à ÁãVü≤à+ nì ns¡+ú . ÁãVü≤ày˚T Ä‘·à nqï|ü &ÉT |üs√ø£+å n|üs√ø£å eTe⁄‘·T+~. Ä‘˚à ÁãVü≤à eTqï|ü &ÉT |ü]∫äqï+ n|ü]∫äqï eTe⁄‘·T+~. Ç˝≤+{Ï<˚ n<Ó«’ ‘·T\ ÁãVü‰àqTuÛeÑ +. ÁãVü‰àø±s¡ eè‹Ô : eTqdüT‡≈£î ø£*>π ˇø£ eè‹Ô $X‚w+ü . eè‘·T\Ô ≈£î ì\j·Ty˚T eTqdüT‡. n+<äT˝À dü$ø£\Œ eè‘·T\Ô T ñ<äsTTkÕÔsTT. ì]«ø£\Œ eèrÔ ñ<äsTTdüT+Ô ~. dü$ø£\Œ eTH˚ø£ eTsTT‘˚ ì]«ø£\Œ+ @¬øø’ £+. ÁãVü≤ày˚Tø£yT˚ >∑qTø£ <ëìøÏ dü+ã+~Û+∫ @s¡Œ&˚ ∫‘·Ôeè‹Ô ≈£L&Ü ‘·<ëø±s¡+>±H˚ @ø£yÓTÆ ñ <äsTTdüT+Ô ~. øπ e\+ dü∫Ã<ëø±s¡+>± Á|ü|+ü #êìï <ä]Ùdü÷bÔ ˛‘˚ n<˚ ì]«ø£\ŒyÓTÆq kÕe÷q´ s¡÷|üyÓTÆq ÁãVü‰àø±s¡ eè‹Ô. Ç<˚ ÁãVü≤à kÕj·TTC≤´ìøÏ >=|üŒkÕ<Ûqä .
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
231
ÁãVü≤àuÛ≤eHê : eTT+<äT#Ó|Œæ q≥Tº ÁãVü≤ày˚T H˚qì uÛ≤eq #˚d÷ü Ô b˛‘˚ ÁãVü≤ày˚T ø±>∑\&ÉT Je⁄&ÉT. dü<ë ‘·<들e uÛ≤$‘·' nì ^‘· #ÓãT‘·Tqï~. ÁuÛeÑ Ts¡ ø°≥ Hê´j·T+>± ìs¡+‘·s¡ uÛ≤eq #˚ùd Je⁄&ÉT ÁãVü≤àkÕj·TT»´+ bı+<ä≥+˝À ÄX¯Ãs¡´+ ˝Ò∑*– ñ+&É≥+. Stability in the spiritual knowledge.
Áu≤V”≤à eè‹Ô : düe÷~Û düeTj·T+˝À |üPs¡eí è‹Ô (|üsÁ¡ ãVü≤à ∫+‘·q)˝À ñqï|ü⁄Œ&ÉT |üPs¡‘í «· + dæ~d∆ Tü +Ô ~. á |üPs¡í eè‹Ô (|üsÁ¡ ãVü≤à∫+‘·q) j˚T Áu≤V”≤à eè‹Ô. e÷j·÷ : MTj·T‘˚ nqj·÷ Ç‹ e÷j·÷. <˚ì#˚‘· ø=\eã&ÉT‘·T+<√ n~ e÷j·T. |üs¡e÷‘·à X¯øÏÔ. Cosmic power. <˚Xø¯ ±\ edüTeÔ ⁄\ìï+{Ï˙ ø=*∫ Ç$ Ç+‘˚qì #·÷|ü⁄‘·T+~. ø£qTø£ n~ e÷j·T nsTT‘˚ Ç$ y˚Tj·T eTe⁄‘·THêïsTT. Measured. Ç~ n˝≤ ø=\e˝Òì~ ˇø£ÿfÒ. n~ |üse¡ ÷‘·à ‘·‘«Ô· +. ø£qTø£ ny˚Tj·TT&Éj÷· ´&ÉT Äj·Tq. e÷j·T : n$<ä´ ` eTj·T jÓTTø£ÿ n+X¯eTT. e÷j·T : n~ düÁ<ä÷|üeTT>±ì, ndüÁ<ä÷|üeTT nì>±ì, Ä‘·àø£+fÒ y˚s¬ q’ ~ ø±ì, y˚s¡Tø±ì~ø±ì, kÕej·TeeTTø±ì, ìs¡ej·TeeTT nì>±ì ìs¡÷|æ+|ü q\$ø±ì~. eTH√\j·TeTT ` ∫‘·XÔ ó¯ ~∆ : ˇø£ ns¡ ø£D å eTsTTqqT Ä‘·à∫+‘·q #˚jT· TyêìøÏ ≈£î&ç#$Ó j·T+<äT z+ø±s¡Hê<äeTT (nHêVü≤‘·Hê<äeTT) $ì|æ+#·TqT. Ç~ ∫‘·XÔ ó¯ ~∆øÏ ì<äsÙ¡ qeTT $wüjT· yêdüq\T b˛sTTqø=\~ ∫‘·eÔ TT ìX¯Ã\yÓTÆ áHê<äeTT y˚DTHê<äeTTe˝… nqTuÛ÷Ñ ‘·eT>∑TqT. ∫s¡ø±\eTT Hê<ëqT
232
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
dü+<ÛëqeTT #˚dæ Hê<ë+‘·s¡«]Ôj·T>∑T CÀ´‹j·T+<äT \j·TeTT #Ó+~ |üse¡ ÷q+<äeTT bı+<äT≥#˚ eTH√\j·TeTT. eTH√eè‘·TÔ\T : ∫‘·eÔ è‘·T\Ô T : ªø±eTdü‡+ø£˝ÀŒ $∫øÏ‘ê‡ ÁX¯<ë∆ nÁX¯<ë∆ l' ÁV”≤' ;Û' BÛ' Ç‘˚´‘·‘Y düs«¡ +eTq @e.μ 1) ø±eTeTT`ø√]ø£, 2) dü+ø£\ŒeTT, 3) dü+X¯j·TeTT, 4) ÁX¯<ä∆ ` $XÊ«düeTT, ÄdæøÔ ‘£ ,· 5) nÁX¯<∆ä ` HêdæøÔ £ uÛ≤eeTT, 6) <Ûèä ‹ ` <Ûs’Ó ´¡ eTT, 7) n<Ûèä ‹ ` |æ]øÏ∑ ìdü‡+~>∑e∆ TT>∑ ‘Ó*dæø=qT≥≈£î |ü⁄q' |ü⁄q' #˚jT· T Á|üj·T‘·ïeTT. $T<∏ë´ : Myth ndü‘´· +. e{Ï~º . ndü‘Y n+fÒ ndü˝Ò ˝Òì<äì ø±<äT. <ëìbÕ{Ïø~£ ndü‘´· yÓTHÆ ê <ëì n~ÛcÕ˜q+‘√ b˛*ùdÔ eTs¡˝≤ dü‘´· y˚T. j·T<∏ë'. |òTü ≥ s¡÷ù|D. ndüH.é eTèÁ<ä÷ù|D ‘·T düHï˚ e. The pot is unreal as the form. But it is real as the clay. Bìπø $T<∏´ä nì ù|s¡T. ø±ã{Ϻ n<Ó«’ ‘·T\ e÷j·÷yê<ä+ uÖ<äT\∆ X¯Sq´yê<ä+ ø±<äT. uÖ<äT\∆ ~ ndü<ë«<ä+. n<Ó«’ ‘·T\~ dü<ë«<ä+. n+fÒ |üse¡ ÷‘·à ø±ø£ ‘·<ëuÛ≤dü, nsTTq Á|ü|+ü #·+ ≈£L&Ü dü‘qÔ˚ +{≤s¡T. |üse¡ ÷‘·à s¡÷|ü+>± Ç~ dü‘´· y˚T. ‘·<«ä è‹s¡ø+Ô£ >± #·÷ùdHÔ ˚ ndü‘´· + ˝Ò<ë $T<∏´ä . n|üŒ{ÏøÏ Ä #·÷ù| $T<∏´ä >±ì nø£ÿ&É |ü<ës¡+ú ø±<äT. n~ edüT‘Ô '· dü‘´· y˚T. j·T<∏ë s¡E'® düsŒ¡ s¡÷ù|D <äèX¯´e÷Hê|æ edüT‘Ô '· s¡Ey® >˚ ±ì ns¡Ee® ⁄ø±<äT >∑<ë. Ç˝≤+{Ï<˚ $T<∏ë´ nH˚ e÷≥ ø£s+ú¡ . $T<∏ë´‘êà : Ä‘·à eT÷&ÉT $<Ûë\T. ndü˝q’… Ä‘·à≈£î eTTU≤´‘·à nì, dü<ë‘·à nì, ÁãVü‰à‘·à nì ù|s¡T. Ç<˚ ì»yÓTqÆ Ä‘·à. Ä e÷≥≈£î eùdÔ $T>∑‘ê Ä‘·à\T s¬ +&É÷ ˝Òe⁄. nsTTHê e÷qe⁄&ÉT nC≤„q+ e<ä\ø£ á eTTU≤´‘·àqT #·÷&Éø£ nHê‘·àqT ≈£L&É Ä‘·à nì uÛ≤$düTHÔ êï&ÉT. ø±ã{Ϻ eT] s¬ +&ÉT #Ó|Œü e\dæ e∫Ã+~. n+<äT˝À $T<∏ë´‘·à n+fÒ X¯Øs¡yT˚ H˚qT nì uÛ≤$+#˚ Je#Ó‘’ q· ´+. >öD≤‘·à n+fÒ Ä Je⁄&ç <äèwæøº Ï >√#·]+#˚ u≤Vü≤´ Á|ü|+ü #·+. eTTeTT≈£åîe⁄ : >∑eTq düeTj·TeTTq, ªªH˚qT Ä‘·àj·TqT eTVü‰ düeTTÁ<äeTTô|’ <˚*j·÷&ÉT ‘·s+¡ >∑μμ eTìj·TT, ÄdüqeTTq ≈£Ls¡TÃqï|ü⁄Œ&ÉT ªªC≤„qeTqT dü÷Á‘·eTTq
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
233
Á>∑T∫Ãq eTDÏìμμ nìj·TT, ãj·T{Ï $wüj·TeTT\ <ä]Ù+#·Tq|ü⁄&ÉT ªªdüs«¡ yê´|üø±‘êàe˝Àø£qeTT#˚ n|üs√øå±‘·à kո屑êÿs¡eTT ø£*–qμμ<äìj·TT X¯jT· q düeTj·TeTTq ªªdüsπ «+Á~j·÷s√ú|ü s¡‹#˚ n+‘·s蛡 wæº ø£*– Äq+<ä düeTTÁ<äeTTq ‘˚*j·÷&ÉT#·T+{Ïμμ qìj·TT ` Ç≥T¢ düsê«edü\ú j·T+<äTqT n+‘·]ïwüß&˜ ’Ó uÛ≤eq #˚jT· T#·T >∑&TÉ |ü⁄yê&ÉT eTTeTT≈£îå e⁄. j·T»q/j·T»„/j·T»e÷q : n]Ã+#·≥+. uÛõÑ +#·≥+. |üPõ+#·≥+. Worship. j·T»q+ #˚ùd ÁøÏjT· j·T»„+. Sacrifice. nqTcÕ˜q+. j·T»q+ #˚ùdyê&ÉT ø£]àwüß&˜ q’Ó >∑èVü≤düT&ú TÉ . yê&˚ j·T»e÷qT&ÉT. ø£s.Ô¡ n‘·&TÉ #˚ùd j·T»„+ Hê\T>∑T $<Ûë\T. $~Û, »|ü, ñbÕ+X¯ó, e÷qdü. yÓTT<ä{~Ï ø±sTTø£+. ¬s+&ÉT eT÷&ÉT yê∫ø£+. Hê\T>∑T e÷qdæø£+. yÓTT<ä{Ï eT÷&ÉT ãVæ≤sê´>∑yTÓ ‘Æ ˚ Hê\T>∑e~ n+‘·sê´>∑+. n<˚ C≤„q j·T»„+. Spiritual sacrifice. j·T»„eT+fÒ áX¯«s¡T&Éì ≈£L&Ü ns¡+ ú . j·TC≤„sêú‘ÿ· s¡àD√q´Á‘· ` Á|ürø£sêà áX¯«sês¡ŒD ãT~∆‘√ #˚j÷· \ì uÛ≤e+. Ç$>±ø£ e÷eT÷\T>± >∑èVü≤düT&ú q’Ó yê&ÉT #˚ùd j·TC≤„\T nsTT<äT ñHêïsTT. <˚e j·T»„+, |æ‘è· j·T»„+, ãTTwæ j·T»„+, eTqTwü´ j·T»„+, uÛ÷Ñ ‘· j·T»„+. <˚e‘·\ø√dü+ j·T»„ j·÷>±<äT\T, |æ‘è· <˚e‘·\ø√dü+ ÁXÊ<ä∆ ‘·sŒ¡ D≤<äT\T. ãTTwüß\ø√dü+ y˚<ë<Û´ä j·T Hê<äT\T. eTqTwüß´\ø√dü+ n‹~∏ dü+‘·sŒ¡ D≤<äT\T. uÛ÷Ñ ‘·eTT\ ø√dü+ <Ûëq´ ø£D≤<äT\T #·\≥ ¢ + yÓTT<ä\>∑Tq$. Ç$ ì‘·´eT÷ #˚d÷ü Ô b˛yê* Á|ü‹ >∑èVü≤düTú&ÉT nì <Ûäs¡àXÊÁdüÔ XÊdüq+. Ç+‘˚>±ø£ eTH√ yêø±ÿj·T\‘√ Á|ü‹ ø£Då eT÷ eTq+ kÕ–+#˚ ø£sà¡ ø£˝≤|ü eT+‘ê j·T»„yT˚ qì ˇø£ e÷≥ ñ+~. BìøÏ ì\j·T+ eTq X¯Øs¡yT˚ . Ç~ ì‘·´eT÷ #˚dTü qÔ ï Je⁄&˚ Ç+<äT˝À j·T»e÷qT&ÉT. Ç~ düÁø£eT+>± kÕ–ùdÔ dü‘·Œ¤*‘·+. nÁø£eT+>±HÓ‘’ ˚ <äTwüŒ*¤ ‘·+ #·$#·÷&Ée\dæ ñ+≥T+~. ÇVü≤+˝À ‘·|Œæ Hê |üs+¡ ˝À ‘·|Œü <äT n˝≤+{Ï nqTuÛeÑ +. $uÛ÷Ñ ‹ : e´ø£eÔ T>∑T uÛ÷Ñ ‘·C≤\eTT‘√ áX¯«s¡eTVæ≤eT m≈£îÿe>± Á|üø≥ £ eT>∑Tq{Ï~º . ªª$uÛ÷Ñ ‹ s¡÷“¤ s¬ X’ «¯ s¡´yéTμμ kÕe÷q´ |ü]uÛ≤wü˝À $uÛ÷Ñ ‹ j·Tq uÛdÑ àü eTT. áX¯«s¡Tì ìs¡TDZ eTVæ≤eTqT Á|üø{£ +Ï #·T≥#˚ $uÛ÷Ñ ‹j·Tqã&ÉTqT. Á|üøè£ ‹ |ü⁄s¡Twüß\ >∑TD<Ûsä à¡ eTT˝Ò$j·TT ˝Òø£ øπ e\T&Ó’ j·TT+&ÉT |üse¡ ÷‘·à ìs¡TDZ T&ÉT. uÛdÑ àü eTT áX¯«s¡Tì ìs¡TD Z ‘·«eTTqT, yÓs’ ê>∑´eTTqT dü÷∫+#·T ∫Vü≤ïeTT.
234
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
$eT\ uÀ<Ûä |òTü qeTT: uÀ<Ûä nq>± C≤„qeTT. s¡÷|ü s¡kÕ~ $wüsTTø£eTT, $eT\ R e÷*q´eTT ˝Òì~. X¯ó<äy∆ TÓ qÆ ~. $eT\ uÀ<Û|ä Tüò qeTT R nq>± $wüj÷· qT ã+<Ûsä V¡ ≤æ ‘· øπ e\»„|Ôæ e÷Á‘· dü«s¡÷|ü⁄&ÉT. - |üPsê«‘ê|ò\ü + $<ë«+düT\T : ªªñ|üÁø£y÷Ó |ü dü+Vü‰sê quÛ≤´k˛ns¡yú ê<√|ü|rü #Ô · *+>∑+ ‘ê‘·Œs¡´ ìs¡j í T˚ .μμ ñ|üÁø£y÷Ó |ü dü+Vü‰sê~ wü&«ç <Ûä ‘ê‘·Œs¡´ Á>±Vü≤ø£ *+>∑eTT\‘√ |ü]o*+∫ düs«¡ y˚<ë+‘·eTT\≈£îqT ` düC≤rj·T $C≤rj·T dü«>∑‘· uÛ<Ò Xä S¯ q´, kÕ«‘·à ‘·‘«Ô· e÷Á‘· Á|ü‹bÕ<äq |üs‘¡ «· eTTqT >∑T]Ô+∫ @‘ê<äèX¯ X¯ó<ë∆<«ä j·T ì]«X‚wü Ä‘·à‘·‘·Ô« Á|ü‹Ô|ü‹Ô ˝Ò≈£îqï πøe\ dü«dü«s¡÷bÕedæú‹ s¡÷|ü ¬ø’e\´eTT dü+uÛ$Ñ +#· H˚s<¡ ìä >∑T]Ô+∫, ‘·ìïcÕ˜ dü+|ü‹‘Ô √ $sê»e÷qT \>∑Tyês¡T $<ë«+düT\T. $sê≥Tº : dü÷ú\ düeTwæºs¡÷|ü⁄&É>∑T ÁãVü≤à. yÓs’ ê>∑´eTT : s¬ +&ÉT $<Ûeä TT\T. düHê´düeTT ≈£L&É s¬ +&ÉT $<Ûeä TT\T. 1) HÓ’πs«<ä´eTT : uÛ≤sê´|ü⁄Á‘· <ÛäHê<äT\ e\q ø£\T>∑T ìs¡+‘·s¡ <äT'U≤qTuÛÑeeTT#˚ ø£\T>∑T $s¡øÏÔ. n|ü⁄Œ&ÉT #˚j·TT >∑èVü≤ ‘ê´>∑eTT düHê´düeTT. 2) C≤„q >∑s“¡ e¤ TT : dü∑Tq~. C≤„q >∑s“¡ ¤ yÓs’ ê>∑´ dü+|ü<#ä ˚ <˚V≤ü ‘ê<ë‘êà´_Û e÷qeTT˝Ò b˛e⁄≥ e\q HÓ\ø=qT <˚V‰ü _Ûe÷q ‘ê´>∑s÷¡ |üeT>∑T düHê´düeTT. yÓw’ eíü + |üse¡ T+|ü<+ä .... ø¬ e’ \´+ Á|ü‹|ü<´ä ‘˚ : yÓw’ eíü |ü<+ä : kÕe÷Hê´s¡e∆ TT : yÓw’ eíü + R $wüßeí ⁄≈£î dü+ã+~Û+∫q |ü± yê´|æÔì uÀ~Û+#·TqT, yÓ’wüíe+ nq>± düs¡«<˚X¯ ø±\yê´|üø£yÓTÆq |üsy¡ ÷Ó ‘·ÿèwüyº TÓ qÆ |ü]|üPs¡eí düTeÔ ì ns¡eú TT. |ü<+ä `nq>± ª|ü<´ä ‹ Ç‹ |ü± nC≤„qeTT ‘=\–b˛>± ‘êqT bı+<ä<–ä q ‘·q≈£î düV≤ü »yÓTqÆ dü«dü«s¡÷|üyT˚ nì ns¡eú TT. ¬ø’e\´+ Á|ü‹|ü<ä´‘˚ : ¬ø’e\´eTT R |üs¡eT|ü⁄s¡TcÕs¡∆eTT (yÓ÷ø£åeTT), Á|ü‹|ü<ä´‘˚ R bı+<äTqT nì kÕe÷Hê´s¡úeTT. ø±ì n+‘·sês¡úeTT yÓ÷ø£eå TTqT bı+<äT≥ nq>± ‘·q ø£+f… _ÛqïyÓTqÆ eT]jÓTTø£ edüTeÔ ⁄qT
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
235
bı+<äT≥ nìø±<äT. ‘êH˚ nsTTñqï ‘·q dü«dü«s¡÷|üeTTH˚ ‘êqT bı+<äT≥ nì ns¡eú TT. eè‹Ô : ‹s¡>≥ ∑ +. Turn. #·T≥Tºø√e≥eTì. Volve <ë‘·«s¡+ú . Áu≤Vü≤àD≤~ esêí\≈£î $~Û+∫q <Ûsä êà\T yê]yê] eè‘·T\Ô T Duty conduct. n~ ø±ø£ eTqdüT‡˝À ø£*>π Ä˝À#·q\˙ï eè‘·T˝Ô Ò Ideas function of the mind. ∫‘·Ôeè‘·TÔ\ì ù|s¡T M{ÏøÏ. Ç$ ÁbÕ|ü+∫ø£yÓTÆ‘˚ dü$ø£\Œ+ ã+<Ûëìπø <ë]rkÕÔsTT. bÕs¡e÷]úø£yÓTÆ‘˚ ì]«ø£\Œ+. yÓ÷øå±ìøÏ ‘√&ÉŒ&É‘êsTT. Ä‘êàø±s¡ ˝Ò<ë ÁãVü‰àø±s¡ eè‹Ô n+{≤s¡T BìH˚. eè‹Ô n+fÒ JeqeTì ≈£L&Ü. Livelihood eT]jÓTTø£ ns¡+ú . e´eVü‰s¡eTì behaviour Ç+ø√ ns¡+ ú. $es¡Ô : ˇø£ |ü<ës¡+ú ‘·q dü«s¡÷bÕìøÏ qwü+º ˝Ò≈î£ +&Ü eTs=ø£s÷¡ |ü+>± e÷] ø£q|üã&É+. Manifestation appearance. eTè‹Ôø£ ‘·q dü«s¡÷bÕìï e<ä\≈£î+&ÜH˚ |òTü ≥ X¯sêyê~ ø±s¡´s¡÷|ü+>± ≈£L&Ü uÛ≤dædTü qÔ ï~. n<Ó«’ ‘·T\T #Óù|Œ düèwæº s¡V≤ü dü´$T<˚. yê]~ Äs¡+uÛyÑ ê<ä+ ø±<äT. |ü]D≤eTyê<ä+ ø±<äT. $es¡yÔ ê<ä+. ˝Òì~ e∫Ã+<äì #Ó_‘˚ ‘ê]ÿ≈£î\ Äs¡+uÛyÑ ê<ä+. ñqï~ e÷s¡T‘·T+<äì #Ó_‘˚ kÕ+KT´\ |ü]D≤eT+. ñqï<˚ sê≈£î+&Ü e÷s¡≈î£ +&Ü eTs√ s¡÷|ü+>± uÛ≤dædTü qÔ ï<äì #Ó_‘˚ n<Ó«’ ‘·T\ $es¡+Ô . eTè<äÈ{≤<äT\T <äècÕº+‘ê˝…’‘˚ ÁãVü≤à#Ó’‘·q´+ #·sê#·s¡ »>∑Á<ä÷|ü+>± ø£q|ü&≥ É + <ësê¸+‹ø£+. X¯e÷~ kÕ<Û#ä ‘· T· wüj º T· dü+|ü‹Ô :1. yÓs’ ê>∑´eTT, 2. ì‘ê´ì‘·´ edüTÔ $y˚øe£ TT, 3. wü≥ÿdü+|ü<,ä 4. eTTeTTø£‘å «· eTT. 1) yÓ’sê>∑´eTT : e÷qe˝Àø£eTT yÓTT<ä\T ÁãVü≤à ˝Àø£eTT C≤„H√|ü<˚X¯ ÁbÕ|üÔeTT e\q ø£\T>∑TqT. $wüj·T C≤‘·eTT\+<äT ùV≤j·TuÛ≤eeTT ø£\T>∑T≥. 2) ì‘ê´ì‘·´ edüTÔ $y˚øe£ TT : Ä‘·à dü«s¡÷|üeTT ì‘·´eTT. <äèX¯´eT>∑T Á|ü|+ü #·eTT n+‘·jT· T nì‘·´eTT ` nqTq{Ϻ ìX¯Ãj·T C≤„qeTT. j·T<∏ës¡ú edüTÔ dü«s¡÷|ü ìX¯Ãj·TeTT. 3) X¯e÷~ wü≥ÿdü+|ü<ä : (n) X¯eTeTT : n+‘·]+Á~j·T ìÁ>∑Vü≤eTT (n+‘·'ø£sD ¡ eTT) sê>∑<«˚ cÕ<äT\>∑T ∫‘·eÔ è‘·T\Ô T ˝Òø,£ $wüjT· eTT\+<ä Hêdü≈î£ &Ô ’Ó ìX¯Ã\T&Ó,’ ì]«ø±s¡‘‘· √ e]Ô+#·T#·T+&ÉT≥. (Ä) <äeTeTT : ãVæ≤]+Á~j·T ìÁ>∑V≤ü eTT nq>± #·≈îå£ 'ÁXÀÁ‘ê~ ãVæ≤]+Á~j·TeTT\qT
236
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
ìwæ<∆ä $wüjT· eTT\+<äT Á|üeè‹Ô ø£\~ ø±≈£î+&ÉTq≥T¢ ìÁ>∑V≤æ +∫ j·TT+#·T≥ (Ç) ñ|üs‹¡ : u≤Vü≤´eTT\T, nHê‘·às¡÷|üeTT\T n>∑T |ü<ës¡eú TT\ CÀ*øÏ b˛ì ∫‘·eÔ è‹Ô ø£*–j·TT+&ÉT≥ (á) ‹‹ø£å : o‘√cÕí~ <ä«+<ä«eTT\qT düV≤æ +∫, ‘·Á‘·Œ‹ÁøÏj÷· <äT\ j·T+<äT Á|üjT· ‹ï+|ü ã÷qø£ düeTuÛ≤eeTTq e]Ô+#·T#·T+&ÉT≥. düø\£ <äT'düV≤ü qeTT. (ñ) ÁX¯<∆ä : >∑Ts¡Tyêø£´eTT\ j·T+<äTqT, y˚<ë+‘· XÊÁdüÔ yêø£´eTT\j·T+<äT <äè&ÛyÉ TÓ qÆ uÛøÑ ÔÏ $XÊ«düeTT\T ø£ * – n$ dü ‘ · ´ eTì qeTTà≥ (}) dü e ÷~Û (dü e ÷<Û ë q+) : Á|ü‘´· >∑_qÛ ïyÓTqÆ , dü∫Ã<ëq+<ä \ø£D å yÓTqÆ , nK+&ÉyTÓ qÆ |üsÁ¡ ãVü≤à edüTeÔ ⁄ nqT \ø£å´eTTq+<äT ∫‘·ÔeTTqT, @ø±Á>∑eTT>∑ $πøå|üs¡Væ≤‘·eTT>∑ ì*|æ j·TT+#·T≥≈£î Á|üjT· ‹ï+#·T≥. Bìì õC≤„dj ü T· ì ≈£L&Ü ø=+<äs+¡ <äTs¡T. 4) eTTeTTø£‘å «· eTT : »qq eTs¡D Á|üyêVü≤ \ø£D å eTT ` nqs¡sú ÷¡ |üeTTq>∑T ˙ dü+kÕs¡ ã+<Ûeä TTqT+&ç eTTøÏÔ Hê¬øqï&ÉT ø£\TZH√, m≥T¢ ø£\T>∑TH√ nqT eTTøÏìÔ >∑÷]Ãq rÁeeTT, <äè&Û‘É s· e¡ TTq>∑T Ç#·Ã¤ (ø√]ø£) ø£*– j·TT+&ÉT≥. ÁX¯eDeTT : Ä‘·à‘·‘«Ô· eTTqT uÀ~Û+#·T XÊÁdüÔ yêø±´s¡ú $#ês¡eTT. •e/•yê : eT+∫. y˚T\T. ÁX‚jT· düT‡. m|üŒ{Ïø° ì*∫ ñqï ‘·‘«Ô· + ≈£L&Ü •ey˚T. #·‘T· s¡+ú •e eT<Ó«’ ‘·eTì e÷+&É÷ø√´|üìwü‘T· .Ô ‘·TØj·÷edüqú T e]í+∫+~. •eeT+fÒ |üs¡e÷‘·à nH˚ uÛ≤e+. •e+ ø±ì<ä+‘ê n•e+. •e+ ∫Á<ä÷|üyTÓ qÆ |üse¡ ÷‘·à nsTT‘˚ •yêdüÁ<ä÷|üyTÓ qÆ Äj·Tq e÷j·÷X¯ø.ÔÏ dü∫ä‘T· \Ô T s¬ +&É÷ ˇπø ˇø£ ‘·‘«Ô· + >∑qTø£ ‘˚&Ü ˝Ò<ìä y˚<ë+‘·T\ dæ<ë∆+‘·+. ÁX¯<ë∆ : ‘·‘«Ô· õC≤„e⁄\≈£î ø±e\dæq n‹eTTK´yÓTqÆ >∑TD+. ÁX¯<ë∆ e÷‘˚e bÕ‹ nì |ü‘+· »* e÷≥. ˇø£ ‘·*˝¢ ≤>± ÁX¯<∆ä kÕ<Û≈ä î£ ì dæ~∆ bı+<˚es¡≈L£ ø±bÕ&ÉT‘·÷ b˛‘·T+<ä≥. n+<äTøπ ÁX¯<ë∆yêHé \uÛ‘Ñ ˚ C≤„qeTHêïs¡T. ÁX¯<ä∆ n+fÒ $XÊ«dü+. <ëìe\¢ ø£*>π @ø±Á>∑‘.· ˇø£ $wüj÷· ìï m˝≤¬>H’ ê düsπ n+<äTø√yê\H˚ |ü≥Tº<\ä øπ Perseverence ÁX¯<∆ä nì ù|s¡T. Utmost faith. X¯e÷~ wü≥ÿ+˝À ◊<äe~~. Bì nq+‘·s+ ¡ Äs¡e~ düe÷~Û. ÁX¯eD/ÁX¯ó‹ : $q≥+. y˚<ë+‘·XÊÁdüÔ uÀ<Ûä Ä\øÏ+#·≥+. Bìe\¢ nC≤„qeTH˚ yê´~Û ‘=\–b˛‘·T+~. |ò*ü ‘·+>± Ä‘·àC≤„q+ ñ<äsTTdüT+Ô ~. ÁX¯ó‹ n+fÒ y˚
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
237
Á|ükÕúq+. eT÷&Ée~ düàè‹ Á|ükÕúq+. yÓTT<ä{<Ï ëìe\¢ nC≤„q+ q•ùd,Ô ¬s+&Ée<ëìe\¢ dü+X¯j·T ìeè‹Ô »]–‘˚ eT÷&Ée<ëì eT÷\+>± $|üs´¡ j·TeTH˚ <√wü+ q•+∫ dü<√´eTTøÏÔ \_ÛdTü +Ô <äì n<Ó«’ ‘·T\ Vü‰MT. dü÷\ú dü÷øå±à~ <˚V≤ü eTT\T : dü÷\ú <˚V≤ü eTT : s¡øÔ£ e÷+kÕ~ <Ûë‘·TeTj·TyÓTqÆ <˚V≤ü eTT. BìøÏ @s¡Œ&ÉT ‘ê|üeTT\T »«sê~ø£eTT\T, yê´<ÛTä \T. dü÷ø£àå X¯Øs¡eTT : ø£sπ à+Á~j·TeTT\T : 5. yêø˘, bÕDÏ, bÕ<ä, bÕj·T÷|üd\úü T C≤„H+˚ Á~j·TeTT\T : 5. ‘·«ø˘, #·≈îå£ ', ÁXÀ‘·, õVü≤«, ÄÁ|ò÷ü DeTT\T ÁbÕD yêj·TTe⁄\T (|ü+#·‘·HêàÁ‘·) : 5. ÁbÕD, nbÕq, yê´q, ñ<ëq, düe÷qeTT\T. eTqdüT‡ãT~∆ : 17 uÛ≤>±\‘√ ñqï~. dü÷ø£àå X¯Øs¡eTT. ∫‘·Ô nVü≤+ø±s¡eTT ø£*|æ‘˚ 19. *+>∑ X¯Øs¡eTT : nsTT<äT dü÷ø£àå eTVü‰uÛ÷Ñ ‘·eTT\T, nsTT<äT ÁbÕDeTT\T, nsTT<ä T Ç+Á~j· T eTT\T, n+‘· ' ø£ s ¡ D eTT. á |ü ~ j· ÷ ]+{Ï düeTT<ëj·TeTT *+>∑Xد s¡eTT. |ü+#·ÁbÕDeTT\T, eTH√ãT<äT\∆ T, <äX+‚ Á~j·TeTT\‘√ >∑÷&ç n|ü+Nø£è‘· uÛ÷Ñ ‘·eTT\qT+&ç @s¡Œ&çq~ dü÷ø£àå X¯Øs¡eTT. ø±s¡D X¯Øs¡eTT : dü÷ø£àå X¯Øs¡eTT ˝À|ü\ ñ+&ÉTq~ ø±s¡D X¯Øs¡eTT. Ç~ n$<√´bÕ~Ûøe£ TT. Ä‘·à (eTVü‰ø±s¡D X¯Øs¡eTT) : ø±s¡DX¯Øs¡ Á|üeè‹ÔøÏ ùV≤‘·TyÓ’ (‘·∑T Ä‘·à. dü÷\ú X¯Øs¡ : eTq Ç+Á~j·÷\≈£î Á|ü‘´· ø£+å >± >√#·]+#˚ á ø£s#¡ s· D¡ ≤~ nej·Tyê\‘√ ≈£L&çq X¯ØsêìøÏ dü÷\ú X¯Øs¡eTì Gross Body ù|s¡T. Ç~ u≤Vü≤´ Á|ü|+ü #·+‘√ Je⁄&ÉT e´eVü≤]+#·{≤ìøÏ @s¡Œ&çq n~ÛcÕ˜q+. Support. ø£sà¡ nH˚ eT÷&Ée bÕbÕìøÏ Ç~ ÄÁX¯jT· +. dü÷ø£àå X¯Øs¡ : *+>∑ X¯Øs¡eTì ≈£L&Ü Bìπø Hêe÷+‘·s+¡ . Subtle Body. eTqdüT‡ ÁbÕD+. á ¬s+&É÷ #·\Hê‘·àø£yÓTÆHê u≤Vü≤´+>± eTq≈£î eTq Ç+Á~j·÷\≈£î Á|ü‘´· ø£eå Tj˚T´$ ø±e⁄. |üs√ø£yå T˚ . ø£qTø£H˚ M{ÏøÏ dü÷ø£àå X¯Øs¡eTì ù|s¡T e∫Ã+~. ªª©q+>∑eTj·T‹μμ>∑T|üyÔ TÓ qÆ Ä‘·à‘·‘êÔ«ìï Ç~
238
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Á|üø≥£ q #˚dæ #·÷|ü⁄‘êsTT. ø±ã{Ϻ *+>∑Xد s¡eTìù|s¡T e∫Ã+~. ø±eTeTH˚ s¬ +&ÉebÕbÕìøÏ Ç~ ì\j·T+. dü‘Y/dü‘ê´/dü‘êÔ : dü‘Y nHêï dü‘´· eTHêï ñqï~ nì ns¡+ú . Extent. ø£*–q Ä‘·à C≤„Hêìï n˝≤π> ì\T|ü⁄ø=+≥÷ b˛e&É+. dü‘êÔ n+fÒ ñìø£ì ns¡+ú . m|üŒ{Ïø° e÷s¡≈î£ +&Ü ì*∫ ñqï<˚<√ n~ dü‘Y ˝Ò<ë dü‘´· +. n~ kÕø±s¡+ ø±<äT øπ e\ C≤„q s¡÷|ü+. ø£qTø£H˚ dü‘êÔ nHêï n<˚. n+fÒ ndæ‘Ô «· eTqïe÷≥. Mere existance. $wüßH í êe÷\˝À dü‘êÔ nì ˇø£ HêeT+ ñ+~. n+fÒ $wüßeí ⁄ kÕø±s¡+>± mø£ÿ&√ ñHêï&Éì ø±<äT. ìsêø±sêyÓTqÆ uÛ≤ey˚T ˝Ò<ë ndæ‘Ô «· y˚T $wüßeí ⁄ nH˚ e÷≥≈£î ns¡+ú . n+fÒ |üse¡ ÷‘·à dü«s¡÷|ü+. dü<˚e k˛eT´ Ç<ä eTÁ>∑ Äd”‘Y nì ñ|üìwü‘·TÔ. á Á|ü|ü+#·eT+‘ê düèwæøº Ï |üPs¡«+ düÁ<ä÷|ü+>±H˚ ñ+<ä≥. n|üŒ{ÏøÏ Ä‘êà, nHê‘êà nH˚ ‘˚&Ü ˝Òø£ n+‘ê düÁ<ä÷|üyT˚ . nsTT‘˚ n~ dü«‘·' Á|üe÷D+ ø£qTø£ ∫Á<ä÷|ü+ ≈£L&Ü n<˚. dü∫Ñ·T˝Ô Ò |üse¡ ÷‘·à n+fÒ. kÕ«sê»´ : dü«j·T+>± sêõ˝Òy¢ ê&ÉT dü«sê{Ÿ. yê&ç \ø£D å + kÕ«sê»´+. ‘·q bÕ{ÏøÏ ‘êH˚ me]MT<ë Ä<Ûës¡|&ü ≈É î£ +&Ü eTVü‰q+<ä+>± ñ+&É>\∑ e´øÏÔ dü«sê{Ÿ nsTT‘˚ yê&ç Äq+<äeTj·TyÓTqÆ J$‘·+ kÕ«sê»´+. me&√ ø±<äT yê&ÉT. Ä‘˚à. n<˚ |üse¡ ÷‘·à ≈£L&Ü. ❋❋❋
»>∑<äTZs¡T l ø£˝≤´D≤q+<äu≤Û s¡r e÷+‘ê#ês¡´kÕ«$T
239
8(Ä) nqTã+<Ûeä TT ` 2 EUCLID -
KNOWN AS FATHER OF GEOMETRY
300 B.C. 'ELEMENTS' TABLE OF CONTENTS
Prematter Introduction Using the Geometry Applet Euclid A quick trip through the Elements References to Euclid's Elements on the Web Subject index B00k I. The Fundamentals of Geometry : Theories of triangles, parallels, and area. Definitions (23) Postulates (5) Common notions (5) Propositions (48) Book II. Geometric algebra Definitions (2) Propositions (13)
240
|üPs¡Mí Te÷+kÕ <äsÙ¡ qyéT
Book VI. Similar figures and proportions in Geometry Definitions (11) Propositions (37) Book VII. Fundamentals of number theory Definitions (22) Propositions (39) Book VIII. Continued proportions in number theory Propositions (27) Book IX. Number theory Propositions (36) Book X. Classification of incommensurables Definitions I (4) Propositions 1-47 Definitions II(6) Propositions 48-84 Definitions III (6) Propositions 85-115 Book XI. Solid geometry Definitions (28) Propositions (39) Book XII. Measurement of figures Propositions (18)
Book III. Theory of circles. Definitions (11) Propositions (37)
Book XIII. Regular solids Propositions (18)
Book IV. Constructions for inscribed and circumscribed figures. Definitions (7) Propositions (16)
Copyright © 1996, 1997 (June, 1997) D.E.Joyce Clark University These pages are located at : http:aleph0.clarku.edu/~djoyce/java/elements/elements.html.
Book V. Theory of abstract Proportions Definitions (18) Propositions (25)