PERIOCIDAD 1. Tabla Periódica
La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos distintos elementos químicos conforme a sus propiedades y características; su función principal es establecer un orden específico agrupando elementos. Suele atribuirse la tabla a Dmitri a Dmitri Mendeléyev, quien Mendeléyev, quien ordenó los elementos basándose en sus propiedades químicas,si bien Julius Lothar Meyer, Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.La átomos.La estructura actual fue diseñada por Alfred Alfred Werner a partir de la versión de Mendeléyev. En 1952, el científico costarricense Gil Chaverri (1921-2005) presentó una nueva versión basada en la estructura electrónica de los elementos, la cual permite colocar las series lantánidos y los actínidos en una secuencia lógica de acuerdo con su número atómico.
Historia La historia de la tabla periódica está íntimamente relacionada con varios aspectos del desarrollo de la química y la física:
El descubrimiento El descubrimiento de los elementos de la tabla periódica. El estudio de las propiedades comunes y la clasificación clasif icación de los elementos. La noción de masa atómica (inicialmente denominada "peso atómico") y, posteriormente, ya en el siglo XX, de número atómico. Las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.
Descubrimiento de los elementos Artículo principal: Descubrimiento de los elementos químicos
Aunque algunos elementos como el oro el oro (Au), plata (Au), plata (Ag), cobre (Ag), cobre (Cu), plomo (Cu), plomo (Pb) y mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo XVII, cuando el alquimista Henning Brand descubrió el el fósforo (P). (P).5 En el siglo XVIII se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno neumática: oxígeno (O), hidrógeno (O), hidrógeno (H) y nitrógeno y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo XIX, la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino –térreos, sobre todo gracias a los trabajos de Humphry de Humphry Davy. En 1830 En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo XIX, con la invención del espectroscopio, del espectroscopio, se se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio azul), talio (Tl, de tallo, por su color verde), rubidio verde), rubidio (Rb, rojo), etc. Noción de elemento y propiedades periódicas
Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes dos siglos se fue adquiriendo un mayor conocimiento sobre estas propiedades, así como descubriendo muchos elementos nuevos. La palabra "elemento" procede de la ciencia griega, pero su noción moderna apareció a lo largo del siglo XVII, aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como pr ecedente la frase de Robert de Robert Boyle en su famosa obra El químico escéptico, donde denomina elementos " ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos". En realidad, esa frase aparece en el contexto de la crítica de
Robert Boyle a los cuatro elementos aristotélicos. A lo largo del siglo XVIII, las tablas las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier por Lavoisier en su obra Tratado elemental de química. Todo ello condujo a diferenciar en primer lugar qué sustancias qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlas. El descubrimiento de gran cantidad de elementos nuevos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.
Los pesos atómicos
A principios del siglo XIX, John Dalton (1766 –1844) desarrolló una concepción nueva del atomismo, a la que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un "atomismo químico" que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743 –1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas). Dalton empleó los conocimientos sobre proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo como se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori. Dalton sabía que una parte de hidrógeno se combinaba con siete partes (ocho, afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de oxígeno, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos, como los llamaba Dalton), que fue posteriormente modificada y desarrollada en los años posteriores. Las inexactitudes antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos, que solo comenzarían a superarse, aunque no totalmente, en el congreso de Karlsruhe en 1860. Metales, no metales, metaloides y metales de transición
La primera clasificación de elementos conocida fue propuesta por Antoine Lavoisier, quien propuso que los elementos se clasificaran en metales, no metales y metaloides o metales de transición. Aunque muy práctica y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias tanto en las propiedades físicas como en lasquímicas. Tríadas de Döbereiner
Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlo con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner (1780 –1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y telurio; litio, sodio y potasio).
A estos grupos se los Tríadas de Döbereiner
de tres elementos
Litio
LiCl Calcio LiOH
CaCl2 H2S Azufre CaSO4 SO2
Sodio
NaCl SrCl2 H2Se Estroncio Selenio NaOH SrSO4 SeO2
Potasio
KCl Bario KOH
BaCl2 H2Te Telurio BaSO4 TeO2
denominó tríadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos. Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último. En su clasificación de las tríadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la tríada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de tríadas. Chancourtois Artículo principal: Alexandre-Emile Béguyer de Chancourtois
En 1864, Chancourtois construyó una hélice de papel, en la que estaban ordenados por pesos atómicos (masa atómica) los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención. Ley de las octavas de Newlands Artículo principal: John Alexander Reina Newlands
En 1864, el químico inglés John Alexander Reina Newlands comunicó al Royal College of Chemistry (Real Colegio de Química) su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamadosgases nobles no habían sido Ley de las octavas de Newlands aún descubiertos. 1
2
3
4
5
6
7
Esta ley mostraba una cierta ordenación de los elementos en familias con (grupos), propiedades muy parecidas entre sí y enperiodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.
Li
Be
B
C
N
O
F
6,9
9,0
10,8
12,0
14,0
16,0
19,0
Na
Mg
Al
Si
P
S
Cl
23,0
24,3
27,0
28,1
31,0
32,1
35,5
K
Ca
El nombre de octavas se basa en la 39,0 40,0 intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas. Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy. Tabla periódica de Mendeléyev Artículo principal: Tabla periódica de Mendeléyev
En 1869, el ruso Dmitri Ivánovich Mendeléyev publicó su primera Tabla Periódica en Alemania. Un año después lo hizo Julius Lothar Meyer, que basó su clasificación periódica en la periodicidad de los volúmenes atómicos en función de la masa atómica de los elementos.6 Por ésta fecha ya eran conocidos 63 elementosde los 90 que existen en la naturaleza. La clasificación la llevaron a cabo los dos químicos de acuerdo con los criterios siguientes:
Colocaron los elementos por orden creciente de sus masas atómicas. Los agruparon en filas o periodos de distinta longitud. Situaron en el mismo grupo elementos que tenían propiedades químicas similares, como la valencia.
Tabla de Mendeléyev publicada en 1872. En ella deja casillas libres para elementos por descubrir.
La primera clasificación periódica de Mendeléyev no tuvo buena acogida al principio. Después de varias modificaciones publicó en el año 1872 una nueva Tabla Periódica constituida por ocho columnas desdobladas en dos grupos cada una, que al cabo de los años se llamaron familia A y B. En su nueva tabla consigna las fórmulas generales de los hidruros y óxidos de cada grupo y por tanto, implícitamente, lasvalencias de esos elementos. Esta tabla fue completada a finales del siglo XIX con un grupo más, el grupo cero, constituido por los gases nobles descubiertos durante esos años en el aire. El químico ruso no aceptó en principio tal descubrimiento, ya que esos elementos no tenían cabida en su tabla. Pero cuando, debido a su inactividad química (valencia cero), se les asignó el grupo cero, la Tabla Periódica quedó más completa. El gran mérito de Mendeléyev consistió en pronosticar la existencia de elementos. Dejó casillas vacías para situar en ellas los elementos cuyo descubrimiento se realizaría años después. Incluso pronosticó las propiedades de algunos de ellos: el galio(Ga), al que llamó eka –aluminio por estar situado debajo del aluminio; el germanio (Ge), al que llamó eka –silicio; el escandio (Sc); y el tecnecio (Tc), que, aislado químicamente a partir de restos de un sincrotrón en 1937, se convirtió en el primer elemento producido de forma predominantemente artificial. Noción de número atómico y mecánica cuántica
La tabla periódica de Mendeléyev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las "tierras raras" y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio –yodo, argón –potasio y cobalto –níquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes. Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867 –1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo. La explicación que aceptamos actualmente de la "ley periódica" descubierta por los químicos de mediados del siglo pasado surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX. En el primer tercio del siglo XX se construyó la mecánica cuántica. Gracias a estas investigaciones y a los desarrollos posteriores, hoy se acepta que la ordenación de los elementos en el sistema periódico está
relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas. Clasificación periódica de los elementos Entre las propiedades de los elementos químicos existen semejanzas y diferencias que permiten formar grupos semejantes. Clasificación es útil para sistematizar el estudio de los elementos y predecir su comportamiento químico. Desde fines de XVIII, los científicos han tratado de clasificar los elementos químicos teniendo en cuenta las semejanzas que se observan en sus propiedades. En 1869, Dimitri Mendeleiev, pensó que existía una relación entre las propiedades de los elementos y sus pesos atómicos. Así, confeccionó una tarjeta para cada elemento en la que consigno el símbolo, las propiedades principales y el peso atómico. Luego, procedió a organizar las tarjetas por masas atómicas crecientes. Al continuar el ordenamiento por masas atómicas crecientes, observó que el elemento siguiente (sodio) tenía propiedades semejantes al litio por lo cual comenzó una nueva hilera. Así fue iniciando nuevas filas y conformando la tabla. La tabla periódica actual, está relacionada con la estructura electrónica de los átomos. En ella se encuentran todos los elementos conocidos, tanto los 92 que se hallaron en la naturaleza, como los que se obtuvieron en el laboratorio por medio de reacciones nucleares. Resumen Se conoce como tabla periódica de los elementos, sistema periódico o simplemente como tabla periódica, a un esquema diseñado para organizar y segmentar cada elemento químico, de acuerdo a las propiedades y particularidades que posea. Es una herramienta fundamental para el estudio de la química pues permite conocer las semejanzas entre diferentes elementos y comprender qué puede resultar de las diferentes uniones entre los mismos. Proceso de desarrollo del sistema periódico Según se advierte al investigar sobre la tabla periódica, la historia de esta estructura está relacionada al descubrimiento de los diferentes elementos químicos y a la necesidad de ordenarlos de alguna manera. Desde los comienzos de la ciencia se intenta comprender el por qué y el cómo de la materia y los elementos que conforman nuestro sistema. Gracias a las diferentes experiencias de los científicos cada vez se ha podido descomponer aún más la materia para analizarla palmo a palmo, llegando finalmente a averiguar que es mucho más compleja que lo que a simple vista parece. A partir del siglo XIX los científicos tuvieron la necesidad de establecer un orden en los elementos descubiertos. La forma en la que decidieron hacerlo, fue partiendo de sus masas atómicas y agrupando aquellos que se asemejaran; sin embargo esta tarea
no era tan sencilla ya que era difícil reflejar en un cuadro ordenado las similitudes y diferencias entre unos y otros. El químico Döbereiner fue quien en 1817 presentó un informe donde se plasmaba la relación que existía entre la masa y las propiedades de los diferentes elementos. Así formó los grupos de elementos semejantes, como lo son las triadas, como la que forman cloro, bromo y yodo, donde la masa de uno de ellos se ubica en medio de los otros dos. Partiendo de esa investigación, en 1850, se llegaron a armar alrededor de 20 triadas. Posteriormente, Chancourtois y Newlands descubrieron la Ley de las octavas que permitió mejorar no sólo la distribución de los elementos en la tabla, sino las relaciones en ella plasmadas. Dicha Ley observa que las propiedades químicas se repiten sucesivamente cada ocho elementos. Sin embargo algunos elementos rompían con ella, por lo que no era suficiente para establecer una coherencia clara en la tabla. Cuando en 1869 Meyer comprobó que el volumen atómico de los elementos presentaba una cierta periodicidad; se supo que ciertos elementos que tenían un volumen similar a aquellos elementos que se les parecen en composición.
Finalmente, en 1869 Mendeléyev presentó la primera versión de la tabla periódica. La misma estaba compuesta por una columna con 63 elementos, agrupados de acuerdo a sus propiedades en común, y varios espacios en blanco. El químico ruso asumía que faltaban algunos no habían sido descubiertos, los correspondientes a las masas atómicas que aún no se conocían y que permitían que la tabla tuviera una regularidad numérica absoluta. Pese a que en su momento, su teoría no fue aceptada, pues parecía poco exacta, años más tarde al descubrir los elementos faltantes, se comprobó que Mendeléyev tenía razón. Más tarde, Mendeléyev añadió las fórmulas correspondientes a los óxidos e hidruros de cada sección. A finales del siglo XIX, la tabla periódica comenzó a incluir el grupo cero (con los denominados gases nobles), llamado de esa forma por la ausencia de actividad química (de valencia cero). Es necesario reconocer, por último, la importancia de John Dalton (1766-1844) en el desarrollo del concepto del atomismo químico, al suponer sobre las posibles combinaciones de los átomos de las sustancias. Dalton eligió a la masa de un átomo
de hidrógeno como unidad referencial y creó una estructura basada en masas atómicas relativas. 1.1 Describir la distribución de los elementos de la tabla periódica en orden creciente de sus números atómicos En física y química, el número atómico es el número total de protones que tiene el átomo. Se suele representar con la letra Z Los átomos de diferentes elementos tienen diferentes números de electrones y protones. Un átomo en su estado natural es neutro y tiene número igual de electrones y protones. Un átomo de sodio Na tiene un número atómico 11, posee 11 electrones y 11 protones. Un átomo de magnesio Mg, tiene número atómico 12, posee 12 electrones y 12 protones, y un átomo de uranio U, que tiene número atómico 92, posee 92 electrones y 92 protones. Se coloca como subíndice a la izquierda del símbolo del elemento correspondiente. Por ejemplo, todos los átomos del elemento hidrógeno tienen 1 protón y su Z = 1; esto sería ₁H. Los de helio tienen 2 protones y Z =2; asimismo ₂He. Los de litio, 3 protones y Z = 3,…
Si el átomo es neutro, el número de electrones coincide con el de protones y lo da Z. En 1913 Henry Moseley demostró la regularidad existente entre los valores de las longitudes de onda de los rayos X emitidos por diferentes metales tras ser bombardeados con electrones, y los números atómicos de estos elementos metálicos. Este hecho permitió clasificar a los elementos en la tabla periódica en orden creciente de número atómico. En la tabla periódica los elementos se ordenan de acuerdo a sus números atómicos en orden creciente. Cada átomo se caracteriza por un número atómico. El número atómico es un número igual a la cantidad de protones que contiene su núcleo. Este número diferencia a un elemento de los demás. Es también igual a la cantidad de electrones de un átomo neutro del elemento. Por ejemplo, el actinio (Ac) tiene número atómico 89; esto quiere decir que el actinio tiene 89 protones en su núcleo. Número atómico Número de cargas elementales positivas (protones) que contiene el núcleo de un átomo. Se representa con la letra Z. En un átomo eléctricamente neutro, el número de electrones orbitales es igual al número atómico. Los átomos con el mismo valor Z (isótopos) pertenecen al mismo elemento. El elemento más ligero es el hidrógeno, y tiene Z = 1. El elemento más pesado que se encuentra en la naturaleza es el uranio, y tiene Z = 92. Existen elementos con Z menor o igual a 106; algunos son naturales y otros se han creado de manera artificial. Cuando el número atómico se escribe explícitamente, por lo general se coloca antes y debajo del símbolo que representa al elemento; por ejemplo, 1H, 2U.
La tabla periódica actual es un sistema donde se clasifican los elementos conocidos hasta la fecha. Se colocan de izquierda a derecha y de arriba a abajo en orden creciente de sus números atómicos. Los elementos están ordenados en siete hileras horizontales llamadas periodos, y en 18 columnas verticales llamadas grupos o familias.7 Hacia abajo y a la izquierda aumenta el radio atómico y el radio iónico. Hacia arriba y a la derecha aumenta la energía de ionización, la afinidad electrónica y la electronegatividad. Tamaño atómico Los átomos tienen unas dimensiones tan raras, tan extraordinariamente pequeñas que es preciso disponer de una unidad sumamente minúscula para poder expresar las distancias en su interior y en el de las moléculas y entre los que están situados uno de cerca de otro; por ejemplo, en caso de los cristales. La unidad empleada es el angström (abreviación: A), equivalente a 10-8 cm (0,00000001 cm).
1.2 Explicar los términos grupos y periodo Grupos A las columnas verticales de la tabla periódica se les conoce como grupos o familias. Hay 18 grupos en la tabla periódica estándar, de los cuales diez son grupos cortos y los ocho restantes largos, que muchos de estos grupos correspondan a conocidas familias de elementos químicos: la tabla periódica se ideó para ordenar estas familias de una forma coherente y fácil de ver. Todos los elementos que pertenecen a un grupo tienen la misma valencia atómica, entendido como el número de electrones en la última capa, y por ello, tienen propiedades similares entre sí. La explicación moderna del ordenamiento en la tabla periódica es que los elementos de un grupo poseen configuraciones electrónicas similares y la misma valencia atómica, o número de electrones en la última capa. Dado que las propiedades químicas dependen profundamente de las interacciones de los electrones que están ubicados en l os niveles más externos, los elementos de un mismo grupo tienen propiedades químicas similares. Por ejemplo, los elementos en el grupo 1 tienen una configuración electrónica ns1 y una valencia de 1 (un electrón externo) y todos tienden a perder ese electrón al enlazarse como ionespositivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía (regla del octeto) y, por ello, son excepcionalmente no reactivos y son también l lamados gases inertes.
Numerados de izquierda a derecha utilizando números arábigos, según la última recomendación de la IUPAC (según la antigua propuesta de la IUPAC) de 1988 y entre paréntesis según el sistema estadounidense,8 los grupos de la tabla periódica son:
Grupo 1 (I A): los metales alcalinos Grupo 2 (II A): los metales alcalinotérreos. Grupo 3 (III B): familia del Escandio (tierras raras yactinidos). Grupo 4 (IV B): familia del Titanio. Grupo 5 (V B): familia del Vanadio. Grupo 6 (VI B): familia del Cromo.
Grupo 7 (VII B): familia del Manganeso. Grupo 8 (VIII B): familia del Hierro. Grupo 9 (VIII B): familia del Cobalto. Grupo 10 (VIII B): familia del Níquel. Grupo 11 (I B): familia del Cobre. Grupo 12 (II B): familia del Zinc.
Grupo 13 (III A): los térreos. Grupo 14 (IV A): los carbonoideos. Grupo 15 (V A): los nitrogenoideos . Grupo 16 (VI A): los calcógenos o anfígenos . Grupo 17 (VII A): los halógenos. Grupo 18 (VIII A): los gases nobles.
Los grupos son divisiones de la tabla donde se pueden indicar y encontrar lo siguiente: }
Grupos IA IIA IIIA IVA VA VIA VIIA
Elementos
O
He, Ne, Ar, Kr, Xe y Rn.
IB IIB IIIB IVB VB VIB VIIB VIIIB
H, Li, Na, K, Rb, Cs y Fr. Be, Mg, Ca, Sr, Ba y Ra. B, Al, Ga, In y Ti. C, Si, Ge, Sn y Pb. O, S, Se, Te y Po N, P, As, Sb y Bi. F, Cl, Br, I y At
Cu, Ag y Au. Zn, Cd y Hg Sc, Y, Serie del Lantano y Serie del Actinio. Ti, Zr, Hf y Ku V, Nb, Ta y Ha Cr, Mo y W Mn, Tc y Re Fe, Ru, Os, Co, Rh, Ir, Ni, Pd y Pt.
Periodos Las filas horizontales de la tabla periódica son llamadas períodos. El número de niveles energéticos de un átomo determina el periodo al que pertenece. Cada nivel está dividido en distintos subniveles, que conforme aumenta su número atómico se van llenando en este orden: Siguiendo esa norma, cada elemento se coloca según su configuración electrónica y da forma a la tabla periódica. Los electrones situados en niveles más externos determinan en gran medida las propiedades químicas, por lo que éstas tienden a ser similares dentro de un mismo grupo, sin embargo la masa atómica varía considerablemente incluso entre elementos adyacentes. Al contrario, dos elementos adyacentes de mismo periodo tienen una masa similar, pero propiedades químicas diferentes. La tabla periódica consta de 7 períodos.
Periodos: La tabla periódica tiene 7 periodos (renglones) y se designan con números arábigos del 1 al 7. Cada periodo contiene un número de elementos: Periodos # de Elementos 2, 8, 8, 18, 18, 32 y 19 a completar 32
Bloques
La tabla periódica se puede también dividir en bloques de elementos según el orbital que estén ocupando los electronesmás externos, de acuerdo al principio de Aufbau. Los bloques o regiones se denominan según la letra que hace referencia al orbital más externo: s, p, d y f . Podría haber más elementos que llenarían otros orbitales, pero no se han sintetizado o descubierto; en este caso se continúa con el orden alfabético para nombrarlos.
Bloque s
Bloque p Bloque d Bloque f Bloque g (bloque hipotético)
En la tabla periódica los elementos están ordenados de forma que aquellos con propiedades químicas semejantes, se encuentren situados cerca uno de otro. Los elementos se distribuyen en filas horizontales, llamadas períodos. Pero los periodos no son todos iguales, sino que el número de elementos que contienen va cambiando, aumentando al bajar en la tabla periódica. El primer periodo tiene sólo dos elementos, el segundo y tercer periodo tienen ocho elementos, el cuarto y quinto periodos tienen dieciocho, el sexto periodo tiene treinta y dos elementos, y el séptimo no tiene los treinta y dos elementos porque está incompleto. Estos dos últimos periodos tienen catorce elementos separados, para no alargar demasiado la tabla y facilitar su trabajo con ella. El periodo que ocupa un elemento coincide con su última capa electrónica. Es decir, un elemento con cinco capas electrónicas, estará en el quinto periodo. El hierro, por ejemplo, pertenece al cuarto periodo, ya que tiene cuatro capas electrónicas.
1.3 Establezca la relación entre la configuración electrónica y su posición en la tabla periódica En física y química, la configuración electrónica indica la manera en la cual los electrones se estructuran o se modifican en un átomo de acuerdo con el modelo de capas electrónicas, en el cuál las funciones de ondas del sistema se expresa como un producto de orbitales antisimetrizadas.1 2 La configuración electrónica es importante porque determina las propiedades de combinación química de los átomos y por tanto su posición en la tabla periódica.
Notación Se utiliza en una notación estándar para describir las configuraciones electrónicas de átomos y moléculas. Para los átomos, la notación contiene la definición de los orbitales atómicos (en la forma n l, por ejemplo 1s, 2p, 3d, 4f) indicando el número de electrones asignado a cada orbital (o al conjunto de orbitales de la misma subcapa) como un superíndice. Por ejemplo, el hidrógeno tiene un electrón en el orbital s de la primera capa, de ahí que su configuración electrónica se escriba 1s1. El litio tiene dos electrones en la subcapa 1s y uno en la subcapa 2s (de mayor energía), de ahí que su configuración electrónica se escriba 1s2 2s1 (pronunciándose "uno-ese-dos, dos-eseuno"). Para el fósforo (número atómico 15), tenemos: 1s2 2s2 2p6 3s2 3p3. Para átomos con muchos electrones, esta notación puede ser muy larga por lo que se utiliza una notación abreviada, que tiene en cuenta que las primeras subcapas son iguales a las de algún gas noble. Por ejemplo, el fósforo, difiere del argón y neón (1s2 2s2 2p6) únicamente por la presencia de la tercera capa. Así, la configuración electrónica del fósforo se puede escribir respecto de la del neón como: [Ne] 3s2 3p6. Esta notación es útil si tenemos en cuenta que la mayor parte de las propiedades químicas de los elementos vienen determinadas por las capas más externas. El orden en el que se escriben los orbitales viene dado por la estabilidad relativa de los orbitales, escribiéndose primero aquellos que tienen menor energía orbital. Esto significa que, aunque sigue unas pautas generales, se pueden producir excepciones. La mayor parte de los átomos siguen el orden dado por la regla de Madelung. Así, de acuerdo con esta regla, la configuración electrónica del hierro se escribe como: [Ar] 4s2 3d6. Otra posible notación agrupa primero los orbitales con el mismo número cuántico n, de tal manera que la configuración del hierro se expresa como [Ar] 3d6 4s2 (agrupando el orbital 3d con los 3s y 3p que están implícitos en la configuración del argón). El superíndice 1 de los orbitales ocupados por un único electrón no es obligatorio.4 Es bastante común ver las letras de los orbitales escritas en letra itálica o cursiva. Sin embargo, la Unión Internacional de Química Pura y Aplicada (IUPAC) recomienda utilizar letra normal, tal y como se realiza aquí. Origen histórico Niels Bohr fue el primero en proponer (1923) que la periodicidad en las propiedades de los elementos se podía explicar mediante la estructura electrónica del átomo . 5 Su propuesta se basó en el modelo atómico de Bohr para el átomo, en el cual las capas electrónicas eran órbitas electrónicas a distancias fijas al núcleo. Las configuraciones originales de Bohr hoy parecen extrañas para el químico: al azufre se le asignaba una configuración 2.4.4.6 en vez de 1s 2 2s2 2p6 3s2 3p4.
Un año después, E. C. Stoner incorpora el tercer número cuántico de la teoría de Sommerfeld en la descripción de las capas electrónicas, y predice correctamente la estructura de capas del azufre como 2.8.6.6 Sin embargo, ni el sistema de Bohr ni el de Stoner podían describir correctamente los cambios del espectro atómico en un campo magnético (efecto Zeeman). Distribución electrónica
Es la distribución de los electrones en los subniveles y orbitales de un átomo. La configuración electrónica de los elementos se rige según el diagrama de Moeller: Para comprender el diagrama de Moeller se utiliza la siguiente tabla:
Para encontrar la distribución electrónica se escriben las notaciones en forma diagonal desde arriba hacia abajo y de derecha a izquierda (seguir colores): 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p Este principio de Aufbau, de construcción (denominado principio del alemán Aufbau que significa 'construcción') fue una parte importante del concepto original de Bohr de configuración electrónica. Puede formularse como:
sólo se pueden ocupar los orbitales con un máximo de dos electrones, en orden creciente de energía orbital: los orbitales de menor energía se llenan antes que los de mayor energía.
Así, vemos que se puede utilizar el orden de energías de los orbitales para describir la estructura electrónica de los átomos de los elementos. Un subnivel s se puede llenar con 1 o 2 electrones. El subnivel p puede contener de 1 a 6 electrones; el subnivel d de 1 a 10 electrones y el subnivel f de 1 a 14 electrones. Ahora es posible describir la estructura electrónica de los átomos estableciendo el subnivel o distribución orbital de los electrones. Los electrones se colocan primero en los subniveles de menor energía y cuando estos están completamente ocupados, se usa el siguiente subnivel de energía superior. Esto puede representarse por la siguiente tabla:
Para encontrar la configuración electrónica se usa el mismo procedimiento anterior incluyendo esta vez el número máximo de electrones para cada orbital. 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 14 6d10 7p6 Finalmente la configuración queda de la siguiente manera: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4f 14 5d10 6p6 7s2 5f 14 6d10 7p6
Para determinar la configuración electrónica de un elemento, basta con calcular cuántos electrones hay que acomodar y entonces distribuirlos en los subniveles empezando por los de menor energía e ir llenando hasta que todos los electrones estén distribuidos. Un elemento con número atómico mayor tiene un electrón más que el elemento que lo precede. El subnivel de energía aumenta de esta manera:
Subnivel s, p, d o f: Aumenta el nivel de energía.
Sin embargo, existen excepciones, como ocurre en los elementos de transición al ubicarnos en los grupos del cromo y del cobre, en los que se promueve el electrón dando así una configuración fuera de lo común.
Bloques de la tabla periódica La forma de la tabla periódica está íntimamente relacionada con la configuración electrónica de los átomos de los elementos. Por ejemplo, todos los elementos del grupo 1 tienen una configuración de [E] ns1 (donde [E] es la configuración del gas inerte correspondiente), y tienen una gran semejanza en sus propiedades químicas. La capa electrónica más externa se denomina "capa de valencia" y (en una primera aproximación) determina las propiedades químicas. Conviene recordar que el hecho de que las propiedades químicas eran similares para los elementos de un grupo fue descubierto hace más de un siglo, antes incluso de aparecer la idea de configuración electrónica.8 No está claro cómo explica la regla de Madelung (que más bien describe) la tabla periódica,9 ya que algunas propiedades (tales como el estado de oxidación +2 en la primera fila de los metales de transición) serían diferentes con un orden de llenado de orbitales distinto. Regla de exclusión de Pauli Esta regla nos dice que en un estado cuántico solo puede haber un electrón. De aquí salen los valores del espín o giro de los electrones que es 1/2\hbar y con proyecciones \pm 1/2. También que en una orientación deben caber dos electrones excepto cuando el número de electrones se ha acabado, por lo cual el orden que debe seguir este ordenamiento en cada nivel es primero los de espín positivo (+1/2) y luego los negativos. El principio de exclusión de Pauli fue un principio cuántico enunciado por Wolfgang Ernst Pauli en 1925. Establece que no puede haber dos fermiones con todos sus números cuánticos idénticos (esto es, en el mismo estado cuántico de partícula individual). Perdió la categoría de principio, pues deriva de supuestos más generales: de hecho, es una consecuencia del teorema de la estadística del spin. El principio de exclusión de Pauli sólo se aplica a fermiones, esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero. Son fermiones, por ejemplo, los protones, los neutrones y los electrones, los tres tipos de partículas subatómicas que constituyen la materia ordinaria. El principio de exclusión de Pauli rige, así pues, muchas de las características distintivas de la materia. En cambio, partículas como el fotón y el (hipotético) gravitón no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres. "Dos electrones en la corteza de un átomo no pueden tener al mismo tiempo los mismos números cuánticos". Es sencillo derivar el principio de Pauli, basándonos en el artículo de partículas idénticas. Los fermiones de la misma especie forman sistemas con estados totalmente antisimétricos, lo que para el caso de dos
partículas significa que: mismo estado cuántico |ψ>, el estado del sistema completo es |ψψ>.
Regla del octeto Para que un átomo sea estable debe tener todos sus orbitales llenos (cada orbital con dos electrones, uno de espín +½ y otro de espín -½) Por ejemplo, el oxígeno, que tiene configuración electrónica 1s², 2s², 2p4, debe llegar a la configuración 1s², 2s², 2p6 con la cual los niveles 1 y 2 estarían llenos. Recordemos que la Regla del octeto, justamente establece que el nivel electrónico se completa con 8 electrones, excepto el hidrógeno, que se completa con 2 electrones. Entonces el oxígeno tendrá la tendencia a ganar los 2 electrones que le faltan, por esto se combina con 2 átomos de hidrógeno (en el caso del agua, por ejemplo), que cada uno necesita 1 electrón (el cual recibe del oxígeno) y otorga a dicho átomo 1 electrón cada uno. De este modo, cada hidrógeno completó el nivel 1 y el oxígeno completó el nivel 2.
En química se denomina orbital a la zona del espacio que rodea a un núcleo atómico donde la probabilidad de encontrar un electrón es máxima, cercana al 91%. Ejemplo de ello: 10Ne: 1s2, 2s2, 2p6 regla del octeto: 11Na:(Ne)10, 1s2, 2s2, 2p6, 3s1 Anomalías de configuración electrónica Al desarrollar la configuración electrónica, encontramos una serie de excepciones. Por ejemplo, es más estable llenar dos medios orbitales que completar uno y dejar el otro a uno o dos electrones de estar completado a la mitad. Así, los metales del grupo 6 en vez de tener los orbitales externos s completos y el orbital d a un electrón de estar semi-completo, donarán un electrón del orbital s al orbital d, quedando ambos completos a la mitad: s1d5 en vez de s2d4. Igualmente, es más estable rellenar los orbitales d completamente, por lo que los elementos del grupo 11 tenderán a adoptar la configuración s1d10 en vez de s2d9. Ejemplos de estas anomalías son: Grupo VIB: 24Cr: 1s2, 2s2, 2p6, 3s2, 3p6, 4s2, 3d4 : es incorrecto. 24Cr: 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d5 : es correcto. Grupo IB: 29Cu: 1s2, 2s2, 2p6, 3s2, 3p6, 4s1, 3d10 : es correcto. ER: n + l
Donde: n: nivel l: subnivel Ejemplo: 4s: 4 + 0 : 4 3p: 3 + 1 : 4 4d: 4 + 2 : 6 5f: 5 + 3 : 8 6g: 6 + 4 : 10
7h: 7 + 5 : 12 Orbital o REEMPE En química se usa la expresión REEMPE para designar el valor esperado de un operador densidad de estados de dos electrones con ms=\pm 1/2. En otras palabras: la región donde existe mayor posibilidad de encontrar como máximo 2 electrones que se mueven en forma paralela y en sentidos contrarios. Su nombre proviene de Región de Espacio Energético de Manifestación Probabilística del Electrón. La distribución de niveles, subniveles, orbitales y número de electrones posibles en ellos se resume, para las 4 primera capas, en la siguiente tabla: 1 (K)
2 (L)
3 (M)
4 (N)
Tipo de subniveles
s
s p
s p d
s p d f
Número de orbitales en cada subnivel
1
1 3
1 3 5
1 3 5 7
Denominación de los orbitales
1s
2s 2p
3s 3p 3d
4s 4p 4d 4f
2
2 - 6
2 - 6 - 10
2 - 6 - 10 - 14
2
8
18
32
Niveles de energía o capa (n)
Número máximo de electrones en los orbitales Número máximo de electrones por nivel de energía o capa
Ejemplos Número atómico
Elemento
Símbolo
Configuración Electrónica
1
Hidrógeno
H
1
2
Helio
He
1
3
Litio
Li
1 2
4
Berilio
Be
1 2
5
Boro
B
1 2 2
6
Carbono
C
1 2 2
7
Nitrógeno
N
1 2 2
8
Oxígeno
O
1 2 2
9
Flúor
F
1 2 2
10
Neón
Ne
1 2 2
11
Sodio
Na
1 2 2 3
12
Magnesio
Mg
1 2 2 3
13
Aluminio
Al
1 2 2 3 3
14
Silicio
Si
1 2 2 3 3
15
Fósforo
P
1 2 2 3 3
16
Azufre
S
1 2 2 3 3
17
Cloro
Cl
1 2 2 3 3
18
Argón
Ar
1 2 2 3 3
19
Potasio
K
1 2 2 3 34
20
Calcio
Ca
1 2 2 3 34
1.4 Explicar la relación entre el número de electrones presentes en el mayor nivel energético ocupado de un elemento y su posición en la tabla periódica Niveles energéticos atómicos En un átomo, los electrones están girando alrededor del núcleo formando capas. En cada una de ellas, la energía que posee el electrón es distinta. Por ejemplo: en las capas muy próximas al núcleo, la fuerza de atracción entre éste y los electrones es muy fuerte, por lo que estarán fuertemente ligados. Ocurre lo contrario en las capas alejadas, en las que los electrones se encuentran débilmente ligados, por lo que resultará más fácil realizar intercambios electrónicos en las últimas capas. ¿Cuántos niveles de energía existen? Pues 7, numerados del 1, el más interno, al 7, el más externo. Y los niveles se llaman: K,L,M,N,O,P y Q. A su vez, cada nivel tiene sus electrones repartidos en distintos subniveles, que pueden ser de cuatro tipos: s, p, d, f. En cada subnivel hay un número determinado de orbitales que pueden contener, como máximo, 2 electrones cada uno. Así, hay 1 orbital tipo s, 3 orbitales p, 5 orbitales d y 7 del tipo f. De esta forma el número máximo de electrones que admite cada subnivel es: 2 en el s; 6 en el p (2 electrones x 3 orbitales); 10 en el d (2 x 5); 14 en el f (2 x 7).
El último nivel de energía se llama capa electrónica de valencia y es el más importante porque es el que usualmente define la manera en que los átomos se enlazan entre sí para formar diversos compuestos. Los electrones de valencia son los electrones que se encuentran en los mayores niveles de energía del átomo, siendo estos los responsables de la interacción entre átomos de distintas especies o entre los átomos de un mismo orbital. Los electrones en los niveles de energía externos son aquellos que serán utilizados en la formación de compuestos y a los cuales se les denomina como electrones de valencia. Estos electrones, conocidos como "electrones de valencia", son los que presentan la facilidad de formar enlaces. Estos enlaces pueden darse de diferente manera, ya sea por intercambio de estos electrones, por compartición de pares entre los átomos en cuestión o por el tipo de interacción que se presenta en el enlace metálico, que consiste en un "traslape" de bandas. Según sea el número de estos electrones, será el número de enlaces que puede formar cada átomo con otro u otros. Sólo los electrones externos de un átomo pueden ser atraídos por otro átomo cercano. Por lo general, los electrones del interior son afectados en menor medida y tampoco los electrones en las subcapas d llenas y en las f, porque están en el interior del átomo y no en la superficie. La valencia de un elemento es el número de electrones que necesita o que le sobra para tener completo su último nivel. La valencia de los gases nobles, por tanto, será cero, ya que tienen completo el último nivel. En el caso del sodio, la valencia es 1, ya que tiene un solo electrón de valencia, si pierde un electrón se queda con el último nivel completo. La espectrometría electrónica Con la espectroscopia electrónica y de rayos X se han obtenido pruebas de la no intervención de los electrones internos. La energía requerida para separar los electrones internos de un átomo casi es independiente de si, el átomo está en un compuesto o es de un elemento combinado. La energía necesaria para separar los electrones internos depende mucho del estado de combinación del átomo. Los métodos espectroscópicos constituyen una herramienta de indudable valor en la investigación de la estructura y de la dinámica de la materia, desde la escala atómica hasta las grandes moléculas de la vida. La espectroscopia tiene como objetivo proporcionar una base sólida de los principios del método y técnica espectroscópicos. Se presentan con claridad los fundamentos básicos de la Espectroscopía, centrados en torno al acto espectroscópico elemental, en
el que un haz de radiación electromagnética interacciona con un átomo o molécula e induce transiciones entre sus niveles de energía. Se desarrollan los diferentes tipos de espectroscopias de forma actualizada, incluyendo los grandes avances que en ellas han supuesto la utilización de fuentes de radiación láser y la óptica no lineal. El número de electrones de valencia de cada elemento, corresponderá a qué grupo pertenece en la Tabla Periódica de los Elementos. Por ejemplo, el Oxígeno (O) pertenece al grupo 6A, y por lo tanto tendrá 6 electrones de valencia. El Litio se ubica en el grupo 1A, entonces tiene 1 electrón de valencia.
La tabla periódica, los electrones del último nivel y sus propiedades. Las columnas de la tabla periódica se denominan grupos. Los grupos principales van del 1 al 8 omitiendo al bloque f “lantánidos y actividad” y al bloque d “metales de transición”. Estos bloques principales tienden a clasificarse de acuerdo a dos criterios,
poseen una misma cantidad de electrones en su último nivel de energía, por lo que coinciden con sus estructuras de Lewis. El segundo criterio de clasificación, es que coinciden en cuanto a sus propiedades químicas. Por ejemplo, omitiendo al hidrógeno, todos los elementos del grupo I son metales altamente reactivos con bajas electronegatividades y tendencia a perder electrones. Otro ejemplo, los gases nobles, todos tienen una nula o muy baja reactividad, siendo prácticamente inertes.
Los demás grupos que incluyen a los elementos de los bloques d y f se los clasifica por su periodo y su bloque, aunque en efecto existen grupos que comparten propiedades similares, por ejemplo el cobre, la plata y el oro. Valencia Los átomos se unen entre sí para ganar, perder o compartir electrones, actividad que realizan a través de los electrones de valencia, aquellos que están ubicados en el último nivel de energía de todo átomo. Esta actividad, llamada enlace químico, la realizan con el propósito de cumplir con la ley del octeto (ocho), pues solo así los átomos adquieren su estabilidad química (al igual que una tranquilidad económica en los humanos).Esta ley consiste en que los átomos, con dos o más capas de electrones, procuran tener ocho electrones en su última capa o nivel de energía La palabra valencia proviene del latín valentía, que significa vigor o capacidad. En los enlaces químicos, esta palabra se refiere a la capacidad que tiene un átomo para establecer combinaciones, uniones o enlaces con otros átomos. Algunos átomos pueden establecer un solo enlace o unión con otros átomos, otros tienen capacidad para establecer dos uniones o enlaces, y existen átomos cuya capacidad les permite establecer hasta cuatro enlaces con otros átomos; la cantidad de enlaces o uniones que puede establecer un átomo con otros es a lo que se denomina valencia, que puede entenderse también como la cantidad de electrones que un átomo gana, pierde o comparte cuando se une o enlaza con otros átomos. Por ejemplo, un átomo de Cloro tiene siete electrones en su últ imo nivel de energía, por lo tanto solo establecerá un solo enlace o unión con otro átomo para ganar o bien compartir un solo electrón, completando así ocho electrones en su última capa (ley del octeto), adquiriendo así su estabilidad química (ya no se unirá con otros átomos).
En otros casos, existen átomos que presentan uno o dos o bien tres electrones en su capa de valencia, la cual les es más favorable perderla dado que la capa que sigue hacia su interior presenta muchas veces ocho electrones, situación con la cual el átomo adquiere también su estabilidad química. Por ejemplo, un átomo de Sodio presenta tres niveles de energía en los cuales están distribuidos once electrones, así: dos electrones en el primer nivel, ocho en el segundo y un electrón en el tercer nivel. Para este átomo es mejor perder su único electrón localizado en su último nivel de energía, porque de esa manera quedaría expuesta su segunda capa en donde hay ocho electrones, alcanzando así la ley del octeto que le da la tan buscada estabilidad química (no reaccionara con otros átomos). Existen fundamentalmente dos tipos de valencia: electrovalencia, que es la cantidad de electrones que un átomo puede ganar o perderlos en los enlaces iónicos, y covalencia, que es la cantidad de electrones que un átomo puede compartir en los enlaces covalentes.
BIBLIOGRAFÍA http://aprendequimica.blogspot.com/2011/10/niveles-energeticos-atomicos.html http://es.wikipedia.org/wiki/Configuraci%C3%B3n_electr%C3%B3nica http://www.profesorenlinea.cl/Quimica/Configuracion_electronica.html http://www.ecured.cu/index.php/Distribuci%C3%B3n_electr%C3%B3nica http://www.mcgraw-hill.es/bcv/tabla_periodica/defi/definicion_numero_atomico.html http://recursostic.educacion.es/secundaria/edad/4esofisicaquimica/4quincena8/4q8_co ntenidos_3c_ampliacion.htm http://www.monografias.com/trabajos79/tabla-periodica/tabla-periodica2.shtml http://es.wikipedia.org/wiki/Configuraci%C3%B3n_electr%C3%B3nica Definición de tabla periódica - Qué es, Significado y Concepto http://definicion.de/tablaperiodica/#ixzz34eyekJEs http://www.educarecuador.gob.ec/index.php/h-tablaperiodica/h-tabla http://es.wikipedia.org/wiki/Tabla_peri%C3%B3dica_de_los_elementos http://definicion.de/tabla-periodica/ http://www.uam.es/docencia/elementos/spV21/sinmarcos/elementos/uso.html http://cienciasdejoseleg.blogspot.com/2012/02/la-tabla-periodica-los-electrones-del.html http://es.wikipedia.org/wiki/N%C3%BAmero_at%C3%B3mico http://www.monografias.com/trabajos94/enlaces-quimicos/enlaces-quimicos.shtml