this files is developed for the structure engineers. it contains structural calculation of strip footing.Full description
Full description
P r oj ec t
J o b n o.
C al c s for
S t a r t p a g e n o ./ R e v i s i o n
Madhucon 1 Calcs by
Calcs date
M
C h ec k ed b y
C he c k e d d ate
A pp ro v ed by
A pp r ov ed d a te
6/27/2012
PAD FOOTING ANALYSIS AND DE SIGN (BS8110-1:1997) TEDDS calculation version 2.0.03.00
110 0
110 0
0 0 6
0 0 5 1
0 0 6
2500
Pad footing details Length of pad footing footing;;
L = 2500 mm
Width of pad footing; footing;
B = 1500 m m
Area of pad footing; footing;
A = L × B = 3.750 m 2
Depth of pad footing ;
40 0 mm h = 400
Depth of soil over pad footing; footing ;
h soil = 20 0 mm
Density of concrete; concrete ;
ρ conc = 23.6 kN/m 3
Column details Column base length; length ;
30 0 mm l A = 300
Column base width; width;
b A = 30 0 mm
Column eccentricity in x ;
e PxA = 0 mm
Column eccentricity in y ;
e PyA = 0 mm
Soil details
Design base friction; friction ;
ρ soil = 20.0 kN/m 3 φ’ = 25.0 de g δ = 19.3 deg de g
Allowable Allowable bearing pressure; pressure;
15 0 kN/m 2 P bearing = 150
Density of soil; soil ; Design shear strength; strength ;
Axial loading on column Dead axial load on column ;
P GA = 200.0 kN
Imposed axial load on column; column ;
P QA = 165.0 kN
Wind axial load on column; column ;
0. 0 kN P W A = 0.0
Total axial load load on column; column ;
P A = 365.0 kN
Foundation loads Dead surcharge load; load ;
F Gsur = 0.000 kN/m 2
Imposed surcharge load; load ;
F Qsur = 0.000 kN/m 2
Pad footing self weight; weight ;
F swt = h × ρ conc = 9.440 kN/m 2
Soil self weight; weight ;
F soil = h soil × ρ soil = 4.000 kN/m 2
Total foundation load; load ;
F = A × (F Gsur + F Qsur + F swt + F soil) = 50.4 kN
Project
Job no.
Calcs for
Start page no./Revision
Madhucon 2 Calcs by
Calcs date
M
Check ed by
Checked date
Approved by
Approved date
6/27/2012
Moment on column base Dead moment o n column in x direction;
M GxA = 15.000 kNm
Imposed moment on column in x direction;
M QxA = 10.000 kNm
Wind mo ment on column in x direction;
M Wx A = 0.000 kNm
Total moment on column in x direction;
M xA = 25.000 kNm
Dead moment on column in y direction;
M GyA = 0.000 kNm
Imposed moment on column in y direction;
M QyA = 0.000 kNm
Wind mo ment on column in y direction;
M WyA = 0.000 kNm
Total moment on column in y direction;
M yA = 0.000 kNm
Check stability against overturning in x direction Total overturning mo ment;
M xOT = M xA + H xA × h = 25.000 kN m
Restoring mo ment in x direction Foundation loading;
M xsur = A × (F Gsur + F swt + F soil) × L / 2 = 63.000 kNm
Axial loading on column;
M xaxial = (P GA ) × (L / 2 - e PxA ) = 250.000 kNm
Total restoring mom ent;
M xres = M xsur + M xaxial = 313.000 kNm PASS - Restoring moment is greater than overturning moment in x direction
Calculate pad base reaction Total base reaction;
T = F + P A = 415.4 kN
Eccentricity of base reaction in x;
e Tx = (P A × e PxA + M xA + H xA × h) / T = 60 mm
Eccentricity of base reaction in y;
e Ty = (P A × ePyA + M yA + H yA × h) / T = 0 mm
Check pad base reaction eccentricity abs(eTx ) / L + abs(e Ty) / B = 0.024 Base reaction acts within middle third of base Calculate pad base pressures q 1 = T / A - 6 × T × eTx / (L × A) - 6 × T × e Ty / (B × A) = 94.773 kN/m 2 q 2 = T / A - 6 × T × eTx / (L × A) + 6 × T × e Ty / (B × A) = 94.773 kN/m 2 q 3 = T / A + 6 × T × e Tx / (L × A) - 6 × T × e Ty / (B × A) = 126.773 kN/m 2 q 4 = T / A + 6 × T × e Tx / (L × A) + 6 × T × eTy / (B × A) = 126.773 kN/m 2 Minimum base pressure; Maximum base pressure;
q min = min(q 1 , q 2 , q 3 , q 4) = 94.773 kN/m 2 q max = max(q 1 , q 2 , q 3 , q 4) = 126.773 kN/m 2 PASS - Maximum base pressure is less than allowable bearing pressure
Project
Job no.
Calcs for
Start page no./Revision
Madhucon 3 Calcs by
M
Calcs date
Check ed by
Checked date
Approved by
Approved date
6/27/2012
2
2
94.8 kN/m
126.8 kN/m
2
2
94.8 kN/m
126.8 kN/m
Partial safety factors for loads Partial safety factor for dead loads; Partial safety factor for imposed loads; Partial safety factor for wind loads ;
γ fG = 1.40 γ fQ = 1.60 γ fW = 0.00
Ultimate axial loading on column Ultimate axial load on column;
P uA = P GA × γ fG + P QA × γ fQ + P W A × γ fW = 544.0 kN
Ultimate foundation loads Ultimate foundation load;
F u = A × [(F Gsur + F swt + F soil) × γ fG + F Qsur × γ fQ ] = 70.6 kN
Ultimate horizontal loading on co lumn Ultimate horizontal load in x direction;
H xuA = H GxA × γ fG + H QxA × γ fQ + H Wx A × γ fW = 0.0 kN
Ultimate horizontal load in y direction ;
H yuA = H GyA × γ fG + H QyA × γ fQ + H W yA × γ fW = 0.0 kN
Ultimate moment on column Ultimate mo ment on column in x d irection;
M xuA = M GxA × γ fG + M QxA × γ fQ + MW xA × γ fW = 37.000 kNm
Ultimate moment on column in y direction ;
M yuA = M GyA × γ fG + M QyA × γ fQ + M WyA × γ fW = 0.000 kNm
Calculate ultimate pad base reaction Ultimate base reaction;
T u = F u + P uA = 614.6 kN
Eccentricity of ultimate base reaction in x ;
e Txu = (P uA × e PxA + M xuA + H xuA × h) / T u = 60 mm
Eccentricity of ultimate base reaction in y ;
e Tyu = (P uA × ePyA + M yuA + H yuA × h) / T u = 0 mm
Calculate ultimate pad base pressures q 1u = T u /A - 6 × Tu × e Txu /(L × A) - 6 × Tu × eTyu /(B × A) = 140.203 kN/m 2 q 2u = T u /A - 6 × Tu × e Txu /(L × A) + 6 × T u × e Tyu /(B × A) = 140.203 kN/m 2 q 3u = T u /A + 6 × T u × e Txu /(L × A) - 6 × T u × e Tyu /(B × A) = 187.563 kN/m 2 q 4u = T u /A + 6 × T u × e Txu /(L × A) + 6 × T u × e Tyu /(B × A) = 187.563 kN/m 2 Minimum ultimate base pressure;
Calculate rate of change of ba se pressure in x direction Left hand base reaction;
f uL = (q 1u + q 2u ) × B / 2 = 210.304 kN/m
Right hand base reaction;
f uR = (q 3u + q 4u ) × B / 2 = 281.344 kN/m
Length of base reaction;
L x = L = 2500 mm
Rate of change of base pressure;
C x = (fuR - f uL ) / L x = 28.416 kN/m/m
Calculate pad lengths in x direction Left hand length;
L L = L / 2 + e PxA = 1250 mm
Right hand length;
L R = L / 2 - e PxA = 1250 mm
Calculate ultimate mo ments in x direction M x = f uL × LL 2 /2+ C x× L L3 /6-Fu × L L 2 /(2 × L)+MxuA = 188.500 kN m
Ultimate moment in x direction;
Calculate rate of change of base pressure in y direction Top edge base reaction;
f uT = (q 2u + q 4u ) × L / 2 = 409.707 kN/m
Bottom edge base reaction;
f uB = (q 1u + q 3u ) × L / 2 = 409.707 kN/m
Length of base reaction;
L y = B = 1500 mm
Rate of change of base pressure;
C y = (fuB - f uT) / L y = 0.000 kN/m/m
Calculate pad lengths in y direction Top length;
L T = B / 2 - e PyA = 750 mm
Bottom length;
L B = B / 2 + e PyA = 750 mm
Calculate ultimate moments in y direction M y = f uT × LT 2 /2+ C y× L T3 /6-F u × LT 2 /(2 × B) = 102.000 kNm
Ultimate moment in y direction; Material details Characteristic strength of concrete ;
f cu = 30 N/mm 2
Characteristic strength of reinforcement;
f y = 500 N/mm 2
Characteristic strength of shear reinforcement ;
f yv = 500 N/mm 2
Nominal cover to reinforcement;
c nom = 30 mm
Moment design in x direction Diameter of tension reinforcement;
φxB = 12 mm
Depth of tension reinforcement;
d x = h - c nom - φxB / 2 = 36 4 mm
Design formula for rectangular beams (cl 3.4.4.4) K x = M x / (B × dx 2 × fcu ) = 0.032 K x’ = 0.156 K x < K x ' compression reinforcemen t is not required
Lever arm;
z x = d x × min([0.5 + √ (0.25 - K x / 0.9)], 0.95) = 346 mm