S
NASA
TECHNICAL
MEMORANDUM NASA TM X- 73305
ASTRONAUTIC STRUCTURESMANUAL VOLUME I
(NASA-T_-X-733C5) MANUAL,
AS_EONAUTIC
VOLUME
I
(NASA)
8_6
N76-76166
STRUCTURES p
_/98 Structures
August
and
Propulsion
Unclas _a_05
Laboratory
197 5
NASA
George C. Marshall 5pace Flight Center Marshall Space Flight Center, Alabama
MSFC
- For_"
JlgO
(l_ev
June
1971)
APPROVAL
ASTRONAUTIC STRUCTURES MANUAL VOLUME I
The cation.
information
Review
Atomic
Energy
in this
Commission
Classification
Officer.
This
report
of any information
document
programs
This
has
has
report,
also
been
concerning
been
has
reviewed
for
Department been
in its
made
entirety,
reviewtd
security
classifi-
of Defense
by the has
and approved
been
MSFC
or Security
determined
to
for technical
accuracy.
A.
A.
Director,
McCOOL Structures
and
"_
Propulsion
" LI.S.
GOVERNMENT
Laboratory
PRINTING
OFFICE
1976-641-255/446
REGION
NO.4
.
TECHNICAL I
REPORT
NASA 4
NO.
12.
AND
AUTHOR(S)
9.
PERFORMING
George
REPORT
NO,
3.
SUBTITLE
STRUCTURES
ORGANIZATION
MANUAL
NAME
C. Marshall Space
TITLE
CATALOG
PAGE
NO.
REPORT
Space
Flight
AND
6
ADDRESS
Flight
Center,
DATE
August 1975 ,_ERFORMING
, 8.
Marshall
STANDARD
RECIPIENTJS
,5.
ASTRONAUTIC VOLUME I -7.
ACCESSION
I
TM X-73305
TITLE
GOVERNMENT
PERFORMING
10.
Center
ORGANIZATION
WORK
CODE
ORGANIZATION
UNIT
REPC)R
r
NO.
I. CONTRACTOR GRANT NO.
Alabama
35812 13.TYPE OF REPORT& PERIODCOVERED
12
SPONSORING
AGENCY
NAME
AND
ADDRESS
Teclmical
Memorandum
National Aeronautics and Space Administration Washington, 15
SUPPLEMENTARY
Prepared _ IG,
D.C. NOTES
by Structures
and
Propulsion
Laboratory,
Science
and
aerospace
document strength
cover
most
of the
actual
ranges.
analysis
for the
background of the
devoted
to methods
Section
D is on thermal
These
KE_'
three
and that
as a catalog
are
sophisticated not usually
Section
and
C is devoted
E is on fatigue machinery; NASA
and
TM
Section
X-60041
WORDS
SECURITY
18,
CLASSIF,(of
thl=
¢epart_
Form
3292
(Rev
December
1972)
enough
to give
the
but
in scope
accurate
elastic
available,
and also
SECURITY
CLASSIF,
to the
curves;
topic
to stres_
as a reference
and
DISTRIBUTION
(of thl=
page)
For
sale
National
Technical
B is stability;
Section
F is
H is on statistics. NASA
TM X-60042o
STATEMENT
-- Unlimited
21,
NO.
OF
PAGES
839 by
of methods Section
of structural
mechanics;
Informatlnn
_ervice,_pringfleld,
22.
in
estimates
inelastic
introduction
interaction
Unclassified
Unclassified MSFC-
20.
for
and fracture
Unclassified
19.
general
A is a general
stresses,
Section
Section
supersede
are
methods
themselves.
combined
G is on rotating
that
of industry-wide
enough
techniques
is as follows:
analysis;
a compilation
out by hand,
analysis
methods
manual
stresses;
presents
of methods
on loads,
volumes
III)
It provides
of strength
Section
and
can be carried
of the
sections
on composites;
that
expected.
not only
and includes
I, II,
encountered,
strength
An overview used
(Volumes
structures
It serves
source
:L
Engineering
ABSTRACT
This
17.
14. SPONSORINGAGENCYCODE
20546
PRICE
NTIS Virginia
221_1
STRUCTURES
MANUAL
FOREWORD
fThis Branch vide in
manual
to a
ready
this
is
and
use
of
sidered
It oped
in
recognized the
This to
body
and is Table
as
as
Many zation
on
cataloged Utilization
the
the
included
of
are all
the
manual;
is requested to:
Chief, Strength Analytical
Marshall
15,
1970
pub-
to
are
have
of
con-
the
range
of
Contents to
of
content
added. as the a
New demand
completed and
been in
Univac in
the
comments
are be
not
develmaterial
topics not arises. avail-
supplements
are
for
1108,
computerized
Language or
IBM
concerning
this
manual
Section
Laboratory and Flight
Space
Center,
Administration Alabama
and
Computer
Division
Aeronautics
for
7094
Analysis
Branch
Mechanics
Space
or
section
adapted Fortran
Structural
Requirements
Analysis
is
revisions
VIII,
Structural
are
remain index
written
problems
any
analysis
necessary.
included
Executive
Table
make
addition,
become
that
the sections
new material will be treated
In
and
of they
possible.
alphabetical
ii
August
pro-
universities, book
method
wherever
in
utilized
they
the
procedures
some an
been
Astronautics National
to
contained
by text
wherever
subjects
programs
MSFC
the
indicated
that
with example Manual.
It
either
are
methods
These
Analysis and
information
industries,
clarify
possible. as
of
the
to
updated as of Contents has
soon
utilization.
directed
of
incorporated
Strength
published
tables
However,
arrangement be
data
future.
is provided listed in the
the
analysis
material
aircraft
Limitations
in
of
structural
Generally,
and
and
the
is the
of
agencies.
curves of
personnel
of
missile
necessary.
present
the
data.
problems
the
applicability
able
for
government
Illustrative the
to
methods
a condensation
journals,
lishers,
issued
uniform
reference
manual
scientific
is
provide
35812
be
utiliare
SECTIONAI STRESSAND STRAIN
TABLE
OF
CONTENTS
Page At.0.0
f
Stress
i.I.0
and
Strain
Mechanical
Properties
I.I. 1
Stress-Strain
1.1. 2
Other
I.I. 3
Strain-Time
1.1. 4 i.i. 5
Temperature Hardness
1.2.0
Specification
1.3. 3
Equations
1.3. 4
Distribution
1.3. 5
Conditions
1.3. 6
Stress
1.3. 7 Use Theories 1.4. i
Elastic Interaction
Mechanics
at
of Strains
Curves
of Materials
a Point
7 12 ......... ........
...................
in a Body
21
...................
23
......................
25
............................. from the Theory ............................. .............................. ............................
A1
iii
17 18 i8 19
........................
of Compatibility
Failure
3 5
of the Theory of Elasticity and Stresses ..................
of Stress
of Equations o¢ Failure
1.4. 2
of the
of Equilibrium
Functions
i
.......................
........................... Tables .....................
Applications for Forces
1.3. 2
1
..........................
Effects Conversion Theory
Elementary 1.3. 1 Notations
...................
.........................
Properties Diagram
Elementary
1
of Materials
Diagram
Material
1.3.0
1.4.0
.................................
27 of Elasticity
.........
28 34 35 36
Section A I March
i, 1965
Page I AI. 0.0
Stress and Strain
The relationship between stress and strain and other material properties, are used throughout this manual, are presented in this section. A brief
which
introduction to the theory sented in this section. AI. I. 0
Mechanical
of elasticity
for
important detailed
mechanical discussion
ber of well mechanical
known texts on the subject. properties of most aerospace
(reference
1).
of these
values
sults of one type or another. is the stress-strain diagram. the next subsection. AI. I. i
is also
pre-
properties may be found
of materials in any one
The numerical values materials are given
are
One of the A typical
obtained
from
most common stress-strain
is given of a num-
of the various in MIL-HDBK-5
a plotted
set
of test
sets of these plotted diagram is discussed
resets in
Stress-Strain Diagram
Some strain Figure
applications
Properties of Materials
A brief account of the in this subsection; a more
Many
elementary
of the
more
useful
diagram. A typical AI. I. i-I.
properties stress-strain
of materials curve
for
are
obtained
aerospace
from
metals
a stress-
is shown
The curve in Figure A1.1.1-1 is composed of two regions; the straight line portion up to the proportional limit where the stress varies linearly with strain, and the remaining part where the stress is not proportional to strain. In this manual, elastic. employed stress.
stresses below the ultimate However, a correction (or in certain types of analysis
Commonly briefly
in the E
used following
properties
shown
tensile stress (Ftu) plasticity reduction) for stresses above
on a stress-strain
are considered to be factor is sometimes the proportional limit
curve
are
described
paragraphs: Modulus of elasticity; average stresses below the proportional E = tan 0
.ratio of stress to strain for limit. In Figure A1.1.1-1
in
Section
A1
March 1, Page 2 A1. I. 1
Stress-Strain
_--Elastic,
_'_
(Cont'd)
_
Plastic,
ep
|
ee
(pfsi)
Diagram
_/
i965
Ftu
_eld
Point
I
I
eu
-4
e Fracture
e (inches/inch)
Figure
E
S
AI. 1.1-1
A Typical
Secant the
Et
Stress-Strain
modulus;
proportional range.
Tangent
modulus;
range.
ratio
of stress
limit;
portional tan 01
at any point;
Diagram
In Figure
reduces
In FigureAl.
to strain
reduces
slope
AI.
of the
above
to E in the prot. 1-1
Es =
stress-strain
l.i-i
proportional df E t - de - tan
curve
to E in the
02
Section
-f..
A1
March Page AI. i. I
Stress-Strain Diagram
Fry or
1965
(Cont'd) Tensile materials
Fcy
1, 3
or compressive do not exhibit
the yield method.
stress This
yield stress; since many a definite yield point,
is determined by the entails the construction
. 2% offset of a
straight line with a slope E passing through a point of zero stress and a strain of. 002 in./in. The intersection of the stress-strain curve and
Ftp or
the
constructed
straight
tude
of the
stress.
yield
Proportional
Fcp
Ftu
F
limit
sion;
the
stress
vary
linearly
line
stress
Ultimate
tensile
reached
in tensile
the
E
The
U
strain
magni-
or compres-
stress
ceases
to
strain.
stress; tests
the
maximum
of standard
Ultimate compressive stress; less governed by instability.
CU
the
in tension
at which with
defines
corresponding
stress specimens.
taken
as
Ftu
un-
to Ftu.
Elastic strain; see Figure AI. I. I-i.
E e
plastic strain; see Figure Ai. I. i-i.
E
P efracture
(% elongation)
Fracture determined
strain; gage
percent length
elongation associated
failures, and is a relative of the material. Ai. i.2
Other Material Properties
The in stress
definition analysis
of various other material properties work is given in this subsection.
in a prewith tensile
indication
and
terminology
of ductility
used
SectionAi March i, 1965 Page 4 A1.1.2
Other
Fbry'
Material
Fbru
Properties
(Cont'd) Yield and ultimate bearing stress; in a manner similar to those for compression. plotted
A load-deformation
where
the
deformation
the hole diameter. fined by an offset bearing stress F F
shear
Proportional
sp
is the
For
is
change
in
actual
failing
stress. limit
in shear;
usually
to 0. 577 times the proportional for ductile materials. Poisson's to axial
curve is the
Bearing yield (Fbry) is deof 2% of the hole diameter;
ultimate (Fbru} divided by 1. t5.
Ultimate
SU
determined tension and
taken
limit
equal
in tension
ratio; the ratio of transverse strain strain in a tension or compression test.
materials
stressed
in the
elastic
range,
v
may be taken as a constant but for inelastic strains v becomes a function of axial strain. V
P E
G-
2(I + v)
Plastic
Poisson's
Vp may
be taken
Modulus elasticity
ratio; as
of rigidity for
pure
unless
otherwise
or shearing
modulus
0.5.
shear
in isotropic
Isotropic
Elastic
properties
are
Anisotropic
Elastic
properties
differ
Orthotropic
Distinct
material
properties
pendicular
planes.
stated,
the
same
materials.
in all
in different
of
directions. directions.
in mutually
per-
Section Ai March I, 1965 Page5 A1.1.3
Strain-Time
The
behavior
Diagram of a structural
material
is dependent
on the
duration
of loading.
This behavior is exhibited with the aid of a strain-time diagram such as that shown in Figure A1. i. 3-1. This diagram consists of regions that are dependent
Strain
/,/Fracture///_J_
Creep
I
Strain Elastic
I
Limit
Elastic
(no
fracture)
Recovery
Curve
= Elastic
Strain
f
Constant
v
Loading Loading
A1.1.3-t
upon the four loading conditions as loading conditions are as follows: Loading
2.
Constant
Strain
P_rmanent _ Time Set
Recovery
Unloading
Figure
1.
_
loading
Strain-Time
indicated
Diagram
on the time
coordinate.
These
SectionA 1 March
1, 1965
Page AI.
1.3
Strain-Time
Diagram
3.
Unloading
4.
Recovery
The weeks
(no
interval
tively short time curve
(Cont'd)
load)
of time
or months.
6
when
Whereas
the
the
(usually seconds can be represented
load
time
is held involved
constant
is usually
in loading
or minutes) such that by a straight vertical
and
measured
unloading
in
is rela-
the corresponding line.
strain-
The following discussion of the diagram will be confined to generalities to the complexity of the phenomena of creep and fracture. A more detailed cussion on this subject is presented in reference 5.
due dis-
The condition referred to as "loading" represents the strain due to a load which is applied over a short interval of time.
This strain may
vary from zero
to the strain at fracture (_fracture - See Figure AI. I.l-l) depending upon the material and loading. During strain-time possible below.
the second loading condition, curve depends on the initial
strain-time
a. experienced b. becomes
This
action
(Figure
t,
initial
In curve for
load
curves
the
entire
In curve
and
is indicative
In curve
inelastic
deformation
complex
deformations
A1.1.3-1)
strain
initial
then
This
strain
remains which
that
is elastic
interval.
of slip
sulting from the shifting most favorably oriented stress. c.
time
2, the
constant
slip until a steady which is generally
the
where the load is held constant, strain for a particular material.
curve
typifies for
for
is characterized
(slip) of adjacent crystalline with respect to the direction
3, there
is a continuous
increase
state condition is attained. the result of a combined within by slip
the
unordered
and
result
are
discussed
and no additional
increases constant
could
strain
elastic
a short
the
intercrystalline of the
after
of the
by a permanent
set
the period. re-
structures along planes of the principal shearing
in strain
after
This curve is indicative effect of the predominantly
fragmentation
is
action.
period
remainder
the The
boundaries ordered
crystalline
the
initial
of creep viscous and
the domains.
Section A 1 March
I, 1965
Page 7 Ai. i.3
Strain-Time d.
ference
Curve
from
period
4 is also
curve
in fracture.
fracture
is indicated
During
the elastic strain "elastic recovery.
the
creep
may
by the
unloading,
(Cont'd) a combination
3 is that
This
and
Diagram
the
reduction
recovery
last
condition
period.
The
_f
after
In this
plastics)
effect.
dicated family
at any
shaded
area
period,
is true that
of the The
to its curves
to be discussed
ThisI
height
creep. until
time
of curves
only
dif-
material
the
fails
constant
load
A 1.1.3-1. l,
2 and
3 is equal
upper
bound
strain-time
diagram
some
of the
strain
indicated
for
many
viscoelastic
shaded
by the solid horizontal of possible strain-time
configuration immediately 3 as there will be some
particularly
do not show
lower
initial 2 and
on the
real area
creep,
only
in Figure
to
strain
materials
(such
is called
the set
elastic
maximum
possible
The lower confined
bound could be any one of the within the lower shaded area.
by a line
permanent
strains.
is the
the permanent If slip action
that
mechanical properties of a material are usually This effect will be discussed in general terms
specific
information,
and
is in-
set curve is negligible,
approaches
The perature.
zero
asymp-
Effects
see
the applicable
temperatures
below
Ductility
chapter room
is usually
example
of aluminum
steels behave in a similar ture magnitudes.
alloys
for
the
is given
manner
effect
affected in this
in reference
temperature and The
in Figures
but generally
A1.1.4-1 are
less
the
the
notch
opposite
of temperature
by its temsection. For
1.
increase
decreased
of the metal may become of primary importance. true for temperatures above room temperature. A representative
the
recoverable
A 1.1.3-1
Temperature
of metals.
concerns
as inelastic
delayed
A1.1.4
In general,
after residual
line. curves
this limiting curve would be represented totically with increasing time.
properties
the
during
in Figure
The limiting curve of the lower bound would approach due to slip as indicated by the horizontal dashed line.
properties
The
incurred during loading. This reduction is referred to as the " It can be seen in Figure Ai. I. 3-I that in the case of curve
is recoverable. as flexible
and
continues
place
in strain
I the structural member will return unloading. This is not the case for strain. The
action
take
upper
of slip
sensitivity
is generally
on the through sensitive
strength
mechanical 4.
Most
to tempera-
Section A I March
i, 1965
Page 8 A1.1.4
Temperature
Effects
(Cont'd)
120 \ \\\\
100 Q) \',,
2 cD
QJ
8O /_
hr
O O
/100 _10,000
60.
hr hr
¢J
;h
40 _
2O
0 -400
-200
0
200
Temperature, Figure AI. I.4-I
400
600
°F
Effects of Temperature
on the Ultimate Tensile
Strength (Ftu) of 7079 Aluminum Ref. I)
Alloy (from
800
Section AI March
i, 1965
Page 9 AI. 1.4
Temperature
Effects (Cont'd)
140
120
\ \
100
f_
-_
hr
8O I 100 hr
8 _.10,000
hr
>_ 60
,t0
20
0
-400
-200
0
200 Temperature,
Figure A1.1.4-2
Effects Strength Ref. 1)
400
800
°F
of Temperature (Fty)
600
of 7079
on the Tensile Aluminum
Alloy
Yield (from
Section
A1
March Page At.i.4
Temperature
Effects
1,
1965
t0
(Cont'd)
140
120
100
O O
a_
I
\
80
60
2O
0 -400
0
-200
200 Temperature,
Figure
AI.
I. 4-3
Effect Modulus Ref. i}
and
600
800
°F
of Temperature (E
400
Ec}
on the of 7079
Tensile Aluminum
and
Compressive Alloy
(from
Section
A 1
March Page
AI.
1.4
Temperature
Effects
1,
1965
11
(Cont'd)
100
8O
/
6O O
O
40
2O
,
0
I00
200
300
Temperature,
Figure
AI. i. 4-4
Effect 7079-T6
of Temperature Aluminum
400
5C
°F on Alloy
the (from
Elongation Ref.
of 1)
600
Section March Page Al.
I. 5
Hardness
A table
for
Conversion converting
AI 1, 1965 12
Table
hardness
numbers
to ultimate
tensile
strength
values
is presented in this section. In this table, the ultimate strength values are the range, 50 to 304 ksi. The corresponding hardness number is given for of three hardness machines; namely, the Vtckers, Brinell and the applicable scale(s) This
of the
Rockwell
table
is given
materials-property whenever necessary.
in each
machine. In the
haaktbook
remainder should
Tensile
Vickers-
Brinell
Strength
Firth Diamond
3000 kg 10ram Stl
of this
be consulted
section. for
The
appropriate
additional
information
Rockwell A Scale
B Scale
C Scale
6O kg
100 kg Dia Stl
150 kg 120 deg Diamond
Ball
Cone
Ball
ksi
Hardness Number
Hardness Number
120 deg Diamond Cone
1/16
in.
50
104
92
58
mm
52
108
96
61
1B
54
112
I00
64
_W
56
116
104
66
58
120
108
68
60
125
I13
70
62
129
ii7
72
64
135
122
74
Table AI_'I.5-1
,&l
Hardness
Conversion
Table
_m
Section A I March
i, 1965
Page 13
AI. I. 5
Hardness
Conversion
Table (Cont'd)
Tensile
Vickers-
Brinell
Strength
Firth
3000 kg I0m m Stl Ball
D Jam ond
ksi
Hardness Num be r
Hardness Number
Rockwell A Scale 60 kg 120 deg D Jam ond Cone
B Scale
C Scale
I00 kg 1/16 in. Dia Stl Ball
i50 kg 120 deg Dmmond
66
139
127
76
68
143
i31
77.5
70
i49
136
79
72
153
140
80.5
74
157
145
82
76
162
150
83
78
167
154
51
84.5
8O
171
158
52
85.5
82
177
162
53
87
83
179
165
53.5
87.5
85
186
171
54
89
87
189
174
55
90
89
196
180
56
91
Table AI. I. 5-i
Hardness
Conversion
Table (Cont'd)
Cone
Section March Page AI. 1.5
Hardness
Conversion
Table
Tensile
Vickers-
Brinell
Strength
Firth D Jam ond
3000 kg 10m m Stl
At 1,
1965
14
(Cont'd)
Rockwell [
A Scale
B Scale
C Scale
60 kg 120 deg Diamond
100 kg
150 kg 120 deg D iam ond
Ball
ksi
Hardness
Hardness
Number
Number
Cone
1/16 in. Dia
Stl
Ball
Cone
9t
203
186
56.5
92. 5
93
207
190
57
93.5
w--
95
211
193
57
94
--m
97
215
t97
57. 5
95
99
219
201
57.5
95.5
102
227
210
59
97
104
235
220
60
98
19
107
240
225
60.5
99
2O
110
245
230
61
99, 5
21
t12
250
235
61.5
100
22
i15
255
241
62
101
23
118
261
247
62.5
i01.5
24
120
267
253
63
102
25
Table
A 1.1.5-1
Hardness
Conversion
Table
(Cont'd)
A1
Section
1,
March Page
AI. 1.5
Tensile Strength
Hardness
Conversion
Table
Vickers-
Brinell
F irth
3000 kg 10ram Stl
D iam
ond
1965
15
(Cont'd)
Rockwell A Scale
B Scale
C Scale
Ball 60 kg ksi
Hardness
Hardness
Num
Number
be r
120
deg"
Diamond C one
100
kg
1/16 Dia
in. Stl
Ball
150
kg
120 deg Diamond Cone 26
123
274
259
63.5
126
281
265
64
27
129
288
272
64.5
28
132
296
279
65
29
136
304
286
65.5
30
139
312
294
66
31
142
321
301
66.5
32
147
330
309
67
33
150
339
318
67.5
34
155
348
327
68
35
160
357
337
68.5
36
165
367
347
69
37
170
376
357
69.5
38
176
386
367
7O
39
Table
A I. i. 5-i
Hardness
Conversion
103
Table
(Cont'd)
Section
Ai
March Page Ai.
i.5
Tensile Strength
Hardness
VickersFirth Diamond
Conversion
Table
l,
i965
16
(Cont'd)
Rockwell
Brinell 3000 kg 10ram Stl
A Scale
B Scale
C Scale
60 kg i20 deg Diamond
i00 kg I/t6 in, Dia Stl
120 deg Diamond
Ball
ksi
Hardness Number
Hardness Number
Cone
Ball
150 kg
Cone
181
396
377
70.5
40
188
406
387
71
41
194
417
398
71.5
42
201
428
408
72
43
208
440
419
72.5
44
215
452
430
73
221
465
442
73.5
46
231
479
453
74
47
237
493
464
75
48
246
508
476
75.5
49
256
523
488
76
5O
264
539
5OO
76.5
51
273
556
512
77
52
283
573
524
77.5
53
Table Ai. i.5-i
Hardness
Conversion
,45
Table (Cont'd)
Section
A1
March
1, 1965
Page AI.
1.5
Hardness
Conversion
Table
Tensile
Vickers-
Brinell
Strength
Firth D ia m ond
3OOO kg 10mm Stl Ball
Hardness Num be r
Hardness
(Cont'd)
Rockwell .m
A Scale
B Scale
6O kg ksi
17
100 kg 1/16 in. Dia Stl
120 deg Diamond
Num be r
C Scale
Cone
150 kg 120 deg Diamond Cone
Ball
294
592
536
78
54
304
611
548
78.5
55
Table
A1.2.0
Elementary In the
strain
A1.1.5-1
Theory
elementary
is generally
Hardness
of the
theory
Conversion
Mechanics
of mechanics
assumed.
This
state
Table
{Concluded)
of Materials of materials,
of strain
a uni-axial
state
is characterized
by the
of simpli-
fied form of Hooke's law; namely f = E _, where • is the unit strain in the direction of the unit stress f, and E is the Modulus of Elasticity. The strains in the perpendicular directions { Poisson's ratio effect) are neglected. This is generally justified in most elementary of mechanics of materials. generally placements magnitude independent
and practical applications In these applications, the
subjected to a uni-axial state are of secondary importance. of each of the
Frequently
of a set Poisson's
in design,
of stress Also,
of bi-axial stresses ratio effect. there
are
this
in which
occurs)
(or tri-axial) the magnitude
mary theory
This type of application must be generally A brief account on the use of the theory
elementary
applications
is given
in the
next
dependent upon the and displacements
subsection.
and
disthe
is generally
the magnitude
of a set of bi-axial ratio effect; and/or importance. of elasticity.
are strains
in the theory members are
and/or the strains in these applications, (when
applications
stresses of the
considered structural
of each
Poisson's are of pri-
analyzed by the of elasticity for
Section A 1 March Page AI.
3.0
Elementary
The
difference
between
is that
rio simplifying
elasticity latter.
Because
distribution of Hooke's noted that
of this,
Some
the
l The
in the
of the
body
following
for
stresses
mechanics
is made
necessary
deviates
subsections
Forces
acting
of stress,
shearing
indicating indicating
stresses
the direction the direction
subscripts for
fll =f
the
and
on the namely
In Figure AI. 3. l-i parallel to the coordinate
notation
of Elasticity
of ordinary
assumption
it becomes
physical
Notation
components three
Theory
method
and
concerning
to take
from
are
but are applicable to problems containing the third dimension.
A1.3.
like
of the
1965
the
into account
the
theory
of
strains the
in the
complete
of the strains in the body and to assume a more general statement law in expressing the relation between stresses and strains. It is the stresses calculated by both methods are only approximate since
the material both methods.
field terms
Applications
1, 18
the
written
ideal
for
a three
in two dimension
assumed
by
dimensional
simply
stress
by neglecting
all
Stresses side
the
of a cubic three
normal
element
can
stresses
be described fll,
by six
f22, f33, and
the
fl2 = f21, f13,= f3t, f23 = f32. shearing axis.
stresses are Two subscript
resolved numbers
into two components are used, the first
normal to the plane under consideration of the component of the stress. Normal
and
positive
x-y
coordinate
directions system
are
as shown
in the
figure.
and the stresses
second have
An analogous
is: xa
X
f22
f22 = fy f12 = f
material
!
S
fs3f"'-
xj
I" Figure
AL. 3. 1-1
Representation an Element
of Stresses of a Body
on J
Section
A1
March
F_
1, 1965
Page A1.3. f
1
Surface
Notation
for
Forces
and
Stresses
19
(Cont'd)
forces
Forces
distributed
body
on another,
Body
forces Body
forces
as gravitational in motion. A1.3.2
over
the
or hydrostatic
are
forces
forces,
Specification
that
are
magnetic
of Stress
equations of statics. be neglected since
of the
body,
such
are
called
surface
distributed
forces,
over
or inertia
the
as pressure
volume
forces
of one
forces.
of a body,
in the
case
in Figure A1.3. 1-2 are known for any given inclined plane through this point can be calculated
Body forces, such as weight of the they are of higher order than surface
element, forces.
X2
C N
x_
x_ Figure
AI.
3. I-2
such
of a body
at a Point
If the components of stress point, the stress acting on any from the generally
surface pressure,
An Element
Used
in Specifying
Stress
at a Point
can
SectionA I March I, 1965 Page Ai. 3.2
20
Specification of Stress at a Point (Cont'd)
If A denotes
the
area
of the
inclined
face
BCD of the tetrahedron
in Figure
AI, 3. t-2, then the areas of the three faces are obtained by projectin_A on the three coordinate planes. Letting N be the stress normal to the plane BCD, the three components of stress acting parallel to the coordinate axes, are denoted by NI,
N 2, and N 3.
The components
ordinates X|, Xz, X 3 are AN_, AN2, relationship can be written as:
cos (NI) = k,
cos (N2) = m,
of force and
acting
in the direction
AN 3 respectively.
of the co-
Another
useful
(1)
cos (N3) = n
and the areas of the other faces are Ak, Am,
An.
The equations of equilibrium of the tetrahedron can then be written as:
NI = fil k + f12 m + f13 n
(2)
N2 = fi2 k + f22 m + f32 n Na -_ fl3 k + f23 m + f33 n
mined
The principal stresses for a given set of stress by the solution of the following cubic equation:
components
can be deter-
fp3 _ (fli+ f22+ f33)fp2 + (fllf22÷ f22f33+ fllf33- f232
(3) - f132 - f122) fp - (fli
The
three
roots
of this
f22 f33 + 2f23 f13 f12 - fll f232 - f22 f132 - f33 f122) = 0
equation
The three corresponding sets can be obtained by substituting stress) into Equations 3 and
give
the values
of the
three
principal
of direction cosines for the three principal each of these stresses (one set for each using the relation k 2 + m 2 + n 2 = i.
stresses. plan_s principal
Section
A1
March Page
A1.3.2
Specification
(fp - fit)
k
f12 k + (f f13k-
The obtained
of Stress
fl2 m
-
at a Point
1,
1965
21
(Cont'd)
ft3 n = 0
-
(4)
- f22) m - f23 n = 0
f23m
+ (fp-
shearing by:
t fl2 = + _-(fp!
f33) n=
stresses
0
associated
! _ fp2) , fl3 = + 2-(fpl
with
the
three
principal
stresses
can
be
- fp3),
(5) ! f23 = + _- (fp2 - fp3)
where
the
stresses fp2' and
superscript and the fP3"
notation
stresses
associated
The maximum shearing the largest and the smallest between these two principal AI. 3.3
and the
to distinguish with
the
between
principal
normal
the
applied
stresses
shearing fpl,
stress acts on the plane bisecting the angle between principal stresses and is equal to half the difference stresses.
Equations of Equilibrium
Since in the within
is used
no simplifying
assumption
is permitted
as to the distribution
of strain
theory of elasticity, the equilibrium and the continuity of each element the body must be considered. These considerations are discussed in this subsequent
subsections.
Let the components of the specific body force be denoted by X1, X2, X3, then the equation of equilibrium in a given direction is obtained by summing all the forces in that direction and proceeding to the limit. The resulting differential equations of equilibrium for three dimensions are:
Section
A1
March Page
AI. 3.3
afli 8x i
Equations
+_
afl2 8x2
_+ 8x 2
axl
8f33 --+ 8x3
_
afi3
+
+
of Equilibrium
8f13
8x 3
+Xi
1965
(Cont'd)
= 0
+X2=
8f23 +--+X3= _)x2
0
(6)
0
These equations must be satisfied internal stresses must be in equilibrium of the body. considering
i, 22
These conditions the stresses acting
at all points throughout the body. with the external forces on the
of equilibrium at the on Figure AI. 3.3-1.
boundary
are
----_
The surface
obtained
_x1
%
Figure
Ai.
3.3-1
An Element
Used
in Deriving
the
Equations
of Equilibrium
by
Section A i March
I, 1965
Page 23 AI.
3. 3
Equations
By use
Xl
of Equilibrium
of Equations
1 and
(Cont'd) summing
forces
the
boundary
equations
are:
= fll k + f12 m +f13 n (7)
X2 = f22 m + f23 n + fl2 k X3 = f33 n+ft3k+f23
in which of the of the
k,
m,
n are
m
the
direction
cosines
body at the point under consideration surface forces per unit area.
of the and
external
normal
X1, X2, X 3 are
to the the
surface
components
The Equations 6 and 7 in terms of the six components of stress, fll, f22, f33, f12, f13, f23 are statically indeterminate. Consideration of the elastic deformations is necessary to complete the description of the stressed body. This is done
by considering
A1.3.4
have
the
Distribution
elastic
deformations
of Strains
in a Body
of the
The relations between the components of stress been established experimentally and are known
deformations normal strain
where superposition is written as:
1 el = _ [fll
applies,
Hooke's
body.
and the components of strain as Hooke's law. For small law
in three
dimensions
for
- v (f22 ÷ f33) ]
1 £2 = E- [f22 - v (fll
+ f33) ]
1 e3 = E- [f33 - v (fil
+ f22) ]
(8)
Section
A1
March Page
A1, 3.4 and
for
Distribution shearing
of Strains
2(I+ v)
fi2 = G
Tts =
2(t E + v)
ft3 = G
These
(9)
f23 G
f23 -
of strains
of displacements.
ment dxl, placement point
+ v)
six components
components
(Cont'd)
+_.,v,
E
E
i965
strain
• l_ =
T_-a = 2(i
in a Body
1, 24
can be expressed
By considering
in terms
the deformation
of the
three
of a small
ele-
dx2, dx 3 of an elastic body with u, v, w as the components of the disof the point 0. The displacement in the x 1 - direction of an adjacent
A on the x 1 axis
is
au
u + _xl
due
to the
dxl
increase
(au/axl)dx
x l, It follows that In the same manner directions The AI. 3.4-i x I x 3 and similarly. The
are
the unit elongation it can be shown
given
distortion
by av/ax2 of the
to be av/ax x 2 x 3.
six
The
ax 1 ,
angle
1 + au/ax shearing
components
au el -
1 of the
from 2.
u with increase
of the
coordinate
at poiqt 0 in the x 1 direction is au/ax 1. that the unit elongations in the x 2 - and x 3 -
and aw/ax
3 respectively.
AOB
This
strains
of strains
to A'O' B' can be seen
is the between
in terms
shearing the
of the
strain
other
three
from
between
two planes
displacements
are
Figure the
planes
obtained
are:
aw
av _2 - ax2
function
'
_s =_.. (10)
au
av
Ylg- = 2ax-- + ax t
au "/i3
Dw
ax 3 + ax I
av _23
aw
ax 3 + ax 2
Section
Al
March Page
At.
3.4
Distribution
of Strains
in a Body
X_
_
I,
1965
25
(Cont'd)
u +iL_. 8x2
dx 2
i I
T-
At
1 0 dx 2
+ a_v dxt Ox!
v
0
_
.
_ Xl
4- J _x 1 dxt
Figure
A1.3.5
A1.3.4-1
Conditions
Distortions
Due
to Normal
to Define
Strains
in Terms
and
Shearing
Stresses
Used
of Displacements
of Compatibility
can
The conditions of compatibility, that assure continuity of the structure, be satisfied by obtaining the relationship between the strains in Equations
The
relationship
can
be obtained
by purely
Differentiating Q twice with respect Ti2 once with respect to x t and once with of
(1 and
ax]
e2 is found
+ ax_
to be identical
= axtax2
to the
mathematical
manipulation
10.
as follows:
to. x2; e2 twice with respect to xt; and respect x 2. The sum of the derivatives derivative
of Tt2.
Therefore,
Section A1 March 1, i965 Page 26 AI. 3.5
Conditions of .Compatibility (Cont'd)
Two of the
more
relationships
subscripts
Another as follows:
1,
set
of the
of equations
Differentiate
same
kind
can
be obtained
by cyclic
interchange
2, 3.
e 1 once
can be found
with
respect
by further
to x I and
mathematical
once
with
manipulation
respect
to xs;
_/12
once with respect to x t and once with respect to x3; _/13 once with respect to x l and once with respect to x2; and _'23 twice with respect to x I. It then follows that
8x_0x 3
axl0x3
Two additional scripts
the
as
Oxiax2
relationships
0x l"
can
be found
by the
cyclic
interchange
of sub-
before.
The six differential relations equations of compatibility and
8x_
between the components are given below.
= axlax 2 '
8x28x 3
ox2ax3 '
axlax 3
8x i\
ax 3
ax2
of strain
are
called
8x i j'
(II) 8x{
the
These strains
ax{
equations of compatibility may in Equations 11 are expressed
law (Equations for substitution,
8 and 9). we have
Differentiating
be stated in terms each
in terms of the stresses if of the stresses by Hooke's
of Equations
8 and
9 as required
Section
A 1
March
i,
Page A1.3.5
Conditions
of Compatibility
(Cont'd)
a20
a20
(i
+,)
_72fil
(1
+ v)
V 2 f22 + 0x--_ = 0
+ _x I
=
( I + p)
0
-
V 2 f23 +
020 ,
(1
+ v)
V 2 fl3
+ 0xlDx3
(1
+ v)
V 2 fl2
020 + -OxlOx
020 + v)
0
Dx20x 3
_20
(1
1965
27
V 2 f33 + --Ox2
-- 0
- 0
-
(t2)
0
2
where:
V2
D2
_)2
_2
and
0 = fll
For
+ f22 + f33
most
system
cases
components
equations
A1.3.6
Stress
It has the
satisfied
and
are
11 or
linear
12 are
The
discussed
use
and
superposition
sufficient
applies,
to determine
of stress
functions
the
the
to aid
stress
in the
solution
below.
Functions
shown
in the
(Equations not
(Equations
1t)
must
the
body.
a distribution
also The
element mean
stresses
throughout
sections
ensure
of every
necessarily
boundary
previous
6)
equilibrium
does the
strains
7,
ambiguity. are
been
of equilibrium serves
6,
without
of these
since
where
of Equations
must be
satisfied
problem
in the
that also
that
the
the
body.
The
distribution
be satisfied. to ensure
is then
differential
of stress
to find
an
fact
that
are
compatibility
proper expression
strain
that
pre-
these
of stresses The
the
equations
in a body
are correct equations
distribution that
satisfies
all
Section
A1,
March Page A1.3.6
Stress
Functions
these conditions. function that meets will deal
only
1965
(Conttdl
The usual procedure this requirement.
with problems
of the body will also
1, 28
is to introduce a function For the sake of simplicity,
in two dimensions.
The stresses
called tliis
a stress section
due to the
weight
be neglected.
In 1862,G. B. Airy introduced a stress function (_b (xl, x2) ) which is an expression that satisfies both Equations 6 and II (in two dimension) when the stresses are described by:
fll
-
,
f22 = ax I
,
f12 = -
_xl_x2
By operating on Equations 13 and substitutinginto Equations il, we find that the stress function _b must satisfy the equation
+ 2
Of the (7)
+
= V4qb = 0
Thus the solution of a two-dimensional biharmonic equation (Equation t4)
of the
At. 3.7
problem reduces which satisfies the
to finding a solution boundary conditions
problem. Use
Proficiency
of Eqtmtions in the use
from
the
Theory
of stress
It is not unusual to find an expression to determine what problem it solves.
use
(I4)
The following problem of stress functions.
is presented
of Elasticity
functions that
is gained
satisfies
to illustrate
mainly
Equation
the
basic
by experience. i4 first
and
procedure
then
in the
try
Section Ai March 1, 1965 Page 29 At. 3.7
Use
Statement
for
of Equations
of the
Determine a cantilever
shown
the
Theory
of Elasticity
(Cont'd)
problem: the stress function beam of rectangular
in Figure
and compare mechanics.
from
A1, 3.7-1.
with the
that corresponds cross section
From
maximum
this
stress
flexure
p/unit
to the boundary of unit width and
function
stresses
as
determine obtained
the
by the
conditions loaded as stresses method
of
length V ° = -p L _
_
ii
_
_
_
_
.__._._.p,
V-
Mo=-
Xl
2
L-
X2
Figure
At.
3, 7-i
Sample
Problem
Solution: Assume
that
the
stress
function
is
_b = ax2 s + bx23xt 2 + cx23 + dx2x 2 + ex 2
Operate
on
_ to satisfy
V4_b = (5-4"3.2)
Equation
ax 2 + 2( 3.2.2
24x 2 (5a+b) from
which
a
= - b/5
14
bx2)
= 0
= 0
(a)
Section March Page A1.3.7
Use Since
condition
of Equations
Equation
Figure
the
Theory
of Elasticity
14 can now be satisfied
to satisfy
From
from
is the boundary Ai.
3.7-1
by letting
A1 i,
1965
30
(Cont'd) a = -
b/5,
the only
other
conditions.
the boundary
i.
f22 = -P
at
x 2 = - h/2
2.
f22 = 0
at
x 2 = h/2
conditions
are
from
ZF=0
as follows:
h/2 3.
f
fl2dx2
= -pL
at
x1 = L
-h/2
h/2 4.
f
fltx2dx2
= -pL2/2
at
x1 = L
from
ZM
= 0
-h/2
5.
fl2 = 0
From
fli
Equation
=
x 2 = h/2
i3
= 20ax3
f22 -
+ 6bxl2x2 + 6cx2
= 2bx_ + 2hx 2 + 2e
f12 = - OxiOx2
Using
at
boundary
f22 = -P
= -
6bx, , condition 2bh 3 8
2dh 2
(b)
2hx, I
+ 2e
(c)
Section
-f-
March Page AI.
3.7
_Use of Equations
from
boundary
f22 = 0 -
adding
(c)
and
condition
2bh 3 2dh 8 + 2
or
of Elasticity
+ 2e
(Cont'd)
(d)
condition
(e)
3
h/2 f12 dx2 = _hf/2 [- 6bx22xl - 2hxl} dx2
=2 [ -_ 6 bLx23-2hLx2]_/2
(f)
= -pL
bh 3 or
from
1965
2
e = -p/4
boundary
h/2 -h/2
Theory
1, 31
(d)
4e = -p
from
fro m the
A1
+ 2dh -_p
2
boundary
condition
4
h/2 - hf/ 2 [20ax24 + 6bx}x22 + 6cx22] dx 2
=2 [
2___a x_ + _xl2x3+ 56 cx 31 _ 6b
h/2 0
ah 5 4
bL2h 3 +_+
ch 3 _ _ pL2/2 2
Section A 1 March Page Al.
3.7
Use
of Ec_uations
substituting
c = -pL2
from
fi2
Equation
the
Theory
a and solving
of Elasticity
bh_xi
condition
- 2dxi
1965
(Cont'd)
for c
- b ( L2h a - hs/iO) ha
boundary
= _
from
f, 32
(g)
5
= 0
3 =-x i ( _ bh 2 # 2d )
or
(h)
Solving
d = 3p
Equations
and
f and h simultaneously
b = -p/h 3
we get
(i)
Substituting b = - p/h 3 into Equation g
(J)
Section
A1
March
1,
Page Ai.
3.7 The
Use
of Equations
stress
from
function
¢) = -px 2 (x_/h
can
3-
the
Theory
of Elasticity
now be written
3x2/4h
1965
33
(Cont'd)
as
+ 1/4) (k)
+(ph2/5)
and
(x25/h 5 - x23/2h 3)
the
stresses
as
fll
P = - 2I (X2
(see
X 2 +
f22 = - -P---(x23/3 2I
fi2
where
= -P-21 (x22x!
11 felasticity elementary
fmiechanics
The
h2 xz/10
b)
-
h2xy/4
(i)
2x_/3)
+ h3/12)
(m)
- h2xl/4)
(n)
I = h3/12
Comparison x 2 = - h/2
from
-
Equations
of maximum
= ph 4I
flexure
stresses
from
Equation
1 with
x 1 = L,
(o)
/L 2 - h_l
mechanics
Me I
_ pL 2 h 4I
difference
is then
felasticity 11
- f_i echanics
= - ph 60I3
(P)
p 5
(q)
Section A 1 March Page A1.4.0
Theories Several
load
theories
discussion
The
to aid
member.
in the
Each
of stresses
prediction
theory
of the
is based
or strains
normal
critical
on the
constitutes
the
assump-
limiting
stated
theories
books
such
in this
subsection.
of failure
can
as references
A more
be found 2 and
in most
3.
Theory
stress
begins
are
other
text
Stress
in a material
theories and
analysis
Normal
maximum
point
useful
on these
strength
Maximum
any
advanced
combination
of the more
elementary The
been
The margin of safety of a member is then predicted by comparing the strain, or combination of stress and strain with the correspondas determined from tests on the material.
Three detailed
have
on a structural
a specific
condition. the stress, ing factors
1965
of Failure
combination
tion that
1, 34
theory
of failure
only when
the
states
maximum
that
inelastic
principal
stress
action
at
at the
point reaches a value equal to the tensile (or compressive) yield strength of the material as found in a simple tension (or compression) test. The normal or shearing stresses that occur on other planes through the point are neglected. The Maximum
Shearing
Stress
Theory
The maximum shearing stress theory is based on the assumption that yielding begins when the maximum shear stress in the material becomes equal to the maximum shear stress at the yield point in a simple tension specimen. To apply it,
the
principal
stresses
are
first
determined,
with
the
then,
according
to Equation
5,
fimJax = I2( fpi _ fpj)
where i and respectively.
j are
associated
The
Maximum
point
The maximum energy of distortion in a body under any combination
energy
Energy
of distortion
of Distortion
per
unit
volume
maximum
and
minimum
principal
stresses
Theory theory states that inelastic action at any of stresses begins only when the strain absorbed
at the
point
is equal
to the
strain
Section March Page A1.4.
/
0
Theories
of Failure
and
l+v 3E
wl
-
the
strain
W
35
per unit volume at any point of uniaxial stress as occurs
The value of this uniaxial test is
maximum
in a bar stressed to in a simple tension
strain
energy
of distortion
F 2 YP
energy
--
[(fpl
.6E
of distortion
in the
general
case
is
- fp2 )2 + (fp2 - fP3)2 + (fpl - fp3)2]
where fpl, fP2' fp3 are the principal stresses and Fyp (For th_ case of a biaxial state of stress, fP3 = 0.) The
i965
(Cont'd)
energy of distortion absorbed the elastic limit under a state (or compression) test. as determined from the
A1 1,
condition
for yielding
is then,
is the
yield
point
stress.
w = w 1 or
(fPl - fp2)2+ (fp2 - fp3)2 + (fpi - fp3)2 = 2 Fy/
AI. 4. I Elastic Failure The the
choice
material.
of the proper It is suggested
for brittle materials maximum-shearing-stress The considering catastrophic since the
choice
and
between
theory that
of failure the
maximum
either the maximum theory for ductile the
two methods
is dependent principal
on the stress
behavior theory
energy of distortion materials.
for ductile
the particular application. When failure results, the maximum-shearing-stress resuits are on the safe side.
materials of the theory
theory
may
of be used or the
be made
by
component leads should be used
to
Section
A J.
March Page Ai.
4° 2
Interaction
No general conditions
1965
Curves
theory
in which
1, 36
exists
failure
whichapplies is caused
instability case or other critical load or substantiated by structural tests. tions are discussed in Section A3.
in all cases
by instability.
for combined
Interaction
curyes
loading for the
conditions are usually determined from The analysis of various loading combina-
Section
A1
March Page AI.
0.0
Stress
1,
1965
37
and Strain REFERENCES
1.
MIL-HDBK-5,
"Metallic
Structures," 2.
Murphy,
Glenn,
Company, 3.
Materials
Department
Inc.,
Seely,
Fred
Second
Edition,
Advanced New
B. and John
and Elements
of Defense,
York, James Wiley
Mechanics
Washington, of Materials,
for
Flight
D.
C.,
Vehicle August,
McGraw-Hill
1962. Book
1946. O. Smith, and
Sons,
4.
Timoshenko, McGraw-Hill
S. and J. N. Goodier, Book Company, Inc.,
5.
Freudenthal, and Structures,
Alfred M., The Inelastic John Wiley and Sons,
Advanced Inc.,
New
Mechanics York,
Theory of Elasticity, New York, 1951. Behavior Inc., New
of Materials, 1957. Second
of Engineering York, 1950.
Edition,
Materials
SECTIONA2 LOADS
TABLE
OF CONTENTS Page
A2.0.0
Space 2.1.0 2.2.0 2.3.0
Vehicle General Loading
Loads
..............................
1
................................... Curves
1
.............................
3
Flight Loads ............................... 2.3.1 General ................................
4 4
2.3.2 Dynamic and Acoustic Loads .................. 2.3.3 Other Flight Loads ........................ 2.4.0 Launch Pad Loads ............................ 2.5.0 Static Test Loads .................... 2.6.0
Transportation
2.7.0
Recovery
and Handling Loads
.............................
A2-iii
Loads
................
........
5 5 6 7 7 7
v
Section
A2
April
15,
1973
Page A2
SPACE
A.2.1
COORDINATE The
and
directions
aircraft
Figure
A2.1-2.
center
of gravity
outboard
left, Any
are left
applied when
or up; section
moments
acting
positive
the
right
under
rear,
left,
or above.
the
rear,
left,
and upper
any
section. The
external
1.
Flight
2.
Launch
Pad
fibers.
which
Loads
rockets,
axes
are
Moments
used
applied
loads
the
left
missiles,
X
axis
taken are
or upper tends bending Positive
may
act
acting
in the
is
in
positive
part,
upper
tends
to rotate
Z
to move
clockwise
moments
produce
axial
produces
load
on a space
vehicle
X
airplane direction,
direction. are
rule).
part
in
at the
of gravity
(left-hand or
shown
aft in the
center
A2.1-2
outboard,
are
directed
airplane
in Figure
torsion
Loads
Z
conventions
and upward
about
as follows.
for
longitudinal
system.
direction,
Positive
loads
and
when
outboard,
the
Y
as positive
rear,
positive
sign
externally
as shown
shear the
Y
used
rule.
figure
in the
been The
The
a right-handed
the
defined
have
A2.1-1.
direction.
right-hand
In this
to the
Externally
flight
analysis
which
in Figure
to form
by the
For
axes
shown
in the
as determined
under
are
as positive
positive
coordinate
vehicles
appropriate
LOADS. SYSTEMS.
standard
launch
taken
VEHICLE
defined
At ,any section
tends aft, when
to move right, viewed
tension
aft, or up. from
compression
are
as
in across
categorized
Section
A2
April
15,
Page
Z. 0
1973
(L, d>, p, u)
+X
IN. _, r, w) +Z
+Y (M, (_, q. v) -Z
i
i,
FORCE SYMBOL
MOMENT SYMBOL
LINEAR VELOCITY
LONGITUDINAL
X
L
u
LATERAL
Y
M
v
YAW
Z
W
ANGLE
SYMBOL
ROLL
¢
Y to Z
PITCH
e
ZtoX
POSITIVE DIRECTION
YAW i
NOTE:
Figure
ii
A2.1-1.
ANGULAR VELOCITY
q
Xto Y i
4
r !
Sign convention follows right-hand rule.
Coordinate
axes
and
symbols
for
a space
vehicle.
--:
Section
A2
April
15,
Page
2. 1
1973
f-
0 _:::u ,-.4
_'_ f
I-d 0
\ bD _I
"_
o
F
._ _._ o
°_
,,k
NASA--MSFC
Section
3.
Transportation
4.
Static
5.
Recovery
Since analyst the
to obtain
that
qualitative the
"Loads
quantities
assumed
coordinate
the
will these
Page
2. 2
1973
Loads
Loads. practice
magnitudes Group"
in the
loads
are
in his
stress
and
industry
loads
organization, in this
furnished
is required. for
airframe
of external
not be presented
description axes
Handling
15,
Loads
it is universal
cognizant
these
Test
and
A2
April
for
the
the
methods
manual.
to the stress These
loads
aerodynamic
are
for
space
Rather, analyst generally
the
stress
vehicle
from
of calculating it will so that
be only
resolved
their along
analysis.
w/
MS
FC_I_A,
A_
Section
A2
March Page A2.2.0
Loading The
of the
1965
2._
3
Curves
loads
are
station curves, where to as vehicle stations. flight
1,
vehicle.
usually locations These
At each
presented along curves of these
in the
the are
form
of load
versus
vehicle
longitudinal coordinate are referred plotted for various times during the
times,
the
longitudinal
force,
the shear
and the bending moment are plotted as a function of the vehicle station. curves showing the bending moment and longitudinal force distribution a vehicle can be seen in Figure A2.2.0-I.
Typical along
.2 I
0
.2
Bending
Moment
l
Longitudinal
i
2800
L - S -_
2400
__
2000 Vehicle
Fig.
A2.2.0-1
1200 Station
Force(
!
I
I
1600
800
400
~ Inches
Typical Bending Moment Distribution Curves.
and
Longitudinal
Force
Section A2 March 1, 1965 Page 2._ A2.2.0
Loading
Curves
It is necessary along the is applied
vehicle to the
(Cont'd) to know
at times structure
the
circumferential
pressure
of critical loading. This circumferential pressure along with the critical loads during strength analysis
of the vehicle. Typical distribution of this circumferential ular vehicle station may appear as in Figure A2.2.0-2.
ax
Figure
A2.3.0 A2.3.
A2.2.0-2
Flight I
Typical Curves
at a partic-
P
Circumferential Pressure at a Vehicle Station
Distribution
General vehicle
is subjected
to flight
loads
its flight. These flight loads must be investigated loads on the vehicle. Although it is not possible times
pressure
Loads
A space
loads
distribution
will
occur
during
up of critical as follows:
the
without flight
loads.
considering where These
the entire
conditions times
exist
and the
loads
of varying
magnitudes
to determine to know when flight
which which
history, are
the these there
favorable occur
may
during
critical critical are for
certain the build-
be summarized
r
Section
A2
March
1,
Page 1.
Liftoff
application
and
- As
the vehicle
redistribution
which
may
be critical.
2.
Maximum
nation result.
of vehicle
lifts
off the
of loads
Dynamic
velocity
on the
Pressure
and
air
launch
(Maximum
density
pad
vehicle.
is such
there
This
is a sudden
causes
q) - At this that
the
1965
5
dynamic
time
maximum
the
4.
Engine
A2.3.2
Dynamic
Cutoff
- Engine
thrust
and
cutoff. During cutoff, of these loads. and Acoustic
high
inertia loads
may
air to air-
loads
are
result
because
maxi-
Loads
Dynamic loads are loads which are characterized by an intensity that with time. These loads may be analyzed by one of two methods. One is to replace the dynamic load by an equivalent static load, and it is the
varies method preferred
method
for most
cases.
The
other
is justified only in those cases where the good and the design is felt to be marginal.
from
longitudinal dynamic
combi-
airloads
3. Maximum qo_ - At this time the combination of vehicle velocity, density and vehicle angle of attack is such that high bending moments due loads and vehicle acceleration result.
mum just before of the redistribution
loads
Acoustic loads extraneous disturbances
are determined static pressure
are
only in shell structure. A2.3.3
ferentials,
loads induced such as engine
by using an equivalent static acts in both the positive and
sure fluctuates about a zero the design inflight pressure or panel
Other
Flight
Other
flight
must
stress
mean value. to obtain the analysis,
method
confidence
is a fatigue in the
by pressure noise. The pressure negative
in the
,analysis
and
time-history
it is
fluctuations resulting effects of these loads
load. This equivalent directions, since the pres-
This pressure total pressure,
not
load
analysis
should be combined with and should be considered of primary
or supporting
Loads loads,
be considered
which
are
in the
caused stress
by pressure analysis.
and temperature In addition
to the
dif-
Section A2 March 1, 1965 Page6 A2. 3. 3
Other
longitudinal
Flight
loads
a longitudinal
and the pressure
internal
pressure
resulting
be known
tudinal
the difference
on vehicle
location
the
at the
the
local
hoop
external
desired
of the point
analysis. curve.
A2.4.0
The pad. These categorized 1.
Pad
vehicle loads are as follows: Holddown
a holddown mechanism this time are referred
down settles
loads The
range
onto the
external
effects.
vehicle
the vehicle
external
and on the
of values
These
station,
internal
pressure
pres-
which either in the
the
pressure
is a function
range
results
of values
in a maximum
used and
of longi-
in the a mini-
and temperature differentials caused by aerorocket heating and cryogenic propellants result must be considered. The effects of these
properties
must
also
be investigated.
Loads may
be subjected
referred
Loads
to as
- The
to various launch
vehicle
pad
loads loads
is usually
during engine ignition. The to as the holddown loads.
2. Rebound Loads - During engine the engines due to some malfunction. back
and
is
flight. The ambient while the vehicle
internal pressures longitudinal load
at a particular
local
ambient
there
and ambient pressure. The pressure depending on the circumferential and
in question
This
on material
Launch
the
A2.1.1,
during only,
and venting
pressure
time.
Temperature magnitudes dynamic heating, retro or ullage in additional vehicle loads which temperatures
in Section
between
trajectory
of attack, dynamic pressure may be positive or negative
aerodynamic mum design
diagrams
usually produce positive net or decreases the compressive
to determine
between
the angle difference
loading
from
depends
In order must
in the
vehicle internal pressure at any time is a function of the vehicle's altitude
sures in combination increases the tensile vehicle.
difference
(Cont'd)
presented
load
pressure external
Loads
launch
pad
are
referred
while and
held loads
it is on the
are
launch
generally
onto the
launch
on the
vehicle
pad
by
during
ignition it may be necessary to shut The loads on the vehicle as it to as rebound
loads.
/
Section A2 March
l, 1965
Page 7 A2.4.0
Pad
Launch 3.
Surface
Loads Wind
pad, i.c. , unsupported surface wind loads. ical
location
from effect
and
Loads
The
should
(Cont'd) - While
except for magnitude
the
vehicle
is freestanding
launch
the holddown mechanism, it is exposed to of these loads will depend oil the geograph-
be specified
in the
design
specifications.
4. Air-blast Loads - The vehicle may be subjected an accidental explosion at an adjacent vehicle launch of this air-blast on the vehicle must be determined.
A2.5.0
on the
to an air-blast loa, i site. The potential
Static Test Loads
The statictest loads are the loads on the vehicle during static testing of the vehicle. These loads are summarized as follows: 1. 2. holddown
Engine
Longitudinal and rebound
3.
Wind
loads
The
dynamic
investigated A2.6.0
since
and
they
are
these loads ments.
and are
Recovery The
and
transportation
transportation
loads
loads due conditions
Transportation The
A2.7.0
gimbaling
to various
acoustic higher
loads during
Handling
handling
static
static
test
loads
of the space primarily
for
loadings
firing than
during
tests
the
should
in flight,
also
in many
be cases.
Loads
,and handling
required
propellant
for
arc
vehicle. the design
the
loads
which
In the dcsigm of ticdown
occur
of the
during
vehicle,
and handling
attach-
Loads
recovery
particular structural also include the loads
loads
are
the
loads
which
occur
component or stage of the vehicle. which may occur during descent
during and
the
recovery
These recovery impact.
of a loads
SECTIONA GENERAL
._J
ASTRONAUTICS STRUCTURES MANUAL SECTION
SUBJECT INDEX
GENERAL SECTION Ai
STRESS AND STRAIN
SECT I ON A2
L(_DS
SECTION A3
COMBINED
SECTION A4
METRIC
STRESSES
SYSTEM
STRENGTH SECTION
BI
JOINTS AND FASTENERS
SECTION
B2
LUGS AND SHEAR
PINS
SECTION B3
SPRINGS
SECTION B4
BEAMS
SECTION B4.5
PLASTIC
SECTION B4.6
BEAMS UNDER AXIAL
SECTION B4.7
LATERAL
SECTION
SHEAR
B4.8
BENDING
BUCKLING
BEAMS
SECT ION B5
FRAMES
SECT ION B6
RINGS
SECTION
THIN SHELLS
B7
SECT ION B8
TORS ION
SECTI ON B9
PLATES
SECTION
HOLES AND CUTOUTS
BlO
STAB IL ITY SECTION
Cl
COLUMNS
SECT ION C2
PLATES
SECT ION C3
SHELLS
SECTION
LOCAL
C4
INSTABILITY
A-tlJ.
LOADS OF BEAMS
SECTIONSUBJECTINDEX (CONTINUED)
SECTION
D
THERMAL
STRESSES
SECTION E1
FATIGUE
SECTION E2
FRACTURE
SECTION FI
COMPOSITES
SECTION F2
LAMINATED
SECTION G
ROTATING MACHINERY
SECTION H
STAT I ST I CAL METHODS
MECHANICS
CONCEPTS COMPOSITES
A -iv
i
SECTION A3 COMBINED STRESSES
-._J
TABLE
OF
CONTENTS Page
A3.0.0
Combined
Stress
and
Stress
Ratio
....................
i
P
3.1.0
Combined
3.2.0
Stress
Stresses Ratios,
...............................
Interaction
Curves,
and
Factor
of
Safety ..................................... 3.2.1 A Theoretical Approach to Interaction ....... 3.3.0 Interaction for Beam-Columns .................... 3.3.1 3.4.0 3.5.0 3.6.0
3.7.0
Interaction for Eccentrically Loaded and Crooked Columns ...........................
General Interaction Relationships ............... Buckling of Rectangular Flat Plates Under Combined Loading ....................................... Buckling of Circular Cylinders, Elliptical Cylinders, and Curved Plates Under Combined Loading ............................ _ .......... Modified Stress-Strain Curves Due to Combined Loading
Effects
................................
A3-iii
1 8 I0 12 14 18 22
27 31
Section
A
i0
1961
3
---F July
Page
A
3.0.0
Combined
Stresses
A
3.1.0
Combined
Stresses
When such
as
an
determine pal
element
tension,
of
and
structure
compression
resultant
Stress
maximum
Ratio
is
and
subjected
shear,
stress
1
it
to
is
combined
oftentimes
values
and
their
through
the
use
stresses necessary
respective
to
princi-
axes.
The
solution
graphical
may
be
construction
Relative
Orientation
and
fx
and fy are applied normal stresses.
fs
is applied stress,
fmax
and
Mohr's
circle.
Equations
of
Combined
of
equations
or
the
Stresses
shear fy
fmin
resulting normal
attained
of
are
the
principal stresses.
fSmax is the resulting principal shear
f8
stress.
0
is
the
angle
principal
L
of
axes.
e Sign
Convention: _
Tensile
stress
fs
is
positive.
45 °
fy
Compressive
stress
is
negative. Shear as
stress
is
Fig.
positive
A
3. I. 0-I
shown.
Positive
e is
clockwise
as
countershown.
Note: This
convention
this
work
only.
of
signs
for
shearing
stress
is
adopted
for
Section
A
I0 July
1961
Page A
3.1.0
Combined
Stresses
Distributed
3
2
(Cont'd)
Stresses
on a 45 ° Element
t t'yt f-"_2
Y
fx
fx -III-------
fs =._
j-
_ "
/
%
fs
I
v
Fig. A 3.1.0-2 Pure Tension
Fig. A 3.1.0-3 Equal Biaxlal Tensi_',
L v
fs fx
_em,,.
Ffg. A 3.1.0-4 Equal Tension & Compression
Fig. A 3.1.0-5 Pure Shear
A
3.1.0
Combined
Stresses
fx fmax
+
-
fy
(Cont'd) / ,_
2
+
fy _
2
+
/ fmin
-
fx + fy 2
V\
2f s TAN
f
- fy
fx
= Sma x
fy
+
2
Constructing Mohr's Fig. A 3.1.0-6a)
___
f2s
............
(1)
_s
............
(2)
fx Y
two angles representing the principal axes of inl The solution results fmax and fmin:
28 fx
Circle
1964
9, 3
2
\// -
A3
July Page
2
fx
VI
Section
(for
f2 s
(Disregard
the
stress
Stress + Shear
f
Sign)
condition
.......
...........
shown
(3)
(4)
in
fs
fx ht
fmin A
(a)
hand face
T
---fn
0
+ Normal Stress
fx +
fy
fmin
(c)
(b)
fmax
Fig.
A
3.1.0-6
A
3.1.0
I.
Make
stresses
Combined
Stresses
a sketch
of
are
known
an
and
Locate
the
center
element indicate
a distance of (fx tive, compressive
of
A 3
I0 July Page 4
1961
(Cont'd) for which
the
on
proper
it the
2. Set up a rectangular co-ordinate axis is the normal stress axis, and stress axis. Directions of positive and to the right. 3.
Section
the
+ fy)/2 stresses
and
sense
shearing
of
these
stresses.
sy_em of axes where the horizontal the vertical axis is the shearing axes are taken as usual, upward
circle,
from are
normal
which
is
the origin. negative.
on the
Tensile
horizontal stresses
axis
are
at
posi-
4. From the right-hand face of the element prepared in step (I), read off the values for fx and fs and plot the controlling point "A". The co-ordlnate distances to this point are measured from the origin. The sign of fx is positive if tensile, negative if compressive; that of fs is positive if upward, negative if downward. 5. Draw the circle with center found point "A" found in step (4). The two circle with the normal-stress two principal stresses. If principal stress is tensile,
in step (3) through controlling points of intersection of the
axis give the magnitudes and sign of the an intercept is found to be positive, the and conversely.
6. To find the direction of the principal stresses, connect point "A" located in step (4) with the intercepts found in step (5). The principal stress given by the particular intercept found in step (5) acts normal to the line connecting this intercept point with the point "A" found in step (4). 7. The solution of the problem may then be reached element with the sides parallel to the lines found indicating the principal stresses on this element. To determine associated normal I. per
Determine previous
the maximum stress:
the principal procedure.
or
the
stresses
principal
and
the
by orienting an in step (6) and by
shearing
planes
stress
on which
and
they
the
act
2. Prepare a sketch of an element with its corners located on the principal axes. The diagonals of this element will thus coincide with the directions of the principal stresses. (See Fig. A 3.1.0-7). 3. The magnitude of the maximum (principal) shearing stresses acting on mutually perpendicular planes is equal to the radius of the circle. These shearing stresses act along the faces of the element prepared in step (2) toward the diagonal, which coincides with the direction of the algebraically greater normal stress.
A
i0 July
1961
Page
"7
A
F
Section
3.1.0
Combined
Stresses
3
5
(Cont'd)
4. The normal stresses acting on all faces of the element are equal to the average of the principal stresses, considered algebraically. The magnitude and sign of these stresses are also given by the distance from the
origin
of
the
co-ordinate
system
\
f'
to
the
fmax
=
\
center
+ 2
of
fmin
=
fmax
\ \ fmin Fig.
A
3.1.0-7
Mohr's
fx + 2
fy
" fmin
circle.
Section
A
I0 July
1961
Page
A 3.1.0
Combined
Stresses
Mohr's
(Cont'd_
Circle
for
Various
Loadin$
Conditions
+ fs
fx_
fx
_
fs_
g _-
O_fx_
Fig.
A 3.1.0-8
+
Simple
+
f._x
fn
Tension
fs
9
_-Fig.
A
fx -_
3.1.0-9
+
Simple
fs
_
" fn
Compression
fSmax
0
+
fn
_y
Fig.
A
3.1.0-I0
Biaxlal
Tension
"
6
3
Section
A
I0
1961
Page
A
3.1.0
Combined
Stresses
Mohr's +
Circle
July 7
(Cont'd)
for
Various
Loadin$
Conditions
fs
Point
0
+ fx_fS
=
fn
0
fy
Fig. A 3.1.0-II
Equal
Blaxlal
Tension
"
fn
f +
fs
fSma x
"
fs
Fig. Equal
0
" fn
+ f n
fnmin_
x = fs
Fig. Pure
A
3.1.0-13 Shear
Tension
A
3.1.0-12 and
Compression
3
Section A3 July 9, 1964 Page A
3.2.0 A
Stress
means
without method.
Ratios,
of predicting
determining
The
basis The
I°
under
bending,
The combined stress ratios,
Failing
can
effect
of
represented curve or
by
by
test,
the
interaction
condition
is determined
by
is represented
(tension, test or
by
either
theory. load
or
STRESS
R1 or
R2.
been
STRESS
rupture,
loading
and
or
OR
yield,
equation
have
schematic
shown material
in
on
by
a
buckling,
another
etc.
simultaneous
loading
Ra
is
interaction The
equation
determined
by
combination
interaction
Fig. A or size
influence and
as
loading
1.0
A
all
one
R1
may
LOAD
mean
an
involving curve
theory, of both.
loading
etc.)
OR
combined
follows:
simple
LOAD
of Safety
__
FAILING
The
each
Factor
under
is known
loading condition "R" where
APPLIED e
is as
buckling,
and
failure
stresses
this method
strength
Curves,
structural
principal
for
shear, .
Interaction
8
it.
the
3. Z.0-1. effects
This
possible
Rz
1.
the
Rx
4.
value
0
of
represents
of
point and
Rz
of
Rl
R1
at
If R1
remains
point
c.
If Rz
remains
point
The
factor
and
the
R1
and
R2 0
a. can
/11
\
point
/
1o1
\
R2 increase until
occurs
at
Type not
failure.
proportionately
3.
is
curve:
locate 2.
curve cause
the Let
will
combinations
thatwill
Using
curve
Fig,
1.0 A 3.2.0-1
failure
b. constant,
Ra
can
increase
until
failure
occurs
constant,
R 1
can
increase
until
failure
occurs
(2)
is
at
d. of factor
safety of
for safety
for
(3)
F. is
S. = (ob+oa)_or(oh+oe),(or F.S.
= (fc+
fa).
og-of)
Section
A
i0 July
1961
Page A 3.2.0 In cally (one
Stress
Ratiosj
general, the for interaction
term
may
Interaction
formula for equations
be missing)
is
as
Curves_
and
Factor
...................
where
R''
designates
the the
sum sum
of of
9 (Cont'd)
analytii or 2
follows:
IR+J_2+_21 designates
Safety
the factor of safety stated where the exponents are only
FoS,
R'
of
all all
first-power second-power
ratios. ratios.
3
(1)
Section A 3 i0 July 1961 Page I0 A 3.2.1
A Theoretical
For
combining
equations
or
are
Let F rupture.
from
Approach
normal
and
F s be
Maximum
=
f/F;
Normal
shear
of
as
most
the
The
F;
replace
resulting
fs by
equation
Maximum
_Rf_
this
equation
Shear
Stress
Theory
Divide
The
by
Fig.
plot
of
A
3.2.1-1.
for
+
Fs;
replace
f by
equation
when
Rf
i-f this
stress
such
show
this
as
yielding
ratio
to vary
2
Eq.
(I)
Sec.
Rf
and
Fs/F
by
by
A
3. I. 0
k.
= F is
(kR s )
k
...................
= 0.50
f2
and
k = 0.70
Ref
Eq.
is
(I)
shown
(4) Sec.
A
in
3.1.0
s
R2
+ s
equation
Ref
2
_(2)
1
f/F
2
=
resulting
A
fmax
+
plot of 3.2.1-i.
fSmax
will
f2
RsFs,
when
I:T-+ A A
stress,
s
Rf
Fig.
principal
Theory
-- 7 +
by
the
failing
materials
+
Divide
stresses,
R s = fs/Fs
Stress
fmax
Interaction
to use.
defined
Let k=Fs/F; tests 0.50 to 0.75. Rf
and
convenient
to
for
RfF,fs/F
fSmax
s by
= Fs
R s and
F/F s by
I/k.
is
................................. (2) k = 0.50
and
k
= 0.70
is
shown
in
Section A 3 i0 July 1961 Page I 1
f--
A
3.2.1
A Theoretical
Approach
to
Interaction
(Cont'd)
Conclusion
From the foregoing analysis, only Equation (2) with k = 0.5 is valid for all values of Rf and Rs. It is conservatively safe to use the resulting Equation (3) for values of k ranging from 0.5 to 0.7, since all values within curve (_ must also be within the other curves. The use results.
of
other 2 Rf +
and
the
Factor F.S.
curves
2 Rs = 1
graphical A 3.4.0-1
Fig.
A
3.2.1-1
may
lead
to unconservative
.......................................
(3)
of Safety 1
= VR2f
For the of Fig.
of
.............................
(4)
+R2s
solution may be
for used.
Factor
of
Max.
Safety,
the
Shear
2 2 R1 + R2 = 1
curve
Stress
Theory
k -- .5; Rf 2 + Rs 2 =
k =
1.6
.5Rf 2 +
Rs 2 = 1
O Max.
Normal k =
Rs
.7;
1
1.=1-
\
4@k
=
Stress
Theory
.5;
Rf +_f2
.7;
Rf
+ Rs 2 = 2
+_/Rf2 +
(1.4
1.
0
-
,,,,1 .2
I .4
r.O
Fig.
A
3.2.1-I
I 1.2
L
@
Valid
@
Partly
@
Invalid
@
Partly
Valid
Valid
Rs )2 :
2
Section A 3 I0 July 1961 Page 12 A 3.3.0
Interaction
for
Beam-Columns
P Fig. A 3.3.O-1 Sinusoidal Moment
P
Fig. A 3.3.0-2 Constant Moment Curve
Curve
= applied
load.
2 E1 Pe
=
L2
(Euler
load).
(Reference
_2E Po
= buckling
load
Section
C
1.0.0)..
(I)
I
=
t
.........................
(2)
L2
or
applicable
short
column
formula.
M
= maximum
applied
Mo
= ultimate Section
bending B 4.0.0)
Ra
= p-_
Rb
M M
(Reference
bending moment
moment as
Section as
a beam
C 1.0.0)
a beam
only.
only.
(Reference
P (column
(beam
u
stress
stress
ratio)
ratio)
.........................
(3)
..........................
(4)
o
f
from
which
=P+k A the
M-c I
interaction
R a + kR b = i Po Let For
_
sinusoidal
bending
is:
............................................
(5)
Et E moment
(plasticity
coefficient)
...............
(6)
curves
i
k= I
Rb =
= Pe
equation
- P/Pe
(i - Ra)
(I -
_ Ra)
................................
(7)
A 3.3.0
Interaction
Interaction Fig. For
A
curves
Beam-Columns for
various
A
i0 July Page 13
1961
(cont'd) va]ues
of
values
of
_
are
shown
in
are
shown
in
3.3.1-5.
constant k=
A 3.3.
for
Section
Interaction I-6.
bending
moment
curves
1
curves
for
various
_
Fig.
Conclusion Comparison of Figs. A 3.3.1-5 and A 3.3.1-6 show changes in shape of the primary bending moment diagram influence the interaction curves. Therefore, Figs. A A 3.3.1-6 should be adequate for many types of simple
that significant do not greatly 3.3.1-5 and beam columns.
3
A3.3.1
Interaction
for
Eccentrically
Loaded
and
Crooked
Section
A
3
I0 July Page 14
1961
Columns
M=Pe
LIIIIIIII i_ e
I
P P Eccentric Fig.
A
Reference Re
e
Column
Crooked
3,3.1-1
Section
Fig.
A
3.3.0
= e__ (eccentricity
for
beam-column
ratio)
Column
A
3.3.1-2
terms
........................
(I)
eo
M o
e°
=-Po
(base eccentricity, for Po to induce
which a moment
is that Mo)
required
r
...
(2)
For a particular e, M would be a linear function of P as shown Fig. A 3.3.1-3. A family of such lines could be drawn which would represent all eccentric columns.
same P, M,
To obtain Fig. A 3.3.1-4 form as the interaction and
e
of
Fig.
A
3.3.1-3
(a nondimensional one-one curves of Figs. A 3.3.1-5 may
be
divided
by
Po,
diagram of the and A 3.3.1-6),
Mo
and
e o respectively.
e e o
P Ra
=_o
M
M Rb Fig.
A
3.3.1-3
Fig.
in
= M-_ A
3.3.1-4
A 3.3.1
for
Interaction
In using Fig. crooked columns
for A
Eccentrically
3.3.1-6 for the following
Loaded
Determine Po, the buckling short column formula.
2.
Calculate
3.
Determine Mo, using Section
4.
Calculate
e o = Mo/Po,
5.
Calculate
R e = e/eo.
6.
Calculate
_
7.
Knowing R e and _ appropriate curve. of Safety of 1.0.
' Ra = P/Po may This value of
8.
The
ultimate
is
9.
The
Factor
=
load
of Safety
P
load
the
the ultimate B 4.0.0.
Pu F.S.=--
_2EI/L2,
= Po/Pe,
by
Euler
moment
base
the
plasticity
for
an
A
i0 July Page 15
1961
Columns
Fig.
or
A
as
3.3.1-5
applicable
a beam
only
eccentricity.
coefficient.
be determined R a corresponds
R a.
applied
load
P
is
3
(Cont'd_
load.
bending
= Pox
and
_ 2Etl/L2
the
Pu
Crooked
eccentric columns steps are taken:
I.
Pe
and
Section
from the to a Factor
Section A 3 i0 July 1961 Page 16 A 3.3.1
Interaction
0
for
Eccentrically
Loaded
and
Crooked
Columns
(Cont'd_
0.2
1.0
/ !
/
/ I
0.8
P
Po
=0.0
=Y
_ = 0.2
0.6
=0.4
o Ow
_=0.6
mw
"q = 0.8 _3 = 1
II o_
0.4
0.2
i0.0
0
0.2
0.4
0.6
0.8
R b = M/M ° Interaction with
Sinusoidal
Curves
for
Primary
Straight Bending
Fig.
A
or Crooked Moment
3.3.1-5
and
Columns Compression
1.0
Section A 3 I0 July 1961 Page 17 A3.3.1
Interaction
for
Eccentrically
R
e
= e/e
Loaded
and
Crooked
Columns
(Cont'd)
o
1.0
2 0.8
0.6 O
0
1 8 II
2.0
0.4
0.2
i0.0
'i|l*|lll_
0
0.2
0.4
0.6
0.8
R b = M/M °
Interaction Curves for Columns Bending Moment and Axial or Fig.
with Constant Primary Eccentric Compression
A 3.3. i-6
1.0
,
Section I0 Page
A3.4.0
General
Interaction
A
July
3
1961
18
Relationships
0 ._ V
0
co o _
o_
,_ ,-_ _
00
0 0 o
ml _
_
0
co
_._ o _ [z_oo
= _ o_
_J
eq 0 [--i + _J
Om
+ oq_
! !
.0 co
+
i+ o
,._
cN o !
o I ,.-4
II II
II
II
4J c,q _
r-_ co
II
II
Jr
o_
.I..I
co +
II
Jr
+
II
+
+
,--4 I
I
I
o
o
c_
I
o
_J
!
oo
..4 .<
o
_0 o
co co
o co
r_
0.1
I_
o r.j
m
o
co
G
0
o
cJ -,_ ;_
_
o
_J.J=
I=
m
•
o ,.c_ _J _o0oo
(2 co r_
"o
= m'_
.IJ I
"_ co
co
._ _ i_1 o
!
o
"o
"o
co "o .,-i I=
!
o
!
.1_ I_
co •
c3
_
CO
cO 4-J
0
_ =_ _-,_ _
,-_ 0
_pf
A
3.4.0
General
Interaction
Table NOTE:
Relationships
A
3.4.0-1
For
round
(b)
See
Section
tubes A
in
3.2.1
compression for
see
discussion
A
3
I0 July Page 19
1961
(Cont'd)
(Cont'd)
Care must be exercised in determining Safety for limit or ultimate loads.
(a)
Section
whether
Section of
range.
to
C.3.0.0.
check
Factor
of
A 3.4.0
General
Interaction
Relationships
Section
A
i0 July Page 20
1961
(Cont'd)
1.0
0.9
3+
=I
0.6
;
0_
,
\\
:
1 5
R 1"
/
- /
_
2
+ R2 = + I R2
= I!
0.3
RI
0.2
I R1 + R2 =
1
/ /_/
I i
_//
0.2
0.3
_
0.i
0
"1
I
I
I
0.1
0.4
0.5
0.6
R1 Interaction Fig.
A
Curves 3.4.0-1
0.7
0.8
0.9
1.0
3
V
Section A 3 I0 July 1961 Page 21 A 3.4.0
General
Interaction
Relationships
(Cont'd)
I I NOTE:
AN-IO
30
Formula
Interaction
R _
+R
S
t
2
\
= 1
Curves
not
applicable where shear nuts are used. Curves are based on the results of combined load tests of bolts with
\ \
25
\
-
nuts fingertight.
\
\ i
\
20 AN-8
\ \
O,
\ , 15
\
\
m o
\
\
\
\
\ •
\
,AN-6 I0 ---_
_
\ \ \
\ \
AN-5
\
\
5
\ t
_-4
\
I 5
I0 Shear
AN
Steel
Bolts
15 Load
20
-Klps
Flg.
A 3.4.0-2
(125,000
H.T.)
Interaction
Curves*
25
A
3.5.0
Buckling
of
Rectangular
NOTE:
See
Flat
discus=ton
Plates
Under
in Sec.
C
Section
A
19 July Page 22
1961
Combined
3
Loading
2.1.4
iIIEIH tttttttttt Combined Fig.
Table
THEORY
LOADING COMBINATION Biaxial pression
Loading
A
3.5.0-1
A
3.5.0-I
INTERACTION FIGURE
ComA
3.5.0-2
For plates that buckle in sq. waves, R x + Ry
Longitudinal Compression Shear Elastic
Longitudinal Compression and
3.5.0-2
A
3.4.0-I
Rx+Ry
R c +¢R
2 + 4R 2 s
Bending
Bending Shear
and
Bending, Shear, Transverse
Compression Longitudinal Compression and Shear
R2 + R2 = I b s
_/R 2 + R 2 s
&
Compress ion Longitudinal Compression, Bending and Transverse Inelastic
A
FOR FACTOR OF SAFETY
= I
For Long Plates. = I Rc + R 2 s
and
EQ
EQUAT ION
A
3.5.0-3
A
3.5.0-2
A
3.4.0-1
i
2 R2
+R
=
I
i v
c
s
_/
2 R2 Rc + s
/+--_
A 3.5.0
Bucklin_
of Rectangular
Flat
Plates
Under
Section
A
19 July Page 23
1961
Combined
3
Loadin$
(Cont 'd) (a)
(b) 1
l.O_
a/b
=
_--,>,.
O. 8 0
o.__
Rx=
\
,a/b - l. o
_
0 06
_o_
\
R
¢\
04
o_ 0.2 \
(
\ \\\
, 0._ o. 9\ \
\
0.2
0.6
\\\\,,\
\"\\\\ ,\i _.o._ ,\,\ \ o_\\ \\\\,
0 2
• _ \ \ \\\\
\
\ \
0.8
1 o ....
1.0
_ _\\
0.2
0.4
0.6
0.8
\
\ 1.0
(c) 1.0 alb
-- 1.20 f
0.8
0.6
Y
__\_\
\_-o
Rb 0.4
0.2
0
\\ \\\o_ \_,\ \\ \ _o._, \,\\_\
:
a
_IIIIIIIIIIIII'
\ \ o..,\ \ \ \\\
o::\ \ \\ \\\\
.... I 0.2
I
0.4
0.6
0.8
1.0
Ry Plates
Interaction Curves for Simply Supported Flat Rectangular Under Combined Biaxial-Compression and Longitudinal Bending Fig.
A 3.5.0-2
Loadings
Section
A
i0 July
1961
Page
A 3.5.0
Buckling
of
Rectangular
Flat
Plates
under
Combined
3
24
Loading
(Cont'd)
(d) 1.0
_
a/b
= 1.60
--- L....
_
:°
o.8"-""'m!.. 0.6
-_
Rb
--_ _-
_
0.4
"--
0.ii0
.
0.80 _
0
O.
_o ,','
RI
_
i
_,,I\
' :
0.8
r
_'-_
Rb
_
o.4
3.
"
L
3.0
=
a/b
(g)
__-
__
0
--
8
_
I_
=
oo
-_!_ \
:
II!o
O'_n<_'_ I_
I
--
)
0.6
0._
1.0
\
alll
0
0.2
\ 0.4
0.6 R
Y
Y Fig.
A
3.5.0-2
(Cont'd)
\
\
%.0.90i \ \
Z
-I 1 R
-'_
' I I!1°
|lit
0.4
o
_1 I!1
•
oo_
R__._..L=C
-....,_ _
_
0.2
_
"illl o
\o_o\
"0.2
a/b
I
_
0
2.0
3.
_
0.6
=
'I
\\:I
"-0.90_
_._
\\
.-;
(f) 1.0
_
a/b
O.
r",_z). 2o
\
0.2
(e) l,
1.0
Section A 3 I0 July 1961 Page 25 Buckling
of
Rectangular
Flat
Plates
under
Combined
Loading
I 1.0
0.8
0.6 R b
0.4 1.0
1
0.2
0
_nallllln 0
0.2
0.4
0.6
0.8
1.0
Rs
Under
Interaction Curves Various Combinations
for Simply Supported Long Flat Plates of Shear, Bending, and Transverse Compression Fig.
A 3.5.0-3
Section A 3 I0 July 1961 Page 26 A 3.5.0
Bucklin$
of Rectansular
Flat Plates
under
Combined
Loadin$
(Cont'd_
0.5
__
___
10.8
f f
0._f
/
0.6 Rb
Rs
0.4
0.2 m
l"
1.0
o o.''"1"
0.8
o,.2
0.6 Rc
0.4
0.4
0.6
Rs
0.2
//
0.2
0.4 R c
0.6
0 0
//
Rb
0.8
1.0 Interaction
Curves
Fig. A 3.5.0-3
(Cont'd)
_J
Sect
ion
February Page
A3.6.0
Buckling
Curved
Plates
of Under
Circular
Cylindersj
Combined
Loadin$
Elliptical
Cylindersj
27
and
kl E_ 0 2_ 0 I
kl
I +
+ O ¢x.1
,.-( +
_>
cy
+
C_O
+
O
0
.SZ
_z
_
r-4
-4©
II
II
II
LJ
o
,.Q
II •,_ II
_
_
_
II c_
+ u_
,x:l
+
_J
c_
+
I
T
T
O
O
II
4
T
.
T
T
0
o
o
oi
o
4
4
$
41
4
0 <
<
<
Z g_
_
_o
°0'1
_o_
o o _
o o
._ _
_ _
,.,
z H
C
m
(1)
_)
g_
o o _
I
o_ OLj
_
c _
A3 15,
1976
Section
A
i0
1961
July
Page
A
3.6.0
Bucklin$
Curved
Plates
of under
Circular
Cylinders
Combined
t
Loadin$
Elliptical
Cylinders
3
28
t
and
(Cont'd)
[I3 0 4-I eq 03 + ¢q oq
o
03
o +
+ r/3
,m
.o o
o' ,-4
,-4
II II
= 0 O
II
¢o#m
,--4
II
%.s
¢_ 03 03
,-4 ! O
M
e4 03
+ +
ZO z _0
+ .m
v
¢q
II
¢_1 03 O_
.U ¢_1 03 O_
03 +
+
+
II + 03
_CY
+
+
I
I
.4
..4
<
<
+ 0
o
o
,m
Z 0
i0
m = •,4 _ :3
c _ 0.,4 .,4 _ 03 = 03 0
• > 03 = _l
= = •,4 _1 ¢1 '13 03 = _
.,4 _
[-_ •
O > •,4 03 m C m
03 _
•,4 _
• 03 _
C .,4
_ C
C C o-,_
C o
"o D
03 C 03 •
03 _
•,4 _ _0
[-_
C
i1/
C > •,4 m -o C
C
_ _
C O .,4 .,4 -O m
CD _
=eft1,
o
o
_,_
o
D
_.c
o
o
o
_
C
o
_
_
O
"o I 0
I
I
-
I
I
•,4 m-,4 .,4 _
>_ _rD-O
m
f
Section
A
I0
1961
Page
A
3.6.0
Curved
Bucklin_ Plates
of
Circular
under
Cylinders_
Combined
Loading
Elliptical
Cylinders_
(Cont'd)
o
4-1
=° •
d
_ Vl
_
I_
o _
4-J
_: Ii _
_1--_ +
_ln
II
II
V o o °_ I
o
,g ,-.-4 121t_
.,-4 0
_
4-J
,x:l N
,._
m
_
o
n_
_
flJ ¢.1
t.J
.0_
0 .,-I 01
.,II
,-4
oo
Vl
_J
g
u_l_ _ o
o
e, O_
July 29
and
3
A 3.6.0 Buckling of Circular Curved Plates under Combined
Cylinders_ Elliptical Loading (Cont'd)
Section
A
I0 July Page 30
1961
Cylinders
3
a and
1.0
RI3 - R 2 = 1 0.8
//
0.6
/j/
2 RI• - R 2 = 1 R2 0.4
o2
j'
....
"|
0
I 11
0.2
0.4
0.6
0.8
1.0
RI
Interaction Fig.
A
Curves
3.6.0-1
1.2
1.4
Section A3 July 9, 1964 Page 31
A3.7.0
Modified Stress-Strain
Curves
Due
to Combined
Loading
Effects
An
analysis
properties
that
derived
thermal
effects,
Plastic
uses
such
plastic
Energy
curve
combined
loading
the
and
of or
is
other
member
reaches resisting
the ultimate combined
tensile loading
reaches
Ftu
Several been hedral
Shear
Assumptions
,
of
the Stress
&
fl, i.e.,
piastic
when
the
Ftu of before
Section
in
A1).
one
plane
when affect
effect.
stress,
For
(P/A),
material, maximum When
loading
curve
but a member principal
buckling
or
effects,
other
modified
required.
modifying
method
the the
a modified
Poisson
average
Elastic-
require
a modified
the
material columns,
buckling,
stresses to
or
beams,
may
from
combined
not
etc)
due
stress may fail
are
methods
developed;
fails
include
curves
and 5.7, or
planes
(Reference
parameters
stress-strain
Loads
in
of
derived
involved.
stresses
a tension
stress
B4.
curve
(analysis
elastic
Section
properties
example,
empirical
stress-strain
a curve
bending,
Theory
stress-strain
loads
a uniaxial
from
uniaxial
presented
here
stress-strain is
derived
curves from
the
have Octa-
Theory.
Conditions:
f2
and
f3,
the
three
principal
stresses,
are
in
proportion;
fz = El fl
(_)
f3 = K2 fl
(2)
K 1 _ K 2 See
Fig.
A3.7.0-I
for
direction
of principal
stresses.
A3.7.0
Modified
Stress-Strain
Loadin$
Effect
Curves
Due
Section
A3
July Page
1964
9, 32
to Combined
_Cont'd)
3
3
foct
f2-
.._ ---'-2
Figure Directions
2.
Prime
(') denotes
c'
3.
and
of Principal
a modified
=
modified
strain
V,' =
modified
modulus
In this method, modulus
for
any
principal
Stresses
value:
of elasticity.
principal
of elasticity
of the other
A3.7.0-I
are
stress
modified
fi' the total strains to include
the
effects
stresses.
Procedure:
I.
2.
Calculate
the
principal
(Reference
Section
Determine
the
=
for
a given
load
condition
A3.1.0).
effective
-
stresses
uniaxial
- (f2 - f3
stress:
+ (f3 - fl
(3)
Section A3 July 9, 1964 Page 33 A3.7.0
Modified Effect
Stress-Strain
Curves
Due
to Combined
Loading
(Cont'd) I
and
calculate
EI '
o
Enter
=
an
effective
modulus
of elasticity,
E l, by:
(f_ll) El
the plastic
(4)
stress-strain
diagram
for
simple
tension
of
--
the (See
material, Figure
stress-strain A3.7.0-2a
if available, (A3.7.0_2b)
curve ) by:
at
fl
at the Otherwise, and
value
f
of fl and determine Esp. enter the simple tension
determine
E'
(see
Figure
sp
f i E' sp
-
(5) _i - _I O
°
Use this known,
[p
value of E'sp 1 find e I from P 1 -
E,sp
and
a value
of
gp
= 0.
5,
if
not
accurately
(6)
(fl
-
gp
E
f2
- _p
f3 )
Esi __
EsPi
_-
pt.
I
_--
I
--
i
Plastic
Secant
modulus
'¢ip :
F (a)
Engineering
_ le
¢I stress-strain
P curve Figure
(b) A3.7.0-2
Plastic
stress-strain
curve
A3 °7.0
Modified Effect
5.
Stress-Strain
Curves
Due
to
Combined
Loadin 8
can
be
determined
for
Section
A3
July Page
1,564
(Cont'd_
Once
E' has
been
found,
c'
of fl by!
any
value
le
(7)
fl Ie
N_
I
6.
Determine
°
Repeat
the
all
a plot of stress-strain
fl
total
effect
e
p
steps
until
vs
strain,
el,
for
each
of
fl
sufficient
cl (see curve.
points
Figure
A3.7.0-3
are
obtained
) which
is
t
E 1
/ /
to the
modified
E
El s
construct
t
it
/
l
Any Point
e l t
I
Ip O
¢'1 Figure
A3.7.0-3
Modified Loading
by:
(g)
t
f
value
Stress
Strain
Diagram
Due
to
Combined
_, 34
Re ferences
:
Popov, 1954.
P.,
E.
Structures Fort Worth.
Mechanics
Manual,
of
Convair
Materials,
Division
Prentice-Hall,
of
General
Inc.,
Dynamics
Section
A
July Page
1964
New
9, 35
York,
Corporation,
3
SECTIONA4 METRIC SYSTEM
v
TABLE
OF
CONTENTS
Page METRIC
A4.0.0
P /
A4.
SYSTEM
Introduction
1.0
A4.2.0
The
A4.2.
Basic
A4.4.0
International 1
A4. _F
5.0 A4.
System
5.
A4.6.0
1
A4.6.
1
A4.6.2 A4.7.0
SI A4.7.
1
Units
Dual
.........
Notation
Drawings
Units
3 4 4
Quantities
.......
................
5
................
5
and
in
Analyses
........
A4.7.
3
Tabular
of Units
Data
A4. 7.4
Collateral
A4.7.
Temperature
8
..............
8
...................
Use,
SI and
Non-SI
7 7
....................
Identification
4 5
/
A4.7.2
2 3
................... Units
for
SI
.................
Physical
Photometric
on
2
..................
SI Symbols
Units
Units,
1 1
..................
Quantities
Rules
........
...............
for
System
Dimensionless
Other
(SI)
...................
Incoherent
Physical
of Units
.....................
Symbols
Giorgi 3
of SI
SI Units
CGS
A4.4.2 A4.4.
System
Advantages
A4.3.0
A4.4.
1
......................
International
1
1
.....................
Units
.......
8
f
5
Scales
f
A4-iii
..............
9
TABLE
OF
(Continued)
CONTENTS
Page A4.8.0
Transitional A4.8.
1
A4.8.2 A4.9.0 A4.
A4.
A4.
Mass
vs
Indices
.................
9
Force
.................
9
Examples
of Nomenclature
Measurement
10.0
Preferred
A4.
10. 1
Volume
A4.
10.2
Time
A4.
10.3
Energy
A4.
10.4
Tempe
A4.
10.5
Prefixes
11.0
of Angles Style
12
.....................
12
......................
12
.....................
12
.................
14
....................
Conversion
Factors
Basic
A4.
11.2
Noncritical
Conversion
A4.
11.3
Conversion
to Other
Linear
Tables
14
................
11. 1
Conversion
11
...................
rature
10 11
...............
A4.
12.0
...........
Unit
15
............ SI Units
.................
A4-iv
15
...............
.........
15 15
Section
A4
1 February Page METRIC
1970
1
SYSTEM
Introduction
The
metric
purpose
system
also
and
presents
of
System
and
to
length,
the
foot;
and
A4.2.0
(SI),
the
based
System
is
its
length,
the
the
Metric
of now
"--
f
involving
and
time,
system,
is
System
of
Units,
referred
to,
definitive
purpose
less
of of
to
both
System
the
English
these
second.
are:
Note
common
terms
or
precise
to
both
Syst_me
that the
the English
Internationale
terms, The
system,
previous
SI,
as
the
Meter-
therefore,
although
it
is
should much
be
broader
system.
SI significant
relating
eliminate
varied
any
SI has
work to
section
(SI)
system.
metric
than
Advantages
tend
in
(MKSA)
use
This
the
System.
International
the
with
tables. basic
the
The
and
will
English
Units
development SI
the
of
The and
are
System
as
1
time
reader
system.
conversion
International
considered
A4.2.
pound;
the
English
The
sometimes
scope
In
sexagesimal
Kilogram-Second-Ampere
in
and
System.
the
the
and
mass,
mass,
is to acquaint
over
symbols,
Metric
on
section
advantages
definitions, Units
second,
of this
to wasted derived
advantages
space time from
technology. and
costly a multiplicity
in
all
phases
For
of
instance,
errors
in of
research the
use
computations
sources.
The
Section
A4
1 February Page
utilization
of
a uniform
fies
the
exchange
and
will
do
of
so,
organizations
A4.3.0
Basic
the
basic
units
des
Poids
of
et
Units,
installations
and
has
Mesures
degree candela
the
of
atomic
a basic
tool.
The of
pound
the
atomic
space-ori-
in
been
1960
recommended
for
the
following
to
reach
mole substance
in
pound
weights
of
based
SI
agreement
may
for be
in
on
the
the
a unit
of
grams
{gram
the
amount
atoms
Units,
of
basic
quantity
in
mole;
weight)
Carbon
fact
OK cd
recommended
molecular all
upon
Kelvin
that
The (tool),
Symbols that
A
determined
quantity.
or
are
International order
a
also
mole,
weights
In
was
as
amount or
sum
it
addition,
treated
weight;
necessary
G_n_rale
System
kg s
as
A4.4.0
International
kilogram second
symbol:
These
simpli-
world.
ampere
mole,
the
SI thus
and
contractors
m
be
to
the
the
centers
associated
meter
would
ular
among
NASA
as
:
In
defined
among
such
v
Units
name,
ConfErence
measurement
data
throughout SI
The
of
in-house
eventually,
ented
by
system
1970
2
unit
is
the
chemistry, gram
which
constituting
substance
is
moleccorresponds
the
molecule.
1Z.
SI an
international
symbols,
names,
system, and
it
abbreviations.
was
_
Section
A4
1 February Page
1970
3
_F
A4.4.
1
CGS In
have
System the
special
field
of
names
Conference
on
and
Weights
mechanics,
the
symbols
and
which
following have
units
been
of
this
approved
by
1, b, h
centimeter
cm
second
s
m f, v
gram hertz
F
dyne
E,U,W,A
erg
p
microbar
The of
units
for
quantities
( = g. cm/s (=
The the
MKSA
name
or
m-kg-s-A
dyn
2)
erg _t bar 2)
p
time,
and
ampere
A
MKS
system.
The
MKSA
used
is
magnetism,
electric
kg
a
coherent
based
current
on
system four
basic
intensity.
S
based the
system,
system
and
kilogram second
by
commonly
2)
s/cm
m
system"
most
dyn.
meter
system
four-dimensional
(=
electricity, mass,
The
the
cm2/s
( = dyn/cm2)
system
mechanics,
mechanical
g.
System
: length,
"Giorgi
General
g Hz
( = s- 1)
poise
Giorgi
the
Measures:
t
A4.4.2
system
on
these
four
International
which
was
Electrotechnical
is
based
system
of units
system
of
together
units
on
forms
equations
with
these
given
the
name
Committee
the
first
a
coherent
previously
equations.
three
units
system mentioned,
in
1958.
only,
has
of
units and
in is
Section
A4
1 February Page
A4.4.3
Incoherent
_ngstr_m
A
barn
( = 10-Z4
V
liter
(=
t, T
minute
min
t, T
hour
h
t, T
day
d
t, T
year
p
atmos
p
cruZ)
b
1 dm 3)
1
a pher e
kilowatt-
Q
atm
hour
kWh
. calorie
cal
Q
kilocalorie
E, Q
electronvolt
eV
m
ton
t
m
p
bar
Physical The
German:
is
number)
A4.5.
or
and
1
symbol
Examples:
for
'physikalische
to
atomic
mass
(=
10 6 dyn/cm
(=
10 5 N/m
unit
u
Z)
z)
bar
Quantities
symbol
equivalent
kcal
( = 1000kg)
(unified)
A4.5.0
4
Units
1
Ma,
1970
the
a unit,
of
i.e.,
physical
the
quantity English,
dimensionless
and
is
explicitly
E
= 200
erg
F
=
N
'grandeur
(French:
value
quantity
physique';
'phys ical magnitude
sometimes:
numerical
Physical
For
27
Grosse';
product
Dimensionless
not
a physical
(or
the
= numerical
measure, value
a pure
x unit.
Quantities
physical
quantities
the
indicated.
nqu v
= 1.55 = 3 x 108
s-1
unit
often
has
no
name
')
Section
A4
1 February Page
r" A4.6.0
Other
SI Symbols
The and
symbols
Weights
following which
and
have
units
of
been
approved
the
ampere
Q
coulomb
C
farad
General
special
m
kilogram
1, b, h
meter
F
newton
R
ohm tesla volt
P
watt
$
weber
corresponding
to
mZ/s2)
J kg
( =kg. (=
B
the
Vs/A)
m
V
m/s2)
N
V/A)
(= (=
Wb/m2)
T
W/A)
V
(= J/s) (=
W
V.
s)
Wb
Units
field
of
the
basic
symbol:
an
quantity,
additional
luminous
unit
intensity.
(candle)
cd lm
E
lux
( = lm / m2)
lx
upright b.
period),
and
in
this
This
candela lumen
for
units
is
I
Rules
for
basic
names
Roman
cd.
photometry
Special
a.
on
C H
(= ( =kg.
Photometric
s)
F
henry
A4.6.2
names
Conference
( = C/V)
joule
candela,
the
have
A
L
In
system
by
( = A.
E
1
MKSA
Measures:
I
A4.6.
1970
5
field
introduced unit
is
the
are:
Notation
Symbols
for
units
of
physical
for
units
shall
quantities
8hall
be
printed
in
type. Symbols
shall
remain
unaltered
not
in
the
contain
plural,
a final
e.g.:
full
7cm,
stop
(a
not
7 cms.
Section
A4
1 February Page 6 Symbols
Co
upright shall (weber);
type. start
However, with
Hz d.
fractions
or
e. prefixes
are
a capital
for the
units
shall
symbol
Roman
be printed for
in lower
a unit
derived
e.g.:
m (meter);
letter,
case
from
1970
Roman
a proper
name
A (ampere);
Wb
(hertz). The
following
multiples
prefixes
shall
be used
to indicate
decimal
of a unit.
Prefix
Equiv
deci
(10 -1)
d
centi
(10 -2 )
c
milli
(10- 3)
m
micro
(i0-6)
nano
(10- 9)
n
pico
(i0 -IZ)
p
feint.
(10 -15 )
f
atto
(10"18)
a
deka
(I01)
da
hecto
(10 z)
h
kilo
(10 3 )
k
mega
(106 )
M
giga
(109 )
G
tera
(1012)
T
The available.
use
of double
prefixes
S)rmbol
v
shall
be avoided
when
single
Section
A4
I February Page
f.
combination or
Not:
m_ts,
but:
ns
Not:
kMW,
but:
GW
Not:
_
but:
pF
When
a prefix
shall
cubed
be
without cm
A numerical
prefix thus,
always
No
symbols,
or
following
example
as
mA
shall is
never
be
never
periods
SI
units
A4.7.
the
on 1
non-SI
before
symbol,
a unit which
symbol,
can
be
the
squared
_s 2
2,
used
before
a unit
written,
and
never
or
hyphens
shall
be
Prefixes
symbol
means,
is
which
0.01
(m 2)
but
are
joined
used
with
directly
to
SI
abbreviations,
units,
as
in
the
s :
mN
kV
kHz
MV
mA
GHz
cm
Units
The
(picofarad)
2
prefixes.
SI
(gigawatt)
placed
a new
MN
A4.7.0
(nanosecond)
brackets.
(0.01m)
go
is
2,
crn2
means
symbol
considered
using
Examples:
squared,
F,
1970
7
on
DrawinGs
following
drawings
and
in
paragraphs and
Dual
Units
When
SI
units
units
of
measure
in
are
Analyses
describe
general
techniques
for
using
an
analysis,
analyses.
specified shall
for be
used
use
on
a drawing
parenthetically
or to
in
facilitate
Section
A4
1 February Page comprehension omitted
on
A4.7.
Z
.of the the
assumption
identified
by
the
A4.7.
3
a note
shall
be
on For
Non-SI
are
familiar
units with
shall the
never
be
SI units.
the
used
drawing
frequently
to avoid
on a drawing
repetition
of unit
shall names
be through-
example,
ALL
Tabular
Data
provide
placed
users
of measure
NOTE:
To
analysis.
of Units
units
drawing.
or that
Identification Basic
out
drawing
1970
8
DIMENSIONS
maximum
in separate
ARE
clarity
columns
IN mm
(in.).
of presentation, or
SI and
in separate
tables
non-SI
if the
need
units is
indicated. A4.7.4
Collateral Place
the
alents
in parentheses.
as
one
unit
or
column.
present shows
in a row In
the
some
equivalent
a drawing
with
Use,
SI and
metric
units
or
Non-SI first,
Intables,
other
column,
followed
complex
tables
units
in separate
both
units
given.
and
Units followed
immediately
formats
may
by the
other
drawings tables
be
desirable,
unit
it may and
by the
drawings.
equivsuch
in another be desirable Figure
row to A4-1
Section
A4
1 February Page
"--r_
6 MM 4.236
/ M' 4.236
-
UPRIGHT
(BRASS)
2 REQD
IN.)DRILL-(2) OMM
FRAME t'-'- 5-
0.51
BASE
C394
IN)
--..
300
7. 5
as
the
non-
SI unit,
MMC
DIA
ROD
,SMMC.S ,N..)--,.i ,
11.8 IN,)
..j.--,
I REQD
Collateral
Us_
of
Units
Scales the
with
Kelvin the
or
the
Fahrenheit
Celsius scale
temperature being
scale
optional
as
may
be
used
a parenthetical
SI unit.
A4.8.0
Transitional
The
and SI
A4-1.
Temperature Either
ROD
iBRA_,S)- ---I _
ROD (ALUMINUM')
Figure
SO
MF (2) ,_.-6.35MM(.251N)
A4.
IN)
300 MM( ,,.8 IN)
$
FRAME. MM
1970
9
preferred systems
A4.8.
1
following
styles to Mass The
Indices
explanations
which
are
indicate
to
be
used
nomenclatures,
methods,
the
from
during
transition
non-
SI. vs term
Force "mass"
(and
not
weight)
shall
be
used
to
specify
the
Section
A4
1 February Page quantity
of matter The
acting
on
of the
The kilogram
by
defined
as
pound
thrust,
weight
to be
located.
pound
mass
being
S.
National
exactly
4.448
defined
as
at the
earliest
abbreviated
Ibm,
the
pound
thrust
be
of force,
A4.8.2
The vehicle
abbreviated
is
48 The
(kg),
weight,
or
being
exactly
of Standards;
the
5 newtons
4.448
221
shall
of the
object
615
was
0. 453 pound
by the 260
gravweighed
592
force
NBS;
37 (lbf),
and
5 newtons,
the shall
date. to SI units,
the
pound
be abbreviated
lbf,
mass and
the
shall
be
pound
the
SI unit
of
mass,
shall
not
be used
as
a
thrust.
of Nomenclature
dry 600
force
by a statement
by a statement
260
period
the
to lbf.
kilogram
Examples
exactly
Accordingly,
the
as
615
force
where
practicable
transition
unit
or
defined
221
gravitational
be accompanied
location
Bureau
being
the
The
location.
object
at the
(Ibm),
as the
should
of the
During
shall
be defined
of an object
in m/s2
U.
objects.
at a specified
location
the
be abandoned
shall
object
acceleration
is assumed
in material
"weight"
corresponding
itational or
term
a material
statement of the
contained
1970
10
mass kg
weight
(107
of the
S-I
(first)
stage
of the
Saturn
I launch
139 lbm).
of a man
of
70.0
kg
(154
Ibm)
mass,
standing
on the
Section
A4
1 February Page
surface
I13
of the moon
newtons
(25.4
The
is 6. 689
MN
(i 504
(tad),
there
ever,
the
for the
radian
000
being
stitute
a
ades
it
A4.
10.0
is 1.62
m/s
of the Saturn
I launch
2,
is
vehicle
weight,
and
thrust
is the newton.
be divided
into a rational
number
of radians
2_
radians
arc
degree,
(approximately
arc
of plane
6. 283
minute,
angles.
and
Decimal
tad)
arc
in a circle.
second
multiples
may
How-
all be used
of the degree
or
preferred.
"grad"
right
will
is
angle.
be
found
useful
to a.
measurement
to
wherever Spell
symbol
of
is
angular
not
for
an
SI
many
measure unit,
but,
wherein since
100 it
is
grads
based
con-
on
dec-
purposes.
Style
order
adhered
a unit
This
Preferred In
related
S-I (first) stage
unit of force,
cannot
measurement
are
acceleration
of Angles
circle
radian,
gravitational
Ibf).
preferred
The
be
of the
Measurement A
the
il
Ibf).
thrust
The
A4.9.0
where
1970
in
ensure
maximum
accuracy,
practicable out
a term
parentheses.
in in
full
the
engineering when
Thereafter,
following
analysis
first
used, use
the
style
shall
documentation.
followed related
by symbol
the for
applications. b.
In
general,
state
the
measurement
in
terms
of
the
system
Section
A4
1 February Page of units for
used,
followed
example,
48 c.
place
to the
126
306.
A4.
10.1
kg
(107
between
each
and
359
applicable 000
numerical
right
204
000
In using
a space
used
by the
translated
lbm),
and
values
group
25.4
of decimal
meter
(m3)
lbf
involving
of three
left
value
digits.
points.
Commas
newtons). than
Such
12
in parentheses:
(113 more
1970
three
spaces are
digits,
shall
not
be
used:
60.
Volume The
cubic
The
liter
is now
A4.
10.2
Time The
defined
as
preferred
should
exactly
be used
in preference
to the
liter.
1 dm 3.
unit
of time
associated
unit
of energy
with
time
rates
is
the
second. A4.10.3
Energy The
and
all
other
preferred forms)
although
listed
should
be avoided.
A4.
10.4
in this
International
atures
joule
(J).
document
for
The
Btu,
electrical, calorie,
information,
are
and
thermal, kilocalorie,
poorly
defined
and
Temperature Either
Practical
is the
(mechanical,
the
Practical Celsius
in degrees
Thermodynamic Kelvin
Temperature Rankine,
Kelvin
Temperature Scale Fahrenheit,
Temperature Scale,
may etc.
or
Scale, the
the
International
be used.
Equivalent
, may
be included
temperin
v"
Section
A4
1 February Page
1970
13
-W" parentheses.
Note
degrees that
(OK)
and
degrees
ature
in
Nomograph,
the
defined atures
and
in
a
degrees
Table
and
Celsius
interpolation
are
equations
in
numerically
are
Table
Practical
Practical of
(°Cels)
expressed
Centigrade
A4-2,
International
set
differences
degrees
Figure
International by
temperature
Celsius
Celsius
The and
that
Kelvin
equal
identical.
See
and Temper-
A4-15.
Kelvin
Temperature
Temperature based
Scale Scale
on
the
of
reference
1960
of
1960, are
temper-
A4-1.
Table
A4-1.
International
Temperature
Reference Practical
Temperatures, Temperature
Scale
oK
of
oC
Oxygen:
liquid-gas
equilibrium
90. 18
Water:
solid-liquid
equilibrium
273. 15
0.00
Water:
solid-liquid-gas
273. 16
0.01
Water:
liquid-gas
equilibrium
373. 15
100.00
solid-liquid
equilibrium
692. 655
419. 505
717. 75
444.6
Zinc:
Sulphur: Silver:
Gold:
equilibrium
liquid-gas
equilibrium
solid-liquid
equilibrium
solid-liquid
equilibrium
1233.95
1336.
15
-182.97
960.8
1063.0
Section
A4
1 February Page
A4. 10.5
the
coherent tities
14
Prefixes "Coherent
without
1970
application
units
'_ are
the
entire
desirable.
system
of coherent
science
and
units
be
can
full
range
the
the
rationally
and
the
of all
of numerical
use
of
of physical
SI is
needs
in equations
exclusive
values
stated,
to meet
directly
The
of numerical
previously
represented
be used
coefficients.
available The
that
range
As
technology.
can
units
of numerical
over
is highly
quantities
units
only
complete
branches
values
conveniently
quan-
of
of physical
by utilizing
SI
units. To facilitate approved (or
prefix
before
fractions
A4.
combination
Only
previously
multiples
The to which
the
able
with
sion
factors
listed
prefixes
in units
application
other
of approved
of decimal
information
have
of ten
is
employed,
or
before
an SI unit
is placed
an
shall
be used
to indicate
decimal
Factors
number
applicable
a power
of ten
of SI units).
Measurements by the
a power
of an SI unit.
Conversion
converted
either
representing
any
or
11.0
this,
is to be measuring
been
tabulated
than
those
numerical
places
should
put and
by the
instruments according
of the
and
SI are
conversion be
methods.
to physical
factors.
governed
degree
preferably
by the
of accuracy These quantity.
purpose attain-
conver-
Section
A4
l February Page
A4.
II. I
Basic
The
used
in
prefix
basic
accordance
be
as
exactly
11.2
used
unit of measurement
A4.6.2(d).
on
a
2.54
Noncritical
in
be
11.
herein
3
to
a prefix
in
analysis.
an
is
chosen,
The
no
inch
be
other
(in.)
is
mm
Conversion
to
are
critical,
not
convenient
non-SI
numbers
set
Conversion
to
Other
Conversion
to
SI
and
data
converted
to
the
word
"nominal"
appended
mm
shall
12.0
the units
SI Units
units
other
than
follow
the
rules
as
forth.
Conversion The
itate
or
Once
shall
parentheses.
A4.
A4.
rounded
drawing
Prefixes
is the meter.
cm.
If dimensions shall
15
Unit
with
shall
defined A4.
Linear
1970
conversion
conversion of
the
Tables
Metric
of
factors
most System
given
commonly (or
in
used
conversion
the
following
units of
of non-SI
tables
the
will
English units
to
facil-
system SI
units).
Section
A4
1 February Page
Table
To
Convert
foot/second (gal)
inch/second
Acceleration
To
squared
galileo
A4-2.
squared
Symbol
meter/second
squared
m/s
meter/second
squared
m/s$
meter/second
squared
m/s
Table
To
Convert
1970
16
A4-3.
Multiply *3.048
x
I0 "l
*I.
x
I0 "z
z
000
*2.54
z
by
x
I0 -z
Area
To
Symbol
Multiply
by
sq
foot
sq
meter
m z
*9.
290
304
x
sq
inch
sq
meter
mZ
*6.
451
6 x
10 .4
sq
meter
m z
074
8 x
circular
rail
Table
To
Convert
gram/cu
A4-4.
10 "1_
Density
To
centimeter
5. 067
10 "z
Symbol
Multiply
kilogram/cu
meter
kg/m
3
*1.00
x
by I_
pound
mass/cu
inch
kiiogram/cu
meter
kg/m
3
2.767
990
5 x
I¢
pound
mass/cu
foot
kilogram/cu
meter
kg/m
3
1.601
846
3 x
I0 l
slug/cu
foot
kilogram/cu
meter
kg/m
3
5.153
79 x I0 z
Table
To
Convert
ampere
(Int
ampere
hour
coulomb
(Int
faraday
of
A4-5.
Electrical
To 1948)
of
1948)
(physical)
Symbol
ampere
A
coulomb
C =
coulomb
C = A"
coulomb
C = A.s
Multiply 9. 998
A" s s
farad
(Int
of
1948)
farad
F = A"
henry
(Int
of
1948)
henry
H
ohm
_=
V/A
tesla
T =
Wb/m
ohm
(Int
of
1948)
gamma
*Exact,
as
defined
by
the
National
Bureau
of
Standards.
,'3.60
s/V
= V-s/A
l
by 35
x
x
I0 "I
I03
9. 998
35
x
i0 "l
9. 652
19
x
104
9. 995
05
x
10 "l
1.000
495
1.000
495
* 1.00
x
10-9
Section
A4
1 February Page
Table
To
Convert
[
(Int
of
1948)
maxwell
Btu
(Cont'd)
Symbol
tesla
T
= Wb/m
volt
V
= W/A
weber
Wb
Table
To
Electrical
To
gauss volt
A4-5.
Convert
A4-6.
= V" 8
m
joule
J=N.m
joule
J=N.m
joule
J=N.
joule
J=N.m
joule
5=N.
joule
J=N.m
joule
J=N.
m
joule
J=N.
m
{Int
kilowatt ton
{nuclear
watt
hour
of
1948)
hour
(Int
of
equiv
1948)
of
TNT)
Table
To
A4-7.
Convert
Energy/Area:
To
*1.00 m
0 x
I. 000
165
3. 600
59
m
4.20 "3,
foot.rain
watt/aq
meter
W/m
z
*$Btu/sq
inch.sec
watt/sq
meter
W/m
2 2
erg/sq
centimeter.sec
watt/sq
meter
W/m
watt/sq
centimeter
watt/sq
meter
W/mZ
*Exact,
as
ochemical
)
109
x
l0:
l06
Multiply
$*Btu/sq
rm
60
x
x
l0 "z
Time
I.
**{the
10 "?
011
2
Standards.
x
4.214
Symbol
of
10 "19
9
W/m
Bureau
x
10
817
meter
National
I0 _
1. 355
watt/sq
the
x
184
1,602
foot.sec
by
by
190
*4.
*$Btu/sq
defined
10 "a
02
J=N.
joule
x
4.
joule
poundal
*1.00
87
(thermochemical)
foot
330
i. 055
calorie
force
1.000
10 .4
m
m
pound
x
J=N.
J=N.
foot
_'1.00
joule
joule
erg
by
Multiply
{mean)
volt
z
Symbol
calorie
electron
Multiply
Energy
To
(mean)
1970
17
134
893
1 x
104
1.891
488
5 x
I0 z
1.634
246
2 x
106
*i.00
"I.
by
00
x
10 .3
x
10 4
Section
A4
1 February Page
Table
To
Convert
force
Force
To
dyne
kilogram
A4-8.
(kgf}
Symbol m/sZ
newton
N=kg.
m/p
z
*9.
806
65
m/s
z
*4.
448
221
615
260
138
5 x
10 "l
(avoirdupois)
newton
N=kg.
ounce
force
(avoirdupois)
newton
N=kg.m/s
Table
A4-9.
astronomical
unit
foot
z
10 -5
2.780
Symbol
Multiply
meter
m
*1.00
meter
m
meter
m
*3.
x
1. 495 048
by
10 "1° x
10 Ix
x
10 "i
foot
(U.
S.
survey)
meter
m
'1200/3937
foot
(U.
S.
survey)
meter
m
3. 048
meter
m
"2.
meter
m
9.
460
55
m
*1.
650
763
inch
light
year
wavelengths
micron
meter
m
*1.00
rail
meter
m
*2.
meter
m
meter
m
(U.
S.
statute)
yard
Table
To
Convert
force,
kilogram
mass
pound *Exact,
mass as
secZ/meter
(mass)
(avoirdupois) defined
A4-10.
To
gram kilogram
Kr 86
54
meter
mile
by
the
National
006 x
x
10 73x
10
-5
*1.609
344
x
*9.
x
144
x
I0 "|
-z
x
54
,s 106
10 3
10 "l
Mass
Multiply
kg
*I.
O0 x
kilogram
kg
*9.
806
kilogram
kg
*I.
O0
kilogram
kg
*4.
535
Standards.
10
10 -6
Symbol
of
096
x
kilogram
Bureau
5
Length
To
angstrom
x
*1.00
by
N=kg.
force
Convert
Multiply
newton
pound
To
1970
18
by
I0 "3 65
923
7 x
10 "l
Section 1
February
Page
Table
To
Convert
mass
{avoirdupois)
ounce
mass
{troy
or
pound
mass
{troy
or
2000
(Cont'd)
Symbol
Multiply
b/
kg
_;°2. 834
952
3i2
apothecary)
kilogram
kg
*3.
347
68 x
apothecary)
kilogram
kg
*3.732
417
216
kilogram
kg
390
29 x
kilogram
kg
847
4 x
pound)
Table
To
1970
19
kilogram
slug
{short,
Mass
To
ounce
ton
A4-10.
_\4
A4-11.
Convert
II0
1.459
::'9.
071
5 x lO -z
I0 -z
x
10 l
10 z
Miscellaneous
To
Symbol
Multiply
by
degree
{angle)
radian
rad
1. 745
329
251
994
minute
{angle)
radian
rad
2. 908
882
086
66
second
{angle)
radian
rad
4. 848
136
811
x
684
659
2 x
474
4 x
10 -4
cu
foot/second
cu
meter/second
m 3 /s
cu
foot/minute
cu
meter/second
m3/s
_:"Btu/pound
mass
°F
:'.:2.831 4. 719
joule/kilogram°C
J/kg°C
*4.
184
x
103
joule/kilogram°C
ff/kg°C
*4.
184
x
10 3
joule/kilogram
J/kg
2.
324
444
joule/kilogram
J/kg
::,1.
O0 x
roentgen
coulomb/kilogram
A.
*2.
579
curie
disintegration/second
*3.
70
l:_::Kilocalorie/kg ,_*Btu/pound Rad
°C
dose
absorbed)
Table
To
3 x x
Convert
A4-1Z.
To
l/s
s/kg
10 -z
10
10 -z 76
x
4 x
x
10-4
10 l°
Power
Symbol
Multiply
by
watt
W=
J/s
1. 054
350
264
488
**Btu/minute
watt
W=
J/s
1.757
250
4 x
10t
**calorie/second
watt
W=
J/s
':*calorie/minute
watt
W=
J/s
6.973
333
3 x
10 -z
W=
J/s
1.355
817
9
pound
10 -4
10 -6
**Btu/second
foot
[0-
3
mass
(radiation
I0 "j
force/second
:_'Exact, as defined ::_':: (thernlochemical)
watt by the
National
Bureau
of Standards
*4.
184
888
x
10 t
Section
A4
1 February Page
Table
To
Convert
A4-12.
Power
To
20
(Cont'd)
Symbol
Multiply
by
foot
pound
force/minute
watt
_'=
5/s
2. 259
696
6 x
10 "z
foot
pound
force/hour
watt
W=
J/s
3. 766
161
0 x
10 -4
watt
W=
5/s
7.456
998
7 x
l0 z
watt
W=
J/s
*7.46
_;_kilocalorie/sec
watt
W=
5/s
*4.
_kilocalorie/min
watt
W = 3/s
6. 973
333
watt
W=
1. 000
165
horsepower
(550
horsepower
(electric)
watt
(Int
of
ft Ib force/sec)
1948)
Table
To
Convert
To
atmosphere centimeter
of
centimeter
of water
dyne
/ sq
foot
of
inch
of
mercury
inch
of
water
mercury
(0*C) (4°C)
centimeter water
A4-13.
(39.2°F)
(60°F) (600F)
Symbol N/m
z
newton/sq
meter
N/m
z
22 x
103
newton/sq
meter
N/m
z
9. 806
38 x
I01
newton/sq
meter
N/m
z
:',,I.00x
newton/sq
meter
N/m
z
2. 988
98 x
103
newton/sq
meter
N/m
z
3. 376
85 x
103
newton/sq
meter
N/m
z
2. 488
4 x
N/m|
kilogram
force/sq
meter
nev, ton/sq
meter
N/m
newton/sq
meter
N/mZ
newton/sq
meter
N/m
newton/sq
meter
N/m
newton/sq
meter
N/m
force/sq
foot
millimeter
torr
mercury
(0°c)
(O'C)
*Exact, **(
of
the
as
defined
rmochemical)
by
the
National
Bureau
of
Standards
101
z
*1.013
by
I. 333
meter,
pound
3 x
105
newton/sq
(psi)
103
25 x
centimeter
inch
x
Multiply
newton/sqmeter
force/eq
force/sq
184
10 z
Pressure
kilogram
pound
J/s
x
I0 =|
*9.
806
65
*9.
806
65
I0 z x
104
6. 894
757
2 x
103
4. 788
025
8 x
101
z
1.333
224
x
2
1.333
22
z
x
10 z
10 z
1970
Section
A4
1 February Page
Table
To
Convert
A4-
14.
21
Speed
To
Symbol
Multiply
by
foot/second
meter/second
m/s
'::3. 048
foot/minute
meter/second
m/s
:_5. 08
foot/hour
meter/second
m/s
8.466
inch/second
meter/second
m/s
:,_2. 54
meter/second
m/s
2.777
777
8 x
x
kilometer
/hour
x x
10"i 10 -3
666 x
6 x
(U.S.
statute)
meter/second
m/s
;:'1.609
344
mile/minute
(U.S.
statute)
meter/second
m/s
'_2.682
24
meter/second
m/s
:,_4. 470
4 x
(U.
S.
statute)
Table
To
Convert
A4-15.
x
101 10 "t
Temperature
To
*Celsius
*Cels.
*Centigrade
°C
*Cels.
*Fahrenheit
*F
*Centigrade
°C
*C
=
5/9
(*F-32)
°Rankine
°R
*Centigrade
°C
°C
=
5/9
(*R-491.
*Reaumur
*Re
°Centigrade
*C
°C
=
5/4
*Re
*Fahrenheit
*F
*Celsius
*Cels.
*Cels.
*Fahrenheit
°F
*Reaumur
*Re
*Re
*Fahrenheit
*F
*Rankine
°R
*R
*Rankine
°R
*Celsius
°Cels.
*Cels.=
*Rankine
*R
*Reaumur
*Re
*Re
*Reaumur
*Re
*Celsius
*Cels.
*Cels.
*Centigrade
*C
*Kelvin
*K
*K
To Btu.
*Exact,
inch/sq
as
Convert foot.
defined
Symbol
A4-16.
Thermal
To second.
by
*F
the
National
joule/meter,
Bureau
second-*Kelvin
of
Standards.
10 -l
103
Symbol
Table
10 "s
10 -z
mile/second
mile/hour
1970
Computation =
*C
=
= =
5/9
4/9 *F
(0F-32)
(*F-32) +
459.
5/9 =
=
4/9
69
(0R-491. (*R-491,
=
*C
69)
5/4
+
69)
*Re
273.
16
Conductivity
Symbol J/m-
Multiply s.
°K
5.
188
731
by 5 x
69)
10 z
Section
A4
1 February Page
g_
m
,i,l,l,l,i,l,l,l,i,
"
g
N N
"_....
N
°
"
In
g
N
S
I1 I'-
1970
22
,s:l
In N
:ii'li'lililiili'lilllllllllllllilllll,liiillilillllll bg 0 0
w_
_o
X,,,,I,,,,J,,,,I,,,,
,,,,I,,,,I,,,,I,,,
,,,, ,,li Ji,J ,,,ll,,,,I,,,,I,,,
I
0
ii)
0 I
l)
,
,,,,I,,,,1,,,,1,,,,
T
T
T
_
?
!
lillllililililliliiliilililliliiiililiililliliililili I
C
0
il
I o N
,i,l,i,l,,l,I
,
I,
Ill
o
iiii Ill
o ill
o ill
ill
o
iT7iii ' Ill
Ill
g Ill
o ill
ill
0
0
0
_
_
s ,l,l,l,l,l,l,l,l,i, _1'
,i,l,i,l,i,l,i,l,i
ill
!
W li: h
i. 0
!!
s N
g
s --
ill
Section
A4
1 February Page
Table
To
Convert
day
(mean
day
{sidereal)
hour
(mean
hour
{sidereal)
solar)
(mean
minute
(sidereal)
solar)
month
{mean
second
(mean
second
(sidereal)
tropical
year
Jan,
calendar) solar)
day
Time
To
solar)
minute
A4- 17.
23
Multiply *8.64
x
second
(mean
solar)
second
(mean
solar)
second
(mean
solar)
second
(mean
solar)
second
{mean
solar)
*6. 00
second
{mean
solar)
5.983
second
{mean
solar)
second
{ephemeris)
second
(mean
second
(ephemeris)
104
8. 616 *3.
60
409 x
Use 9.
0 x
170 x
4 x
103
10'
617
628
104
103
3. 590
"2.
by
x
4x
10
106
equation
of time
972
695
7 x
10 -I
*3.
155
692
597
47 x
*3.
153
6 x
IO T
solar)
1900, 0,
hour
12
year
{calendar)
second
(mean
solar)
year
{sidereal)
second
(mean
solar)
3. 155 815
0 x
IO T
year
(tropical)
second
(mean
solar)
3. 155
6 x
iO
IO T
?
Table
To 8q
Convert sq
centipoise
mass/foot,
pound
force'
second second/sq
foot
poise
pounds1,
second/sq
slug/foot,
second
:_ Exact,
as
defined
Viscosity
To
foot/second
pound
A4-18.
foot
by
the
National
Symbol
meter/second
Multiply
m'/s
newton,
second/sq
meter
N's/m
z
newton,
second/sq
meter
N.
s/m
z
newton,
second/sq
meter
N.
s/mZ
newton,
second/sq
meter
N.
s/m
newton,
second/sq
meter
N.
s/mZ
newton,
second/sq
meter
N.
s/mZ
Bureau
of
692
Standards.
z
*9.
290
':'1.
00
by
304 x
x
10
10 "J
1. 488
163
9
4. 788
025
8 x
':'1.
00
1. 488 4,
788
x
-2
10*
10"*
163
9
025
8 x
I0 i
1970
Section
A4
1 February Page
1970
24
TableA4-19.Volume To fluid cu
Convert
ounce
To
(U.S,)
foot
gallon cu
(U.
S.
liquid)
inch
liter
pint quart
ton
(U,
S.
liquid)
(U.S.
liquid)
(register)
Table
To
Symbol
Multiply
cu
meter
m 3
*2.
cu
meter
m 3
"2.831
684
659
cu
meter
m 3
*3.
411
784
x
cu
meter
m 3
*1.638
706
4 x
10 "s
cu
meter
m 3
000
x
cu
meter
m 3
764
73 x
cu
meter
m 3
529
5 x
10 -4
cu
meter
m3
684
659
2
A4-20.
Alphabetical
Convert
Listing
352
785
1,000
.4,731
9. 463
*2.831
of Conversion
To
957
by
ampere
A
abcoulomb
coulomb
C=
abfarad
farad
abhenry
henry
abmho
mho
abohm
ohm
abvolt
acre
25
10 -3
I0 -4
Multiply
by
10 l
A- s
* 1. 00
x
10 l
F=
A.
s/V
*l.
x
10 #
H=
V.
s/A
*1,00
x
10 -9
* I. 00
x
109
f_ = V/A
*I.00
x
I0 -_
volt
V=
*I.00
x
I0 -s
sq meter
m
ampere
A
angstrom
meter
m
*1.
are
sq
m z
*1.00
ampere
{Int
astronomical
of
1948)
unit
meter
meter
atmosphere
newton/sq
meter
N/mZ
bar
newton/sq
meter
N/m
barn
sq meter
* Exact,
as
defined
by
the
National
Bureau
m z
of
Standards.
00
*4. 046
856
9. 998
m
00
35
422
x
x
*1.013
4 x
10 "i
x 10 -l°
1.495
z
10 -z
10 "3
x
z
10 -s
2 x
*1.00
W/A
x
Factors
Symbol
abampere
956
10 z 98
x
10 It
25
x
105
*1.00
x
l0
s
*I.00
x
I0 "z8
10 s
Section
A4
i February Page
1970
25
f_
Table
To
A4-Z0.
Alphabetical
Listing
Convert
To
barye
newton/sq
Btu
(Int
Btu
Steam
of Conversion
Table)
Factors
(Cont'd)
Symbol meter
N/m
Multiply z
::.'I.00
x
I0-
by
L
joule
3=
N.
m
I. 055
04
x
103
(mean)
joule
J=
N. m
1. 055
87
x
I0
Btu
(thermochemical)
joule
J=
N.
m
I. 054
350
Btu
(39°F)
joule
J=
N. m
I. 059
67
x
103
Btu
(60°F)
joule
J=
N. m
I. 054
68
x
10
3
264
488
888
688
x
x
3
bushel
(U.S.)
cu
meter
m 3
,x3.523
907 56
cable
meter
m
"2.
caliber
meter
m
,._2. 54
joule
J=
N.
m
4.
186
8
4.
190
02
calorie
(Int
calorie
(mean)
joule
3=
N. m
calorie
(thermochemical)
joule
J=
N,
calorie
(15°C)
joule
J=
N.m
calorie
(20°C)
joule
J=
N.
calorie
(kilogram,
Int
joule
I=
calorie
(kilogram,
mean)
joule
calorie
(kilogram,
thermochemical)
carat
Steam
Table)
Steam
Table)
(metric)
*Celsius
(temperature)
centimeter
of
mercury
centimeter
of
water
(4°C)
_4.
x
x
184 185
80
4.
181
90
N.m
4.
186
8 x
J=
N.m
4.
190
02
joule
I=
N.m
kilogram
kg
meter
N/m
newton/sq
meter
N/mZ
_._4. 184
_2.
*K
newton/sq
m
00
x
x
*K=
z
I0 z
10 -4
4.
*Kelvin
(0*C)
m
194
016
I03 x
103
103
10 -4
°C
+ 273.
1. 333
22
x
103
9. 806
38
x
101 I0
16
1
chain
(surveyor
chain
(engineer
circular
or
or
gunter)
ramden)
mil
cord
--
*Exact,
as
defined
by
the
National
Bureau
meter
m
_:,2.011 68 x
meter
m
_:¢3. 048
sq meter
mZ
5. 067
074
8 x
cu meter
m 3
3.624
556
3
of
Standards.
x
i0 l
I0 -l°
I0 "z
I03
Section 1
A4
February
Page
Table
To
A4-20.
Alphabetical
Listing
Convert
of
Conversion
To
Factors
1970
26
(Cont'd)
Symbol
Multiply
by -!
coulomb
(Int of 1948)
coulomb
C=
cubit
meter
m
_4.57Z
x
cup
cu
m _
_2.
882
curie
disintegration/second
I/s
*3.70
x
1010
*8.64
x
104
day
(mean
day
(sidereal)
degree
solar)
(angle)
denier
(International)
meter
second
(mean
solar)
second
(mean
solar)
A" s
9- 998
35 x
365
I0
I0 "l
365
x
10 -4
8. 616
409
0 x
104
1. 745
329
251
994
3 x
I0 _z
5 x
I0 "3
5 x
l0 "_
radian
rad
kilogram/meter
kg/m
*I.00
x
I0 "7
dram
(avoirdupois)
kilogram
kg
:sl.771
845
195
312
dram
(troy
kilogram
kg
_3. 887
934
6 x
10 -3
dram
(U.S.
cumeter
m3
*3. 696
691
195
312
newton
N-- kg.m/s
joule
J=
N.m
joule
J=
N. m
or apothecary)
fluid)
dyne
electron
volt
erg
z
_I.00
x I0 "5
1.602
I0 x
I0 "19
,',_ I. 00 x l0 -7
"Fahrenheit
(temperature)
"Celsius
°C
°C
=
5/9
(°F
- 32)
°Fahrenheit
(temperature)
°Kelvin
°K
°K =
5/9
(°F
+
farad
(Int of 1948)
on carbon
12)
farad
F=
A.s/V
9. 995
05 x I0 "I
coulomb
C=
A, s
9. 648
70 x
A. s
9. 649
57 x 104
9. 652
19 x
faraday
(based
faraday
(chemical)
coulomb
C=
faraday
(physical)
coulomb
C-- A.s
fathom
meter
m
_ I. 828
¢" rmi
meter
m
_I. 00 x
cu meter
m 3
*2. 957
352
meter
m
'_3.048
x
meter
m
_ 1200/3937
459, 69)
104
104
8 -15
0
j fluid ounce
(U. S. )
I foot foot
(U.
*Exact,
S. survey)
as
defined
by the
National
Bureau
of
Standards.
I0
956
I0 "i
25 x I0 -5
Section l
A4
February
Page
1970
27
v
Table
To
A4-Z0.
Alphabetical
Convert
Listing
of Conversion
To
Factors
(Cont'd)
Symbol
Multiply
by -!
foot
(U.S.
foot
of
survey)
water
(39.
meter Z°F)
newton/sq
foot-candle
lumen/sq
furlong
meter
gal
meter/second
m
3. 048
006
meter
N/mZ
2. 988
98
meter
lm/m
I. 076
391
squared
z
m
_:_2. 011
m/sZ
*I. 00 x
096 x
x
10
10 3 0 x
68 x
l0 |
I0 z
I0 -z
gallon
(British)
cu meter
m3
4. 546
087
x
gallon
(U.S.
dry)
cu meter
mS
_4. 404
883
770
86 x
gallon
(U.S.
liquid)
cu meter
m s
_3. 785
411
784
x
gamma
tesla
T=
Wb/m
z
::_i. 00 x
i0 "9
gauss
tesla
T=
Wb/rn
z
*i. 00 x
I0 "4
gilbert
ampere
gill (British)
cu
meter
gill
cu meter
(U.S.)
turn
(angular)
10 -s
7. 957
747
2 x
m s
I. 420
652
x
m s
I.
941
2 x
grad
degree
1°
grad
radian
rad
grain
kilogram
kg
182
10 -s
10 -s
i0 -|
10 -4
10 -4
::_9.00 x 10 "!
I. 570
796
:,_6. 479
3 x
891
x
i0 "z
10 -5
-s gram
kilogram
kg
* 1. 00
hand
meter
m
'_1.
hectare
sq
mZ
',_ 1.00
henry
(Int
of
hogshead
1948)
(U.S.)
henry
H=
eu meter
mS
watt
V.
998
7 x 10'
9. 809
50 x
W=
horsepower
(electric)
watt
W = J/s
horsepower
(metric)
watt
W = .I/s
National
Bureau
of
Standards.
495
7. 456
watt
the
1. 000
104
W = J/s
(boiler)
by
x
10 "!
423
horsepower
defined
x
809
(550
as
s/A
016
10
*2. 384
horsepo_ver
_Exact,
foot Ibf/second)
meter
x
J/s
*7. 46 x 7. 354
10 s
I0 z 99
x
102
92 x
10 1
Section
A4
1 February Page 28
Table
To
,6,4-20.
Alphabetical
Listing
Convert
of
Conversion
To
Factors
(Cont'd)
Symbol
horsepower
(water)
watt
W=
hour
(mean
solar)
second
(mean
solar)
hour
(sidereal)
second
(mean
solar)
Multiply
J/s
7. 460
by
43 x
*3.60
x
I0 z
I0 z
3. 590
170
4 x
103
hundredweight
(long)
kilogram
kg
*5,080
234
544
x
hundredweight
{short)
kilogram
kg
_4.
923
7 x
101
meter
m
*2.54
inch
inch
of
mercury
(32°F)
newton/sq
meter
N/m
inch
of
mercury
(60°F)
newton/sq
meter
N/m2
inch
of
water
(39.2°F)
newton/sq
meter
N/m
inch
of
water
{60°F)
newton/sq
meter
(Int of
joule
1948)
joule
kayser
°Kelvin
(temperature)
kilocalorie
(Int
Steam
Table)
kilocalorie
(mean)
kilocalorie
(thermochemical)
2
535
x
I0 "b
3. 386
389
3. 376
85
z
2. 490
82 x l0 z
N/m
z
2. 488
4 x
J=
N- m
I. 000
165
I/meter
I/m
*I.
°Celsius
°C
°C=
00
x
x x
10 3 10 a
10 b
10 b
°K
- 273.
16
joule
3= N. m
4. 186
74 x
103
joule
J= N. rn
4. 190
02 x
I03
joule
J= N. m
:_4. 184
* I. 00
I0 |
x
103
kilogram
mass
kilogram
kg
kilogram
force
newton
N-- kg.m/s
b
*9. 806
65
newton
N=
kg.m/s
z
*9. 806
65
newton
N=
kg. m/sb
*4. 448
221
615
260
meter/second
m/s
444
444
x
8
103
kilopond
force
kip
knot
(lnternational)
5. 144
lambert
candela/sq
meter
cd/mZ
lambert
candela/sq
meter
cd/m
langley
joule/sq
Ibf(pound
*
Exact,
force,
as
defined
avoirdupois)
by
the
National
meter
newton
Bureau
Standards.
3. *4.
J/m2
N=
of
* I/pi
z
kg.m/sZ
1970
x
I0 "i
10 4
183
098
184
x
_4.448
5 x
x
104
221
615
260
5
103
Section
A4
1 February Page
1970
29
_f.Table
To
A4-Z0.
Alphabetical
Listing
Convert
To
of
Conversion
Factors
(Cont'd)
Symbol
Multiply
by
kilogram
kg
_4.
535
923
7 x
meter
m
'_5.
559
552
x
meter
m
"5. 556
x
meter
m
:._4. 828
032
meter
m
9. 460
gunter)
meter
m
ramden)
meter
m
liter
cu
m 3
lux
lumen/sq
maxwell
weber
Ibm
(pound
mass,
league
(British
league
(Int
league
(statute)
avoirdupois) nautical)
nautical)
light-year
link
(surveyor
link
(engineer
mete
or or
r
meter
meter
wavelengths
2
Wb=
V.
Kr 86
103
103
x
103
55
x
10Is
:',_2.011
68
x
I0 "i
#3.
x
048
1. 000
lm/m
I0 -L
I0 °i
000
x
10 -_
1. 00 s
*1.00
::,1.
x
650
10 "a
763
73
x
l06
micron
meter
m
_ 1.00
x
l0 -6
rail
meter
m
;"2.
x
l0 °5
meter
m
:_ 1. 609
344
x
10 _
meter
m
,*1.853
184
x
l03
meter
m
*1.852
x
10
meter
m
* 1. 852
x
10 _
mile
(U.S.
statute)
mile
(British
mile
(Int
mile
(U.
nautical)
54
3
nautical) S.
millimeter
nautical) of
mercury
(O°C)
millibar
(angle)
minute
(mean
minute
(sidereal) (mean
solar)
calendar)
oersted
ohm
SExact,
(Int
of
as
meter
N/mZ
newton/aq
meter
N/mZ
radian
minute
month
newton/sq
1948)
defined
by
the
National
rad
1. 333
-'*1.00
224
x
Z. 908
second
(mean
solar)
'_6.00
second
(mean
solar)
5. 983
second
(mean
solar)
,,_2. 628
x
l0 z 882
x
617 x
7. 957
747
ohm
i'l = V/A
I.
495
of
Standards.
66
4 x
I01
106
A/m
Bureau
086
i0 1
ampere/meter
000
10 z
2 x
10 i
x
10 .4
Section
A4
1 February Page
Table
A4-Z0.
Alphabetical
To Convert
Listing of Conversion To
Factors
30
(Cont'd)
Symbol
Multiply by *2. 834 952
ounce
mass
(avoirdupois)
kilogram
kg
ounce
force
(avoirdupois)
newton
N= kg. mls z
ounce
mass
(troy
kilogram
kg
*3.
ounce
(U. S.
fluid)
cu mete r
m3
*2. 957 352
pace
mete r
m
"7.62
parsec
meter
m
pascal
newton/sq
or
apothecary)
meter
N/m
1970
2. 780
312 5 x 10 -z
138 5 x I0 -i
110 347
68 x 10 "z 956 25 x 10 "5
x 10 -t
3. 083
74 x 1016
*I. O0
z
cu meter
m3
*8. 809 767 541 72 x I0-'L
pennyweight
kilogram
kg
*1.555
173 84 x 10 -3
perch
meter
m
*5. 029
2
phot
lumen/sq
peck
(U. S. )
meter
Im/m
z
1. O0 x 104
pica
(printers')
meter
m
'_4. 217
517
pint
(U. S. dry)
cu meter
m_
*5.
104 713
cu meter
m3
.4.731
754
73 x lO "4
meter
m
*3.
598
x lO -4
poise
newton.second/sqmeter
N. slm z
*1.00
pole
meter
m
*5.
*4. 535
923
7 x 10 "t
z *4. 448
221
615
260
*3.732
417
216
x 10 "1
.1.382
549
543
76x
*1.
101
220
942
715x
9. 463
529
5 x 10 .4
pint (U. S. point
liquid)
(printers')
pound
mass
(1bin0 avoirdupois)
kilogram
kg
pound
force
(lbf,
avoirdupois)
newton
N =
pound
mass
(troy
or
kilogram
kg
newton
N =
apothecary)
poundal
kg.m/s
kg.m/sZ
505
514
6 x lO "3
x 10 -l 029
Z
quart
(U.S.
dry)
cu meter
m3
quart
(U. S.
liquid)
cu meter
m 5
Rad
(radiation
joule/kilogram
J/kg
* I.00 x I0-z
*Centigrade
*C
"C = 5/4
° Reaumur
*Exact,
dose
absorbed)
(temperature)
as defined
by
the National
Bureau
of Standards.
575 x lO "4
5
10 "t 10 "a
"Re
_"
Section
A4
1 February Page
Table
A4-20.
Alphabetical
Listing
of Conversion
Factors
1970
31
(Cont'd) ]
To
Convert
To
rhe
sq
rod
meter
roentgen second
(angle)
second
(mean
second
solar)
(sidereal)
section
Symbol
meter/newton,
second
'_1.
00
m
'x5.
029
coulomb/kilogram
C/kg
_2.579
radian
rad
second
(ephemeris)
second
(mean
m z /N.
Multiply s
x
solar)
10 l
2
76
4. 848
Use
by
x
10 -4
136
811
equation
x I0 "6
of time.
9. 972
695
7 x
I0"*
sq meter
mZ
,2. 589
988
II0
336
kilogram
kg
,_I.Z95
978
2 x
10-3
shake
second
s
skein
meter
m
slug
kilogram
kg
1.459
span
meter
m
,wZ. 286
statampere
ampere
A
3. 335
640
x
I0 "_
statcoulomb
coulomb
C = A" s
3. 335
640
x
10 "l°
statfarad
farad
F=
A. s/V
I. llZ
650
x
stathenry
henry
H=
V.s/A
8. 987
554
x
I0 Li
statmho
mho
I. 112
650
x
i0 "tz
statohm
ohm
f/
8._)87
554
x
I011
statvolt
volt
V = W/A
Z. 997
925
x
I0 z
stere
cu meter
m3
stilb
candela/sq
stoke
sqmeter/second
m z /s
'>1.00
tablespoon
cu meter
m 3
*I. 478
676
478
teaspoon
cu
m 3
*4.
921
593
scruple
*Exact,
(apothecary)
as defined
by the
National
meter
meter
Bureau
of Standards.
I. 00 x
,xl.
= V/A
cd/mZ
097
x
106
x
l0 "s
10 "8
Z8
x
l0 z
390 x
Z9
x
l0 t
10 "l
I0 "*z
*I. 00
I. 00
9Z8
x
l04
x
10 -4 125
75
x
10 -6
Section 1
A4
February
Page
Table
To
A4-20.
Alphabetical
Listing
Convert
of Conversion
To
Factors
1970 32
(Cont'd)
Symbol
Multiply
by -2
ton (assay)
kilogram
kg
2. 916
666
6 x
I0
kilogram
kg
*9. 071
847
4x
I0 z
ton (long)
kilogram
kg
$1. 016
046
908
8 x
ton (metric)
kilogram
kg
,_I. 00 x
joule
J=
659
2
ton (short,
ton
2000
(nuclear
pound)
equiv,
of
TNT)
ton (register)
cu
tort
newton/sq
(0°C)
meter
N.m
m3
meter
-*2.831
z
x
109
684
I. 333
22 x
9. 323
957
2 x
1.256
637
x
sq
unit pole
weber
Wb=
volt
V=
W/A
I. 000
330
watt
W=
J/s
1.000
165
meter
m
watt
(Int
of
(Int
of
1948) 1948)
yard
m z
103
township
volt
meter
N/m
4. 20
V.s
I0 z
I0 v
10 -7
*9.
144
x
10 -l
*3.
153
6 x l0 T
year
(calendar)
second
(mean
solar)
year
{sidereal)
second
(mean
solar)
3. 155
815
0 x
107
year
(tropical)
second
(mean
solar)
3. 155
692
6 x
107
second
(ephemeris)
592
597
47 x
year
1900, day
_Exact,
as
tropical, 0, hour
defined
Jan,
s
_3. 155
103
107
12
by
the
National
Bureau
of
Standards.
_:
Section
A4
1 February Page
Table
A4-Zl.
Inch
Inch
Decimal
Fraction
Decimal
and
Metric
Equivalents
of Fractions
1970
33
of an Inch
Millimeter
Centimeter
Meter
(mm)
(cm)
(m)
0.015
625
1/64
0.396
87
0. 039
687
0. 000
396
87
0.031
25
1/32
0.793
74
0.079
374
0. 000
793
74
0.046
875
3/64
1. 190
61
O. 119
061
0.001
190
61
O. 062
5
1/16
1. 587
48
O. 158
748
O. 001
587
48
0.078
125
5/64
1.984
35
O. 198
435
0.001
984
35
0.093
75
3/32
2. 381
23
0.238
123
O. 002
381
2-3
O. 109
375
7/64
2-. 778
09
0.277
809
O. 002-
778
09
1/8
3. 174
97
O. 317
497
O. 003
174
97
O. 125 O. 140
625
9/64
3.571
83
O. 357
183
0.003
571
83
O. 156
25
5/32
3.968
71
0.396
871
0.003
968
71
O. 171
875
11/64
4.
57
0.436
557
0.004
365
57
O. 187
5
3/16
4.762
45
0.476
245
0.004
762-
45
0.2-03
125
13/64
5. 159
31
O. 515
931
0.005
159
31
0.2-18
75
7/3Z
5. 556
2-0
0. 555
620
0.005
556
20
0.2-34
375
15/64
5. 953
05
0. 595
305
0.005
953
05
I/4
6. 349
94
0. 634
994
0. 006
349
94
17/64
6. 746
79
0. 674
679
0. 006
746
79
0. 25
365
0. 265
625
0.2-81
2-5
9/32
7. 143
68
0. 714
368
0. 007
143
68
0. 296
875
19/64
7. 540
53
0.754
053
0.007
540
53
0.312
5
5/16
7.937
43
0.793
743
0.007
937
43
0.328
125
21/64
8. 334
27
0.833
42-7
0. 008
334
Z7 17
0.343
75
11/32-
8.731
17
0.873
117
0.008
731
0. 359
375
23/64
9. 128
01
0.912
801
0.009
12-8 01
3/8
9. 5Z4
91
0.952- 491
0.009
524
91
25/64
9.921
75
0.992
0.009
921
75
0.375
0.390
625
175
Section
A4
1 F-ebruary Page
1970
34 v
Table
A4-21.
Decimal
and
Metric
Equivalents
Inch
Inch
Millimeter
Decimal
Fraction
(ram)
of
Fractions
of
an
Inch
(Cont'd)
Centimeter
Meter
(cm)
(m)
0.406
25
13/32
10.318
65
1.031
865
0.010
318
65
0.421
875
27/64
10.715
49
1.071
549
0.010
715
49
0.437
5
7/16
11.
40
1. 111
240
0.011
112
40
0.453
125
29/64
II.509
23
I.
150
923
0.011
509
23
0.468
75
15/32
11.906
14
1. 190
614
0.011
906
14
0.484
375
31/64
12.302
97
1.230
297
0.012
302
97
1/2
12.
699
88
1. 269
988
0. 012
699
88
096
71
1. 309
671
0. 013
096
71
0.5
112
0. 515
625
33/64
13.
0. 531
25
17/32
13.493
62
1. 349
362
0. 013
493
62
0. 546
875
35/64
13.
45
1. 389
045
0. 013
890
45
0.562
5
9/16
14.287
37
1.428
737
0.014
287
37
0.578
125
37/64
14.
19
1.468
419
0.014
684
19
19/32
15.081
11
1.508
111
0.015
081
11
15.477
93
1.547
793
0.015
477
93
5/8
15.
85
1. 587
485
0. 015
874
85
0.593
75
0.609
375
0. 625
39/64
890
684
874
0.640
625
41/64
16. 271
67
1.627
167
0.016
271
67
O. 656
25
21/32
16.
668
59
1. 666
859
O. 016
668
59
O. 671
875
43/64
17.
065
41
1. 706
541
O. 017
065
41
0.687
5
I1/16
17.462
34
1.746
234
0.017
462
34
0.703
125
45/64
17.
15
1.785
915
0.017
859
15
0.718
75
23/32
18.256
08
1.825
608
0.018
256
08
O. 734
375
47/64
18.
652
89
1.865
289
O. 018
652
89
3/4
19.
049
82
I. 904
982
O. 019
049
82
O. 75
859
O. 765
625
49/64
19.446
63
1.944
663
O. 019
446
63
0.781
25
25/32
19.843
56
1.984
356
0.019
843
56
SECTION B STRENGTHANALYS I S
SECTION B l
JOINTS AND FASTENERS
TABLE
OF
CONTENTS
Page BI.0.O
Joints
1.1.0
and
Mechanical
Joints
i.i.i
Riveted
1.1.2
Bolted
Joints Joints
Fasteners
.................
I
..............................
i
...............................
2
Flush
Rivets
................................
19
1.1.5
Flush
Screws
................................
24
1.1.6
Blind
Rivets
................................
27
1.1.7
Hollow-End
1.1.8
Hi-Shear
1.1.9
Lockbolts
...................................
39
Jo-Bolts
...................................
41
Welded
Rivets
Rivets
Fusion
Welding
1.2.2
Effect
on
1.2.3
Weld-Metal Welded
1.2.5
Flash
1.2.6 1.2.7
Brazing
Adjacent
Welding Welding
Due
in
to
39
Spot
46 46
.............................. Parent
Metal
Due
to 46
............................
Allowable
Reduction
39
.............................
Welding Cluster
Spot
............
...................................
1.2.1
1.2.4
Bolts
...........................
Rivets
Joints
and
2
Protruding-Head
1.1.4
Fusion
1.3.0
and
1.1.3
i.i.i0 1.2.0
Fasteners
Strength
...............
47
..............................
49
...............................
49
................................
5O
Tensile Welding
Strength
of
Parent
.......................
.........................................
Metal 56 59
1.3.1
Copper
Brazing
..............................
59
1.3.2
Silver
Brazing
..............................
59
Bl-iii
Section 25 Page
B 1.0.0
Joints
B
I.i.0
Mechanical
B
i.i.i
Riveted
and
Although it
is
at
the
and
and
Fasteners
state
ignore
rivet
the
holes,
made,
stress
unequal
applied
load
the
rivets,
friction
riveted
is
as
rivet
assumed
be
the
is
complex,
concentration among
the
and
as
to
between
load
across
summarized
joint
stress
o£
stress
between
are
The
a
division
shear
stress
which
in
considerations
of
bearing
are
of
such
distribution
of
(l)
and
actual
to
of
assumptions
1961
i
Fasteners
Joints
the
nonuniform
rivet
i
Joints
customary edge
B
September
fasteners,
section
plate.
of
the
Simplifying
follows:
transmitted
entirely
connected
plates
by
being
ignored. (2)
When is
the on
center
the
the
total
are
assumed
and
to
to
carry
be
The the
shear rivet
(4)
The
bearing
loaded
on
equal
is
stress
or
this
line,
the
parts
assumed
distributed
times
plate
in
compression
the
of
or
long
riveted
between rivets,
joints
out
are
summarized
as
follows:
The
distance
from
1 3/4
diameters,
than
on
of
against
in
a
the of
is to
rivet or
assumed
is
The
minimum
the
same
size;
otherwise.
across
assumed
to
rivet
rivet
spacing
be
assumed
basis them
of is
be
diameter
uniformly
to
due
a plate
between
bending
along
a
standard
to to
a a
these
be
uniformly
shall
assumptions
strictly
to
rivet
or zigzag
causes, and
sheared
edge or
be
3 diameters.
rivets by
shall
rolled
such of
upsetting
when
specifications
planed
edge
insufficient line
is
correct.
secondary
r-
(2)
of joint
areas
the
to
diameters.
-
of
the
distributed
rivet
failure
the
failure
staggered,
(1)
if
rivets
area.
none
rivets,
tensile
guarded
of
section
equal
member
gross
secondary
tearing
adjacent or
the
although
of
or
a
over
possibility
shearing
and
is
The
practice,
uniformly
the
centroid
thickness.
(6)
design
load
be
area
of the
rivets
their
an
tension member the net area.
accepted
the
each
when
to
plate
over
in a over
stress
of
to
between
uniformly
of
load,
The stress distributed
plate
iA
is
area
the
proportionally
stress section.
the
of
(5)
The
of
cross-sectional action
area
(3)
The
as
of
rivet
distributed
the
of
line
are
provisions
not
edge,
be I
less
1/2
Section
B
1
25 September Page 2 BI.I.I
Riveted
(3)
Joints
The maximum 7 diameters,
(Cont'd_ rivet pitch and at the
be 4 diameters of the member.
(4)
1961
for
in the direction of stress shall be ends of a compression member it shall
a distance
equal
to
1 1/2
times
the
width
In the case of a diagonal or zigzag chain of holes extending across a part, the net width of the part shall be obtained by deducting from the gross width the sum of the diameters of all the holes in the chain, and adding, for each gauge space in the chain, the quantity $2/4g, where S = longitudinal spacing of any two successive holes in the chain and g _ the spacing transverse to the direction of stress of the same two holes. The critical net section of the part is obtained from that chain which gives the least net width.
(5)
The shear and bearing basis of the nominal the hole diameter.
stresses shall rivet diameter,
If the rivets of a joint are so arranged of the load does not pass through the centroid the effect of eccentricity must be taken into B 1.1.2
Bolted
be calculated on the the tensile stresses
that the line of the rivet account.
on
of action areas then
Joints
Bolted joints that are designed on the basis of shear and bearing are analyzed in the same way as riveted joints. The simplifying assumptions listed in Section B i.i.i are valid for short bolts where bending of the shank is negligible. In general when bolts are designed by tension, the Factor of Safety should be at least 1.5 based on design load to take care of eccentricities which are impossible to eliminate in practicaldesign. Avoid the use of aluminum bolts in tension. Hole-filling fasteners (such as not be combined with non-hole-filling bolt or screw installation).
conventional fasteners
solid rivets) should (such as conventional
0
B
1.1.3
Protruding-Head
Rivets
and
Bolts
The load per rivet or bolt, at which the shear or bearing type of failure occurs, is separately calculated and the lower of the two governs the design. The ultimate shear and tension stress, and the ultimate loads for steel AN bolts and pins are given in Table B 1.1.3.1 and B 1.1.3.2. Interaction curves for combined shear and tension loading on AN bolts are given in Fig. B 1.1.3-1. Shear loads for MS internal wrenching bolts are specified
and tension ultimate in Table B 1.1.3.3.
Section 25
1.1.3
Protruding-Head
In given in
computing
in
Table
rivet
rivet for
D/t
room
yield elevated for
bolted
Where
D/t
_
performed. rigid
parts
room
temperature;
For
convenience,
B
of
1.1.3.7.
strength
to
contains
unit
riveting, B
1.1.3.5,
it
in
I00
These
without temperatures
however,
sheet
Factors
representing
i00
are
ksi
bearing is
which
strength
unnecessary account
in
bearing
of to
for
will
use
high
B
sheets the
and
and
1.5
no
be
higher
the
data
correction stresses
relative
Yield
those
for
rivets,
given sheet
Table
in
based Table
bearing B
1.1.3.9
magnesium-alloy
factors the
of
Table
rivet.
and
specified
available.
on
only
of
parts.
For
5.5.
applicable
are
actual
bolts.
<
bearing
than
is
at
riveted
D/t
possibility
of
of
to
where
are
is
1.1.3.8.
materials properties
ultimate
strength
on
bearing
the
and
applicable
diameters,
ratio
Table
on
protruding-head
various
stresses
there
the
given
are
yield
hole
for
used
quantitative
nominal
reductions
joints,
strength
deformation
no
"unit" and
are
bearing
where
for the
and
holes
low
ksi
in
alloys,
factors
the
1.1.3.6.
stresses
joined at
stresses
strength
substantiate
joints
bearing
shear B
correction for
single-shear
given
of
the
compensate
high
Table
are
group
of
for
stress
given
to
to
for
bearing
be
stresses
a
basic
cylindrical
tests
ultimate
on
or
where
5.5,
the
The
ultimate
alloy
design of
is
strength,
3.0
1961
3
(Cont'd)
used from
of
temperatures
each
must
the
motion
and
joints
strengths for
rivets
and
stated
excess
joints.
The
be
resulting
in
Bolts
shear
should
strength
double-shear
and
rivet
1.1.3.5
ratios
aluminum-alloy
or
aluminum B
shear
at
Rivets
I
September
Page B
B
Section
B
i
25 September Page 4 B
1.1.3
Protrudlng-Head
Rivets
and
Bolts
_Cont'd)
_0 o• 0 _D
= : : = 0
0000
0
:i
e
•
.
:
,
i"
:
:i
"
°
•
•
=
00000
O0
0
000 _0
00000 0_0_0
000 000
00000 00000
_
_00.
• : : : : : : : : : : :
_0
_
_-..t _..I
F...4 ¢',4
_0
00000 00000
O 0 r._
O0 O0
I.I
0
= .,-I
el
00 _0
_
0 _0 •_ 0
_
_
_
°
°
.e _0000 __
O0 O0
,.-I ,--I
Omm
Omm::
ggX
ggg'! :
00000 _000 _0_
O
,4 ,.4
0 0
0 "_
0
_
_1
O0 O0 _
__0 _0_ __0 0000_ °.°.°
_" _ _ __ °°0,°
_0_ _0_ •
°
°
.
.
moo
_m_::
d_d
d£d':
0_ 0_0
__ _0_ _0_ °°°0°
0__ _0_ __ __ 0°°°°
__ __ 0__ _0_ °°°°°
__
_0_
_00 _0_0 000_ °°°.°
z
__
°°°°.
°°0°.
'_'_
-*__
0 _
N
_1_1
0__
__
I
.
1961
Section
B i 1961
25 September Page 5
BI.I.3
Protruding-Head ,._ 0
_ • ,-I
Rivets
and
Bolts
(Cont'd)
0 _
,-q 0 !
•,_ .,_
I
I
I
I
I
I
I
eq
-_"
_D
O00
I
I
I
I
00
o'_
t
_J
co
O
_
,,-.4
o
000000000000 _00000000000
_J
0_
[13
_00_
Oa
L_ ,--4
O 4J
;J
_ u_
0_0_0_000 ____ ___0_
U'3
_J I
o
0 00000000 _000_0_ _ _0_0_0
_ __
_O 4J _
4_ Q;
_0_
__0_00_
_
n_ 0
'.D
_
-,-4
_____
_
__0_
_J OO
__
____
__0_
Oq __t_O_
L_ <
U_ 0
U-_. 0 _ ""q
L_O_ r_ r_-
-_' _
0000 00000
¢xlO0'--_ t_'O_
_00_ Cq
O0
',_0 C_ ',.00_
O_
t"_'
O0
¢xl
,'--_ 000
,--_
0
cO
.= _;
4J _3
-_
0 000
00
0
o°°o°°°°o °°°°ooo
r_ ,--_
o ¢'_
o'_ _-
..._ r._
u_
oooS o
qP _J GO
.-I 0-_
_0____0___
(D
.c=
b9 0
CO
z
<1"
_D
O0
0
_
_
_
O_
¢q
U ,-4 .,-I
r-q
0.., 0
_
0 r-_
.a E_
_J
-,-4 _ _
.,.-4 JJ ,--4
N CO
_ 0
_ _0_0
._
•
_ • u_O_O0_
_
•
• ____ _
___
I
Section
B
1
25 September Page 6 BI.I.3
Protruding-Head
Rivets
and
Bolts
!AN-10
3O
(Cont'd)
Interaction
r--_._.
x3
Formula 2
25
=
20
Where : x =
\
,
_
y = a = b =
shear
load
tens ion load shear allowable tension allowable
\
_-5
i
0
5
I0 Shear
15
Load,
20
25
Kips
Note: Curves not applicable where shear nuts are used. Curves are based on the results of combined load tests of bolts with
nuts
Fig.
fingertight.
B i.I.3-I
Combined
Shear
and
Tension
on
AN
Steel
Bolts.
1961
Section B 1 25 September Page 7 B i. 1
3
Protruding-Head
Rivets
0 0 0 u_ !
r-_ q_
and
Bolts
(Cont'd
OOOOOOO OOOOOOO
I
o o OO ,-q I O
o
O u'_ OO
"_
-_ O ,.D
OOOOOOO OOOOOOO
v
,-I
I
I c_ Q;
¢1
__O_ OOOOOOO OOOOOOO
0
O r-_
U
-rq
u_
b'3 q_
-U 0.CI .,-.4
r_ C_
)-I J_b CO
f--I
.X3 ,-4
!4 r-q
O O O
o]
_D
OOOOOOO OOOOOOO
O
! O3 ,--4
O '_ r--_ O_
_
-,-4
{a
.,-.4
°,.-.I
_
m
1.4
0
o O ¢1
_OO
CO
Q; • ,-I
O_
.I-I I
,--I
_-_
_"
O OO
,--I
0
_
-_ _
_
_J
0.0 _
,.-I
0000000 0000000 0__0 '-' m
q.I ,--I
4J ,-q
,.D
_
o.x::
t:_O.X:l ._ _.._
'_
0
000000_ 0000000 0000000
c_ 0
_ .l-I
_m
0
_
_
O
m
OO -,-I
t_ _
u_ o.
_
_
_
O r_ _3
oq
0
1961
Section
B
1
25 September Page 8 1.1.3
4-I
>
r=4 0 _o 4-J 0_=
•M ¢'_ m[--_
0 4.1 °_ 4.1
-*g
r-t [--i
Protruding-Head
Rivets
and
Bolts
(Cont' d)
1961
Section 25
B
Page B
1.1.3
Head
Protruding-
Rivets
and
Bolts
(Cont'
1961
9
d)
eq o r_ o 0_ o
00000
00000
_J
1
September
__0 __0 __0 .°.°.
>
o _o_o _o
00000
<
_0 •
!
,
,
:
:
.
0 el
E
_o
_00 0__ _0_
,--4
:
_0.0. _0..0°0
<
:
_:::
• | ,_o
• I
_0°oO _0,o,
_0
_
.
•
.
•
?
•
•
•
• °
• ._
...... .
_0o
_.._:
OO
•
|
•
•
"
o
o 0'_
o
(_
0
°
•
•
•
•
° •
; : : • • : : : i : :
O
: : : : : , . , _J _J oO
•
i
•
: :
oJ GJ
:
,• :
•
: : : :
.c -_._
•
:
:
:
:
• ,
• •
• •
• •
• : : :
L_ •° • .. _
_0 _
_
_ II
_
_ II
_
:
__
•_
.
0000000000000
_ooo_oooooSooooS_SS rl/
(J3
. i : •
: : : : : : ,
: : : : : : : : : : : : : : :
m
0
e
. . • . : ,--I
,--_
,--_
,--_
cq
Section
B
i
25 September Page I0 BI.I.3
Protruding-Head
Rivets
and
Bolts
1961
(Cont'd)
__0 __0 __0 °...° 0
g __0 __0 °°°...° 0
o o0 O eq ,-_ O u_ r-00 ..T O'_ e'_ t-.. ¢"_ 00 '.O r-- r-. o0 oS O'_ O., • ° , , , , , CD
I
__O"
_
O O O • ,-4
• * : • •
I
O
,°°..°°.•
Sa O _J o
oO oO _O
O -.T I_.
¢q O'_ e,_ oO r--. oO
O_ ,-_ oO ..J" ...Jr-. O O o% o% o'_ O
o
,-4
i *
: !
4_
,
C oO _D
Sa _J
•
-.T O_ _'_ r-. _ r-. 0 _---r-- oO oO O_ O_ 0 • • • ° o • .
o
, •
, •
,-4::
• •
:
"i
• . : : : •
>
:
i i
.,4
i
.......
O
.=
_o r-. r-.o0 •
.
.
• • •
:
: : : : : • :
oo_o,_.._-r-.o
I
: :
_-4
:
:
:
:
:
: :
. • ,-.-4•
• •
• •
o_ o_o_o ,
,
.
.
CD
:
• •
:
:
.
• •
: •
• •
• • :'ii!!.
O
i
!
!i!iiiiiiiiiii! i!i iii i:iiii! c m
•
. ........
(]3 •
•
•
•
•
•
•
•
•
•
..........
_
0
0
0
0
. .
. :
:
•
•
•
•
. :
:
•
. .
0
0
0
0
0
0
0
0
0
,_
0 _D ,-_ ,-_ ,-_ eq
.,4 0 "'I
.= m I
E 0
Section 25
Protrudin$-Head
Rivets
and
Bolts
•
u_ o
oO c-4
JJ
c-_ t_ ',D
01
F_ ! rq
•,_
_
OE-_
0
_4_ 0
..4 o_
_ _
_ ,.c:
o
4J
0
0
0
c_
0
01
0
._--I
"_
0
01 0 • ,-_ ,Z_ _-_ _ 01 ,-_ 000 _1
_ cco
O
_
u_
O_
_
_
0 4J
00 CO 0
_
I I
0 to
-_
i
01 4J
"0 0
._
r-c-4
¢-4 o'I
1961
i i
(Cont'd)
• _1
1
September
Page BI.I.3
B
01
I 0
,M _
I 0 0
r--
P-_
0 ¢-q
"_ co
cO I
0
o_
oO ¢xl
_o c_j
,-q cO c'q ! 4..1
I-
0
•
>
•
co
_-4
i/3 ,---t
ol
0
0 >
._
bO._ 0
(D
E--t 4J CO
0
0
_J
4J 0_ 0
oO
0 [o
[--t
,-4 <
0 CO
0
0
(LI '..../ _./ 4J
0
rz_
_ 0
0 ,-_
_
,-.4 _
Section
B
1
25 September Page 12 BI.I.3
Protruding-Head
Rivets
and
Bolts
(Cont'd)
1.0
0
\
.9
o
\
.8
.7
\
"illllllll
.6
0
i00
200
300
400
O
Temperature Fig.
B
F
1 1.3-2 Reduction Factor for Allowables of Protruding Head, AN470-AD (2117-T3), Rivets at Elevated Temperature for Five Minutes
1961
Section 25 Page BI.I.3
Protruding-Head
Rivets
and
Bolts
B
1
September
1961
13
(Cont'd)
I
Rive
t
Dia.
/
/
318 /
//
_
/
/
L
/
/
/
.,4
/
/ /
/
/ /, / / ///' /
oO O_ ._4
0_
/
7 / /
/
/
3/16/
#
/
/
-r4
/// / ///_->
/
/
.,
_
S_ _i, II ,f_ll
i
/
/-
//j /
lillllih
.02
.04
.06
,08
.i0
.12
Sheet
Fig.
B
I.i.3-3
Unit
Thk.,
Bc,aring Fbr
• 16
.14
i00
.20
.22
.24
iu.
Strengths =
.18
ksi
of
Sheets
on
Rivets
.26
Section 25
September
Page B
1.1.3
Protruding-Head
Rivets
and
Bolts
B
14
(Cont'd)
= .,-4 .,4
,-4
.,4
O O ,.-4 II
U .,4 ,=
.,4
.,4 ¢J 4.J .,4
>
.,4 ,-4 O
am
4_
o=
> .,4 .,4
am In W4 O
o
=
am
am &J .,4
=
&a
,-4
&a .r4
O4 o_ .,4 o'I _J
.,4
_oo
.,4
o=
_o ,-4 ,-4
r-4
.,-4 v
i!!iiiiii iii ii :
:
: :
•
.
:
: :
:
•
i:i
: : :
: :
:
i
• :
ca
_n _J
_J .,4
.= &a
am
iii!, _-4 _ O (D
,4 O
e4 O
,,i iii!iiiii N O
tn OOOOOOOOOOOOOOOOOOO
eO O
eO-,T O O
-.T u_ (D O
_) O
r'- OO O C,
O_ O
O eq _O O ,-_ ,'4 ,-_ o4
_ O4
i 1961
Section 25
P_otruding-Head
Rivets
_-_
•
•
•
and
•
•
•
Bolts
I 1961
September
Page BI.I.3
B
15
(Cont'd)
•
•
•
°
•
,-q
> _0
o ,,.,.., {J
,.°.°•°°
__
__
_
,...
o
•
oo°•oo
,o••,.°•
o,o°
_0
o o •°l°,lo•°°•°,o••o.°°Ol°O°••°o•
r-_
o .,'4
c}
v 4-1
Cq °•••••°°••.°°.°.••
....
•°.•0•°•
Q.I
_
,,4 _
_ >
,rl Q;
,--4 .._
,--4
&
,--4
.•.•.•
.......
•
.......
•
....
••°•
<,-4 0
_
u v
c-J
E _ <
&
........
•
0 -r-I (_
l.J
,--4
II
•
....
•.•.•}•
& [_
C) •
O9
C) •
u_ °
,
,.-4 M m
.........
O
0 •
V
0 _ _r_ 0 ¢"q ,_
L}
0
0
°
, 0 WhO C',I
cr_ <0
•
•
•
T _ VI
V
_
._"
0
<0
_J-
O_
C)
<0
0
',/
<0 °
, , <1" _O 0
tr/
Ch
.........
_
0 0 ,r_ 0 c',,I t,"l
, ,., 0 _-_ 0
....
,
_ °
, , ,
_
o ,r_ C-I .
<0 °
o 0 i_ •
o--, _-I,-_ _0 0 0 ° °
_D .
V/I
<0 °
<0 •
V AI
<0 •
V
_ •
AI
_ •
0 °
0 wh C',I
,--4
:
°
,
" :
:
: A • -o
°
.ID
4J ..q
c'l
-d(D
OO q.}
0 !
I
,N eq
4.}
,'_ _'1
._
o'5
-n'-
I
I
I
I
C) cxJ
08
_.l ILl
I
_T nJ
-.1_I
0 ¢-.]
0 r_!
b-_ I
_ I
_
[--4 I
[-.4 I
I
-.1 0 r'l
0 C_I
_-_ .,-I ©
0 CNI
0 ¢xl
c'-I O cxI
"El r',l
cq
r_)
_
c-J
c'I
c'_]
c
¢1
¢'xI
I
,--4 U
r--I U
_ U
,-q r...}
r-_ U
E-I I
,--4
tr/ f-.. O
CO
r---
v
•
, ,., ,.D 0 _-_ _I" 0 0
r',l _-_ 0 °
0 •
,--_ 0 _rl
Section
B i
25 September Page 16 BI.I.3
Protruding-Head
Rivets
and
Bolts
(Cont 'd)
u_ ,-i
o
,--_ o.I i-_ 00 _
i_. II
,.a
_A o 0
O O. JoloJe
JJ.
_8 00 '_ .e# u_ _oo
___g_.o
o r-4 O
1.1
r-4 O_
o _ i
oo
o
__o___ _o___
_
_
Ill
rd
u_ > oD
__ oooo
_o _o
_
__ __
_
o
o
o
.,-I
,-4
o ,--I
I
_
g_
_o
_
_
_
_
gg
_
_
_
: : :
:
: :
:
: :
: : :
"
"
"
.,--I o _
o_o',o_oo_oo
o •
¢_ -,T O_ O
o_._-oooo
-r,I
""
¢O O
_OOOO _-_ _ 00
, , . OO • ._- ._- . 0 _ .
u_ 0 o,l u_
,o [..-t
tg
_o
"
: : : :
"_vi_i
, , , , 0 o,-I .=
O
"
: :
: :
: :
:
•
•
•
•
•
.
•
•
.
,
: : : :
. . : :
:
• .
: :
i
::::::: : " : :
: : "
•
• :2_ii"
•
:
_
Y
Y i_="
0
0
_
0
• . _, u_ o_ •
_._ ,._
o o. I|
1_':"
:
:_®_
__
IIIIIII ffl
_
0000000
o
1961
Section B 1 25 September Page 17
BIol.3
Protruding-Head
Rivets
and
Bolts
1961
(Cont'd)
28
I Bolt
I or
'
Pin i
/
24
Dia I i
/
20
/
/3/_
. / 16
/51_--
/
/
.i.I
f
12 ,,,4
/ "_
.-/// /,/"
8
/,-_
4
_31s
//_5/16' /
/ /
_
I .--5/32 .....3/16
_
--3132 --1/16
0
.04
.08
.12
.16
Sheet Fig.
B 1.1.3-4
Unit: Bearing Fbr
Thk,
.24
.28
in
Strengths =
.20
100 ksi
of
Sheets
on
Bolts
and
Pins
Section 25 Page BI.I.3
Protruding-Head
Rivets
and
Bolts
(cont'd)
"_
0
0
O0
O O
u_ I_.
O
eq
0 0 000 OO_ O0_
II .Q
00
,-._ O
--
= = "_
_
co _J
OOOOOO 0 Om _O_OO_
_'_
O
O0
0
= 0
__ _
>
_O_O_OO_ _O_OO_ _ O _
"_
O
_
_
O
O
_ _
OOO OO
_
_O_OO_ _O_OO_ __O_ _ u_
u_ 0
°,.-I
,--I
.= =
_J o3
O _ _OO _ _O _O_OO_ O
,--4 .,-.I
O.0 _Z
_D
_O
_O _OOOOO _ __O_O_ ____O_
_
I
_OOO_
= °4
OD
O__ O_O__O_O_
O_ .,-I _J °4 =
_OO_O_
°,-I u_
_OOO__O_O_OO_ _O_O__O_OO_ ___O_O_
_4
,.-I
>
-,--I
_J _O__O _O____O_
_O _O _O__O_O_ ____O_
_O_OO_
__O_
_OO_
.,-I 0 _-_ _ O ,.--I
N o3
°,-I
_ O __ OOOOOO
_O_ _
_O _O OOO__
O
O
_OOO _O_ 4-1 0 Z
B
September 18
1 1961
Section
B
1
25 September Page 19 B 1.1.4
Flush
1961
Rivets
Table B 1.1.4.1 through B 1.1.4.3 contain ultimate and yield allowable single-shear strength values for both machine-countersunk and dimpled flush riveted joints employing solid rivets with a head angle of i00 °. These strength values are applicable when the edge distance is equal to or greater than two times the nominal rivet diameter. Other strength values and edge distances may be used if substantiated
by
tests.
The allowable ultimate loads were established from test data using the average failing load divided by a factor of 1.15. The yield loads were established from test data wherein the yield load was defined as the average test load at which the following permanent set across the joint
is developed: (i)
0.005
inch,
up
(2)
2.5 percent of than 3/16 inch
to and
including
the rivet diameter.
diameter
3/16 for
inch rivet
diameter sizes
rivets. larger
Section 25 Page Flush
1.1.4
Rivets
(Cont
'd )
_0 _ _ ___00_
[,_
_o _J
> ¢'4 0
.,4
r"-. ,0 r",-
_
_ _
_0 _0
_ _
0 _
UOU_O
:
:o
:
:
,,.-4 __00_
=
,.._
: :_ ,,o_-
= =
o -.1"
8
:CCC2CCCCC
I
:
I
l •
u
o
O%
U
U
_
t_
O_
O
u%-.T
• •
O
_ _00% _ _'_ _,S_0% o
o O
_
O
O
•
|
_
.t.1 %0
0%
:o •
O_OO_'.: :_-
.-4
uu
I
o
o4
m
_
O
_D
: :
_ :
00
u% o'_ _o__
.u
o •
U
•
%0 P,,, r--- r-. 0
r-..
oO oo
• •
0%
('_
O
u_
•
•
r_
Cxl ..T
_.D
r_
°
•
•
¢'4
•
0%
• •
O0 O0
m I
ul
..1- c,4
0o0o0 eq e% o o
r_
,-4
_
(xl
-_4
,.O ,--i .r4
..T u
¢q 0 eq
c',l e.I
r.-. o4
0 e")
¢_eO¢_
--
.
•
•
l
•
•
e
"':!i"
eq
_o
•
: :
: "
•
¢0 1-) .M
e•
.g .,-4
,-4
v
J
co co
i:::
i:::::::
•
.
c o •,-I ,._
4J
,n _.J
>
..j
-_4
c0
.c
0 C'q 0 ° 0
' iiiii
: : ' : • : L,'_ C',I 0 . 0
C'-I C_ 0 o "-_
0 0 C"_ ..J" LP, '4D 0 0 0 . • • 0 0 0
: ,--_ r-0 ° 0
0 0 _ Ub 00 0", 0 04 0 0 ,_ ,--_ . . , ° _ 0 0 0
0 <0 ,-_ • 0
: :
: :
0 0'_ _1 .,-_ • ._ 0 '.,0
B
September 20
1 1961
Section
B
1
25 September Page 21 B 1.1.4
Flush
Rivets
(Cont'd) _0__
I
C O CD
p,_ 0
m
0
.
_0 C
•
:
.
.
r_
Lm
> --
o_ 0o
--
:
C_
cq 0 Cq
•-_ 0
CO [-_
_J C 0 _D I
.C
•.
,--I 0
oo
,.0
,-I
,-I
,--4
_D r-q
: •:o_ _ _._o-_
: : oo : :
•
_
CO
C 0 Cq
.C U
o,1 C
• • •
u_
:
0 0 O 0 o,1 .,.4 ,-4 0
0 I_. ¢q
L_ -d" c_
,--I 0 _T
,-.-I (_10'_ oo _0 ¢_ ._" u'h _D
• •
:
: '
:
: : : :
_0 •
m
,a
cO _ u_
u_
•
cq
cO
.d-
u_
_
e"_-d-.._--d-
_ID ,.0
r_
oo
i
I
0 ffl
I r_ ,--4 ,--4 o.I
cq CD c_
[-_ ,
oo _
• : • ,-_
._ >_
o4
m
i :
_0__
cq
:
cq
•
• • : •
c_ .,-I
: • • .
: : ¢ : .
• . ; : I : • : : .
;
:
•
•
.... : : : i i! : : : .... .
.: : •
•
,
•
iii!i
•
•
•
°
•
•
•
•
•
•
•
•
,
.
•
•
•
•
•
•
•
•
•
•
•
•
•
.
•
.... .... • • . .
.
..4
J
.,-4 c_
i:''"
•
:
: • : : : • :
: : : : : : : : : : : :
: •
: : : . : :
•
: : : : : : • :
: O
,1
.u ..Q > -,-i
_J
l
: : . . : . : : : : •
8 000000000__ ••.o°•°°•••_° 00 O0000
i
• :
:
• ! : "
cq c_
.,-4
i
: : ! . • :
O000
O0
O
1961
Section
B 1.1.4
Flush Rivets
25 September Page 22
(Cont 'd_ 0_ooo_ oo__ _0__
.4"
t i I "_ t .,_r .,,? -._- _u'r_ 000 ,-4 eq eq eq ¢O
0 f-_
I
¢q O eq eq 0 eq
_0_0_: ___.
_eq 0 ¢q
_CCC:
4J
• 0ooo
_4
¢q _D eq oo eq oo _ m- _D 0 [-_ 0 [-_ 0 [-_ _ 0 [-_ _4 ¢q ¢.4 P-
°__0_
I -4"
I "_-._
°__0
('4
eq
_
O..T
u% eq
"
" i
: __g_
,-4
o7 oO_
%0
_D
! 'T_ I 4J 0 ¢'4
0 r.-
._
t_ I r-r-4
:
u
:_o_. ._o_o_o. :_o__:
o eq ,-4
I
I
I
I
C',l C4 _1 I:: C'4 000 _ 0 ¢q C_l _'%1 C',l
m
_o_o_
::
• __oo_
•
m IIII
0000
: :
¢q
• _0_ "___. : _0000
_D
J
O_
,4"
I
I
• ' _ oO "
,O
•
_
,-4 _1 >
,-4
::!
-.? "D -.T eq _eq o mo ¢q ('4 I
_ .1.1
I
,-4
,-4 ('4 %0 r-4 0 O0 eq eq
i**•
o
o_ 0
_o_: __. __" Ill
.,4
I
_q I!11
000
_O
,-4
_0_0
_n
: : : : F-4
,-4
0
J
O,
U
B i
• _ _._
_ 000000 _00000000000
00_
1961
Section 25 f
Page Flush
Rivets
(Cont'd) .q-
00 I
".D _
eq
a •.d- cxl o_ 0
co _J q_ >
i _1 i_
_
i
_o,i
cO
c'q 0 o-1
q_ r-q
_D ,-_
0
-..1"
_
eq 0 c'.l e_
.r4 _D CO
O O O
0
0 t'M
O
t_ 1'
0
i
O cq 0
_ ,.D O0
_J
[-_00 I C'q Oq .q,-
_J
"O
L¢-5
qJ
,,D
¢q
._"
!_ l _ILq
c-,l
0 r_
_
,--4
p-4
t-¢3
_q a
i
I
I
_
i t'M
CM C,,I 0'4
_,_
I
I
_ 0
oO
--d" b'lO
I I
.,-I
t¢'3
C'-I
..j-oq _0 ¢q
<0 eq _0_ ¢q
I .._ eq E.-_ 0 cq
oo
_ ¢-_ co _0 [_ 04
! <0 _-_
_ _
¢q 0 oJ
O0 _-_
c_
1-1
•_1 -,-I
._1
1
September
k
B 1.1.4
B
23
1961
Section
B 1
25 September Page 24
B i.i.5 values
Flush
Table for
Screws
B 1.1.5.1 contains ultimate i00 ° flush-head screws with
and yield allowable strength recessed heads installed in
machlne-countersunk clad 2024 and 7075 sheet. These strength are applicable when the edge distance is equal to or greater times the nominal screw diameter. Other strength values and distances may be used if substantiated by tests.
Higher
1961
These strength values may be used for the design values may be used for dimpled joints if based
of on
values than two edge
dimpled joints. test results.
The allowable ultimate loads were established from test data using the average failing load divided by a factor of 1.15. The yield loads were established from test data, wherein the yield load was defined as the average test load at which the following permanent set across the joint is developed: (i)
0.012
(2)
4.0 1/4
inch,
up
to and
percent of the inch diameter.
including
screw
diameter
1/4
inch
for
diameter
screw
sizes
screws. larger
than
The test specimens used were made up of two equal-gage sheets lap jointed and machine countersunk with washers to build up thickness to minimum grip. All joints had 2D nominal edge distance in the direction of the load and were either of the three-screws-across or the twoscrews-ln-tandem type. For the latter type, the on opposite sides of the joint to assure 2D edge
flush heads distances.
were
placed
Section 25 Page B
1.1.5
Flush
Screws
(Cont'd}
cq
00 °r4 O
_OO___
:
CO
ii 0,--_ r'_
0'_
O_O_O_
_o__% _ 0
m
_
_
_
_
_
_
co
co
CO
_
! o-, ,--_ O '..D O'_ 00 Lrh r"-- O
,._
Lr_ ,_ c'q cq ,,.00 c_ ,..0 c',_ u-'_ ,.D r---
c'q Ch 00
,,.C: _D c'q _'q ,--_ ;._
• • °
: I
:
:
:
:
:
•
:
•
:
CO
L) _
• :
:i
o,._ I ._
o
o
,r-I
0_ _:
.._
_
_
: _ : : : : : : %___
._
"';L::
0
co
|
_
u_
m
:
og_o
_
: _
_
co co _
_
_ _
_
:
_
_
c)
::: , :
:
CO
CO
:
.
•
• : • •
.
, : : :
|
_ .r-I
(D _---. ¢'4 tc'_
• ,-_-._
o_ _
_
_o.._
:_°_°__i..1-,o_,_o •
E
--
,-4 .-4 ,-q ,-4 ('q ¢q
CO
,. _m_o_o o_ _ o _ o_ _o c_ _- c_ c_ ._o o_ e_ _ _ _- oo _ _-_ •
_.4
" •
: :
O'3 _D
_4
u
•..-4
°
_:
._
_
[--t
_
_
-_
4-1
.I--)
_
[-.-t Crl
_
_0
.
• •
_O
_
o_
.
.....
:..:::: . .... !ii.!::.. • : • . ,-_
" • :
:
:
:
"
: .: : : :
.
• : : : : . : • : : . : O O 6 u_
_ co -.1- u'_ ',O r-- 0o 0", • ,-I O O O O O O O i--! . ° . ° .......... 4J O O O O O O O J.J
_
:
: _ . : ' : _'_ : : • : • O O oh ,__ eq
q--I QJ
i
:
:
:
:
: • : • : : .' . : • O O• _ eq m
O ,-_
c-,I ,..o ,--_ ,-_
o'_ ,-_
u'_ ¢q
,-_ co
r-co
C)
O
O
O
O
O
O
B
September 25
1 1961
Section 25 Page
BI.I.5
Fldsh
Screws
(Cont'
B
September
1 1961
26
d)
tN
=o eqQO
0_o00_
:i
0 r_o
_0
,._ u'_ 0
_-_ r_
QO
_-_ O0
eq
•
•
Q;
: : •
u
_%
o__
.
m _J
_o
_,__,_-,_
o
:.
!
I =
)
C;
,=
• : :
: :
"
: .
•
:
: :
•
•
:
. ,-_o0,_o
o_
4-1
o o
=
• . :
: coco._m_r_o0o_
0
ii"
q_ 0
: : : ,_r_,_O..q-o_o_,-_r--e_
•
: :_o___" : : __=__"
• :
4J
C_ 0
:"
cO J--
_J Ore
e
•
•
:; t_
•
:'
•
e'
• __0_
:
•
ee
:
:
•
:
>4 =
G; _J
_D
• ____:i
:!!_ ":
_J T-4
ee
P-4
d .H
: : •• .
: :
°
!i
: : ....
: :
_ __ 0000000 ,)e°e,•elelleO 000000000000 q-I
•
e
l l
; ! • :
: .
. :
'
!ii!!!iiiiil •
_J
: :
i_
0__ __m O0
Section 25 Page B
1.1.6
Blind
Tables
These
rivet-hole and
may
be
The
Where
e/D
values
joint
was
is
the
0.005
(2)
2.5 3/16
For
tables
and
grip
or
blind lengths
respective
holes
yield
flush-head
the
the
oversize
of
2.0
must
are
be
divided
by load
to
tests
and
manufacturers,
improper
grip
Yield
following
were
yield
set
pro-
failing
values
the
permanent
of
average
strength
wherein
2.0. yield
values
the
from
than
substantiate
from
data
obtained
greater
strength
obtained 1.15.
data
or
to
Ultimate
test
the
test
equal
used,
were
which
from
e/D
made.
rivets
yield
inch,
B
the
in
table were
load
across
is the
up
to
and
1.1.6.2
rivet
and
comparable
B
diameter
data
obtained
inch
for
the
shear
Test
were
3/16
1.1.6.3
rivet
B 1.1.6.3. based
including
diameter
rivet
sizes
ultimate of
on
the
which
larger
rivet
strength
using
rivets.
2117
standard
than
shear solid
strength rivets,
strength
values
degreased
clad
of
specimens.
In
view
of
the
and
ables
are
recommended.
blind
rivets
in
should
absence
of
sheet
may
Since be
used will
applicable Drawing
when
by
established
values
than
at
aluminum
rivets
were
blind
load
tables
2024-T4
not
if
ultimate and
only
recommended
percent of the inch diameter.
on
noted
tion
contain
protruding
developed:
based
for
less
average
(i)
these
for
reduced
specimens
from as
1.1.6.6
applicable
as
having
flush
test
defined
are
strengths
and of
are
values
specimens
ultimate
load
1961
27
used.
strength
obtained
as
strengths
of
truding
B
strengths
substantially
are
tests
through
tolerances
lengths
and
1.1.6.1
single-shear
rivets.
1
Rivets
B
allowable
B
September
be such be
wide
variance
magnesium
in
alloys, Allowables
double-dimpled established data,
on
the
or
ultimate
dimpled, basis for
methods
standard
for
or
allowables
dimpling
no
and
uniform
and
tolerances load
shear
machine-countersunk of
blind
specific
tests.
rivets
in
allow-
strengths
of
applicaIn
the
machine-countersunk
used.
blind
rivets
in
applications
exist. use
MS33522.
of
are
primarily where
Reference blind
rivets,
shear-type
appreciable
should such
be
made
as
the
fasteners, tensile
to
the
loads
they on
requirements
limitations
of
usage
should the of on
the
Section 25 Page
B'I,I.6
Blind
Rivets,
(Cont'd_
0_00
O
>
eq eO
D O _0___ 0 0_0 ,-4 u_
0
=
0_ 0
,,,I" eq
_0
i!:
OO
_.j
_J oJ
W 4_
_o
o;
,,M 1.I O
: :
o
: . ." : :
_00__
eq
•
r.. _o c.4 e,I _-,-_._.
e,I o4 .4..._ u,% %o
0 u_ r-.
o-_ 0.._ e,_ oq ,_ _Do._ oo o_ oxch
eq ¢,4 u-_ 0
u'-, ,t.i ,-I 0o
_ ..J-
u-_ _0 oo o,,i
'_-t
J
i
om_mooom
! _J o_ oO_ C _n
:: N
• •
• °
: :
:
,
.....
t
11
:
: :: : ::
: :
: ::
:
i!!i
:::: _
Be
• • : :
o W
=
,• _oo_oooo • __
__
: : : :_o__
0
_
IJ 1.1 ,,M
,r.l ld
u'3
0
"_'i
¢Xl ¢_I _0
u'_ O0
: : _.• ":
•_= : :
0 •,_ _J
¢xl 0
:
•
,--I
.'ii A'
_ _
_ _J
0
_ .,_
._
000
_0000000000000
O0
O00000_
_
_ _
B
September 28
1 1961
Section 25 Page B
1.1.6
Blind
Rivets
(Cont
B
i 1961
September 29
'd)
0
.,4 4J
O
0 O O
>
"0
= .,4 _J U I. 0 u_ m 0 .,4 ,4.1 •,4
_J
I_
0
_v O q4 4...I
,--4 0
>, o IJ
0
,..c; ,.= ,,_ r..,t3 0_3
4J o'3
4,,.I o0 .;-I oO
o
0
ffl 4..i
.,-I
0
_
0 -,4
_
m
nJ
o
4_1
0
0
4.1 _ _
o rj
•,-i _
_ ._
o ,'l:J _ 4..1 .,.4
ill 4_ ,.--4
m _
"tJ
,-'4
0
m
_-I
4-1
0
,"4
m
_
.,4
0
ffl o r_ b-t
>
0
= ,.c:
,-4,.=:
O
Section
B 1.1.6
Blind
Rivets
B
1
25 September Page 30
(Cont'd)
1961
_0_00_0 0_00_
_ _
_ oooo oo • •
•
•
_O_, •
:
,_
,-.
u
_
>_
_
._
:
• . : : : • . : : .
: :
_!:::: _
_-_
: : : : :
:
:
•
:
:
_00000
: :
:.
0000
O000
co H
> •_ od
_ _ co
>i • =_I
co
O00
•
:
_ O000
o
•
: :
i" :
_,°,....°,°.
!
:
_
_J
Section 25
September
Page B
1.1.6
Blind
31
(Cont'd)
Rivets
m
O4 O _O O Oq I
B
_
_0_0000
_
,-4
_0__ _0_
_
m
.,-I
O O _D O
•_I
¢q
_'
I
j_
v r---t
"o
!
"_
.
0 U
D_.J
4_1
O_
_
m
_ 1_o c,l •_
..c:
__0_ _0_
_ bO t¢'5
m "_ {¢) •lJ
-_.4
_
,-.-4
_ m
:> U'?
,-.-I
• ,.-I
_
._I
0
_ r--
0
_
[-4 _
ocq
o
Cxl _..J
¢q
__
r_ 0__ _0_
_._ 0
,.-4
! -,-4
:
:
:
:
:
.
_J CO
!!ii ,-.-4
•
v ,--4 ,-_
_
._I
O
_
_
:
:
:
!
i
:
:
:
ii! ::!!" 0_00_000_ ___
"
.= u_
o O_
000000000_
, I-_ ,-,K
_
U
1 1961
Section 25 Page B
1.1.6
Blind
Rivets
(Cont'd)
O %0 O eq I
.=
•-4
%0
%O
14
,
4J
o_ =
eq
,=
o
4_
o
_J W O 4-1
O ,--I Neq I _.._ m
m
_
: :
: :
O0
•
•
: : : :
u I,.4 O
_
4J
m ..4 4J _=_
u'% o_
¢q
%0
00
_o_o
.-4
• :
: •
. .
: • : :
" " : : • : • •
" : i : : . .
: : : : : : .
: : • :
: : : :
: . : :
" : • : :
:
:
: : .
:
•
: : : • : :
: •
: .
:
:
• i iil
.4
• • • : : : : :
: :
: • : •
• • : : : . : : :
i . : : :
ii:: • : : : o iii.:::_
-H .61 _
°
c_
.M
_
i
: : • : i
"
. :
:
_.!!:..:: _ : " • • • ,-_
0
;_ ._000000_ _00000000
m
_
B
September 32
i 1961
Section 25 Page B
1.1.6
o
Blind
Rivets
(Cont'dl
B
September 33
I 196.1
Section
B I
25 September Page 34 B
Blind
1.1.6
Rivets
(Cont'd)
L
4J
_O en O
c_
CO
_
o
m o,o
_ _
_-
-
_ 0
.4" _
o
g
_
_
-_
_-_-
o
_
4J
4=1
CO
"_
_
_J IJ
_D
_
_,
,
u3
: :
O_oh
•
_
: : !
•
1961
Section 25 Page BI.I.6
Blind
Rivets
(Cont
B
September 35
'd)
_J 03 03 CO
_D 0
o_ 03
eq c_
U3
"_-
c OO
03
c
0 0
_
03
N
_J 03
,._
>
0
¢'_,
c _
=-
03
_J
< C _D u_ O u_
_-4 o'3
_J O'3
',0 _ '
"_ •_,4
0 C
,_
i
o(3
_J
c O t_
O L) v •
_0
_0_
_J C 03
D_ "O Lr_
03
OO C
03 _J
E 4J ,-q
d v
03 ,-4
0
_
(D u) 03
03 >
m
> 03 >
i 1961
Section
B
1.1.6
Blind
Rivets
(Cont'd) _o ,-4
oo
"o
>
z=
(-4 o_ Ou"_
u_ _o oo
,--t
,-4
|
oo I
o"_ p._ c.q
< "o
o_ :
,-4 u3 0 ¢'_ u% " O_ 0"_ -,T 0 ',.0* r-. oo 0 ¢q C.4 • oO
i "
:
,m
o2
_=
"O
,'--_,--_ ,,-_
•
: : . •
:
•
•
, •
oO
i
eq r'... C'q O_ 0
,-4
,,
,,c,r-ooo_ " :
oo ¢q o
o
.!!
• : : : : • •• : :Q
,--I
o2
: : • : : • . •• • : :
,.-4 .= ,-4
0
bo
0
.w
¢q
: : • : : •
: : : : : :
:
:. • • : • : :_ 1_
•
ooo _
u% eq o_, ,-4 ¢q c'q ¢0 c,'_
oo
ooo
:
,-I_D O,-'4
•
•
.
•
,,
: :
: : : _,-_=_ . : :_.o
• O
u'_u% O
•
•
|
:
I
!
O
..
a.;
: : _ _ooo_
,_i
: :#
oo0
w
0
.=
:
::i
I
: : :
IlJ W W
,.-4
_.
• •
00 =
O ¢O u,-i ,-4 O _"
'O
O0
_
O0 u'% •. 00
.-.I 11
•.
. : " : • : i " : • " "
O
O2
_
_
O2
o2
eo
.
: .
o_oooo _o0000o_o_
: : : : : . : : . • : : : " : . : .
:
• • : : :!'"
: : : : :
"i'ii''''" : : : .... v
:
i: : ! :
Ne4eq
: : • _ooo_o _o_
u'3
•
WD
::! . _0 u_o r-,,(%1 O0 0 •
:i •
¢O
o
: : _ooooo : : _o_,_n • • ,--II_, ,--Ii"_ u_ : " N__
:
m .,4
•
4
•
•
•
•
. :
•
•
•
•
• •
• •
• .
• •
o: i i i i ....:.. ... m • o2 •
:
:
: :
•
:
•
: : :
oo,A_...
i": •
: •
• •
....
G,-',,_ooo_,.o
•,.-4 C',le4 cq .4- u"_ xo r.,. 00 0'_0 e,l _.-'_ .=: 000000000 ,--4,...-4 ,.-..4 4J
•
0000 _
_J
_J
o2
B
i
25 September Page 36
_J o2 X_ u_
•
•
•
•
O0
•
•
•
O00000
•
•
•
.
1961
Section 25
September
Page B
1.1.6
Blind
Rivets
37
(Cont'd)
O L3 v
Ce_
.._ _n,.o,.o
r... r-.
: !
> =
cg
CO
0
_O cO ¢q
_
,._ u_ r_
._u_u_. or--00o_ r-.r--cooo m m _ _,-,
: : : : • • : : .'.
: : • : :
' : : . :
•
: :
:
: :
_o_
: .
: : .
: : • . : :
: • :
: . : : .
m
•
•
: •
:
• •
_
°_ "_
_
_ooo_c
OO
_m_m O
•
,,-I _0
B
ffl
_ _
" i
.: " : • •
: ,
"1D
• .,-I
.
: : i : i ! ooooo .. : •
: :
• :
• :
._
:
:
: oooooum
0
• •
• "
•" _0 00 *.I_ ,_
¢'_ ao CO
. :
--
_
0
0
.iJ
:
0 ,--I
cq ,--I
._ ,.._
_ ,--I
0
0
0
0
" :
.
_J O
co O
• o_._-_ :x_ _e4_
_
i
.
•
•
:_
,.--I
•
°
._
:
:
:
: :
u'_ 0
0
_
: _o
u_o
.
mo
:
:
i
,
.
•
,--I
,,-p !
.
•
0 "
tJ
_
.t..1
_0
u--i
m
,
:
•
:
......
•
•
•
•
e
_/3
•
• •
• i
{_0
0
•
,--4
_
j
cq
0
_
u_
oo r_ _J J
•
•
•
•
• ....
ce_ °r-.I
,
_O p-q
.,-1
..
•
•
•
•
i
i+
•
•
•
•
•
•
.
.
•
•
i
,
-
•
•
|
-
-
•
•
•
•
I
•
•
•
•
•
+
•
:
:
• ;
:
: • : •
:
:
•
.
•
.
.
.
:
.
.
.
.
•
:
.
•
.
.
.
.
: :
:
:
0 0
_
"_
i i
.I...I
,---4 I
+l r-_
.
• .
:
: :
_ O
m
co
v
t.M 0
tC_
0
_
c_
._
,t_
_
qJ
c_
J
_J
.,_
: : C
:
0
: : 0
' : : 0
0
" :
: 0
0
• . i : ' 0
0
.
. :
oo
,--_ ,-_
,--_
_n
>
oooodo_ooSo_ r-q
•,..4 t_
.M ,._
1 1961
Section 25
September
Page B 1.1.6
Blind
Table
Rivets
B
1961
38
(Cont'd)
1.1.6.6
Explosive
Rivets,
Ultimate
Rivet
.025
.032
.'o4o
.o51
5/32
320
410
513
3/16
--
495
620
Rivet Size
B i
Sheet
Load,
DuPont
Extended
Cavity
Lb/Rivet
Gauge .064
.072
610
610
610
796
880
880
.081
880
Section 25 Page B
1.1.7
Hollow-End
If the equal
to
that
the
the
meter
B
provided
1.1.8
B
to
specified
1.1.9
the
by
and
in
an
stumps
For shear to the
lockbolt
least
25
portion may
material,
percent
locations
of
of
be
taken
provided
the
rivet
the
hollow
end,
where
they
toward
"Hi-Shear"
aircraft
rivets bolts
is
heat
diaand
will
not
the
same
as
treated
to
125
lockbolts
and
tension the
following
ksi
R t and and
shear,
- Rt +
are
the
when
type
in
material
strength
Rs I0
ratios
respectively.
= of
1.0, applied
tensile
lockbolt
values
were
by
the
ultimate
and
combined
loading
available.
(blind)
equations
and
guaranteed and
be
manufacturer
and
strength
strengths
BL
cutoff
interaction
lockbolts Rs,
the
installed
added
shear
values
shall
the
lockbolts
These
conformance and
by
allowable
minimum
yield
be
in
practices,
Huck
1.1.9,1. are
tensile will
shear
ultimate
B
and
but
installed
recommended
flush-head
table
and
all
The
data
be
procedures
and in
test
shall recommended
with
strengths
make
stumps
method.
Shear
Steel
tension
same
a
stresses.
for
standard
protruding
from
bearing
where
the
in
tensile
manufacturer's
contained
manufacturer.
ing,
of
measured
used
load
accordance
for are
enough
are
for
rivets
these
1.1.3.2.
equivalent
established
of
the B
lockbolt
strengths
yield
at
as
sections of
Lockbolts
inspected or
shear
table
Lockbolts with
1961
39
Rivets
for
in
is
shear,
they
cross
strength
rivets
cavity
appreciable
allowable
given
the
solid
of
that
Hi-Shear
The that
the
plane
solid
used,
of
of
the
with
are
strength
subjected
and
rivets
450)
bottom
from
further be
(AN
i
Rivets
hollow-end
length
B
September
under
having
a
critical are
thickness
for
the
large
shear
load-
applicable:
7075-T6 load
lockbolts to
allowable
- Rt + load
Rs 5 in
=
1.0,
Section 25
B 1.1.9
Lockbolts (Cont' d) .0
Page
B
September
i 1961
40
_O
W
C 0__
•,4 _
O_
C _o 0_ c
c
,-4
C
_0000
C_g 0
0
_
I_
m
CO
_
r_
0 W u,-i 0
> cn
"0 _J
.M
rn
m W I
:C_gg k_
r
"00_0 0 O ,-4
0
,-_
;>_
,-_ ",4 m 0_
.c
g
0
m
0 N 0
0 _0
I
A_ 0
:
oooo
•
%0 _D
>
o O0 A_ I
CO u'% 0
•
,-4
I
C
c_
_M
! I C 0
:
t_
.r,I
o_
•
:
:
_J
:
'i'2"
c
0J
1..1
0 U
3 m
o rD
0 0
Section
B I
25 September Page 41 B
I.I.i0
1961
Jo-Bolts
The ultimate steel and aluminum Tables B i.I.i0.i
and yield allowable shear strengths for flush-head Jo-Bolts in clad aluminum-alloy sheet are given in and B 1.1.10.2.
Section 25 B
I.i.i0
Jo-Bolts
(Cont'd)
September
Page
[--I !
O0 _ _ __0__
,,.,-4
0 __
O0
O0
0
O0 _0
42
0 _
0
,-a 0 _0 I 0
I
m
[--I ! -.1"
O0000
O00
O00
0 0 _J
0
! u'3
"_ r_
4-J o_
2
00 _0__0_
O0000000
00 _ _
O0
O0 __
0 p_
o
_J
4.1 m
I "4" ,--I
O0 _0 _
_0 O_
O0 _
O000 _ _
_ _
_ _
0 CO
•,.4
&.l
"_
._ 0 0_0000000000 _ 00_0_
[-4 ! ue_
c_
U
0
_
O_
_
0 r_
0 0 CM
O_ _0__0_ _
[-.I I
O000000 _0
O00 _
_
_
_
_
0
O0
_000_
_
0
,-.-I
_0,,.,,0t,,,,,,
_J
[--I
&J
,=
0 •_ _ _0
00_ __0_ O0
_0
O000000000000
O000_
_
_ __ _
_
B
i 1961 _J
Section 25
F B
Page
Jo-Bolts
i.i.i0
B
i
September
1961
43
_o 00000000000
r..3 oq
o i-_
o_o
00000000000 _0_0_0_
,.el ! ! Ou'_ _.3
o t.q
n:l
i
0
o9 000000000000
0"0
___0_
c,h .i.J 0_
0-,1" 0 o'3 cxl
o n:l
000000000000 ___0_00 _ __
i
,-..I _0
_ >
.._0 o9
cxl
N
O_ 0 ,--.I
_9 "_
0-
w 0 .;.-I
0
000000_00000 _0____ __0__
,,.4 •,-I •IJ
¢_ ._
i:_. 0
0 0
.,-4
B
0000_0000000 ___0000
0
04
cM 0°..,.0,.°,°, ,x:
.°,°_°°,,°°°°° .°0°.,°,°°.°°° ,°.°°.°°°°°°°. .,,°°°,_°,°° ,°°,°.._°.°°.
..............
::
,....4 0 t_
._,.,,,,°,,,,,,, .,,.,.,..,.,., _,°,,.,°,,,,,,. _o,,,,,,,,,,,,. 0,.°,....,.,°. _..°°,.°,...,. _,....,°....°°, •_ O0 ___0__ _0000000___ °,,..°.°.,,..° _00000
u] 0 ,-.4 _
_
000
_
000_
_ _
O0
O0
"0 0
O0000
t_
Section 25 BI.I.IO
Jo
Bolts
Page
(Cont'd)
E.-, 00000
0
_0
!
I
00000
0
o u_ !
<
0
-,4
E.-, I
00 ___0_
O0000
O000
@q 0 0
I.I ODeq = 0 OJ ¢q
r-4 Ill
,=
_._
_z E-_ I _c_
r._
U
4J 00000000 _0___ _ _ _
_ _
O_
_
_
0 4_
•,4
o
0 0 .,4 I
<
,-4
Ol •,4 •_ _
_ o U
0
< !
m
u
00000000_ _ O_ __0__
__
0
°°°,°°,,.,°o ,°.o°°°.,,o, ,,°.,o°,,,., ,...o°.°,o,o °,°o°°,,.,°° ,oo°l,°l,,,** ,...-4 ._,,°,,.°°°°°° °°.,°°.,o°o° _,,,°,°.,,o,° _o,,.,°,,,.°° _,o°,°°,,o°°, _,,°,,',°,,°°o _.°,°°°o,°°°°
Ill ,--4
•M _ 00_ _ __ _0000000__ _000000 111
OJ
r._
_ O00 _0_
_0 _
O00000
O0 _
B
September 44
1 1961
Section 25
B i.I.i0
Jo-Bolts
(Cont'
Page
d)
B
September 45
0000000000 L)
O p..
rj
0 c',4
_J O _D ¢q
4"
4
O
¢j 00_0000000 ..D O c_
2
t
g
OOcq CO o4
4-1 m
0 m
_ 00000_0000
_0 _
r_ 0
•_
O
0 0 0_
,-.4 0 .,,.4
O I <
_ ,.,_
0 L)
0 ,--4
0000000000
,°°_._°°.°°. °.,°°...°.°, °.,.°0,..°.° .°°°°°°0o.o, .o°_°.0°°°,°0° °,°°°0.°._..° _o°,.°,°.°0°, ._°°°°,.°,°,°° °.. ......... _.°q.0.°,°,,° _°°,..°°..,°° _°°,°,.o°...°
[--i
•
,-4
o ._00_000_000 ___0__ _ 0000000__
.,-.4
o
......... °,°.
>
IJ
0
1 1961
Section
B
i
25 September Page 46 B
1.2.0
the
Welded
Joints
Whenever possible, joints to be welded welds will be loaded in shear.
B 1.2.1
metal
1961
Fusion
Weldin_
- Arc
and
should
be
so designed
that
Gas
In the design of welded joints, the and the adjacent parent metal must
strength of both the weld be considered. The allowable
strength for the adjacent parent metal is given in section B 1.2.2 and the allowable strength for the weld metal is given in section B 1.2.3. The weld-metal section will be analyzed on the basis of its loading, allowables, dimensions, and geometry. B
1.2.2
near
Effect
on Adjacent
Parent
For joints welded after heat the weld are given in Tables For
materials
heat
treated
Metal
Due
treatment, B 1.2.2.1
after
to Fusion
Weldin_
the allowable and B 1.2.2.2.
welding,
the
stresses
allowable
stresses
in the parent metal near a welded joint may equal the allowable stress for the material in the heat-treated condition as given in tables of design mechanical properties of the specific alloys.
Table Near
B
1.2.2.1
Fusion
Allowable
Welds
(Section Type
Tapered All
joints
of
of
4130,
thickness
Ultimate 4140,
1/4
inch
joint
30 ° or
Tensile
4340,
Stresses
or 8630
or
Ultimate stress,
less
b
or
heat
plate
treatment inserts
Table B 1.2.2.2 Fusion Welds
Type
Tapered
90
joints
of
or
considered
Allowable in 4130,
of
normalized 0°
b Gussets
after
taper
joint
30 ° or
weld.
with
center
line.
Bending Modulus of Rupture Near 4140, 4340, or 8630 Steels a
Bending modulus of rupture, ksi
less b
Fb, figure Ftu = 90
others
a Welded
tensile ksi
8O
after
b Gussets
Steels a
less)
others
a Welded
All
in
B 1.2.2-1 ksi
for
0.9 of the values of F b from figure B 1.2.2-1 for Ftu - 90 ksi after or
heat
plate
treatment inserts
or
normalized
considered
after
0 ° taper
weld.
with
center
line.
Section B i 25 September 1961 Page 47 B 1.2.2
Effect
on Adiacent
Parent
Metal
Due
to Fusion
Welding
(Cont'd)
450
400
350 o_
300
_" Ftu , 260 kgl
250
,,ok.,
150
_
_'_ Flw , IN
_
kjl
100
50 ......... J 0 I0
Fig.
B
1.2.3
Weld-Metal
Allowable Design of the
20
B 1.2.2-1
Allowable
weld-metal
allowable respective
Ptu'
stresses minimum
30 D/t
40
90 ksl
50
60
Bending Modulus of Rupture for Round Alloy-Steel Tubing.
Strength
strengths
are
shown
in Table
for the weld metal are based tensile ultimate test values.
B on
1.2.3.1. 85 percent
Section 25 Page B
1.2.3
Weld-Metal
•I._
_
u'_
Allowable
u'_
_
Strength
oO
(Cont'd)
0
o'1
u_
0
oh 0 _D I
O
,-4 0
U ,.--4
0 0
I
_
0 ¢_1 I
!
I
O
0 _'_
'_ 0
0
_ _o
_
_ _
0
_ co
_ _
_ _
0
O I
,---4
",_
_ O_
_
_OO
OO O_
0
I
i
I
I
I
c/_
I
I
I
I
I
I_
I_
l-.I
•l-I
i.-II---I
0
I c,,I I
I
I
I-.I
¢)
O0
C_
._..I
._,
0
>
>
co
o0 co
u'_O0 t_l _
oO
_= O
[-_ 0
0
_
Z
O_
o0
o0
O_
CY
0 c_
= cO
= O
O
,.--4 0 ,.-i ,..-I
0 ,--I ,.-.I
0 ,-.I ,-.I
,<
<
,<
O_
0 _
O0 -_'1" <1"
-_
"<1" '<1"
B
September 48
I 1961
Section
B
1
25 September Page 49 B
1.2.4
Welded
Cluster
In a welded allowable stress stress by tube that B
1.2.5
structure shall be
where seven or more members converge, the determined by dividing the normal allowable
a material factor of is continuous through Flash
1.5, unless the a joint should
Table
B
1.2.5.1
Stress
for
stresses are given
Allowable Flash
Welds
Normalized tubing - not heat treated (including normalizing) after welding. Heat-treated tubing welded after heat treatment. treated
and bending in Tables B
Ultimate
Tensile
in
Tubing
Steel
allowable 1.2.5.1 and
Allowable ultimate tensile stress of welds
Tubing
heat
joint is reinforced. A be assumed as two members.
Weldin_
The tensile ultimate allowable modulus of rupture for flash welds B 1.2.5.2.
Tubing
1961
(including
1.0
Ftu
(based
normalized 1.0
Ftu
(based
normalized
normal-
izing) after welding. Ftu of unwelded material in heat-treated condition: < i00 ksi I00 to 150 ksi >150 ksi
0.9 0.6 0.8
Ftu Ftu Ftu
+ 30
on Ftu
of
tubing) on Ftu tubing)
of
Section B i 25 September 1961 Page 50 B 1.2.5
Flash
Welding
(Cont'd)
Table B 1.2.5.2 Rupture for
Allowable Bending Modulus of Flash Welds in Steel Tubing
Tubing
Allowable bending modulus of rupture of welds (Fb from Fig. B 1.2.2-1 using values of Ftu listed)
Normalized tubing-not heat treated (including normalizing) after welding. Heat-treated treatment.
tubing
welded
after
1.0
heat
Tubing heat treated (including normalizing) after welding. Ftu of unwelded material in heat-treated condition: < i00 ksi I00
B
1.2.6
to
150
> 150
ksi
Spot
Weldin_
ksi
Ftu
for
normalized
1.0 Ftu for tubing
normalized
tubing
0.9 0.6
Ftu Ftu
0.8
Ftu
+
30
Design shear strength allowables for spot welds in various alloys are given in Tables B 1.2.6.1, B 1.2.6.2, and B 1.2.6.3; the thickness ratio of the thickest sheet to the thinnest outer sheet in the combination should not exceed 4:1. Table B 1.2.6.4 gives the minimum able edge distance for spot welds, these values may be reduced structural applications, or for applications not depended upon develop full tabulated weld strength. Combinations of aluminum suitable for spot welding are given in Table B 1.2.6.5.
allowfor nonto alloys
Section
B
1
25 September Page 51 B
1.2.6
Spot
Table
B
Weldin_
1.2.6.1
1961
(Cont'd_ Spot-Weld Uncoated
Maximum Design Shear Strengths Steels a and Nickel Alloys
for
f
Nominal
thickness
thinner
sheet,
of
Material
in.
strength,
150
0.006
.................
0.008 0.010
................. .................
0.012
.................
0.014 0.016 0.018 0.020
................. ................. ................. .................
0.025 0.030 0.032 0.040 0.042
................. ................. ................. ................. .................
0.050 0.056 0.060 0.063 0.071 O. 080 O. 090 0.095 0.i00 0.112
................. ................. ................. ................. ................. ................. ................. ................. ................. .................
0.125
.................
ultimate
ksi and above
ib
70 ksi to 150 ksi
70 120 165 220 270
57 85 127
320 390 425 58O 750 835 1,168 1,275
235 270 310 425 565 623 85O 920
1,700 2,039 2,265 2,479 3,012 3,540 4,100 4,336 4,575 5,088 5,665
1,205 1,358 1,558 1,685 2,024 2,405 2,810 3,012 3,200 3,633 4,052
155 198
tensile
Below
70 ksi
°...........
70 92 120 142 170 198 225 320 403 453 650 712 955 1,166 1,310 1,405 1,656 1,960 2,290 2,476 2,645 3,026 3,440
aRefers to plain carbon steels containing not more than 0.20 percent carbon and to austenitic steels. The reduction in strength of spotwelds due to the cumulative effects of time-temperature-stress factors is not greater than the reduction in strength of the parent metal.
Section
B 1
25 September Page 52
B 1.2.6
Spot Table
Nominal of
thinner
Welding B
v
(Cont'd)
1.2.6.2
Spot-Weld Standards
thickness sheet,
1961
Maximum Design Shear Strength for Bare and Clad Aluminum Alloys a
Material
ultimate
tensile
strength,
ib
in. Above ksi
0.012 0.016
................... ...................
0.020 0.025 0.032 0.040 0.050 0.063 0.071 0.080 0.090 0.i00 0.112 0.125 0.160
.................... ................... ................... ................... ................... .......... , ........ ................... ................... ................... ................... ................... ................... ...................
60 86 112 148 208 276 374 539 662 824 1,002 1,192 1,426 1,698 2,490
56
28 to
ksi 56 52 78 106 140 188 248 344 489 578 680 798 933
1,064 1,300
ksi
20 ksi to 27.5 ksi
19.5 ksJ and belo_
24 56
16 40
80 116 168 240 321 442 515 609 695 750 796 840
62 88 132 180 234 314 358 417 478 536 584 629
aspot welding of aluminum-alloy combinations conforming to QQ-A-277, QQ-A-355, and QQ-A-255 may be accomplished. The reduction in strength of spotwelds due to cumulative effects of tlme-temperature-stress factors is not greater than the reduction in strength of the parent metal.
Section B I 25 September Page 53
BI.2.6
Spot Table
Welding B 1.2.6.3
Nominal thinner 0.020 .022 .025 .028 .032 .036 .040 •045 .050 .056 .063 .071 .080 .090 .i00 .112 .125
(Cont'd) Spot-Weld Maximum Design Shear Strength Standards for Magnesium Alloys a Welding Specification MIL-W-6858
thickness sheet_
of in.
Design
shear
alloys
AZ31B
i Ib
72 84 i00 120 140 164 188 220 248 284 324 376 428 496
................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ................... ...................
aMagnesium combination.
strength
572 648 720
and
HK31A
may
be
spot
welded
in any
1961
Section
B 1
25 September Page 54
BI.2.6
Spot
Weldin_
Table
B
Nominal
(Cont'd)
1.2.6.4
thickness
thinner
sheet_
Minimum Edge Joints ab
Distances
for
in.
Edge
distance_
................... .................... ................... ................... ................... ...................
3/16 3/16 7/32 1/4 1/4 9/32
0.045 0.050 0.063 0.071 0.080 0.090 0.i00 0.125 0.160
................... ................... ................... ................... ................... ................... ................... ................... ...................
5/16
gages
next thinner gage bFor edge distances reductions in the
Fig.
B 1.2.6-1
Spot-Welded
of
0.016 0.020 0.025 0.032 0.036 0.040
alntermediate
1961
will
in.
5/16
3/8 3/8 13/32 7/16
7/16 9/16
5/S conform
to
the
requirement
shown. less than those specified spot-weld allowable loads
Edge
E_
Distances
for
for
the
above, appropriate shall be made.
Spot-Welded
Joints.
Section 25 BI.2.6
Spot
Welding
(Cont'd)
Page
55
(_IO_ o=_) vv
_v
vv
_-"_=
_,"_
_ _
_ _
_
_' _'
19z=v-bb
-'4
"o r-q CO
(_IOE
P_IO)
0
(_Og
P_ID)
_-v-bb _
9_-V-_)_)
0
O_
0 .rq 4_
q(gLOt
.'4 ,a
o c_)
P_ID)
tgC-V-bb
(OOII)
I9_-v-bb
(ooTt)
_-v-bb
o (_gO_
P_ID)
_9E-V-O0
< I
(_o0_)
6_-v-bb
(_0_
o_)
_-v-bb
_
(_0_
_)
_-V-bb
_' _
.'4
_
<
(I909)
LZ¢-V-bb
.'4
(_o_)
_[-v-bb
<
(_o_)
_[-v-bb
_'
=
CO
o .'4 0000 __
•_
_-_
0 _
000000 __
.'4 .'4
<
u_ •"4
0
CO u_
,°•°°....o°.°._ ,.°°°°°,°.°.,°_ °o°°°°°.°°°°.°_ • ° ............
,-q
CO
0
°°•°°°°°°°|
....
°•oo.°,°.._
..............
•"4
•"4
|
....
°,.°,,°o.°,.°°_ •.°°°,_°°..°°°_
_
_
_
_
_
_
_
_
_
_
&&&&&&&&&&&&&&&
_
_
_
_
B
September
_
1 1961
Section
B
1
25 September Page 56 B
1.2.7
Reduction Weldin_
in
In applications doublers are attached
Tensile
Strength
of
Parent
of spot welding where ribs, to sheet, either at splices
on the sheet panels, the sheet shall be determined
Metal
to Spot
intercostals, or at other
allowable ultimate strength by multiplying the ultimate
strength ("_' values where available) by factor shown on Figures B 1.2.7-1 through of the basic sheet efficiency in tension
Due
1961
or points
of the spot-welded tensile sheet
the appropriate efficiency B 1.2.7-4. The minimum values should not be considered
applicable to cases of seam welds. Allowable ultimate tensile strengths for spot-welded sheet gages of less than 0.012 inch for steel and 0.020 inch for aluminum shall be established on the basis of tests.
Section B 1 25 September 1961 Page 57 BI.2.7
Reduction in Tensile Weldin_ (Cont'd)
Strength
of
Parent
Metal
Due
to
Spot
020 in. = U = • u
90
__ _
ww _ _
_._
_
80
032 '0.040 '0.050
in. in. in.
063 080
in. in.
O9O in. "_ _= =
125 in. sheet
70
u
gage
6o 0
0.5
Spot
Spacing
Fig.
1.0
1.5
(Center
2.0
2.5
to Center),
3.0 Inches
B 1.2.7-1 Efficiency of the Parent in Tension for Spot-Welded 301-1/2 Corrosion-Reslstant Steel
Metal H
I00
/ _4a
u c O U
-
'°I///, ,o
in.
o,o,. 050 in. 063
!1171
,kl II1 .r,I
032
in.
o,o ,,.
-/
1090
in.
.125
in.
gage m U
_ [.-(
70_/ 60
sheet
50 0
0.5
Spot
Spacing
Fig.
1.0
1.5
(Center
2.0
2.5
to Center),
3.0 inches
B 1.2.7-2 Efficiency of the Parent in Tension for Spot-Welded 301-H Corrosion-Resistant Steel
Metal
Section
B
1
25 September Page 58
B 1.2.7
Reduction in Tensile Weldin_ (Cont' d)
Strength
of
Parent
Metal
Due
to
Spot
I00 0. 012 0. 020
.4
O. 032
___
9O .4 t&4
J
J= =
_0.
7O
U .4
0. 050 0. O. 040 063
in. in. in.
0. 090 O. 080
in. in.
125 in. sheet gage
6O
_O
0
0.5
Spot Fig.
1.0
Spacing
1.5
2.0
(Center
B 1.2.7-3
2.5
to Center),
Efficiency
of
3.0 inches
the
Parent
Metal in Tension for Spot-Welded 301-A, 347-A, and 301-1/4 H Corrosion-Resistant
Steel
I00
_4J O ;:
90
[O.02O
in.
_ID.040
in.
fILL -I_0.032
.4
in.
O. i00 --0.090 O. 080 0.071 O. 063 O. 050
80
O
?0
\ O _4 m
in.
80 ___
&J
•J
in. in.
6O
5O 0
0.5
Spot Fig.
Spacing
I
1.5 (Center
in: , in. in. in;' in. in.
Sheet
gage
l
l
2
2.5
to Center),
3 inches
B 1.2.7-4 Efficiency of the Parent Metal in Tension for Spot-Welded Aluminum Alloys
1961
Section 25
B
I
September
1961
f_
Page
B
1.3.0
Brazing
Insofar Brazing to
as
is
suitable
metal
is
furnace
allowable tures
the be
the
brazing
or
brazing
base
process
and
applicable
in
brazing
shall
the
to
steel.
by
heating
nonferrous metal.
strength
of
design.
employed is
the
filler The
filler
the
parent
accordance
Where calculated
subjected
Material
Heat-treated
a
base
structural is
in
using
only
produced
capillarity.
which be
is
the
upon the
metal
by
of by
process
silver
the
F that
joint
considered
brazing of
800 °
the
is
coalescence
below
through
of
strength
of
above
shall
brazing
wherein
point
distributed
metal
copper
herein,
a weld
a melting
effect
base
as
temperatures
having
The
discussed
defined
metal
or
59
to
with
Allowable material
Mechanical
tempera-
following:
Strength
properties
normalized
(including normalized) used in "as-brazed"
the
the
of
material
condition Heat-treated
material
(including reheat-treated or
B
after
1.3.1 The
B
of
900 ° are
stress
for
design
for
design
shall
be
shall
be
15
ksi,
for
all
treatment.
shear or
Silver-brazed
3,
heat
Brazin$
allowable
exceeding Class
shear
heat
clearances
inch.
to performed
Brazing
Silver
The that
treatment
brazing
allowable
1.3.2
properties
corresponding
during
Copper
conditions
Mechanical
normalized)
F.
listed
gaps
stress between
areas
should
Acceptable in
parts
Federal
not
brazing
to
be
be
subjected
alloys,
Specification
brazed
with
15
ksi,
provided
do
not
to
temperatures
the
exception
QQ-S-561d.
exceed
0.010
of
Section
B
1
25 September Page 60 Reference: (I)
MIL-HDBK-5, Strength of Metal Aircraft Supply Support Center, Washington 25,
Elements, Armed Forces D.C., March 1959.
1961
SECTION B2 LUGS AND SHEAR PINS
TABLE
OF
CONTENTS Page
B2.0.O
Analysis
2.1.0 2.2.0 2.3.0
of
Analysis Analysis Analysis
Lugs
and
of Lugs of Lugs of Lugs
Shear
with with with
B2-iii
Pins
.....................
Axial Loading ............ Transverse Loading ....... Oblique Loading ..........
1
2 17 23
Section
B
27
1961
July
Page B
2.0.0
Analysis
The
method
applicable loads
in
loads
are
See
Fig.
to the
Lugs
and
described aluminum
axial,
treated B
of
2.0.0-1
in or
Shear
this
steel
Sections
for
section
and
is
lugs.
oblique
B
2.1.0,
description
of
B
semi-empirical The
Transverse
B
2.0.0-1
and
load
load
load
is
considers Each
B
directions.
Oblique
and
analysis
directions. 2.2.0,
Axial
Fig.
i
Pins
alloy
transverse in
2
2.3.0
of
these
respectively.
B 2.1.0
Analysis
of Lugs
with
Axial
.
Tension across be considered.
the
Shear tear-out and are covered curves.
or bearing. by a single
3.
Shear
4.
Bending of the pin. based on the modulus
5.
Excessive
.
of
the
net
pin.
yielding
section.
This
Stress
1961
fail in any of by the methods
concentration
These two are closely calculation based on
is analyzed
The ultimate of rupture. of
B
27 July Page 2 Loadin_
A lug-pin combination under tension load can following ways, each of which must be investigated presented in this section: i.
Section
bushing
in
the
usual
strength
of
the
the
must
related empirical
manner. pin
is
(if used).
Yielding of the lug is considered to be excessive at a permanent set equal to .02 times pin diameter. This condition must always be checked as it is frequently reached at a lower load than would be anticipated from the Ftu
ratio of the yield for the material.
stress,
Fty
to the
ultimate
stress,
Notes: a.
Hoop tension at tip as the shear-bearing failure.
Do
The lug should be checked for side loads (due alignment, etc.) by conventional beam formulas B 2.1.0-1).
Analysis i.
procedure
Compute e/D,
.
Ultimate
(See W/D,
to Fig.
D/t;
load
for
obtain
of lug is not a critical condition, condition precludes a hoop tension
ultimate
B 2.1.0-1 Abr
= Dt,
for At =
shear-bearing
axial
to mis(Fig.
load.
nomenclature) (W-D)t failure:
Note: In addition to the limitations provided by curves "A" and "B" of Fig. B 2.1.0-3, Kbr greater than 2.00 shall not be used for lugs made from .5 inch thick or thicker aluminum alloy plate, bar or hand forged billet.
2
Section 27
B
July
1961
F Page B2.1.0
Analysis
of
Lugs
with
Axial
Loading
3
(Cont'd)
Bushing
W 2
P
.10P
(Minimum to
Fig.
(a)
Enter
(b)
The
Fig.
B
ultimate
B
=
2.1.0-3
Kbr
load for
assumed
misalignment)
2.1.0-I
load
P'bru
side
account
with
for Ftux
e/D
shear
and
D/t
bearing
Abr
to
obtain
failure,
Kbr
P'bru
........................
is (I)
where
Ftu x
,
Ultimate
load
(a)
Enter Fig. material
(b)
The
=
for
B
ultimate
P'tu
Ultimate tensile strength in transverse direction.
tension
failure:
2.1.0-4
with
load
=
Kt
Ftu
for
At
W/D
tension
to
obtain
failure
of
lug
K t
P'tu
...........................
material
for
proper
is
(2)
2
B2.1.O
Analysis
of
Lugs
with
Axial
Loading
Section
B2
July Page
1964
9, 4
(Cont'd)
where Ftu= 4.
Load
for
(a)
Enter
(b)
The
ultimate
yielding Fig.
yield P'y
of B
tensile
the
= Kbry
of
lug
material
lug
2.1.0-5
load,
strength
with
e_
is
Abr
Fly
e/D
to
obtain
Kbry.
..........................
(3)
where
Fty= 5.
Load
for
Tensile
yielding P_ry
of
= 1.85
yield
the
stress
bushing
Fty
Abrb
of
the
in bearing
lug
material.
(if
used):
.......................
(4)
where
Fty= Abrb 6.
Pin
bending
Compressive = Dpt
(Fig.
yield
stress
of
bushing
material
B 2.1.0-1)
stress.
P/2
l'-ITtt p/2 I t2
+(_
P/2
t 3 (a)
P/2-_--
J
P/2
I
P/2
p/2 -_--1 7 (t4/2)
(b) Fig.
B 2.1.0-2
Section
B
27
1961
July
Page B
2.1.0
Analysis (a)
of
Lugs
Obtain (See
r
with
moment Fig.
=
arm
B
the
"b"
as
(Cont'd)
follows:
compute
- -7
for
t2
smaller
(P'u)min
Loading
2.1.0-2a)
_-
Take
Axial
of
and
compute
B
2.1.0-6
the
inner
lug
.....................
P'bru
and
P'tu
for
(P'u)min/AbrFtux
the
(5) inner
Fig.
obtain for
the
near from
b
the
shear
=
and
of
the
plane.
"g" may
is
be
applies
the
Calculate
distributed
to
the
lugs
that
inner
maximum
pin
bending
stress
r"
to
compensates
pin the
and bearing
moment
load
arm
"b"
......................
between
Note
x
which
Calculate
gap
zero.
only
"7"
4
as
,,
(Pu)min/AbrFtu
factor,
+g+7
Where
(b)
reduction
"peaking"
the
with
lug
.
t
Enter
5
the
as
in
(6)
Fig.
peaking
B
2.1.0-2a
reduction
factor
lugs.
bending
moment
M,
from
the
from
"M",
assuming
in
bending
equation
(c)
Calculate an
(d)
My/l
Obtain of
ultimate
Section
B
inadequate take
(e)
strength 4.5.2.
pin
of
strength
analysis
as
Consider
a portion
indicated of
have
any
and
should
the
the
strength, excess
for
the
pin
of
the
lugs
should
it
lug
may
be
strength
by
by
use
show possible to
continuing
to
show the
be
_=haded
area
value chosen equal
to of
to
be
trial
Factors
as
B 2.1.0-2b.
to
and of
inactive
considered
sufficient by
be
Fig.
carry
error
Safety
The
active the
to for
may load
give the
lugs
pin.
Recalculate all lug Factors loads reduced in the ratio actual
(g)
pin
analysis
any
thickness
desired
approximately
(f)
the
the
follows:
by
portion
of
If
bending
advantage
adequate
and
resulting
distribution.
of Safety, with ultimate of active thickness to
thickness.
Recalculate of
Safety
as
follows:
pin using
bending _l reduced
moment, value
M of
=
P "b"
(b/2), which
and is
Factor
obtained
2
Section B 2 27 July 1961 Page 6 B 2.1.0
Analysis
of
Lugs
with
Axial
Loading
(Cont'd) v
Compute
for
the
inner
r =
Take
2
the
based
the
(P_)min/Abr 6 with
This
Factor
+7
reduced
value
excessive
structure.
In
of
=
2t4
and
"r
"
the
(Pu)min
D.
Enter
to
obtain
Then
the
inner
lug,
and
compute
Fig. the
B
should
of
load
not on
be
the
arm
stresses
cases
the
pin
uniformly
in must
across
if
the
lugs
the be
is
(9)
used
outer
2.1.0-
reduc-
moment
.....................
"b"
load
for as
Abr
bending
such the
Safety,
the
2.1.0-2b
P'tu
peaking.
of
introduce
distribute
and
_ ___4 _
eccentricity
Compute (a)
g
for
resulting
to
7.
"
B
thickness,
Ftux
"7
+
P'bru
where
(P_)min/Abr
t3 = -_--
b
of active
Ftux,
factor
Fig.
2t 4
smaller
upon
tion
lug,
adjacent
strong
the
entire
enough lug.
F.S.
following
Factors
of
Safety:
Lug p' bru Ultimate
F.S.
in
shear-bearing P
......
(lO)
p!
tu Ultimate
Yield
F.S.
F.S.
in tension p,
=
-
p
.............
--Y-P
.........................
in
=
(ii) (12)
Pin
(b)
F Ultimate
F.S.
shear
............... (13)
_U
fs
Ultimate
(c)
F.S.
Bushing
(if
in
F b = -_b
bending
............... (14)
used) p,
(15)
i)rx Yield
An
analysis
failure
of
F.S.
for the
in
bearing
yielding bushing
p
of is
not
the
pin
and
required.
ultimate
bearing
Section 27 Page B2.1.O
Analysis
of
Luzs
with
AxiJl
Loading
4-J
cq
O
oO
See
notc,_; on
I_)1 ]ow[,_;,
i_ :,,c,.
(Cont'd)
B
July 7
2
1961
B
2.1.0
Analysis
of Lugs
with
Curve A is a cutoff to be used billet when the long transverse direction C in the sketch.
Axial
Loading
in the plane
B 2
27 July Page 8
1961
(Cont'd_
for all aluminum grain direction
alloy hand forged has the general
Curve B is a cutoff to be used for all aluminum alloy plate, hand forged billet when the short transverse grain direction general direction C contains the parting direction C.
Section
sketch, and for die forging in a direction approximately
bar has
and the
when the lug normal to the
B 2.1.0
Analysis
of Lugs
with
Axial
Loading
Section
B 2
27 July Page 9
1961
(Cont'd)
o9
°
0 1.0
1.5
2.0
2.5
3.0
3.5
w/D Fig.
Legend
on
following
B 2.1.0-4
pages.
4.0
4.5
5.0
Section 27 Page
B
2.1.0
Analysis
of
Lugs
Legend - Figure F in sketch L
=
longitudinal
T
=
long
N
=
short
Curve
B
with
Axial
2.1.0-4-
Loading
L,
T,
N,
indicate
grain
(normal)
1
4130, 4140, 2014-T6 and
4340 and 7075-T6
7075-T6
bar
and
2014-T6
hand
2014-T6
and
7075-T6
2014-T6
and
7075-T6
7075-T6
extrusion
7075-T6
hand
forged
billet
_
36
2014-T6
hand
forged
billet
>
144
2014-T6
hand
forged
billet
_
36
Curve
8630 steel plate _ 0.5
extrusion
forged
die
in
(L,T)
sq.
in.
(L)
billet
_
144
forgings
(L)
(L)
2
2014-T6
and
17-4
PH
17-7
PH-THD
Curve
>
0.5
in.,
_
1
in.
(T,N)
7075-T6
die
forgings
sq.in.
(L)
sq.in. sq.in.
(L) (T)
(T)
3
2024-T6
plate
2024-T4
and
Curve
plate
(L,T) 2024-T42
extrusion
(L,T,N)
4
2024-T4
plate
2024-T3
plate
2014-T6
and
7075-T6
2024-T4
bar
(L,T)
7075-T6
hand
forged
billet
>
36
sq.in.
(L)
7075-T6
hand
forged
billet
_
16
sq.in.
(T)
alloy
casting
Curve
195T6,
(L,T) (L,T) plate
>
I
in.(L,T)
5
356T6
aluminum
July i0
(Cont'd)
transverse transverse
B
220T4,
and
7075-T6
hand
forged
billet
>
16
sq.in.
(T)
2014-T6
hand
forged
billet
>
36
sq.in.
(T)
in
direction
2
1961
Section B 2 27 July 1961 Page ii B 2.1.0
Analysis
Curve
alloy Note:
parting Curve
18-8 Curve
18-8 hard,
Lugs
with
Axial
Loading
(Cont'd)
6
Aluminum (N).
of
plate, for
plane.
die
bar,
hand
forgings,
7075-T6
bar
forged N
billet,
direction
and
exists
die only
forging at
the
(T)
7
stainless
steel,
annealed
steel,
full
8
stainless interpolate
between
hard, Curves
Note: 7 and
for 8.
1/4,
1/2
and
3/4
Section
B 2
27 July
1961
Page B2.1.O
Analysis
of
Lugs
with
Axial
Loading
12
(Cont'd)
2.0
1.5
1.0
Kbry
.5 D
0
11 0
I! 1.0
2.0
e/D FiB.
B 2.1.0-5
3.0
4.0
Section
B
27
1961
July
Page B
2.1.0
Analysis
of
Lugs
with
Axial
Loading
13
(Cont'd) 0
_4
I
i , °
IIIN
0
0 p_
i
I
I
I
IIIIIIl_ ::
(n
-if3
IllI1 0
-o-
IIlll ,--_I c,4 I
0 0
OOo_ iiiii\i\oi\ °'-° Ill/IX\t
S .4
.,-I v
oo iii_o,\ \ -4
oo /_x\ U
'
_
_
---Lfj_-c_-_ -=\ 0 ,-.4
0
C_
cO
_--
,_9
u'_
_
o'_
c_I
,-4
0
2
B2.1.O
Analysis Special I.
of Lugs
with
Axial
Loading
Section
B 2
27 July Page 14
1961
(Cont'd)
Applications
Irregular lug section entire thickness.
- bearing
load
distributed
over
For lugs of irregular section having bearing stress distributed over the entire thickness, an analysis is made based on an equivalent lug with rectangular sections having an area equal to the original section.
1
B
12sec
T
(Sec. B)
(a)
(b) Fig. Dashed
2.
Critical
B 2.1.0-7
lines
bearing
show
equivalent
lug
stress
NASA Design Manual Section 3.0.0 lists the values of the ultimate and yield bearing stress of materials for e/D values of 2.0 and 1.5, these are valid for values of D/t to 5.5. The ultimate and yield bearing stress conditions outside of the above range the
following
(a)
Ultimate obtain Fbr u
for may
geometrical be determined
in
manner: bearing Kbr
from
= Kbr
Ftux
stress: Fig.
For
B 2.1.0-3
the
particular
D/t
and
then
where Ftu x = Ultimate strength direction.
of
lug material
in transverse
e/D,
Section 27
July
Page B2.1.O
Analysis (b)
of
Yield
Lugs
with
bearing
Axial
Loading
stress:
Kbry
from
Fig.
B
Fbry
=
Kbry
=
Tensile yield direction.
With
2.1.0-5.
B
2
1961
15
(Cont'd) the
particular
e/D
obtain
Then
Ftyx
where
Fty x
3.
Eccentrically
located
If the hole the ultimate P'tu
and
ing
the
factor
by
el factor
+
P'y
e2
as in Fig. lug loads
for
+
Actual
the
Multiple
Lug-pin
B 2.1.0-8 (e% are determined
equivalent
in
transverse
lug
less than e2) , by obtaining
shown
and
multiply-
2D
Equivalent
lug
shear
are
The
load
the
total
Fig. Table
B
2.1.0-8
B
having
analyzed
carried
2.1.0.1.
the
geometry
according
by
applied
2.1.0-9 B
lug
connections
combinations
2.1.0-9
(a)
material
2D
Fig.
B
lug
= 2e 2 +
4.
of
hole
is located and yield
P'bru,
stress
each
load and
the
to
lug "P" value
is
among of
shown
the
determined the "C"
in
following
is
criteria:
by
lugs
Fig.
as
obtained
distributing shown from
on
B 2.1.0
Analysis
of
Lugs
with
Loadin_
B
1961
(Cont'd)
-Two outer lugs of equal thickness not less than C t' (See Table B 2.1.0.1)
lugs of thickness
These equal
Axial
Section 27 July Page 16
m
P
_---mm_ P2
P
_
P2
CPI..9,.---V/I/I/I/
These lugs of thickness t" Fig.
B 2.1.0-9
(b)
The maximum B 2.1.0.1.
shear
(c)
The
bending
maximum
formula,
M
load
PI b = -=7
on
the
pin
is given
moment
in
the
pin
where Table
Total
number
lugs both
including sides
OO
"b"
is given
B
2..I.0.1
Pin
Shear
in Table
is given
in Table
of
.35
.50 P1
.28
t' + t" 2
.40
.53 P1
.33
t' + t" 2
.54
P1
.37
t' + t" 2
.44
.54 P1
.39
t' + t" 2
.50
.50
.50
t' + t" 2
.43
ii
equal
P1
by
the
B 2.1.0.1.
2
v
Section
B
27
1961
July
Page
B
2.2.0
Analysis
Shape In
is
Lugs
with
Transverse
Loading
Parameter
order
transverse This
of
17
to
determine
loading,
the
the
accomplished
shape
by
use
ultimate of
of
a
the
and lug
shape
yield
must
loads
be
parameter
for
taken
into
given
by
lugs
with
account.
A Shape
parameter
=av Abr
where
Abr
is
the
bearing
area
Aav
is
the
weighted
=
Dt
average
area
given
by
6 Aav
=
AI,
A2,
Fig.
_+_--_2_
B
A 3
+
and
A4
are
_--_3_
areas
of
+
the
_--A4)'--I
lug
sections
indicated
in
2.2.0-1.
A 3 least of any radial section
_w
_ radius
all
(a)
(b) Fig.
(i)
Obtain
(la)
the
areas
AI,
A2,
Fig.
B
AI,
and
A4
2.2.0-ia
except
that
A I and line.
A4
in should
A2,
are
B
2.2.0-1
A3,
and
measured
A4
as
on
the
(perpendicular a necked be
lug,
measured
to as
follows:
planes the
indicated
axial
shown
perpendicular
in
center
Fig. to
B
in line),
2.2.0-Ib,
the
local
2
B
2.2.0
Analysis (Ib)
of
Lugs
A 3 is hole.
(ic)
the
Thought
with
Transverse
least
area
should
on
always
any
Loading radial
be given
Section
B2
July Page
1964
9, 18
(Cont'd) section
to assure
around
that
the
the
areas
AI, A2, A3, and A 4 adequately reflect the strength of the lug. For lugs of unusual shape (e.g. with sudden changes of cross section), an equivalent lug should be sketched as shown in Fig. B 2.2.0-2 and used in the analysis.
Equivalent
lug
Equivalent lug
'] 50
Fig.
(2) Obtain
the
weighted
B 2.2.0-2
average 6
Aav
(3)
=
(3/AI)
Compute
Abr
(4) Ultimate
Obtain
(b)
P'tru
(6)
load
(a)
Obtain
(b)
P'y
Check
(I/A2)
= Dt
load
(a)
(5) Yield
+
and
P'tru
+
(I/A 3) +
Aav/ for
Ktr u from
Fig.
Abr
Ftux
P'y
the
lug:
from
Fig.
of
Ktry
= Ktry
bushing
Abr
yield
Abr
lug
= Ktru
(I/A4)
failure: B 2.2.0-4
B 2.2.0-4
Fty x and
pin
shear
as
outlined
previously.
450
Section
B
27
1961
July
Page B
2.2.0 (7)
Analysis
of
Investigate
Lugs pin
modifications: [e - (D/2)] distance at
with bending Take
/t _
Transverse as (P'u)min
use for = 90 ° .
the
Fig.
B
Loading
for
axial
[e
-
2.2.0-3
(Cont'd)
load
= P' tru" _/2)]
19
with In
the term
following equation the
edge
r
=
2
B2.2.0
Analysis
of
Lugs
with
Transverse
Loadin_
Ktry-All & steel
1.4
B 2
27 July Page 20
1961
(Cont'd)
125,000 I J
1.6
Section
HT
[_50,000
alum.
HT
alloys_
•
1.2
_'_-
_
8o,
1.0 Ktr u &
x
Ktry 0.8
0.6
0.4
0.2
I
,
I
! _,_I" I
I
0.2
0.4
I
I
i
i
i
A-Approxlmate strength.
0
I
0.6
If
Ktr u
0.8 Aav/Abr
Fig. Legend
on
following
B 2.2.0-4
pages
!
cantilever
is below 1.0
this
1.2
curve 1.4
O00h_
Section 27 Page B
2.2.0
Legend
Analysis
- Fig.
B
Curve
i:
4130,
4140,
Curve
2:
2024-T4 Curve
Lugs
with
Transverse
Loading
(Cont'd)
2.2.0-4
4340,
and
and
2024-T3
8630
plate
steels,
_0.5
heat
treatment
in.
3:
220-T4
aluminum
Curve
17-7
of
alloy
casting
4 :
PH
Curve
(THD)
5 :
2014-T6 Curve
195-T6 Curve
7075-T6
plate_0.5
and
2024-T4
plate
and
356-T6
and
extrusion
2014-T6
hand
2014-T6
and
Curve
in.,
2024-T4
aluminum
alloy
casting
8:
7075-T6
2024-T6 2024-T4
>0.5
7:
2014-T6
Curve
in.
6:
2024-T3 Curve
and
7075-T6
forged 7075-T6
plate>0.5
billets die
36
in.,_
i
sq.
in.
forgings
9:
plate and 2024-T42
extrusion
i0:
2014-T6
and
7075-T6
hand
7075-T6
plate_
1
forged
billet
_16
in. sq.
in.
in.
bar
as
noted.
B
July 21
2
1961
Section
B
27
1961
July
Page
B 2.2.0
Analysis
Legend
Fig. Curve
of
B
Lugs
2.2.0-4
with
Transverse
Loading
2
22
(Cont'd)
Cont'd
ii:
7075-T6
hand
forged
billet
2014-T6
hand
forged
billet>36
All curves Note: The closely
test
by
the and
In
should
case
than
that
the
portion
load
that
may
which of can
data. best
properties no
sq.
in.
sq.
in.
are for Ktr u except the one noted curve for 125,000 HT steel in Fig.
with
obtained
>16
available possibly
the could
the be
Curves
lug
carried
be
ultimate be
for
all
means
of
very
by
very approximately by curve be below curve (A), separate is warranted.
other
the
by
Ktry 2.2.0-4
conservative load
cantilever
load
cantilever (A) in Fig. calculation
(Fig. beam B
agrees
materials
correcting
transverse
carried
under
as B
to be beam
B
have
for some
taken
places. as
action
2.2.0-3).
action
is
been
material
less of
The indicated
2.2.0-4, should as a cantilever
Ktr u beam
\
Section
B
27
1961
July
Page B
2.3.0
Analysis
of
Interaction
In resolve
by
subscripts
the
and
of
used
into "tr"
utilize
the
equation
applied
for
Oblique
subject
and
interaction
ratios be
lugs loading
"a"
separately The
with
23
Loadin$
Relation
analyzing
to
Lugs
2
to
both
to
oblique
axial
and
loading
respectively), results
Ra 1'6
critical
ultimate
and
means
Rtr Io6
of
=
loads
in
yield
loads
i,
the
is
the an
(denoted
two
cases
interaction
where
Ra
indicated for
convenient
components
analyze
by
+
it
transverse
both
and
equation. Rtr
are
directions, aluminum
is
and
to
steel
alloys. where,
for
Ra
ultimate
=
(Axial
component
P'bru Rtr
and
for
Ra
=
Analysis
(i)
applied
from
Eq.
component
(P'tru
analysis
from
load)
I and of
divided
Eq.
by
applied
load)
procedure
(smaller
of
2.)
for
divided
_
=
90
by
deg.)
load:
(Axial
=
of
P'tu
(Transverse
yield
=
and
component
eq. Rtr
loads
of
applied
load)
divided
by
(P'y
from
3.)
(Transverse
component
(P'try
Analysis
from
of
applied
load)
Procedure
for
divided
_
=
90
by
deg.)
Procedure
Resolve
the
applied
and
obtain
the
the
interaction
load
lug
into
ultimate
axial and
and
yield
transverse
Factor
components
of
Safety
from
equation:
F.So
I Ra 1"6
(2) (3)
Check
pin
shear
Investigate modified
+
and
pin as
Rtr 1.6
j0.625
bushing
bending
yield
using
as
the
in
Section
procedure
B
for
2.1.0.
axial
load
follows:
P Take
(P'u)mi
n
= _Ral'6
+
Rtrl.6_
'x
In
the
equation
term the edge the direction
r
0"625 /
=
distance of load
[e
-
(D/2)]
at the value on the lug.
/t of
use "_
for "
the
[e-(D/2)]
corresponding
to
B
2.3.0
Analysis
of
Lugs
with
Oblique
Loading
Section
B
27 July Page 24
1961
(Cont'd)
Reference Melcone, M. A. and F. M. Hoblit, Developments in the Analysis of Method for Determining the Strength of Lugs Loaded Obliquely or Transversely, Product Engineering, June, 1953.
2
SECTION B3 SPRINGS
TABLE
OF
CONTENTS Page
B3.0.O
Springs
.............................................
i
i f
3.1.O Helical Springs ................................. 3.1.1 Helical Compression Springs ................. 3.1.2 Helical Extension Springs ................... 3.1.3 Helical Springs with Torsional Loading ...... 3.1.4 Analysis of Helical Springs by Use of 3.1.5
Nomograph ................................. Maximum Design Stress for Various Spring Materials .................................
3.1.6 Dynamic or Suddenly Applied Spring Loading... 3.1.7 Working Stress for Springs .................. 3.2.0 Curved Springs .................................. 3.3.0
Belleville
Springs
or
Washers
B3-iii
...................
i i 7 i0 12 15 19 24 25 29
_f
Section
B
3
f
19
May
Page
B
3.0.0
SPRINGS
B
3.1.0
Helical
Springs
B
3.1.1
Helical
Compression
Most offer
compression
resistance
The
longitudinal
the
spring
are
desired,
springs and
loads
Where
springs
may
are
have
to
of
of
the
produces
pitch
springs
length
of
which
the
shearing
load-deflection
varying
number
helical
reduce
springs
particular
with
any
open-coil,
acting
deflection
wire.
1
Springs
springs
to
1961
spring.
stresses
in
characteristics
diameters
may
configurations,
be
including
used.
These
cone,
barrel,
hourglass.
Round-Wire
Springs
The
relation
helical
between
springs
formed 8PD = __
f
the from
applied
round
load
wire
and
the
shearing
stress
for
is
.......................................
(1)
_d 3
s where
fs
= shearing
stress
(not
in
corrected
P
= axial
load
D
= mean
diameter
minus
in
pounds
for
per
sq.
inch.
curvature)
pounds of
wire
the
spring
diameter
or
coil
(Outside
inside
diameter
diameter plus
wire
diameter) d
=
diameter
Equation stress but, due
(i)
varies
the
mine
the
Fig.
B
torsion
is
the
wire
in
based
on
the
directly
actually, to
of
the
with
stress
is
curvature.
maximum
and
This
direct f
: max
The
shearing
3.1.1-i.
f
: k s
assumption
distance
greater stress
stress
correction
shear. k
the
inches.
The 8PD _d 3
on
that from
the
inside
correction for
static
factor
gives
equation .,..°................,--.,."
for
the
the
of
factor loads
of
the (k)
is
the the
magnitude
center
cross used
found
effect
maximum
of
the
section to
deter-
in of
thc_
wire;
both
stress
is (2)
Section B 3 December 3, Page
B 3.1.1
Helical
Compression
Springs
2
(Cont'd)
where
k = kc
kc
=
Cl=
+
4C 1 -
0.615 Cl i
Stress concentration of direct shear
factor
plus
Stress
factor
due
concentration
Ratio of mean diameter diameter of the bar or
,:I
of helix wire
the
effect
to curvature
to
the
2.1 ! .
.1.9 o
AJ U
I
1.
0
1
X
0
\
0
=
1.5
_
1.
0 °_
1.1
U
=
\
\ _
1.3
r
,
0 I
o'1
r_
•
lo
0
I
2
3
4
5 SprJ:n_ Fig.
6
7
index, B
8 D C l = _[
3.1.l--!
9
i0
Ii
12
1969
Section 19
4
Page B
3.1.1
Helical
Stress
Compression
correction
for
Corrections in
elastic
This from
for
must
is
Section
be
made
of
spring
made
various
to
to
3
(Cont'd)
account
for
materials
the
materials
3.0.0
3
1961
temperature.
properties
correction
Values
Springs
B
May
allowable
at
the
Design
for
the
relation
in
elevated
stress
various
of
changes
at
strength
and
temperatures.
of
the
temperatures
spring
may
be
material. obtained
Manual.
Deflection
The when
formula
using
round
wire
8NPD
in
between
helical
deflection
springs
and
load
is
3 . ........................................
_)-
(3)
Gd 4 whe r e = total N
=
G
= modulus
number
The by
deflection of
rigidity
deflection
combining
may
Eqs.
affect
deflection
in
(I).
Eq.
coils
of
(I) to
The
also
and an
be
in
Stress
appreciable
expression
Nf
given
(3). for
terms
degree, the
of
the
concentration and
no
deflection
shearing usually
stress does
not
is
needed
adjustment
is
_D 2
_
s
......................................... (4)
Gd
Sprin$
rate
The to
spring
deflect
the
previous
rate
(K)
spring
a
equations,
the
is
defined
unit
as
length.
spring
the By
rate
may
amount
proper be
of
force
required
substitution
shown
to
of
the
be
d4G K
.......................................... (5)
=-
8ND 3
Bucklin$
A buckle
of
Compression
compression under
ever,
the
sion
spring
spring
relatively
problem operates
Springs
of
which low
buckling inside
is
loads is a
long in
of
cylinder
compared
the little or
same
to manner
consequence over
a
rod.
its as
diameter a if
will
column. the
How-
compres-
Section 19 May Page 4 B 3.1.1
Helical
As
the
Compression
critical
Springs
buckling
load
B 3 1961
(Cont'd) of a colum
is
dependent
upon
the
end fixity at the supports, so is the critical buckling load of a spring dependent upon the fixity of the ends. In general, a compression spring with ends squared, ground, and compressed between two parallel surfaces can be considered a fixed-end spring. The following formula
gives Pc
the
critical
= JKL
buckling
load.
............................................
(6)
where Deflection J L K
one
= factor from = free length = spring rate
Fig. B 3.1.1-2 of spring (See Eq. 5)
Fig. B 3.1.1-2 (curve i) end on a flat surface and
Sprinss
of
Free
Length
is for squared the other on a
buckling for a squared and ground pressed against parallel plates. with which the user must contend.
Helical
=
Rectangular
and ground springs with ball. Curve 2 indicates
spring both This is the
ends most
of which are comcommon condition
Wire.
When rectangular wire is used for helical springs, the value of the shearing stress can be found by use of the equations for rectangular shafts. A stress concentration factor is applied in the usual way to compensate for the effect of curvature and direct shear. For the springs in Fig. B 3.1.1-3 (a) and (b) the stresses at points A 1 and A 2 are as follows:
f
kPR = -s 51bc2
for
point
A1
........................
(7)
for
point
A2
........................
<,8)
kPR f
values
= -s 5 bc 2 2
for51 The
stress
and52
for
various
concentration
Fig. B 3.1.1-3(a) and concentration factors value for rectangular
b/c
factor
ratios
are
should
be
found applied
to point A 2 in Fig. B 3.1.1-3 of Fig. B 3.1.1-1 may be used wire.
in Table for
B 3.1.1-1.
point
A 1 in
(b). The stress as an approximate
Section 19 May Page
B 3.1.1
Helical
Compression
Springs
1
B 3 1961
5
(Cont'd)
2
.7 Springs right of buckle.
above
and
the
curves
to
will
the
I0
II
.6
.5 _I_ II
\\
\
.2
\
.1
0
,1, 0
3
4
5 Free Mean
6 Length Diameter
Fig.
7 _ L D
B 3.1.1-2
8
9
12
Section B 3 19 May 1961 Page 6 P
AI
P
(a) Sprin
8
index,
C 1 =- C Fig.
b/c
_2
(b)
2R Spring
2R C I =-_-
index,
B 3.1.I-3
1.00
1.20
1.50
1.75
2.00
2.50
3.00
4.00
5.00
6.00
8.00
I0.00
oo
.208
.219
.231
.239
.246
.258
.267
.282
.291
.299
.307
.312
.333
.208
.235
.269
.291
.309
.336
.355
.378
.392
.402
.414i.421
.1406
.166
.196
.214
.229
.249
.263
.281
.291
.299
.307
Table
The equation deflection (5) is
for
the
2_pR3N
relation
between
from
Table
B 3.1.1-1
b and c are as shown in Fig. B 3.1.1-3 R is the mean radius of the spring N is the number of coils G P
is is
the the
the
load
(P)
and
the
.......................................... (9)
where: obtained
.333
B 3.1.I-i
_Gbc 3
is
.312
modulus of axial load
rigidity
Section B 3 19 May 1961 Page 7 B 3.1.2
Helical
Extension
Springs
Helical extension springs differ from helical compression springs only in that they are usually closely coiled helices with ends formed to permit their use in applications requiring resistance to tensile forces. It is also possible for the spring to be wound so that it is preloaded, that is, the spring is capable of resisting an initial tensile load before the coils separate. This initial tensile load does not affect the spring rate. See Figure B 3.1.2-1 for the loaddeflection
relationship
of
a
preloaded
helical
extension
spring.
Spring with initial Load jfJ / Initial
i_____Spring
/
initial
without tension
tension J
. Deflection
Fig.
Stresses
and
B 3.1.2-1
Deflection
In helical extension springs, the shape of the hook or end turns for applying the load must be designed so that the stress concentration effects caused by the presence of sharp bends are decreased as much as possible. This problem is covered in the next article. If the extension spring is designed with initial tension, formulas (I) through (9) from Section B 3.1.1 are valid, but must be applied with some understanding of the nature of the forces involved.
Section B 3 19 May 1961 Page 8 B
3.1.2
Helical
Stress
Extension
concentration
Springs
in hooks
on
(toni'd) extension
springs.
p
P
t
d
A r3
r4 r2
(a)
(b) Fig.
a.
Bending
Stress
Fig. (P).
load
B 3.1.2-2(a) The bending
fb where the
k
is
32PR =--k _d 3
the
ratio
simplified
fb
4P +-_d 2
correction
bending A is:
moment
(PR)
due
factor
obtained
from
to
the
(zo)
................................
= radius
of center
equation
is:
= _d 32P___RR . /rl 3 L_ 3 )
r 3 = inside
always higher
illustrates the stress at point
Fig.
B 3.1.2-3,
using
2rl/d. rI
A
B 3.1.2-2
radius
line
of maximum
curvature.
.................................
(ii)
of bend.
The maximum bending stress be on the safe side and, than the true stress.
obtained by under normal
this simplified form will conditions, only slightly
Section B 3 19 May 1961 Page 9 B 3.1.2 b.
Helical
Torsional At
Springs
(Cont'd)
Stress
point
portion maximum
Extension
A',
Fig.
B
3.1.2-2(b),
where
the
bend
joins
the
helical
of the spring, the stress condition is primarily torsion. torsional shear stress due to the moment (PR) is 16PR
f
C1
=
- I
_
4C I
f
(12)
4
2r 2 d
simplified
This
4CI
........................... s = _d 3
A
/
The
form
similar
to
the
one
for
bending
is
................................
=
s
_d 3
will
also
(13)
_4 give
safe
results.
IIIIII IIIIII 4
3
\\
k
i_-
k_k 2 I
0 0
1.5
2.0
2.5
3.0
R_=D c d
"-
Fig.
_D h
B 3.1.2-3
3.5
4.0
4.5
Section B 3 19 May 1961 Page I0 B 3.1.3 helix.
Helical
Springs
A helical spring Such loading,
torsional loading acts as a bending Fig. B 3.1.3-I(b).
with
Torsional
Loading
can be loaded by as shown in Fig.
a B
of a shaft. The torque moment on each section The stress is then
torque about the axis 3.1.3-I(a), is similar about of the
of the to the
the axis of the helix wire as shown in
Mc fb = kn T-
where
the
stress
..............................
concentration 3CI 2
kl
=
- CI
3CI(C I
- 0.8 - i)
3CI 2 + C I k2
C1
=
3CI(C I
2R =--h
- 0.8 -I)
factor,
Kn,
is
' .........
given
(14)
as
inner edge
Rectangular cross section wire
outer edge
; "h" is the depth to the axis.
of
section
perpendicular
2 4C 1 k3
=
- CI
4CI(C I
-i
inner
- I)
"
edge
Round cross
outer
wire
2 4C 1 k4
=
+ C1
4CI(C I +
-
1
i)
section
edge
2R
Cl = T
Angular
deformation
The deformation of the wire in the spring is the straight bar of the same length "S'_ The total angular between tangents drawn at the ends of the bar is:
same as for deformation
MS E1 Angle
8
in
some
........................................ (15) cases
may
amount
to
a number
of
revolutions.
a 8
Section
B 3
19 May 1961 Page i I
B3.1.3
Helical
Springs
with
Torsional
Loadin$
(Cont'd)
7
I
M
h
\
/
x k
\
/
f 4--
Fig.
J
B 3.1.3-1
or
d
Section B 3 19 May 1961 Page 12 B 3.1.4 Fig.
Analysis
of
l_elic_Jl
S[_rings
by
Use
of
Nomograph
The procedure for using the nomographs B 3.1.4-2) for helical springs are as
(Fig. B follows:
I.
Set
the
appropriate
wire
diam.
on
the
"d"
scale.
2.
Set
the
appropriate
mean
diam.
on
the
"D"
scale.
3.
Connectthe factor:
two
points
and
read
a.
For tension and compression on Fig. B 3.1.4-1.
b.
For
torsion
springs
read
.
Set the correction appropriate "y" or and Fig. B 3.1.4-2.
5.
Set the "calculated" on the "f" scale.
6.
Connect the two point_, from corrected stress on t le (f')
the
curvature
springs
the
"k"
factor, obtained "k" scale to the
(Eq.
I or
Eq.
3.1.4-1
correction
read
scale
and
the
on
"y"
Fig.
in step 3, on right of Fig.
14 with
steps 4 scale.
and
5,
kn
= I)
and
scale
3.1.4-2. the B 3.1.4-1
stress
read
the
Section 19
May
Page
B
3.1.4
Analysis
of
FIBER
Helical
Springs
STRESS
CORRECTION
Helical Find
Correction From
Spring
Extension
and
Factor
by
FOR
of
Nomograph
Left
3
1961 13
(Cont'd)
CURVATURE
Compression Using
Index
Use
B
Springs
Correction
Factor
Found
on
Half of Chart--Determine True Fiber Stress
f'
300,000
-I
0 OZ157'
d 0.031
i
O_
0 4.1 U
,ZO .
OO_
,19
-3
"_
2OODOO]
I_I00..4 02 0
. "17
04)
00!
._e
c ",',
007
-_5
_
009
-13
]
| 031 |
r O.
"t2
_
05_ 0
064 4
_-L, _ °_".I :_
123
I:: 6
> I-., :3 r.D
.,-1
121,, L.]9 r._
J-
01)
0 _D
1.18 116-,I
6O/)O 13
t i55" '9
6
1145-. _J
L125. ,I0
°'[
]
7
,_
5o_oo
a
4 0,000.
4_000 r._
12, 8
I.II-,
II CO
0..
1,,.= _U (3.,
°r,4
II0.
,12
109-
_13
'9 .10
!
O -,,-I r/)
7
0
C 0 -=,-I
r.o
3opoo
0 E'_
1085._.14 1.084
15
108'
16
I:: -.4
C ,,-.4
u) m O_
2_000
20po0
(,_ (t,,t 4,.I rJ3 lo,.) .,-4
_000
"_
Fig.
B
3.1.4-1
Section
B 3
19 May 1961 Page 14
B 3.1.4
Analysis
of
Helical
FIBER
Springs
STRESS
CORRECTION Torsion
Find
Correction
by Use
Factor
FOR
of
Nomograph
(Cont'd)
CURVATURE
Springs Using Correction Factor Found Left Half of Chart--Determlne True Fiber Stress
on
d
zoo_ooo.
0021
'_-_ D 0.0
"l
OO3 t
•
16£0' 0
0000_00_
_U _
0,I
=
g
1.4ei/ 1.410,
o
L367,
_-J
1332,
k
2OOpOOr._ Of" t61_ c,..) ¢J
.
°
_4Z. S tiN" IJ3@ t25,
_1
3":
05" 06-
S-.
0.7£
s7-
00_OO120-
701)00-
4.-)
I I1_1, #
04-
i 115 iiioi lOT.
t_ :;> I.
, 8 IN:
7_oo-
o,
0 ¢..)
6opoo.
_oooIK)-
_J I
rj I0_"
_000
-
5QOoo.-
o in =
4o/:X_-
4O0OO--
liosO-ll 0
09-:.
m-
1077-
II
=
30_O00-
L072. 12 20-
3oooo
m (I)
I.O?o. i3 1066. 14
zo.ooo-
1064' i5
2-
3d
I,_7,
I#
I055"
Ill _9
Fig.
zopoo-
B 3.1.4-2
.__
Section
B
19 May
1961
Page
B3.1.5
Maximum
Design
Stress
for
Phosphor Maximum
Various
Bronze Design
Sprin_
Materials
Spring Wire Stresses
120
I00 P-4
| m m U
80
&J
-,-4
60
4O
2O
0 • Ol
.02
•04
.I0 Wire
_
Fig.
Diameter
B 3.1.5-i
.20 - Inches
•40
15
3
Section B 3 19 May 1961 Page 16 B3.1.5
Maximum
Design
Stresses
for
Various
/ /
/ !
/ IS'_ - sse=]S
Fig.
u_3saG
B
mnm3x_]
3.1.5-2
Spring
Materials
(Cont'd)
Section 19
May
Page
B
3.1.5
Maximum
Design
Stresses
for
Various
S
Materials
I II
IS)i -
-
sso=3S Fig.
u_ls_ B
3.1.5-3
mnmlx_i
B 1961 17
(Co_
I
I I I1"
0
3
Section
B 3
19 May 1961 Page 18 B 3.1.5
Maximum
Design
Stresses
15DI - ss_z_S
Fig.
for
Various
uSTeo(]
Spring
Materials
v
(Cont'd)
mnmTxe14
B 3.1.5-4
_-
Section 19
B
3.1.6
Dynamic
A
freely
delivers
or falling
a dynamic
forces
may
Suddenly
be
or
Applied
weight,
or
impact
load,
analyzed
on
the
Spring
moving
basis
that
force.
of
May
3
1961
Page
19
a
structure
Loading
body,
or
B
strikes
Problems
the
following
and
no
involving
such
idealizing
assumptions: 1. takes
Materials
place
at
inelastic
2.
The
Then,
its
may
the
on
be
of
the
(a)
(b)
a
system or
of
assumed
completely
the
resisting
system,
For
very
slowly
P K --
For
dissipation
the
supports
directly
of owing
For
the
of
conservation
instant
the
of
a moving into
following
to
2P(S
G
the
energy,if
body
the
is
internal
formulas
will
stopped, strain
apply:
loads
° ........
°
° °
° ...........
(16)
° ° °
applied (17)
loads
_2
local
force.
2P K (c)
energy to
proportional
applied
transformed
° ......
suddenly
is
principle at
applied
o .....
loads
at
statically
the that
is
b
or
materials.
of
basis
energy
of
impact
dynamically
further
kinetic
energy
of
deflection
of
elastically,
point
deformation
magnitude
it
behave
the
=
dropped
+ K
_)
from
a
given
height
.................................
(18)
where: =
Total
deflection
K
= Spring
P
= Load
S
= Height
The
rate on
spring load
following
is
dropped.
problems
will
illustrate
which
compresses
such
conditions
and
their
of
load,
solutions:
Problem
I.
Given determine weight.
a the
spring maximum
load
and
one
deflection
inch
for
resulting
each from
pound a
4
lb.
Section
B 3
19 May 1961 Page 20
B 3.1.6 (a)
Dynamic Case The
weight P K
since Case
Applied
Loading
(Cont'd)
is
laid
4 i = 4 K
_
i
gently
in.
from
maximum
on Eq.
load
the
spring.
16
= 4
lb.
dropped
on
2:
The
weight
is
suddenly
5 = K2__[P ffi2(4)i = 8 maximum (c)
Spring
i:
5 =
(b)
or Suddenly
Case
load
= 8
in.
from
Eq.
the
spring
from
zero
height.
17
lb.
3:
The weight inches. 52
is dropped
= 2P(S + 5) K
=
2(4) 1
on
the
(12 +
spring
5)
from
from
Eq.
a height
of
12
18
or 5
2
- 85 =
8 +
maximum
- 96
= 0
_82
+
4(96)
2 load
14.6
=
14.6
in.
lb.
From the maximum load produced, Eq. 2 section B 3.1.1 may be used to calculate the stress produced. This should be within the limits indicated on Fig. B 3.1.5-1, B 3.1.5-2, B 3.1.5-3 and B 3.1.5-4. Problem
2.
For many uses it is necessary to know the return speed of a spring or the speed with which it will return a given weight. A typical example of this problem could be stated as follows: a spring made of 5/16 in. by 3/16 in. rectangular steel contains 4 3/8 total coils, 2 3/8 active coils, on a mean diameter of 1 5/16 in. The spring compresses 5/32 in. for 200 lb. load. If the spring is compressed and then instantaneously released, how fast will it be moving at its original free length position of 1 21/32 in.? The solution is as follows:
Section 19
May
Page
B
3.1.6
Dynamic
Weight
or
per
Suddenly
turn
=
Applied
_(i =
.0685
(2
weight
To
3/8)
of
this
active
active
.0542
weight,
if
we
lb.
coils
(1/3)
add
the
each
=
.0542
Ib
(one-third
cu.
in.
coil
of
the
the
moving
involved.)
dead
coil
at
the
(.0542
+
.0685)
end
plus
any.
The
potential
energy
of
a
distance
moved,
or
1/2(200)(5/32)
kinetic
per
in
equivalent
the
lb.
steel
material
1961
21
(Cont'd)
of
The
times
Loading
5/16)(3/16)(5/16)(.283) .0685
spring
lb.
Spring
B
total
energy
equals
Mass
= Weight g
weight
1/2
spring
is
Mv 2 wherein
is
equal
to
=
(M)
is
1/2
15.6 the
0.1227
lb.
the
in. mass
total
lb. and
load
The (v)
is
the
velocity.
or
32.16
where
g
is
the
gravitational
acceleration,
ft/sec./sec. .1227v
Therefore
15.6
2
=
or
v
=
314
in/sec
2(32.16)(12)
Often such
springs
instances
entire
energy.
typical
problem
Problem
3.
A a
30
spring
lb. that
KINETIC
are
springs In
a
of
this
weight has
used
to
absorb
must
be
designed
few
cases type
has
a
a
spring
energy so
partial
absorption
I = _ Mv 2 =
velocity rate
of
of
i0
4
ft.
ib/in,
30(4)(4) 2(32.16)
=
7.46
ft
or
7.46(12)
=
89.52 i
Spring
Spring
energy =
rate energy
in.lb.
load
times
deflection
= per
inch
= _ Kb 2 2
impact. they is
In
will
most
absorb
tolerated.
the A
follows.
per
second.
be
compressed?
ENERGY
K.E.
Load
of that
times =
deflection
89.52
in.
lb.
lb.
How
far
will
3
Section
B 3
19 May Page
B 3.1.6
Dynamic
!
or
Suddenly
Applied
Spring
Loading
1961
22
(Cont'd)
I08 2 = 89.52
2 62 = deflection,
6
17.90 = 4.23
in.
If velocity
springs are used and acceleration
Problem
4.
to propel applies.
a mass,
a parallel
attack
Let it be required to find the spring load that will l-lb. ball 15 ft. vertically upward in 1/2 second. It is that the spring can be compressed a distance of i ft. In
order
a certain
to
travel
initial
wherein:
in
This
1/2
second
can
be
the
found
Force
as
load
must
a
have
follows:
2
ft.
= ]--+
per
sec 2
2
= 38.04
ft.
per
sec.
2
Spring
l-lb.
propel assumed
gt
h = height g = 32.16 t = time
v
ft.
velocity.
h =--qt
V
15
using
= v2 _.(__._.. 04) 2 2-_ = 2 "T_l)
acceleration equals
mass
723(1) F = 32.16
times
= 22.5
acceleration
= 723
Spring velocity free height.
at
ft/sec/sec
so
Ib. avg.
The average spring pressure is 1/2 the total load. Hence the spring will compress i ft. with 2(22.5) or 45-Ib. of load. Often, it is desired to know how high the weight would be propelled. This can be determined by equating the work performed by the spring to the work of the falling weight; thus work equals force times distance.
would
In
the
spring
we
have
45 2
In
the
weight
we
have
l-lb.(h)
Hence l(h) be thrown.
= 45 2
(I)
(i)
= 22.5
ft.
ft.,
the
height
to which
the
weight
Section B 3 19 May 1961 Page 23 B 3.1.6
Dynamic
If we
we must distance
or Suddenly
were to apply _2 = 2P_S + 8) K
remember traveled
Therefore, Substituting
(S) by h
Applied
the to
previous the
g
in
i = 2(1)h 45 h
= 22.5
ft.
Loading
(Cont'd)
formula
springs,
is the height the weight is
= S +
Spring
this
the load (S + _). case
is
dropped.
The
total
Section B 3 19 May 1961 Page 24 B 3.1.7 If
Working the
Stress
loading
on
for the
Springs spring
allowance must be made in the tion. A method of determining particular spring is dependent physical
properties
of
the
is
continuously
fluctuating,
due
design for fatigue and stress concentrathe allowable or working stress for a on the application as well as the
material.
Section
B
3
19 May 1961 Page 25 B
3.2.0
Curved
Springs
The analytical springs is
expression
f = +P+A - +AR M----(I
in which B 4.3.1.
the
quantities
p
-_-_vTN +
determining
l__y__Z R+y
have
Displacement of curved Castigliano's theorem.
for
the
stresses
for
curved
..........................
same
springs
meaning
defined
is determined
_-
_N _d_+
_M
_N N _P ds +/ k_
/V
GA
_V _P
ds
_M _ ds
hy
in
section
use
of
M EAYoR
+
(19)
_M _p
ds
..............
(20) P
in which N
= normal
force
E = Modulus of Elasticity G = Modulus of Rigidity A = Cross-sectional area R = Radius to centroid ds
= Incremental
length
Yo = ZR Z+I
= - AI y =
_
"--Y--dA R+y
is measured
from
the
centroid
These expressions for stresses and displacements are quite cumbersome; therefore, correction factors are used to simplify the analysis. The correction factors (K) used to determine the stresses are given in section B 4.3.1. The expression for the stress is
f = K Mc T See
Table
B 4.3.1-1
Deflection given in Table combination of
(21)
............................................ for
values
of
correction
factor
formulas for some basic types of B 3.2.0-1. Complex spring shapes two or more basic types.
K.
curved may be
springs analyzed
are hy
Section 19 May Page B3.2.0
Curved
Sprln_s
{Cont'd) Table
Spring
26
B 3.2.0-I
types
Deflection
A B = I_R_3 3EI where
(m + _)3
(x = _ for
finding
K
finding
K
finding
K
B
8 -
C
p
3El
where
_
-
3El
where
_
+
= _2 for
8
+
= _2 for
P P D 3
where
*
ttl =
u
R
_
= _2
for
finding
K
B 3 1961
Section
B 3
19 May 1961 Page 27
B 3.2.0
Curved
Springs
(Cont'd)
0°
i
i
0.2 r,,i,--
0.1
0
_1
i
I
I
I!li
0. i
]ililllllllJllllllllnllHl[
0.2 0.15
0.3
fill
llllllil
III:IIIH
0.5 0.7 .9 0,4 0.6 .8 1.0 IJ
Ratio
Fi_.
B
R
3.2.0-2
1.5
2.0
3
4
5
6
8 7
I0 9
Section B 3 19 May 1961 Page 28 B 3.2.0
Curved
For
Springs
close
flat
(Cont'd)
approximations,
the
round
_
h R
<0.6
Figure B 3.2.0-3 spring at point A
d R
<0.6
is is
a typical calculated
u2 =
0.6
_
2.5"
The
curved spring. as follows:
Characteristics
h _<
should
U1
"_
deflection
u2
4
_i i'_i/_i
= _
RI
= R2
=
z R 2 _//_/
i"
_2 = 2 uI =
A
i"
UI
P Fig.
Solution
of
_B
h _I
be met:
wire wire diameter radius of curvature
Spring
conditions
springs spring thickness radius of curvature
the
following
B 3.2.0-3
-
The solution involves two basic types (type B and A of Table B 3.2.0-1). Type A solution is used for that portion of the spring denoted by subscript (2), and type B solution is used for that portion of the spring denoted by subscript (I). Correction
factor,
__Ul= _i = I rI I '
_
=
_A
at
= 2KIPRI3< 3El
3F.I 28.4P E1
(from
180 °
i _i
Deflection
K
Fig.
B 3.2.0-2)
KI =
.80
' =
point
u2 .... r2
2.5
_2
90o,
2.5 i
90o
A
m + _i _-
3
i + _
+
K2PR23 3E_
3El
< m + _2
2.5 +
3
=
K2
=
.86
Sc:c-t.o.-_ 15 x,-Pas_ B 3.3.0
3e!leville
Sprln_s
or
_ 3 ' "q7_
29
Washers
Belleville type springs are used where space requirements necessitate high stresses and short range of motion. A c_pleuc derivation of data that is presented in this section will be found in "Transactions of Amer. Soc. of M_ch. Engineers", May 1936, Volum_ 58, No.
4,
by Almen
and
Laszlo.
2a
=O.D.
!_' 2b i
i'D'=
I Fig.
B
3.3.0-I
in
inches
Symbols P = Load in pounds 5 = Deflection in inches t = Thickness of material
f
h = Free height minus thickness in inches a = One-half outside diameter in inches E = Young's f -- Stress
modulus at inside
k
= ratio
of
v
= Poisson's
O.D. _ I.D. ratio
circumference a b
M, C I and C 2 are constants which can be taken from the Fig. B 3.3.0-4, or calculated from the formulas given. The
formulas
are:
6
M=
(k-l) 2
logek
(22)
k2
]
6
o
CI "
_
chart,
logek
logek
, o e o,
o o,
• i o • oe
Io
(23)
• • I * • e,
- 1 j i
3 po,o,eoooo,eo
C2 - _
/
logek
Jot,,,,
_"
_"
(24)
Section 15 March, Page B 3.3.0
Belleville
The
Sprin_s
deflection-load
P The
•
orWashers
stress
h
formula
is
as
--_
constants
h
-
6
is
t + t
follows:
(,.
] ...............
: Before using these formulas to calculate a sample problem, there some facts which should be considered. In the stress formula it
are is
I973
30
(Cont'd)
formula..usin_._._he_.e
(l "- ',Z )M_ZbZ
B .3
possible
large. changed maximum
fiber
for
the
term
(h - 5/2)
When this occurs, the term to read Cl(h - 5/2) - C2t. stress is tensile.
For a spring life stress of 200,000
this might be slightly because the stress is
of less p.s.i,
to
become
negative
if
inside the brackets Such an occurrence
(5)
is
should be means that
the
than one-half million stress cycles, a can be substituted for f, even though
beyond the elastic limit of the steel. This calculated at the point of greatest intensity,
is
which is on an extremely small part of the disc. Iu_edlately surrounding this area is a much lo_er-stressed portion which so supports the hlgher-loaded corner that very little setting results at atmospheric temperatures. For higher operating temperatures and longer spring llfe lower stresses must be employed.
.040
Fig in.
1.41
It the
B 3.3.0-2 displays thick washer for is noted (from load-deflectlon
the various
Fig. B _urve
load-deflection h/t ratios.
characteristics
3.3.0-2) that for ratios is somewhat similar to
of that
of
(h/t) under of other
conventional springs. As this ratio approaches the value of 1.41, spring rate approaches zero (practically horizontal load-deflectlon curve) at the flat position. When the (h/t) ratio is 2.83 or over there lower (h/t)
I$ a portion of the curve load. This is illustrated ratios of 2.83 and 3.50.
certain point, will to return it to its The deflectlon illustrated
washers may characteristics in
Fig.
B 3.3.0-3.
the
where further deflection produces a in the curves for the washers having Such a spring, when deflected to a
snap through center original position. sometimes
a
be desired.
stacked The
and
require
so as accepted
to
a negative
obtain methods
the are
loadlny
load-
Section B 3 19 May 1961 Page 31 B 3.3.0
Belleville
Sprin_s
or Washers
(Cont'd)
q
O O _O
Fig.
B 3.3.0-2
Section
B 3
19 May 1961 Page 32
B 3.3.0
Belleville
Series
Springs
or Washers
(Cont'd)
Parallel Fig.
Parallel
- Series
B 3.3.0-3
As the number of washers used increases, so does the friction in the stacks. This is not uniform and could result in spring units which are very erratic in their load-carrying capacities. Belleville springs, as a class, are one of the most difficult to hold to small load-llmlt tolerances.
v
Section 15 April Page B3.3.0
Belleville
Springs
or Washer
B 3 1970
33
(Cont'd)
/
2.3
/ 2.2 C2/" f
2.1
/ 2.0
1.0
/ /
1.9
0.9
#'
/ C1
/
1.8
and M
1.7
j #.
v
i
1.6
/
/
f
/
C2
0.8
/
/
/
0.7
/
M
/" 0.6
/
/ / 1.5
/
! 14
! / /
1._
cl
i
/
/ i
/
/ /
/ /
F '
1.2 l I.I
I
/
/ /// /
/
/I
lO ]// 1.2
1.0
l
[ 1.6
0 2.0
2.4
2.83.2
3.6
4.04.4
4.8
O.D.
Ratio
of
, k I.D.
Fi_.B
3,3.0-4
Belleville
Spring
Constants:
M,
C Iaud
C2
Section B 3 15 April 1970 Page 34 B 3.3.0 Example
Belleville
Sprlnss
or Washers
(Cont'd)
Problem
Given: O.D. I.D.
= 2" = 1.25"
Load
to
deflect
.02"
= 675
lb.
Required:
Fig.
Determine
required
thickness,
t and
dimension
B 3.3.0-5 h.
Solution: k
= O.D. I.D.
-
2.00 1.25
= 1.6
The constants M, C 1 and C 2 may be taken from the Fig. B 3.3.0-4 or may be calculated as follows:
M
6
=
(k-l) 2 = k2
logek
The
0
CI " _
logek
C2
logek
_
6
--
Deflection-Stress
in
(1.6
3.14(0.47)
[l--_gek - i
curves
I =
- 1.0) 2 = 0.57 (1.6)2
0 El01.0 ii 1123
3.14(0.47)
= 3.14(0.47)
0.47
2
Formula
(1-v2)M,2 may
be
h
written
"
in
fM'2(i"v2)
the
CIE_
+
form
_
C2
2
CI
t
r_
Section 15
Page B
3.3.0
Belleville
Assume
Sprinss
that
the
f
or
washer
=
200,000
E
=
30,000,000
v
=
.3
=
0.02
=
0.57
=
1.123
C 2
=
I. 220
a
=
1.00
Washers
shown
B
April
3 1970
35
(Cont'd)
in
Fig.
B
3.3.0-5
is
steel
psi
max
M
C
psi
in.
i
try
t =
.04
and
200,000 h
(half
solve
for
outside
dia.,
dimension
t h 2 t .57jkl_.32j _i _t
x +
inches)
h
.02
1.220
2
1.123
(04)
__
°
(1.123)(.02)(30)106
This formula
value to
for
obtain
(h)
the
is
then
substituted
.120
_-
in
the
t3
]
in.
deflection-load
load.
e
(I_E2)Ma21
30(106
_h
- _>_h
- _ _
t +
) (. 02) 2 [('121-'01)('121-'02)('04)+('04)3]
(I-.32
Since stock
)(.57)
this
load
thickness
Then,
solving h
=
This expected beyond
is that
the
too .05
again
665
as
low,
amount
the
calculation
is
repeated
using
for
h,
the
result
a
is
this
value
of
value load
of
h
(P),
the
need
be
into new
the
formula
value
of
used (P)
is
lb.
close
this
lb.
in.
previous =
600
in.
substituting
the P
of
.ii0
Therefore, calculate
is
(t)
=
(i)
or used
as a
calculation similarly
in
the
calculated
calculation.
carried. spring
It will
is be
not deflected
to
Section
B 3
19 May 1961 Page 36
REFERENCES Manuals I.
,
Chrysler Missile Dtd. I November Convair Vol. I.
(Fort
Operation, 1957.
Worth),
Design
Structures
Practices,
Manual,
Sec.
Sec.
108,
10.4.0,
Handbook I.
Associated Bristol,
Spring
Corporation,
Mechanical
Spring
Design,
Conn.
Periodicals I.
Text
Klaus, Di_est
Thomas Issue,
and Joachim Mid-September
Palm, Product 1960.
En_ineerlng,
Design
Books
,
Seely, Fred, B. and Smith, Materials, Second Edition, New York, 1957.
.
Spotts, M. F., Prentlce-Hall,
Design Inc.,
J. 0., Advanced Mechanics John Wiley & Sons, Inc.,
of Machine Elements, Englewood Cliffs, N.
of
Second Edition, J., 1955.
-h
-4
-L
SECTION BZl. BEAMS
TABLE
OF CONTENTS Page
B4.0.0 4.1.0 4.1.1 4.1.2 4.1.3 4.1.4 4.2.0
Beams
.....
Simple Beams Shear, Moment
. .........
......0...
............................. and Deflection ..................
Stress Analysis ............................ Variable C ross-Section ....................... Symmetrical Continuous
Beams Beams
of Two Different ..........................
Materials
4.2.1
Castigliano'
4.2.2 4.2.3
Unit Load or Dummy Load Method ................ The Two-Moment Equation ..................... The Three-Moment Equation ................... Moment Distribution Method ....................
4.2.4 4.2.5 4.3.0 4.3.1 4.4.0 4.4.1 4.4.2
.........
Curved
s Theorem
Beams
Correction Formula
.......
and Axial Load
B4-iii
25 26
32 34 37 38
.............................
Bending Moment
1 24
29 30
Beam
Bending-Crippling Failure of Formed Beams ........ Bending Moment Only ........................ Combined
1
29
.......................
Factors for Use with the Straight .................................
1
..........
38 43 43 46
Section 21 Page B 4.0.0
BEAMS
B
4.1.0
Simple
Beams
B
4.1.1
Shear_
Moment_
The
general
deflection terms
are
of
and
equations given
in
deflection
relating B
load,
shear,
4.1.1.1.
bending
bending
These
A
Slope
@ =
dy/dx
M
=
EI
d2y/dx
2
M
Shear
V
= EI
d3y/dx
3
V
= dM/dx
Load
W =
d4y/dx
4
W
=
= y
A
EI
=
F J
dv/dx
= d2M/dx
x
is
positive
to
y
is
positive
upward
M
is
positive
when
d)
W
are
V
is
at
in
B 4.1.1.1
right,
lw
•
÷x
-X
the
__
compressed
i I
top. the
direction
of
y.
positive
tends
the
the
positive
negative
2
Y
a) b) c)
is
to
in
_-dx EI
Convention
fibers
and given
dx
7f_-dxEI
0 =
Table
e)
are
M
Deflection
Sign
moment,
equations
Y
Moment
1
moments.
Title
Bending
4 196]
Deflection
Table
and
B
April
when
move
vertical
forces•
The
limiting
assumptions
a)
The
b)
Plane
c)
Shear
d)
The
material
follows
cross
sections
deflections deflections
the
upward
part
under
of the
the
are:
are are
Hooke's
Law.
remain
plane.
negligible.
small.
beam
action
to of
the
the
left
resultant
of
the of
section the
X
Section
B 4
21 April Page B4.1.1
S hear_
Moment
and
Deflection
=
El dxdx
/M
+fKV_
(K) is the ratio of the to the average shearing equation:
IAb
J
maximum stress.
shearing stress on the cross section The value of (K) is given by the
b'ydy
0
(I) is the moment of inertia of the cross-section with respect to the centrodial axis and (a), (b), (b'), and (y) are the dimensions shown in Fig. B 4.1.1-1. (A)
is
the
area
of
the
shear may deflection
dx
a K
2
(Cont'd)
The deflection of short, deep beams due to vertical need to be considered. The differential equation of the curve including the effects of shearing deformation is:
Y
1961
cross-section
I Fig.
B 4.1.1-1
Section
B4.1.1
Shear_
Moment
and
Deflection
9,
Page
3
(Cont'd)
r_
O •_
4-1 F)
5" t_ II
_
l----b _q
F-.4
0 _J
V_ O
N
!
ol
II
4-
' > I
C
_
m
_
C',l
©
II
I cq
N
'
_
I
eq
cq
© +
c"3
II
0
Z
I
> od -;-I
O
II
"_
cq
oq
cch I
o
(2)
4-1
I
I
II
II
II
_
I
_-4
'_
I o_ II •_
i
I
|
II
II
II
O
O
<
_,
O
;4 o
cn_
m
t_
tl? o
xi\\o
_ \'3_'
7
0
0
_
>_
I
__ i ......
L t
t
B4
July
1964
Section
B 4
21 April Page 4 B 4.1.1
Shear_
Moment
and
,_
Deflection
(Cont'd)
> ,--, 0 _J r_7
o _._
o °,.-4 •l=J
co
*_
0
"= '_
,_i'
c_ r--1
_
+ ,z3
!
.._
°
_J
= o O
Ii +
_le_
m _
I
t
0
I
to
co
"
,-4 •_
4J
X __s
M
N
I
I
o M
...1*
U
v
11
I
cq ¢'4
t'M
c,_
=
!
-I-
3-, a q)
.=
,
co
,
+
cO
+_
c_
_
-I-
+
S
c_ ,--1
II
P_ _.... eq
o
0
!
,-I v
1_1
c-q ,_
J
t__
_,
+
+
/;
,
+
_ -,_
,,-,4
:_I,-_
:_
_
°" '<
fu t_ [.-i
_
._1
oo _
m
o= _
,
,
+
4.J Ii
il
II
li
II
I_
I_l
o
o
o
m
_
.J
_
_
--
e_,
_
>_
I_l
"
>_
>_
0 o
c_
c_ t_
_l
--
I_
II
o
:>_
If c_
1961
Section 21
B
April
Page B4.1.1
Shear_
Moment
and
Deflection
4 1961
5
(Cont'd)
r----i
Le_
o o
r --]
_._ ,,,.]
I
II
I
O .I-J
°_
o
I
cxj
>
_
<
co
t_
c_ r_
Xl
< +J
_
t_ ....
I m
t_
o
m
+
+ r_
+ m
E .I,J
_
N M _ o
I
_
I
N
Jr-
o
E
I
,
:>_
o"J
II
N ttl
•4-+
>
m
I
_ _._ ,-_1 co
_
N c_
o .l.J >
II ::m:
(lJ
v
4-1
o ,.c:
¢
Oq
-r.-I
::E:
I
°
X
u
II
<_
v _,
t_ ,...4 +
co
L,"5 _
_ V
+
_
t
_
_ + j
t
+_co _I ° +I ° _+
cc_
X
N
+
CO
II
(2) r---i + N
_
N
b--t
_-t
II
II
I
I
I
II
II
II
:>
¢N
__J
+1_ +1_
+1°++1+" ,
o
U
+
.;.-4
u
II
II
II
II
II
0 IJ
0 _+J
0
0
,-r,i
+_ 41
_.+t..,+l.._
o,0 "E3 o
i_ "_ U4 O
_ _
_
m
>-
+
_
U
u"5
+ II
E)
0 N
::m:
....
o
co
,.Q o
1'-.-.
L_
I_
++
:>
N o ,.-4 +
.1..1
.IJ 111
X M
o
I
N
_ ¢M + +
E
u_
co _ I
_
I
_1
I
_-1 v
r.D
o .-+1 co
_
!
I!
o
cN
,-+ I co
co
co
,'-N i
O
o u
i
co
Section
B4.1.1
Shear,
Moment
and
Deflection
B4
July
9,
Page
6
1964
o
_3
o -_
,--'4I'x:_
_°
_'_1
fl
4J o _2
,.-4
o
_0
_ _i _
m N
m + N
.._, ._
._
,-.4
_
I
°r-.I
,.-I
N
°g
•,4 O
II
_
,
,
II
II
+ II
I
,'¢::j
e _
._
-I_/-.. 'I
'
'I
-_,,,
Section 21 Page B
4.1.1
Shear_
Moment
and
Deflection
(Cont'd)
0
,<
0 I G
%
¢I
-%.
.1_1
+
0
+
O CO v ¢o ,-q
o_ 0
.,-4 0 r_
,2 C'4
'0
.-,
_"
_1_
¢_1
II
0
r_ 0A
°r4 4-1 _
, ×
0
×
+
r_
_
r.4
_O
_
.r4 .!..J
,-.a 0
,.O O o
.,_
H
0
_
"
II
II
II
0
0
0
0
4..1 II
II
rn
t_
I
.r'4
0 ,_
--
l 0
_
m
I
i
i _l d
B 4
April 7
1961
Section 21 Page B
4.1.1
Shear_
Moment
and
Deflection
8
(Cont'd)
o
°_
u ,,iJ
A
I
_
+
/g
,
i
II II >
.,-4
::E:
II
¢q + +
o .iJ
N
v
cq
o = o u
It
4a
v
II
I
×
+
v
_
r._
II
+
o
g
,_"
(D
II
>
¢q t
N
o_
o i
2
v
.I.J
0
u
o
+
o
II
>
o
<
o r¢3 e,J
_i_
>
_
,_, _
_'] ,t,J
e
..1 _
='_
+
+ v u
II [--i
+
I
II
II
I
II
II
m
I
I
o
II
II
fl o ._
o 4.1
+
o
0
x
0
x
Io _
I+
I o1+__0
o
_Ira ---_[
t--
_
O
[ >.
_4
+
. .i_
B
April
4 1961
Section
B4.1.1
Shear_
Moment
and
Deflection
_l _
+ o
N
:x
+
_
N
1964
o
c,4 __'_
u
[--I
c_
F---I
¢'J
O cq
+
+
II
II '4.4
II
× c,_
0
II cD
9
× ,--
_
v
'
Page
"_,
+
c-
:xI
9,
(Cont'd)
O _ I
B4
July
+
+
+
+
._ 0
c,4 _
_ O
.o,31
o
i
i
I
i
i
u_
o c.)
II
E
II O O
II
_
N
v
_
O
_ ,._ @,,1
_l_
'_l
II
U
;>
_
°
II
m
_
°
v
v
_
!
ul c._ +
II
_
_i_
_
v
.t_
k- --_v-'--_.__
C
_
_1_
_
I
I • ,-.-I
.el u3
4 (D r--4
_1oo II
o:
•,_, _l_
m
II II
I1
II
II
II
o
0
0
0
0
I
II
_ II
4_1
X X
¢B o
oO
--Ic_ i
--Ic_
O
_
>-
Section 21 Page
B4.1.1
Shear
a Moment
and
Deflection
(Cont'd)
O. 0 O0 "0
.@ O •rt
I_
+ ¢q
U
4.4
H
N
= 0 _J
4_ !
I_Im
M II
m ,-4
+
m
+
II
m
O 1.1 W 0
II
£%1.
_
_
_4 ! r-I
+
*
,
_
M
X
.
N
m
._
I
Ni
°r.l °M
• _
o"1 [._.1 H
>
_°
m
r_ II
II
_-i I
o_
O
II •_
II
II
I = "0 m 0
_J
o
=
'O
i, = 0 O
,-4
I
-"
4
April i0
B 1961
Section 21 Page B
4.1.1
Shear
a Moment
and
Deflection
B
April
4 1961
II
(Cont'd)
O oO
f_ I--I .IJ e_ ! O .M
.d-i r,-_
_ 1
_l,-e ii
Q)
II II I
0
f--I
_
e_ O
_1_ _ .-.-4
,
.'4
M
rO
I
O
r
°_
E
.,-4
I
_
_D
+
cg I
I----I O
!
M
• O _:1
E
-
%1
II
0
+ I>
>
,_ M
+
|
i
_ _"
.<
¢la °_
y.'
u? _, f-4
_q
r._
c'j
t'-xl
c-,l
!
o 11
4J
/
i,-,] I
_
I
II
0
r_
_
0 .I..,I
0 .i.i
0 ,,l,.I
,
,.-1 _
J oh .i
.Lt
'_._.__//
"_
<
cl _-I v-_
_,
°_ I ¢',1
II--t
II
,.o
> o
•,_ :_'1_
(.3
4-1
0 .I-I
u
II
v
o
o
.i.I
_
II o
,.__._j _ II
v
v
_ X
7 L
0 0
_J
II
_:,.o
nt_ ,-4
v
II (I)
Section
B4.1.1
Shear_
Moment
and
Deflection
B4
July
9,
Page
12
1964
(Cont'd)
0 ,-4 C13
_1_
0 •_
0
+
_
I I
r-I
II 4-I
m
0 IJ
°
_I II
O v
v
I
{'q
m
<
I ,-4
0 r_
_
+
._
_
'_
_-_
U
"
+
_
II
,-,
I
._
0 -\
> 0 4_ U m II
0
•_ 0
_
_
+ ,.al_
> <
I
%J
.4
o_ 1.1
o_
II
+
_
+ ___,
+
_
N
_
I
"-_--"
_ U
,1o
0
_
,
_I__I_ _
<
II
II
0 •_
0 .IJ
%1_
'
+
[--i •_ t_
0 II
_ II
I
II
II I II
0
CO
X
'
.J
cb
Section
B4.1.1
Shear_
Moment
and
Deflection
(Cont'd)
0 0
'_0
<
0 4J
-rJ C'-I
II
_J 0
E G}
0
E
_
+
I
o_
E
c._
_
_
4-1 I
0
&l
1_
o r...) _ m
v _-_
t_ _I_I_-I
•-
i
II
i
N
m o
Q? 4J
I •
_2 +
¢1 1-4 (1_
< -_
v
II _III
II
[--i
_
I--4
I _
,,.-x
o _
Ill
0 .i..1
0
0
c_ .r-I
O
O
Q_ 0
I II
X
[--4
II
e'_
B4
July
9,
Page
13
1964
Section
B 4
21 April Page B4.1.1
Shear
a Moment
and
Deflection
1961
14
(Cont'd)
_z 0
•
.,4
_l,_
__
_1_
°
o
_ %,
II
_1
II
_ m
aJ
[ 0
iJ
I
,_
4.1
_
V
O ,,_
II
,._
I
e4e4
_
i--_ _
o _
¢q
II
m
_I
_
_
II
I
•
.,4
_
_
+
+
e,i
N
N
II °_
v-
_ _
II
I
,_
m!
rn!
N
N
!
o
14
_9
-r4
•_
.,4
.Ill
i_
_
I_
_,
_"
_"
_"
_1_
_
_
u"_ .,..i
/_
II ,l_
c_
II
II
I II
_ O u
U
_,l 0,1 ,-i ..1-
0
O
II
II
II
rO
(O
0
0
Ill l.l
.= =
'°t
= .,4
i
I O _u
L
_ m
'_
I%:
_II
H
11-4
II
Section
B4.1.1
Shear,
Moment
and
Deflection
B4
July
9,
Page
15
1964
(Cont'd)
O '-0 I
O3
¢,.)
c_
'i o !
,
N 0
Y.l¢_
[--I I
II
X -_ C'4
II
_
-:_
_
,,
c_
,
I
°
"
"_
.IJ
o u
r...)
II
_
°_
_
N
O
+
t_
r.,.O
N _
0£ _.m I o0., •_
II
_
,._ C-,I
>_
II II
o
_)
×
_
"o
+
I O0
_J ,._
j
II
II
X c,'-)
I
_
•-_
I ._
+
4J
<
'
[
II_
+
_ _ ,-4
_
°_
v
v
_I_
r._
c_
IJ
II
II
II
o
o
II
I ,,-'-,
_o _1
•_
O0
u _d
_._
_
_
>
; II
o ,L)
I
_"_
"
O0
v
CD
II
II I_
+
o
II
C_
m
c_ ° r...I
"o o E o
_
_
-_
L--
- L
--
_4
>_ u
e,4
Section 2] April Page B 4.1.1
Shear_
Moment
and
Deflection
(Cont'd)
o
%
¢q
o
,_1_
!
ot,,l
4.-I U
I
4-1 II
r_
s-% P
v o_
0
_ o
o_
I 4-)
_,
I
-,-_-_
>,
r. II
0
> _
_
'_I
N
,-.4
-_
_
,
o_.,_
t_ _ ,o
._
+ II
I
,,.1-
II
_'j
,
_1
i ,o o
°_
II
I
o [..i
_o o
'
_i_
II II
< v
'1:1
80
4..I 0 r_ v
o_
IJ _l
16
B 4 1961
Section
B4.1.1
Shear,
Moment
and
Deflection
xI
O0
q-_ o (1,1 C}:
0
I'
(Cont'd)
B4
July
9,
Page
17
1964
Section
B4.1.1
Shear_
Moment
and
Deflection
(Cont'd#
+
o r-d O0
I
_Io
,
_I _
o3
II
X =o
4.1
._
.rd
II oJ
II
t',,I
_
_I_ II
0J
=la
II °_ ¢"N °
+ ¢,_
0J
o ¢,J I
,4-
°_
I
_
v
0
o
II
II
I I
,
od
o_
I _J
-.'t _
II
_4 o o
0
o I
o
II
I
NJ_
II
_0 ¢'4
¢,)I
It
_!'_ _
"
I
v
II
_
II
_
=
)
xl
B4
July
9,
Page
18
1964
Section 21
April
Page
B4.1.1
Shear_
Moment
and
Deflection
B
4 1961
19
(Cont'd)
II
II
_
r6
_J 0 P-_
I It
4.J
< +
_-,
oo
N
II O
_Ic4 cq ._
I
II
_ cq
O •,--t
cq
_ cq
_1
r,_
c; fl
UI
,._
E
I
I
U
II
>
>
r_
,-4
•r4 o3 o3 O
._ o3 o3 O
t_
_3
V
A
0
g
°_ _1
O
I,
c-4
4J U°
E: I
t
:>_
v O
L)
_
l::cl
o3 •,-.-" ,-4
O_
4J
II
•_ o
E
E
_J
::E:
O 4J
<
--,
'
<
+
N
v
U _J
cq
0
DO
O ._J
II II
_J
+
_J
+
,._cN
,-_
4J
_J
"_
_J oo
::>
II
_-_
:_1oo
_
L_
II
+ _d ¢o
,--_ II
II
!
!
II
II
I
I
II II
E_ 0
--
P_
II
O 4J
_J
,
_I
4 II
0
0
_J
4J
v _
×I o
i
°i
O0
"El 0
¢)
J,,,,I 0
:),.
_l.
/ __L. <
o_ ¢q
I
I
m
j
Section
B4.1.1
Shear_
Moment
and
Deflection
B4
July
9,
Page
20
1964
(Cont'd)
P0 o'] "0
>-, 0 -e4 _a ¢J
_1_
OJ
×, I
4-J
_a 0
A
m
_.I
_I_ rJ
I
_
.5!
O
_
_
•
I
_°_ _
×
m
,-1
.,-4
_
m
°_
_I_
_1_
II ,._
,-_
_
_I_ II
II
_
II F
_4
_¢ c'j
.c:
__.i _
._ Cxl
_
-_
I1
II
o .._
.,4 l-J
,.-4
r_
×
I_-_
_i_ _
II
II
o'_
C-,I
I--I c.m
_,1
oO
m b_
I_I
I
II
i Ii 0
r:_
r...)
4-_ O rd
0 4J
0
cJ
<
II
_i;_
_x,
_,
II _Cl
n_
N
"-"
>:
Z
-\
i_
_C
_
_
m
-
m
Section 21
B
April
Page B4.1.1
Shear
t Moment
and
Deflection
rj_
4-
f
",--" _
JI
i
II
"0 >
1961
21
(Cont'd)
<
o
4
I v
O
o_
_
_
A r6
+ <
o _) ,.c:
@ II
I
'
o u v
o4
_
oO o
c'N
II O
II
I
i
v
>
o_
I _
t
II
_._
;_ %1.
+
_1
0
_
eq
N
_
t
m
?1
,c
+
,-q
,-4
O
.,_Y_I_
U
+
_
I
V
+
+
_
u
I
>_
I
I
_
O
I-4
N
o cq
.;-4
N-d
-J
M
_
I
o
M
N
+
I
I
N I
,_I_ _<
_
_.
<
_
v
._
4_
4J
I
4-I
,.-1
r-4
II
II
o ._
o 4..i
m .-4
II
II
II
II
m
-,-41 _-)I
I
II
II
II
o ,_
_
rF
r_
'/
-el
o
o
o
_
m
' [..-4 _
c'e3
0 4J
0 ,_I
Section
B 4.1.1
Shear_
Moment
and
Deflection
B4
July
9,
Page
22
1964
(Cont'd_
O
¢q u_
II
gI ¢N
°
_I_
O I
O 4J
,-_ u_
II I
_
.4" v r_
:_ I ,-_
m
..
+
!
I
II
II
_=
II
o
_-J
4-;
O 4J
_J m
4J
.P1
° I
o
_1_
+
+ II I"
,,--4
•
_
_
0"_
_J
,_
¢q X _-_
_
I
I_1
_
II
_
I
II
m
°_
I
I
M
_
_
I II
e_
m
i}!
_, II
II
M
II
:=
>,
o
o
II
v
o=
o
II '
_
_
v
Section
B4.1.1
Shear_
_D
Moment
and
eq co X i
0
_q
+ -
_
o
_
_:
_-_
cq
_
V
•_
.,-_
i
i.--4
_ _
I_
01
U
_
II
.
II
+
_
oO
_J 0
0
O.
.,_
II
o
0
A
o
2
c,,I
I
m c_
×
Deflection
(Cont'd)
B4
July
9,
Page
23
1964
Section
B 4
21 April Page
B4.1.2
Stress The
1961
24
Analysis
maximum
bending
stress
is:
(1)
The
limitations
a) b) c) d)
The loads on the beam must be static loads. The value of f is the result of external forces only. The beam acts as a unit with bending as the dominant action. The initial curvature of the member must be relatively small. (Radius of curvature at least ten times the dept_)
e) f)
Plane cross The material
If the reduced
shear
are:
sections follows
calculated stress does modulus must be used.
The maximum is:
shearing
• • • ,,
• • • ..
where (K) is the ratio section to the average often expressed as: fs =
Q
VO It
=
plane. law.
exceed
stress
in
the
proportional
a beam
in
limit,
combined
bending
a suitable
and
v
V -_
fs=K
Where
remain Hooke's
JydA Area
• • ° • ..
• • .....
......
o o
° ° ° ° o
o.
o ° o . .
, o o ° o o o ° (2)
of the maximum shearing stress on the cross shearing stress. The maximum shearing stress
..............................................
(First moment between the fiber.)
about neutral
(3)
the neutral axis of the area axis and the extreme outer
is
Section 21 Page B
4.1.3
Variable
The beams a
following
with
by
ponents some the
cantilever
beam
a
web
of of
the
the
flanges
loads
external and
V
= Vf
Vf
=
P
+
Vw
Vw
(tan
and
tapering
vertical
figures
cross
the
force
of
resists
V.
a
P
Letting
Vf
resisted
bending.
tan
by
Fig.
5
I,
equal the
+
tan
52
+
=
P
the
webs,
shows
flange
The and
analyzing
areas
vertical tan
force
_
2,
comresist
resisted
by
then:
..................................................
(i)
51,
(2)
+
tan
B 4.1.3-1,
hi
of
B 4.1.3-1
concentrated
5
2)
................................... hi
From
25
method
Figure
two no
flanges,
force
present
sections.
consisting which
in
the
4 1961
Section
formulas
uniformly
tapered
joined
Cross
B
April
h2
c
tan
h = --. c
From
51
h2
=--, c
this
tan
Vf
=
52
h P -c'
c
and
, and
since
P
tan
51
b = V _,
then
Vf The
=
load
h o and
Vw
b V _ in
h,
we
(3)
.....................................................
the
web
is
a V E,
so
by
writing
a,
b,
and
c,
in
terms
of
have
ho = V E(h
....................................................
(4)
- ho)
vf = v ---f--- .............................................. (5)
P TANcK
P TAN
Fig.
B 4.1.3-I
_2
I
Section 21 April Page 26
B 4.1.4 The
Symmetrical analysis
Beams of
of Two
symmetrical
Different beams
the elastic range may be analyzed by an equivalent beam of one material. then applies.
of
B 4 1961
Materials two
or more
transforming the The usual elastic
materials section flexure
within into formula
The transformation is accomplished by changing the dimension perpendicular to the axis of symmetry of the various materials in the ratio of their elastic moduli. Examples to illustrate the method for various conditions follows.
Example i. Consider a beam is shown in Fig. B 4.1.4-Ia. in terms mum
stress
in member
made of two materials Assuming n = Ea/Es,
of material
(S)
(Fig.
in member
(S)
is
(A)
is
f(a)
have been transformed the same results for
(o)
max
B 4.1.4-ib)
then
f(s)
-Mh 2 = n---_
It
max
whose cross section the transformation
is then b I = nb. The maxiMh I = -_- and the maximum stress
is noted
that
in terms of member (A) (Fig. the maximum fiber stresses.
(b)
Fig.
the
section
B 4.1.4-ic)
could giving
(c)
B 4.1.4-i
Example 2. Reinforced-Concrete Beams. It is the established practice in calculating bending stresses in reinforced-concrete beams to assume that concrete can withstand only compressive stress. The steel or other reinforcing member then is transformed into an equivalent area as shown in Fig. B 4.1.4-2b. The distribution of internal forces for a beam (Fig. B 4.1.4-2a) over any cross section ab is shown in Fig. B 4.1.4-2c. v
Section 21 Page
B
4.1.4
Symmetrical
Beams
of
Two
Different
Materials
B
April
4 1961
27
(Cont'd)
-,-- b -_
d
d
J
i
(o)
satisfy
the
the
external
b
equation
of
moment.
The
(c)
B
4.1.4-2
equilibrium, mathematical
the
internal
statement
must
equal
=
nAs
(d-kd)
..............
arm
steel
area
arm
which
=
where
nA--'-_Sb _i
n
=
The
+
nAs2bd '
E
steel
E
concrete
stress
M fc
(kd)
in
the
i_
concrete
................................
fc
and
the
stress
in
(2)
the
steel
...............................................
fst
is
(3)
I
fst
..........................................
= nM(d-kd) I
where I
moment
is:
Transformed
area
kd
Rt
(i)
kd (-_)
(kd)
Concrete
From
-
.
(b)
Fig.
To
N.A,
= Moment
of
inertia
of
the
transformed
section.
(4)
Section 21
Page B 4.1.4
Symmetrical
Alternate I, a procedure force developed the
compression
the
beam.
force
Beams
of Two
Different
Materials
Moveover,
R c = _(kd_
of
the
if b
fc max,
is
beam the
(average
must
be
width
of
stress
located the times
kd _-
(Cont'd) of computing The resultant manner on
below
beam,
this
area).
1961
28
solution: After kd is determined, instead evident from Fig. B 4.1.4-2c may be used. by the stresses acting in a "hydrostatic" side
B 4
April
the
top
of
resultant
The
resultant
tensile force R t acts at the center of the steel and is equal to Asfst, where A s is the cross-sectlonal area of the steel. Then if jd is the distance resisted jd The
between R c and R_, and since by a couple equa_ to Rcjd or i - _ kd
= d
stress
in
the
R c = Rt, RtJd.
the
applied
................................................ steel
and
concrete
moment
M
is
(5)
is
M fs
= As
f
,= .
jd
...................................................
(6)
2M c
b(kd)
(jd)
........................................... (7)
N
Section
B 4
21 April Page
1961
29
i
B 4.2.0
Continuous
Beams
B 4.2.1
Casti_liano's
Theorem
Castigliano's Theorem involving continuous beams The theorem can be written
is useful with only as
in the one or
solution of problems two redundant supports.
L 8Q
- _U _Q
- Eli /
M_ _M
ds
_V _
ds
................................
(i)
................................
(2)
................................
(3)
O
_Q
L /_ JV
BUs I = _-_- = GA
o
L _U 0a
=_
M _
- E1 a
o
ds a
where
8Q
is
Q may Qa
is
M
may
a
the be the
deflection a real slope
at
or at
the
be
a real
or
energy
is
the
strain
M
is
the
bending
V
is
the
vertical
A
is
the
cross-sectional
E
is
the modulus the
moment
moment
of
Ma
of
in
the
direction
of
the
direction
Q.
of Ma.
to
beam. all
forces area
elasticity. inertia.
in
moment.
the
due
Q
load.
moment
shearing
of
load
fictitious
U
I is
the
fictitious
of
loads. due
the
to beam.
all
loads.
Section 21 Page
B
4.2.2
Unit
The
Load
unit
deflection
or
load
at
or
elastic
members
by
this
applied
to
elastic
Dummy
Load
dummy
load
or
method
is
beams
method
given
4 1961
30
Method
inelastic
is
B
April
may
be
members. in
section
written
in
used
to
determine
Deflection B
4.5.0.
integral
of The
form
inelastic
theorem
as
as
L
(i) O
L
(2) E-i-dx ..........................................
e = O
Where at
(8)
the
is
unit
the
deflection
moment.
The
section
caused
by
section
of
beam
whose
the
deflection
deflection. of
section
where
may
expression
be
the
to
be
bending
beam the
- _M
that a
a
by
as
a it
is
the
is
dummy
bending is
in
the
couple
is
and
the of
actually
is
the
moment bending
unity
acting of
moment
it
unity
at
the
is
noted
is
evident
at
any
the
point
desired at
applied
It
dimensionless.
any
moment
bending of
rotation
at
direction
desired. moment,
(8)
bending
load
(m')
slope
the
(m)
and
a
load
is
dummy
found
in
unit
loads.
moment
change of
the (M)
by
caused
thought m'
actual
caused
is The
section
(m')
the
at Moment
any at
that from
the although
the
Section 21
Page B 4.2.2
Unit
lllustrative
Load
or
Dummy
Problem:
Load
Find
point A (Fig. B 4.2.2-ia) two concentrated loads.
R=P
the
of
the
Method
(Cont'd)
elastic
vertical
simply
deflection
supported
beam
B 4
April
1961
31
of
the
subjected
to
R=P
(o)
(b)
M I---M : P L/4 M=PXI -_M=PX2
/_
--,--X
I
m
m= X2
/
.-4-
I-.--x,
X2-. _
(d)
(el
Fig. Solution:
The
x2--
actual
loading
is
B 4.2.2-1 shown
in Fig.
B 4.2.2-Ia
and
the
dummy loading is shown on Fig. B 4.2.2-Ib. loading is shown on Fig. B 4.2.2-Ic and the
The moment for the actual corresponding moment dia-
gram
B 4.2.2-Id.
for
the
The the
dummy
loading
deflection
left
and
by use
x 2 starts
,,
at
of the
shown
E1
O
dx
=
,
El
right
\ _
O
j L
4
4-_
dx2
Fig. (i)
noting
is
L
>
dxl
4
+J O
3L 4
+
on
equation
L 4
L
=
is
= 48E----I
E_
that
Xl
starts
at
Section 21 April Page 32
B 4.2.3
moment
The
Two-Moment
sponding
section and are known. to Fig.
M 2 = M I + Vld
V 2 = VI +
F
the loads applied The expressions
B 4.2.3-1
+ Fx
1961
Equation
The two-moment equation may be used to determine at one section of the beam when the shear and
another sections
B 4
to for
the the
the bending bending moment
beam between the moment and shear
at
two corre-
is
......................................
.............................................
(i)
(2)
LOADS
Fig.
B 4.2.3-1
The two-moment equation is particularly useful in determining the curve of bending moments and shears in the case of a cantilever beam subjected to distributed loads, such as shown in Fig. B 4.2.3-2. The calculations may be done in tabular form as in Table B 4.2.3-i.
,@
'' "I Fig.
B 4.2.3-2 \
Section
B 4
21 April Page 33
B 4.2.3
The
Two-Moment
Station
W
(inches from end)
Load
Equation
(Cont'd)
_-
* Bending Shear V= (WI+W 2 ) _f_x) -_--
Momen_
M=(2WI+W2)
2h
_6_VI(Ax)
ib/in i0
0 (10+14)10/2
=
0
120
567 (2.10+14)102/6
i0
1961
14
=
120
(14+18)10/2=
160
567 (2.14+18)102/6 120"]0 =
= 767 1200
20
18
280 (18+22)10/2=
30
22
26
30
increment of the relation:
M =
(_V)
(Dist.
+ Vl (_×)
(2.22+26)102/6 480.10 =
=
280
bending
from
moment
centroid
1167 4800 12_268
(2.26+30)102/6 720.10 =
1367 7200
i000 Table
*The from
240
2534 976 2800 6301
720
(26+30)10/2= 50
=
48O
(22+26)i0/2= 40
200
(2.18+22)I0Z/6 280.10 =
20_835
B 4.2.3-1
between
of
stations
trapezoid
to
may
be
inboard
calculated
station)
Section 21
Page
B 4.2.4
The
The involving
three-moment continuous
equation
is:
MaLl
+
Three-Moment
2MbLI
II
KI +
Where (L2),
2MbL2
II
K2
6E + L_
+
(KI) and (K2) respectively.
" Yb)
are
34
+
of problems supports.
The
McL2
12
(Ya
1961
Equation
equation is useful in the solution beams with relatively few redundant
+
B 4
April
12
6E (Yc L-_
functions
- Yb)
of
......................
loading
on
span
(i)
(LI)
and
span
Lir L21 t__
T
is
.......
Fig. B 4.2.4-1
system the
One equation must of simultaneous
intermediate
be written equations
for each intermediate is then solved for the
support. moments
The at
supports.
Values at (K I) and in Table B 4.2.4-1.
(K2)
for
various
types
of
loading
are
tabulated
Section B 4 21 April 1961 Pa_e 35 B 4.2.4
The
Table Type
of
Three-Moment
B 4.2.4-1
Equation
K 1 and
Loading
(Cont'd)
K 2 Values Left
Bay
for
Various
-K 1
Load Right
Conditions Bay
- K2
i.
+_2L3
+WiLl 3
412
411
r_
L
ID-
°
+WlC I
r
(3L_-CI 2)
+w2c 2
(3L228I 2
8I 1
'-T
c22)
°
wlEbl2(2Ll2-bl2)-al2(2Ll KI
b
--a--4
411L 1
i iT
I
2 - a12)]
=+
w2
[b22 (2L22-b22)-a2
2 (2L 2 2 - a 2 2) ]
K2 = + 412L 2
.
+2WiLl
3
1511
+7w2L23 60
12
I -'----------
|
.
+7wiLl3 60I 1
+2w2L23 1512
I __
.
+3L_w I i
+3L22w
|
I__
_r
L
-I
811
8I 2
2
Section 21
B 4
April
Page
1961
36
v-
B
4.2.4 Table
Type
of
The
Three-Moment
4.2.4-1
K I and
Loading
Equation
(Cont'd)
K 2 Values Left
for
Bay
-
Various
Load
K1
Conditions
Right
Bay
-
K2
o
+5WiLl3
+5w2L22 3212
3211
-FL _-
_1 -t
t
.
+wla
I _L12_a12
)
+w2b2
IILI I_
L
_L22_b22_ 12L 2
-_
o
M I
/
,
3al 2
+
M2 12
(3b22 \L_2
10.
E
1
M
x I dx 1
_o
M2
x2
the
banding
=
12L2 O jw
L 6 K2 qr
=
P
12L2
dx2
Ir Where
M
is
moment.
L2)
Section 21
April
Page B 4.2.5 The
Moment
Distribution
Method
moment
distribution
method
problems involving continuous discussion and application of (Frames).
is
suggested
beams with the method
for
the
B 4 1961
37
solution
of
many redundant supports. The is given in section B 5.0.0
Section B 4 21 April 1961 Page 38 B 4.3.0
Curved
B 4.3.1
Correction
Beams Factors
for
Use
in Straight-Beam
When a curved beam is bent in the plane plane sections remain plane, but the strains proportional to the distance from the neutral are not at equal length. at the extreme fiber of a
If_denotes curved beam
Formula
of initial curvature, of the fibers are not axis because the fibers
a correction is given by
factor,
the
stress
Mc
f =K-I
in which M__M_ [i K = AR
+
c Z(R
] +
c)
Mc I
where M A
is is
R c
is the radius of curvature to the centroidal is the distance from the centroidal axis to outer fiber
I is
the the
the
bending moment cross sectional
moment
I /_.Z_ Z = - -_R+y
Values
of
K for
of
area axis the extreme
inertia
dA
different
sections
are
given
in
Table
B 4.3.1.1.
Section B 4 21 April 1961 Page 39 Table B 4.3.1-1 Values of K for Different
Sections and Different R
Section
C
Inside
Radii of Curvature.
Factor K Fiber Outside
.
1.2 1.4 1.6 1.8 2.0 3.0 4.0 6.0 8.0 i0.0
R
K
the
same
and ellipse pendent of
for
3.41 2.40 1.96 1.75 1.62 1.33 1.23 I. 14 1.10 I. 08
O. 54 0.60 0.65 0.68 0.71 0.79 0.84 0.89 0.91 0.93
2.89
0.57
2.13 1.79 i .63 1.52 1.30 1.20 1.12 1.09 1.07
0.63 0.67 0.70 0.73
3.01 2.18 i .87 1.69 1.58 1.33
0.54 0.60 0.65 0.68 0.71 0.80 O.84 O.88 0.91 0.93
circle
and indedimensions.
0
e
i
1.2 1.4 1.6 1.8 2.0 3.0 4.0 6.0 8.0 i0.0
0.81 0.85 0.90 0.92 0.94
K independent of section dimensions .
7b
I
2b
]
1.2 1.4 1.6 1.8 2.0 3.0 4.0 6.0 8.0 I0.0
1.23 1.13 I.i0 I. 08
Fiber
Section B 4 21 April 1961 Page 40 Table B 4.3.1-1 (Cont'd) Values of K for Different
Sections and Different R
Section
C
1.2 1.4 1.6
o
3b-----_ -m-
C
-_
T I
b
±
2b I
-o-------
R
o
/-r b
Factor K Fiber Outside
3.09 2.25 1.91 1.73 1.61 1.37 1.26 1.17
0.56 0.62 0.66 0.70 0.73 0.81 0.86 0.91
1.13 i.ii
0.94 0.95
1.2 1.4 1.6 1.8 2.0 3.0 4.0 6.0 8.0 i0.0
3.14 2.29 1.93 I. 74 i .61
0.52 0.54 0.62 O. 65 0.68
i. 34 i. 24 1.15 1.12 i.i0
0.76 0.82 0.87 0.91 0.93
1.2 1.4 1.6
3.26 2.39
O. 44 0.50
1.99 1.78 1.66 1.37 1.27 1.16 1.12 1.09
0.54 0.57 0.60 0.70 0.75 0.82 0.86 0.88
1.8 2.0 3.0 4.0 6.0 8.0 i0.0
Fiber
_
Do
I
Inside
Radii of Curvature
I
1.8 2.0 3.0 4.0 6.0 8.0 i0.0
i
Table Values
of
K _or
Different
Section o
"-
A
=
1.625b
"--q"i
Sections
B 4.3.1-1 and
Section
B4
July Page
1964
9, 41
(Cont'd)
Different
Radii
of
Curvature
R c
Inside
1.2 1.4
3.65 2.50
0.53 0.59
1.6 1.8 2.0 2.5 3.0
2.08 1.85 1.69 1.49 1.38
0.63 0.66 0.69 O. 74 0 .78
4.0 6.0 8.0 I0.0
1.27 i. 19 I. 14 1.12
0 .83 0 .90 0 .93 0 .96
3.63
0.58
1.6 1.8 2.0 3.0 4.0 6.0 8.0 I0.0
2.54 2.14 1.89 1.73 i .41 1.29 I. 18 1.13 i. I0
0.63 0.67 0.70 0.72 0.79 0.83 0.88 0.91 0.92
1.2 1.4 1.6 1.8 2.0 3.0
3.55 2.48 2.07 1.83 1.69 1.38
0.67 0.72 0.76 0.78 0.80
4.0 6.0 8.0 I0.0
1.26 1.15 i. I0 1.08
Factor Fiber
K Outside
1.05b 2
I = O.18b 4 C = 0.70b
1.2 1.4
o
3
I
I
t
4t
;LJ "------ R _
0.86 0.89 0.92 0.94 0.95
Fiber
Section B4 July 9, 1964 Page 42 Table B 4.3.1-1 (Cont'd) Values of K for Different
Sections and Different R q
Section
c
i0.
_t_- 4t --1_ p, F-qr T-] 3t
3t
± _]
L_I
I
Ii.
_
2d
----_
i
I
Inside
Radii of Curvature
Factor K Fiber Outside
1.2
2.52
0.67
1.4 1.6 1.8 2 .0 3 .0 4 .0 6 .0 8 .0 I0 .0
1.90 1.63 1.50 i .41 1.23
0.71 0.75 0.77
I. 16 i.i0 1.07 i .05
0.89 0.92 0.94 0.95
i .2 i .4 1 .6 i .8 2 .0 3 .0 4 .0 6 .0
3.28
0.58
2.31 1.89 1.70 1.57 1.31 1.21 I. 13 i. I0 1.07
0.64 0.68 0.71 0.73 0.81 0.85 0.90 0.92 0.93
2.63 1.97
0.68 0.73
1.66 1.51 1.43 1.23 1.15 1.09 1.07
0.76 0.78
8 .0 i0 .0
0.79 0.86
I
m.
12.
p'-_t 4taJ
F
!
4t
_C i ±
_-
1 .2 i .4 1 .6 i .8 2 .0 3 .0 4 .0 6 .0 8 .0 i0 .0
1.06
0.80 0.86 0.89 0.92 0.94 0.95
Fiber
Section B 4 February 15, Page43 B 4.4.0
Bending-Crippling This
or
built-up
failure.
section
This
method
does
The the type
is
to be
use
that
analysis
of applied
Combined
Examples
used
moment bending
are
when
given
plastic
margin
failure
of
bending
safety
in another
is divided
as
applicable
to formed
in the bending-crippling
mode
curves
are
of
not
B4.5.
a positive
procedure
Beams
of analysis
critical
Section
loading
of Formed
methods
are
not preclude
Bending B 4.4.2
which
otherwise
It is noted analysis
contains
sections
available,
Failure
1976
derived
from
this
mode.
into two
sections
according
to
follows:
only. moment
and
to illustrate
axial
load.
the procedure
for each
type
of
loading.
B 4.4. I
Analysis
Procedure
for
Bending
Moment
Only
/Compression
Area
b
"-
Figure
I.
Bending-Crippling
of Formed
Neutral
Shapes
Axis
(n.a.)
Section
B 4
February Page 44 B4.4,1
Analysis
Procedure
Locate
the
(b)
section Divide
assuming a linear stress the compression area into
(c) (d)
axis
Bending
(a)
pages
neutral
for (line
Moment
of zero
fiber
Only
stress)
distribution. elements
(Cont
1976
sd)
of the
according
15,
cross-
to
Section
C 1,
1 1-16.
Calculate Calculate
FCCn, m according to Figure the allowable bending-crippling
moments
about
doubling
the
the
neutral
axis
for
C 1.3.1-13 moment the
for each element. by summing
compression
area
and
result.
= 2 [ Z Fcc k
n b n t n _n + X FCCm __j k .... Y
For flange members
bm
tm
_'m/2]
(1)
........... J
For web members
where: distance element. This
equation
channel (e) The
is
is
from
applicable
shown
margin
of
neutral
for
in Figure safety
is
axis
all
to the
shapes
resultant
although
force
only
of each
a formed
1. given
by:
m
(ult)
M
M.S.
(FS)ult
(z)
.............................
M
where: M
= applied
bending
= allowable (FS)ult Note: analyzed
if the
in the
at the
bending-crippling
= ultimate section
moment
factor
moment
from
in question. Eq.
(1).
of safety.
is unsymmetrical,
conventional
cross-section
manner.
the
tension
flange
should
be
Section
B
4
February Page 45 B4.4. l
Analysis
Example
Procedure
for
Bending
the margin
of safety
Moment
Only
1976
15,
(Cont'd)
1
Determine section
shown
safety
below
if the
bending
in bending-crippling
moment
is 4000
for the
in. -ib and
cross-
a factor
of
of I. 4 is desired. t = .04 Given:
Mat'l
= 6061-T6
Mech. 3.00
'
no
_',
Sht.
Prop.
a.
_
Ftu
= 42 ksi
F
= 35 ksi cy E
_
Bare
= 9.9
x 103
ksi
1.75--b Channels together.
Typ F{gure
2.
Back-to-Back
Formed
are
intermittently
riveted
Channels
Analysis
(a)
The neutral tion.
(centroidal)
axis
for this case
r
is determined
= . 12 + .02
by
inspec-
= . 14 in.
m
-1.59_
bI
= 1.59
+ . 535(.
b2
= 1.34
+.535(.14)
14) = 1.665
in.
1.48 1
4C_
1. 34
In,
a.
= 1.415in.
Section
B 4
February Page 46 84.4.1
Analysis
Example
1 (Cont'
(c)
for
35 ff = 9.9 x 103 ¥
_
Bending
Moment
Only
(Cont'
- 2...475,
.040
Fcc
1 =
1.415 .040
Ref.
M" = Z[ Mflang e + Mweb]
= 2 [(9.62)(1.665)(.04)(1.48) = 3. 36 in-kips
Margin
275(35)
=
- Z.103,
(for each
Eq.
9.6Z
ksi
Fcc z = .76 (35) =
(e)
d)
1.665
35 9.9 x 103
(d)
1976
d)
/
bl J Fcy E
Procedure
15,
Z6.6
ksi
(1)
+ (26.6)(1.415)(.04)(1.46)/3]
channel)
See page 278for and Yn
FCCn,
bn, in,
o£ safety
M (ult) M.S.
3360
= (FS)ul t M/2
- 1 = 1.4(2000)
I = +0. Z0
where:
M/Z
= 2000
in-lb (per channel) Ref.
page
278
(FS)ul t =1.4
F B4.4.2
lo
Analysim Load
Procedure
Calculate B 4.6.1.
steps If the
sider the maximum
section applied
for
Combined
(a) through (d) according neutral axis falls outside to be fiber
stressed stress.
as
Bendin_
Moment
to the procedure the cross-section,
a column
and
compare
and
Axial
of Section conwith
the
Section
B4
February Page 4 7
B4.4.2
Analysis Procedure Load (Cont' d)
Calculate neutral
the axis
section
Zcn.
3.
a.
Compute
modulus
assuming In.
-
of the
a mirror
Bending
Moment
and
compression
area
about
Axial
the
image.
a.
Cc
the
for Combined
15,
(see
Example
equivalent
Z)
allowable
.........................
(3)
stress
u
M F-
........................................... Zc
4.
The
n
.
margin
(4)
a.
of safety
is given
by
F (ult) MS
1
-
..............................
(5)
(FS)ul t fc
where: p f =-c A
Note:
If the
analyzed
Example
Mc ±
beam
normal
in the
applied
compressive
stress)
load
(P) is tensile,
conventional
the tension
flange
should
be
failure
for
manner.
2
Determine the
(maximum Ic. g.
column
the shown
margin
of safety
in Figure
3.
for
bending-crippling
1976
Section February Page 48
B4.4.2
Analysis Procedure Load (Cont i d)
Example
Z (Cont' d)
for
Combined
Bending
Moment
and
B4 15, 1976
Axial
Given: Mat'l
Mech.
= 6061-T6
Bare
Sht
Prop.
Ftu = 4Z ksi F
P
= 5000
Ib
M
= 6400
in-lb
..(FSJul t = 1.4
= 35 ksi cy
E Angles
= 9.9 are
x 10 3 ksi intermittently
riveted
together.
_._oo-. I _[Typ .o_o Typ/ I I"1 ._6Ol• 16o'.'_ c.f[.
axis
T
7c.
.7
3. 000
Figure
3.
Back-to-Back
- r
Typ-III-
'-_-
_L n.
g.
1 Formed
Z. 760 _
___
Angle
a
a.
Section February Page 49
B4.4.2
Analysis Load
Example
I
Procedure
(Cont'
2 (Cont'
for
Combined
Bending
Moment
and
B4 15,
Axial
d)
d)
°
i_
1.26
-_
_
ELE
A
Q
Ay
Ay 2
.i008
2.96
.298
.883
®
.0250
2.89
.072
.209
®
.2208
1.38
.305
.420
• 140
.675
1.512
• 140
TOT.
.3466
Z
.08
I
y
_
o
a,
2.7h Yc. g.
,
] _A__y
Yc.g.
-
EA
: LAy
: .338 P 0 =_-+
.675 -
-
I. 947
in.
. 3466
Z + EI o - y2 c.g.
(for each
2] A
= 1.512
+.
140
- (1.947)
angle)
MYn. a. Ic.g -
(a) P Yn.a.
-
A
Ic.g. M
5000 (2)(.338) =-2(.3466)
6400
:
"'762
in.
2
(.3466)
1976
Section
f-
B4
February Page 50
84.4.2
Example
Analysis Procedure Load (Cont' d)
for
Combined
Bendin_
Moment
and
I5,
1976
Axial
2 (Cont' d)
(b) _---I. Z6 _
= .16
rm
+ .04
= 1. Z6 +. = 1.575 _
_5
= .20 535(.
in.
ZO) = 1. 367. in.
+.535(.20)
= 1.682
in.
b2
(c) bl t
E
35 =
_'- =
9.9 x 103
I9.9x
I. 367 --= .08
1.016,
- I. 250, 103
.08
Fcc I = .56(35)=19.60
Fcc
z = 1.1 (35) = 38.5
(d)
= 2[ Mflang e + Mweb]
Ref.
= 2[ 19.60(I. 367)(. 08)(1.775)
= 13.60
in-kip
(each angle)
Eq.
(l)
+ 38.5(1. 682)(. 08)(I. 735)/3]
ksi
ksi
Section
B4
February Page 51
B4.4.2
Analysis Procedure -Load (Cont' d)
Example 2.
for Combined
Bending
Moment
and
15,
Axial
2 (Cont'd)
Section
modulus
about
n. a. Compression /Area
ELE
A
G ® ®
y
Ay
Ay 2
Io
•1008
1.775
• 179
.318
-
•0250
1.702
• 042
• 072
-
.1260
.788
• O99
• 078
. 0Z6
.468
. 026
1•775
TOT.
_'
1. 702 • 788
_
II
,, II il II ii i
' _--'-
Mirror
t._o ______2,'
Image In.a.
= 2[ _Ay
2 + _Io]
= Z[.468
+ .026]
Zc n.a.
3.
_ 2(.988) 1.815
Equivalent
=
= .988
1 089 "
allowable
_ 2 (M) Zc n,a•
_
in 4 (for each
in 3
stress
2{13. 60) - 25.0 i. 089
ksi
angle)
1.815 __.__[_
1976
Section February Page 52
Analysis Procedure Load (Cont _ d)
84.4.2
Example
for
Combined
Bending
Moment
Z (Cont' d)
Applied
compressive
P
stress
Mc
fc=A+i c.g.
5 Z(. 3466)
4.
The
margin
+
6.4(1.053) Z(. 338)
of safety
= 17.2
ksi
is
I
F (ult) MS
(FS)ult
where
25.0
-1=
=
-1= 1.4(17.2.)
fc
:
(FS)ult = 1.4
Ref.
page
281
+0.04
and
B4 15, 1976
Axial
Section
B4
February Page 53
15,
1976
REFERENCE
B4.
0.0
Beams
4. I. 0
Perry,
D.
Co.,
E. York,
Roark,
P.,
Seely,
Fred
York,
B.
D.
Van
Aero
Fred
Materials, New York,
Wilber,
B.
B.
First
Raymond
Edition,
J.O.,
Edition,
Wiley
of
Inc.,
Strain,
New
Third
York,
Mechanics
& Sons,
Materials,
1954.
of
Inc.,
and
Arslan,
Publishers,
and
Smith,
J.,
C.
Book
&
Sons,
for Stress
J.
O.,
John
of Stress
Mechanics
Book
Company,
and
Advanced
of
Inc.,
Structural
Company,
Inc.,
Wiley
1955.
1960.
H. , Elementary
McGraw-Hill
Formulas
York,
Fundamentals
Advanced
Wiley
Third
New
Angeles,
J. O.,
Norris,
Edition,
A.,
John
I,
Inc.,
Los
Edition,
and
Part
Company,
Seely, Fred B. and Smith, Materials, Second Edition,
Roark,
and
Inc.,
Advanced
John
Strength
McGraw-Hill
York,
for Stress Company,
Smith,
Nostrand
Second 1957.
John
Analyses,
Roark,
Formulas
Edition,
Albert
Analyses,
4.4.0
Book
1957.
Deyarmond,
New
McGraw-Hill
of Materials,Prentice-Hall
Book
and
S.,
Edition,
Seely,
J.,
Second
Timoshenko,
4.3.0
Structures,
Mechanics
McGraw-Hill
Materials,
4. Z. 0
Aircraft
1954.
Raymond
Edition,
New
PhD.
1950.
Popov, New
J.,
Strain,
New
York,
Mechanics
& Sons,
Inc.,
Third 1954. of
Inc.,
1957.
'Raymond
J.,
McGraw-Hill
Formulas Book
for Stress Company,
and
Inc.,
Strain,
New
York,
Third 1954.
SECTION B4.5 PLASTIC BENDING
TABLE
OF CONTENTS
(Continued) Page
4.5.0 4.5.1 4.5.1.1 4.5.1.2
Plastic
Bending
Analysis Procedure When Tension and Compression Stress-Strain Curves Coincide ................
5
Simple Bending about Symmetrical Sections
5
Simple Bending Unsymmetrical Symmetry Bending
4.5.1.3
1
..........................
a Principal Axis--......................
about a Principal Axis--Sections with an Axis of
Perpendicular to the Axis of ...............................
5
Complex Bending---Symmetrical Sections; also Unsymmetrical Sections with One Axis of Symmetry
8
..............................
4.5.1.4
Complex
4.5.1.5
No Axis of Symmetry ...................... Shear Flow for Simple Bending about a Principle
Bending---Unsymmetrical
Axis---Symmetrical 4.5.1.6
4.5.2 4.5.2.1 4.5.2.2
Bending Section
Perpendicular
about a Principle with an Axis of
to the
Axis
of Bending
.....
13
Shear Flow for Complex Bending--Any Cross Section ...........................
17
Analysis Procedure When Tension and Compression Stress-Strain Curves Differ Significantly .........
18
Simple Bending about a Principle Axis--Symmetrical Sections ......................
18
Simple
Bending
about
a Principle
Unsymmetrical Sections Symmetry Perpendicular Bending 4.5.2.3
8 10
Sections .................
Shear Flow for Simple Axis---Unsymmetrical Symmetry
4.5.1.7
Sections with
Axis---
with an Axis of to the Axis of 22
...............................
Complex Bending---Symmetrical Sections; also Unsymmetrical Sections with One Axis of 22
Symmetry .................... Complex Bending---Unsymmetrical No Axis Shear
of Symmetry
Flow
for
Axis---Symmetrical
"S;ctions
w'i;h" 22
......................
Simple
Bending Sections
B4
5-iii
about .................
a Principal 23
TABLE
OF CONTENTS
(Concluded) Page
4.5.2.6
Shear
Flow
for
Simple
Axis---Unsymmetrical Symmetry 4.5.2.7 4.5.3 4.5.4 4.5.4.1 4.5.4.2 4.5.4.3 4.5.5
Bending
about a Principal
Sections
Perpendicular
to the
with Axis
an Axis
of
of Bending
Shear Flow for Complex Bending--Any C ross Section ........................... The Effect of Transverse Stresses on Plastic
23
Bending
23
...............................
Example Problems ........................ Illustrationof Section B4.5.2.1 ............... Illustrationof Section B4.5.2.2 ...............
24 24
Illustrationof Section B4.5.2.6
28
Index for Bending Modulus of Rupture Symmetrical Sections ......................
Curves
for 32 32
Stainless
4.5.5.2 4.5.5.3
Low Carbon and Alloy Steels-Minimum Properties... H eat Resistant Alloys-Minimum Properties .......
4.5.5.4
Titanium-Minimum
4.5.5.5
Aluminum-Minimum
Properties
Magnesium-Minimum Index for Plastic
Properties Bending Curves
Steel-Minimum
Properties
Properties
............
Corrosion Resistant Titanium-Minimum
4.5.6.5
Aluminum-Minimum
4.5.6.6
Magnesium-Minimum Properties Elastic-Plastic Energy Theory General ...............................
.............. for Bending
4.5.7.2
Discussion
................
4.5.7.3 4.5.7.4
Assumptions and Conditions ..., .............. D eflnitions .............................
4.5.7.5
Deflection of StaticallyDeterminate
4.5.7.6
Example
Problem
34 34 35
.............. ..............
4.5.6.3 4.5.6.4
Properties Steels-Minimum
of Safety
5-iv
. . .
...............
Beams
.........................
B4
36 36
............ Properties...
Metals-Minimum Properties Properties ................
of Margin
33 33
...............
Stainless Steel-Minimum Low Carbon and Alloy
4.5.7 4.5.7.1
33
................
4.5.6.1 4.5.6.2
Properties
26
...............
4.5.5.1
4.5.5.6 4.5.6
23
.....
37 37 37 38
........
214 214 214 215 215
........
217 219
Section B4.5 February 15, 1976 Page 201
B4.5.5.6
.Magnesium-Minimum
Properties
4O Fb (ks{)
.5
1.0
k_
Fig.
B4.5.5.6-5
Minimum Symmetrical Forgings
Bending Sections (Longitudinal}
2.0
Zqc
Modulus ZK60A
of
Rupture Magnesium
for Alloy
.
Section B4,5 February 15, 1976 Page 202
B4.5.6.6
Magnesium-Minimum
Properties
o
_.o
°a
%. ,6 .4 #
°_,_
Section
A4
1 February
r
Page
Table
Inch r
A4-21.
Inch
Decimal
Fraction
Decimal
and
Metric
Equivalents
Millimeter
of Fractions
of an
Inch
Centimeter
(mm)
(cm)
1970
35
(Cont'd)
Meter (m)
0.796
875
51/64
20. 240
37
2. 024
037
0.020
240
37
0.812
5
13/16
20.637
31
2.063
731
0.020
637
31
0.828
125
53/64
21.034
Ii
2. ]03
411
0.021
034
i]
0.843
75
27/32
21.431
05
2. 143
105
0.021
431
05
0.859
375
55/64
21.827
85
2. 182
785
0.021
827
85
7/8
22. 224
79
2.222
479
0.022
224
79
0.875
0.890
625
57/64
22.621
59
2.262
159
0.022
621
59
0.906
25
29/32
23.018
53
2.301
853
0.023
018
53
0.921
875
59/64
23.415
33
2.341
533
0.023
415
33
0.937
5
15/16
23.812
28
2.381
228
0.023
812
28
0.953
125
61/64
24. 209
07
2. 420
907
0. 024
209
07
0.968
75
31/32
24. 606
02
2.460
602
0.024
606
02
0.984
375
63/64
25.002
81
2.500
281
0.025
002
81
I
25.4
0.025
4
1.0
2.54
Section
B4.5
February Page l
B4.5.0
Plastic
Analysis
of
15,
1976
Beams
Introduction The conventional maximum fiber stress range, the assumption the stress corresponds mater ia I.
flexure formula f=Mc/I is correct only if the is within the proportional limit. In the plastic that plane sections remain plane is valid while with the stress-strain relationship of the
This section provides a method of approximating the true stress which depends upon the shape and the material properties. It is noted that deflection requirements are investigated when using this method since large deflections are possible while showing adequate structural strength. The
method
is subjected The Simple
Complex
following
bending:
A
of
in this
fluctuating
glossary
This condition moment vector the
rectangular symmetrical
section
is not
applicable
if the
member
loads.
is given
This condition moment vector
bending:
Development
other
outlined
to high
for
convenience:
occurs when the is parallel to a
resultant principal
applied axis.
occurs when the resultant applied is not parallel to a principal axis.
Theory cross section will cross section would
be used in this development; yield the same results.
any
Section B4.5 February 15, i 976 Page 2
B 4.5.0
Plastic
Analysis
of Beams
(Cont,
dA
f
d)
max
/¢2
--[
'
" -7
f
e max
(a)
Section
,
(b)
fl
true Stres'
max
Strain
(c)
Stress 0
el Strain
eZ
(d) Stress-Strain (Tension Figure
the used
Since neutral
elastic
range,
a trapezoidal
stress
approximate yield stress,
the true stress distribution, a buckling stress, an ultimate
stress
above
level
the
proportional
Curve
and Compression)
B4. 5. 0-I
the bending moment of the true stress axis is greater than that of a linear
in the
£max
distribution about Mc/I distribution as distribution
is
fmax may be defined stress or any other
used as
to a
limit.
Let
fo be a fictitious stress at zero strain in the trapezoidal stress distribution as shown in Figure B4.5.0-Z. The value of fo may be determined by integrating graphically the moment of (not the area of) moment
the true stress of the trapezoidal
distribution stress
and equating distribution.
this
to the
bending
Sect ion B4.5 February 15, 1976 Page 3
B 4.5.0
Plastic Analysis
of Beams
(Cont'd)
f max
f
f
max
max
f o
Stress
f
f
max
max
6
Strain
(a) True
Stress
(b) Trapezoidal
Stress
Figure Mba
=
(c) Stress
Strain Curve
B4. 5. 0-Z
Allowable bending moment of the true stress distribution for a particular cross-section at a prescribed maximum stress level.
Mb
c Mc
a
Fb
= Fictitious allowable I stress or the bending modulus of rupture for a particular cross-section at a prescribed maximum stress level.
I
I Mb t = "_-fmax
+ (ZQ- I_)c fo =
The bending moment of a trapezoidal stress distribution that is equivalent Mb a
Where
for symmetrical
sections,
c
I
=
(
y2 dA
(moment
y dA
(static
of inertia)
c
Q
._
C
"
max
0
Distance
from
eentroidal
axis
to
moment the
extreme
of cross-section) fiber
to
Section February Page 4
B 4.5.0
Plastic
Analysis
of Beams
Mb
Therefore,
from
Fb = fmax
B4.5 15,
(Cont,d}
c
t I
Fb =
we
obtain: (4.5.0-I)
+ (k-1)fo
Where, k
--
2Qc i
(4.5.0-2)
Two types of figures are presented for plastic bending analysis. One type presents Bending Modulus of Rupture Curves for Symmetrical Sections at yield and ultimate (Reference Section B4.5.4). The other which
type are
presents necessary
Plastic Bending for the following:
1)
Limiting
stress
z)
Tension
and
significantly 3) Figure
B4.5.0-3
Flanges
k = 1.0
] Thin
k'= 1.27
yield
{Reference
or
stress
Section
B4.5.5)
ultimate.
strain
curves
which
are
different.
shows
Generally, aircraft
Tube
than
compression
Unsymmetrical
sections. for typical
I
other
Curves
cross-section. values
of
validity sections
Hourglass
k for
various
Rectangle
Hexagon
I
, SHAPE
symmetrical
cross-
of the approach has been shown only which are geometric thin sections.
FACTOR
Figure
B4.5.0-3
]Solid
Roun_
Diamond
1976
Section B4.5 February 15, Page 5
B4.
5. I
Analysis Strain
B4.
Procedure Curves
When
Tension
and
Compression
1976
Stress-
Coincide.
5. i. 1 Simple Bending Sections.
about
The
procedure
is as follows:
io
Determine
k by
Equation
a Principal
(4. 5. 0-2)
Axis---Symmetrical
or by
the use
of Figure
B4. 5. 0
-3.
For
2,
yield
or
Rupture determine
.
For
,
on
stress
the
other
(See
k curve
Step
3 and
B4.
use
section
fb,
the
the bending
and
of safety
yield
the Bending
B4.
Modulus
5. 5 for index)
or
ultimate,
use
5. 6 for index).
(or k=l)
to read
in determining the margin
than
section
stress-strain
appropriate
F b from
stress,
k - see
of
to
F b.
Curves
stress
limiting
(F b vs.
a limiting
Bending
the
ultimate
Curves
curve
F b for
calculated stress
for pure
and
the
directly
may
combined
as
Plastic
the limiting up
to
strain.
stress,
for
bending
move
same
Mc/l
ratio
the
Locate
be
used
stresses
follows:
fb
Rb-
(4.5.1.1-I) Fb 1 -
M.S.
Where:
B4.5.
1.2
S.F.
Simple
Axis
(4. 5. i. I-2)
with
about an
Axis
(yield
a Principal of
or ult) safety
factor
Axis---Unsymmetrical
Symmetry
Perpendicular
to
the
of Bending
procedure
of its principal
1
is the appropriate
Bending
Sections
This
Rb(S.F. )
axes.
also
applies
to any
section
with
bending
about
one
Section B4.5 February 15, 1976 Page6
B4.5.1.2
Simple
Bendin
Sections Axis The
.
procedure Divide
the
,
as
Axis---Unsymmetrical
of Symmetry
Perpendicular
to the
(Con t'd)
into
(not
B4.5.
a Principal
Axis
follows:
section axis
Figure
an
of Bending. is
principal
G about
with
two
the
parts,
axis
of
(1)
and
(Z),
symmetry)
on
either
similar
to
side that
of
shown
the in
I. Z-l.
Calculate: QlCl k1 -
ii
(4.5. I. Z-I)
where I1 is the moment of inertia axis of the entire cross-section.
3.
section
made
may be sections
used where shown.
Calculate
up of part part
of part (I) only about the principal This would be identical to k of a
(I) and
its mirror
image.
(i) and
its mirror
image
Figure form
B4.5.0-3
one
of the
similarly:
Qzcz k2 = 1
Assuming use
iZ
part
the
(4.5. I, Z-Z)
(I) is critical
P_astic
Bending
in yield
Curves
and
(or crippling, locate
strain ( or k=l) curve. Move directly and read for the same strain. Fb 1 5.
Read
the
6.
Calculate:
E27.
8.
strain
to the
ultimate,
stress
on
E Z on
priate
k curve Mba
Mb a =
the
appropriate
etc. ) stressk curve
el.
ElcZ c1
Locate
Calculate
up
this
(4.5.1.2-3)
the
strain
to read
scale
and
move
directly
up
to the
appro-
Fb2
by
Fblll 5_
+
Fb212 E_
(4.5 .l. 2-4)
Section February Pa 9e B
4.5.1.2
Simple bending u_n_s_ym_letrical symmetry
M_
mustbe
7
axis-axis of
to the
axis
of
(Cont,d)
used
an_dath--emargin
a principal with an
perpendicular
bending.
1
about sections
B4.5 15,
in determining
of safety
for
the
pure
moment
bending
ratio
for bending
and
as follows:
M Rb
_
(4.
5.
1.2-5)
Mb a 1 M.S. Where:
=
S.F.
ab
-
(s. F. )
is the
1
(4.5.1.Z-6)
appropriate I
(yield
or
ult) safety
factor
!
(i) rincipal
Axis
(z) Figure B4.5.1.3
Complex
This
B4.
not
condition
parallei
with
occurs to
5. i. 2-i
Bending--Symmetrical
cal Sections
is
B4.
One
when
a principal
Axis
the
axis
as
Sections;
Also
resuItant shown
applied
moment
Figures
B4.
in
5. i. 3-2.
vector 5.
1. 3-1
,y I
M
i
;/ X
X
__ x
-
"C.G.
Y
Y Symmetrical
Section
Unsymmetrical with
Figure
B4.
5. i. 3-I
one Figure
Section
axis B4.
of 5.1.
or M
I/
Y/ X
Unsymmetri-
of Symmetry.
symmetry 3-2
1976
Section B4.5 February 15, 1976 Page 8 B 4.5.
1.3
Complex
Bending--
Unsymmetrical The
procedure
may
be
is
very
as
follows
conservative
1..
Obtain principal
2.
Follow
Rb=
Rbx
4.
For
pure M.
Rbx
is
components
also of Symmetry.
always
conservative
and
shapes):
of M with
in Section
respect
B4.5.1.1
to the
or
B4.5.1.2
Rby (4.5.1.3-1)
+ Rby bending, S.
1
l
Rb (S.F. ) Where: S.F. B4.5.1.4
Axis
cross-sectional
outlined and
Sections; One
procedure
some
the
procedure
to determine 3.
My,
with
(this for
M x and axes. the
Symmetrical Sections
is
the
Complex
appropriate
(4.5.1.3-z)
(yield
or
Bending--Unsymmetrical
ult)
safety
factor.
Sections
with
No
Axis
of Symmetry This not
condition
parallel
x
occurs
to a principal
when axis
the as
resultant shown
y,
y
\
I
applied
in Figure
moment
vector
is
x' (Principal
axis)
B4.5.1.4-1.
M
-
-
x(Ref.
X
y' (Principal ! y (Ref. axis) Figure
B4.5.1.4-1
axis)
axis)
Section
B4.5
February Pa ge 9 B
4.5.1.4
Complex Axis
The
Unsymmetrical
Sections
with
no
of Symmetry.
procedure
i.
Bending--
15,
is as
follows:
Determine
the principal
axes
by
the
equation
2I tan
where
2 0 -
x and
Ix
xy Iy - Ix
y are
,
4.
and
dA
(Moment
of
Iy =
x
dA
(Moment
of inertia)
(Product
of
inertia)
of
M
dA
Obtain M x, and principal axes.
Follow
the
Rbx
, and
The
stress
For
axes
y
the
My,,
procedure Rby
= Rbx
pure
components
outlined
in
inertia)
Section
B4.
with
respect
to
5.
1. 2 to
determine
for
complex
, + Rby
complex
bending
(4.
5. 1.4-2)
(4.
5. 1.4-3)
is
,
bending,
the
margin
of
safety
is
I M.
S.
ab(S.
F. )
where: S.F.
is
the
,
ratio
Rb
So
centroidal
=
Ixy=/Xy o
(4.5. I.4-i)
the
appropriate
(yield
or
ult)
safety
factor.
1976
Section B4.5 February 15, 1976 Page I0
B4.5.
I. 5
Shear
Flow
for
Symmetrical
only
Simple
Bending
About
a Principal
When plastic bending for cross-sections
occurs, withk=l.O.
unconservative. The derivation follows for an ultimate strength
the
classical formula For k greater than
of a correction assessment:
factor
__
f
/ ///J
Jr
SQ/I 1.0, ;3 SQ/I
__l
ma-_l
•
J/i
P.A.
-t
,%q
Cross -Section
Stress
Figure Let
P = load
P=
From
on
the
cross-section
geometry
"
fot c
-,y Let
A= area
y and
c
dy
+ ff
of cross-section
/
Jy
t dy
B4.5.
i. 5-1
" fo) y-c
_c A=
5.1.5-1
between
of Figure
f = fo + (fmax
•".P=
B4.
Distribution
tfdy
jy
Axis--
Sections
then,
(fmax
" fo)
between
tcy
y and
dy
c
°"
is correct SQ/Iis is
as
Section B4.5 February 15, Page 1 1
B 4.5.1.5
Shear
Flow
Axis--
P=
fo A
+ (fmax
P=
fmax
I--_)4
From
for
Simple
Bendin_
Symmetrical
about
Section.
- fo) A__
and
a Principal
(Cont'd)
since
Q=Ay,
c
Equation
fo (A
(4.
(a)
Q)c
5. 0-i) Mc
Fb
Since,
= fmax
c
dM
I
dx
by
+ fo (k - I) _
df
df
max
0
dx
dx
definition,
c -_--(S)-
then,
I
(k - 1 )
S = dM/dx
max df dx
[ 1 +
and
df
q = dP/dx,
o
(k
- 1 ]
and
from
(a),
(b)
max
df
df in ax
q
=
df
Q
dx
o +
c
m ax
df
dx max
Let
X
= df
0
/dfmax
and
_
=
1 +x l+x
(c/F(k-l)
l)
then,
df max
q
But
and
=
since
from
substituting
(b):
(d)
(c)
dx
into
df max (c)
we
/dx-
ScI
/
[ 1 +k
have
(Ac/Q q
Since
Q
=
= A-y-', SQ
q-
_-y-
[1
+k
(k
-
- 1)] 1)]
(k
-
1)]
(d)
1976
Sect ion B4.5 February 15, 1976 Page 12
B 4.5. I. 5
Shear
Flow
Axis-The
method
for Simple
Symmetrical outlined below
shows
the margin of safety for simple of a symmetrical section. The
procedure
1.
Determine
Mc/I
Determine B4.5.0-3.
k by
o
1
Refer
is
to the
as
Equation
applicable
how
to correct
SQ/I
about
and calculate
a principal
axis
(4.5.0-2)
Plastic
or
by
Bending
Move c.
across
the
use
Curves to the
of Figure
and
locate
appropriate
k curve
By use of the stress.-strain (or k = 1) curve and the fo curve, determine the rate of change of fo _vith respect to f at the true strain E, which would be expressed as df O
)t =
To determine determine B4.
area
5.1.
axis
-
dr/d,
(4.5.1.5-1)
the shear the distance outside
5-1.
Determine
/d_ O
df
of the
1
a Principal
follows:
d'f
o
about
(Cont wd)
plastic bending
Mc/I on the F b scale. to read the true strain, o
Bendin_
Section.
This the
shear
flow from
of the is
point
defined flow
at any point the principal in question as
at
on a cross-section, axis to the centroid as
Shown
from
the
in Figure
_.
distance
"a"
principal
by SQ a
qa
= _
I
(4.5.1.5-2)
where,
=
Qa
=
l+X (c/7- l) l+X (k-l)
£
y dA
(4.5.1.
5-3)
14.5.1.
5-4)
Sect ion B4.5 February Page 13
B
4.5.1.5.
Shear
Flow
Principal
.
Calculate
for
f
Bending
about
Symmetrical
= (r s)
Sm&x
f
Simple
Axis--
a=
0
a
Section.
(Cont'd)
and
= (q/t)
a=
15,
the
stress
ratio
is
0
S l_fl aN
R
(4.5.1.5-5)
s
,
For
F s
the
margin
of
safety
with
pure
bending
and
shear
use
1 M.S.
,
For
=
the
2-
-1
+ Rs
margin
of
safety
with
(4.
axial
load,
bending
5. 1. 5-6)
and
shear
use
1 M.S.
=
1
(4.
5.1.
5-7)
(S. F. )v_R b + Ra )2 + R2s where,
B4.
5. 1.6
Ra-
fa Fa
S.F.
is the
Shear
appropriate
Flow
for
Simple
Unsymmetrical dicular
B4.
A procedure 5.1. 6-1 is
•
Divide the
similar follows:
the
in
Axis to
section
principal
shown
the
axis Figure
with
of
that
into (not B4.
or
Bending
Section
to
as
(yield
ult) safety
About an
a
Axis
factor,
Principal
of
Axis--
Symmetry
Perpen-
Bending shown
two the
in
Section
parts, axis
(1) of
B4.
and
(2),
symmetry)
5.
1. 5 for
on
Figure
either
side
similar
to
of
that
5. 1. 2-1.
Calculate:
k1 where principal identical image. mirror
QlCl I1
(4.5.
I 1 is the moment of axis of the entire to
k
Figure image
of
a section B4.
form,
5. one
inertia of cross-section. made
0-3
may of
the
up be
of used
sections
part
(1) only This
part
(1) and
where shown.
part
about would its
1.2-1)
the be mirror
(1) and
its
1976
Section B4.5 February 15, 1976 Page 14 B 4.5.1.6
Shear
Flow
Axis--
for
Bendin_
tl_syrnmetrical
Symrnetry B
Simple
Section
Perpendicular
Calculate
about with
to the
a Principal an
Axis
Axis
of
of Bending.
similarly: Q2c2
k2 -
.
5.
to the
MCl I 6.
Mc 1 -I
Calculate
Refer
(4.5.1.2-2)
i2
on
Find
I
applicable
the
(use
Mc 2 and
Plastic
F b scale.
k 1) curve
Move to read
• E 2, similarly,
Bending across the
true
Curves
and
to the
appropriate
strain
_ 1'
locate k
_1c2 or by
_ 2-
(4.5. i. 2-3) cI
.
By
use
of the
stress-strain
determine the rate true strainq which
xl = e
=
Calculate
(or
of change would be
k = 1) curve
of fo with expressed
a,_d the
respect as
fo curve,
to f for
7l
the
(4.5.1.6-i)
similarly: (4.5.1.6-2)
.
To determine determine of the
area
Figure 1 0.
B4.
Determine neutral
qa
axis
=
the shear the distance above
or
flow from
below
5.1.
6-1.
This
the
shear
flow
at any point the principal the
point
is defined in part
on a cross-section, axis to the centroid
in question as
(1) at
_a
or
distance
as
shown
_b" "a"
from
by
_a t -T-SQa)
in
(4.5.1.6-3)
the
Sect ion February Page 15
B 4.5.1.6
Shear
Flow
Axis--
for
Simple
Bending
about
Section
with
Unsymmetrical
Symmetry
Perpendicular
to the
a Principal an
Axis
Axis
of
of Bending.
where, i
/3a
=
+k
I c(_ a
1 +X1
(kl
i )
- 1)
(4.5.1.6-4)
c 1 (4. Qa
11.
=
_a
Determine neutral
the axis
qb
=
5.1.
6-5)
ydA
shear
flow
in part
(2) at distance
"b"
from
the
by
_3b
I
(4.
5.1.
6-6)
(4.
5.1.
6-7)
where,
i3b =
Qb
12.
For
l
=
the
parts
+%2
_b
(4. 5.1. 6-8)
the
cross-section be
at
the
side
developed
of
so
each
and
that in
the
the
amount
of
the
neutral
axis.
entirely on
principal and
made
axis would result side was used in
determining
ments follows:
I)
ydA
could
neutral which
buted
2
1
-
flow
of
each
(k2
shear
analysis
)
-
1 +_Z
side
Equations
from is
axis, use
the
shear
external 5.1.
and
S1Q a qa
=
/3a
I1
at of involve
distributed
(4.
the
is shear
corresponding 5.1.
6-6)
S 1 =
M1
+ M2
distrimo-
become
M 1 where
the
to
moment
then the
rigorous
regardless This would
bending
shear, to
6-3)
A
both
calculations
shear the
proportional (4.
value
transverse
q using
larger. flow
the same calculations.
If
calculate
as
Fb 1 11 S,
M 1 = (See
C-1 B4.
5. i. 2)
B4.5 15,
1976
Section B4.5 February 15, 1976 Page 16
B 4.5.1.6
Shear Axis--
Flow for Simple Unsymmetrical
S]rmmetry
Bendin_ Section
Per_.endicular
about a Principal with an Axis of
to the
Axis
SZQ b qb
=
_b
of Bending.
Iz
M Z
IZ
where
S Z=
M1
+ MZ
M2=
S,
Fb 2 C2
(See
f
i
c1
B4.5.1.2)
t
m
a
_i
f
_ Principal
axis
I
b
Yb
cz -i
tz Figure 13.
Calculate
f
S a
ratio
s:
B4.5.1.6-I
qa = -,t1
and
f
= sb
qb -t2
to obtain the shear
f S
1%
a
(4.5.1.6-9)
.=.
F s
S a
fs b F
Rs b -
14.
For
the
(4.5.1.6-10:) S
margin
of safety
with
1 M.S.
bending
- 1
=
(s.F. )_+
pure
and
shear
(4.5. i. 6-II)
RZs
where: S.F.
is the
appropriate
(yield
use
or
ult)
safety
factor,
Sect ion B4.5 February 15, Page 17 B
4.5.1.6
Shear Axis--
Flow for Simple Unsymmetrical
Symmetry (Cont ' d) 15.
For
Bendin G about a Principal Section with an Axis of
Perpendicular
the
margin
M.S.
=
of safety
to the Axis
with
axial
of Bending.
load,
bending
and
shear
use
I -1 (S.
F.
)_(R
5.1. 6-12)
R 2
Ra )2
b
(4.
where: f a
R a - Fa S.F.
B4.
The
5.
1. 7
Shear
procedure
l
•
is as
S x,
The
or
ult) safety
factor.
Bending--Any
Cross-Section
axes
by
or,
inspection
if necessary,
(4.5.1.4-I),
and axes.
Sy,, the components The principal axes
in
the
Figure
same
principal axes at a prescribed
4.
Complex
the principal
indicated
Follow
for
(yield
follows:
Equation
Obtain principal as
.
Flow
Determine by
,
is the appropriate
shear
obtain point.
stress
x'
to the and y'
B4.5.1.4-1o
procedure to
of S with respect are denoted by
of Section the
ratios
shear
about
B4.5.1.6 stresses
at this point
fsx
, and
both fSy,
are
f S X
_
Rsx'
fs
So
For
w
(4.5.
F s
Rsy
' _
the
margin
:.7-l)
,
F sY
(4. of
safety
with
complex
bending
and
5.1.7-2) shear
1 M.S.
= S.F
-1 b
+
Rs
(4.1.
5.7-3)
use
1976
Sect ion B4,5 February 15_ 1976 Page 18
B 4.5.1.7.
Shear Flow for Complex Section. {Cont'd)
Bending--
Any
Cross-
where,
Rs S,
o
=_R
is
F.
the
Sx' 2
+ Rsy,2
appropriate
For the margin shear use
(4.1,
(yield
of safety
with
or
ult.
axial
) safety load,
5.7-4)
factor.
complex
bending
and
l M.S.
=
-1
S.F. B4.5.2
Analysis Strain
This
may
in the longitudinal is higher than the B4.5.2.
1
Simple Sections
5.7-5)
R b 4- Ra )2 4- R s
Procedure Curves Differ occur
(4.1.
When Tension Significantly
in materials
such
grain direction compression Bending
as
where curve•
about
and
the the
Compression
AISI
301
tensidn
a Principal
Stress-
strainless
steels
stress-strain
curve
Axis--Symmetrical
f
f
tC
N.A. P.
_]
A.
N.A.
•
f
Section
oC
A
C
(a)
A.
t
f C
Figure
C
(c)
(b) Strain
B4.5.2.
o
True
I-I
Stress
(d)Trapezoidal Stress
Section February Page
B
4.5.2.1
Simple
Bending
Sections.
about
a Principal
Axis--
19
Symmetrical
(Cont'd)
F tu
Tension
f
6U
(e) Stress-Strain Figure
The B4.
procedure
for
5. 2. i-I is as
I
,
Curves
B4. 5. 2. I-i (cont.)
a symmetrical
section
such
as that
in Figure
follows:
Determine
k by
Equation
(4. 5. 0-2)
or by
the
use
of Figure
B4. 5. 0-3.
,
.
For
yield
of
Rupture
ing
the
or neutral
been
taken
Note
Step
For use on (or cept
ultimate Curves axis into
the
fol.
away in
use
F b.
from
account
Plastic
stress
curve Note
(or
Bending
appropriate
k=l)
stress,
determine the
the
the
The
Bending
correction
principal
axis
development
of
the
Modulus for
by
shift-
A has
curves.
8.
a limiting the
limiting to
strain) Curves.
Locate
or
compression)
(tension and Step
call 9.
other
this
fl
at
_ 1 with
than
yield the
or
limiting
ultimate, stress
stress-strain its
trapezoidal
inter-
B4.5 15,
1976
Section February Page
B 4.5.
Z. I
Simple
Bendin_
Sections.
Locate
,
about
a Principal
Axis--
the neutral
difficult
axis
axis
in Figure
sections.
See
which
toward
to determine,
provided
Symmetrical
would
be
the tension but
B4.5.
Example
trial and
Z. 1-2 for B4.5.4.
some
side. error
I for
7.
Find Fbl and Fbz for E I and k I and k z which may or may
Calculate I 1 and I Z, the moments with respect to the neutral axis
Calculate
Mb
Mba
11
are crossin
that k I and
correct
k2
values
of
of inertia of the elements of the entire cross-section.
Fb Iz Z
Cl
margin
formulae
procedure
Note
using the be equal.
A from be
symmetrical
typical
+
c2
(4.5.2.
cases as in Step 2, F b may be used stress, in determining the stress
For Mc/I the
_
type
may
by
a
Fbl
8.
_ Z' not
distance This
several
determining A, e Z' fz' fo2' kl' and k 2. are with respect to the neutral axis.
.
20
(Cont'd)
the principal
,
B4.5 15,
of safety
for
pure
bending
with fb' ratio for
I-I)
the calculated bending and
as follows:
I M.S.
=
-I (S.F.)
(4.5.2.
I-3)
Rb
where:
S.F.
e
For
is
cases
the
as
in
appropriate
Step
3,
(yield
M_. gJa
moment
ratio
bending
as
for
bending
and
mustbe -
or
ult)
used
safety
factor.
in determining
the
_
the
margin
of
safety
for
pure
follows: M (4.5. Z. 1-4)
Rb
=
Mba I
M.S.
=
(S.F.)Rb
-1
(4.5.2.
I-5)
1976
Section B4.5 February 15, 1976 Page 21
B 4. 5.2. ] Simple Bending about a Principal Sections• (Cont,d)
Axis--
o
_
_
¢,a
u
n 0
Symmetrical
_1 II
0
_1 r..)
<_I"_
;_ r_
o
_
'
o
_
._
+
I
Z
,
£
cO
_
-.D D.-
o0 (3". ..D
÷
+ u
u _i _
v
_ ed
_
[..-i
?1
_2:d)
-..D
rd
_
_
°_
c;
_1_
_
_
cq
o.1 -..D
I
•
(y.
_
E
;>
, ._ =--.
I_';
i
,,
+
_ _ i
_) O ,._t
v
o
_
_ ::::;
_
_i
_ _I_
m mM
_ M N
+
X
O
I
o_
Z
0 O3
I,L
oI , O
_
0
No
A
<_
r_ o i
..D
rq •
•
I
_
4,_
0 _
C_
m
,
_
_
+
0
_
u
+ .r-i
,
,-4
_o
..D _
u_4
0
¢_
_
t_ ÷
_ll
! 0
_m
_
E
"_
+
+
t'-
O
_d
Section B4.5 February 15, 1976 Page 22
B4.5.2.2
Simple Bending about Sections with an Axis Axis
The .
procedure Locate
in
require
the
fmaxc, bending higher trial Refer Z.
the
which
would
the tension B4.5.4.1 for
derivation
of an
the
identical
exception
be
some
Complex cal
Refer
expression
relating
the
F b on Plastic
Sections
with B4.5.1.3
2 which
is
expressed
Follow
the
and/or
B4.5.2.2
applicable
Complex
One and as
from
A,
to that
neutral
axis
instead
Axis follow
side
Sections;
lot,
loads due to the likely to contain be obtained by fo curves.
of Section
the compression Bending Curves.
the
to that This will
fmaxt,
(or k = 1) and procedure.
Bending--Symmetrical
to Section
Z. 4
distanceA
side by a method similar symmetrical sections.
procedure
of using
Remember that the compression
B4.S.Z.S
B4.5.
axis toward Example
follow
axis. from
Z.
axis
and f_vc by. use. of. the equilibrium of axial stress dlstrlbut_on. This expression is powers of Aand the solution for _ can best
Now,
Step
follows:
and error using the stress-strain to Example B4. 5.4.2 for typical
with
for
as
neutral
principal outlined
Axis--Unsymmetrical Perpendicular to the
of Bending is
the
a Principal of Symmetry
B4.5.1.2 of the is
principal
obtained
also
Unsymmetri-
of Symmetry the
identical
procedure
except
follows:
procedure to determine
outlined Rbx
and
Bending--Unsymmetrical
in Section
B4.5.2.1
Rby. Sections
with
No
Axis
Symmetry
for
Refer to Section Step 3 which is 3.
Follow mine
the Rbx
B4.5.1.4 expressed procedure and
an(t follow as follows: outlined
the
identical,
in Section
B4.5.
procedure
except
Z. 2 to deter-
Rby
i
of
Section
B4.5
February Page 23
B4.
5. 2. 5
Shear
Flow
for Simple
Symmetrical
Refer
If shear
B4.
flow
5. I. 5 and
is being
Plastic
The
compression
5. Z. 6
Flow
pendicular
the following
flow
tension
for Simple
similarly
Refer
Axis
bined
Shear
the
Flow
the
The
The
elastic
loading
Therefore, have to be affected.
follow
the Equation
similarly
using
about
a Principal
Axis--
an Axis
of Symmetry
Per-
the
identical
The
for
procedure
same
do
with
plastic
correspond
under modified
compression
follow
portions
ratio.
combined if the
side
Bending
use
the
for
Equations
is considered Curves.
Cross-Section
the identical
of Section the
of Transverse
shape
of X
Bending--Any
procedure
not
and
side,
procedure
except
as follows"
and
of Poisson's
tension
evaluation
Plastic
Complex
B4. 5. I. 7 and
Effects
on the in the
compression
is expressed
5. 3
the magnitude
use
of 71 for
is considered
with
Curves
(4. 5.1. 6-2).
to Section 3 which
the effects
side,
Curves.
determined
principala prescribedaxes point, and obtain
B4.
with
of Bending
If4. 5.1. 6 and
Bending
using
Follow
.
procedure
evaluation
Bending
Sections
is being
Plastic
(4. 5.1. 6-i) or
Step
Axis--
exceptions:
If shear
for
side
Bending
to the
to Section
5.2. 7
identical
the tension
in the
compression
Unsymmetrical
B4.
the
on
Curves
Plastic
Shear
Refer
follow
determined
Bending
(4. 5.1. 5-3).
B4.
a Principal
exception:
tension
the
about
Sections
to Section
the following
Bending
15,
of the
shear
on
Plastic
bending curve
the plastic
bending curve
com-
due
depend
of a given
stress-strain
fSy,__at
for
curves
curves
both
Bending
curves
of the uniaxial
plastic
loading
fsx, and
of stress-strain
stesss-strain
uniaxial
5. 2. 6 about
stresses
Stresses
to those The
B4.
curves
to on
material. may
is significantly
1976
Section B4.5 February 15, Page 24
B 4.5.3
The
When
Effects
of Transverse
modification
procedure
is
as
plastic
Modify
.
Determine
the
uniaxial and
E.
bending
stress-strain
construct
Refer
ground; the constructed
Plastic
curves
curve
the
Bending.
is
to Section
the
necessary,
B4.5.0
plastic for
Cross-Section
the
A3.7.0.
bending
theoretical
plotted and (4.5.0-1).
of AISI
Elongation) Stainless Steel Bending in the Longitudinal the
Shift
in Neutral
When the Limiting Is Not Used Since the
Section
curves, back-
then
k curves
Problems
A Diamond
Find
by
modified
fo curve must first be by the use of Equation
Example
Reference
on
follows:
,
F b vs
of the
Stresses
Minimum
Hard
(2%
Sheet Is Subjected to Pure Direction at Room Temperature. Axis
Stress Is Fty > Fqy. Plastic
301 Extra
(A) from (a) )
Ftu
Bending
the
and
Curves
(b)
Principa Fcy.
! Axis (Fty
on page
133
is
and
134. _ide /_tenslon
(a)
Ftu
= ZOO ksi
ct
-= . 020
lot
= 146
From Figure Awhen k = 2 (for
in.
ksi
B4.5. Z. 1-2 a diamond).
ft + Zfot-
PlA,
/in.
use
1
(I - A 2)
the
equation
[fc +fo
c
for
determining
(Z + 6A-
3AZ)]
By trial and error, equality is reached within 0.8% is assumed equal to 0.187c as shown below: From
Equation
(4.5. i.2-3) Et
E ic2 c2
-
c =
c1
or
0. 020 x I.187c .813c
_c -
cc ct
= 0. 0292
in. /in.
when
! 976
Section February Page 25 B 4.5.4.1
l_.xample
Problem
From
the f
B
4. 5.4. 1 (Cont
stress-strain
= 149
ksi
= 107
ksi
(k=l)
B4.5 15,
'd)
curve
page
135
[ 149
+ 107(2
at
c
c
C
f O C
Therefore,
+ 6 x
0.187
1 - 0. 1872
492-_,488
(b)
f
= 97
ksi
cy c
= 0.00575
c
fOc
A
= 27
in./in.
ksi
From Figure B4. 5.2.1-2, when k = 2 (for a diamond).
use
the
equation
for
determining
1 -
ft + 2fo t
By A
trial and
is assumed
From
(I -A
error,
equal
2)
[fc + f°c
equality
to 0. 024c
Equation
-
ct
=
From
the ft
shown
for=
within
]
0. 60%
below:
_ c ct or
=
c t
0. 00575 x 0.976c i. 024c stress-strain
16.5
- 3A 2)
(4. 5. I. 2-3)
Cl
= iZl
+ 6A
is reached
as
c I c2 c 2
(2
ksi
ksi
=
Cc
=
(k=l)
0. 00548 curve
in. /in.
page
132 at
ct
when
1976
Sect ion B4.,5 February 15, 1976 Page 26
B 4.5.4.1
Example
Problem
B 4.5.4.1.
(Cont'
d)
Therefore, 121
+ 2 x 16.5_
1 1.0.-0242
I97
+ 27
(2 + 6xO.
024
154_154.93 B4.5.4.2
Calculate the the Principal
Ultimate Axis for
Allowable Bendin_ Moment About the Built-Up Tee Section Shown.
The Flan@e Is 60 ksi.
Is in Compression The Material Is
Steel Sheet Longitudinal
at
Since strain Section
the
Room Grain
longitudinal
AISI
and the Crippling Stress 301 1 Hard Stainless
Temperature Direction. tension
with
and
compression
curves are significantly different, B_. 5.2.2 will be followed.
For rather
ultimate than
Fcc
design,
crippling
the
is the
= 60 ksi
the ing wide.
principal the load (See
c
stress-
procedure
limiting
of
stress
/----tension
o.o_
;
-_
fOc -----
and
in the
Ftu.
.c=O. A trial
Bending
1_
_._.L
1
T
error
equation
axis toward on the tension Section
"2
for
shifting
the
neutral
axis
the tension side is determined by side to the load on the compression
from equat-
B4.5.2.2):
=
Cc
'Fcc
+
cc
Section February Page 27
B
4.5.4.2
Example
Problem
Equality 0. 065:
B
is reached
c
4. 5.4. 2 (Cont'
within
= 0.345
+ A
0.70%
= 0.410
84.5 15,
1976
d)
whenAis
assumed
equal
to
in.
c
c
Using
= 1 - c
t
(4.
Equation E
ct
= 0. 590
c
in.
5.1. 2-3)
C
c t c
-
0. 0046 x 0. 590 0.410
-
0. 00662
=
in. /in.
c
From
page
ft
112 at
= I13
fot
Substitution equation
results
Section
e t
ksi
38
ksi
of
these
in
equality
properties 3 2 tc t It-
3
Qt
=
Z t c t
Qt kt
-
(which
Ic -
values
into
within
about
0.
ct
above
2 x 0.05
0.05
x
_Z 0.
x 0_
x
3
= 0.
0.
01740
3
B4.
5. 0-3 t,
+ 2 x 0.450t
+ 2x0. 450x0.
05x0.
in.
= 1
Figure
in.
590
0. 006845
with
error
= 0. 006845
590
0. 01740
and
axis:
3
It
checks Ztc3 c
trial
70%.
the neutral
-
=
the
(c c \
_-_2
-_-)
5
for 2
a
rectangle)
2x0. 05x0. =
= 0. 008967
3
in. 4
4103
4
Section B4.5 February 15, 1976 Page 28
B 4.5.4.2
Example
Problem
B 4.5.4.2
Z Qc = tc c +2
x 0.450t
(Cont'd)
(Cc _ -_-) t, = 0.05 x--0.4102+
2x0.450
%
x 0.05 x 0. 385 = 0. 02572
Qc
c c
k
0. 02572
I
C
3
in.
x 0. 410
=1.17
0. 008967
C
From
page li2 using _t and k t fb = 132 ksi t
Let's check
this value
by numerically
evaluating
Equation
(4.5.0-I).
Fb t = ft + (k - I) fOr = 113 + (i.5-I)38
From
page
Fbc
114 using
= 64.5
Calculate
_
and k
C
allowable
It -
the
Problem
+
Flow
B4.5.4.2
at
Shear larger
flow
section of the
at
the
properties
2.94
=
the
Neutral
two
from shear
axis should each
flows
The procedure of Section B4.5. I. 6 will be used.
side
should
B4.5.2.6
of the
Shear,
Moment
be
of the be
in. - kips
Axis
If the Transverse
neutral
(4.5.1.2-4)
0. 590
Equal to 5 kips. and the Bending Ultimate (2.94 in-kips. )
the
Equation
13Zx0. 006845
cc
64.5 x 0.008967 0. 410
Shear
by
Ic c
ct
+ Find
moment
Fb
t
B4.5.4.3
c
ksi
the ultimate
Mbult
= 132 ksi (check)
Example (s), Is
Is Equal
determined neutral
(answer)
to the
by using axis.
(conservatively) and consequently
The used. Section
Section February Page B4.5.4.3
Shear
Example
Problem
Flow
B4.5.4.3
From
Tension
The required B4. 5.4. 2 are:
section
(Cont 'd_
properties
in.
Ic = 0. 008967
in.
already
known
from
4 (tension
side
only)
4 (compression
side
only)
4 I
= I t + I c = O. 015812
c t=
0.590
Qt=
0. 01740
kt=
i. 5 (rectangle)
From
the
in.
in.
t = 0. 00662
in.
in. /in.
stress-strain
/_\[d-v:-] =7 ksi/. \co/ 1
(k= i} curve
001
(df d-_-_ I = 8 ksi/. 001 1
Using
Equation
(4. 5. I. 6-i)
x i =_d-Y-71 = _Ta_ 8 7
XIUsing
Equation
_a = i+_ _ Ya-
-1.14 (4.5.1.6-4)
l+X
1
-
1 (kl - i)
ct 2
29
Properties
= 0. 006845
It
B4.5 15,
- 0.295
in.
Jl
on
page
112 at _t
example
1976
Section B4.5 February 15, 1976 Page 30 -._J
B 4.5.4.3
Example
Problem
B 4.5.4.3
(_ 295 590
1 + 1.14 I + 1.14
_a = Shear
flow
at
the
/3
[Note
From
that
the is
= 7.48
5-2)
36%
kips/in. SQ --
conventional
l
unconserva_ve] J
Compression
required are:
section
I = O. 015812 c
(4.5.1.
a
]formula L he re.
The B4.5.4.2
= 1.36
Equation
5 x O. 01740 O. 015812
qa = I. 36
Flow
(1.5 - I)
I
qa-
Shear
d)
1)
NA from
SQ
a
(Cont'
= 0.410
Properties
properties
in.
already
known
from
example
4 (Reference
Page
82 )
in.
C
Q
= O. 02572
in.
C
k
=1.17 C
E
= 0. 0046
in.
/in.
C
From
the
stress-strain
= 4.
dr)
6
(k = 1) curve
ksi/. 001
(df ==/I= 5.o ksi/0oi 2
on page
114 at
E C
Sect/on B4.5 February 15, 1976 Page 3 1 B4.5.4.3
Example
Using
Problem
Equation
X2
(4. 5.1.
=\dr
(4.5.1.
Yb
=
6-7)
-Yb
-
=
qb =
-
b
7
2 [0.05
c c
(0.410
O. 0Z572 O. 086
at
the
NA SQ
/d b
= 0. 086
+ 0.450)I
from
= 1.18
i'2quat*on
(4. 5.1.
6-6).
b
I
i.18
5 x O. 02572 O. 015812
= 9. 6 kips/in.
Note
that
the
--]SQ
Iformula
conventional
is 18% unconservative
here.
The ._
larger
in.
_ O. 299 in.
t + t. 09 @410299 t) • 1 + 1. 09(1. 17 - 1)
/gb = flow
Q
b
A
Ac =
qb
z
1 +x z (k z - t) Q
Shear
dr/de
- 1.09
Equation
/Jb
3 (Cont'dl
6-2)
/2
5.0 4.6
)t2Using
B 4. 5.4.
shear
flow
q = 9. 6 kips/in.
should
be
used
which
is
Section B4.5 February 15, 1976 Page 32
B4. 5.5
Index for Bending Sections
These
curves
for symmetrical ferent tension
provide
for of work
all fibers Modulus
in tension of Rupture
yield
sections only. compression
and
corrections the case
It is
Modulus
shifting hardened
and
of Rupture
Curves
ultimate
modulus
For materials stress-strain
of the neutral stainless
axis steels
of rupture
with curves,
that
are already in longitudinal
MIL-HDBK-5
or
the
other
Where
material
etc.,
only
Therefore, used in the
Modulus
for materialproperties given curve, the
modulus
the
B4.
Stainless
or
vary
two
(provided 5.5.1
allowables one
% elongations Steels
are
with
thickness,
of Rupture slightly values
practically
- Minimum
included. bending
sources
values section,
be
correspond the modu-
cross-sectional Curves
are
higher or lower may be rafioed the
In with
transverse
official
used for allowable material properties. Where these directly to the values called out on the graphs of this lus of rupture values are applicable as shown.
area,
values
significantly difthe necessary
(as in pressurized cylinders), Curves are applicable.
recommended
for Symmetrical
presented. than those up or down
same).
Properties Page
AISI
1/4
Hard
Sheet
*(RT)
...........
39
AISI 301
ltZ
Hard
Sheet
(RT)
...........
40
AISI 301
3/4
Hard
Sheet
(RT)
...........
41
AISI
3/4
Hard
Special
(RT)
...........
42
(RT)
...........
43
(RT)
..........
/#4
(RT)
...........
45
301
AISI 301
Full Hard
AISI
Extra
301
Hard
Sheet
Sheet Sheet
AISI 321
Annealed
AM_
355
Sheet,
355
Special Sheet, Forging, (RT) ............................
_ "_ AM
*(RT)
301
- Room
Temperature.
Sheet Forging,
Bar
and
Tubing Bar
and
(RT)
......
46
Tubing 47
Section February Page 33 B4.5.5.1
Stainless
Steels
- Minimum
B4.5 15,
Properties Page
B4.
17-4
PH
Bar
and
17-7
PH
Ftu
= 180
ksi
(P.T) ...............
49
17-7
PH
Ftu
= 210
ksi
(RT)
...............
50
15-7
Mo
(THI050)
Sheet
...............
51
PH
15-7
Mo
(P.H 950)
Sheet
...............
52
19-9
DL
(AMS
5526)
&
19-9
DX
(AMS
5538) .....
53
19-9
DL
(AMS
5527)
&
19-9
DX
(AMS
5539) .....
54
Carbon
and
Alloy
5. 5.2
Low
Steels
::-" - Minimum
Properties
AISI
1023-1025
AISI
Alloy
Steel,
Normalized,
Ftu
= 90
ksi
(P.T) ....
99
AISI
Alloy
Steel,
Normalized,
Ftu
= 95 ksi
(P.T) ....
100
AISI
Alloy
Steel,
Heat
Treated,
Ftu
= 125
ksi
AISI
Alloy
Steel,
Heat
Treated,
Ftu
= 150
ksi(RT)...
I02
AISI
Alloy
Steel,
Heat
Treated,
Ftu
= 180
ksi(RT)...
I03
AISI
Alloy
Steel,
Heat
Treated,
Ftu
= 200
ksi(P.T)...
3
Heat
Stainless A-286
Monel
Resistant
Steels
Inconel-X 5. 5.4
Ti-8
Mn
Ti-6
A1
Ti-4
Mn
Steels
Properties
(RT)
and
32
S.e¢ _Page
I19
...............
Hardened Rolled
I04
120
............
Annealed
121
(P.T) ......
- Minimum
Properties 129 130
........................... (RT)
- 4 A1
include
(RT)
lO]
(P.T) .......................
(P.T) - 4V
- Minimum
(P.T)...
..........................
Titanium Annealed
Alloys
Treated
- Cold
(P.T)
Pure
98
.......................
Sheet--Age Sheet
.......................
(RT)
Alloy-Heat
K-Monel
*Alloy
48
(P.T) ..............
PH
B4.5.5.
B4.
Forging
........................
131
(P.T) .......................
AISI
4130,
4140,
4340,
132
8630,
8735,8740,
and
9840.
1 976
Section B4.5 February 15, 1976 Page 34
Page B4.
5.5.5
Aluminum
- Minimum
2014-T6
Extrusions
2014-T6
Forgings
(RT)
2014-T3
Sheet
Plate,
(RT)
and
Thickness 2024-T3
&
T4
<
Sheet
....................
...................... Heat
.250
and
Treated
in.
Plate,
140
(RT) .............
Heat
14l
Treated,
Thickness
.250_<
2024-T3
Clad
Sheet
and
Plate
(RT)
.............
]43
2024-T4
Clad
Sheet
and
Plate
(RT)
.............
]h4
2024-T6
Clad
Sheet
- Heat
Treated
2024-T81
Clad
Sheet
- Heat
Treated,
Worked
and
. 50 in.
Aged
(RT)
(RT)
and
...........
Aged
Sheet
7075-
T6
Bare
7075-
T6
Clad
7075-
T6
Extrusions
7075-
T6
Die
7075-
T6
Hand
7079-
T6
Die
Forgings
- Transverse
7079-
T6
Die
Forgings
- Longitudinal
7079-
T6
Hand
Forgings
- Short
Transverse
7079-
T6
Hand
Forgings
- Long
Trans'_erse
- T6
Hand
Forgings
- Longitudinal
5. 5. 6
Sheet Sheet
Treated
AZ
61A
Forgings
HK
31A-0
Sheet
HK
31A-H24
ZK
60A
Extrusions
ZK
60A
Forgings
Sheet
Aged
(RT)
146 .......
147
(RT)
..............
148
and
Plate
(RT)
..............
149
(RT) ..................... (RT)
150
...................
(RT)
Magnesium-Minimum Extrusions
and
145
Plate
Forgings
61A
....
and
Forgings
AZ
(RT)
................
T6
- Heat
142
Cold
6061 -
7079 B4.
Properties
151
.................. (RT) (RT)
(RT)
152
.........
153
.........
154
(RT) ..... (RT)
.....
.......
155 156 157
Properties (RT) (RT)
(RT)
....................
......................
........................
(RT)
197 198
....................... (RT):
(RT)
.................... ......................
201
Section
B4.5
February Page 35
B4.
5. 6
Index
for
These curves stress-strain
the axis.
These
sections mate
are
when
materials
with
stress-strain When for It
be
is
used
the
the
Where etc.,
those or
that
to
one
in
down
(provided
Stress
the
directions
bending
modulus
for
direction
(in
Separate in
the
curves longitudinal
curve,
with
slightly
higher
direction, therefore
compression.
the is
presented
these
on
graphs
in
the
pure the
tension
AISI for
301 AISI
of
are
of
higher
sources
this
shown.
cross-sectional presented.
or
lower
may
be
ratioed
the
same).
practically
headings
are
values as
values
by
the
the
Curves
caused than
for
official
Where
higher
are
compres-
both Bending
thickness,
modulus
in
ulti-
presented.
applicable
slightly
stress
compression
grain are
out to
out are
% elongations
only
are other
Bending
the
or
and for
Plastic
or
called
Plastic
called
apply fact,
only
properties
the
Curves
longitudinal
the
curve
vary
two
given
Bending
the
or
material
used
slight,
values
allowables
only for
wdues
yield
tension Curves
properties.
rupture
than
sections.
MIL-HDBK-5
the of
material
Therefore,
is
material
modulus
is other
Bending
difference
allowable
for unsymmetrical
different
Plastic
stress-strain
directly
section,
stress
significantly
recommended for
correspond
area,
the
lower
useful
unsymmetrical
curves,
presented.
of rupture values relative to on either side of the neutral
particularly
or
1976
Curves
the allowable
symmetrical
For
Curves
Bending
represer_t modulus curve for a section
curves
and
for
sion
up
Plastic
15,
the
than
Plastic
bending. transverse modulus)
stainless stainless
The grain than steels. steels
in
Section B4.5 February 15, 1976 Page 36
B4.5.6.
1
Stainless
Steels-Minimum
Properties Page
AISI 301
1/4
Hard
Sheet
':-'(RT)
..........
55-5A_
AISI 301
1/2
Hard
Sheet
(RT)
..........
59 -64
AISI 301
3/4
Hard
Sheet
(RT)
..........
65-70
AISI 301
3/4
Hard
AISI 301
Full
AISI 301
Extra
AISI 321
Annealed
AM
355
Sheet, (RT)
AM
355
Special Forging,
17-4 PH
Hard
Sheet
Hard
(RT)
Sheet Sheet
(RT)
(RT)
75-78 79-82
...........
83 -84
.............
Bar
and
Tubing
Heat Treated Sheet Bar and Tubing {RT) Treated Bar .......................
71-74
.....
............
(RT)
Forging, .......................
Heat (RT)
Sheet
and
t
......
Forging 87
17-7
PH
Ftu
= 180
ksi
(RT)
..............
88-89
17-7
PH
Ftu
= 210
ksi
(RT)
..............
90
PH 19-9
15-7
Mo
,
DX
B4.5.6.2
.
.
.
.
19-9DL
,
.
,
.
.
°
.
,
.
.
.
,
•
and
Alloy
Steels*-':=-Minimum
Ftu
AISI
':" (RT) Alloy
Alloy
- Room Steels
.
.
91-93
,
Properties I05-I06
AISI
Alloy
.
(RT) ...................... Ftu = 90 ksi
AISI
.
94-97
AISI Alloy Steel, Normalized, (RT) ....................... Alloy
.
...................
Carbon
Low
AISI 1023-1025
**
Special
Steel, Normalized, (RT) ....................... Steel, Heat Treated, (RT) ....................... Steel, Heat (RT) ......
Treated,
I07-108 = 95
ksi 109-110
Ftu
= 125
ksi 111-I13
Ftu = 150 : ................
ksi 114
Temperature. include
AISI
4130,
4140,
4340,
8630,
8735,
8740
and
9840.
Section February Page
B4.5.6.2
Low
Carbon
and
Alloy
Steels
- Minimum
Properties
37
(Cont' Page
AISI
Alloy
AISI
Alloy
Steel, (RT)
Heat Treated, .........................
Steel,
Heat
(RT) B4.
5.6.
3
Steels
A-286
Alloy
K-Monel
Inconel-X B4. 5. 6.4
B4.
Treated,
- Age
(RT)
Ti-8
Mn
Ti-6
AI-4V
Ti-4
Mn-4
5. 6. 5
(RT)
Hardened Roiled
(RT)
and
(RT)
(RT) AI
(RT)
Sheet
&
135-136
T4
138
(RT) (RT)
and
Sheet
160-161
...................
Plate, <
158
.................
Heat
. 250 and
in.
Treated, (RT)
Plate,
Heat
Treated,
.250
Clad
Sheet
and
Plate
(RT)
...........
Clad
Sheet
and
Plate
(RT)
...........
Clad
Sheet
- Heat
Aged
(RT)
Clad
Sheet,
Sheet Bare
and - Heat Sheet
to . 50 in.
Treated
162-163
...........
Thickness
Worked
7075-T6
133-134
Properties
Thickness
-T6
127-128
Properties
........................
2024-T3
2024-T81
.......
..........................
Forgings
2024-T6
(RT)
............................
2014-T6
T4
126
.............
Annealed
36 123
............... (RT)
__
........................
Extrusions
2024-
Properties
...........................
2014-T6
2024-T3
ksi
S.e.e.P.age
Aluminum-Minimum
2024-T3
= 200
Metals=Minimum
Titanium-Minimum Annealed
Ftu
I17-I18
Treated
- Cold
Pure
6061
115-116
Resistant
- Heat
Sheet
ksi
......................
Sheet
Monel
= 180
.........................
Corrosion
Stainless
Ftu
(RT) ........
166-167 168-169
and
170-171
..................... Heat
Treated,
Aged
(RT)
Treated and
Plate
165
Cold .............
and (RT)
Aged ...........
173 (RT)
....
174-175
176-177
B4.5 15,
d)
1976
Section
B4.5
February Page 38
B4.5.6.5
Aluminum
- Minimum
Properties
(Cont'
]5,
d) Page
7075-
T6
Clad
7075-
T6
Extrusions
7075-
T6
Die
7075-
T6
Hand
7079-
T6
Die
Forgings
(Transverse)
7079-
T6
Die
Forgings
(Longitudinal)
7079-
T6
Hand
Forgings
(Short
7079-
T6
Hand
Forgings
(long
- T6
Hand
Forgings
(Longitudinal)
7079 B4.
5. 6. 6
Sheet
and
Plate
(RT)
Forgings
180-181
. . . ..............
(RT)
, Magnesium-Minimum
178-I 79
.............
...................
(RT)
Forgings
(RT)
183__
................ (RT)
]85
........
(RT)
Transverse)
....... (RT)...
Transverse)(RT)
....
(RT) .......
]86 188-]89 19l 192-193 ]95
Properties
AZ
61A
Extrusions
AZ
61A
Fo rgings
HK
31A-0
Sheet
(RT)
......................
HK
31A-HZ4
Sheet
(RT)
. . . ...................
ZK
60A
Extrusions
ZK
60A
Forgings
(RT) (RT)
........
•..........
....................
202 204-205 206-207
(RT) ................... (RT)
....................
2]2-2]3
1976
Section February Page 39 B4.5.5.1
Stainless
Steels-Minimum
B4.5 15,
Properties
300
;
75,000_p_;i 27 x 10 _ p 3i
Elongation
= 25%
T -!
_+ U ltimate
200
(Transversc)i
100
1.0
k= Fig.
B4.5.5.1-1
2.0
1.5 2Qc I
Minimum Benmng Modulus Symmetrical Sections 1/4 Steel Sheet
of Rupture Hard AISI
Curves for 301 Stainless
1976
Sect|on B4,5 February 15, Page 40 B4.5.5.
I
Stainless
Steels-Minimum
Properties
soo_....
200_
Fb
(ksi]
lO0
5O 1.0
Fig.
B4.5.5.1-2
1.5
Z.O
Minimum Bending Modulus o£ Rupture Curves for Symmetrical Sections l/Z Hard AI$1 301 Stainless Steel Sheet
1976
B4.5.5.1
Stainle
s s Steels-
Ftu
= 175,
Fty E
= 135,000 psi = 26x 106 psi
Elongation
300
Minimum
Sect ion
B4.5
February Page 41
15,
Properties
000 psi
= 12%
Fb . (ksi)
,2OO
I00
k
Fig.
B4.5.5.1-3
_.0
1.5
1.0
=
2Qc I
Minimum Bending Modulus Symmetrical Sections 3/4 Steel Sheet
of Rupture Hard AISI
Curves for 301 Stainless
1976
Section B4.5 February 15, 1976 Page /42
B4.5.5.1
Stainless
Steels-Minimum
Properties
300
Fb
(ksl)
ZOO
I00
I.O
1.5
k=--
Fig.
B4.5.5.1-4
Minimum
Bending
Symmetrical 3/4 Hard
AISI
z.o
ZQc I Modulus
Sections 301 Stainless
of
Rupture
Curves
for
Special Steel
Sheet
Section February Pa ge 43 B4.5.5.1
Stainle
s s St e els-Minimum
Ftu
= 185,000
Pr.ope
rtie
B4.5 15,
1976
s
psii
Fty = 140, 000 psil E = 26 x 106 psi Elongation = 9_o
_44
3OO
"ltimate
Transverse). ;ii
Fb
:ii
(ksl)
Z00 i
"
"
!ft
ttt
LH I00
1.5
1.0
k Fig.
B4.5.5.1-5
Minimum Symmetrical Steel Sheet
Bending Sections
Modulus Full
Z.O
ZQc of "Rupture Hard
AISI
Curves 301
for
Stainless \
Section February Page 44 B4.5.5.1
Stainles
s Ste els-Minimum
Properties
F E 300
Fb (ksl) 200
100
1.0
Fig.
B4.5.5.1-6
1.5
Minimum Symmetrical Steel Sheet
Bending Sections
2.0
Modulus Extra
of Rupture Hard
AISI
Curves 301
for Stainless
B4.5 15,
1976
Section
B4.5
February Pa ge 45
15,
1976
t
Stainle s s Ste els- Minimum
_B4.5.5.1
Prope
rtie s
t_ _t
120 _r
*;lh';l'ii_ i ....... _ ;IIHT_IIII
11
'" • 100
H_!
ftI:_ttI_If I_1;,;11i_1
tlt::!II_!: _!tf_tt|:tt
tl
!!I12:"-8O
':If:::I!"
i!II_ilIii_
iit Fb (kai)
:_!!:11!t:t
,If, I iitt_!t!i!!
60
_!;¢!;tt_: J_
it:,t ftl_:
4O
ii:;ii_i:_i
_t:!!:! t_:
.'tt_ ZO
_!!!!i!!!il
!::
i
:'/!_!i!!:i!J :!!tl;li_Id ittpllrl+_4
l,tf,t,_,J
2"t,
0
t_tHISH;1 1.0
1.5
ZQc T Fig.
B4.5.5.1-7
Minimum Bending Modulus of Rupture Curves for Symmetrical Sections Annealed AISI 321 Stainless Steel Sheet
2;.0
-A
Section B4.5 February 15, Page 46
Graph to be furnished
when
available
1976
Section February Page 47
Graph
to
be
furnished
when
available
B4.5 15,
1976
Section B4.5 February 15, 1976 Page 48
B4.5.5.
l
Stainless
Steels-Minimum
Properties
'.:..:-.-l.i-..'-.-i.
•...... , :...... i..J. ............ .... . ....": ....... I !.-! ...... I...:......I _.-----t---_-_+-_--_ ......, :,..1 ... _...i..+, _ *-__--_----r .... : ..... -F-_-.-_ L....... t----i_oo_ _,_,,e-_,,r_ :...t..;-I'-I :': i : i _ !..-:.--.i-' i""i • 1 : : ...... "" " :" I ":'.1
I , ,
3Z0
""
"
'
" "
m
"
)-_-r-"-¢--_-t :-+-Jr-:-'-:--'_".-+-_ l
'
'
:
I--.;-.-_..:-..I-
,.....
'
I":
'
.....
1....... !--.!..
'
'
'
:
'
:
I
•
"
i '!
_.:..h-r--.;--.j-.q.-i__.-.-.'.__._.:i..:._L...i_.j_
Z80
Z40
I
.... | ....
.;
:
""
_'"
".
..........
":"1"
";
.....
:"
"
_-: '-I-+-_-: -l--_._"-t- , ' I
/
/
'
!.....:.-,:._!.:_.l !-.' '--.. !_ " . :j t_,_ _,_-..,..: ,: I:
I
:
:
•
:"
:
,
"k ........ :" . "-'-:'-i.--'_-::-l:---_..---I----. :. .1 1__ ..i. '[Ultimate :[ _ | : | --
_.'
'
"
'
I
•,:,-. !.:...: I _._._f-_t_l ' : " ! ;: ). _I _-t--.,-.-, ..... +---_-+--t......_--t--:-;-t--.---i--.---I.: i I :1 l--..i...-i._;---!..-: L.!.-.i...I...._...-i--. :..i ': i.....i..-_..--,:-=-.-. ..I-. ;1 i...,--.;-..-t.-:._:.-i---,.-..i _._"
• '" "'-";'
•: _._/
"
"-''-:'fl"-:-i-'":
: I.---
'---
__.__.--
:
i ,i;
::
I i: !: ! _.i_i_tflgiH_g_fl_i_g_i_i_gmfigi_i_flff_m___
i.:.:L.)...:..::L.q.._dlllfillllllHlilfllggglggiHlfllgr_MgfilBHlgmLW .";_'_.-! "_! -i i ;: _.;,,_tl!lillmlilllHMIgglgglgmll,,HH.fl.flllgg_lP.!!":." F. !-_ _"_d"!"'T T-K:] )i.,. I..,/,ddlIMIllMIHIIIHIHJHIlgiluuRw," "I !--[..--I' i " i :.:_ ) : ! )./_;/i._!iiil!iillilllililii!lllllllit_."._;.__.L.i_..i-. _ .-_i _ ]i_._:7!i:7_T ::T.-i I- .... I: ":... I1::1 ' _ '1.1..: I : 1.L' • : ' :,_: " , • I -:.L.]
200
160
¢ 1_.._4__,._..'" • ",. ':
I" ":....
,::
""'l" ....
"" ;', ....... :" I
,:
l I"..................... ....
I,. . _
-T "_.:
"
"-""';
I .:---Jr i" I "-::.....F" .
........ :
--1":''"[
"1' ' "_"
............
I
"
l"
r . ".... "--' , . -_--L--J .
" :,
'
I"l
I
;
'.
'
"
i:
i' . ._---J : I
t-:--: .....-,........... -'....... '................ I--'---_ ........ _,,................ -, ...............' ,
• , "_,_. !" :. .':
i ..:
tI::[ .":"_'.
IZO
:
-F.-'--.--'.--'.':-'/ • '" " '
...... •
1------!.'-" • :
, .'-T-l": • I
I I
•
:
,"
1
.1
,'--,::-_:::-1--:-:1--iI .. .-i.......i .... i....... .-,.-:.-'
" " !..:. !-i..i ,: L : _ L:' : _ L , .; __-..,_o.o,,o,,,_ . , , : / : /.: I : / • : • . : _',:.-16s, ooopsi , .... r::!:i,' LI __-tr--:.-r-i.--I;-.-!--.v -r-_:' ;--_7.,,,1o_ ,,_,).--.--z,.--,• , :' " : - I-----I • ..I,I
i :,, t, _ I, :: i
_--..r'-.-. -', ....... ..;....)i .... ;..-.:..._-:.: .....
i
i....
; "d-'---'-I"-'-_'-t-. t......... :, .......
......
, , '
• ',
"
: =
-,' I|' :
!
O'_c
"-T,"_..."
I:Y .
i '
. 'L, :
_
i..--: -- i""- ""I......... !.-..'.:-1 ....... L..'-.J
I.Z
:--1 _
j.._.._i.;;
.
,
•I
1.4
1.6
- Bars
and
, I
•
"-""
•
F.._
1.8
of Rupture Curves for PH Stainless Steel -
Forgings
I .
_ .
•
i
I
.::
i......... l-!i:.-!..i
ZQe I
Minimum Bending Modulus Symmetrical Sections ]7-4 Treated
,
• I ................
"
.--_
I
[.. ,
.
"--I
:
"
i
, I
......
•
I :
.
. '|
"i .....
L
j
.... •
...........
•
_ J
L
........
;
Heat
..... t-,zorl@,atl.on
_''"
I . L..;_./ -I,--"+-_I_ . - .) ....ii. :...I..:.L. i .... _.... _-l-.-n
k=-B4. 5. 5.1-10
I :";
*'
i----:..._ ........v-,..._........ i-.--..:..-...-..i ............ [ , h-r-----.-r---.---! I
_.-4--."--L_-. "1 • l •
• •
_
I
_::
UI_"
1.0
,•
.t.,I.
:
1 !:,., • .................
...... i-
J
•
i'
t •'-
"";"--'i"'_'_
_ ,...-r-. !.,.,
" !1 ",: .... "1
I
I
_
L
•-_--
_
,: I_,.
r ;rfl
....
4O
: ,
" ......
.
"
::-,"t--'-;I'
;
.....
',;
.....
...............
'-'..'_', • I ...............
"_"'_-'-T--
_
"--I". ....
_
"_'.'-""
8O
•
:-!"-:",; _:1_t:I; I.....i :I ....... i-: r-T::_ ........ ! ,-"i"'---j .... +-:--+-----!'.-----H .... "+'-'---F'--.'--F ..... i-_ , "" _ :
Z. 0
Section
B4.5
February Page 49 B4.5.5.1
Stainle
s s Steels-Minimum
Prope
rtie
15,
1976
s
300 ..
_ ::-:!::':'_:: ,:_:::": _:i:,:_i ' i:i:_.... ,: :::: I_.. :_':"_::l :_i-_-..:--i.-:'._ :1.!:r.i-.:-I .._ :::.i.::I'_""I: ]':'l-:.i
.:
:
.;:
..
:';:
.
...:!_
- ,,'_.." l :-:_- '--_
1Room
• :
".
.
•
;
.
T :
Temperature-T
• .:.._:
•
..
,.
; '
.
.
:
: '
: I.: ;:_.1".-TT..'-.[:li::!.. I'... ]' .I.: :.. '/.
;
._.i_i../_...:.;"
-_L. -.I. :.::.
..!"-:4!"'[';"i .....
.i::i_:-_:.i-:--.:.i,_: .:-..-:.....: I:::_:4-!:-:.':_-I::!:--i-I]-':. :#.':i::-_:::!i:-_:i:::;-i-1-._:: -:-.i::- :-::!::. :-.!--_
_0
:.:::.t--::ti:'#:.4:-:.ii::.-I :.i::.l_.?::.:;l_:;.i_-:il?_i:; ::I.:-i',:.-:1:!_41 _:1__!.l:._i: :... :l..-_i.._.:..i...L:.:i.}:. !_:i:.l..i::]..I
1. ! I i_,:i-P:.l
!i:ii:i.i i i l._.:.l._!:i
1:].
i...
i,[!:':
]. :I
._i:q:::__.,1:: i:.__-_ .q..-T,., T!-iT _.ltu_,_mat_ __!_[:'::,,'::!i_TiF' 1
,40
•
:'L":!5" ":'" "''iT" "!..... "7F!"v!'Y-'-I"q[F .... !'r"i'V':':'"":'":':" .......:,. _. .::. .-_.._:_.._..-... • • .: . .. ...... .. ;F:L"?:"7"'!: :_-712i.._ .- .:":"1":...... :_+,• :...-.. • v""1• '. -_:. .:. i-.. :,:• :...-_._
--"T--'t::I:I.:" •:: !i
:: :_
! ii :
.l::.._
Fb (ksi) 1Z0
:
::
_ :i
I
"
-_--
,
.'1: :I:".: : /:'"
" .'.|':I
•
++-i--
I
:
I
+-_÷
_:-:-
.:..::........ :: .,... -r
,,-['i:--T_,:_
[
:'
_:+--
:.. " .
:::-7..' Y!Iz.-i::?77 _i!Z":-:F!iF" iii_ !iiii_i_ _! Z.
So
:,.
: :
-
!_ ! •
i; :'!;
,:
'
• :
: '
-_:
_-7 i57.:-,_ •
' "i,
.
':
!
...__
...._-;:': .....::__:: .......... _' _i!._.""i. S:!Z :::T=[[III._:. ]:__Z.!_!Zi:T:-.i:: ':Zi.:].2:i._ .::.]:;.:].i:._.]::Z:.,.i:...i:.:. "
'
": :: : ":'":::: :::: ":
:.v".: 1_';:"::
':::
" "'!:
I:::.!'.:. I:: '.:: '::;:!_:_
,r
-_,-,
"^6
":'i
• • _ '.
" i; :.: .
i_ii_h.....jii.qi_iit.!!il._]:l:ii'l:;]ii_7,?_..-..._li_];ii_iti:!;i._!_:i;!_il ]_, = _v x tu ps_ ::TZ-T:V_T_" :_t:._:iifi:t:ii:_:-l:]_-,-i_q.-.-t-:i: .P.i:F.-÷ti..iit-.=..-t.-.,:-ti_:i:ii_ - _.longation = 6% :ti:+[-]_:!" :iiiT_]:jlZ[il.]
ill:
iii!:}[];
:
]L::-:I::]]!LI:
::Ii]ZF :!!!KZZ|F
I :_
•
I!_i
•iiil!::::/l:..4iVzi!ii_i::?ii:ii.li_i _i_ ]_i:J_iiiiii_it_!:.ih=..l;!::il_!i:_hiqii ili_!]if!t:r_:!_i_i_.._;l..;_ .!_[:";-F_.]_:--_ 40
i:::_':_'iT:';;::i _:]!;::_',::ifi:i':t!ii:i:i_Yiii]:-iti:::_i!!:tii]i}iF:.,'ii!liii:i'iii:::i!_:.]i_:! : i-,!:b:.l :.:; i: I::i::! I:::1.: :::::::::::::::::::::::::::::::i]ti::l ._]ii-!: ...::::.,:::....',...ui:.,:.,:. :..Iq:: _...,_ _.;::..:;::._.: :!::__ ...._..,.._ .....:. :::![ii:':!iii!'_!:l _:iiii[:: ! iili!i ! !:]:_-'!;! :q: ii t I ;_!!-;1::.!'::i'l:::!ii_.t:t!':i!i;:!
o
:7-'
1.0
l.Z
1.4
:i_._: ii ' _!_;,._i:i:,iii! '": ..... :1
1.6 k--'_
Fig.
:i.-,-t..
,..:..... :,.::. :::,::.: :,,.:., ..... ...... . : i:.ii:il :;ii'!.:i_di]i:::.'_iiii;i]ii!iTi}:i: ::;[[ii]i'i:.!i-i['-!..i.i:i_
B4.5.5.
I-II
1.8
2Qc Ir
Minimum Bending Modulus of Rupture Curves for Symmetrical Sections 17-7 PH Stainless Steel
2.0
Section
B4.5
February Page 50 B4.5.5.1
Stainless
Steels-Minimum
15,
1976
Properties
!iilt!_i!i 360
;:'!i !i: ::': :':',
-
";:'"-!:':
:.l:_:!:
'.:h,:':::i:.
':
:;_!
::"!::!
.';:,
"!:..
:!;;!_!i
:_:,! .7,.
..!:
':_:i_ti:ti!'._ '._ :::•::_' _"i1:F'_iEH_'_i :!.H:]IiL:i:_::=_ _._il:i:.}.,...i._==-iiiH,l:: "r:itiii! ii:i =,_-_...._..:_:_:_......... i_i!!i!i!;..,._. "'": _i)_ ii!]t!i!i!'-__ "!ii:!ii
_!'==H':_
iiTii_i!i
• El!E'il!':Eiil!:!i::!::i!':':;:iiii:i,:;!:!;i.:i :" 1;_ . [..; i,.. :: r",|." |. _ :::: ::.[: ,', ; 1:'; .[.. -!..
I'":'.._"T,..'_',.... !: , J;;: I:':
;. ":',
::::'::":::':;:"
, ."1"*,"?"[-., ..'"_1"". .. I";1', . ]:'," I;'" I .....
, .-'_-r*-..,':Tl:... i'"|i .........
.'-','*"_._
._...,,':';_;:_!1_:' ":i i:i.;ii:lii:!:i:_iiH_ i:;]}Ultimate :_::t. :ii!::i :.::i]i!!i
it_.q!i!;iiiilttti _fit!li; _ii;1;_. I.,..;1_,:, ;i_!l;i.:i:: [_i_ ii:!li::[ _.
ii!:'ilii-" ":;;[:'.",
:;1:_::
: :11:1%
: ::./l"
.11: ; ::;:
' i.t::."
:.:.h:
: :."Ji4f.,
:: :.:..
_!iiiiiii!!ii!i,!!ilti_ii!i!i: i_!i,ilil.,iH..:_.r_:_l_!: ;:,; ;;I; I';; i": ..... I:: ......... -. |.;l ." ;;., .-'1.-': .:,...li" ,_'_:_-'_-
280
...... i: ....... ,'.'.!FHli:.It:,.':t:I,:
'" ....... :t:: ;_:: "l.: iii!t!::! '_'" :'
•":|':!:1::1;1!'1'11"'
i';'l
"'
•.: "::':.'.:',::l}.::[ •:""l':" :'Y."Ei:J""k:.:E_. _.i:.Li:_:i;iL_!: :.::iiU::! : _':;':,i !?:::i::._!:ii:ii::.:i
I',
I;-;;
_: i: -_!:j.
"" :_:r, z: _'"t_!
:;I
.I--,..;. :•
_-:4_"
-";_.,:::!]:
!!l,:
::;r
.....
. ':'
.
,.ll -.,iiili:;i !. ._i:i!ii!i
;.11;.:.i.i' :' • ,.
,
: ," _'.:
!
..,
• "'1"" " " "'!'' "" ' :::';::_|:':" :_.,.:.._ .::_].;.: .-.['_.. _._ :.,.. i_ield :!_...i_.J_:.:i:ii::;i •"l::l i: ! !::]:'!i.::: ": l': ' "l.: ":_": ""i'::
'::i_
!:7_i:i. :'._i'!'.
• .[
.............
I
;:
I
I
;
.
:
;;
-
;;
.:1
, ';
L.:J.;._'
"
l J.I
.'i"
'. :,':"
. ...!...
::.;!I:.-!]:i:'*F.-:i:
....
i:.,-,..:';
,-;
• l" " '.: "' .
_11,/ -% .. :,ii:ii!i' :.._, .,; :,.,..,,:H_ii i i.l:,.ii
!]ii .... _oo ii]iii!i_,;iii'.ll__.
:: ";_-'
•L".: :_ F:_ i:.:f':!i
;;..;I
,
i I '::
_:._.:F!l:/a , .. "i:;
'
i:'_'
:
:
•
,'::
".':|*.":
"'"I" r'-; ':_!_""_'1'.-'-:,':':
:ii;
;
I
'_.'.!
;;-.
"_:'
_ '_ :, !:.i'_ii_li:,:_',:;:l,., _..q_:'::_,::_.I:_: -:.:':':i "L:I!i:"
ii.;
d]!|':ll'l_l."i
!!:
.,"_t."TT':,i;,;' :;i .;i- . .... ....... i .... i. h ..... J .,I :::::::::::::H:H::::::|::::|::::::::, i::!i.!:i,i!:i!_i::l, ":'::
i:l:i
.l::::l;|.:.;:i
"
":
iJ_i:..
i:"
;"
:.'.l;':'....'.1;:'1
::';
';"
......
:H:t!
::
[i !::.l;
'::
i I;I;.
•
;;I
;.
.;'.1
7F."_:i':i_il!!i! : ":1,::',,_ .!, ,: tii!li!:. ..,:.., .-a,_:.._l?i ,.:.h .. ;.:,, :] ;l ;'-:, :.:r:_., .,:J.:l: • !;_"; ::1.i
;
I
;;;-
I;
i
:
-;
•
|-.
i
,
i
.
;
;
.
;
J
,
-
.
.::!.!
.
_-:._i..... :"_:', :::i :!;_._ -,:.:l_,: ,_1:./:I,, , _ __l,_:;,!_.r :: ': I : I:::_.;! , ,:,: .., .... r- .,_.-..-._,:":',:'-'.,'-"r'-:r'",
:.::...::i:: _.,.._-..:., - :i, ., .::. .:', ... _:...,,,, i_.:4!i:.. !ii__ ,..: i:i::-i i: i.'/.i: ............ ,.1'!.! i:':., I i._'il ;];:i ':;!"i ";i;.: '1::i d-
,
t ....
,.':{:
:.
':;
I;
t.
1.
!::_i:i:.::i';!{!!Ftu,.. •,-.I-.i- :_F.,..
._.
.t ....
' :. '.|
:-'T':.
.', ..".1,
= ZlO, = 190,
.
.I
O00 psi 0OO psi
.,/
":iJ
"::
°t'::
,'_."
I'! ''::H:i • I......
;I.
k.:-'tT:'"':"" i:'" :t?:":1," i'::' :_!i:'-_
_" i:,"r[:'_] ':l:l::i
':' ':' o
;i
r
....
"!t:.ii":
i
,., . _:r,-;S = Z9 x ,.o ps_ -1- ....... -.':-:. ::.:r.,-,.-: i_ _H':i:_:;i_ ..... ::_ ::i:. :.i_l.[V._o,,gatio_, = 6% . .. :_!i::_i;!H .._i._÷i],.,_ 4:,i_H-_ :.,. :_:;::,::.:i:r.;:_,.i!-_ !:l:.i!:i:_ii.-,.:, :il!! ............... ,.,,. , .... ;::.:,.. ;
4,0
","r i
! i.}i;lii!:
........ ,............
80
....
• ' ' : ....
• "!':"!
":"":
_!i It!.
:'";
ii. L ["ilL!
"!
';'"
: .....
;!
: ....
!! !_ i: !'i'l
:'l::';
.!:Iri
!
:L,.L"...!L:."...:;.:. ;t...:;,:.[ .:.h.:.; =: I_. ;. , . ; .,. ......
:'?T|':F.
i!.,.,ii:,.,. i:i:l_iii i ::i_: _,,. ::'['i::':'"i]q: I '_7"IL': ....."":" :.,':;
1.0
l.Z
1,4
1.6
1.8
2.0
_c
_ -= -'r Fig.
B4,
5.5.
l-IZ
Minimum Symmetrical
Bending Modulus Sections 17-7
of Rupture PH Stainless
Curves Steel
for
Section
B4.5
February Page 51
B4.5.5.1
Stainle
s s Steels
-Minimum
Properties
350
300
F b
(ksl) 250
2OO
150 1.0
1.5
2.0
k = ZOc I Fig.
B4.5.5.1-13
Minimum Bending Modulus Symmetrical Sections PH Stainless Steel 0. 185 Inches.
Sheet
of Rupture Curves 15-7 Mo (TH 1050).
& Strip
Thickness
0.0Z0
for to
15,
1976
Section
B4.5
February Page 52 B4.5.5.1
Stainless
Steels-Minimum
15, 1976
Properties
400
300
Vb (ksl)
200
I00 1.0
Fig.
B4.5.5.1-14
1.5
2.0
Minimum Bending Modulus of Rupture Curves for Symmetrical Sections I=H _15-7 Mo (RH 950) Stainless Steel Sheet & Strip Thickness 0. 020 to 0. 187 Inches
Section
B4.5
February Page 53 B4.5.5.1
Stainless
Steels-Minimum
15,
Properties
++, tlt
!!i :_
160
rtHtVt h'1111 It
140 ÷#*
tt
ttt
_t H_tVf H_HH:
}ii
:
HIHIU
Jill?! it:
!t: !iT
lZ0
_t [T_![![[ _: [71T:![T
!iti!tf_ i!i
;_
_tl
t-I
"f!ttltr
I00
_!!!!!i!
F b (ksi)
"!+*t*t
80 t:!
!t
:!Fi_!i !ii_Fi _*-+-,-+-e.,_
:!!!i!!!. !;ri!TY
60
'+lt!lN
:i!!!,h_
tlt
_t**.
-_IUttt: 4O t
:_
I i" J_t
,
t;:',1+,: tl
i-tl_t-
!i1t',t HIH;.t
ttttti_
Z0 1.0
1.5
k=--
Fig.
B4.5.5.1-15
2.0
ZQc I
Minimum Bending Modulus of Rupture Curves Symmetrical Sections 19-9 DL (AMS 5526) & DX (AMS 5538) Stainless Steel
for 19-9
1976
Section
B4.5
February Page 54 B4.5.5.1
Stainle
s s Ste els-
Minimum
Prope
rtie
15,
s
240
200
160
120
rb (k,i)
8O
4O
0 1.0
Fig.
B4.5.5.1-16
Minimum
Bending
Modulus
of Rupture
Symmetrical Sections 19-9DL (AMS DX (AMS 5539) Stainless Steel
Curves 5527) &
for 19-9
1976
Sect ion B4.5 February 15, 1976 Pa ge 55 B4.5.6.1
Stainless
Steels-Minimum
Properties
k=2.0
140 k = 1..7
k=l.5
k=
1.25
lod k=l.O
8O Fb
(k.i) 6O
40
20
t
0 0.002
0.004
0.006
0.008
0.010
(inches/inch)
Fig.
B4.5.6.1-1
Minimum Plastic Bending Curves Stainless Steel Sheet-for Tension Compression and Stress Relieved Tension or Compression
1/4 Hard AISI or Transverse Material-for
301
Sect
ion
February Page 56
B4.5.6.1
Stainless
O
f,-
II
II
Steels-Minimum
Properties
u_ N
_
II
II
O
II
Q
o N
B4,5 15,
1976
Section February Page
B4.5.6.1
Stainless
Steels-Minir_am
Properties
120
100
8O F b
(ksl) 6O
4O
2O
(inches/inch) Fig.
B4.5.6.1-3
Minimum
Plastic
Bending
Stainless
Steel Sheet
Curves
1/4 Hard
- for Longitudinal
AISI
301
Compression
57
B4.5 15,
1976
Section B4.5 February 15, 1976 Page 58
B4.5.6. l Stainless Steels-Minimum
0
_,
II
u_
II
N
II
Properties
O
II
II
O
.r_
N
0
_
0
I
4
0 _D
0 _
0 N
0 0
0
0
0
0
0
Section February Pa 9e 59
B4.5.6.
I
Stainless
Steels-Mini].num
84.5 15,
P±'o_erties
240
ZOO k=2.0
k=l.7 160
k=l.5 k=
F b
1.25
(kst) k=l.0 120
8O
4O
O. 002
O. 004
O, 006
O. 008
O. 010
(inches/inch)
Fig.
B4.5.6.1-5
Minimum
Plastic
Bending
Stainiess Steel Sheet-for Compression and Stress Tension or Transverse
Curves
1/2
HardAISI
Tension or Transverse Relieve_Material-for Compression
301
1976
Section February Page
B4.5.6.
O
II
1
Stainless
Steels-Minimum
r--
u'_
II
II
N
II
B4.5 15,
1976
60
Properties
O
II a_
'.O O
"_o N g-4
c; _ O p=4
A
U _
w
0,=1
._ ¢II
_
O
._ ,_
! .0 _
O
I
O
4 O O
0
0
0
0
Section February Page 61
B4.5.6.1
Stainle
B4.5 15,
1976
s s _St:f: ,i.:_i? _ i:,,! -_'2)_! [ [.t"_._[c_:i_F_!:_____!_2..
120
k=2.0
k=l.7 100 k=1.5
k=1.25 8O
(kF_)
k=l.0
6O
4O
2O
O. 002
0. 004
0. 006 (inches/inch)
Fig.
B4.5.6.1-7
Minimum
Plastic
Bending
Stainless
Steel Sheet-for
0. 008
0.010
I
Curves
I/2 Hard
Longitudinal
AISI
301
Compression \
Section B4.5 February | 5, Page 62
B4.5.6.1
Stainless
II
Steels-Minimum
II
II
Properties
II
II 00 N "_
0
O r_
o4
_U
O
r_
0
.,_
O N
d
0
_
,,D
d
< ,.¢
N
d
! 00 O
4 m & O
0
0
N
N
0
0
v
0
0
0
0
] 976
Section
B4.5
February Page 63 B4.5.6.1
Stainless
Steels-Minimum
15,
Properties
240 T:!
EH Room
iii
Temperature
+÷+ ttt
200
= 2.'0
=1.7 :t:
160
Ftu = 150, 000 psi _cy
Fb
(kst)
=1.5
= Z7.0 105,000 x106psi psi =
Elongation
:fl
= 1.25
= 18%
1i
=1.0
120 rt
80
F 4O
0.002
0.004
0.006
0.008
0.010
(inches/inch)
Fig.
B4.5.6.1-9
Minimum 1/2 Hard
Plastic Bending AISI 301 Stainless
Longitudinal
Compression
Curves Steel
Stress Relieved Sheet - for
1976
Section B4.5 February 15, Page 64
B4.5.6.
l
Stainle
s s Steels
-Minimum
Prope
rtie
s
0
II
II
II
II
II
! .I.a
m
0
u_ @ 0 er_ 0 A
U
0
0
e.i
U
14
_o ¢) i-q !
ow.i
o ao N
0 _p N
0 o N
0 _D ,-_
0 m
_'_ ,11
0
Q
0
1976
Section
B4.5
February Page B4.5.6.1
Stainless
Steels-Minimum
15,
1976
65
Properties
240
k=Z.O 2oo k=l.7 k=l.5 k= 16o
k=l.O
12o :T
Stress-Strain
Curve
80
40
fo
H-IHH-t-H_t_: o 0.002
0.004
0. 006
0. 008
0.010
(inches/inch) Fig.
B4.5.6.1-11
1.25
Minimum Plastic Bending 301 Stainless Steel Sheet verse for
Compression Tension
or
and Transverse
Curves 3/4 - for Tension Stress
Relieved
Compression
Hard AI_I or TransMaterial
-
Sect
ion
February Page 66 B4.5.
6.1
Stainless
Steels-Minimum
B4.5 15,
1976
Properties
360 k=2.0
320
k=l.7 280 k=l.5 Z40 F b (ksi)
1,25
k= 200
v
160
120
8O
4O
(inches/inch) Fig.
B4.5.6.1-12
Minimum Plastic Bending 301 Stainless Steel Sheet verse
Compression
for Tension
and
or Transverse
'u Curves 314 Hard AISI - for Tension or TransStress
Relieved
Compression
Material
-
Section B4.5 February 15, Page67 B4.5.6.1
Stainless
Steels-Minimum
Properties k=2.0
140
k=l.7
k=l.5
120
k=
l. Z5
100
k=l.O
8O F b (ksi) 6O
4O
2O
0.002
0.004
0.006
0.008
0.010
c (inches/inch) Fig.
B4.5.6.1-13
Minimum 301 Stainless pression
Plastic Steel
Bending Sheet
Curves for
3/4
Longitudinal
Hard
AISI Com-
1976
Section B4.5 February 15, 1976 Page 68
B4.5.6.1
Stainless
Steels-Minimum
Properties
_0
! ....... r ....... , "..... ....... . -• s 'I ..... "1 r'_ •
'
!
, •
I
,
-;
I .... ;-.+ • I.._r. '" - "'r ......
:
..t'':"';i _ .......
u,
ii _
. ,
:
i
I
I
•
....... I
.... , .... _...... .....
]
'
"
!
I
'
•
l..............
!
[ • "" "i." .... I _ ........ ..I-.......... " • : """r...... ,
4........ i
.....
,
I
i .....
I.....
•
0
I.......
_--_.---II • _ "-'-"i
•
"_l
._
:1 , Ii ...... . t ":-'-_.'---:---!.
_ _
-'-"F-- ...... • I
...........
.i
t ......
i ..... .
I
I
- _: -' .... •
,
........
....... " _ .......
j
"_ i
• l,
I _...L...I i :
.....
C:_
i
, ' i _ !'-':"i'-! .......... 1...... " I ' . • c_ ." ....... i .... ,...... i"! " ......_.........1....... "'"'-"i'"':-'i m
!i!*
.... : ........... ........... _4.--1 '"
:"'_
:.
t
: ......
..... i'":.
-i-.- _ • ................... i.!.I
_0
'oc_ " _ of" ' " I....... I I
_
"'_
I
....... i-,.__--i---;--: .......
, • "l
.........
I, ..:..,.: t:_!
.........
'
•
I "
I
'
!..... _'---t--'--r--.----. : ....
'
[.!
- _[_.
I:
:..:
.
I
I
....-1..
.....
.....
I
:..I..._
!i :
i
_ •
i _! " ;"1 " i _ .-_.
7
i
I....,4....1_,_ , i s
I,
:' i
_ " _
..,..
_4 4
Section February Page
B4.5.6.1
Stainless
Steels-Minimum
B_°5 15,
69
Properties
240
200
k=2.0
=
L7
=1.5 160
= 1.25 =1.0
Fb
1Z0
(ksi)
8O
40
0. 002
0. 004
0:.006
0. 008
0.010
(inche's/inch)
Fig.
B4.5.6.1-15
Minimum 3/4 Hard tudinal
Plastic Bending AISI 301 Stainless Compre
s sion
Curves Steel
Stress Sheet
Relieved for Longi-
1976
Section
B4.5
February
15,
Page 70
B4.5.6.1
Stainless
Steels-Minimum
Properties
k=2.0
k=l.?
k=l.5
i
k=
k=l.O
O. 02
O. 04
O. 06
O. 08
O. 10
&. 1Z
e (inches/inch)
Fig.
B4.5.6.1-16
Minimum Plastic Bending 3/4"Hard AISI 301 Stainless tudinal Compression
Curves Steel
Stress Sheet
Relieved for Longi-
O. 15
1.25
1976
Sect ion B4.5 February Page
B4.5.6.1
Stainless
Steels-Minimum
15,
71
Properties
240
200
k:2.
O
k=l.7 k:l.5 160
k:
Fb
1.25
I_: 1.0
(kst) 120
8O
40
0.002
0.004
0.006
0.008
0.010
(inches/inch)
Fig.
B4.5.6.1-17
Minimum Steel pression
Plastic Bending Curves Special 3/4 Hard AISI Sheet for Tension or Transverse
301
Stainless Com-
1976
Section
B4.5
February
15,
Page 72 B4.5.6.1
Stainless
I
320
"
:
Steels-Minimum
"
'
"
:
'
Properties
" "I "
'"
:
I ......
' ....
_+-_-.!-:_:_ .........!........".......i"_. + k=2.0 •..... !...I..,.l...i..i .'. +' •...........t...: i _ .i ..-. _.... ,..-..L...-;.._.LY...:.. :'.-. :
_
:.+;
,
'
-" "-i"" I .......
280
..... i
...,_.,
•
]r[
, ......,
: _:+
,
t"- .... ""
"
i
._7-_
k=1.7
i-::.1171171. _, ........ .
--+;..+i-,.+--i k=l.5
Z40
!-iT-ZOO
I.
-:...!.::i -. I. ! !-i; i-i.i ......ii-i : i;i ....---.I-:-I.-i ......... _....... I--:-.-,---4k=
•
:
•----
'
1.Z5
;
t............... !........i....... I.-..-.,L ---I
;. •
,_ ! _
I
._ ,..i. • i. :.l : i.. I..-.,.-.t...i.--i
_....i........ ::._t_:.s_-st ,._
_
.:.
l._..__.t_.__. +
_i_ :,.-v_,:_
k=l.O I
160 :" : ; !
+
...,.
i,;'; i
i
•.
I '
8O
!"
|
|
• •
"
I
•.-I........ ;..... 1...... ,........ 1........ ]....... • _ )_: • : _t, _ l _<_ .... ,; ))(, 'i .: .,. l .....
] I;"
....
ix"
"':"'
-J2o, ooo L,.+i
i
i.>"
"" :
•
I
--:...--4--...+ ............
..... •
I
: !
I" l'"
..L.J ....:...... -..-.......... :........ :
•
i
•
•........ / ..... .....1.--.-..] • • i i: ".--I l" "'" "', ....... '"' :'"'1
:._.J : L-_L_i
--,i.....i'":'---'"----'
"
"
i.......
: " J .....
I ........
! ........
I
,"
'
le.......
_,-, ;..,
| ........
I Roonq "['ernl_eratt, !::..... I.....; ' •
"
"
I
.... ;........i..................... i-!..L :. i,.._..i .......
'
re '
I.- .... •...L.._...J
;
-"
-..
' '"
-" ...u.__..,..
-" _+
I • _• ; i _ ":........ l"""l':!"l'"; "''J :
'
"
"
"
"
- ....... ,........i.-..-.l---.'.-l.-.... .-I--..+-. !. :. I ,....i .......i........t....:.t....-.:.i
-_-+.-I-.-+..:_.-.:.--I---:--+.--....! ........ l-.-l---+-.-,-..:._ • ''
'
"
'
::|
_ 4-" ,., ' _1,+ .... ::" " _,= 2¢" ()x-- LO :>si I[-L I' ! , '/ "" " /;"/: : '! P.lohga+,.,n IZ..o I ..... "" "--'--T .... --'r--._
i :"' :. .: ÷ -" --"--' •
4O
i....... !
; i i "" "i
J..... i....... "..'. ...............
i.
I
.
+......
..i.
• .., 120
1
"
"
+
_
::;: 0.02
:
"
i i:
O. 04
O. 06
!
i.
:."
i i O. 08
O. I0
O. IZ ILl
((Inches/Inch) Fig.
B4.5.6.1-18
Minimum Steel pression
Sheet
Plastic for
Bending
Special Tension
Curves.
3/4 Hard AISI or Transverse
301
Stainless Com-
1976
Sect ion B4.5 February 15, Page
B4.5.6.1
Stainless Steels-Minimum
Properties
150
k=2. "'E .... "-- i"
140
""
"R._.'_m
O
i
I---
k=l.7
:.... __.:LL_. .... i I
.... :" ............ Y" "!.... ........ k=l.5
I t
IZO
)
:
•"
f k=
.I I
I.Z5
:..... _ ,._o : : "
I " i'
"
! "
i I00
k=l.O
...)...... I :PP"
i
I......... I......... i..........
Fb
(kst)
'
{ '" St:.q:._s-Strair
C,,r'.'e
: •
....,....i:....'i.......t.... i....-i .......!....:..... I
8O
.......i i.]-i!i •,_
6O
: ! i--
:
:
4O
zO
{ (inches/inch) Fig.
1976
73
B4.5.6,
1-19
Minimum Steel
Plastic Bending Special 3/4 Sheet for Longitudinal
Curves Hard AISI 301 Compression
Stainless
..............
i: i _ .....
i......
Section B4.5 February 15, Page74
B4.5.6.
I
Stainless
Steels-Minimum
1976
Properties u_
I"4
_
II
II
,-=I
,..=l
II
II
•
IF
: ' i il :ii:l:i_l ,....:.. , .. !i _ :--::t.:--! . !."'F,:" "_,':::_. • , ...... ...,, ........ i'-]i_]_ LJ._i. [:::: : : ;:"::::!i" li_ ,,_
IF!
:::
ii!!! Iiill fir-4." .........
fin
i!!":! _i.z.2 _ -i ,_ ......
_
1:
;'.
m
:!
L:.i i: q:ii :_: .!i ......... _::::--i_f:::i h"1:Fl
" ":::;:: :::".'_T:" '-!17] i:l :i _i:i! :_:! : ;::::
E'_.... :..,:,;.. _H £'"
?1'"
..I. : : .... _ :
i-..":
.....i-i[ ....!ff:ri] i_:_.-:-'_i:
-,.. ::L.
":,___.
i! L:' i'il
i :!i:l
..... ..
_..._.
',', ." :I;.'.. .:;;.:. ,_ :_
i!!:" .. ::i:! ".... . :,..... .........
..
.r,_ ....
....
_ 14
;.
°:T"
:'" .': :T:-i':
0
".--1.
i:i:_Z_i:i_i_::4
::! :"!T! :::½"':-........ ' : :;:;': ..-:-._-'._ ":" :" ! 1 ' ..":t':,_; ! : .....
....
•.......... : i: '"':;
...... 111
::[i
' -.":
i
I
m !
;:"
,..2. :.] !.:_..::[::]..........
i • 1... i •
,|
:.1:;;.:,1 " ::'_I .....;;; .I
.
0
'.---1 ..... :'T_°'''_
:"
v •
:.
..
: ::
.:.
:!
...:. l l
:.
0 i
.: .. ;; _..:
::'.: .... .- - ,,.-
I-_.-t.
...
•":
I! ,:
[:._!:
; ._ I:::
-
.,
li iT_ q!:i-
i:
i .... .. .'. -:-:.: ?, .
g !.
_'-
:
-
l;
.
,
t . _•...
:
f[iF: ._, : _!h.! .
4
"--"_'-
• ':
.1
:, ',i:"
_
:i!.
::!.
.
i:!i!::i!T!i : .....
:...
...:.
:-
::_:: ,:_-:_: '_::i: _ ii.F _z'" .... .
,.
...t
L!
'
__:: : !_i::_
:l.::
: ......
__ _:
:
w
O
: :::."
"-T.'..... ":_::"
T:':" : - • -','-I-....
:
..i.lL
. .::..
'
!..:L:=
•
• ,.
.:,..
...._..:.:..,; .... ..i:::".i ;:-:1:-;-;: o
,.it. !:1
.
'::....._.... : i : ..,_ ..
!:
! i:i !'_T..... _'-
F_ :il., ; ..; :._._ ;..
:_:, ....
:i:
_!:.:.i
._!I! ;:i..
. .!-, _!i_l:!:
.._ .-.p.,
-.. _
*
!
o
......
:1 7i !
:!1.:.:
!!h
;
i
.iz-.:;L:_
: !ifi:ii: ': • .!:: y:!
i_,:
--'_-
:.'.ihL : _!:i iHF
I,
";: ! .P'E_
;" ,..;.
;T O
_
7:: :i i
• ,i _T_l:i_::
i,:: o;:.
.!
_
,_°_
L__:.__+_
.... ,
U
, -:]IF.
.
. ..:
ii ....
u o
,...
i ; :-_ .......... _".:
':',,
"--'I"-_'
O
;,;,I : I
c_
d 4
_
Section
B4.5
February Page B4.5.6.
l
Stainless
Steels-Minimum
1976
15,
75
Properties
Z40
HIH
7_f
!_!ii tilii _!!!t
EH_
T!
'! H.,+!
Nil! 7i!
200
_]tti
k=Z.
!ii{
:}i
k=l.7 I
k=l.5 k=
i
ili ++*
iii
HI , :!1
1 i_
:tl
it '
,
!t
tts
,+
IZ0
f: Fb
tt
!i
(ksi) Stress
Stra1!
,,!iI W!
II:
Curve
80
t,,
Li !y
4O
0.00Z
0.004
0.006
,_ t
21!
0.008
O. 010
(inches/inch)
B4.5.6.1-Zl
I.Z5
k=l.0
160
Fig.
0
Minimum Plastic Bending Curves Full Hard AISI 301 Stainless Steel Sheet - for Tension or Transverse Compression and Stress for Tension or Compression
Relieved
Material
-
Section B4.5 February 15, 1976 Page 76 B4.5.6.1
Stainless
Steel-Minimum
Properties
3O0
20O
(ksi)
lOO
O. O1
O. 02
O. 05
O. 06
O. 07
O. 08
O. 09 u
: (inches/inch)
Fig.
B4.5.6.1-ZZ
Minimum
Plastic
Stainless
Steel
Compression Tension
and or
Bending
Sheet-for Stress
Compression
Curves
Full
Tension
or
Relieved
Material
Hard
AISI
Transverse - for
301
Section February Page 77 B4.5.6.1
Stainles
s Steels-Minimum
B4.5 15,
Properties
200
160
k=2.0 k=l.7 k=
1.5
k=
1.25
120
k=l.0
Fb
(ksl) 80
40
0 O. OOZ
0.004
0.006
0.008
(inches/inch)
Fig.
B4.5.6.
I-Z3
Minimum Plastic Bending 301 Stainless Steel Sheet pression
Curves Full for Longitudinal
Hard
AISI Com-
1976
B4.5.6.
!
Stainless
SteeJs-Minimum
Sect ion B4.5 February 15, 1976 Page 78
Propertiee
,/3
O_
"
tl
•
II
,
II
{I
II
0
0
uo_
i
:" ;:',
I
_4 4
0
0
0
0
0
N
,"q
.-_
,--4
v
0 00
0 _"
0
Section
B4.5 15,
1976
_:
"
February Page 79
B4.5.6.1
320
Stainless
Steels-Minimum
!ii_:_iii!_i!ii!i.ii!!l:;d:::'i:il#_.t: ;.i_i._: ::i:. i _ !!i i!ii!!:iiii]iZii::iii[iiiilF_
280
Properties
Room
:I::_1._l_::i._: _ i_:i i.liiFTi_i_Tl::_
Temi)eratu'r'e
"ii
i!
ii!
i::ii i :;iiii'.[
_-_i'i[i!!:Iii
,-...:.: ..'.-:,.- _iE:!_: '--:' .'::.::; :..: ; .'..1: .:.1 _ ". ::. _:;,: : ::::i: -: ;:::F. ':-;. ::' ::.:_ll .:::: 1 :'): . ............. _:"-.... 11t=:':"_::" ii:i:.!..... I:.....:::. ................. _,'._:-v::"::":::,::v !i- :'li!: i'i'_."
...... I . .... " I:tt ................... :::t..................................... • • ::'.:.; ! : ............ , : :::,'-=,.:: - k: : ............................................ _ I............... I......... :....... '
.
II:!_
'
":. 1":::'_
"'
'
'
'
":' I:::" "."h":
'
'
"'....:'.:
'
'"
..............
:::'. "":
: : ": "::':
• :
.'.1::'.
........ i-L-'!
:'
_.:'-_-_I;;::
".
:::
:"
t"
". ::: ' :::. :"
""
7":I:_"
1":
l"
: " ..'
"! .....
,"I.'
; l_l:
; ...........
'
-"
.
II"
k
"_
:11
_:_. o
":_::
:
m
:
[
::J::::
"::
"
"
:
m
Z
:
"
::
:
,
'
I)"
:
'l
_
,
1
[
_ml_
"
_
"
lull
_ .........
m
I
m
'
:
1
;
m
nm
:
1
:
m
m
'
:
:
l
:
m
In
m
m
,
:
:
1
I
I
::::::::::::::::::::: i_i,F.:i-_-_f_-h _-_::_--_.;_a,,,,i,,_--:--I;_
:
::m_::
_F ....... my:t'.']:4"': ''_"
[email protected] "|'I'_'L:::)E'" ....... ;!:--: I. . _!.11 .... __
"
m:
.ram
..
Y
_
:
m
"::i:':i .r. ...... I"6_'I'%::;. "ii} ;_ i[ ] ' t )::'! ......._-;':i:" h,. n "'7I... .................... , .
' '
:
a"
'
= Z%
.
g
'
m
"
Elon,atxon ' '
psi
:::::::
....
"I
(ksx) !_ti!!i!:i;)l_!! _::,_!i !!l!:;:l; :!. :!i ":_:F_::'!_.,_Z.:_ Wi!];ii:.:::;::,.!F!:::: i' ' .... ......... ::I.!!': i_b;-- "_:' ;.-" .... .ii:1-22
_u
I ,-_: - : .
'---It.l" •
_ "T':%_.'_ ....... '""il:i_ ii.:!.i..,7.:ji:y:
"_ .....
,7"!!_-......
:
m
mmmll'
m
m
:
:
'
:
: :..i: .:).i .i ......... ::::.;
"
:
'
........
77"_ _
120
t -_ _tress-_tra_ ' ......
"
.....
t
::::1:':
_'!!i
'.' '
5_.Z _l_, _._:.
'
160
_'"" "--_'"':'"" _';-_
iiiihi!_;_!::-i::_i.:......
.,
.....
8O
T';i._ i i
ii:U:!!
_i
:"_t-:' i_'-
,
! :
.
. .
.
.
: ;,:
......
:
: .
;
•
....
.........
i!iiii!: .................""i', ......-,4O "'!??I"_
:Fii::_
_)ir. ::_. ,:. ili: .i F 0.00_
0.004
ii/TT 0.006
! 0.008
_":_ 0.010
0.012
0.014
(inches/inch) Fig.
B4.5.6.1-25
Minimum Plastic Bending Curves Stainless Steel Sheet -for Tension Compression and Stress Relieved Tension or Compression
tu Extra Hard AISI or Transverse Material - for
.
'i)lllTI!!ml :TI: _)i":i :]itl)l!)]'::'_):iIT::]: )FT)I;)I:_i!:ZTT:I.-I:F:I_
= 160,000
[
!;TI_: .:-:_i. _T!:_i-Ii_IT 7:T!T..-II_ ......
i::)" Ft.
:
ii::_ _'tu :zoo,ooopsi -'i::.
200
'
J_
'1
240
I...........
'
5
..I ......
"
Z
'
301
Section B4.5 February 15, 1976 Page 80
B4.5.6.1
Stainless
Steels-Minimurn
Properties
0
_ _._ _
0 !
0 0
4
o
Sect ion B4,5 15,
1976
Hard AISI Compression
301
February Page 8 1
B4.5.6.
l
Stainless
Steels-Minimum
Properties
160 Fb (ksi) IZO
0.004
O. OOZ
0.006
0.008
0.010
' {Inches/inch)
Fig.
B_.
5.6.
1-27
Minimum Stainless
Plastic Bending Steel Sheet for
Curves Longitudinal
Extra
Section
B4.5
February Page B4.5.6.1
Stainle s s Steel s - Minimum
0 0
_--
II
II
u_
II
Prope
uq e,]
CD
II
II
1976
15,
82
rtles
o 0
0 .'_ U_
0
m 0
_'_ A
I2
w
.
_
N !
,6
i
4
0
_q
0
Section February Page 83 B4.5.6.1
StMnless
Steels-Minimum
Properties
60
5O
4O k=
F' b . (ksi)
1.Z5i
3O
2O
10
0 O. 001
0. 002
0.004
0. 003
0.005
(inches/inch)
Fig.
B4.5.6.1-30
Minimum Stainless
Plastic Bending Steel Sheet
Curves
Annealed
AISI
3£1
B4.5 15,
1976
Section
B4.5
February Page 84
B4.5.6.
I
Stainless
Steels-Minimum
15)
Properties
140
120
•--i ................... :.-. L..--.._ t
v
:
i
i'
I
I ;
k=l.7
' i i i "'': i ............ ' n
• -.
100
|.
.
..:
.;
'
i
Fb
....
(ksi)
i
•
- ..
i...... i :
i
k=
%,
•
_
;
k=l.O
I
"
•
S-r(:_
•
-Strain
o
Curve
I
-i' 'i " "i:": L " ' " , j. i ..... .......ii ......._............ 4......._---." -1 ....... ..-' ...... ' .. i ! : • i. ! : i_..#_
I
I
I
• ....
,
•
i
i
"
:
•
+,:k..... ,....
: "_-
' _. i:_b.4-"_-!-!_i '.'_-" ' -.................
: i -I_
:
:,.
r. "i "TT!"!"
:7"_;
I
•
"
""
-±-: .... : i......i.......... ;-,
.. _"q.--I
! 2
T
t "
i
I
.
I: .....I '_'--: "1 ": i-:
; ....
I ....
I ""'-.%.1_1 _"
_
."
-._1
" ..... LL.........
:
-L
!
"
'
, : ....... , .......r-.-l-;.--_
: ) ! ........ ! _:_ _,: i:,_ !......... t-"'.'--'t"-""-['-:"'-1
"....... ;'"'_.........
....
f " .! _. !..... l...... i ..-...:.......1
......I---I-_...1........ f+--I-!--F.....j.----4....... -......t......... !--L4--:...4....-4--.-i_.i..1 'il_-i:--I"-÷-!-.:.-._.--t ..... :i.--:..-'-. ..._.'_.:")." . ! . I • ; ' :, _ _ : )-"-----T-""._.'"""
i
i.. .......
i. i . : ...I I , ' • r ...... i........ i...... _'-_"!
.......... •"i " j: .... ]: i: i . _ -, ...... ---.-: ...... -. ...... ..'..... :....... :...... i O. 10
O. 20
! .....
i. :
_t" !_T" _-"t-+_
B4.5.6.
1-31
Minimum Stainless
Plastic Steel
Bending Sheet
i : ........... ....
i • i i.._..... I :.L..l..:.'..i.......l ! • !. !_ i ... J O. 30
0.40
t (inches/inch) Fig.
I
i
-
1.25
.
I
:, I
.
!
i
"'"
20
'
i.....i- .....)--:-.-!
--..i--.'.-.i-:-_ ....... 4---'--i
8O
4O
k=l.5
!
i
60
.
...... _........ i
Eu Curves
Annealed
AISI
321
1976
Section February Page 85
Graph
to
be
furnished
when
available
B4.5 15,
1976
Sect
Graph
to
be
furnished
when
available
ion
B4.5
February Page 86
15,
1976
Section
B4.5
February Page
B4.5.6.
I
Stainle s s Steel
s-Minimum
Prope
15,
87
rife s
0
--!
!,
'! .....
! '
:
:
I
• i
Lr! ......r i: .... i.... ,_ Z[ffiTii3 77_[ili ii 77i _ ........ t........ + ......i ,_ ....
_ .......
--!
"_
i ...!-._.
i'"
'
-4-- .....
_i. :_--!.---_--.; :-e'| .°_
"';"
_°__,,:.! ...... I l..::.lii.;.I Z..:: gN .....
_
..:.-
|.-..,
t[_.
....
•,Ii
•
_
"
...... _
"
_
"
i
"" •
!...... i
o
.......
0
.,.<
' ............
.......
_, ......
:"
";
:_fi'"'i
.......
i
_7 ._ :,_ _ ...... i...... i ....
I 0 N 0
ff
.el
.,D
J
_a _a
N
_i..._....,.:...,_il ....i;-. !:T .......!T !........ g -_:--i ,_-_....... i-i ...... d--!!....... ;- ._i.... :: :":" i".'%:"'! ..... r- :" .... h ..... ! i'
l, :' :[ _ '; _:!_:;;Tr 7,T:II _i t_ _i. :i
:1 • ' "" ;ill: !7,71; '
i
00 0 0
!
-_"'"'"r • ;
'
":
; ::.
;.
: " ,,,.,._L_I •
,i
i:
-T77T_':-_'..-T
::;i|_:,!
.: ! 7'
.
::
i
_ -:?
1-1 _::i
0 0
M 4 d_ .,-.I
0
0
0
0
0
0
eq
N
N
N
_
"4
0
0
0
1976
Section
B4.5
February B4.5.6.
1
Stainless
Steels-Minlmam
_i
.J
,-:
If
II
II
Propreties
Page
15,
88
.J If
I!
0
c_
m m
e_
0 !
I....
0 A
o
l_O
u
o.._
o O
° _= oo
I
N 0
4
-F,I
0 ,_ "f'_l
0 0 ¢",1
0 _
0 N
0
0
0
1976
Sect
ion
February Page
B4.5.
6. l
Stainless
Steels-Minimum
B4.5 ]5,
89
Properties
k=Z.O
320
k=l.7 280
240 k=l.
ZOO Fb
k:l.O
(ksi) 160
120
8O
4O
Z5
1976
Section February Page 90
B4.5.6.
1
Stalnle
s s Steel
s- Minimum
Propertle
s
k=2.0 360
k=l.7 320
k=l.5 280
k= 240
k=l.O 200
Fb (k.t) 160
120
80 :
I
•
I
4O
Fig.
B4.5.6.1-40
Minimum Stdel
Plastic
Bending
Curves
17-7
PH
Stainless
1.25
B4.5 15,
1976
Section February Page 91
B4.5.6.
1
Stainless
Steels-Minimum
Properties
k=2.0
350 k=l.7
k=l.5
300
"I
k = 1.25 250
Fb (ksi)
k=l.O
2OO
150
100
5O
O. 004
O. 008
O.012
O. 016
' (inches/inch) Fig.
B4.5.6.1-43
Minimum (RI-I 950) 0. 020 to
Plastic Bending Stainless Steel 0. 187 Inches
O.02 u
Curves for Sheet & Strip
PH 15-7 Thickness
Mo
B4.5 15,
1976
Section February
Page 92
Graph
to be
furnished
when
available
B4.5 15,
1976
Section B4.5 February 15, 1976 Page93
Graph to be. furnished when available
Section February Page 94
B4.5.6.1
Stainless
Steels-Minimum
Properties
100 k=2.0
k=l.7 8O k=l.5 k=
60
1.25
k=l.0
F b
(ksl) 4O
2O
O. OOZ
0. 004
0.006
0.008
0.010
, (inches/inch)
Fig.
B4.5.6.1-46
Minimum 5526) &
Plastic 19-9DX
Bending Curves for (AMS 5538) Stainless
19-gDL Steel
(AMS
B4.5 15,
1976
Sect
ion
February Page B4.5.6.
I
Stainless
$teels-Minimam
0
C" • II
II
15,
1976
95
Properties
L_ _ •
Lr_ •
II
0 •
II
II
il!!!!]i o "
...... F_
<
•:_ I ,i ,
-
.t :
' •
:
Ifi ..
A
:
": •
""
: ............
......
i_
.o..
: I • .... ! .......
_
o--
.....
' •
_ .........
'_ 0
t'..i
.A _4 4 i
0 -_D
0
0 _,_ A
0
m
. c_
iii..i,i.... -.......
0 0
B4.5
0
Section
B4.5
February Page 96
B4.5.6.
I
Stainless
Steels-Minirnurn
Properties
ZOO
k=2.
O
160 k=l.7 k=l.5 k= k=l.O
4O
0.004
0.006
0.008
(inches/inch)
Fig.
B4.5.6.
I =48
Minimum 55Z7) &
Plastic Bending Curves 19-9DL (AMS 19-9DX (AMS 5539} Stainless Steel
1.25
15,
1976
Section
B4.5
February Pa 9e _4.5.6.1
Stainless
'
Steels-Minimum
I:i-I
:
I.
l'e:X:l)e
:.,.tu
:.e
i.. i .... I,b._c,rn
97
Properties
:........ r---........ : I.:..:.. '
15,
I
i.
] I .....
I i'
: :
k=2.0
i
t
I-
'i
;
.....
....!i • ........
k=l
•
7
"! .... i
200
I.
"" , •.....-.'...........Ii....i.-
I
....
160
k:_
1.5
k=
1.25
o,
Fb (ksi)
!
i...... t.........IW....
120 I
i...
I I
k=l.O
i
1
I
I I
8O
O. 01
O. 02
O. 03
O. 04
O. 054
(inches/inch)
Fig.
B4.5,6.
1-49
Minimum 5527)
Plastic & 19-9DX
Bending (AMS
Cu
Curves 5539)
Stainless
19
9DL Steel
(AMS
1976
Section February Page 98
B4.5.
5.2
Low
Carbon
and Alloy
Steels-Minimum
B4.5 15,
1976
Properties
IZO
Room
Temu_
100
Ultimate
8O
Fb (ksl}
60
40
ZO
1.0
Z.O
Z_c I
Fig.
B4.5.5.2-1
Minimum Symmetrical
Bending
Modulus
Sections_Carbon
of
Rupture Steel
Curves AISI
for
1023-1025
v"
Section
B4.5
February Page B4.5.5.2
Low
Carbon
and
Alloy
Steels-Minimum
15,
1976
99
Properties
[._i. :i_i i[ I_i:-;Tti!:ITt:T ih_ :_7.:]i .-i_:_-iT:i:iliii_:i: i_ii:iii
i"--f-.:.-_:t;::!....;...._o_i_m ':,,_,_.r_,_ __,-H-t_-i ....."i!-.:'"_ ...... :-t 16oI_:[i_ ifi:ll:....!/"l::l!:,:!-i--:r--_!-mi:-:.t---I-:--,--::_ .....:-_+d: ....I
,_.:_-_:i:-F ::t:"d:i_--i-_..i.-i.l::.-l.._.l_i.:d:. _:..,?._,.:,51_ _'d: 'i •
4
f ....
-_
: !. : • ' • L" .... "...
: i"
.., ................ ' _....... ! ...... :
i .............. : "
"
[''I
:.
:
................. L
:""I"": ....... I ._'
...... ,,
.. ....
:!
]:
.... '
ii : :
, !.
1-!: ' :
)_:._.._!_i.. _i_.Z:i__:Z__i..iI..ii!i..: '.... _.0,i:_ .........._t._.,- __i.._._t
I ......... :" "
•
t....
.
i
i ....... :.......... ! [ '
.._/;:I2____..L_ ....... _::: ....:!"_ :i ....i
.....
"-"":"
"
!.......
_'-
':!
_ "':i_7-
_:--: --_--
i--.:..I.-_..:._!:i _...... : _it -.:t: t :.1.. .!-1:.._-.,__!..-i ......... i...._.' ..,...t.-..: ........... /: `_....:._.__..:_::.:_:._:_:_:._.._:_._*_._ ........ , _h (ksi)
::
....... |-!-,......."i .:'-:. ....!-" _.-_-i. _-....i".-':..! F
::::_ _--_-h_: 60
: _ [!}!iiiii!]
............
. . , , "']""t" _ .. :: ;'":':';, ...... ....... "_" "'i':.!'_.... ""'i. i,_"":: '. :-..... _-'. :........ I...... J _-i..;'"'i........... ! ,.--4 .
_----_-_-_-.:1_..!..-1-_.-i __-.i]:...i-_-.I....:.:./..::.:,:...i....:.:
.!
o "Z.J."2.Z:jI]_il...... d-_i..... i:"12]',:: __ddt:i "17:_k::-I! '_jt:.!Z :'j:] d ,
i
11 ...
i
I
o,,:: :IZI, : .......
.
1.0
.
:...
' ::!
i
_-_: ......_.
::.:::
"
: _
-'--t..
l.Z
B4:5.5.
Z-Z
.
I__:, ......:_:_:-, ....... -................. ...:-.... Td ......... t ......_.-_-:_-:: _,_lr [I I......... -.'.
i
"'..'I:"
.;:::.1.
1"_';':1
1.4
"1::
: : .:
•
1.6
:
•
:
'. '
1.8
Minimum
Bending
Modulus
Symmetrical Sections > 0. 188 Thick
AISI
of Rupture Alloy
Steel,
Curves
'
.
g.O,
k = _ZQc I Fig.
-']_
for
Normalized,
.':.
"
Section
B4.5
February Page
B4.5.
180
Low
5.2
Carbon
and
...... "r- .... _ "'"" ";....... : : : i " , : ........ I "" i "''; • : : " ' '
'"[ •
_-..... --............ ..... _ ....... ! _.. ' , ..... .---..---_"
160
,._ i.: ' J'"':"'IRoom
Alloy
" i ' i . • "'" ! • • •
_
i : ' • i " .4-":" ...... -I- .....
_ ' 'rempera(ure
Steels-Minimum
i _
•
1976
lO0
Properties
......... I ..
, •
15,
L ..... '
I _
• '
I _ _ • ...... "1. ............ ;
_ : .. • •
,
..... ' ...! ..._,.r.._. l' • . --.._....; .... --4
: '
,_
.... i..... i
" Uitimatc_;.-_+----..J '! T ; _.
"!
i !
_ ..._.:...'.... t..._, i.... L, jq__;...!.:._!I • i : : . . _ ! ! • _ --i
; _A
I
.. .... ÷-----t-:'-r-_"-. ..... ....... r..... 1....... F-_.-i-"----;-9 '.1. • _ _ I ..::.._..:..i ...I.. ,.._'-._P-:i 140 I"i'i":._':.']"' I..... i " '_ ._.L.i_..'. ........ [-_ |._._-..1 :_' • , _ .. ., : i :" •...... I :
.................. '-....... r":'"'l
,
_
JC_...__i .u-,-:....... -i--_
:" .-_".
!
. ..
l ....
:
I
--
,
_
"
"
._"_i
_
'
: . j,,,r.__
!
• i:
!'_ ..... ,:,. : ....... i. .... , _-!,___I . • .
'i."-_-."I
.
[ !
:
-_-.- i..... .
I
........
;..........__ ..... ._; .........
,_o_--._-_._ ....... --__
, , .-i .... -.'.-_... i i
: i
!...
;......t. ....... I....'. _
.-_I_..L]
_-_-I_'-=
I00
..... •
F
;
"'" "
: .'. I
•
i' .... ;I
:: .... :-:;-F:;;;:;;: :7; i ".... ........ -
: • "_.., : [ .
_-"I-"'-...... • : .
i
-........ |....... '......
•
'
.
'
:
..
, I
,
,
[
:
i ..:... ........ -. ..... I....
.: ..... '...... •-._. _.-.:_---*-.--.__,;-!;;_-! ,_'*, .<-L.LL.,__ -___.._.._ '.-L.:" """ ----. : _ '_ ....... 1--'--'. .... --I .... I ' "
--4 ...... ;...... "-
...... i
.... _
80_t-=;_ _!.._; i-;:;<-;_:<::i!..... !:i-:r-_-.! _I " _. ! : . I" " "'_I
! : I _.......___ • :
:
! • I . I
I : .i I -----t- ..... ! l
,..!._.i: i:..!- -..I. _ i:-I"!i:
.... I
• " ?...... :'--': ........ i • i
!:
'
__ ._l ..... , .... :
"
•
•
i
J.'.._---L ..... .4 . t . : [ • l
! ..... I.... i:
:, :.i
_].
- 75
"'._-- .......
_/
_0,.... _._,.-+--_---_-_--_-_--; --_-_t-_-:-,i;=S_--_. ..... _--:-..;:_;;i_ {.-.:-4-..i..".: .i.:...... :':--I ........ I-:"I :! _'tu: ,_,' , I.... : '!:::I : ......
i
I
• ......
'
--,- ......
i . i ..i :'':''l'"
.
'i:: r
I
".
s.......
_.......
i :'
l
_........
''
_L. 9F
"l|
L---I
......
"_'|
:' ': ..........
"_"
"
.!: • _ , .J . i_.L
_0 "-r-r_i-:"T.
F*-
1
! : • ' :.... L:'
"
0",n '
'
' _' "
._si :
-r--_
:
"
'
!
'
]
"
:" '
"
"
Z9 xli:¢,_s_'. :- I....... !......... [
"
_'_i
i...... F_.,,,._,'i,_ _z_..', 4.... t---+---,
.- _.--T- .... r...... l
." ' i" " _
: I . ._t
•
_
,
• . .,
. . i...... I...: .[.......... i
..._...!-,._-..I. .I..'..!'--:!_!...... ;...... l .... !...... F- .... l" : i _ i : _ _ i :_-_Li=-i.--!.._ ..... 4--=--,-----_:--4 ..... --i----e .'T-'N, ":-'t-'_} ' ! '_.-"i-i,,"-.:
,o
' .....
•
i : ]......•
! : ......
..
i .
l
:
!
I
•
:
....................
• ._____...;._L---t.__a.._l__-I-_..-,-----b-.-_........----_-.-r • . • • • . .. i-_'.'-[:. : • J . ::1 1 :. ..:.....'.-.:.--.r--.i.---,-._--.-i.--._-: i:l _I-_--I : i :-::......... ........ ,-.-,.-I ...... I- r--L- ..... ,_ :'--4"-':'_ ,,:: , • . , : • ' • : : ! ": I " -L ..... •......
•;-..._....+--_. ....... !.....G.---_--.-.T---.-----.
o i !.....I i: 1.0
B4.5.5.
Z-3
Minimum Symmetrical <
!:
t
I- 1
• :
" "l:l ....... J _...... _'i _ ....! ' ;-.._-;;;-
1.2
1.4 k=
Fig.
: _ ". i .....: ...I....... i..J.-: ,, , | : •.... , ,
0. 188
1.6
Zac
_
I
Bending Modulus Sections AISI Thick
1.8
of Rupture Alloy Steel,
Curves for Normalized,
2.0
Section 84.5 February 15, 1976 Page 101 B4.5.5.
Z
Low
Carbon
and Alloy
Steels-Minimum
Properties
Fb (kii)
4O
0
Fig.
B4.5.5.2-4
Minimum Symmetrical Treated
Bending Sections
Modulus AISI
of Alloy
Rupture Steel,
Curves Heat
for
Section B4.5 February 15, Page 102
B4.5.5.
2
Low
Carbon
i .: i
and
i
• _;
Steels-Minimum
: I
I .
!
Alloy
......
,
_
•
• " T" ! '!.... " II ..... . . F:--4 ...........
:;.
.
!I ............. ] 4
!" . .i ............ ,.......
: .._ /
:
,..i. ' :
:. i .... I !.
i......... "."_-I .......!...... -..:1
_........T........... 7-[ .......
.
i :---;
.
........... ,--4.:
....I',' ": "'."I" "'! .....!
; .I. ._ I .... I-':.--.I . I . /
.....I""q- ......i....... --r"-i
......
I /
!
'
Fb
160
120
I
.
!
I
I
"
'
:
- .: ..... i : I
..... ;:--.-t ...... ....... " ! : :'-! ..... : .... i-": ..... 4--....-
i.: ..--_ I .... I } ...... I ..../.. ,..... I..i ......... _..... I........ ; " ; • , • I I : . : I L ..... +-+."i ...... |•....... 1-----.---[.-----_ ........ I' .......+....._ ............. _......... 200
i
' .........4. - -':........ | ;, ..........
'---[....... 1-..... -r:i ....... ;--r:-t "1 ' / ...... :i '".
I.
" 7_
........
_ :-1 ........
_" .... . !
: _-:!Room Temperature .... Jr.... I....__...' "/ 240
properties
...... ":
.
• ",.-...... I, ........................ "I_ •
280
[
I i:
1976
:
:
:.... | i ' --L.__I ...... ,! "
I
'
'
I.......... Jl......,, . . ,,................ ;, ..... -T', . ...... . .{....... ..4.+--" " t_ .....1""'."....... I," ": ...... ,....... . ..... ;............ .I . '.,1 • ---T"7"".'""."-I--'"1 ....... :"Jl-":'"'l" ._ ....... I. --. -I • _ : ; : ' ' • .! • ' •+ I + . : ,.. ,.:+ _: .... :.... I ......I: .... iY,ehl"l-._ --:"I ..... l ...... I' ' ' ' ' ' ,,,,,;, .... _----="-' ........ j..._.., ."_ii_IIIIIIIIIIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_ .-. :: _: :" i _..J'_iaIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIImIII_IIIIIIIIIIIIIIIIIiIIi._ '"!i i :: ........ ::i ........ ' FTi • I ': _ •, , ...... "!.. ...... -"i- ---t"':'"T---.':'"---!". "";--
,_•• i • I i •i• r: , •'•1 ........ I " ! •_••_ I ......... ••1 :•••!•_ ':••:-I•: ......... :........ ".....' 'I-= +"-....... I - !,:--q'......... i, ...... [ _.... _'-I:. I+....._-::;' .....--:-* ......... I
,
•
.I
•
I
'':
:
+"
..........................
_
:
:
............. .
,:'"
....
: i .... +;...... , . • +:+", ""............. !-+r! ......... i......... !---1, • __.;.._1! '"-; !. ..... • .r, :...,..__+_-...I......... i !. i ...... r,...._ + i ......... t:.lq, ,._ _:-._.: _..... 8O
• I
i
" i
• / ......!-!:-I
..... !.... I...... !"
:..... 4- ...._.....-F--i---4..... _---..
......4.... '
•" -; ........ I......_ "-: ........ i--!-"-t 4O
.... •
I • , ! '
..................
i
..I. :
, ..I. I l
_ ........ : ...........
'
I = "
i
'
• _ ' " Jr-.....__Z.
..........._,,.- 13z,::,oop.,,,----!--
: i ...,
.-g ....
i." ..... !.-.:....., ...... :..i-.-
i r
...i..:
-4--- ............
i.''
/ 1--
"I
z+;
"0_'
"
E'°nRat"_n-"
'
-'
"8"_:°
"......... !: ' " ?-!....... i;......... ::.:---i--....-...... '!-........ =!"";--++!i: ............. .......:-1........iT: !......... _.............. t....... I-----.i--..,.;+ ..... :
"
:
•'. :+ ......... .... _...................... 1.0
1.2
'
t- .....':
:
•
I
......... I '1 ! L...... :..... I....... I __L 1.4
'
_
1.6
1.8
Z-5
I%4inimum Bending Modulus of Rupture Curves Symmetrical Sections AISI Alloy Steel, Heat Treated
•.: z.i0
k = __2qc l Fig. B4.5.5.
|
...... + .... I " i ........ ........ ,...... J. __.: ........ ! ............
for
Sect
ion
February Page
B4.
5.5.2
Low
Carbon
and
Alloy
Steels-Minimum
Properties
360
320
280
240 F b
(ksi) 200
160
120
80
40
Fig.
B4.5.5.2-6
Minimum Symmetrical Treated
Bending Sections
Modulus AISI
of
Rupture
Alloy
Steel,
Curves Heat
for
103
B4.5 15,
1976
Section
B4.5
February Page 104
B4.5.5.
Z
Low
Carbon
and
Alloy
steels-Minimum
15,
PropertieB
4OO '
i
32O
'
Temperature
_'
Iit_!! ill!i] _t!tiii iltli! fltt_
!._It_)t_ttfltttt_,....l'[t!ttttlllllltttl!tltI!t!iii!!l!ttl!t!f!_llf _
!;,!II!!
" :-i_:"-: ......... :...........;..... _.......__:;
_-k-! -_---.___, --." ' , 160
•...... _--_" i":.... h: _
.r :-i ....:....I....7...... l ....... i....... 1.........i .........i .........I....... u.....: I--...i--..i
........
" ..............
; ....
_h_ttltllltlittlllttlilk_.t_ 8O
i
tttttttttltIt ft14 ,ttlllllltlItlttt t111tllt IIIitf!ttttt_ ttiftt_ttltl t[t tlttttlltllttttttltltttlt!_tf t_t_ttttttt ftttl[tlttflttltttl_ttltfI_iliJllftillt ittttfttttttl [tt_i Ittttttltttt_tttttltltt!IiI1_it!1 #i_i_t_ ti11 t_tt!)iltiitltt111Itt l_ti!lttt_t
_i _i
24O
Room
t' .....
' '_ F.
- zoo, ooo psi
' -_
_tttt lttttlltltlilliIl_li!llfll t_, _**:,,6,ooo _, _,,,_ It_tt!tt)ttttt]ttt!tlftt!ll1II!t! /il!lllttlt!_. =_.o_1o6 psi
0 1.0
Fig,
..
B4.5.5.2-7
1.5
Minimum Symmetrical Treated
Bending Sections
2.0
Modulus AISI
of Rupture Alloy
Steel,
Curves Heat
for
1976
Sect ion
B4.5
February Page 105
B4. S.6.
Z
Low
Carbon
and
Alloy
_te_ls-Mtnii-durti
15,
i3ro_erttl_i
k=Z.O
70
k=l.70
6O
k=1.5
k=
5O
1.25
k=l.O 4O
Fb (ksi) 3O
20
I0
0 0. 002
0. 004
0. 006
0. 008
0. 010
c (inches/inch) Fig.
B4.
5.6.2-1
Minimum Plastic AISI 1023-1025
Bending
Curves
Carbon
Steel
i 976
Section
B4.5
February Page I06
B4.5.6.
lO0.
Z
Low
Carbon
and
Allo
7 Steels-Minimum
_
1976
15,
Properties
k=2.
44+PP
it
O
_Room
Temperature
_,
H
I IHIII IIIII!iN il!HI!III!I!!III I !!!!! k=l.7
k
1.5
f_ t_M_.,TitlIIIP_;_',..'_ iLtjlLt-ttttl ,, iiiiiiiiiiJi _u!!_ l_ ]_;;,tlllll!W_';;iftttlltttti ttlltft_Jt Ii !];:ttJlftftt tittttt !!!! k=I.25 II__t-_flt!!!It_iii_itIltt!I!Jl _!Iiil_l_IIIi!!!li IIIiill _'..m,_,,
60
k=l.0
II _ .-._"'_"'"_'"""'i'"". . •.... i. ....... : , i__-' ..... !l'..;,Iillli,'.'.:i_.nn.nIli,.ll,-Iiqllll..,,_""t'_ ......... I , _.",,". ......
i
't .,,iuilI. I--
"
I
=.
•
i
..........
......... F
I
I
--'"
I
I .......
!1;_ "'
I
"
t
lit
"
I
...............
....
,I'AII
I
40.
t
I _
""
I, -'IUl.._lllllUllllllllllllll,lllll
: ;dl'IjliilliilliililJllllW"" :,,-.:...pp,,!,,,, :
: I II " : _'-:mtm ,,_m,,,_tlt-_tm-_m,tlttliiiimiiiirt_ tI !_ _tfiltitltm _-tttJ_' _ttttJitH
i_II ::::::: _,. =_,ooo_=_tt_lftftt- : IiilIiIJiJlJlilIiI ";;";:
ZO
_tv
Ili,Ilt
= ao, vuu.psz
'_ittlill
llTltlltltttll?!lttl
O. 04
O. 08
O. 12
O. 16
1
'
}
'
t
I
_
:: _
.+._:+_
,Hii.i4litlt,tlitHilltiiilfllttHlltltll]i
I
'_lfltttl!liltlttltf iiiiiit I!I: II t.i,itil_tlhtitJ '_ tttiJI tJ ....liiihi l,Itfttli tl,,,it-ht,t.'ul _i 11t,it +_ti ttt 'ilI _ tit,I!IIt_tttttfllt-tI1tt!ttt ;;;;i I i tfi tHt 'li tflitltl _ ,, tttilllltlifttfttttf. •lttff tt,l,ld,_ddII,,t,,t,t_,_d_fittt '_ :::: ,,tili_,tlnltmtui,_iltlJ, tItH7 _-+r'.. + .......
iiiiJiii
71-ii _iiiiii =-= _-<_ x_o. ,>._i__tii !iiii'_+_!"!!!!' El°ntati°n = _Z_/o
:r
O. ZO
(inches/inch)
Fig.
B4.5.6.2-2
Minimum 1023-1025
Plastic
Bending
eu
Curves
Carbon
Steel
AISI
Sect ion B4.5 February 15, Page I07
B4.5.6.2
Low
Carbon
and Alloy
Steels-Minlmum
Properties
140
k_2.0
!iiilililhiill 120
k=l.7
k=l.5 !
100
k=
8O k=l.0 Fb (ksl) 60
4O
_0
.....
!1 .......
O. 002
O. 004
O. 006
O. 008
¢ (inches/inch)
Fig.
B4.5.6.2-3
Minimum Plastic Bending Curves Normalized, > 0. 188 In. Thick
AISI
Alloy
Steel,
1.25
1976
Section B4.5 February 15, Page 108 B4.5.6.2
Low
,-
Carbon
and Alloy Steels-Minlmum
.... • •
i...... i"'_
[
.
'
.
.
're:rperaturei
.
:
I
:
i
r..... -i-_ .....;............. _ .....I..... ....... _...... 7........ t-_ . ......I.:.--i .... :-_............... _ " ,"_! p....-.i..-.----...--....i.-:..-.,-...-.-.. ......._.._---!
....... I _:_:,_J ......._1 :.i_.,_
150
'
!
!
•
•
•
•
"
:
-
"
!
i_'r-.
•
I
! " !
i
I
:
!
, "
."
'
•
i',".... "_--,',"
.
I¢,. --.-
,.; .
_
,, .. "
I
i
[
-
'i
i
i
..
_
!
.....
" "
• "
J '.
I I
"
[
I
I
i
! i
!
........
i
.
/. ,......i-,-
• •
.: !.. !. .i.. '
:"
r_-i......... :' " ! " ! ........ i......i.........
_-T,
i
I /_ "" l"
_,,_;
.......
i
.,,__ i
•
•
" ....... _ !i........... : lk=,., , ,-
I
i--r" ,-r-:' _-_.; :. :.....:._ •
I..............
.
•
Ro:_m
•
Properties
"......................................... ;
,
1976
k-,.zs
:
'i ;_,iilIIMIUlIIIIe"_ ................. :'_ n'. , -....... i....... ............ - .....'...... -t....... ;........ !.............. ;........
100
;
i
i l
Fb (ksl)
............. I
:.
,
I
I
i
!
I
:
.
'.: I:!
! i
".'"'" '
:
; .........
:"l
"
,
i
........ :
I
"
• S.r.;..,._.Str,"liil
.
,
•
I
" Cur-L:
'ii,,,!,,,,,;-""i""7i .... •
;
i
'.
_
:
.
;
'
:
....
I
.......
•
,
I
:
:----t........ .--._-t---"
.[__-::
......
._....;
:
:
I
"
'
:
-
i
.- ,
.i,.
'
""
"
.--
.:
-'
....
,
•
'"
,
. ,l.r
,
........... :-i:-!........... i.,:_ !'!---......
.....................................
!..
i
i.---_.
•
.,, '
_-!
,
•......
: ...........
i
!
>'
'......
i...... ' I • ......... '
- . ....
: ................
! .......
"
• • i. - I t, p, -_
:: i,_::.; :;-_i....::: ........, ........ I_7: ir_,
it__ t__ _ol_I-i-_
:
..b
•
i;......
":" i......
i...." _
Ii
I........ '" ,. I .... "'i ........
i
i
i I
.......... it
;
.
i
:
.
i
:
.
"-..... :,...... .4--;...:,- ............ I.•
i
i
:
.
i
•
J
it:,, ..,,. :.,, !, : I-' ......... ...., ......... :._, ....... :., :, ...,, !i ' I,,. ,, !.............. .....I'_ i !! '! ....,........ _..... I '.............. :: :. i I,.......... i ..... ,............... ,.....................
I
_.. i
n-"--I , ' i; .:._J :..-.........1.--...-I.......-i........t........................ .I..... i-'t!......... : ,...-....l... ! ', • II--.i.0
! ........
li...-... ."
•
!...... ! .....
, .... ....... '
O. OZ
O. 04
I.
t
i...
i
:
.'
I
I
: ... ............ :
.
O. 06
,.......
O. 08
O. i0
B4.5.6.2-4
Minimum Normalized,
Plastic Bending Curves AISI Thickness > 0. 188 In.
.....!
..: ..I ......." "_;
,.................. O. IZ
i........ i
O. 14
E (inches/inch) Fig.
-
,
'u Alloy
Steel,
,
O. 16
Section B4.5 February 15, Page 109
B4.5.6.
_
Low
Carbon
and
Alloy
Steels-Minimum
Properties
k=2.
140
Room
O
Temperature
k=1.7
IZO k=
1.5
k=
l. Z5
I00
F b (ksl) 80
k=l.O
60
40
20
O. 002
0.004 (inches/inch)
Fig.
B4.5.6.2-5
Minimum Normalized,
Plastic
Bending
Thickness_<
Curves 0. 188
AISI In.
Alloy
Steel,
1976
Sect
ion
B4.5
February Page ] I 0 B4.5.6.2
Low
Carbon
and
Alloy
Steels-Minimum
]5,
Properties
0
<
u_ _Vl
0
e_
_z I
0 _0
0 ,_
0
1976
Section B4.5 February 15, Page Ill
B4.5.6.2
Low
Carbon
and Alloy
Steels-Minimum
Properties
24O
k=2.0
200
k=
1.70
16o k=l.5
k=1.25
120 k=
Fb (ksl)
8O
4O
O. OOZ
O. 004 I
Fig.
B4,
5.6.2-7
Minimum Plastic ' Heat Treated
O. 006 (Inches/inch)
Bending
Curves
AISI
Alloy
Steel,
1.0.
1976
Section February Page 112
B4.5.6.2
Low
Carbon
and
Alloy
Steels-Minimum
•
°
II
II
B4.5 15,
Properties
o
0
;,:1
o
"i_ !!i! I IM
}iii
,d _4 4
iIi: ;!I!
m
!!!! i
I 0
0 0 r,,l
,0 ,,.0
0 ¢,,.I
0 (13
0 ',_
0
1976
Sect ion B4.5 February 15, Page I 13
Graph
to be
furnished
when
available
1976
Sect ion
B4.5
February Page ll4
B4.5.6.2
320
Low
Carbon , J
and,, Alloy
Steels-Minlmum
:I._i T_:T: ..... -ff:-I-:¢
_:_'...._'
" , d_i :_ i _:_ :' :::'_:.:: _ --_--'_.0 '1 I" I _:
_
"i_.i:_! -.:I.: .... i.r__
I
280 ::-!-i:!:':'!!'"/'e_"'l
..........
240
!",',
-]
_
t
?....
" ........
:!lit!it
; il I
200
i]i!::ji
i
_
!i i!!i
Fb (ksi) 160
i _'
S "c_ain
Curve
_.._ k
l_--4
b IZO
8O
It_
I_ t
___Fty 1:! :i.!_
'.... :iii;: ! !_: "I]:::
. : ,..I.:'_ !:l::
7;iir]i!iT_!--_<.,
4O
:i7!
I::l:::i!
:':;!::'
::,
; :!
! ;:
! :
! 1:
,'ii iiiT--::i:i,,: 7![ i:] ...... ......... _:::v::
i
....
IF t IE
= lJ2, O00psiBZ, 000psi = 2-9 x 10 6 psi
;Elongation
:= 18.
5%,
::t-i-:
::
:iiii::
ITT1777T ;:: i:T;II71)"
O. 02
O. 04
O. 06
O. 08
O. 10
O. 12
O. 14 E
(inches/inch)
Fig.
B4.5.6.2-10
1976
Properties
ill•i'_; RooJ_T_ _p_r<,,r _ ; :.... i "-I_ d_ .... _
15,
Minimum Plastic Heat Treated
Bending
Curves
AISI Alloy
Steel,
U
1 25
Section
B4.5
February Page I I5
B4.5.6.2.
Low
...-:_..:-: ,
Carbon
and
.........
Alloy Steels-Minlmum
i ..................
15,
1976
Properties
!
.... _ ....
.......
•
:
.
•
k_Z.
280
240
i:":" 5-:_--- _'_-- .... _ ........ JF" i_i: :_ :i:i :i : "i ':':[" t. ! : : ! zy ": ', "'::-:': :i-÷!!i ..... -":.... :"'!:"': ....... : ...... :":............ ::._.::. :i_i:iT:. " ::-" . :,. ::: ,_::1_.... i
z_x
::.:.: •
I: ........... '" "..
"
•
".
•
•
'
;
:
'
_
i '_ i_--_ _
IP
D
::. '
i"
: .
.
•
k=
1.70
k=
1.50
.:: i
--.......
:_..
,;
• : k=
ZOO
:::i::.:,l -F- T_-.:-lT.r:q-':
'!
l:!
1.25
:., l l:- • k=l.O
160
:_:_!:i:::[ l::!
• ! -i_.:[ -_-'_
_i'i
!!:I-÷:
Fb
_-I
t,
!
....
(kst) [::::iif!i [
,--'_,J
!" ........
120
_!i_ii:!
J Stress-Strain
.:_:_ !::1:
.
:
Curve
..........
./_
:
l!i!!ii!tli!_.ii_.:_":'_?'""_':_'":-..., :__:,. _i_if_!;ii.:_!! _'::: ....:..,._ ..... ,:,......... _...... 8O
l:i::::...i!::.:-_/.++_--"--t-. F'_!':_t! 40
_........
, ......
_:-H----t-/, .......... _
i
.iiFtu
_
:
JFtv:
180,000
163,000
psiPSiI'"':-i:, ''F" i
......... :" +_-"'= 7" I'----T-" --T" .. :. " I:,_:,_A..._pl-r. :-'"-.7...___. =,__,o6 ,,._,i .....
_:. :i.i:_-,..-:-:[_.-..._,-, _..H-..t---t-_.,oo,_,,o_ =,_o,o_.-._--i i • i': :i
: _ ..-::K_:::_:t:: 0. 00Z
......... z ......
:...._[_ :
.......__....":: : "::'
0. 004
0. 006
...."......:"/
0. 008
"...... _..:.J :::: ,, " ""L_ ............. l"i_J 0. 010
0. 012
0. 014
(inches/inch)
Fig.
B4.5.6.2-II
Minimum Plastic Heat Treated
Bending
Curves
AISI Alloy
Steel,
Section B4.5 February 15, Page 116 B4.
5.6.
Z
Low
Carbon
and
Alloy
Steels-Minimum
Properties
k=Z.O
360 _0 tIII
k=l.7
280
i:= k=l.5
Z40 k=
1.25
200
_b
k=l,0
(k.{)
160
120
8O
4O
O. 08
O. I0
(Inches/tnch)
Fig.
B4.5.6.
Z-1Z
Minimum Plastic Heat Treated
Bending
Curves
AISI
Alloy
Steel,
1976
Section February Page l 17
B4.5.6.
2
Low
Carbon
and
Alloy
i.i!"....'.:'::;:.. I I.T7_-:]--F-7-FI Room Temperature
.........
3ZO
Steels-Minimum
Propertie_
"'''I
280
Ftu
= ZOO, 000
psi
_'-
-'""...,., .... .... Fty = 176, 000 psi
.=
7_- _ _-,_9.0 x 10Gpsi"
240
:i ....
Elongation
= 13.
5%
_
".i;....
200
120
l
1
1
I
}
1
1
:: i
i':i.i'!
"!
.... ..... i:i:i--:'-1
....
]
...............
l?F!l_
:.!....i_::..:...i._ ..... • i_ _
160
:
:
(kF_)
•,..
!"
" !" F
.......
80
:i:i!:_iI :....i- i i::r .....
:
i/'li!
.:sl
[
-
.L _..:_:._
40
....-__'- -i-:-;!-?ii_ 7:17i:_ _ii., :i!i.... :;_ TIT T'!"i :i:11 ....
0
0. 002
0. 004
._r.-
0.
O. 008
O. 0l{)
O. 013
((inches/inch)
Fig.
B4.5.6.
Z-13
Minimum Plastic Heat Treated
Bending
Curves
AISI
Alloy
Steel,
B4.5 15,
1976
Section February Page B4.5.6.2
Low
CRrhon
and Alloy Steels-Minlmum
2_
Propertlen
118
B4.5 15,
1976
_-"
Section B4.5 February 15, Page 119
B4.5.5.
3
Heat
Resistant
Alloys-Minimum
Properties
_00
160
IZO
Fb
(ksi) 8O
4O
0 1.0
1.5
k
Fig.
B4.5.5.3-I
=
2.0
ZQc I
Minimum Bending Modulus of Rupture Curves for Symmetrical Sections A-286 Alloy, Heat Treated
1976
Sect ion B4.5 February 15, Page 120
B4.5.5.3
Heat
Z40 :ttit_.._
Resistant
Alloys-M[nlmum
:_[_: ,_[_::;i_R°°r nl;::-i ......
_;-_-_'zoo _*+_ L_{_i
" _
'!
It
........
_
-AIJ-14_ -trTT_ _$_
I
,
Properties
i.iii,_:i_i_i_=_iii._Temperature_. .... ; _-_ i
.......... i
i i
1976
"
" ! ...... _",'-....f-/_ . ! ! .':,_,_'I?L! •" ,
: •,
•....
ttii
i
'160
....._:i!l_ '_ " r_l_llil' ll!I
"_'_ II Fb (ksi)
..... liLI2_ll,
, i
li i Hliiili!iilIillliIIillllll IllllfIIll
i
" ".,
....
"
'. •
lZO .......... :.... •
l!li l
"
; ,
: .................
"
'. ....
',
.
_:
i
•
" " : __.'-
: :..:
.
'_
i:!: !!
..
_
..
i
,
•
i
::; '.,
: '
i_i!
•
I.
•
I
•
Alloy
Bending Sheet
.I
-
•
!
6
k=_
Symmetrical
I
'_
1.5
Minimum
:
_................;.........i ....... ;
.... :
'
-.I........... ! I
1.0
Fig. B4.5.5.3-2
i
_..... _.......
i
8o_-_ ' _
•
_
! ................ '
I I
•
Sections
Z. 0
ZQc I
Modulus Age
of
Rupture
Hardened,
Curves K-Monel
for
Section B4.5 February 15, Page 121
B4.5.5.3
Heat
Re ststant
Alloys
-Minimum
Prope
rtie
s
1ZO
100
Ultimate:
8O
6O
4O
ZO
2.0
1.5
1.0
2Qc I Fig.
B4.5.5.3-3
Minimum Symmetrical Annealed
Bending Modulus of Rupture Sections Monel Alloy-Cold Sheet
Curves Rolled,
for
! 976
Sect ion B4.5 February Page
Graph
to
be
furnished
when
available
122
15p
1976
Section B4.5 February 15, 1976 Page 123
B4, 5.6.3
Corrosion
Resistant
Metals-Minlmum
Properties
200
160 F b
(ksl)
120
(inches/inch)
Fig.
B4.5.6.3-1
Minimum Plastic Heat Treated
Bending
Curves
A-Z86
Alloy,
Section B4.5 February 15, 1976 Page 124
Graph to be furnished when available
Section B4.5 February 15, 1976 Page 125
Graph to be furnished _en available
Section B4.5 February 15, 197 Page 126
_4.5.6.
3
Corrosion
Resistant
Metals-Minimum
Properties
240 k=2.0
200
k:l.7 I ..::
....
i ......
'
k:l,5 I .....
I....:.--
160
k:
l. Z5
k=l.O IZO
8O
4O
O. 01
o. 02
0. 03
0. 04
0. 05
0. 06
Eu
c (inches/inch)
Fig.
B4.5.6.3-4
Minimum K-Monel
Plastic Alloy
Bending Sheet
0. 07
Curves
for
Age
Hardened
Sect ion B4.5 February Page
5.6.
B4.
3
Corrosion
Resistant
Metals-Minimua'n
127
Properties
60 k=Z.O Room
Tempe
rature
k=l.7
50
k=l.5
.....
, .......
j
..
_".........
k=
1.25
(kFs_) k=l.O 30
20
._...... |
I
!
Ftu
= 70,
Fty
= 28,
E
= 26
Elongation
I0
000
psi
000
psi
x 106
psi
= 35%
i!iiiii_ii
i
0 0. 002
0. 004
0. 006
0. 008
E (inches/inch)
Fig.
B4.5.6.3-5
Minimum Plastic Bending Curves Cold Rolled, Annealed Sheet
Monel
Alloy
15,
1976
Section February Page 128
_4.5.6.3 Corrosion
Q
0
0
Resistant
Metals-Minimum
Properties
B4.5 15,
1976
Sect ion B4.5 February 15, Page 129 B4.5.5.4
Titanium-Minimum
Propertle
s
130 t't_
tt_ _4 +H
120
ttt _4
_tt H
t_ trt
Itt
H_ H, tt-!
LH
iL
110
ii
F b
(k,i)
H .H
.+.
Ji .o
./i
100
.ii U II
..+ 1 I
90 ¸
1 i
:
1 l
........i.... .! ....... _......I......... _........ ! !il]t!t_ _! !,ii!ttfl_[!!!]_], |
,
"
•i
|l
. ]J,tt!j,
,
I
,..;.
_.. i _ii_tt_h_!Ii!_Jlt
,
_ th,_¸ ,,_,,_IlJi_ _-,_ii¸
8O
l;tliiti
, iiittIll IIitittI!r.itt! i!!!_,Ii!
t t_
i!! tli _t
f
..,
.
i_;
_
!_!ii!t i_l'!i li II I tt!i!i!! ;;' fiJ 7O 1.0
1.5
k-
Fig.
B4.5.5.4-1
Minimum Symmetrical Titanium
2.0
ZQc I
Bending Modulus of Rupture Sections Commercially
Curves for Pure Annealed
1976
Section February Page 130
B4.5.5.4
Tita_[um-Minimum
Prope
rties
Z30
ZlO
190
170
150
130
II0
k-
Fig.
B4.5.5.4-Z
2.0
1.5
1.0
Minimum Symmetrical
Bending
2Qc
Modulus
Sections
of
Ti-8Mn
Rupture Titanium
Curves Alloy
for
B4.5 15,
1976
Section February Page B4.5.5.4
Titanium-Minimum
Propertie
s
240
220
200
Fb
(ksl) 180
160
140
fli!llttlttftttllli_lltli!f!tttt 'il 120 1.0
1.5
2Qc k
Fig.
B4.5.5.4-3
Minimum Symmetrical
=
I
Bending Modulus of Rupture Curves for Sections Ti-6A1-4V Titanium Alloy
Z°O
131
B4.5 15,
1976
Section February Page
B4° 5.5.4
Titanium-Minimum
Properties
Room
Temperature
Z50 Ftu
= 140,001
Fty
= 130,000
E
= 15.5X
psi I06.psi
= I 2a/o
Elongation
220 Ultimate Fb (ksi)
t,--.
'
•
I
"
: ''
I
",'
t_._..... I.
,
;
i
.
:
,
'
:
I"
l
.
.... _......... _, _oi/ _1_=_...._"
...................
1.0
""
..;......... L......
L..... --.......................
B4.5.5.4-4
I
'
:
,
•
I
;
"
I
:
I
•
"'
,
•
I
!
":, :
•........ ,.. :...'.2 .............
i!
"_ - .........
!
'
• ........
i
..... _...... __.. i ! ,_ •
i .....
,
..
_J .............
1.5 k=_
Fig.
|
"': ...... [........ I'-'" ....I..........!...........
Minimum Symmetrical
2.0 20c I
Bending Modulus of Rupture Curves Sections Ti-4Mn-4A1 Titanium
for Alloy
132
B4.5 15,
1976
Sect
ion
B4.5
February Page B4.5.6.4
TitanlumoMinim_/m
15,
133
Properties
160
k=2.0 Fty
• • "1
140 :
:
!
,i!'
i
!
":',.
_k=l.7 i
]
.... !: ...... _
.......
..... !. 2...i
i
k = 1.5
_...__.i ;
:
:k
!
} :
= 1.25
lZO i.---i
• : '" ": ' "ik = 1.0
,!
100
"'--T"--
I-i-.
Fb
.,: •
(ksi)
,.
..F..i.
Stress
.d .....
,
Strain ......
i
.
......
...i
i.
8O
60
4O
ZO
( (inches/'inch) • Fig,
B4.5.6,4-I
Minimum
Plastic
Titanium
Alloy
Bending
Curves
for
,.,
Curve
Ti-8Mn
1976
Section
B4.5
February 15, Page 136,
B4.5.6.
4
Titanium-Minimum
Properties
i
i
=I.7 I
" " I
'I
,
i
k-
1.5
I
I
_' l
"[
- --. --F---i ..... I---
.....
1Z0
-_--
S_ress-Strain
:
, "
!|
I-"
"
Curve ....
FI"-T "'-'''''_
I
[
. ..................
[
1
I.
........
I
7-5
I O'
I
:
I
'
i.
:
k
i-
•
k
I "
"1' .l
"
'
"
'
l
II
(k.i)
....
Ila I.m,."--""l
l
..1 .......
:..j,
i
_!
[. •
" :" I
•
.
:
160 Fb
! .... iI
i
II
....:
Curve
fo
8O
.I .........
........... 4 ..................... r........ b........... • t _ i i " "'_
0.005
O. 01
0. 015
O. 02
O. 030
1
O. 035
¢ (inches/inch)
Fig. B4.5.6.4-Z
Minimum Alloy
Plastic Bending
Curves
.....
, _
.........
1
I1
1
1
1
1
1
I
O. 025
"--I-'"'"
I:}
I li
' _
..........
I
,
....
I .....
i
i
_ ..
....
,..... ll ......... i!: " ; ' : }
_
4O
J
:,. ....
2
I
_
i
f
_
'
I
, • • ......
}
b
" i
....
"i
O. 04 'u
Ti-8Mn
Titanium
1976
Sect ion B4.5 February 15, Page 135
B4.5.6.4
T_tardurn-Mtnirnum
[H:[
b.'_._l' _
F I,_L_L_.L_
'
•
___ .... _.
Propertiee
II
,_
[
:_
i:
II
[]_ :; :_
_
*
i
,:_: I:::: :_i:_
**
*["
'I"
[ *_
I:
,.
_.............. ............. :. ........ i....... ........ i....... :. ........ i.....
> l
l
o
i [:
::._f. _._-_, 1
llti
_i
ii
l
!ll.
I
_
"
"
ll
"
>
!
_,
i
.
_, :
_,
!_,
/
I
i_
i
•
i
........
1 !
....
_
....
l_
l
_
"1_
"ll'_--!"
l
:
.....
_
_
.......
_
......
"V--;
"
....
_
_4--_
"--41_
'
L)
I
;"
•
tel
::
C_ I_
:_
i ...... _':_
_
_
:
"
.
•
:
J
: "
,
l
._.l."= l
_:
_,
_
_"
_
_,
:
"'_
--t
•
.
_
I
•
I
I
:_'':
I l
: _ :
.....
•
" "l
_1 ,
•
..
_
....
•
:
_
"
I
\ I _
:
"
.
I
....
_
•
i
. :
_
_----_---
:---i
.....
•
r
-
l
7
--
_
"I
:: :
i
•
_
:
_+,_1, ° _ _ ,, Lh_,_, i_,,_,_,_i_,_,_, ....
.......
•
%.
_-._--..i...
•
_--'_
•
_i_ .
,._
•
_
_i
•
"_,
:
! _
.
i_'_
_
I
•
,
"_ I_=_
........
....
l
I
_
:,'-,.
........
--
l
.
e_P
_
I
_
I
.......
....
"
"
"
"
:
l
--"
"
F
.
"
•
--
•
:"" !l/ ....
,_.
l
;
I
.....
i"
'
•
:
"...............
: ;.
•
:
.
, '
.
;
: :. " .:
,,---,_
....
'. 'l
_
'
_
.
.
_.
I--_l
il
m "'!
i :
_i_l,_,_l
•
"
,i
I
0
_Q
&
'". ::I: ..... i !_71.....-ii I L.........: ....i I
I
I
I
.......
....t.... r ............... "...................
I"
:,....... _; _ ........ !..... !....ill i
....
I ......
o d
N
o oO --_
0
0
_
_
0 N _-_
o O
1976
Section
B4.5
February Page 136 B4. 5.6.4
Titanium-Minlmum
15,
1976
Properties
.240
200
160 Fb (kei) J
120
8O
4O
O. Ol
O. 02
O. 03
O. 04
O. 05
t (inches/inch) Fig.
B4.5.6.4-4
Minimum Titanium
Plastic Alloy
O. 06 _u
Bending
Curves
Ti-6A1-4V
Section February Page
Graph
to be
furnished
when
avialable
137
B4.5 15,
1976
Section February Page
B4.5.6.4
Titanlum-Minimum
138
Proportioo
280 _=2.0
Z40 k=l.7
k=l.5 200
k= 160
k=l.0
120
8O
4O
Fty
= 130, 15.5 000 x106psipsi
0 O. Ol
O. 02
O. 03
O. 04
I (inches/inch)
Fig.
B4.5.6.4-6
Minimum Titanium
Plastic Alloy
Bending
Curves
for Ti-4MnI_4AI
1.25
B4.5 15,
1976
Section February Page 139
Graph
to
be
furnished
when
available
B4.5 15,
1976
Section B4.5 February 15, 1976 Page 140 _4.5.5.5
Alumlnum-Minlmum
Propertle
•
120
II0
150
90.
(kst) 80
70
60
50. 1.0
1.5
2.0
k = __2Qc I Fig.
B4.5.5.5-2
Minimum Symmetrical Forgings,
Bending Modulus of Rupture Curves for Sections 2014-T6 Aluminum Alloy (Transverse) Thickness <4 In.
Sect ion B4.5 February Page 141
B4.5,
5.5
Ahlmintlm-Minimum
Elongation
: Iggo
•
:
1976
Propertiill
I tID_ttNttt!tttt
15,
_1{
_
i
.....
,
,........ :......... ......,..._....,,,_...,.,....:,.. .... .
Fb
(kst)
i i
/,
I
80 ......... I ..... l i ............ _.'"'IT._ ........,.,.;. •,,,..i ...... . i ffflTfttttltfftlttt,t,l,_ ttttt+t h lf-llfhlTitpltttittfliTi_IflIti!+71ti_ ir rt +t_
_tt
ftIHHIitt_t titlt:1i tltItlittll!iltltltttltt!llf_411}i I i!" + i_tttlT: Ii-"i'i'_:"i_'+'+'"tt+ti'_i_t+_iiti<,
!i 7t
i_tltii!
6ol+i+l!lll,,+ll+ll,ll ++_ l+,,Isl. tlilttllt+t_ll+ttti+t+ lftlll:++tll+!li_tll:rlill tll+tllt+_+++tll +_ + .l- ' I+I +iI_.¥._, llil_+: <, _!l_iil.i + ! I+' :' _ i , _ _++i,-+ I+I+H++I+II++ll,++II+ +l++i_+_ +I-i++ +++++_+++ +,.
40
_+i
I:
:,ii+
+ ++_++iH+++ ++,++++i++++l++++i+ +!i +!+ +!++i+ ittlE_i
H t[t'HriltlltH_+l t! t+i ttl+l+tif_f+tf
1.0
_llli_llt+!tl-+ittI_ !t/ftltt..fii-I +Hl+f
I+ it ++f-i+Til[f: Htlt-ir
1.5
2.0
ZQc I
Fig.
B4.5.5.5-3
Minimum
Bending
Modulus
of Rupture
Curves'for
Symmetrical Sections Z0Z4-T3 Alloy Sheet Heat Treated. Thickness _ 0.250 In.
& Plate-
Section B4.5 February 15, 1976 Page 142
B4.5.5.5
Aluminum-lvtlnimu_n
Properties
140
IZ0
100
Fb (ksi) 8O
6O
40, 1.0
1.5 km'-'-
Fig.
B4.5.5.5-4
2.0
2Go I
Minimum Bending Modulus 0f Rupture Curves Symmetrical Sections 2024-T3 _ T4 Aluminum Alloy Sheet & Plate - Heat Treated. Thickness 0.50 In.
for
Section February Page 143 B4.5.5.5
Aluminum-Minimum
Properttes
110
I00
9O Fb
(kit)
8O
70
6O
5O
40 1.0 k=_ Fig.
B4.5.5.5-5
Minimum
Bending
1.5 2Qc
2.0
I Modulus
of
Rupture
Curves
• Symmetrical Sections ZOZ4-T3 Aluminum Alloy Clad Sheet & Plate - 1teat Treated. Thickness 0. 010 to 0.06Z In.
for
B4.5 15,
1976
Section B4.5 February 15, Page 144 t
B4.5.5.5
Aluminum-Minimum
Properties
120
1o0
8O
"!
[
|
.
[
.
: :
. i
:
:
.
•
. . •
i
:
: ....
|..-
60" ,
. .
[ •..1... :...1..
:1
i; :.: _.: : I:_: ; :__:___ : Ii...... ............i i::::i !
4_
1.,.5
k = ZQ....._c I Fig.
B4.5.5,
5-6
Minimum
Bending
Symmetrical C_ad Sheet 0.25
to
0.50
Sections & Plate In.
Modulus
of
Rupture
Curves
Z0E4-T4 Aluminum Alloy - Heat Treated. Thickness
for
1976
Section February Page 145 B4.5.5.5
Aluminum-Minlmum
Prope
rtle s
II0
I00
9O Fb
(ksl)
8O
70
6O
5O
1.0
1.5
2.0
ZQc
k =T Fig.
B4.5.5.5-7
Minimum
Bending
Modulus
of Rupture
Curves
Symmetrical Sections ZOZ4-T6 Aluminum Alloy Clad Sheet - Heat Treated & Aged. Thickness < 0. 064 In.
for
B4.5 15,
1976
Sect ion B4.5 February 15, 1976 Page ]46 Alumlnum-Minlmum
Prol_rtle
m
IZO
110
100
9O
80.
7O
80
50 1.0
k=-Fig.
B4.5,
5, 5-8
2.0
1.5
Minimum Symmetrical Clad Sheet Thickness
Bending
ZOc l-
Modulus
of Rupture
Curves
Sections 2DZ4-T81 A1uminim - Heat Treated, Cold Worked < 0. 064 In.
for
Alloy & Aged
Sect ion February Page 147
B4.5.5.5
Aluminum-
Minimum
Prope
rtie
s
90
80
70
60 Fb (ksi)
5O
4O
30 1.0
1.5
k
Fig.
B4.
5.5.5-9
Minimum
Bending
Symmetrical Sheet - Heat
Sections Treated
=
2.0
2Qc I
Modulus 6061-T6 & Aged.
of
Rupture Aluminum Thickness
Curves
for
Alloy >_0.020
In.
B4.5 15,
1976
Sect ion B4.5 February Page
B4. 5.5.5
Aluminum-Minimum
148
Properties
150
140
130
IZO
110
i!-_ Room
............ Tem, perature-4
.....
.......
°
4
' : i I: l i °.....t
9O •!........
:""
8O,
.....
i
7o
Fig.
B4.
5. 5. 5-10
Minimum Bending Modulus of Rupture Curves for Symmetrical Sections 7075-T6 Aluminum Alloy Bare Sheet 8_ Plate. Thickness <. 039 In.
:'"]
15,
1976
Section B4.5 February 15, 1976 Page 149 B4.5.5.
S
Aluminum-Mtnimu_n
Propertie=
130
illIl!!II
!!!!!!i!! t,ttff,tt
,°,_,*°,
ttlttttlt
t_IHHII t"t_it'
!IN! N!I}II !!!!!!!!_ !!!!!!t!_
!!!!!!!!! !!!!!!!!i Fb
tttlrHlt
(kat)
Room :]iiii_ii
_!!!!!!!! Ill!!!!! ;ii_iiiii
:_!!!!!!!
[![!![!!
1,0
Z.O
1,.5
k
=
2Qc
1" Fig. B4.5.5.5-t1
Minimum
Bending
Symmetrical Clad
Sheet
Sections &
Plate.
Modulus
of
Rupture
7075-T6
Aluminum
Thickness
_< .039
Curves Alloy In.
for
Section February Page 150
B4.5.
5.5
Aluminum-Minimum
Properties
140
120
I00
Fb (ksi) 80
6O 1.0
1.5
k=--
Fig.
B4.5.5.5-12
Minimnrn Symmetrical Extrusions.
Bending
2.0
2Qc ! Modulus
of Rupture
Sections 7{)75-T6 Thickness < 0.25
Aluminum in.
Curves Alloy
for
B4.5 15,
1976
Section B4.5 February 15, 1976 Page 151
B4.5.5.5
Aluminum-Minilnum
Properties
;Y t_
140 i:::
i_ll
_:It i;
, ii
_F, ',,_._ Ultimate
_
I ':j,,_r'': _'.,
if::
120 ....
Fb (ksi)
',
i00
:,, ,It,
i
_
_:'tit'.
t::t
._ t_t;
I::I
_;t:I:_iI_
i! :,i ii }iil: l :i!
:::
_
:;HII:
lll_
80
:i;!
t1:itt_r;'ltt_'ltt I I i; ......
i]i: i!t{I',It ;r_
6O
:i][
k
B4.5.5.5-13
: :!1 _ ':1,
It:{
f!ilt]/i!ti_Jt
ltt_
Temperature " ; ii _ ;!i
t : I
'{
ttlt
:_ t:l
2.0
1.5
1.0
Fig.
Room
!: J_tl'.!fli_t'_
Minimum
Bending
for Symmetrical Alloy
Die
ZQc =-I
Modulus Sections
Forgings.
of Rupture 7075-T6
Thickness
Curves
Aluminum < 3 in.
Section B4.5 February 15, 1976 Page 152
]_4.
5.5.5
Aluminum-Minimum
Properties I
i
i
Fb (ksi)
100
8O
6O '1° 0
Fig.
B4.5.5.5-14
1.5
Minimum
Bending
Symmetrical Hand Forgings
Sections Area
2.0
Modulus _
7075-T6 |6 In.
of
Rupture Aluminum
Curves Alloy
for
Sect ion February Page 153 B4.5.5.5
Aluminum-Minimum
Prope
rtie s
140
120
I00
8O
Fb (ksi)
6O
4O
2O
0 1.0
1.5
k
Fig.
B4.5.5.5-15
=--
2.0 2Oc I
Minimum Bending Modulus of Rupture Curves for Symmetrical Sections 7079-T6 Aluminum Alloy Die
Forgings
(Transverse).
Thickness
<6.0
In.
B4.5 15,
1976
Section B4°5 February 15, 1976 Page
B4.5.5.5
Aluminum-Minimum
PrOperties
160
140
120
(ksi)
I00
8O
60 1.0
1.5 k---
Fig.
B4.5.5.5=16
Minimum
Z. 0
ZQc I
Bending
Modulus
Symmetrical
Sections
Die
(Longitudinal)
Forgings
of Rupture
7079-T6
Aluminum Thickness
Curves
for
Alloy < 6.0
in.
154
Section B4.5 February 15, Page ] 55
B4.5.5.
5
Aluminum-Minimum
Properties
1.20
110
100
F b
(ksl) 90
8O
7O
6O
Z_c I
Fig.
B4.5.5.5-17
Minimum
Bending
Symmetrical Hand <6.0
Forgings In.
Modulus
Sections (Short
bf Rupture
7079-T6 Transverse)
Curves
Aluminum Thickness
Alloy
for
i 976
Section B4.5 February 15, Page 1 56
B4.5.5.5
Aluminum-Minimum
Properties
tu 130
ty = 58, psi psi 10.3000 x106
II0
m
(ks_) 9O
7O
)erature!
5O 1.0
1.5
k=--
Fig.
B4.5.5.5-18
Minimum Symmetrical Hand
Z. 0
ZQc I
Bending Modulus o£ Rupture Curves for Sections 7079-T6 Aluminum Alloy
Forgings-(Long
Transverse)
Thickness
<_ 6 in.
1976
Section B4.5 February 15, 1976 Page 157 B4.5.5.5
Aluminum
- Minimum
Properties
140
120
100
8O F b (ksi)
6O
4O
2O
0 1.0
1.5
k--_
Fig.
B4.5.5.5-19
Minimum
Bending
2.0
2Oc I
Modulus
of Rupture
Curves
for
Symmetrical Sections 7079-T6 Aluminum Alloy Hand Forgings - (Longitudinal}. Thickness < 6 In.
Section February Page
B4.5.6.5
Aluminum-Minimum
B4.5 15,
158
Properties
100
k=2.0
8O
k=l.7 k=l.5 k=
1.25
60 k=l.0
4O
2O
fi , ifllHi _" I I IilU WIHHHII _ | 0
O. OO_
O. 004
O. 006
O. 008
Oo 010
(inches/inch)
Fig.
B4.5.6.5-I
Minimum Aluminum
Plastic Bending Curves 2014-T6 Alloy Extrusions. Thickness _< . 499 in.
1976
Sect ion B4.5 February 15, 1976 Page 159
Graph te be furni,'_hed _11_en available
Section B4.5 February Page 160
B4.5.6.5
Aluminum-Minimum
Properties
100
8O
6O
ty c
= 52, 000 psi 10.5 x 106 psi
4O
_ ;!.hhi,WIHl lltlgmlglll n n nlq"
2O
Fig.
B4.5.6.5-3
Minimum Aluminum
Plastic Alloy
Bending Die
Forgings.
Curves
2014-T6 Thickness
< 4 in.
15,
1976
Section February Page 161
B4.5.6.5
•
120
Aluminum-Minimum
Properties
: ...:l:i.:J::::::'.i:::ii.i:: .::I.: .: .
.:
:
i!i_], Room
:
" I .!!:.I :!..,
.
"
-,
: ..T.: :. :: • r-_-_Tr-[--..--
:
.......
...::':i":l::!:i:i_l::::;i_il:::i!i_:_l:::.: ....... .,..... :.i.i ::::!:i::ii_! :;i!li:ii• '_ .....: :::::. 1,......
Temperature,
,..::.:...... ]:::,.::.:
.,
.,: .... ::.. ..... ... : -.: :.....
k=
Z.O
-.-__i-:_,:___: :._i.!_ :_-:::.:I:::_': .-, ..,_::.:_,_,-_,_:-_,_'_:._ :: ::_ ii_:-i ii _..:,...::,.. ._ .,::., .... _............. .i_.: ...._.: 100
.i.I :_:,:_.l:ii;i:: .::_:ii_:::iiii!i:::_-::_i:.i_i ii!i!!_!li::::!ili_.i _ l i:i:::_r:ii:! : i • :-_ k :_:: _ ]-:iil:.!!.,,'lllfllllllilfllllflllllllllilliimw',',,.".',"--"-t_!:_:l_i_ :_i:: __!::_:'_]
_.
k=l.5
8O
-/_,: ::, :::::t:i:: i:_-_l:_ ::___---
..
".;
e
--
] : :'_
_ _
'_
'"
!"l]:
""
"
--'.I .....
_....
'
.'.
.
- '.
'
.'.
.
.
k=
I.Z5
Fb
tt:-__iiii!
(ksl)
•
.
[:
i!..i_7:i_:$;:_!_;ii:_i!St_e_s-_':ra_n Cu_i
:..;
....
I .....
_,__.i.___
_: ....
6O
4O
ZO
:I ::!:: _ _: ! j]'..i !i :_i
-=10.5X 106 [ong&t[on = 10%
!ii. i!:,i: P si ;;i!_ ::!!i:::ill
r!!_::i i:!:[:
'::i:i":lill
•
0. 01
0.02
Ec
_:_:_: ::1 !.
0. 03
(tnche
Fig.
B4.5.6.
5-4
;;: ::::::1::::!:: i!': i: o!i --_ _i-i-!i-ii:r-.li.:,:::i:_ !li--::_i: ilii: :-I:-ii-I :i_!-: :'t __.. :_:.t":: ' I, .it.i: Ii::.:: I : _:1.: , _:1 :i I.:[.! : ".."Ti': ;: _':: ;i;: i: I [ .i t 'i! !:
Minimum
Plastic
Aluminum
Alloy
0. 04
0. 06
s linch)
Bending Die
0. 05
Curves
Forgings.
0. 07
e
2014-T6 Thickness
_< 4 in.
k=l.0
B4.5 15,
1976
Sect ion B14.5 February Page 162
B4.5.6.5
Alumirlum-
Minimum
15,
Properties
8O
k=2.
k=l.7 7O
k=l.5
6O k=1.25
5O k=l.O
4O
3O
2O
10
0. 002
0, 004
O. 006
O. 008
(inchesinch) Fig.
B4.5.6.5-5
Minimum Aluminum Thickness
Plastic Bending Curves 2024-T3 Alloy Sheet & Plate - Heat Treated. /_ 0. 250 Inches
O. 010
O
1976
Section February Page
B4.5.6.5
Aluminum-Minimum
B4.5 15,
163
Properties
un o
t,-
II
II
u'_
II
N
O
II
II
I ¢,4
o_ ¢fl
4)
I
N o
uu_m _
.!
M
4
0
A
v
_
1976
Section B4.5 February 15, Page 164
Graph
to be
furnished
when
available
1976
Section B4.5 February 15, Page 165
B4.5.6.5
Aluminum-Minimum
Properties
120
:
:
:
I
i
I
'i'" i
"1 "'""
:
-:.: -i...:...: ...... ..... ' •..... : i :
[
:
•
]
,]
I
.]
io0 : .
,
....._i,,;Ifilllilll!l!llllllniUn"_"':I
I
t
• ,,:
:
8O
'
:
60
','
'
n
,m
k=l.5
e ........
J
i
I!
]
........ I.... i..... _......
i
•
,
i •
: ......
:
: •
:
": ,
I
k=
m
i. i
"
I ,,
I 1 : .... • .... "............... -" ;
i :
:
I
: :.
I k=l.0
I
:
.... i..... t"
:
:
k=l.7
i
"lllll_--"
:
I
• :,
:
I :
_
,
:
,
:
4O
f .... ....
i
:
"_
• --
• ,.......I..... ii :
:
I
, Fb (ksl)
k=2.0
i
,,:!:i,-.....i........!
f!:
..... i .... i l
;
I I ....
:
• [ .......
i
L..........
i .............
:
i "
"
,[
.
;
>
(',, :I'',:'
'':
I . . .; l
.....
:
'' i
,-
'
"'i"
:
I
" i .......
J
]'t', '
_"','"'";
l.'t..
;'_.
C(;':
!:"_:
:
:,',_
:
Z0
.................
,f .
.4.. .......
:
."
in
."
t ..................
I
i.... • 0. 02
•
: .......
•
n
•
B4.5.6.5-8
"
i .......
I
:"
I]
.. ......
t ......
:
:
I
:
!
::
ill"
t ........
} ...................
i
.
I
.".....
.||
'
,....... I.....i........ :.... I ....l......i........ :......... 0. 04
0. 06 E
Fig.
]"
Minimum
0. 08
0. i0
0. 12
(inches/inch)
Plastic
Aluminum
Alloy-Heat
Thickness
<
0.50
Bending
Eu
Curves
Treated-Sheet Inches
for
2024-T3 _
Plate.
&
T4
1.Z5
1976
Section B4.5 February 15, Page 166
]B4. 5.6. 5
Aluminum-Minimum
Properties
7O k=Z.O d_h
=1.7
6o {ii_i_H _ H_
IHil
_:': k=l.5
_0 _
40
k=1.25
k=l.O
!iI_
!Hi
ii!i _o i!ii _!ii"_i_!_ '_ '_'_ zo if!!: ,,!!ii : [!
4 Ir
!i! _ ir_i: _
!
!t:
ii{!i _4_;',
I,_.i!
o
:_i!ii_ __!i_ O. 002
0.004
O. 006
0.008
0.010
{inches/inch)
Fig.
B4.5.6.5-9
Minimum Aluminum Thickness
Plastic Bending Curves 2024-T3 Alloy Clad Sheet g_ Plate - Heat 0. 010 to 0.06Z in.
Treated.
1976
Section B4.5 February 15, Page 167
B4.
5.6.
5
Aluminum-Minimum
0
Properties
0
I|
II
o,1 0
I_ _ ,..-t
L_
*._
.
U
•_ •
d
4
0
.Q.,_
. _
_
1976
Section
B4.5
February Page 168
B4.
7O
5. 6. 5
Ahminum-Minirnurn
15,
Properties
k=2.0
k=l.7 60 k=l.5
5O
k=
Fb
(ksi) k=l.O 4O
30
2O
10
O. 010
Fig.
1.25
1976
__=
Sect
ion
February Page
B4.5.6.
5
Aluminum-Minimum
Pr6perties
120
k=2.0
100
k=l.7
k=l.5
8O k=
1.25
=i.0
6O
4O
2O
:
O. OZ
O. 04
•
O. 06
.
,"
:..
O. 08
O. I0
E (Inches/inch)
Fig.
B4. 5.6. 5-1Z
Minimum
Plastic
Aluminum
Alloy
Treated
Thickness
Bending Clad
Curves
Sheet
0.25
and
2024-T4 Plate
to 0. 50 in.
- Heat
169
B4.5 15,
1976
Section
B4,5
February Page
B4.5.6.5
Aluminum-Minimum
170
Properties
k-2.0
80 • "i :::'": !
:
:
I
"-!:'"
_
.....
|
• " ; " " .,l'tY.
70
=I.7
I':::i
"
k=l.5 60
50
k=l.O
% 4O
!._::]:._::i: ..... ii;/; ._ .... ""
"
i'i. ''':
30
...... i
,
;
I ...... '
.:..
•
"
i"" .....
J
, '
i/I
" ". ......
........: '.
::.......""
!
• ......
•
/
,
; ..... ' _:
"_
"'
........
:
::"
.i
• •
"|!'"!.i.":':':'_
i :...:.:.. "
i
:"
.
•
• ..i
:.":i: _,, i [/[[i ,/' / :,, i,-_._', i,-:-_,_ . : ...i/... • ':' i ' • /___-'/i::!_::!::2]] _-0 !:................. /p.......... ;, -....... , ........... .----.----; /
:
:
r
i
/
I_'
_
i:: :/_ ,: ,:/ ,of..... .....,/i: ....,,: i" =,_; ': ........
:
l
........
:i/-_ i I: :,l :'!
]!/"
0
___
!:
; "
••
". , . / *
.
:; l/...
: .......
;I
........
O. 002
.
i ::
. _i--__
'
.
/",7,::.'.,'.--
'!..... i'-i........... r:-_l :i:::_:i_i_::i_i_' .... ........ ':_ ...... !'
'" : .....
'
_ .:
I':'"..
..........
"":"
L- :....L
:_"-T!
?.......
/__]'
O. 004
,'
;
O. 006
: :"
"'. ....
;
"'_': .....
' "::
I.:
."
.:.:
:
I':':'"",':-:::.-:-:
O. 008
O. 010
• (inches/inch)
Fig.
B4.5.6.5-13
Minimum
Plastic
Alloy Clad Sheet < 0. 054 Inches
Bending - Heat
Curves Treated
2024-T6 & Aged.
Aluminum Thickness
15,
1976
Section February Page
B4. 5.6. 5
Aluminum-Minimum
Properties
120 V*+++4+
iRoom
Temperature
k=Z.O
ii0
i00
"U!!_ k=l.7
9O
_titt
k=l.5 8O
k=
1.25
7O F b
(ksi)
k=l.0
6O
50
40
30
20
I0 0
(tnches/_nch)
Fig.
B4. 5.6.5-14
Minimum Aluminum Aged
Plastic Bending Curves Alloy Clad Sheet-Heat
Thickness
< 0. 064 in.
'U
Z024-T6 Treated and
171
B4.5 15,
1976
Section February Page
Graph
to be
furnished
when
available
172
B4.5 15,
1976
Section B4.5 February 15, Page 173
B4.5.6.5
Aluminum-Minimum
Properties
120 k=2.0
k=l.7
I00
k=l.5
80 k= Fb
(kst) k=l.0 60
40
Ftu _ty
= 62, 000 psi = 54, 000 psi 9. 5 x 106 psi
Elongation
ZO
= 5%
e (inches/inch)
Fig.
B4.
5.6.5-16
Minimum Aluminum Worked
Plastic Alloy and
Aged
eu
Bending Curves Clad Sheet-Heat Thickness
2024-T81 Treat, Cold
< 0. 064
in.
1.28
1976
Sect ion
B4.5
February 15, Page 17.4
B4.5.6.5
Alurninum-Minimum
Properties
k=2.0
60 k=l. 7
k= 1.5
50
k= 1.25 40
N Stress-Strain
k=l.O
Curve
30
fo Curve
10
0
Room Temperature
0.002
0.004
0.006
0.008
0.010
a (inches/inch)
Fig.
B4.5.6.5-17
Minimum Plastic Alloy Sheet Heat
Bending Treated
Curves & Aged.
6061-T6 Aluminum Thickness >_ 0.0Z0
in.
1976
Section
B4.5
February Page
B4.5.6.
/'.,'
i
5
;
Aluminum-Minimum
i
•
•
.;
i:.':, i....L.i..:...i, :
,
.
•
I '
......
I
i...! .......i...
..... "......... [ .............. ....... i.. :...I ....
'... i .J.... :
.
I • ..;...
T "
t'
I......;
| ....
:
I .
.
:
i
:
I
....
i I I
.
i
, :;,
k=
r"
•
:
1.7
I {
.....
......... .i ....... !.......
"--I- .... r ...... I
-.
:
!
'| ............. ....
i
!
.! i
! •
;''" k=2.0
I
]. :
i
i
i......
.,
:k2. i l...
.... i ........ !.......
!
....
[.-.-...i...:: .......... :...',
L-If ::!;::
175
Properties
i......... ,.:..L._ .......i....... -_i--i--.-l: ......... 8o
15,
!
I
k=
1.5
k=
1.25
k=
1.0
60 •.! ......
I.........
l
i t
i ....
.....ii_ i
5O
: i 1....... -_!-_"!
'
.
Fb (ksi)
!.i ....
il
../i'i_, i: St res s-Strain
i ......... t
,
Cu¥_'_----_*......'
! ""i"
I
40 .....
"-30] ....
,
i.i
i.
i
_!i_;
:
" •
-'
'''
_'
: :, :
'
: |:
f
!
•
"I , ...L ' ....
I
';............. ! :
!
I
;' .....
:.
Curve
:
:
:
:.......... ;
l .............. , I
: " t-_............. i......i-..-i..._
: ............ !
i.-.q .... I ' I
,
": ............. t
i!!'_l.!i i!!i
i'" ":"
. " ........
.! .i.........1..' : t......... • IIt_ ....
•i :: L_ :. , I_-F-
"!1......
i lfo
.
_, ........ .' , ....... ., ' J • ....... t,....... .......... ...... ................. .......... 1...i......... 1 i
.... l i',..1..,,, /i
|.
i
..........! ......
_::
'! i! E
=
9
•
9 xl0 6
E:],on.gation
P
'
/., !I ;:iii'
•
I
,t
:] .. I : i _:_ :ii
:i
,
.i. :i:l : .
!: _i! i!i
si l'::;;:i _! ::!i!::i::,:il :!::ii ! i:ilii ]!'. I [!i 177|ii i!ii _: !I
= [40/0
"'t' • "i ...... I ' 't ......1'"I J...
!, ;ii :
;
,,
.' ii! i::
:i i:i!i:! i ]
i
I
i ..I.......
!
lo I..-.t!--:---t.-_-!...!..+u-_--.:-..-+....l...+ ......... +-,-.!-:-!....,: .....:.1-:...... !----:-.-.1--.-I.-!-+ ........ l.--._-i........ 1
.tl.-.i
.. _.._..,.... _............ I.. .... , ....,..., ....' _.i...'._.'
0. 01
0. 0Z
0.03
0. 04
0. 05
0. 06
. (Inches/Inch) Fig.
B4. 5.6. 5-18
Minimum Aluminum Thickness
Plastic
Bending
Alloy Sheet > 0. 020 in.
0. 07
0. 08 ' u
Curves
- Heat
6061-T6
Treated
_ Aged
1976
Sect ion B4.5 February 15, Page ! 76
B4.5.6.5
Aluminum-Minimum
Properties
100
k=2.0 k=l.7 k=l.5
8O k=
l. Z5
k=l.0 6O
Fb. (kst) 4O
2O
0 0
0.002
0. 004
0.006
O. 008
O. 010
(inches/inch) Fig. B4.5.6.5-19
Minimum Plastic Aluminum Alloy <_. 039 in.
Bending Curves 7075-T6 Bare Sheet and Plate. Thickness
1976
Section February Page
B4. 5. 6. 5
Aluminum-Minimum
B4.5 15,
177
Properties
!i,t;
F-UT-7 ....
k=2.0
_,.
140
I
........... ,
120
71
i'ii'i;
i
'
?i
,I -i.....
±_. ,
.......
I111
k=l.7
i;
.,..,
k=l,5
Ii,;;
100
• •
7
:t!
Fb (ksi)
_:.
ii_ii ri.t "
.....
'.i!.!2
1.25
k=
1.0
Ii:
till!!il_i_i! _ii_Curve _iil_ii_ 'stress-Strain
8O
I ii ii!ii !
lil
_
_-:' .2. i ...........
._t_
;i:illlI I [.2-
! i!:i
"'71:7::1:::rf o Curve
.l,,,t '11
6O
!:?:!
' !i1 I till
:..ill t
4F+
Tr"
pr.
......
::2' 2,ii!
:::
.....
;i
ii__i_ :ill ii! iii':iiili:: _tu = 7_, 000 psi +i_iiii2i..i!2i _tr = 65,000 psi siii!iiiiiiitii_L.
4O
Elongation
= 7%
li!ii/!
*:!li]i / ;;,
2O
_r
I i1!I1! Itt_lil,i
_ l!f Ill
i
i!,ii!1, ,t,,ti!,,
ill i!lttil_i
llt,ll=lt 'i_:!llll
0. 03 (inche
0. 04
0. 05
s/inch)
If U
Fig.
k=
B4. 5.6.5-20
Minimum Aluminum < . 039 in.
Plastic Alloy
Bending Bare
Sheet
Curves & Plate
7075-T6 Thickness
1976
Section B4.5 February 15, 1976 Page 178
B4.5.6.5
Aluminum-Minimum
Properties
I00
k=2.0
k=l.7
8O
k=l.5 k=I.25 k--l.0
6O Fb
(kst) 4O
2O
0
0.002
0. 004
0. 006
Oo 008
O. 010
, (inches/inch)
Fig.
B4.
5. 6. 5-21
Minimum Aluminum 0. 039
Plastic Alloy in.
Bending Curves 7075-T6 Clad Sheet & Plate. Thickness
Sect ion B4.5 February Page 179
B4.5.6.5
Aluminum-Minimum
15,
Properties
140 k=2.0
120
....
l! i ::1!
÷t+÷
L2:i
L_
.H
k=l.
7
k=l.
5
!TF ,,; iti: :2"' 1 !U, ,_ :1[? i00 :t"
i
[:
7i_i f¢
80 _L_
k.J
k=
TY/:, .... _ttt
t_
::; :I[2:t H÷t
Fb
(ksi)
!_
H !rT!! t_ L tt*f I 1LLL L;
k=l.
HH
E;Xl 'r
_f
:i ....
r2
?tltl
:fi:!l_:LLiL
20: _}I +4 _4
;rn
_
_+_
1!!! 0
_?t
44_"tt'}-
0.01 E_
(inches/inch) Fig.
1.25
L_
B4.5.6.5-ZZ
Minimum Ailoy
Plastic Clad
Sheet
Bending & Plate
Curves Thickness
7075-T6 < 0.39
Aluminum in.
0
1976
Sect ion B4,5 February 15, Page 180
B4.5.6.5
Aluminum-Minimum
Properties
k=2.0 I00
k=l.
7
k-l.
5
k-l.
25
k=l.
0
8O
60 Fb
(kst) 4O
2O fo Curve
.illlllllll O. 002
0. 004 ,
Fig.
B4. 5. 6. 5-23
0.006
O. 008
(inches/inch)
Minimum Plastic Bending Curves 7075-T6 Aluminum Alloy Extrusions. Thickness <0.25 in.
0.010
1976
Section
B4.5
February Page B4.5.6.5
Aluminum-Minimum
Properties
Fb (ksi)
0.05 (
(inches/inch) Fig.
B4.5.6.5-Z4
Minimum Plastic Aluminum Alloy < 0. Z5 in.
Bending Extrusions.
U
Curves
7075-T6 Thickness
181
15,
1976
Section B4.5 February 15, Page 182
Graph
to be
furnished
when
available
1976 _J
Section B4.5 February 15, Page 183
B4.5.6.5
Aluminum-Minimum
Properties
k=2.0
k:l.7
k=1.5
I00 k=
k=l.O
Fb (ksi)
!
Fig.
B4. 5. 6. 5-26
Minimum Aluminum
(inches/inch)
Plastic Alloy
eu
Bending Die
Curves
Forgings.
7075-T6 Thickness
I.Z5
1976
Sect ion B4.5 February 15, 1976 Page 184
Graph to be furnished
T_hen available
Sect ion B4.5 February Page 185
B4.5.6.5
O
Aluminum-Minimum
I_"
II
II
_
1976
Properties
N
II
15,
O
II
II
N
I
o,-i
i
I
_
vI
U m
(M I
,d ,4 4
O
0
0
0
0
0
0
0
Section B4.5 Februrary |5, Page
B4.5.6.5
1976
186
Properties
Aluminum-Minimum
tO0 k=2.0
k=l.7 80
k=l.5
k= k=l.O 6O
Fb
;tre
(ksl) 40
2o
ti J,.t IIII .. ,,.I !!
I.I ....I..R..,lll..dl .... il! , ; .M .I I, m, .... ,....m, NUlil "II
-" I |III
"'"
II" 'I
|l"il'"
O. 002
O. 004
O. 006
O. 008
. {inchos/inch}
Fig.
B4.
5. 6. 5-29
Minimum Aluminum Thickness
Plastic Alloy <__6.0
Bending Die in.
Curves
Forgings.
7079=T6 {Transverse)
O. 010
1.25
Section February Page
Graph
to be
furnished
_en
available
187
B4.5 15,
1976
Section February Page 188
B4.5.6.5
Aluminum-Minimum
B4.5 15,
1976
Properties
W Room
Temperature k= 2.0
100
k=
1.7
k= 1.5 8O k= I. 25
k= 6O
Stre
s s- Strain
4O
!if!f! 2O
iiuqi. !!qqqlJ,::i. :i immnlUU,Hmnul .,||I,,IIU,I.I. ,lU .11.|11111 |111.11111 |11111111111111 O. 002
O. 004
O. 006
, (inches/inch)
Fig.
B4.
5. 6. 5-31
Minimum Aluminum Thickness
Plastic Bending Curves 7079-T6 Alloy Die Forgings (Longitudinal) _< 6.0 in.
1.0
Sect ion B4.5 February 15, Page
B4.5.6.5
Aluminum-Minimum
;,-
,
'_.
li]" _......
;:
tii;t
;;::tltl;|::/l
;z};
.it
140 •
,1
....... ;2
t ' ....ttt. Ill:
:ii ,1....
_ ,._.
::;it:ill
;_i
_
_
t .....
;i;
."
.;
'J
_r_r
]
,.
;1'
+_.
i
;.
tJ
;
:_.I
,+.,*e',
_w_.k = 2. 0 t:l; t,t, *,¢t'
I : ,! 1
...... ;:i!
!ill
t............. :
i
....
]ii
I
[i;
i
_'t
_ ............
;
-!
:i
,1I, .: _.t I,; t i.,.' i ,!+
-_..... t
Properties
4
if
_i_
4
I
,
'11
.:
;J
;
ii: iii.
i ......
:!i: .i? k = I. 7
120 ,
i_
J .........
t_.,t]ii_f
:':i
t
....
i!tlt,t'.)._fl
t_!t_i_?tl;;llll;;
i
'Ll,_ff'_. _._l_il
.... :.... i:.lii...:..i.:,,,_-,..
.i"_'"
,_"
i
.....
lti: Itt;
i!tii! ! _ $t ! ':i!1t},._]1,;!; ,t_t1;_i I,:, _,!i
.!:
.... ![
.......I!jiL
_1
'_"
........ .
,
_ ....
'.
':It
:?i; ii;:
k = 1. 5
::
._1,_ .....
_
i
I00
!'1[
;i; ;1 :.<:.,
I'_ !,,,::.; '''II i_i
I
,._....
, _ ,:_11! _. ,: i, _: .:!_![
I ....
i,
_
+_
2z_ Lal
. _
! y',:!il. _ ,,l_j ,:i!l,,.,., iiil
t
,, i:11
'_i
..........
k =I. 25
',;It
_
1t; :[i;;
8O
l;'_-
ii_;_[
i
;
]l
,i
_
i
_
_
l}Jl;;!ili![:t
_j_
:i
i
_,
_$;:
[;lIl/_llllill_[il[;:
I_Stress-strain
_l'i
"
li;]
Curve
:t
[
I_
.......
I;i:
!lli
Fb :;'
(ksi)
,l_i !_; r..............
fJ:'lt!_:lt!ti/t1!!/ i1;, , I[
60 !
ii
'l
;
;;
:
i
;
[ _,/,
:flt,!_!l ;;j I:
i
[
:, : [ 'ill
i
J
#'1
,_i;
t
,.
!i,
....;_[
t
J]
':'1'_ ; ]ii
;;]|
;:].._,_,._-:d___:_:.,!_!!!l_lt;t
: ': ;::II:" J
I
[I;
_ ;;I[ f.....
:I ;i:
];:
:
T
:t :
[
]
!
i
I
r:
]
_ 't
::1 l
[
t
t
,l ,,1+
il_:
_N
,
I; 1,,
_urve -
O
It!i]44'l_'_l
i
'
,4,,
+_k=
tF,: i
!:::t
::
_ S
::i
:
rr :
:
;
:Ii! i,
':! t':
4O ;
J
.....
]
;:::iil£4tu =
74,000
.....
,,
Ill !t ,
!|!1!_1 ,
_
....
2O
J]
psi
::!I!
Elongat,on _ "too
i]!l,_iil:::T_._i iil_ t!ttt!:_l_!!t'!r!!
t
,tl
_
,
,,t
:l!tl
!,d,,
Itr
ii:
i
Ii,
,,,, f .... :1,,I,_,,,_1,I .112i::i I
!t .... t.........
I.... t
I _
I ....... ;_1!!
_[l: ;],]]I,H':[],I
0 0.01
],', Ill! lli',l !l:ff!t!t]i!
0.02
lJJJll]f':Ifi:i 0.04
0.03 (inches/inch)
Fig.
189
B4.5.6.5-3Z
Minimum Aluminum Thickness
Plastic Alloy < 6.0
Bending Die in.
Forgings
,]_,t [ii!
ll!;1
0. 05
(
Curves
7079-T6
(Longitudinal)
U
1.0
1976
Sect
ion
February Page 190
Graph
to be
furnished
when
available
B4.5 15,
1976
Sect ion B4.5 February 15, 1976 Page 191
B4.5.6.5
Aluminum-Minimum
Properties
: ;
......
i I
i
,.
) I
"
I .... i n
0 _0
0 rJ) v
_I_ "_ •_
o
ovm
.....
!
!
""
I
II
•
I
l
:
,.
•
:
:
i | :
-,-
:
:
I
:
1...:., I
•
) : 1 •
:. i •
•
I
: •
: ! U_
......... ___. _!.... _ ..... I
I
:
4
i:.......
_.-" _- ...... i ..... :.... i,.- -_ .... -.... '. n
_.
i
__.._........ ........ i.......L
!......L........ i ...... _ : L ...... ,_'g
Sect ion B4.5 February 15, Page
B4.5.6.5
Aluminum-Minimum
1976
192
Properties
100 kin2.0
k=l.7 8O k=l.5
k= k=l.O F b
(kei) 40
20 fo
Curve
0 0. 002
0. 004
0. 006
0. 008
0. 010
(inches/inch)
Fi s.
B4. 5. 6. 5-35
Minimum Aluminum Thickness
Plastic
Bending
Alloy Hand < 6 in.
Curves
Forgings
7079-T6 (Long
Transverse)
1.25
Section B4.5 February 15, Page 193
B4.5.6.5
Aluminum-Minimum
Properties
k-2.0
k=l.7
• k=
1.5
k=
I. Z5
k-
1.0
8O Fb (ksi)
.._..;.._.L.....
6O
:
4O
2O
0.01
0.02
0.03
0.04
0.05
(incLes/inch) _U ¸
Fig.
B4.5.6.5-36
Minimum Aluminum Thickness
Plastic
Bending
Alloy Hand < 6 in.
Curves
Forgings
7079-T6 (Long
Transverse)
1976
Section B4.5 February 15, 1976 Page 194
Graph to be furnished when available
Section
B4.5
February Page
B4.5.6.5
Aluminum-Minimum
Properties
k=2.0
40
O. Ol
0.02
0.03
0.04
0.05
(inches/inch)
Fig.
B4.5.6.5-38
Minimum
Plastic
Aluminum
Alloy
Hand
Thickness
< 6.0
in.
0.06
0. 07 {u
Bending
Curves
Forgings
7079-T6 (Longitudinal)
195
15,
1976
Sect ion B4.5 February 15, Page 196
Graph
to
be
furnished
when
available
1976
Section B4.5 February 15, Page 197
B4.5.5.6
Magnesium-Minin_urn
$;;tl
iiil !!iii::i:i:!iti_:
Properties
_!! !t!:::I!;!ili_:_i
;_
:_!i
ii
:IF i!ij ii_!|ti!!!![:li[ii|iiii"_i_-iJl_oom
.,._:it i]]
Temperature
i! f!_
60
i ......
[t t:
*;4
iiii t_.
*t
"
._ ...........
t,,
._1,
!,
t_f
!i
4 , t
50
:
;: i! i!i
Ult_mate
ilt: ,:i: :i!
_; iii !
r!_t
_ .... _I;_._,_ ,,r ....
! i! I
[!i,'t!il; }iii _ i 'Wl:',ii :: _i!i i.ll _I_'I '_',_I:'_' ; i':'l"i _ r' "lI ;"_
! I
;i !_ _t !t
_[l:! _._;
40 ..... I......
_ .........
_[,I,.!
....
h.,
:!ii
;:St_
Fb (kst)
:::! ....................
1
', il
t
t!22!'i;t,,t
iiii l _! ![ il
;:7, :IL:
iI
30 .......
. :!i!i
i[::i
..,..
,t., k.,
itli: !i,,
t:;:
....
Itl:
!!
i: :
,
:: t :::: :_ :i
.:::
it::iili*
::tl
t:!l
[i :ii ii
ii?itliii............. .... ; ...... ii:_
it
--_TT *_'YtM,.
.......
tl;l
:t}
t_ ;i I t
it,
.:.
:ii! !::T
;i::
iI:_ !t}!liill i!i!tiiil
.t,r
10
,,-,-d
l,
',t!:
20
11!{ 'i, _1 !
ii,
!.i!i::_
fill
Fry ::: E
ii!:;][!i
,t
: 22, 000 psi = 6. 3 x 106 psi = 6_o
Elongation
!iil
,
_,q+Si-_!!!:!: !iil ;ill i,
_1Tr
1.=l;!i:
::! [._ :: i
..... _4=_! :;'l!:Ir
!ii"
11_i '::'
ii[iil:
''' [["
I] ,
i
i
!:[_,][',J_];II;:.:T :',ii:I "ill[ !iri[:jl!l'l'llliit
I_I
I_.H
.ii.., [:llil
1.5
1.0
2.0
ZQc k
=
I
Fig.
B4.5.5.6-1
Minimum
Bending
Modulus
Symmetrical Sections AZ61A Forgings (Longitudinal)
of Rupture Magnesium
Curves Alloy
for
1976
Sect ion February Page 198
B4.5.5.6
Magnesium-Minimum
Properties
;:
$77i
!!!!i!_ !If iii:
_i; !11 ;;!t ,.. !r
if:
lii
1i i_=,; ....
Itli:tt
i!:i! I !1ti t_t!
H!t
]!I_ :,ill ;_
Iiii
!!H
*l+
,++,
!!1 ![!': ',hl ;:;i
',i!
ttfi
;ii
Iic]
tit
Ill',
t_:
Itll
if i[t Z.O
Fi x .
B4.5.5.6-Z
Minimum Symmetrical Alloy Sheet.
Bending
Modulus
Sections 0.016 a
of Rupture
HK31A-O Thickness
for
Magnesium <- 0.250
in.
B4.5 15,
1976
Section February Page
Graph
to be
furnished
when
available
199
B4.5 15,
1976
Section B4.5 February 15, 1976 Page200
Graph to,be furnished when available
Section B4.5 February 15, 1976 Page203
Graph to be furnished when available
Section B4.5 February 15, Page 204
B4.5.6.6
Magnesium-Minimum
Properties
5O
4O
k=l.7 k=l.5 30
k= k=l.O
2O
10
Fig.
B4.5.6.6-3
Minimum Magnesium
Plastic Alloy
Bending Forgings
Curves
AZ61A
(Longitudinal)
1.25
1976
Sect
ion
February Page
B4.5.6.6
Magnesium-Minimum
Properties
:1. • : : ,. ..... .:: ...... , :!.... J .rI.............. . :_'......... :::i ".:'"'t'-'r-. '.'"_ ................... :---" ............. [ ............... ÷..... :" 6O
]
1: !
.
.
,
.I
/
]
Room
: . : ! , :, :[...... , ::I 1 ......... _........ ' ......... _....... _i
'Fe:inperature
!: _ ,:1 [::_ ' '::iFtu
= '8'
!....iLrtv : : i:..,,.:E.
---zz, 000 psi 1 L i I 6 "/'-_-7 .................. =_>.3xtO i>__. i...... ] '
()001'si
I
: !: : _ I _ ..... l : ; " "I ....r!--! .........i-t; .... .---,,_............ i: ::! i ' 'i: ...... 1i .... I J '
'
J L..4 _ -r--.
i
.!..l.
,
I
.
• ".I
: F_.;_l t...' -T-I _:-I • "
=2. oo
:, .:, '.l"j£,
" _.::.ik=
1.7
5o
7!!7-
:
40 -, Fb
(ksi) 3O
2o
10
Fig.
B4.5.6.6-4
Minimum Magnesium
205
Plastic Alloy
Bending Forgings
Curves
AZ61A
(Longitudinal)
k=l.O
B4.5 15,
1976
Section B4.5 February 15, 1976 Page 206
B4.5.6.6
Masnesium-Minimurn
Properties
0
o
v,
A
U
T !
Sect ion B4.5 February 15, Page 207
B4.5.6.6
Magnesium-Minimum
....
Properties
i /...
0
t_
_o AI
h
U
t.J
_J
• "4
_o
,4D I
_4 0
0
0
0 0
0
0
°1-1
v
0
1976
Section February Page
B4.5 15,
1976
208 _J
Graph
to be
furnished
when
available
Section B4.5 February 15, 1976 Page209
Graph to be furnished when available
Section B4.5 February 15, Page
Graph
to be
furnished
when
available
210
1976
Section B4.5 February 15, 1976 Page211
Graph to be furnished when available
Section B4.5 February 15, 1976 Page212
B4.5.6.6
Properties
Magnesium-Minimum
0 0 °
._--pI
4.1 0pI
0
:..-.2!-.:._i- -I-::-i--- " '_:i----".........i.. :...: ..L_i..__.:.i ....... I_.'.
;
!. :....
_-.----T. --_...._
••22
_ _
_"
°
"_'
:
:'.
:
'.'i
i
i:i: i
;
,-....... : _L.: ; ....-:-..
_
lid
• '" :' ..:
_
" :''_ " I •
• . .... :
"
•
; :
.... "
f "':_.: .... i :_." ::_:F
: ...... -_'_ : i 1," 1,"'_ u -c' " ' ' " .... : ::: ....." ....:.: ..;.L.L.'..: '-" _ _ ....... _,_ ...i .......... : ....... ..... . .:"_'- _--' _ ". : _ :.": !- : :
'= ....
""--"
........... li:
• :!
":
_
i
.................. [ "
.
.
t",'
.,.
: '
,_ .........
I
I..... :.-
1
!
I : ,
!
_1_-
o
]
r '
;'
:'_-r
.....
' : ":::
:
'" ...... :"1" "'" : ............ . :. l- .! -- .:'---: ..l " . .:. ..... I. i ........... .-'.
•
.
•
..
.'%.
_ ....--.-:--'"-4 ......•......;..... :'_ ............. "'""_"
._::. _:, ........ . .._o _ • o
.'
•
,. i....:.:._ .L.._..:.. : .. '.._-."
. .:
;
; .......... :
I
"._ .................................. .....
_'':
•
:
q_
o
" "" , ", •
"
_ _
•
• "
" " : ....... " ............................. _..... :.: [ " :" I; ........
i
r
. '
:
.." ..... :: : : 1...
•
" !
...... ;
i
.. i
'
:
._'
4
:......_............. ..... '.
"
'
[. _ . I ...................: :" ................ i • '
"..-.: .............. :
"
......
I
•
, :
:
" ' ,_..." :
,.
, •
: ....................
:
.. •
:............. ...... :...... I.. .. '..-. ., .b.. :- "":. ..... : ...F.:.. ":!:..H....:.. i !':. !...'.! I
.
"....:.. ! ....... i.............. -: ...............
,.'..._...._.....'..,."
:
:
, - :
• :
1 •
i
.... -.'..
• :
" • .'
_4
"1 I ..... : "
:
t ................ : ' :
,
...:
"
•
.,_,
•
:1 ...
:1..... .-...... :............. !:'--:.!......... ! .].:.... • "'_.'_'..-'_E_"" .... :... : ".:....'.. :...;... :.-_i.:. : ..!-.:-}._l_ .-,-I ' ":, : • • '.... • : • ' : ";'." -' ""_-'1
.
i
e4
°
. ":
,
.:
,'"
"1
:_
:
,--I
o
: ,
I
::
, :
-
1
•
o
Section B4.5 February 15, Page 213
B4.5.6.6
Magnesium-Minimum
Properties
Fb (kai)
4O
2O
Fig.
B4.5.6.6-1Z
Minimum Magnesium
Plastic Alloy
Bending Forgings
Curves ZK60A (Longitudinal)
1976
Sect ion B4.5 February Page 214
B4.5.7
B4.
Elastic-Plastic 5.7. I
the
Elastic-Plastic
Elastic
This
section
which
may
bending of
will be
in
or
also
as
Energy
In the
Z
as
e.g.,
be
be
of
the
the
on
deflections
margin
of
safety
M.S.
margin
the
maximum
may
the be
permissible
used
safety
margin of
loads,
part
a
material
in
the
a
the is
some
is
plastic
beyond
propordepen-
cases
Therefore
when involved,
Theory
usage.
structure
analysis
are
Elastic
(no
In
been
common
of
levels
the
this deflec-
an should
be
are
then
the
most
at
yield
as
loads
and/or
of
safety
for
or a
excessive critical
ultimate, stress
Permissible
Load permissible
deflec-
structural
design
may
condition,
the
a permissible by
a trial
and
(4.
calculated
load Equation
5.7.Z-I)
load error
level process.
corresponding (4. for
5.7.
occur. the
Load)
deflection.
obtaining
deflection
-1
(Applied
etc.;
element
deflections
Load
is
used.
levels,
becomes
Permissible
in
of well
Factor)
all
Safety
basis
(Safety
to
no
strains
the
=
where
of
as
if
Energy
Margin
a positive
shown
plastic
Elastic-Plastic
considered
although
may
the
and
but
of
more.
or
have
and
involved.
or
used could
deflection
strain
any
structures
those
effects
stress
elastic
100%
factor
calculating must
as
with
simplicity
only to
an
plastic
much
Discussion
In tions
of
as
such
of
to
limit
designed
amount be
accurate
Deflections
determined.
theories
its
proportional
error
a limiting
analysis
If
the
may is
are the
bending
bending to
Plastic
required.
indeterminate
elastic
due
stresses
both.
be
extension
a material.
bending
readily
similar
plastic
chosen
structures
limit, on
include
an
of
or
to be
statically
Other
theories beyond
strain).
5.7.
to
can
procedures
to
6 will
due
range
plastic
was
Elastic
error
structures
by
well
due 5.
as
range
range,
B4.
plastic
defined
plastic
plastic
Section
Theory.
Theory
stressed
tion
Bending
is
the
energy
or
in
the
solved
Energy
tional
only
elastic
completely
be
extended
B4.
the
determinate
Partially
into
consider
in
stresses
dent
for
Theory
Theory
found
statically
Elastic
Energy
Energy
curves
fiber can
Theory
General
The of
Energy
1976
]5,
5-11)
a maximum
Section February Page Assumptions
Energy load
energy
Plane
sections
4.
The
5. 7.4
plane;
work
is equal
due
to a virtual
to the internal
that deflection. i.e.,
the
strain
is linearly
dis-
cross-section.
effects
deformations
materially structure
B4.
any
deflection
during
remain
ratio
the external
a real
developed
across
Poisson's
i.e.,
through
strain
215
Conditions
is conserved; moving
tributed
.
and
B4.5 15,
are
are
negligible.
of a magnitude
affect the geometric to one another.
so
small
relations
as
to not
of various
parts
of a
Definitions
dA
cross-sectional
c
distance
area
from
of an
the neutral
infinitesimal axis
to the
volume,
extreme
dV.
fibers
of a
cross-section. real
deformation
of an
infinitesimal
volume,
dV,
in the
x-direction. A
real vertical deflection of a virtual load. total (elastic
Cb
dV,
c
-
in the
extreme
plus
of a beam
plastic)
strain
at the point
of application
of an infinitesimal
volume,
x-direction.
fiber
strain
of a cross-section.
bmax
F v m
W
virtual
normal
virtual virtual
bending load.
force
acting
moment
dA.
in a beam
1
internal strain energy equal to a summation virtual forces times their real deflections.
fb v
virtual
unit load.
virtual
bending
stress
on
dA
due
load
to the application
external work deflection.
Q
to a virtual
due
e
W.
equal
on
moving
to m.
through
of a
a real
of internal
1976
Sect ion B4.5 February 15, 1976 Page2_6
B4.5.?. 5
Deflection
Consider
of Statically
the infinitesimal
Determinate
volume
dV
Beams
of Figure
B4.
5.7. 5-1(a)
and
(b) fb
myI
-
(4.5_v 7_5-I)
V
Fv
= stress
>< area
= fb
dA v
= -I
6
Since
dA
i4. 5.7. 5-2)
= c b dx
plane
(4. 5.7. 5-3)
sections
Cb
= Cbma
5
= c
remain
x
plane,
c
(4.
5.7.5-4)
and
bma
By
x
Y---dx c
(4. 5.7.5-5)
definition,
W
= Q A
(4.5. 7.5-6)
=Y
(4.5.7.5-7)
e
Wi Since
energy
is
F v 6 conserved,
W e
= Wi ,
(4.5.
7. 5-8)
QA
= Z Fv 6
(4.5. 7.5-9)
or
Substituting (4.5.7.5-9)
Equations since
Q is
(4.5.7.5-2) equal
to
unity,
and
(4.5.7.5-5)
into
Equation
Section February Page
B4.
5.7.5
Deflection
of
Statically
fAiL
(mY_.T._ dA)((
by
definition,
I
,',A
cb
can
dA
d)
(4.
dx,
C
5.1.
5-10)
=
L
dA,
mob max
:_ #
dx
(4.5.7.5-Ii)
c
(4. 5. 8. 5-ii) be
217
Yc dx)
max
I
.So Equation
(Gont'
1976
mob
y
y2
/e.
Beams
maxb
2
-/ So But,
Determinate
B4.5 15,
determined
can
now
from
be
solved
a plastic
graphically
bending
curve
to findA. for
the applicable
max
I
material rupture) bending the
as shown in Figure B4.5._.5-i(c). Enter the F b (modulus of scale with Mc/I and move horizontally across to the plastic curve for the specific cross-section; this intersection locates
corresponding
¢b
•
varylng
.
cross-sectlon,
on
max
the
c may
be
c (strain)
scale.
For
beams
with
a variable. _,
L
"-
_X
(a)
Beam .I:/
(d)
Real
Load
(e)
Real
Moment
Diagram
Cross-Section dz
Fv
I I I
(b)
DifferentiaI
Volume,
dV
Figure
B4.5.7.5-I
Diagram
Section B4.5 February 15, 1976 Page 218
B4.5.7.5
Deflection
of Statically
Determinate
Beams
q
(Cont'
I lb. !
(f)
Virtual Load (Real Deflection
Diagram Shown)
M_.X I
%
l,
• (in./in.
(c)
Plastic Beam
)
Bending Diagram Cross-Section
Cb
for
(g)
Figure
B4.5.
Virtual
_. 5-1
Moment
(,Cont ' d)
Diagram
d)
Section February Page 219 B4.5.-';7.6
to
a
Example
problem
A rectangular concentrated
beam, vertical
deflection
of
the
Material: Beam Load:
beam
simply load at
its
2024-T3 dimensions: P= 400
supported its center.
at
the Find
ends, the
is subjected vertical
center.
Aluminum 1/Z
at
Alloy
in.
x
Plate
1 in.
x
20
in.
lb P A
I
Procedure:
i ,
Apply the
a virtual virtua!
2.
Construct
3.
Calculate
Enter
5.
to
at
the
beam
center
and
construct
m.
moment
real
-
diagram,
bending
M.
stress.,
F b,
for
each
value
of
x by:
k=l.
5 for
a
Mc T
= the
plastic
bending
curves
cross-section)
determine
obtain'a
Q,
diagram,
real
the
Multiply
load,
moment
rectangular and
unit
the
Fb 4.
2o
the
c b
value value
of of
with for
max
m m
on each
each
by
Cbmax
the
value
page
Z18
value of
(at of
corresponding for
each
F b
from
Step
value
of
Ebmax
x.
vaiue
of
x.
3
B4.5 15,
1976
Section February Page
Example
problem
Tabulate
,
the
results
Construct a plot under the curve. (See
8.
Figure
B4.
f_ L
of the previous
of m _ bmax This area
steps
vs. x and represents
(see
Table
determine _'g
5.8. 6-I)
J0
the
m
Cbmax
B4.
area dx.
mob max
= J J
dx
Ref
C
eq
(4.5.7.5-11)
0
c
=
0. 250
in.
L f
m
dx
c bmax
by graphical integration
= 0.165
0
• •
•
By
0. 165 /%
_
an
which
0. 661
analysis,
is 7.7%
stresses
considerable beams
greater etc.
was
in error.
existed
this example.
/or
in.
0. 250
elastic
only The
more
lengths;
found
Partially over
elastic in error
in which
the
beams
to
be
for
0.6104
plastic
middle
analysis
the plastic
e.g.,
220
d)
A.
Calculate
A
(Gont'
B4.5 15,
in.
fiber
8 inches would
higher
in
be
loadings
stresses of constant
exist
and over
moment,
)
5.8.6-i).
! 976
Section B4.5 February 15, Page221 B4. 5.7.6 P = 400
Example
0
(Cont'
M
Mc/I,
d)
lb.
x, in.
problem
m in.
-lb.
in.
-lb.
0
ksi
0
0
c bmax in.
/in.
, x
0
m 10-
3
in.
e bmax -lb.
, x lO
0
I
.5
200
4.8
.4570
.2285
2
1.0
400
9.6
.9140
.9140
3
1.5
600
14.4
1.3710
2.0565
4
2.0
800
19.2
1.8280
3.6560
5
2.5
i000
24.0
2. Z850
5.7125
6
3.0
1200
28.8
2.7420
8.2260
7
3.5
1400
33.6
3.14
I0.9900
8
4.0
1600
38.4
3.80
15.2000
9
4.5
1800
43.2
4.64
20.8800
i0
5.0
2000
48.0
5.83
29.1500
iI
4.
1800
43.2
4 .64
20.8800
12
4.0
1600
38.4
3 .80
15.2000
13
3.5
1400
33.6
3 .14
I0.9900
14
3.0
1200
28.8
2 .7420
8.2260
15
2.5
i000
24.0
2 .2850
5.7125
16
2.0
8OO
19.2
1 .8280
3.656
17
1.5
6OO
14.4
1 .3710
2.0565
18
1.0
400
9.6
.9140
.9140
19
.5
2OO
4.8
.4570
.2285
2O
0
5
0
0
Table
B4.
0
5. 7. 6-i
0
-3
1976
Section
B4.5
February Page B4.5.7.6
Example
problem
(Cont'd)
28
k _AREA
24
15, 222
UNDER
CURVE
EQUALS
_
L "--" m.
I I
J" me b dx 0 max
_i
I I I i
2O E
v
O
x X m
16
/ / I
\ \
A
12
/
\ \
I
/ / J
\
/
/
¢
\ \
/ f
f 10 I
x (inches) Figure
B4.5.7.6-1
16
1976
SECTION B4. 6 BEAMS UNDERAXIAL LOAD
TABLE
OF
CONTENTS
Pa ge B4.6.0
Beams
Under
Axial
Load
.................
l
4.6. l
Introduction
4.6.2
Notation
........................
3
4.6.3
In-Plane
Response
5
4,6,3.1
Elastic
4,6.3,2
Inelastic
4,6.4
Biaxial
Elastic
4.6.4.2
Inelastic
Combined
Elastic
4.6.5.2
Inelastic
Recommended
4.6.6.1
In-Plane
Practices Response
Inelastic
Biaxial
Elastic
4.6.6.2.2
Inelastic
4.6.6.3
Combined
Elastic
4.6.6.3.2
Inelastic
9 9
Response
10 .........
..................
10 12
.................
13
..................
14
.................
16
................
Analysis
16
...............
Response
Analysis
21
.............
22
................
Analysis
Bending
4.6.6.3.1
References
Twisting
Analysis
In-Plane
4.6.6.2.1
...............
.................
Analysis
4.6.6.1.2 4.6.6.2
and
Analysis
Elastic
5
..................
Analysis
4.6.6.1,I
5
.................
Response
Analysis
4.6.5.1
4.6.6
..................
Analysis
Bending
l
...................
Analysis
In-Plane
4.6.4,1
4.6.5
.....................
and
23
............... Twisting
Analysis
Response
................
Analysis
...............
...........................
B4.6-iii
24 .......
24 25 27 42
LIST
OF ILLUSTRATIONS
Pa ge Tables
B4.6,1
Beam Column Elastic
Tables
B4.6.2
B4.6.3
Analysis
Analysis
-
Tensile
Beam Column Formulas Elastic
Tables
Formulas
-
Axial
Loads
.......
Axial
Loads
29
Compressive
Reference Listing for Other Beam Column Loading Conditions ................
B4.6-iv
....
32
40
Section
B4.6
February Page l B4.6.0
15,
BEAM-COLUMNS
L B4_.6. I Introduction Beam-columns
are
eously
to axial
bending
loads,
couples
from (or
end
applied
moments
at both
columns.
of
are
many
For
superimposed
since
characteristics
overall
instability
If
the
elements
is relatively The analysis on
short,
analyals simple
shear-web
beams
ever,
considered It
overall
has
are
the
are may
beam,
eccentricity
the
are
to be
of
of
subjected arise
the
simultan-
from
surface
transverse
shear
axial
are
buckling
load
As
loads,
or
at
end
In
one
the
section
shown
that
on
scope shear
below: Response
2).
may
of
the this
be
deform-
strength
the
and
lateral
must
and
distor-
the
where
instability)
is distinctly
beam-columns I and
cases
crippling
beam-
cannot
affect
Both
thin,
of
curvature,
all
factors.
a consequence,
beyond
effects
conditions
beams
analysis
column
relatively or
the
Initial
(torsional
the
(a) In-Plane
and
important
shear-web
(References
with
considered.
section
local
beam
restraint
f
indicated
on
associated
instability
are
been
response
and
beams.
in
bending
interdependent.
and
need
of
of
from
individual
effects,
lateral
point
problems
they
ational
lacking,
any
The
which
the member.
example,
inelastic
is
at
members
loads.
resulting
ends)
There
tion,
and
structural
be
support
considered.
beam-column
occur. different
effects section;
of
from
axial
they
the
loads
are,
how-
beams. can These
have are
one
shown
of
three
in Figure
types i as
of
1976
Section B4.6 February 15, i 976 Page 2
Z I
(a)
(b)
IN-PLANE
BIAXIAL
RESPONSE
IN-PLANE
RESPONSE
i \ 1 (¢)
COMBINED
FIGURE
BENDING
I
AND
BEAM-COLUMN
TWISTING
RESPONSE
RESPONSES
1
v
Section
B4.6
February
15,
Pa ge 3
f-. !
The upon
five
(b)
Biaxial
In-Plane
(c)
Combined
particular
Bending response
conditions.
/f-
(a)
Cross
(b)
Span
Response
These
and for
Twisting a given
Response member
is
dependent
mainly
are:
Section
Shape
Length
(c) Amount
of
(d) Restraint
Intermediate
Lateral
Conditions
(Torsional)
Support
at Boundaries
(e) Loading The in
analysis the
following In
with
combined
inelastic
bending
of
beam-columns are
based
the
member
These
on
are
developed
and
strengths
well
responses
design
will
procedures for
procedures
twisting
be
discussed
response
both
for are
for
the
beam-columns
elastic
blaxial
and
In-plane
limited,
in-
response
especially
in
the
range. powerful
referred
a column are
techniques
employed
to as "interaction
experimental
as
these
and
However,
the more is
for
analysis
ranges.
stress
One
the
response
stress
employed
paragraphs.
general,
in-plane
elastic and
procedures
data, and
then
the
and
they
strength
expressed
in
in
the
equations;" require
as terms
that
a beam of
be
stress
analysis
these the
equations
strength
determined ratios
of
of
separately. (applied
F load/strength) presses
the
be
in
used
and effects
the
incorporated of
following
the
in
combined
discussion.
the
interaction
loading.
equation
Interaction
which equations
exwill
1976
Sect ion B4.6 February Page 4 B4.6.2
15,
Notation
Area
A
of
Cross
Torsion
r
Section
Warping
d
Eccentricity
E
Modulus
of
Tangent
Modulus
Stress
(ibs/in.
Et f
Nominal
fcb
Constant
(in. 6)
(in.) Elasticity of
(Ibs/in.
2)
Stress
at Lateral
2)
G
Elastic
h
Distance
I
Moment
of
Inertia
(in. 4)
Moment
of
Inertia
about
I
2)
Elasticity
Fiber
(Ibs/in. Shear
(Ibs/in.
2)
Extreme
Buckling
(in. 2)
Modulus
between
(Ibs/in. 2)
Centers
of Flanges
Minor
Axis
(in.)
(in. 4)
Y K
UnlformTorsion
J
El p
L
Length
L'
Effective
M
Bending
x,M
(see
Constant
Tables
I
of Member
Principal
Axes
and
3)
(in.)
Length Moment
2,
(In. 4)
(in.) (in.-Ib) Bending
Moments
(in.-ib)
Y
Mac tual
Bending Moment Loads (in.-Ib)
Me,
Bending Yield
Moment Point
due
to Both
Bending
at the Elastic (in.-Ib)
and
Stress
Axial
Limit
(Ky)e (Mx)u,(Sylu
Bending Moment (in.-Ib)
at
the
Inelastic
Stress
Limit
or
1976
Section B4.6 February 15, 1976 Page 5 MI_ M2
Applied Loaded
Moments with
at Each
Unequal
End
End
of
Beam-Column
Moments
(in.-Ib)
Meq
Equivalent Moment for Beam-Column with Unequal End Moments (in.-Ib)
MoS,
Margin
P
Applied
P
of
Safety
Axial
Load
(Ibs)
Critical Column Buckling Load Stress Range (Euler Load);
e
Pe
=
Loaded
in
the
Elastic
(_2Elmin)/(L')2
(Px)e ' (Py)e
Critical Column Buckling Elastic Stress Range for Axis (ibs)
Loads in the Each Principal
P
Critical Column Buckling Stress Range (Ibs)
Load
u
U
L/j
W
Transverse
Load
(Ib)
w
Transverse
Unit
Load
Y
Deflection
(in.)
Z x, 8
Zy
(see
Section
Tables
Moduli
i, 2,
about
and
(Ib
in
the Inelastic
3)
per
Principal
linear
in.)
Axes
(in. 3)
Slope of Beam (radians) to Horizontal, when Upward to the Right
Positive
Section
B4.6 15,
February Pa ge 6 B4.6.3
In-Plane
Response
In-plane
response,
which,
when
plane,
respond
in Figure
subjected
la.
sional)
support
Beam-columns sively these
for are
B4.6.3.1
the bined the
yield
occurs
or when
torsionally
does
correct
in
always
present,
fections
are
discussion 84.6.3.2
respond
the
of
creases shown
above
manner
stress
analysis
range
acting
in
one
same
plane,
as
shown
the
when
adequate stiff
have and
loads
been
the
lateral
sections
(torare
investigated
inelastic
used.
exten-
stress
range;
below.
or
occurs
stress
consider
the
case
contribute
considered, this
of
the
concept
strength when
in
strength
and
the
the most of
beam-columns
computed highly
of
a pure the
This
buckling;
as
response.
Thus, remains
is given
by Massonnet
strength
of
it
in
is not
imperfections these
valid.
(Ref.
reaches
definition,
if
on
the com-
fiber
such,
Initial
above
of
stressed
column.
definition
is based
value
the material.
danger
to
of
are
imper-
Further
2).
Analysis bending
elastic
in Figure
the
yield
limiting
the
for
failure
bending
maximum
hypothetical
elastic
this
separately
Inelastic The
in
in
to beam-columns
Analysis
not
the
response provided,
that
point
a sense,
as
usually
elastic
and
bending
This
Elastic
axial
and
twisting
which
assumption
axial
refers
without
discussed
The
to combined
herein,
substantially
is
both
as mentioned
limit
yield 2.
strength.
moment, By
a beam As
yielding
comparison
the
actually applied
penetrates
of Figures
2b
is
higher
bending into and
moment
the
2d,
than
cross
it can
the
insection be
seen
1976
Section B4.6 February 15, 1976 Pa ge 7
Z
3 Q. a .J
>-
f
i,i Z m f
Z o. a .J ,,i >-
Z 0
IZ
,,,
Q .J ,,i
"r
>-
_D Z w rr oO uJ
> 3 v
<
row w rr
,,i
e_ uJ o-
X
U-
.J rr
w Z
Z
Ii1oo A
that
a greater
distribution. strength shown
are
strength
i_ obtained
Analysis
procedures
known
to vary, (a)
as
and
inelastic
to depend
The Mmax/P the
case
of
increases,
which
utilize
three
- The
pure
considering
analyses;
on
Ratio
by
factors
reserve
buckling
toward
the
this
this extra
(Ref.
and
that
is
-
For
B4.6
February Page 8
15,
inelastic extra,
stress
or
strength
-
reserve,
has
been
2).
strength
(M = 0)
value
the
Sect ion
is
almost
zero
tends,
as Mmax/P
associated
with
for
pure
bending. (b)
The
Shape
of
strength
the
is
smaller
rectangular (c)
The is
Nature
Figure
Several for
the
criterion (a)
for
the
higher
a
an
Metal
for
(The
flat
failure
used
of
3.
strength
Section
example,
I-section
than
the it
is
reserve for
a
section.
much
have
Cross
has
as have
beam-colunms one
of
the
Stress
Criterion
maximum
stress
level
(b) Maximum
Strain
Criterion
maximum
strain
level
collapse, material.
Load load
A
than
in
in
Criterion which
the it
is
diagram does
the
been
used
(Refs.
Maximum
(c) Ultimate
example,
stress-strain
portion,
been
For
material
criteria of
-
3,
for
for
diagram in 4,
reserve
5,
material
B in
material for
the
strength
A does
material
B).
inelastic
and
6).
occurs
at
not
analysis Basically,
the
following: - Failure the
inelastic
- Failure the
- Failure
utilizes
the
prescribed
some
prescribed
range.
occurs
inelastic
some
at
range.
occurs
at
inelastic
some
ultimate,
behavior
of
the
or
1976
Section B4.6 February 15, Pa ge
F
¸ n
w
UJ 0O I m-
LU
I-Z .J
DC I-CO I.I.I
nr"
° \
I.l.I rr £9 I I.I_
uJ
9
1976
Section
B4.6
February Page I0
B4.6.4
Biaxial This
In-Plane
section
stiff
beam-columns
cause
either
about
both
in
all
Case
which
of
one
without of
the
discussed
the
information that
as
short
in
the
if
they
On
the
other
in
a direction
hand,
the
the
forces
bending
respond will
direction Elastic the
plane
of
were long
slender
to
the
cause about
or
be
the
the
forces
from
members of
no
loss
of
principal than
type
of
2.
bending
applied
the member
less
beam-columns
for Case
of
both
only
or
that
bending
are
free
response
can
to
deflect
occur
as
Direction
large
plane
forces
paragraphs.
restrained
strength
then
Strong
with
bending
axis
torsionally
conditions:
following
members
applied
This
is available
normal
essentially
may
in
the
of
The
two
in
methods
principal
twisting.
following
analysis to
ib).
Bending
strength
In
(Fig.
(b) Primary
essentially
B4.6.4.1
the major
Bending
predicted
in one
axes
subjected
Biaxial
I is
strength
are
strength
(a) Primary
Little
bers
the
about
principal
directions,
a result
Response
considers
bending
15,
However, forces
and
deflecting with
small
the bending loaded
strength. axes
it
will
develop in
respond
bending
weak
and
Intermediate
simultaneously,
strength
for
the
limiting
stress
direction.
forces
responding
buckle
develop
concentrically,
the
been
as much
the
forces
has
that length and
is, mem-
the
exclusively
other.
Analysis
elastic
range,
when
failure
criterion
is
1976
Section February Page l l
r
used,
the
determination
principal flexural
axes
for
knowledge
of
of
In-plane
but
it has
more
can
Thus,
the
of
interaction
few
of
strength Hence,
extended
to
i)
that
cases
of
response
about
equation
be
one
for
the
axis.
in-plane
to
as
test
(Ref.
for
due
independently,
although
can
found
response
stresses
response.
response been
the
prediction
in-plane
conservative
cases
of
be made
actions.
procedures f
B4.6
bending
there
data for
is no
are
such
about
the
two
coupling
of
available, cases
15,
the
practical
are
based
on
the
case
elastic
solutions
include
biaxial
in-plane
response;
limiting
stress
criterion
is even
about
both
Austin
(Ref.
response
to
for
a
axes
than
i) extended
include
it
is
one
biaxlal
for
form
of
the
in-plane
response. B4.6.4.2
Inelastic
Austin based by
on
it can
has
response
appears
theory
methods
extended
and
Structural
members
of
twisting
(Figure
Ic).
the
axes one
form
This
of
thin-walled forces, phenomenon
precise of
for
the
this the
open may is
beam-columns From
interaction for
the
inelastic
fail
a practical
equation
for
range.
In general,
in-plane
in-plane
studies
which
inelastic
phenomenon.
biaxial
Respons
theoretical
twisting.
response
inelastic
Twistln_
no
without
to predict
the
bending
been
strength
in-plane
used
Bendin_
and
have
is available
Combined
axial
of
principal
to predict
combined
there
to biaxial
information that
that
extended
B4.6.5
to
both
Austin
test
be
K_rman
about
viewpoint,
Little
states
the von
bending
in-plane
(I)
Analysis
response,
response.
_ cross
respond commonly
section, by
when
combined
called
subjected
bending
torsional-
and
1976
Section
B4.6
February Page
flexural
buckling
a result
of
such which
as
I,
tion
of
4).
The
low
channel
follows
to dlrectly
force
the
or
it
or
loading
if
Is
by
torsion-bending. of
members
It
be
noted
should the
open
couples,
does
not
defined
the member
is
as
such
pass the
as
point
to bend
twisting
under (a) Axial both (b) Axial
open any
of
the
through
without
section
the
following
pTincipal compression
in
action
cross
the
section
discussion
are
not
subjected
when
the llne
shear
center
which
is
the
of
ac-
(Figure shear
twisting.
CENTER
4. SHEAR CENTER
cross
compression
open
members
SHEAR
FIGURE
of
that
arise
through
twisting
with
section
CENTROIO
Columns
The
stiffness
that
torslonal
center
pass
angle.
Is assumed
transverse
must
torslonal
applled
shear
buckling
15,
12
and
wlll
respond
three
by combined
bending
and
conditions:
moments
acting
to
cause
bending
about
moments
acting
to cause
bending
only
axes; and
1976
Sect ion B4.6 February 15, 1976 Page 13 about the major principal
axis when the momentof inertia
about the major axis is muchgreater than about the minor axis; for example, an l-section
memberwith axial compression
and end momentsacting to cause bending in the plane of the web; and (c) Axial compression and momentsacting to cause bending in a plane parallel
to the plane of either principal
axis, when the
principal
axis does not contain the shear center as well as the
centroid,
as may occur for a channel, tee, or an angle section.
Little
information
is availn_le on the strength and behavior of mem-
bers subjected to the first
and third conditions (Ref. i).
of study has been devoted to the second case, primarily (Refs. 4, 6, 7, 8, 9, 10,and ii).
The greatest amount
for 1-section members
The second case is discussed in the follow-
ing paragraphs. B4.6.5.1
Elastic Analysis
As mentioned above, most of the elastic
analyses for beam-columns
subjected to combinedbending and twisting have been limited I-section
members. It has been found that the behavior is similar
the lateral only.
to
buckling action of an 1-beam subjected to transverse forces
However, exact formulas for critical
buckling are complex (Refs. 4, 6, and Ii), have been used. These interaction closely with available data. by Hill,
to uniform
loads for torsional-flexural therefore,
interaction
equations
equations have been shown to agree
An interaction
equation has been proposed
Hartman, and Clark (Ref. i0) for aluminumbeam-columns; this equation
has been verified
by Massonnet (Ref. 2) for steel beamcolumns.
In
a
equation
theoretical used
combinations buckling were
of
by
free
ed with
axial
rotate
respect
tapered
Hill,
Hartman,
in
the
(Ref.
and
compared
The
outcome
the of
test
the
studies
of "solid"
tapered
and
interaction
curves
degree
of
taper
B4.6.5.2
Inelastic
Again, devoted
in
are
Massonet into
the
plastic
with
results
of
also
flanges.
on
the
elastic
tests
suggests
on
members
have
obtained
tapered
been
are
approximated
by
Butler
beam-columns,
curves. curves
can
_Ref.
independent
the
be
analytical
by Gatewood
essentially
of
However,
Also,
made
restrain-
response
steel
Salvadori's
the
ends
elastically
load.
beam-columns.
for
whose
interaction
that
as uniform
of
studies
members. used
inelastic has
the
axial
interaction
elastic
members
of
and
the
produce
were
done
15,
predictions
but
to Salvadori's
closely
the majority
equation
the
which
B4.6
February Page 14
of
results
of
range
have
14), the
Salvadorl.
Analysis
to 1-sectlon
interaction use
and
well
safe
that
web,
planes
performed
comparison as
gave
found
considered
the
been
12)
bending
bending
results
to
of
the
has
have
applied
the
tapered
in
combined
13)
Clark
and
plane
work
under
(Ref.
Salvadori
to rotation
members
and
compression
analytical
Anderson
Salvadorl
torsion-bending.
to
Little
and
by
study,
Section
Hill
in
range
elastic
by
extended
domain. their
using the
The
tests
of
in
the
and
steel
Clark
analysis the
elastic
results
inelastic
of
tangent
(Ref. can
9) have
also
modulus
interaction this
1-section
shown
that
extended
for
concept.
equation
extension columns
be
been
were and
for
steel
compared
found
to be
the
1976
Section B4.6 February 15, 1976 Page 15
f
in excellent agreement for oblique eccentric loading, momentat one end only, and equal and opposite end moments(Ref. I). a thorough study of the inelastic applied in the interaction B4.6.6
Recommended
Detailed ensure
comply
and
with
reliability. given be
given
In
prime
the
of
not
be
made
liminary
of
the
particular
member
as
these
no
the
the
impair
from
the
or
the
distribution.
of
problem
in
section the
feasible,
to determine
of for
etc.
the
as
to
design
Thus,
safest cross
and
the
of
in general,
section
of
at
any
member
that
not
so
or
be
nearby changes
is
choice
of
and
axial
the and
of
a shape,
choice bending
as
trials
along
in
section
such
section.
station
shall
loads;
successive
economical
e.g.,
in collapse
undesirable
direct
design
those
designed
shall
combined
selection
most
so
a beam-column
the
the
designs
design
loads
produce
variables, the
the
of
to withstand
except
the of
the
number
I-section,
selection
so large
be
resulting
limit
function
follow
weight
shall
of
and
to
requirements,
shall
minimum
application
performed
structure;
analysis
member
be
vehicle
instabilities
resulting
loading
of
shall or
or
methods,
and
from
to
cross
the member
the methods
occur
analysis
structure
components,
Because
rectangular,
integrity
utilizing
immediate
usually
and
Deformations
a suitable
loads.
stress
shall
large
The
comprehensive
consideration
(a) There
(b)
equation.
In general,
herein.
buckling of beamswhich may be
Practices
efficiency
shall
lateral
Galambos(Ref. 15) presents
The
is round,
must pre-
the member
Section B4.6 February 15, 1976 Page 16 may, in many cases,
be
based
on
the
Zx
where
the
interaction
Naturally, In
this
the
be
provided.
then be
degree
an
of
lateral
For
Also,
_y
be
and
improved
shape,
restraint
or
little
stiff
section
such
type
response
of
by
end
if
the
axial
particular
example,
when
formula
for
Stress
'
transverse
must
optimum
a torsionally
used.
the
selection
choosing
to
of
elementary
or
analysis.
attention
should
which
lateral
a box
is neglected.
a refined
restraint
no
as
loads
or
is not
will
restraint tubular known,
be
given
or
can
is
provided,
section all
should
three
con-
ditions
should
In-plane
(b)
Biaxlal
(c)
Combined
be If
analysis the
(a)
response In-plane bending
analyzed
the
response
to
analyst
procedures,
and
twisting
response
determine
the
critical
or designer
has
the
the
following
response.
choice
factors
of
should
elastic be
or
inelastic
considered
in making
choice. (a) Member
function
(b) Material (c) Deflection inelastic (d)
limitations
- Deflections
may
be
excessive
in
range
Thermal
conditions
- Little
thermal
effects
the
in
information
inelastic
range
is available
on
the
Sect ion B4.6 February 15, 1976 Page 17 (e) Dynamic conditions - Little elastic
effects
information is available
for in-
due to dynamic loadings
(f) Reliability (g) Analysis procedures available
for the method of analysis and
types of loadings considered. The recommendedpractices and procedures for the analysis of beamcolumns are discussed in the paragraphs which follow. design for local buckling and crippling methods presented in Section CI.
The analysis and
should be in accordance with the
In complying with the references and
recommendationscited above, the designer should keep abreast of current structural
research and development. With this approach, optimummethods
and designs should be achieved. B4.6.6.1
In-Plane Response
B4.6.6.1.I
Elastic Analysis Tensile
Axial
combined
flexure
commonly
encountered
tabulated
for
some
methods
of
able
several
in
and
for
compressive of
the
more
conditions
the
cases.
In Tables
these
for
axial commonly are
cases.
other
references
case
strength
axial
Compressive tained
- The
tensile
of
analysis
Loads
17,
Loads
of beam-columns loads.
Results
encountered
discussed
has
below.
been
B4.6.1
18,
19
- Many
are
given
conditions.
and
for
many
results
are
solutions
and
conditions
are
avail-
20).
exact
subjected
B4.6.3
adequate
loading
subjected
investigated
and
In general,
beam-column
(16,
Axial
loads
of beam-columns
solutions to combined
have
been
flexure
in
Tables
2 and
A
number
of
and
3 for
these
ob-
and
some other
to
Sect ion B4.6 February 15, 1976 Page 18 Beamcolumns with intermediate supports have been investigated. Probably the three momentequations (Refs. II, powerful method of analysis for this case.
18, 20,and 21) are the most
A variety of conditions is
covered in this technique; for example: (a) Any type of transverse loads can be included (b) Span lengths may vary (c)
Niles
inertia
may
of
rigid
(e) The
effects
of
intermediate
(f) The
effects
of uniformly
Newell
above.
(Ref.
consists
demonstrates
the
analysis
good for
compressive For
source
this
shown
problem. See
cases
of
to give
method
(Ref.
cross
section
26) and
for
He
Table
results
particularly
can
be
extended
loads
be
form.
II p. (Ref.
many
used
of
for
23) 21).
the
cases
this
Saunders
matrix"
for
an
(Refs.
technique
elastic
22,
to
axial
of
a savings
include
in
of
numerical time
and
to beam-columns many
(Ref.
the
tensile
illustrations members,
foundation
Het_nyi
solution
both
applicable to
(Ref.
for
25).
and
stepped
with
on
24,end
considers
and
llne
on multl-supports.
17,
B.4.6.3
can
"transfer
formulation
tapered
good
is
(6,
results
to matrix
the
straight
axial
which
beam-columns
references
loads. the
of
to span
supports
tabulated
adapted
for
span
in a
spring
beam-columns
solutions
in several
not
method
application
from
distributed
present
a solution
vary
supports
analytical
nonuniform
and
particularly equations
of the
of
Methods found
18)
Another
23)
been
of
effects
problem
be
moment
(d) The
and
listed
The
commonly
can
17)
is a
differential and
some
axial of
these
methods labor. of
cases.
have Newmark's
variable
encountered
Section B4.6 February 15, Page
loading a
conditions.
sequence
finite of
of
successive
difference
Other found
in
lytical
methods been
18,
19,
The elastic
which
can
be,
Ii,
can
20,
26,
and
16,
be
be
used
for
(Ref. the
by
27)
define
analysis
conditions. in
Tables
B.4.6.2
and
26,
28,
29,
and
adapted
to
the
solution
of
available
in
are
several
B.4.6.3 30).
can
The
problems
references
be
anawhich
(4,
ii,
29).
of exact
solutions
interaction
equations.
is_used
in many
is
basis
the
can
integration
Baron
19,
beam-columns
equation
a numerical
18_
of
and
is
Salvadori,
which
covered
investigated
analysis
using
loading
not (4,
abundance
for
line
conditions
method
methods
many
references
not
16,
with
the
approximations.
numerical
beam-columns
have
Basically,
19
and
which
respond
However,
instances. for
methods
several
solution
in-plane
the
The
of
reduces
interaction
following
interaction
for
the
the
need
equation
simple
straight
equations,
M P -Pe Since
Mactual
verse
loads,
However,
for
is it
the can
be
(b) Must
have
(c) May
be
maximum it
has
been
shown
difficult
simply
(2)
all
both for
of
the
the
axial
and
complicated following
trans-
conditions. requirements:
supported
subjected moment
from
to obtain
satisfy
uniform
(Refs.
I.
resulting
which
(a) Must
=
Me
moment be
members
actual
+
cross to any
at
or
I, 2,
section combination
near I0,
the
and
center
31)
that
of bending of
the
a good
forces
producing
span approximation
of
the
1976
Section
B4.6
February Page
actual
bending
moment
20
by
is given
M x MactuaI
Here
(Px)e
applied due
to
dition Eq.
is
the
moment the of
(2)
Euler
and
axial
due
the
the
(3)
P/(Px)e
critical
maximum
interacting
load
moment,
in
the
not
plane
considering
with
the
deflections.
of
the
axial
to interaction
of
load
For with
the the
moment
the
con-
deflection,
becomes
p -Pe and
1 -
elastic
M x is
load
moment
-
Mx +
= 1 (Mx) e
corresponding
{ 1 -
margin
M.S.
of
P/(Px)
safety
(4)
e is
=
given
by
M
"
P
1 For
eccentrically
at both
ends,
loaded
Eq.
(2)
__P Pe The
margin
Eq.
(5). The
moment, in Figure
of
safety
interaction Meq, 5.
for
members,
takes
the
for
this
equation
a beam-column
{1
P/(Px)
d is
following
+ (Mx) e
where
-
the
may
can
be
be
(5) equal
form
= 1.
determined
written
subjected
- 1
eccentricity,
Pd - P/(Px)e[
case
]
e }
in
analogously
terms
to unequal
(6)
of
end
to
an equivalent moments
as
shown
15,
1976
Section B4.6 February 15, 1976 Page 21
F
M 2
M I
FIGURE 5.
Equation
(2)
UNEQUAL
END MOMENTS
becomes
M __P P e
where
a good
+
eq (Mx) e
approximation
Me q
for Meq
= 0.6
+
=
{ I - P/(Px)e
MI
(7)
as given
by Austin
(I)
for
> M2 > MI
- 0.5
M2 -M1
0.4
1
}
1.0
is
(8)
and M eq MI Accurate been
cases
restrained
both
is conservative maximum analysis
for
interaction
developed
example,
= 0.4
moment without
for
with
each
to use
Eq.
the member regard
to
which
with
end
respect
M2 -- _ MI
> -
formulas
beam-columns
where
in
-0.5
can
be
and the
are
than
free,
hinged,
and
Mx =
of
and
simple
general
(Mx)max,
fixed,or
axial
where
by
an
load.
have
supports;
translation.
is determined
effects
(9)
simple
other
to rotation (4) with
-i.0.
not
for
elastically However,
it
(Mx)ma x is
the
ordinary In
structural
utilizing
this
Sect
method, Euler
the
effective
length
Inelastic
Analysis
concept
should
formula
for
be
employed
ion
B4.6
February Page 22
15,
in determining
the
load.
B4.6.6.1.2 A
practical
interaction
metal
beam-columns
which
respond
i, 2,
7,
under
in-plane
10,and
31)
combined
and
in
predicting
compressive
the
inelastic
the
axial region,
strength
loads has
and
of
bending,
been
shown
(Refs.
to be
p P--_ +
where
Pu
range. ii), the
the
The
strength
value
Johnson's section
bending the
is
Pu
the
can
(Mx)u,
methods
presented
for
the
zone
As
Plastic
in
tangent 31),
withstand.
In
equation
the
the
inelastic
modulus
method
or by methods
the moment
(Mx) u is
Cl0)
due
to
ultimate
determining above,
one
presented
transverse
moment the
of
(Refs.
which
ultimate
the
three
4.4.3.2, Distribution
Design Elastic
used.
trapezoidal
The 5,
29,
M x _s
and
= i.
a column
the
(Refs.
interaction
Stress
as
by
before,
load,
(c) Double
(Refs.
found
in paragraph
(a) Trapezoidal
be
he
parabolas
axial
{ 1 - PICPx) e }
the member
inelastically
moment,
can
can
columns.
without
(b)
of
modified on
section
of
(Mx) u
29)
design.
It
alloys.
In general,
Modull
is widely
is especially the
stress used
adaptable trapezoidal
in
distribution the
aerospace
to metals stress
which
method
developed
by
Coz-
industry
in
structural
behave
like
aluminum
distribution
method
will
be
4 in
1976
Section
B4.6
February Page
preferable; ods
16
may
however, prove
and
32)
been
Obviously,
ject
in
to
t_le
(Fig.
I0), be
limitations,
substituted
required
to
equ_tJon
for
other
In
_mploying
In
general,
except
no
methods
a
M x
for
prespecified
in
limits
boundary
and
the
for
(Meq)
the
deflection
other
method
meth-
(Refs.
3,
a
of
the
consequence,
supports,
it
uniform
with
by
sub-
8
and
investigation of
and
end-moments
equations
Additional
is
sections,
unequal
defined
one
this
9 is
interaction
conditions.
method,
of
the
extension
applicability
loading
e_se
calculating
i0.
of
inelastic
the
as
design
an
As
simple
equation
the
is
4).
of
steels.
beam-columns
moment
for
dttermine
for
one
plastic
10
(Eq.
i.e.,
where
for
equation
section
equivalent
the
developed
However,
the
cases
example,
primarily
previous
same
end-moments.
For
certain
interaction
the
equal
may
are
superior.
has
presented
there
15,
23
plnstic
resulting
excessive
deflections
design,
there
deflections.
limitation
the
inelastic
procedures
for
combined
may
are Thus,
method
few
or
if
there
may
not
occur.
is
be
adequate. Inelastic bending
have
methods
can
B4.6.6.2
analysis
not
been
probably
Biaxial
be
directions
res_.Iting
c_nsist
from
of
may
which
have
either
compressive
However,
extended
In-Plane
Beam-columns
all
developed.
to
previous
axial
elastic
loads
and
analytical
inelastic
behavior.
stiff
free
Response are
torsionally
a biaxial of
cover
tensile
two
axial
in-plane
loading
load
and
and
response
conditions.
to
condition These
two
deflect
(Fig. conditions
in
i)
1976
Section
B4.6
February Page
(a)
Primary
Bending
(b) Biaxial For always
case
direction. weak or
This
direction,
stiffness
response
and,
it will
have by
if necessary
that
Direction;
the
strong
only
or
checking
For
(Ref.
the
I) and
direction,
in-plane the
providing
direction. Austin
be
seen
that
practical
the
response buckling
adequate
in
member the
value
strong
for
intermediate
condition
where
Massonnet
(Ref.
the
supports
a biaxial 2)
is
both
inplane
provide
an
only
interest.
blaxlal
in-plane
Therefore,
it
response
is
for
discussed
in
case the
2
is
follow-
paragraphs.
B4.6.6.2.1
Elastic
"The principal
axes
can
actions
In-plane
response
clude
bending For
of
be made
in
the
problems
about
about
both
interaction
equation account
--
Pe
the
(Paragraph principal are
in-plane
blaxlal
due as
range"
principal
for
stresses
independently
which
both
the
elastic
beam-columns
moments
into
Analysis
determination
flexural
take
In
accomplished
occur,
can
primary
Ing
bendlng
Strong
discussion.
It
ing
thal
is
for
does
excellent
of
so
the
Bending.
i, primary
designed
in
15,
24
(Ref.
by
Austin
response,
loading.
Thus
the
is no
coupling
I).
Thus,
solutions
can
simple
subjected
about
there
4.4.6.1.1)
axes
axes,
to bending
to
extended
superposltlon
axial has
be
Equation
stated
4,
Equation
can
of
the
for
elastic
to inof
compression
also
two
results.
and that
bend-
the
be modified
to
4 becomes
+
=
(Mx) e
{ I - P/(Px) e }
+
(My) e
{ I - P/(Py)e
}
I.
(II)
1976
Section B4.6 February 15, 1976 Page25 Equation II is subject to the samerestrictions the _uivalent utilized
as Equation 4.
momentconcept as discussed in Paragraph 4.4.6.1.1
Inelastic
Analysis
The recommendedprocedure for inelastic of the interaction plane response.
--
+
problems are
flange,
restrained
torsionally
various
a high weak
angle
is
possibilities
apply
in
the
and
torsional
wherein
restrictions
} discussed
Response
be
by
sections applied
adequate
are
only
bracing
applicable
to beam-columns or
to beam-
open
as well
section
such
as
during
bend
twist
may
be
involved
axis
and
centroidal
as
are
the widethe
response.
summarized
follows: (a)
If
the
shear
incident, twisting failure
center
the member and
may
bending,
increa_in_
to
rigidity. of
twist
- P/(Py_
here.
should
twisting
to
same
preceding
beam-column apt
the
Twisting
response,
possess
or
also
and
against
(M_)u{l
equation,
summarized
in-plane
tee,
will
Bending
methods
which A
interaction
4.4.6.1.2
of
columns
The
this
Combined The
=i. (12)
(Mx) u { I - P/(Px) e }
Paragraph
in-
Equation I0 then is
+
Using
4.4.6.3
analysis is an extension
equation from in-plane response to include blaxial
Pu
which
can be
for unequal end moments.
B4.6.6.2.2
in
Also,
respond
with
for very
the
by
axis
are
a combination
tendency
thin-walled,
toward
not of
twist
torsionally
co-
as
Sect ion B4.6 February 15, 1976 Page26 weak, short column sections. (b) If the shear center axis and the centroldal incident,
axis are co-
as in the case of the I- or Z- shapes, buckling
by pure twist may occur without bending. The recommendedformulae given herein for both elastic tic analysis are in the form of interaction
and inelas-
equations and are applicable
only to cases with bending in the strong direction.
These equations have
a simple form, are convenient to use, are accurate, and have a wide scope of application. and llcontaln
If a theoretical analytical
solution
investigations
manycommonsections and loadings.
is ueslred, References 4, 6,
of torsional-flexural
response for
However, most of the work has been
done for axial compression and momentsacting to cause only bending about the major principal
axis when the momentof inertia
is muchgreater than about the minor axis (e.g., proposed
by Austin
include
primary
experimental B4.6.6.3.1 For subjected action
or
that
bending
about
is
p __ Pe
both
equations
axes.
available
l-sectlon). can
However,
to verify
be
there
It has
extended are
few
been
to data,
this.
Analysis
elastic
to primary
equation
interaction
analytical,
Elastic the
the
about the major axis
analysis bending
in
of doubly
symmetric
the
of
plane
the web
1-section the
members
following
inter-
recommended:
M +
x fcb
Zx {I
. - P/(Px) e}
'
= 1.
(13)
Section B4.6 February 15, 1976 Page 27 The value of fcb is the nominal extreme fiber stress at lateral
buckling
for a membersubjected to a uniform momentcausing bending in the plane of the web. The value of fcb is given by
J
2El yh fcb
= 2ZxL2
A
complete
study
Reference
ticularly
be
the maximum
interaction
moment
M x.
true
if
The
uniform
when
an
moment
all
shapes
and
appropriate
support
buckling
be
moments
is
=
(14)
given
for
+
that
symmetric
that
the
expressions
by
Clark
and
applied
with
sign
Hill
2)
+
1-shaped
discretion,
in
span,
is
parend
above
can
substituted
of
the
for
equivalent
is
.
(15)
equation
sections,
but
lengths,
adopted. as
cited
and
0.4 MIM 2
effective
the
the maximum
equation
interaction
are
of This
and
determination
(M2)2 the
center
calculated
(Ref.
fcb
the
conservative.
is
the
proper
for
near
opposite
moment
(Ml)2
states
or
interaction
Massonnet
_013
to doubly
of
the
uniform
by
at
excessively are
expression
also
be
is not
However,
as given
provided
should
may
equivalent
Massonnet
sions
end
recommended
limited
moment
for M x.
Meq
arily
lateral
equation
is used
used
this
_ 2E r
8.
When the
of
KGL
I+--
is not can
used
equivalent
However,
little
be
necess-
work
these
has
been
for
moments,
extendone
to
this. Relatively
of nonuniform twisting.
or
Butler,
few
studies
tapered
have
beam
Anderson
been
columns
(Ref.
13),
conducted
which and
fail
on by
Gatewood
the
elastic
combined (Ref.
14)
stability
bending have
and investigated
Section B4.6 February 15, 1976 Page 28 tapered members, and equatlon=my ing
be
conditions
their
used. will
results
However,
be necessary
indicate
that
additional
the
tests
to establish
previous
under
this
interaction
a variety
possibility
of
load-
conclusive-
ly. 84.6.6.3.2 It the
inelastic
has
been
Interaction
adequate used.
for For
Analysis
predicted equation
inelastic
this
case,
by
various
recommended analysis
Equation
sources for
provided
(Refs.
elastic that
analysis
the
fcb: and
the
associated
2Z_L2
interaction
_'
1+
equation
_2E
elastic
lateral
31)
also
modulus
that
be
is
•
2 r
(16)
=I.
Pu
(Ref.
will
and
Is
+
Galambos
tangent
I0
14 becomes
KSL _2Etlyh
I, 2,
fcb
15)
buckling
Zx
should value
{I
(17)
- P/(Px)e}
be to be
consulted used
In
for the
further interaction
study
of
the
equation.
in-
Sect
ion
February Page
15,
29
0 C_ ,! X
0
;I I X
_C C &J
X t_
.3 _C U
0
i
C
II X
0
I
C I I C &J
N m
O0 C
.C C
0 M
_
C 0 &J
I
!
I
I
II
II
tl
II
_-_
C 0 U
X
X
X
0
I::
0 0 O4 C_ D Ul
I
C
!
I _ ] i..._
C "0 0
0 14 C
._.
11o
ii
i
B4.6
[ I
I
---'1r
1976
Section February Page 30
B4.6 15,
1976
_vj'
uJ z Qo o <.,)
N
u o cL el-
1
I
i__
_
-i --_ _L
o P-O
0
,J
Section February Page
I¢
r----i
cll Izl
II ._
,,i oQ
x
cn o
+
_1_
U
_I _
i,i
_l r_ _.._-
_leq
I
0 0
I
_
e
.,,,.4 I@I
(N
V
II
41
II
I
U II
x
+
II
X
x
J
+
_
_
X
Ig
l _
c'M
__ _\L.
,,-3
j
_2
3 1
B4.6 15,
1976
Section B4.6 February 15, Page 32
0 II X 1.1 I--I
I
t_ II
x + 0 tO
II
u
_J c_
j.-_,,'
0 l-J
0
I
II
,...1 + ,-I 0
_"'I I _"_
I
+ (11
_0
0 O
I o_
I
oM
_
_
""_
I
_J
Q o_
!
I
u_ 0 O
,-4: I
I
II
II
0
L___I
1:
"7
II
N
II
N
rQ I-' X
\\
\\\%\\\\
/ I
L &
1976
Section
B4.6
February Page
o_
0 .,.4 4-) U 0 q-I "0
II
,i
N O m
II
N II
o
II
J 4-1 4_ O N
!
II
o_ I
0
_I _ _
O I
_--\
"N
!
m
I
_ =1_
+
0 0
O U O
N _ _I
_
,--I
c'_l
0 U I
oq ! c_
_ "_ _1_ if)
v
,
:_1_
I1 Q
! II
I!
I
I
II
I|
N r_ rO
F-
X
m o
o 0
X
33
15,
1976
Section February Page
34
_J C_ 0 I
I
I
o °M I
_0
,M
_l._.r,i °_
ffl
V
i
II
II
°_,,_
•", J II
u
o II
II
o o
_
II
_ o
_
V .t--_ (N
o
0 .u
t_ II
0
A
0 4.1
II
II o
_1
_4
u
.,ii
o ._I _J
I
II 0 •_4
II 4..i
II I
0 4J
II
o _
o °r,l
m
IT' _J
II 4_
ul
0 4_
c
_
m _J _J
c r_
_J
,.Q
¢t
-,-4
I o
0 4.J 0
°'l
.lii u
i
,-4 kl4
ii
II
CD
C_
B4.6 15,
1976
Sect
ion
February Page
I
II
O
.1..I
_1 "'-
×I_
,-_lm
• _-I
O
I
m
,A ,--i
._
+
°_
+
o
.,-
"O
E I .r-I
x I E
II
II II
(1)
°_ O E
O II N
II
N
II
II
4-1 0 4-1 O
•,4 _ _
O 4..1
0
.,--I 0
m I
II
0
¢'+'
O CD
_ %
°H
N _
I
O .,-I r_
_1_
o
_
0
, •r-
O
m _I_N
_
m % I
_ °,4
.,.4 IJ
4-1
_
_3
4-1
o
-_ .1_1 0
_j
,
_lm I
.I-I
II
II
N
CD
-r.t
O
>-
Ela" I
35
B4.6 15,
1976
Section
B4.6
February Page
15,
1976
36 I
NI_ O _4 co
m O U
II
+
N 4J
U
co
I
'_m
_1_
r----m
II
"J-
I
_1_
_i
_'_
m q
o o
_le, I
0 I u
CO
..
I
_
'
o
o L)
N
o
l_lt_l
0
,
,
CO
I
4.,I L____I II
o m La_ I C_
co io ill ¢:I
iJ
II
_l
II
.IJ
o ,_1
m
,-I
,a
"i ,a
I
I
,_le_ _ II
il II
II
II N
H
4J i
p.-
.o x
0 •-,il(li _
0
>-
I/ H
,,
Section
B4.6
February Page
.0
!
!i
I
0
b q
o3
+
l i
_l_
I
I_I_ _I_
-i o
i
I
,-q
0 L_
II
bZ
_I_]
. _I-'_I _: _
' 0
i_l_
I'_
L_l°_
0
_J °_._ I H -r
12
1
N
l °r'-_
i
.,e 1
_l _
0
II
4-1
II _0 I ¢q
"c ('1
U
H
! .IJ
II
X II O
c_
;2 x F--
i
: I i, _1 i,r:
t:.J ._ >-
!'. _
_
°
i
,--4
_1
__
37
15,
1976
Section February Page
B4.6 15,
38
0 0 !
0
0 II t-I
+ 4-I 0 0
_0 0 0
0
4J
I _N
+
I
!
"PI V
_I_
II
I
_1"_ 4J
+
4J v
O 0
g
@
I_1_
I
o
v-4 _)
m
I=
_
_1"
,._
II II
0 I=
_
N
I:1
_:_
0
I !
oI
.=
!°
I
_
-,.4
_
o
I_ -_1
II
._I
° _ _I
II
L) I
M
,d 4
-r-1
_ I
._-I
tJ
II
,
m
0
I_
°
_1
xl'_-_ @ ,_.-)
(d
Q)
II
-PI
:_
-_I
L__._.J
:_I_
I
I
!
!
II
II
II
II
_-I ._"1
I
..Q (II f--
)
I °-
(1_
0,--_ _-i -el
i!/'
0
u_ 0
¢)
_ 0
r
0 -_I
m.= rj
._ ._I -_I
rj
(_ -_I .u
1976
Section
B4.6
February Page
J 0
_J
=0 4-J 0 _J
N
M F--1
,._
o 0
0
O
ed
0
+
m I
_I_ 0 P_ I0
_
.r-_
I
I
_I_
o
_
,
' 0
a_
_'_
•r-4
_I_
I
O
L__
aJ o c_J Q _0
_
t__l
:3: _Im
_I_
I
II
II
_ 0
II II
II
N
N
_
c_
+
"
M
cd
.Q
O _D
_-_ 0
o c_
0 _
._
_
(_ _-_ 4_
u_"m 0
_J m m
4.1 _ O
1.-1 _
0
r._
,,D
12u
_
N
! fl
_
o 0
_
r_
N • .,.-I t_-4
• O N
N
39
15,
1976
Sect ion B4.6 February Page 40
15,
,-i
m 0 o"_ O0 0 &J o O 0
","4 o
..4
I--
E
--.._ '1
1976
Section
B4.6
February Page
g i-4
o w-f
O_
0 0 0
Z o
U
_
t_
m
IJ
0
_
0
I U
_
X $ ,.-_eO
L
-I
_L
i
C'I" _ -
I
% %
-i
i
E
< 0
.t (_
I
-]
c!
('-_
41
15,
1976
Section February Page 42
• =
0
o
_J
0
•,.4 N I
-
L
-
I
m
!
g.\
z o
,-1
eL.
,
0
B4.6 15,
1976
Section February Page
43
_FE_N_S:
I.
Austin, W. J.: Strength and ASCE, April 1961, page 1802.
2.
Massonnet, C.: Stability Considerations in the Design Columns, Proceedings, ASCE, ST7, September 1959.
3.
Beedle, L. S.: Inc., New York,
4.
Blelch, F.: Bucklin_ Co., Inc., New York,
5.
Cozzone, Sciences,
6.
Seeley, F. and Smith, Wiley and Sons, Inc.,
7.
Clark, J. W.: Eccentrically ASCE, Vol. 120, 1955, page
8.
Clark, J. W., and Hill, A. N.,: Lateral Buckling in___, ASCE, Vol. 86, No. ST7, July, 1960.
9.
Hill, H. N. and Clark, J. W.: Lateral Buckling of Eccentrically Loaded I- and H-Section Columns, Proceedings, First National Congress of Applied Mechanics, ASME, 1952.
J.: May
Plastic 1958.
Bending 1943.
Design
Design
of
Strength 1952. in
the
J.: New
of Metal
Steel
of Metal
Plastic
Frame_,
John
Structures,
Range,
Advanced Mechanics York, 1957. Loaded 1116.
Beam-Columns,
Aluminum
Hill, Alloy
Ii.
Timoshenko, S. and Gere, J.M.: Theory of Elastic edition, McGraw-Hill Book Company, Inc., New York,
12.
Salvadori, M. Transactions,
G.: ASCE
13.
Butler, D. J. Beam-Columns,
and Anderson, G. Welding Research
Wiley
Materials,
and
Sons,
of Eccentrically
Book _
of
John
Transactions,
Beams,
H. N., Hartmann, E. C., and Clark, J. W.: Design Beam-Columns, Transactions, ASCE, Vol. 121, 1956.
Lateral Buckling Vol. 121, 1956.
Steel
Aeronautical
Columns,
I0.
of
McGraw-Hill
Journal
of
Proceedings,
Proceed-
of Aluminum
Stability, 1961. Loaded
Second
1-Columns,
B.: The Elastic Buckling of Tapered Journal Supplement, January 1963.
B4.6 15,
1976
Section B4.6 February 15, 1976 Page44 14.
Gatewood, B. E.: Buckling Loads for Beamsof Variable Cross Section Under CombinedLoads, Journal of the Aeronautical Sciences, Vol. 22, 1955.
15.
Ga]_.mbos,T.
16. 17. 18. 19. 20.
21.
22. 23. 24. 25.
97. 28.
Ine]_etlc
L_.ter_1
Bresler, Boris and Lin, T. Y.: Wiley and Sons, Inc., New York,
_ckling_
Design 1960.
of
Niles, A. S. and Newell, J. S.: Airplane Sons, Inc., Volume II, third edition, New Roark, R. Hill Book
J.: Formulas for Stress Company, Inc., New York,
Timoshenko, S.: Strength Problems, 3rd ed., D. Van 1956.
of
Steel
Hetenyi, M.: Beams on Elastic Foundation, Press, Ann Arbor, Michigan, 1955.
Be_.m_:
Proceedings,
Structures,
the University
Structures, York, 1949.
and Strain, 1954.
Third
John
of
John
Michigan
Wiley
Edition,
of Materials Part II, Advanced Nostrand Co., Inc., Princeton,
Laird, W. and Bryson, A.: An Analysis of Continuous with Uniformly Distributed Axial Load, Proc. of 3rd Congress of Applied Mechanics, ASME, N.Y., 1958.
and
McGraw-
Theory and New Jersey,
Beam-Columns U. S. National
Saunders, H.: Beam-Column of Nonuniform Sections by MatrlxMethods, Journal of the Aerospace Sciences, September 1961. Saunders, Supports,
H: Matrix Analysis AIAA Journal, April
of a Nonuniform 1963.
Beam-Column
Lee, S., Wang, T. and Kao, J.: Continuous Beam-Columns Foundation, ProceedinKs , ASCE EM2, April 1961. Sundara, Foundation,
26.
V.:
Ne_mrk, Moments,
K.
and Anantharamu, ProceedlnFLs
, ASCE,
S.:
Finite
EM6,
December
N. M.: Numerical Procedure for and Buckling Loads, Transactions,
Salvadorl, M. Prentlce-Hall,
G. and Inc.,
Woodberry, 1959.
F.
R.
H.:
Beam-Columns
of
on
on
Multi-
Elastic
Elastic
1963.
Computing Deflections, ASCE, Vol. 108, 1943.
Baron, M. L.: Numerical New Jersey, 1962. Analysis
on
Beam-Columns,
Methods
Design
in EnHineering,
News,
April
Section B4.6 February 15, 1976 Page 45 29. 30. 31. 32.
Bruhn, E. Tri-State
F.: Analysls and Desig n of Flight Veh_le Offset Co., Cincinnati, Ohio, 1965.
Griffel, W.: Engineering,
Method for Solving September 14, 1964.
Beam-Column
Guide to Desisn Criteria Research Council, Engrg,
for Metal Compression Foundation, 1960.
Plastic Design in Steel, Inc., New York, 1959.
American
Institute
Structures,
Problems,
Product
Members,
of
Steel
Column
Construction,
v
SECTION B4.7 LATERAL BUCKLING OF BEAMS
--.._j
Section
TABLE
B4.7
OF CONTENTS Page
B4.7
...._
Lateral
Buckling
4.7.1
Introduction
4.7.1.1
General
4.7.2
Symmetrical
4.7.2.1
I-Beams
of Beams
1
......................
1
................................ Cross
Section Sections
.........................
1
.........................
5
..................................
Ie
Iklre
Bending
II.
Cantilever
III.
Simply
IV.
Simply
5
..........................
Be,am,
Load
at End
...............
Supported
Beam,
Load
at Middle
Supported
Beam,
Uniform
4.7.2.2
Rectm_mlar
4.7.3
Unsymmetrical
4.7.4
Special
Conditions
4'.7.4.1
Oblique
Loads
4.7.4.2
Nonuniform
Cross
4.7.4.3
Special
Conditions
4.7.4.4
Inelastic
4.7.5
RE FERENCES
Beams
End
5
...........................
I - Sections
.....................
............................ ..............................
Buckling
Section
...................... ........................
............................ ..............................
B4.7-iii
Load
6 ........ .........
7 8 10 13 14 14 14 14 15 16
Section B4.7 15 April, 1971 Page 1 B4.7
LATERAL BUCKLING OF BEAMS
4.7. i
INTRODUCTION
A beam of general cross section which is bent in the plane of greatest flexural rigidity may buckle in the plane perpendicular to the plane of greatest flexural rigidity at a certain critical value of the load. Concern for lateral buckling is more significant in the design of beams without lateral support when the flexural rigidity of the beam in the plane of bending is large in comparison with the lateral bending rigidity. Consider the beamwith two planes of symmetry shownin Figure 4.7- i. This beam is assumedto be subjected to arbitrary loads acting perpendicular to the xz plane. By assuming that a small lateral deflection occurs under the action of these loads, the critical value of load can be obtained from the differential equationsof equilibrium for the deflected beam (Ref. l). Beams with various cross sections andparticular cases of loading and boundary conditions will be considered in this section. 4.7.1. i
General
The expressed
f
Cross
Section
general expression for the elastic by the following equation (Ref. 3).
cr
S (KL) c
.y
2
2g + C3k+
buckling
(C2g+
C3k) 2+
strength
of beams
__ w I y
1 + GJ(KL
can be
2
(1) where: f
=
critical
E
=
modulus
of elasticity,
I
=
modulus
of inertia
=
distance twisting,
between in.
or
Y
L
stress
for
lateral
buckling
lb/in. of beam
Doints
2 cross
of support
section against
about lateral
the
y axis, bending
in. and
Section 15 April, Page
B4.7 1971
2
o P
p m
2 !
0
Z
m
Y -U
|
!
!
FIGURE
4.7-i
LATERAL
BUCKLING
-
Section
B4.7
15 April, P,_e C
torsion warping
constant,
1971
3
in. 6
W /
g
distance
___
from
shear
load (positive when other%vise),
shear
G
J
S
to point of application shear
center
of transverse
and negative
in.
modulus
torsion
__
center
load is below
of elasticity, Ib/in.2
constant,
in.4
=
section modulus
for stress
k
=
c
e
=
distance
from
centroid
and compressi(m
in compression
flange,
in. 3
C
CI, C2, C3, K=
+
i m 21 x
rj (x 2 _ y2) dA, A
constants
In the equation pass through
the shear
beam in such a mmmcr directions as the beam
depend
coefficients
mainly
of Ci, C2, C3,
depend
to centroid, flange,
mainly
_)sitivc if bct_vcen
in.
on conditions
of loading
and support
(Tsl)Ie 4.7- I).
above, center
it is assumed
that the lines of action of the loads
and the ccntroid,
and that the loads attach to the
that their lines of action remain parallel to their initial deflects. It is also assumed that the shear center lies
on a principal axis through
The
shear center
which
for the beam
in.
the centroid.
Ci, C2, C3, and K
on the conditions
of loading
and K given in Table
4.7-I
are derived
in Reference
and support
for the beam.
have
been obtained
from
3.
They The
values
Reference
3.
Section
B4.7
15 April, Page Table
4.7-
I.
Values
of Coefficients Strength
in Formula
for Elastic Buckling
of Beams
VALUE
OF COEFFICIENTS C
M
M
SIMPLE SUPPORT
1_--4
K
C1
1.0
1.O
1.0
05
1.0
1.0
1.0
1.31
0.5
1.30
I0
1.77
0. S
1.78
1.0
2.33
0.5
229
1.0
2.56
0.S
2.23
1.0
1.13
0.45
0.5
0.97
0.29
1.0
1.30
1.SS
0.5
0.86
0.82
1.0
1,35
0.55
O.S
1.07
0.42
1.0
1.70
1.42
0.5
1.04
0,84
1.0
1.04
0.42
FIXED SIMPLE
l
SUPPORT
FIXED M SIMPLE SUPPORT
+
t FIXED SIMPLE SUPPORT FIXED SIMPLE SUPPORT FIXED w SIMP.LE SUP PO.R.T
t
+ FIXED w SIMPLE SUPPORT FIXED P SIMPLE
+
SUPPORT
+ FIXED
C2
t---+:--! =4
SIMPLE SUPPORT FIXED SIMPLE
+
SUPPORT
I FIXE D CANTILEVER
BEAMS
WARPING RESTRAINED !1 AT _,UPPORTED
WARPING
END
1.0
1.28
RESTRAINED 10
AT SUPPORTED
END
2.05
I
3
6.S
P
12
4
RESTRAINT
LOADING
CASE NO.
1971
0 64
2.5
Section
B4.7
15 April, 1971 Page 5 4.7.2
SYM ME TRIC AL SE CTIONS For
a point to zero.
sections
that
(channels, zee The expression
f
_
are
about
2g+
z
(C2g)
horizontal
w
+ _I
a
1 +
axis
GJ (KL) ; EC
y
Values
of C t, C 2, and K can be obtained
4.7.2.
i
or about
from
2
(2)
w
Table
4.7-1.
I-Beams
Given conditions be used.
below
are
solutions
for I-beams.
I.
value
the
sections, etc.), the quantity k in equation (1) is equal for elastic bucMing strength can then be written
y _KL_ 2
or
symmetrical
Pure
For
cases
particular not considered
cases
of load
below,
and boundary
equation
(2)
should
Bending
If an I-beam moment M
of the
for
is subjected is
to couples
M at the o
ends,
the
critical
o
(M)o
This
cr
-_
expression
Lrr
EIy GJ
can be represented
1 q
_--_L---_/
in the
(3)
form
EI GJ (M)
=
o
K 1
y
L
cr
where
K1 = Values
of
K 1
_ J
are
w
I + Ec GJLT_2 given
in "Fable 4.7-2.
(4)
Section
B4.7 v"
15 April, Page
Table 4.7-2. L2GJ -EC
Values
0
0. t
of the
Factor
K 1 for
i
2
10.36
7.66
I-Beams
4
in Pure
6
8
5.85
5.11
4.70
32
36
40
3.59
3.55
3.51
1971
6
Bending
10
12
W
K1
L2Gj EC
oo
31.4
16
20
24
28
3.73
3.66
4.43
4.24
100
oo
W
Kl
3.83
4.00
II.
of the
Cantilever
Beam,
If a cantilever end cross section,
P
=
cr
K 2
Load
3.29
at End
beam is subjected to a force applied the critical value of the load P is
at the
centroid
L2
(5)
where 4.0t3 K 2
For
values
=
of
L2GJ greater
EC W
4.7-3.
For
values
of
values
of K 2.
0.1,
values
of
K2
are
given
in Table
L2Gj less
EC W
for
than
than
0.1,
see
Reference
1, page
258,
Section
B4.7
15 April, Page Table
4.7-3.
L2Gj
Values
of the
Factor
K 2 for
Cantilever
Beams
1971
7
<)[ I-Section
0.1
EC W
K2
44.3
L2GJ
15.7
10
EC
12.2
10.7
9.76
S 69
12
14
16
24
7.20
6.96
6.73
6. 19
8.03
4O
,)r)
W
7.5_
K2
III.
Simply
Supported
supported
If a simply the
eentroid
P
Values
er
of the
middle
=
,/EIyGJ L2
K3
of K 3 obtained Table
.
L()ad
I-beam
(.'ross
at is
secth)n,
the
Reference
I, page
Middle subjected
to
critical
264,
Values of K 3 for Simply Concentrated Load at
L,,md
L l (;J
a l,m(I
value
,ff the
are
given
Supported Middle
w
At
(t 4
4
_
11;
21
2t2
4_
Iplmr _lallgt.
_il
5
2il
('{'ntl'OllJ
W_;
|
31
117
-tq_
f;4
_11
1
lti
9
15
4
15
II
14
!1
[4
!)
27,
_,
21
h
211
{
1!1
_,
I_
o
:1_
2
FILl 3
27
1
25
1
_'_
I, 2 (1.1
L,_ad Apph¢_l !'q
P applied load
I-;(" w
!l(i
]fi(t
2.1'_
121_
41)0
|'lql.r Fi:m_u'
13
ql
15
It
15
('lqll[rl,ld
1_4 3
1_.
I
17
l'langc
22
21
7
21
I
I
9
I
in Table
I-Beams
I-2("
AptAt_,d
I. langr
5.64
at
Pis
(6)
from
4.7-4(a)
Be.am,
5.£7
15
3
t5
l
15
ti
15._
17
5
17
I
t7
2
17
2
Lql
u
193
19
i1
I_
7
4.7-4(a) With
Section
B4.7
15 April, Page If lateral
support
in Table
4.7-4(b).
Table
is provided
4.7-4(b).
L2Gj EC
Values
0.4
4
8
466
154
114
at the
of the
middle
Factor
of the
beam,
for
Lateral
K3
values
of
Support
16
32
96
128
86.4
69.2
54.5
52.4
1971
8 given
K 3 are
at Middle
2OO
4OO
w
K3 If lateral
support
in Table
4.7-4(c).
Table
L2Gj EC
is provided
4.7-4(c).
Values
at both
of the
ends
Factor
0.4
4
8
16
24
268
88.8
65.5
50.2
43.6
of the beam,
K 3
for
values
Lateral
32
49.8 of
K 3 are
Support
64
47.4 given
at Ends
128
200
30.7
29.4
320
w
K2
IV.
Simply Supported Beam, If a simply
critical
value
of this
supported
load can
40.2
Uniform
I-beam
be expressed
34. i
28.4
Load
is subjected in the
to a uniform
load
q,
the
form
EIyGJ (ql)cr
=
K4
L2
Values of IQ obtained from Reference
(7)
l, page 267, are given in Table 4.7-5(a).
Section 15
Page Table
4.7-5(a).
Values
of K 4 for
Simply
Supported
I-Beams
with
B4.7
April,
1971
9
Uniform
Load
F"
Load Applied At
L 2 GJ/EC w 0.4
4
8
16
24
32
48
Upper Flange
92.9
36.3
30.4
27.5
26.6
26.
Centroid
143.0
53.0
42.6
36.3
33.8
32.6
31.5
223.
77.4
59.6
48.0
43.6
40.5
37.8
Lowe
1
25.9
r
Flange Load
L 2 GJ/EC w
Applied At
64
80
128
200
280
3(;0
400
Upper Flange
25.9
25.8
26.0
26.4
26.5
26.6
26.7
Centroid
30.5
30.1
29.4
29.0
28.8
28.6
28.6
36.4
35.
33.3
32.
1
31.3
3 1.0
30.7
K 4 is
given
Lower Flange If the
beam
has
Table
lateral
1
support
4.7-5(b)
.
at
Values
Load
the
middle,
of K 4 with
Support
Table
4.7-5(b).
at Middle
L 2 GJ/EC
Applied At
Lateral
by
W
0.4
4
8
16
64
96
Flange
587
194
145
112
91.5
73.9
71.6
69.0
Centroid
673
221
164
126
101.
79.5
76.4
72.8
774
251
185
142
112
85.7
81.7
76.9
128
200
Upper
Lower Flange
Section
B4.7
15 April, Page If the Table
beam has 4.7-5(c).
lateral
Table
L2Gj EC
support
4.7-5(c).
at both
Values
0.4
4
8
488
16i
i19
ends
of the
of K4 with
beam,
Lateral
K 4 is given
Support
1971
i0 by
at Ends
i6
32
96
128
200
400
91.3
73.0
58.0
55.8
53.5
5i.2
w
K4
4.7.2.2
Rectan_lar For
rigidity
C
w
f
Beams
a beam
of rectangular
can be taken
= cr
y (KL) 2
S
section
as zero;
therefore,
2g +
of width
(C2g) 2 +
e
b and height
equation
(2)
GJ(KL) _ EI
h,
the warping
becomes
2 (8) y
If the load is applied at the centroid, g = 0; therefore,
f
cr
=
C 1 _2_"_yGJ S
(9)
KL c
3
By taking
G=--_-
f
cr
=
1.86
E,
K
J=0.31hb
C1
Eb 2 Lh
3, I=
hb 3, and S = bh-_2 c 6
(iO)
or
Eb 2 f cr
= Kf
Lh
where
Kf
=
i. 86 C 1 K
(ii)
Section 15
April,
Page
Values
of
cases.
Kf
For
Table
4.7-1
of the
given
are cases for
given
in
not
available
values
Equation
Figure
4.7-2 in "[',able
of C 1 and
8 must
be
and
K for
used
for
4.7-6
use
loads
Table
4.7-6
and
Figure
in equation not
for
applied
B4.7 1971
11
several
load
4.7-2,
refer
to
10. at the
eentroid
for
any
cases.
3.0
_'-L
1 Kf
2.0
t"
1.0 0
L _
ill
m
111111 0.10
1
0.20
I 11
0.30
11 0.40
0.50
LATERAL
STABILITY
c/L
FIGURE
4.7-2
CONSTANTS OF
FO[_ DEEP
DETERMINING
RECTANGULAR
'FILE BEAMS
Section
B4.7
15 April, Pa_e
Table 4.7-6.
Constants
for
Determining
Rectangular
Side
View
the
Lateral
Beams
Top
View
L/2 L/2
6
7
8
9
I0 11
12 1
17
Stability
12 of
1971
Section
B4.7
15 April,
_v
page 4.7.3
UNSYMMETRICAL
1971
13
I-SECTIONS
f_
about
For I-beams the horizontal
approximate
f cr
equation
=
symmetrical about axis and subjected for the
elastic
(KL) 2 I e + J _S_ EI c
the vertical to uniform
buckling
e2 +
C Iw y
stress
axis, bending
but unsymmetrical moment, the following
should
( 1+ GJ(KL)2_ ,r2ECw
be used
j1/
(Ref.
3).
(8)
Section
B4.7
15 April, Page 4.7.4
SPECIAL
4.7.4.
i
Loads
case
of a beam
subjected
to a uniform
not lie in one of the principal planes of the cross References 4 and 5. Reference 5 shows that the takes
the
replaced the x axis
4.7.4.2
14
CONDITIONS
Obliclue
The
1971
form
of equation
by the
expressicn
is the
axis
Nonuniform
lwith
C 1= C 3=
I:Ix/Ix,y
1.0,
bending section equation C 2= 0.
moment
to the
Cross
Section
plane
does
is discussed in for the critical The
in which
normal
that
y- and x- denote of bending.
quantityI
moment
Y
principal
is
axes
and
A concise solution for the lateral buckling strength of a tapered rectangular beam, subjected to constant bending moment and simply supported at the ends, is presented in Reference 6. Tapered cantilever I-beams have been investigated experimentally in Reference 7.
4.7.4.3
I-beams
Special End Conditions Solutions have under a load
acting perpendicular with various degrees plane.
Each
fixity.
In all cases,
rotation
that
type
about
to the principal plane having of restraint against rotation of restraint
beam
was
the beams
a longitudinal
Frequently, extends over
cantilever
been obtained (Ref. 8) for the buckling (either uniform or a concentrated load
a cantilever two or more may
considered
were
axis
considered
perpendicular
beam supports.
not be fixed
against
maximum bending of the beam about
to vary
between
to be fixed to the
plane
constant,
Cw,
to be zero
in the
rigidity either
zero
lateral
bending
ends
of the
cross
of the
buckling
formula.
and
and complete
at the
is simply the overhanging end In this case, the supported
but some restraint is supplied by continuity at the support. conservative estimate of the buckling strength can be made warping
strength of at the center)
beam
against section.
of a beam end of the flanges
In such cases, by considering
a the
Section 15 Page
If a beam for any one
is continuous
beyond
span are generally
one or both supports,
between
the cases
B4.7
April,
1971
15
the end conditions
of complete
fixity and simple
F support
covered
References
4.7.4.4
in Table
9 and
I.
The
effect of continuity has been
It is explained
in Reference
II that it is possible
buckling
tangent
E t, corresponding
modulus,
elastic modulus, show
buckling i2 and
E,
stress 13).
when
Tests
below
in the inelastic range to the maximum
in the elastic buckling gives
the bending
of aluminum
i. 0 to -i. 0, resulted
percent method.
stress
that this method
with the ratio of the moment from
in
Inelastic Buckling
to the theoretical
beams
discussed
10.
to 39 percent
formula.
a close
moment
alloy beams
subjected
at one end to the moment in experimcnt.al above
the values
in the beam
for the
Tests
on aluminum
alloy
to the experimental
along the length to unequal
(Ref.
end moments,
at the other end varying
critical stresses computed
limit
stress
approximation is constant
to obtain a lower by substituting the
varying
by the tangent
from
8
moduhls
Section
B4.7
15 April, Page
1971
16
REFERENCES
D
3.
Timoshenko,
S. P., and Gere,
McGraw-Hill
Book
Structural Design Manual, Clark, of the
J. W., American
Division, .
.
Company,
and Hill, Society
Go.diet,
J.
Flexural-Torsional
Bulletin 1942.
No.
McCalley,
Cornell
.
Krefeld,
e
.
W.
I0.
J.,
Butler,
Beams.
The
ASCE,
Salvadori, ASCE, Nylander,
of Bars
Engineering
of Open
Section.
Experiment
Vol.
D.
Welding
M. Vol.
G:
t20, H:
81,
Torsion,
J.,
and
Anderson,
Journal
S.,
Station,
Vol. 121,
G.
Research
and Tung, I-Beams.
B:
Welding
Supplement,
T. P: Separate
Cantilever
March,
1959.
Lateral Buckling of No. 673, Proceedings
1955.
Lateral i955,
Transactions of the ASCE,
Buckling p.
of I-Beams.
Transactions
of the
1165.
Bending
and
Lateral
Buckling
of I-Beams.
Bulletin No. 22, Division of Building Statics and Structural Royal Institute of Technology, Stockholm, Sweden, 1956. II.
Proceedings Structural
Lateral Buckling of a Tapered Narrow Rectangular of Applied Mechanics, September, 1959, p. 457.
Austin, W. J., Yegian, Elastically End-Restrained of the
Buckling
University
Clark.
Lee, L. H. N: On the Beam. ASME Journal
Wedge
1961.
R. C., Jr: Discussion of Paper by H. N. Hill, E. C.
Hartmann, and J. W. 1956, p. i5.
.
York,
H. N: Lateral Buckling of Beams. of Civil Engineers, Journal of the
1960.
28,
Theory of Elastic Stability.
Northrop Aircraft, Inc.
July, N:
J. M:
Inc., New
Bleich, F: Buckling Strength of Metal Company, Inc., 1952, pp. 55 and 165.
Structures.
Engineering,
McGraw-Hill
Book
Section
B4.7
15 April, Page RE FERENCES
(Concluded)
1971
17
:
f
i2.
Dumont,
C.,
Aluminum t940. 13.
Clark,
Alloy
J.
Subjected
W.,
Hill,
1957.
H.
I-Beams
Mechanics
N:
Lateral
Subjected
and Jombock,
to Unequal
Engineering July,
and
End
J.
Division,
to Pure
R:
Moments.
Stability
Lateral Paper
Proceedings
of Equal-Flanged
Bending.
Buckling No.
1291, of the
T.
N.
770,
NACA,
of I-Beams Journal ASCE,
of the Vol.
83,
SECTION B4. 8 SHEAR BEAMS
Section B4.8 15 October 1969
TABLE
OF CONTENTS Page
Shear
Beams
....................................
Plane-Stiffened 4.8.1.1
Shear-Resistant
Stability
of Web
Beams
Panel
Transverse
Stiffeners-Flexural
II.
Transverse
Stiffeners-Effect
L,,cation
Stiffeners-Flexural
IV.
Transverse
and Central
Longitudinally Compression Combined
4.8.1.2
Flange
4.8.1.3
Rivet I. II.
III.
Stresses Design
5
.........
Thickness
Torsional
Longitudinal
and
Plates
20 21 21
..........................
22
..............................
Design
Approach
4.8.1.5
Stress
Analysis
4.8.1.6
Other
22
............................. Procedure
of Web
Tension
Field
Beams
4.8.2.1
General
Limitations
4.8.2.2
Analysis
of Web
4.8,2.3
Analysis
of Stiffeners
Design
t0
20
.............................
Web-to-Flange
8
16
...............................
Stiffeners-to-Flange
........
. . .
in Longitudinal
...........................
W eb-to-Stiffener
Rigidity
Stiffeners
..............................
Design
Types
Only
7 and
Stiffened Web ...............................
4.8.1.4
Plane
Rigidity
..............................
Transverse
VI.
3 4
of Stiffener
Ill.
V.
..................
.........................
I.
RIg('!
4.8.2
1
22
......................
23
......................
23
.......................... and Symbols
25 ..................
............................. .........................
B4.8-iii
26 28 38
SectionB4.8 i5 October 1969
TABLE
OF CONTENTS
(Concluded) Page
4.8.2.4
Analysis
of Flange
4.8.2.5
Analysis
of Rivets
4.8.2.6
Analysis
of End of Beam
4.8.2.7
Beam
Design
........................... ............................ .......................
...............................
B4,:8-iv
46 47 48 50
t
Section B4.8 15 October 1969
f--
DEFINITIONS t t U
b b C
d C
thickness
of web
thickness
of attached
spacing
of intermediate
clear
web
clear
depth
effective
o_
plate
plate
;
OF SYMBOLS
stiffener
distance
of web :_,:t
I(:g
stiffeners,
or width
between
of unstiffcned
web
plate
stiffeners
plate
ratio;
e
= b/d
c
for
unstiffened
w.eb plates,
or web
plates
reinforced
by single-sided
stiffeners; = bc/d c for web
plates
reinforced
D
flexural
rigidity
of unit width
E
Youngts
modulus
#
Poisson's
I
moment
yL
limiting value of T
K
critical
shear-stress
limiting
value
by double-sided
of plate
= Et3/12(
stiffeners 1-u 2)
ratio of inertia
of stiffener
about
base
of stiffener
(next
to web)
coefficient
S
KL T}S'_B
Af
of K
S
plasticity
coefficients
elasticity _=1
for
area
of tension
stress
which above
or compression
account the elastic
flange
B4.8-v
for
the
limit;
reduction within
of modulus the
elastic
of
range,
Section
B4.8
15 October
DEFINITIONS p-D
C
rivet
OF SYMBOLS
i969
(Continued)
r
factor P
r
D
rivet
diameter
r
fb
applied
bending
f
applied
web
critical
(or
S
F
stress
shear
stress
initial)
buckling
stress
in shear
S cr
M
applied
P
rivet
q
applied
web shear
S,V
applied
transverse
A
parameter
h
height
BT
=
EIT,
"/T
=
BT/Db,
bending
moment
spacing
used
shear for
of beam flexural
flow
type
between rigidity
nondimensional
on beam of shear
beam
centroids
selection
of flanges
of transverse
stiffeners
flexural
rigidity
parameter
for
transverse
stiffeners torsional
CT
rigidity
BL
=
EIL,
TL
-
BL Dd ' nondimensional c torsional
CL FL
flexural
=
of transverse
rigidity
rigidity
stifleners
of longitudinal
stiffeners of longitudinal
stiffeners
,_arameter stiffeners
C L/Ddc
B4.8-vi
for
longitudinal
stiifeners
Section
B4.8
15 October
1969
f
DEFINITIONS
FT
C T/D
G
modulus
KL H
limiting
distance critical
F B
SYMBOLS
(Concluded)
de of rigidity value
of K
for
web
reinforced
by
vertical
stiffeners
S
central nl
OF
horizontal from (or
stiffener edge
initial)
of plate buckling
to longitudinal stress
stiffener
in bending
eY
I
stiffener moment
of inertia for longitudinal
O
B4.8-vii
stiffener
and
a
Section B4.8 15 October 1969 Page
4.8.0
SttEAR The
riveted
1
BEAMS
analysis
and design
or welded
to web
of a metal
members
beam
are
composed
of flange
eommon
problems
effieient
type
members
in aerospace
struetural
design. Shear
be_'uns
denote
the
moment
resistanee
the
extreme
fibers,
connecting The
the
generally of the
based
web
may
type
depend
economy
the
If,
however, shear
as a tension-fiehl
on many
of weight,
bc'anl
most
factors. tt.
Wagner
of weight:
4V h
wh ere V
= shear
load,
h
= depth
of web,
lb
and in.,
of beam.
which
In shear
are
is provided
beams
eoneentrated
by the
near
thin web
caps. beams
response
within
causing
flanges,
resistance
of shear
the web
o1" shear
the economy
shear
desit,m
upon
is known
by the
and compression
and
of load
beam
the
beam1.
application
The
and
is inhibited
shear-resistant
the
is provided
tension
analysis
a particularly
as structural
to the
design
ultimate
applied
components
shear
load,
the web
is allowed
to be resisted
in part
the
loads. beam
to buckle
are If bueMing
is known :ffter
by tension-field
as a
some action,
beam. suitabl_'
for
One of the
most
[ 1 ] offers
a particul:_r" common
the following
dcsiRn
factors criterion,
apl_lication is based based
on upon
SectionB4.8 15 October 1969 Page 2 with
the
when
recommendation
A > 11 the
shear-resistant
choice
between
of web
to be used.
The data
the
criterion
designs
for
Shear-resistant Paragraphs
4.8.1
have
shear-resistant beams and
4.8.2
is best.
other
should
techniques
A < 7 the
web
two; factors
above
and design
weight
that when
than
tension-field When
weight
not be adhered become
web
7 < A < 11,
will
then
to rigidly,
available
that
is best,
and
there
is little
determine
however,
have
resulted
the
because in reduced
beams.
and tension-field respectively.
beams
will
be discussed
type
in
new
Section B4.8 15 October 1969 Page
3
/f-'_.
4.8.1
PLANE-STIFFENED As previously
not buckle The
stated,
under
analysis
the
of this
beam
of the tension
stiffeners
are
thickness, weight the
of the
thickness
strength The
shear
plate
requirements)
weight
The
1.
3.
increase
it does beam.
is,
with
the
[lange,
and
than
from
rather
axial,
the a
the
usually
(just
stability be less thickness
between
and
with
solution
beams
web
by increasing
be economical
as possible
tr:,nsverse
the transverse of the
be increased
economical
in the
of the
of the
Elements
compression
always
of shear-resistant
bending,
Elements under
will
buckling
shear, 2.
A more
stiffeners
criteria
Local
That
standpoint
not always
as small
by an adequate design
can
"rod increasing
of such
introduced
will
used.
of the
that
to as a shear-resistant
the
a stability
web
a desigm
material
is so designed
one of stability.
the web,
from
web
standpoint.
of the
but such
is referred
flanges,
BEAMS
whose
is primarily
stress
stability
RESISTANT beam
loads
all designed
allowable
The
a shear
applied
exception
material
SHEAR
the
transverse stiffeners
respect
is obtained
thick
enough
the
to the by keeping
to fulfill
by introducing than
its
stiffeners.
additional
weight
of the plate. may
be stated
stiffeners
under
stresses must
not
as follows:
must
combined not occur.
buckle
locally
stresses.
flange
must
not buckle
locally
under
the longitudinal
stresses. If the
criteria
above
are
not met,
the
procedures
of analysis
that
follow
are
applicable. Design following
analysis paragraphs.
techniques
for
shear
resistant
beams
are
given
in the
not
SectionB4.8 t5 October i969 Page4 4.8.1.1
Stability
The
of Web
critical
Panel
buckling
stress,
F
S
of a web
'
panel
of height
d
C'
width
b,
cr
and
thickness
F
t,
s
is given
by
K 7r2E 12 ( l-p2 )
for
_b
dc
(1. a)
S
or
F s
K 7r2E
2
Us
12 (l-pz)
,
where
K
S
is a function
by the stilfencrs Fil4urc increases
(1. b)
c
of the
aspect
ratio,
d /b,
and
e
the
edge
with
how the
decreasing
value
values
of the critical of the
aspect
shear
stress
ratio,
b/d
edge are
In vicw stiffeners, made
so effective
of the
also
and
included
indicates
effects
the
of obtaining
relationship
buckling the
figure
in increasing
of theoretical the
the
This
importance
a number
to determine
stiffeners, have
conditions.
stress
and
buckling the
correct
desi6m
of the
the
size
stiffened torsional
for
of rectangular
rigidity,
webs.
of intermediate
and spacing plate.
a number
why vertical
investigations
web
Ks,
C
clearly
stress
experimental
between
of stiffener
quite
cocl ficient,
(d _b), C
stiffeners
offered
and flanges.
1 shows
of different
restraint
have
been
of intermediate These
stiffener
investigations thickness
Section
B4.8
15 October Page
and
rivet
location,
stiffness. given
The
central
longitudinal
procedure
for
the
stiffness,
desi_ma
and
and
5
single-sided
analysis
of these
1969
or effects
double-sided will
be
below.
16
14
12
\
CRITICAL SHEAR
STRESS
COEFFICIENT K
10 $
\
PLATE ON
CLAMPED
ALL
FOUR
EDGES
\ -"v---PLATE
SIMPLY
SUPPORTED ALL 4
i.0
FOUR I
1.5
EDGES I
2.0
1.
K
VERSUS
ASPECT
#%
3.O
2.5
ASPECT
FIGURE
''f ON
RATIO
RATIO
FOIl
3.5
Go
10/d c
DIFFERENT
EDGE
RESTRAINTS
S
I.
Transverse
Stiffeners
Thboretieal
between and these
Ks
and
boundary
the
has
been
points
be
Rigidity
performed
noted
2 is a typical that
of discontinuity
Only
[ 2-4
parameter
Figxwe
It will These
Flcxural
nondimensional
conditions.
parameters.
K /3/ curves. S
work
--
points
] to ascertain EI 3_ (=D--b) plot
for
showing
of discontinuity denote
where
the
relationship
various the
aspect
ratios
relationship occur
changes
on in the
of the buckle
Sectioa
B4.8
i5 October Page
pattern
occur.
It can
there
is no appreciable
value
of _,
since
also
be seen
increase
higher
values
30I
that
when
in Ks.
This
would
result
a certain value
V
COEFFICIENT 10
25
50
75 ¥ =
2. THE FRALICH
AT THE
design.
PANEL SIMPLY SUPPORTED ON ALL FOUR EDGES-
I/
CRITICAL SHEAR STRESS
FIGURE AND
_'L or limiting
...... VALUE OF.
ORTHOTROF
Ks
of _ is called
in an inefficient
....
25
15
of _, is reached,
7 I
2O
value
1969
6
100
125
175
EI/(Db)
THEORETICAL K/_ RELATIONSHIPS DERIVED BY STEIN FOR INFINITELY LONG PLATES SIMPLY SUPPORTED
EDGES
AND REINFORCED
BY STIFFENERS
0.5d
APART. C
For
design
purposes,
it should
be noted
thickness
is equal
7L
=
27.75
5, L
=
21.5
that
the following these
relationships
to or greater
(d e)-2
relationships
_ 7.5
((_e) -2 _ 7.5
than
the
are
for
valid
thickness
for double-sided single-sided
should only
for
of the web
stiffeners, stiffeners,
be used.
However,
stiffeners
whose
plate.
(2. a) (2. b)
Section
B4.8
15 October Page
K L
=
7.0 + 5.6
=
b /d
(OZe)-2 for both single-
1969
7
and double-sided
stiffeners,
(3)
where
a e
c
a
=
b/d
stiffeners
parameters
Stiffeners
--
have been
Effect
(b->d)
of Stiffener
than the web-plate
investigations in Figure
of single-sided
[ 5].
to evaluate
3.
It was
The
their
shown
Thiclmess
and
out to investigate
carried
that affect the behavior
legs thinner
c
c
Investigations
shown
(b _-d ) and
c
Tr:msverse
in these
stiffeners
c
for single-sided
e
II.
for double-sided c
that
the
on
stiffeners having
Ks,
primary
Location
fully the various
parameters
effect
Rivet
attached
tu/t and c/t were
where
influence
studied
t,
t u,
and
c are
on
K
was
the
s
as value
c and that the tu/t variation had little effect on K
S
.
Figure
parameter
4 shows (t
/t)
the
(t/c)
variation
1/2.
From
of the
K
S
with
figure
the it
U' ttj !
'"
I
can be seen that for the stiffener to provide
l-[
't
wdue
of K S equal to KL,
it is necessary
(t /t) (t/c) '/2 -> 0.27
a
that
.
(4)
U
FIGUR
E 3. tu ,
VALUES AND
OF
t,
This
equation
can
be
used
to determine
the
e position
of
the
rivet
for
fully
effective
stiffeners
Section B4.8 15 October i969 Page
for
various
value
of K
values
of tu/t.
should
be reduced
S
For
values
of (tu/t)
as shown
(t/c)
in Figure
1/2 less
8
than
0.27
the
4.
25
. ..I I / KLEC UAT,O. (3>
// 2O
GROWTH
LINEAR
K -VALUE
15
MARKED
A
/T I
10 20
0
40
60
80
100
120
Y
FIGURE
4.
VARIATION
0.4
0.2
0
OF K
WITH
THE
0.6
0.g
(tu/t)(t/c)
STIFFENER
THICKNESS
S
AND RIVET III.
Transverse
Stiffeners
Theoretical
results
between ratio
K
s
and
the flexural
of torsional
longitudinal disposed
the
midplane
FIGURE
and Torsional
been
[4,
obtained
to flexural
It was
PARAMETER
-- Flexural
rigidity
rigidity
edges. about
have
LOCATION
assumed
that
of the web
5. VARIOUS
6-8 ] that
of the stiffeners rigidity the
for
Rigidity
for simply
provide various
were
as shown
in Figure
SHAPES
values
supported
stiffeners
plate
relationships
or clamped
symmetrically
OF STIFFENERS
of the
5.
r
Section
B4.8
15 October Page
Figures
6 and
7 give
K
/31 relationships
for
b = d and
1969
9
b - d/2
with
the
S
longitudinal for
edges
b = d ,and
of CT/B
simply
b = d/2
T plotted
is
supported.
with for
the
Figures
longitudinal
a closed
circular
8 and
edges
clamped.
tube.
This
K
0.6
value
lo
AND
.r/..
s
/3/ relationships
The is
cT/B =
u
Ks
9 give
maximum
value
0.769.
t
0.769
__
_-I_ _ LONGITUDINAL EDGES SIMPLY SUPPORTED
9
8
-_
_
#
c
dc
THEORETICAL BUCKLING
P/M MODES
1/0
7
/
3/1 2/I
6
/
4/I
24
FIGURE
From buckling place
these
figures
resistance, of the
a thin-walled
6.
K S VERSUS
YT
it is
that
Ks,
open-section circular
are
shown
obtainable
stiffeners tube
for
IIELATIONStIIPS
very by
significant using
stiffeners
used. (CT/B
b :-d
increases
closed-section
so frequently the
FOR
T
For = 0. 769)
C
in the stiffeners
ex,'unple, the
in by
gain
using
in K L
Section B4. S 15 October Page
35--
o._ _-_
30
0.2-0.4 -._ O.OS-
1969
i0
° 0.6 0.1--_
' 0,769 _ KI
LONGITUDINAL
20
SIMPLY
EDGES
SUPPORTED
,.Eo,, UC L.O MO0,/0 S
,o
2/I S
...........
3/i 4/1
24O
FIGURE
is 25 percent longitudinal gains
are
and edges
Transverse
may
make
VERSUS
60 percent
5,T RELATIONSHIPS
supported.
and 43 percent design
FOR
b = dc/2
for a = 1 and c_ = 2, respectively,
are simply
weight
closed-section
The
Ks
13 percent
if a minimum
IV.
7.
For
when
the case of clamped
the
edges,
for a = 1 and a = 2, respectively.
is desired,
consideration
should
the
Thus,
be given to
stiffeners. and Central
use of deep
beams
it desirable
Longitudinal with webs
to employ
Stiffeners
having
a high depth-to-thickness
both vertical and horizontal
ratio,
stiffening.
When
St, ction
B4.8
15 October Page
19(;9
11
f
yi
14
A,'f'
] 12
/
#r
10
"_
=
....
--.,,.-'r-
.....
_
Do, K L =
.....
.
LONGITUDINAL.
_
14JJ2
_
EDGES
t
_
CLAMPEO
'
TH:O:,TIC,L 2
t_
,UCIk_I/:GMO)E$ 5/'1 ....
I
3 I 41
.... --.--
1/0
......
9 0
2
4
6
8
10
12
14
16
18
20
22
24
26
Y=
1 "T
BT
=
0.769. 0.40._ 0.20_
.or--?0_\" /
I
/o'os.\'
!
),r = \
_\ \
T.... r _--f_--------
x
iN"
KL=
41,55
m,
KL. =
29.17
l
-
,_+.+_-.7:'lX--_--7
c_,
I
y.r =
LI
Ks
LONG_TUDtNkL
20
i,
EDGESCLkMPEO
,
i THEORETICAL
BUCK
P 'M
k ING
MOOE|
P/M
2
t
4'1
3
! ....
$
----I ....
10 0
20
40
60
80
100
120
140
160
I_
2@0
2_
¥'r
FIGUIIE
9.
K,
"/T RELA'I?IONSIIIPS;
ASPECT
I{ATIO
o_
2.0
2_
2JO
Section B4.8 15 October 1969 Page
a web
is subjected
stiffener can
to shear,
is at middepth.
result
in more
stiffeners
are
the This
economical
employed.
For
buckling
stress
achieve
a given
as little
as 50 percent
most
effective
position
combination
of vertical
designs
are
than
example, with
the weight
when
when
horizontal
vertical
stiffening
only
of stiffening
and
required
a single
and horizontal
possible
horizontal
of the weight
for
12
vertical
required
to
stiffening
only vertical
can
stiffeners
be are
used. If neither rigidity then
and
of the the
the value
transverse
vertical of 7LH
or central
stiffeners
have
necessary
_LH
=
11.25
KLH
=
29 +4.5(b/d
longitudinal a rigidity
to produce
stiffeners
equal
the limiting
has
torsional
to or greater
than
value
is given
of KLH
EILv
(b/de)2
, by
(5)
and
Additional used
weight
in either
in Reference weight
the
respectively,
4 and
can
.
(6)
bc achieved
gains
in the
of up to 25 and
given
value
For
of K L (which for
stiffeners
parameter
strong
direction.
60 percent
closed-section
have
if torsionally
or longitudinal
shown
by using
Investigators
)-2
transverse
6 have
of the web)
only.
savings
e
_ equal in the
studies
stif[cners example,
are studies
is proportional to one and
transverse
to the
two, direction
on the following
in References
9: 1.
Transverse
and
2.
Transverse
stiffeners
stiffener
longitudinal
possessing
stiffeners
of closed only flexural
of closed
tubular rigidity.
cross
tubular section;
cross
section.
longitudinal
Section
I34.8
15 October Page
3.
Transverse
stiffeners
stiffeners Figure
being
using
used
in conjunction
c_ _
1,
using
it
of closed
10 enables
from
one
torsionally
is evident
little
strong
in buckling
resistance
stiffener.
However,
an
as
a central spaced
stiffeners,
but
(that
benefits
longitudinal
that
as
the
result stiffener
is
stiffeners.
buckling
When
resistance
a considerable
a torsionally
is,
that
longitudinal
in the
by using
c_ increases
the
transverse
is obtained
be obtained
rigidity,
of the
when
increase
13
section.
assessment
of equally
transverse will
flexural
cross
stiffeners
a system
that
only
tubular
to make
strong with
torsionally
possessing
1969
strong
transverse
by
increase longitudinal
stiffeners
are
6O
55 FLANGES
ANO
LONGITUDINAL
STIPFEIqER
PROVIDE
SUPPORT.
TRANSVERSE
STIFFENERS
SIMPLE
ALL
EDGES
CLAkIPEO_IaC_'/CLAMPE
O
_ SUPPORT
•
5O
45
Ks
40
'
_
\
35
Y'. \
"-.
I ,CA.CEoR"'o,._ I
_
L °"or Tu °l"* "__ __.___2:':"0. STIPFENER
PROVIDES
I
3O , ALL
I!/OGE$
_
P :uOp/DER
TCLFA:::
GE D
S AN "_
25
5;.; _ iUPPORTED
I51MPLY
SUPPORTED
LO_IGITUDINAL
STIPFENER
20
2
1 CX:
FIGURE
10.
K
VERSUS S
ASPECT
RATIO
0
dc/b
FO[_
VAIIIOUS
EDGE
RESTRAINTS
Section
B4.8
15 Oct()ber Page
more
closely
strong
spaced),
stiffeners
resistance
the
relationships
above. b = d and other
11,
different
values
and
s
and
positions
of the
strong
the
ratio
is
readily
= soo lOO._.-----_ 30 ,,-v
(_ = 1.7,
obtained
from
of torsionally buckling
stiffeners
and
a
to that
obtained
stiffeners that
is
is
for
relationships strong
use
i4
the
equal
seen
torsionally be
when
propertics
typi(':_[
can
the
transverse
stilfener
13 give of the
aspect
and be
from
transverse
rigidity
it will
K
12,
until,
stiffener
Thus,
between
Figures
significant;
torsional
longitudinal
rigidity.
in K resulting
torsionally
without
strong
flexural
more
with
stiffener
torsionally
increase
becomes
obtained
longitudinal
only
the
1969
with
a
possessing necessary the
to know
cases
between
enumerated
K_ and
YT
_tiifener.
Culves
for
Reference
4.
points
The
]
for
°
i
3o 20 10
2C
K
I
b--d
3I;c"
f_
10 / /
P/M
2/I ........
3,"2
THEORETICAL
5/I 4/il
20
40
80 y.r =
FIGURE TORSION
11.
Ks'
YT
RELATIONSHIPS;
(C L :_ 0.769 FLEXURAL
BL);
RIGIDITY
EID
100
140
b
LONGITUDINAL
TRANS\rERSE
BUCKLING MODES 120
STIFFENER
STIFFENERS
(C T -: 0) ; ASPECT
RATIO
WITH
WITH
a
_ l. 0
ONLY
Section B4.8 15October 1969 [>age
30
°U
15
= 500 100
A
2o -'--d
c
I-------,H
fi
I/ -E rdc c,f2 ¸¸2 3/1 2/'1 } iS/'1 120
4:1
0
1
0
20
40
60
80
100
THEORETICAL P,'M MODES i 1,10
BUCKL_NC
'y.r= EI'Db
FIGURE
12.
Ks'
SUPPORTED: (C T
%1" I1ELATIONSIIIPS;
TIIANSVEI1SI'2
_ 0.7(19
BT):
STII"FENERS
IAI)NGI'FUI)tNAL
RIGIDITY
(C
LONGITUI)INAI_
L
WITII
STIFFENERS
_-tl);
ASPECT
EDGES
SIMI'LY
TOIISIONAL
RIGIDITY
WIT II ()NLY
FLEXURAL
RATI()
_'
1.It
/'7..---1 ff 3O :if'////
20_///
K
YL-5
1/
1
:
o b=d
/
dc/2
ilt
4/I / 5/1 /
m_:.km_ i_li
dc/2
o
2o
40
60 Y.r =
FIGURE EDGES;
13. ALL
K S ' YT RELATIONSHIPS; STIFFENERS
WITI!
80
100
120
SIMPLY
SUPPOI_TED
TORSIONAL
RIGIDITY
I,ONGITUDINAL 0. 769
(C T
C L=
0.769
BL);_
I 140
El 'Db
ASPECT
RATIO
ff
1.0
B
T'
Section
B4.8
i5 October Page
marked give
A on the
95 percent
point
for
increase
of the limiting
in the
of Ks would
value
beneficial
In deep
from (1)
The
the
neutral
region stiffener
from
it is often
in locations
where
high.
stiffener axis
(Fig.
at a distance
at the 14a)
from
the
itself
does
fb
STIFFENER
_
_: \
Thus,
the
to stiffen
longitudinal of the
longitudinal (2)
the
of the
fb
%
stiffener center
stiffener plate
compressive
POSITIONS
cutoff a small
in TT would
Compression
compressive
line
by longitudinal resulting
be considered
of the web,
located (Fig.
plate
stresses will
that
fb
.
14b).
In case
STIFFENER
fb
t_,
\
(b)
LONGITUDINAL
is,
1, the
dc
OF
here:
in the compressive
stresses.
(o)
14.
only
increase
the web
dcl 2
FIGURE
would
as a good
chosen,
extra
economical
edge
not carry
of _/T are
in Longitudinal
and
of TT which
is suggested
Plates
the
values
standpoint.
Two positions
located
13 are
This
values
occur.
Web
and
of K . s
a weight
Stiffened
are
12,
If greater
beams,
bending
11,
value
design.
Longitudinally
stiffeners
of Figures
an efficient
not be very V.
curves
1969
16
STIFFENERS
at
Section B4.8 15 October 1969 Page Adding
this
assembly
cost;
structural of beam A.
longitudinal therefore,
depth,
that
span,
Stiffener
stiffener
such
arrangement
For
stiffener
and
results
in another
construction
will
save
external
structural
is not widely
structural
17
weight
used
part
and more
although
under
certain
practical
value
it is a conditions
loading.
at the Centerline
a stiffener
moment
at the
of inertia
eenterline,
the
largest
of the
is
I =
O. 92t3d
_'B
(7) c
With
this
value
of I O , the
critical
bending
stress
is
FB cr
rib
For
<)2
12(1_g2)
values
of F B
for
(_) for
stiffener
c_ >- 2/3
moment
of inertia
less
than
and
Neutral
Io,
see
er
Reference B.
10. Stiffeners The
the eenterline the
inelastic
in improving
Located
increase
in buckling
of the web range. the
Between
amounts
Stiffeners
stability
of web
Compression strength
that
to only at the plates
Edge can
50 percent
centerline in ease
are
be obtained of the
by a stiffener
unstfffened
therefore
of pure
Axis
bending
not very stresses.
plate
at in
effective
v
SectionB4.8 15()ctobcr 1969 Pagei8 For
a stiffener
is given
spaced
at a distance
m -- d /4,
the critical
e'
buckling
stress
by
FB cr_?B
if
1017r2E 12(1-hz)
(_c)
(_ -> 0.4),
2
(9)
3: -> Yo
Where
y
EI
=
T/BDd c EI =
O
To
Dd
=
(12.6
+506)
,
a = b/d
ot2
-
3.4
c_3
(o_
for
a stiffener
1.6)
and
C
6
A
=
rldct
Comparison of the region
plate shows
Limited longitudinal
c
of the
with
the
that
numerical
of the
plate.
This
value
of the
buckling
K = 129 and
is larger
from
the
results
the
stiffener
compression
results
obtained obtained
reinforcement results located
than edge.
for
a plate
stiffened
in the latter have
been
at a distance
information strength
above
is plotted of the
in the case
plate
case
obtained m = dc/5 in Figures stiffener
of a stiffener
at the in the
is much
for
plates
from 15 and system located
centerline
compression more
effective.
reinforced
the
by a
compression
16.
edge
The
largest
corresponds
to
at the
distance
dc/4
Section B4.8 15October i969 Page i9
K
129
m
120
_m=
_TJ
°/..7 8O
ii//y r
4ole
tb
'
_,,_
--_----
_',l
m
t dc
! El
I 10
FIGURE
15.
Dd C
20
K VERSUS
y FOIl
30
VARIOUS
4O
VALUES
OF c_, 5 = 0
K
120 12_ _---;I_ .....
AT/ =5
"-i
4011-
gj
0
FIGURE
16.
] dc
i
El
I
Dcl c
I 10
K VERSUS
20
30
y FOIl VAIIIOUS
40
VALUES
5O
OF c_, 6 = 0.10
SectionB4.8 15 October i969 Page20 VI.
Combined Stresses The above mentionedbending, shear, and possibly axial andtransverse
stresses that act upon the web shouldbe interacted by the following equations. R2+R _1 s cL R
2+R
(10)
<1
s
(11)
cT
R S 2 +RB2 RB1.75
(12)
_-<1
+Rc
(13)
< 1 L
where
fS R
=
s
fe
Fs
RB
'
=
FB
cr
and
the
c
-
FC er
cr
subscript,
transverse.
R
'
L,
The
indicates
critical
longitudinal
values
of F C
and
the
should
subscript,
T,
be obtained
from
indicates Section
C2.1.1.
cr
If the
interaction
must
be performed.
4.8.1.2
Flange
The The
beam
ultimate
material, connections, of the
equations
cap.
above
are
not satisfied,
an iteration
of the design
Design flanges
allowable
are
designed
stress
reduced
by the
the
efficiency
for
attachment factor
for the
tensile
tension efficiency
is the
ratio
and
compressive
flange
is equal
to Ftu
For
riveted
factor. of the
norma[
net
area
to the
forces.
of the or bolted gross
area
Section
B4.8
15 October Page
Compression on
the
compression
shear
at
the
techniques
should
flange
web-flange are
4.8.1.3 I.
flanges
be
connection,
available
Rivet
can
be
in Section
designed
for
a combination and
column
transverse
2 1
stability.
of normal
The
force,
forces.
1969
loads
longitudinal
Specific
analysis
B4.4.0.
Design
Web-to-Stiffener Although
attachment
no exact of the
information
stiffeners
Table Web Thickness
to the
B4.8-I.
is available web,
on
the
data
Rivets:
strength
in Table
B4.8-I
required are
of the recommended.
Web-to-Stiffener Rivet
Rivet (in.)
the
Size
Spacing
(in.)
0. 025
AD
3
1.00
0. 032
AD
4
1.25
0. 040
AD
4
1.10
0. 051
AD4
1. O0
0. O64
AD4
0.90
0. 072
AD
5
1.10
0. 081
AD
5
1.00
0. 091
AD
5
0.90
0. 102
DD
6
1.10
0. 125
DD
6
1. 00
0. 156
DD
6
0.90
0. 188
DD
8
1.00
Section
B4.8
15 October Page
II.
1969
22
Stiffeners-to-Flange No information
stiffeners than
to the
that
same
used
size
III.
is available flange.
in the
be used
on the
strength
It is recommended
attachment
whenever
of the
required
that
one
stiffeners
of the
rivet
attachment
the next
to the web
size
of the larger
or two rivets
the
possible.
Web-to-Flange The
rivet
size
(bearing
or
spacing,
gives
undue
shear)
stress
4.8.1.4
value
q,
proper
margin the
b,
of a stiffener
lie designed the
applied
of safety. rivet
factor,
so that web
the rivet
shear
flow
allowable
times
For
a good
design
and
Cr,
should
not be less
the
rivet
to avoid than
0.6.
Approach of stiffened
of t and
should
by q x p,
concentration,
design
Assuming
spacing
divided
the
Design
The
and
h,
and
shear-resistant
E are
known,
compute
f
required
to develop
s
= q/t.
The
beams
is a trial-and-error
the first
step
problem
is to find
an initial
is to assume
buckling
method.
a reasonable
the moment
stress,
F
of inertia , in the web
s cr
greater
the
than
desired
1
by the desired
8
Fs
' and
Fs
cr as a function
of F
margin
/_s
of safety.
if required.
The
procedure
Ks is then
found
is to choose
from
equation
(1)
cr S
/7
and d/t
the
required
or h/t.
Then,
depending
on the
type
of stiffening
cr
arrangement 4.8.1.1.
Particular
an efficient given
used,
design.
to longitudinal
attention For
I of the should
be given
a minimum-weight
stiffeners
and/or
stiffener
is obtained to stiffener
design,
torsionally
from properties
consideration strong
stiffeners
Paragraph that should
provide be
as discussed
Section B4.8 15 ()ctober 1969 Page 23
in Paragraph and
rivet
4.8. I.I. Attention should also be given to stiffener thickness
location
as discussed
in Paragraph
4.8.1.1-II.
4.8. I.5 Stress Analysis Procedure The stress analysis procedure for the web of a stiffenedshear resistant beam all
is straightforward
tmown,
and
the first
4.8.1.1,
depending Then
etc.
F
to apply.
step
is to obtain
upon
the
can
S
easy
K
aspect
be obtained
Since
from
s
ratio,
q, b, h, E, t, fs'
the appropriate
torsional
from
equation
C2.0.
Then
curve
rigidity,
(1).
and I are in Paragraph
stiffener
If necessary,
thickness, values
of
cr
77 c,'m be obtained
from
S
Section
the margin
of safety
for
the web
is
F S
M.S.
er
-
-1.
f
(14)
S
4.8.1.6
Other
The
web
trade-off Three
light
as,
previously
lightness. be kept
types
expense
or lighter
than,
however,
is introduced
into
The
nonbuckling
a web with
Actually, separate
a stiffener
the beam.
webs
The
must web
the
of parts low,
is one
are
the
of weight
frequently
web
in most
stiffeners.
There
be provided
wherever
types
used cases
in is as
is a general a significant
are:
Web
with
formed
vertical
beads
at a minimum
II.
Web
with
round
lightening
holes
having
spacing
costs
problem
I.
various
number
expense.
of stiffeners.
in that
a large
manufacturing
to a minimum.
of shear-resistant, the
require
To keep
manufacturing
to save
limitation, load
must
versus
Design
discussed
to achieve of parts
design
of Web
designs
(stiffeners) number
Types
45 degree
spacing formed
flanges
at
SectionB4.8 15October i969 Page24 III.
Web with vertical
round formed
The webs
with holes,
hydraulic
and electrical
Procedures Reference
11.
for
lightening beads
between
II and III, lines
the design
holes
also
having
of these
beaded
flanges
and
holes.
provide
that are
formed
built-in
sometimes beams
access
space
for the many
required. should
be obtained
from
Section B4. 15 (_tober Page
4.8.2
PLANE If web
buckling by
buckling
occurs
is resisted
shear-resistant
defined
TENSION-FIELD
as
an incomplete
some
by pure
action
25
BEAMS :ffter
in part
of the tension
application
tension-field
web
(Fig.
field,
T L
17).
or
¢ff load, action This
partial
tile of the
action
tension
of
shear
(a) NONBUCKLED
(b) PURE
17.
STATE
("SHEAR-RESISTANT")
DIAGONAL-TENSION
OF
STRESS
and
the
web
field.
WEB
WEB
IN A BEAM
load
web,
tl-]l
h
FIGURE
S 1969
WEB
beyond in part is
Section B4.8 i5 October 1969 Page
The In this pure
theory theory,
after
tension-field
in practice,
partial
action not
Peterson,
the
The
limited
to beams
alloys
here.
Levin
from
other
4.8.2.1 The reasonable normal
[ 12 ],
developed
verification
of these
beams.
an extension
the
analysis
Extension
of the
the designer
of Kuhn's
work
analysis
exercise
in the
analysis
for
indicates
of beams
restricted
the
must
analysis
range
was
by
nonexistent
results
the
As a consequence,
alloys. and
within
[ 1] .
is resisted
is essentially
experimental
beams for
load
a semiempirical
with
for the
by Wagner
shear
behavior
Correlation
alloy
published
the total
be discussed
is not documented,
in attempting
buckling,
is conservative
aluminum
was
Such
experimental
7075S-T
beams
of the web.
beams.
analysis
tested.
web
and
tension-field
that
tension-field
initial
and will
Kuhn,
and
of pure
26
Kuhn
to 2024S-T analysis
to include considerable of beams
is
other caution
fabricated
alloys. General
Limitations
methods
of analysis
assurance design
and
Symbols
and
design
of conservative
practices
and
given
herein
strength
proportions
are
believed
predictions,
are
used.
The
to furnish
provided most
that
important
points
are: I.
The
uprights
tu/t> II.
III.
should
not be "too
thin";
keep
0.6.
The
upright
0.2
< b/h
The
method
with
webs
When flanges
h/t
spacing
should
be in the
range
< 1.0. of analysis in the < 115,
must
range the
be taken
presented 60 < h/t portal into
here
is applicable
only
to beams
< 1500.
frames
effect
and
account
by using
the
effect
Reference
of unsymmetrical 13.
Section 134.8 15October 1969 Page27 SYMBOLS
(in addition area
Af A
to those
of tension
given
in the front
or compression
matter)
flange
actual area of upright (stiffener) U
A
effective
area
of upright
ue
C1,C2,C3
stress
F
column
concentration
factors L_
yield
stress
(the
column
stress
co
allowable
F
column
at m P
-_
O)
stress
C
F
ultimate
allowable
compressive
stress
for natural
ultimate
allowable
compressive
stress
for
ultimate
allowable
web
average
moment
crippling
max
F
forced
crippling
0
F
shear
stress
S
If I
of inertia
required
moment
moment
of inertia
of beam
of inertia
flanges
of upright
about
its base
S
I u
Msb
secondary
P
applied
P
bending shear
of upright
about
moment
its
in the
base
flange
load
upright end load U
distance fcent ff
U
centroid
to web
compressive
stress
at centroidal
compressive
stress
in flange
component f
of upright
average
of the lengthwise
diagonal
axis because
of upright of the
distributed
tension
compressive
stress
in upright
vertical
Section
B4.8
15 October Page
fsb f
secondary
bending
stress
component
of the
diagonal
maximum
U
compressive
in flange
because
of the
1969
28
distributed
vertical
tension stress
in upright
max
k
diagonal
b
spacing
h
effective
tension of uprights depth
of tension qr
k
of beam
centroid
of compression
flange
shear
angle
of diagonal
load,
web-to-flange
and
web
splices
tension
of gyration of upright with respect to its centroidal to web (no portion of web to be included)
critical
to centroid
flange
rivet
radius parallel
P
factor
shear
stress
axis
coefficient
SS
restraint
R d, R h
angle
apD T
coefficients of diagonal
tension
transverse
load
N
applied
Q.
static
moment
h
height
of stiffener
U
L
effective
e
stiffener
load-per-inch
o)
4.8.2.2 The
Analysis web
shear
of cross
for
pure
tension
field
beam
section
length
acting
normal
to end bay
stiffener
of Web flow
can
be closely
approximated
by
V
q: T
(Is)
Section
B4.8
15 October Page
From
this,
f
it follows
=
S
The
that
the web
shear
stress
1969
29
is
q/t
(16)
critical
buckling
stress
of the web
is given
by
F
c =k ss
12(1-p
z)
b
Hh + 1/2(Rd (17. a)
and
F
scr k
ss 12(1-p
z)
- Rd)
d + 1/2(Rh
b > d c. (17. b)
The restraint
value
of kss
coefficients,
is obtained are
from
given
Figure
in Figure
18. 19.
The
Figure
values
R h and
20 provides
Rd,
F
for S er
case
_7 ¢ 1.
calculated
When from
disregarding
the
disregarded
and
R h is very
the
equation
small, above
the value may
presence
of stiffeners.
the
value
latter
is used.
be less In this
of the than case,
critical the
shear
value the
stress
computed
stiffeners
the
are
the
SectionB4.8 15October 1969 Page30 10
/ /
/ /
i
J
f r!
k$$
i d
f$]
¢
r± m._r------_
_mm._--------
r b, dc:
o
0.2
CLEAR
PANEL
0.6
0.4
qlr-----_
b
I
vI
DIMENSIONS
1.0
0.8
dc 'b
FIGURE
18.
k
VERSUS
d /b
SS
The
loading
ratio,
fs/Fs
, is used
e
to determine
the
tension
field
factor,
k.
cr
It may
be calculated
k-:
tanh(0.5
by
logl0 fs/Fscr)
f
> F S
, S cr
(18)
Secti_,n
B4.8
15 ()ctol)er l)age
1!)6_)
31
Rk, R d 0.8
/ °, // /i
0
/
t -
/
0.5
WEB
FLANGE
t
-
STIFFENER
THICKNESS
Rh -
RESTRAINT
COEFF.
ALONG
STIFFENER
Rd -
RESTRAINT
COEFF.
ALONG
FLANGE
1.0
19.
EDGE
RESTRAINT
THICKNESS
1.S tu T '
FIGURE
THICKNESS
t! -
2.0
3.5
3.0
t
COEFFICIENTS
FOR
\VEB
BUCKLING
STRESS
SectionB4.8 15 October t969 Page
32
4O
3O 2024-T3
F$cf
20
lO
I
l lO
20
30
40
F scr"
FIGURE
20.
VALUES
OF
GO
60
q
F
WHEN
77 ¢ 1
S cr
or
it may
read
from
Figure
21.
For
values
of f
-
F
, the
S er
unbuckled
state.
web
is
in the
Section B4.8 15 October Page
1969
33
f
1
N
© ;I
<
b
.I
< ©
R
m
2 u
9
M
bl
2 41
N © r..) <
qr_
2: r_ i
Z
f-
r_
o o • -.
¢D
0
q' _iO.L_)¥:l
0
NOISNIJ.
"IVNOOVI(]
0
Section
B4.8
i5 October Page
The shows
angle
of the diagonal
the variation
of tan
tension
is then
o_ as a function
obtained
of k and
from
tb/A
34
Figure
.
i969
22,
For
double
For
single
which stiffeners,
ue
A
is equal
ue
to the cross-sectional
area
of the
stiffeners.
stiffeners,
A U
A
=
ue
,,. 1 + _e/p) 2
It is recommended to a maximum
that
(19)
the
diagonal
tension
factor
at ultimate
load
be limited
value,
/
k
max
to avoid
excessive
fatigue
average
maximum
f
where
wrinkling
and
,
(20)
permanent
set
at limit
load,
thereby
inviting
failure.
The the
= O. 78 - (t - O. 012) 1/2
S
web
web
= f max
S
stress.
factor
The
web
allowable
+kC2)
web
from
F
be appreciably stress
is given
smaller
than
by
,
(21)
obtained
c_ differing
arising
stress,
may
coefficients for
factor
fs'
maximum
empirical
accounting
stress-concentration
stress,
The
(1 +k2C1)(1
C 1 ,-rod C 2 are
correction
shearing
from the flange
, is given
from
Figure
45 degrees.
23.
C 1 is a
C 2 is the
flexibility.
in Figure
24 as a function
of k
Sail and
cePDT,
the
angle
that
the
buckles
would
assume
if the web
could
reach
the
Section
B4.8
15 October Page
1969
35
I --
z 0
c)
Z ill
•-'-"
i...I
.<
Z
Z
o es_
<_
_ O-
< Z 0 q_ <
0
Z <
=7J iI 7,/j / i I/1/,ss /
, jj,i
J,.
J
/ /
o_.
0
•
•
O
II
uol
0
C'I-
;.q
r_
.<
Section
B4.8
15 October Page
1969
36
0.12
a- ANGLE
OF DIAGONAL
TENSION
0.08
cl
0.04
0 0.6
0.7
0.8 tan
1.0
0.9
O[
1.2
c3 0.8 cob = 0.7 b
"_ 1/4
t .(I c
c 2, c3
+ It) h e .
Ic = MOMENT OF INERTIA OF COMPRESSION FLANGE
0.d
It = MOMENT OF INERTIA TENSION FLANGE
OF
J 0
1
2
3
4
cob
FIGURE
23.
IN WEB
EMPIRICAL AND
FOR
COEFFICIENTS SECONDARY
FOI_ BENDING
MAXIMUM MOMENT
SHEAR
STRESS
IN FLANGES
Section 15
B4.8
October
Page
1969
37
S
]0
t 25 *p,W 45 48 35 30 25 20
I0 O.2
O.4
0.6
0J
1.8
k (e) _)24-T3
ALUMINUM
ALLOY.
DASHED LINE IS ALLOWABLE
)5
|tv| t
• 62 ksi
YIELD
STREW
I I
r
-
3O
I
e_h. DEG 4$ 48 35
J
30 2S 2O 2O
150
(b)
FIGURE
0.2
ALCLADT075-T6
24.
BASIC
0.4
ALUMINUM
ALLOWABLE
0.6
0.i
ALLOY.
ttult
VALUES
1.0
72ksi
OF
f s
max
Section
B4.8
15 October Page
state
of pure
diagonal
tension
without
The
rupturing.
values
1969
38
of F
have
been
Sall established
by tests
connections,
they
I.
Bolts,
II.
and may are
just
between
Bolts,
snug,
washers
flange bolt heads
to be tight;
IV.
Rivets,
assumed
to be loosened
webs
flange,
stresses are
given
are
bolt heads,
use
basic
different
or web
plates
allowables.
directly
dimensions
Figure
25 to obtain
increase
basic
in service;
valid
not exceeded.
of unusual
use
For
"
on sheet;
reduce
basic
10 percent. assumed
or rivets
under
bearing
Rivets,
allowable
allowable.
angles;
III.
sheet For
"basic
as follows:
heavy
sandwiched
allowables
The
applied snug,
just
be called
They
use
if the
allowable
are
not valid
arranged
allowables
10 percent.
basic
allowables.
bearing for
stresses
countersunk
unsymmetrically
with
on the rivets.
respect
to the
F Sal I
4.8.2.3
Analysis
Stiffener not carried
of Stiffeners
loads
result
by the web.
from The
the web
stiffener
diagonal load
tension
is given
and
the
transverse
load
by
S
P
=
ktbf
u
tanoL + Nb s
I
1-
where
N is positive
for
a transverse
by the
stiffener
the
effective
with
the
and
stiffener
ma_
be assumed
CI"
fsF (td tb+ Au)
compressive web.
The
'
load.
effective
to be given
(22)
1
width
This
load
is resisted
of the web
working
by
b e
b
-
0.5(l-k)
.
(23)
f
Sectiol_ 15 Page
.......
B4.8
October
1969
39
j
20
_
,! I0
2024
BASED ON F_ ] 0.4
[ 0.2
0
: 62ksi T 0.6
0.8
1.0
4O
3O
F'eli,
kli
20
I0
7075 0
0
FIGURE
6ASEDON
0.2
25.
0.4
ALLOWABLE 7075
Ftu
AT
WED HOOM
STRESSES
TEMPERATURE
FOR
2024
AND
Section
B4.8
15 October Page
The
average
stiffener
stress
1969
40
is then
P tl
f
=
u
A
+ 0.5(l-k)
(24)
tb
ue
The
maximum
compressive
stress
of the
beam.
The
ratio
stress,
fu
/fu'
is obtained
in the
stiffener
of the maximum from
occurs
stiffener
Figure
stress
near
the neutral
to the
average
axis stiffener
26.
max Stiffeners by true
may
elastic
stiffener
stress
excessive
bowing stress
II.
The
average not
ratio
hu/2O.
effective
only
must
U
stress
exceed
column
the
stress,
allowable
length
compression properties.
the following
must
the column
the column stress
for double
Column double
and stiffener
not exceed over
crippling.
in (symmetrical) loaded
of the web
column f
must
or by local
is an eccentrically
and
The
action
is possible
is a function
I.
The
by column
instability
A single failing
fail
cross for
stiffeners
yield
failure
stiffeners.
member
whose
To guard
be adhered
against
to:
stress.
section, a column
feent with
= fu Aue/Au' the
slenderness
is
h L
U
= e
L
'41
= h O
+ ka(3-2
b < 1.5h b/hu)
b-> U
(25)
1.5h
(26)
Section
B4.8
15 October Page
1969
41
//j
p/r -
//I,
Lq Z _q
f GO
'1I
Z
_q E_ O
_q L_ ,< _q > < 0 E_
/
;.q E_ D_
V
/
/
i
© ©
J W £Xl
/
A
,
M II
I I"
9
o
Section B4.8 15 October 1969 Page
To
avoid
less
column
than
of the
failure
the allowable
stiffener Forced
the
attached
web
shear The
stress
material, crippling
stiffeners,
taken
with
stiffener
from
the average the
column
the slenderness
of stiffeners
leg of the
must
curve
ratio
f,
should
for
solid
sections
allowable
forced
crippling
/__\t
1/s
\
In this
by being
forced
mode
of failure,
to adapt
itself
to the
stress
is given
by the
empirical
equation
L/
C is a constant
as follows:
Double Stiffener
Single Stiffener_ 2024-T
(Bare)
C =26.0
21.0
7075-T
(Bare)
C =32.5
26.0
Nomographs
for
proportional equation
be
Le/p.
be considered.
is deformed
stress,
wrinkles.
O
where
of double
42
F
limit,
o
exceeds the material
are given in Figure 27. If F O
a plasticity
factor,
77, equal
to Esec/Ec
is used
in the
above.
Torsional
stability
of single
stiffeners
is provided
by meeting
the
following
criteria:
(fs- Fs
)hI/3e t = 0"23E cr
(J-_bh2)
,
(28)
Secth_n
B4. S
15 ()ctob(,r Page
19(;!)
43
it'--" Y)
6O
1.0
10
0.9
9
.tO
8 0.8
S
7 4O 0.7
6
0.6
--
$
-_:
4
-
3
30
0.5
0.4
-
20
.-
1.5
t u
k
F o. ks,
Fo,
--
kS,
2
0.3 DOUBLE UPRIGHTS
SINGLE U PRIGH
10 -_
TS --
-
8
1.5
l0
0.2
9 7
-:: I.o ---
0.9
8
6 -
--.
7
0.8 0.7
--
-
6
5
0.1 3
Iol
FIGURE
27.
2024
0.6
-
0.5
-
0.4
---
T3 ALUMINUM
NOMOGRAM STRESS
-
ALLOY
FOR ALLOWABLE
(FORCED
CRIPPLING)
UPRIGHT
t
SectionB4.8 15October 1969 Page44
10
7r
9
0,9 6fJ
08
07
If
0.6
0.5 _0
04 f:
k*.l O'
I'
o
w .
20 0.3
DOUBLE UPRIGHTS
t
SINGLE UPRIGHTS
2
O2 1.0
0
10
0.9
9
0.11
8
0.7
7
0.6
6
0.5
1
0.4
qb_
7075-T6
ALUMINUM
FIGURE
27.
ALLOY
(Concluded)
Section B4.8 15 October 1969 Page
45
where
(f S -F
=
)het
S
total
web
shear
load
above
buckling
which
can
be carried
sheet
stiffeners.
cr
before J1
=
the
effective
1/3
(developed
the
polar
stiffener
moment
width}
cripples
of inertia
t 3.
This
of the
applies
stiffener
for formed
U
To prevent
:_ forced
extern_
compressive
diagonal
tension,
evaluate
this
crippling load
+
and
F
U
allowable
such
as the
upright load
resists
resulting
following
must
an from
be used
to
= 1
,
(29)
the
maximum
upright
compressive
stress
and the
ax
forced and
f
co
respectively,
crippling and
F
resulting
An effective
column
the
to the compressive
equation
__2
are
O In
The
when
ce/
f
allowable
of failure
effect:
Fo
alone,
in addition
an interaction
m_______,_
where
type
area
crippling effect failure
ce
stress, are
the
from of web
stress,
of the
external
of the
upright.
respectively, actual
external plus
Fmax, load
and
for
allowable
compressive
upright
may
may
be used
should
To prevent
also
diagonal
stress,
stress
alone.
acting
in computing
f ee"
The
Fee.
be investigated
cohmm
acting
compressive
be used
for
tension
failure
under
with
respect
combined
to
SectionB4.8 i5 October Page
loading
f
the
u
+f
following
ce
criteria
should
1969
46
be fulfilled:
(30)
co
and f
+f
cent
4.8.2.4
Analysis
The
flange
stresses: the
<-F
ce
(1)
of Flange stress
result
bending
of the
stresses,
component
stresses
diagonal
is the
primary
flange-parallel
bending
(31)
c
(2)
of the web
because
of the
bending
stresses
superposition axial
diagonal
stiffener-parallel
of three compression
tension, component
individual because
and (3)
of
secondary
of the web
tension.
The
primary
_
c
fprim
s
1-
If
are
by
If
cr
--_s
given
(32) ( 1- _- )
where I
= moment
of inertia
of section
and If
= moment
The diagonal
total
of inertia
axial
tension
and
load
of section
because
applied
axial
(web
neglected).
of the flange-parallel load
component
of the web
is S
Paxial
= khtf s cotc_
+ Pa
1-
I cr S
(33)
Section B4.8 15October 1969 Page47 P
is positive
for compressive
axial
load.
The
axial
flange
stress
is then
a
Paxial faxial
=
A
+A c
where
A
c
The
_md A
t
(34)
+0.5(l-k)th t
are
the area
secondary
bending
of the stress
compression is given
and
tension
flange.
by
(35) sec
see
where
f Pb u
M
sec
= C3
(over
12
s tiffene
r }
and Pb U
M
sec
= C3
C 3 is an empirical The
allowable
of Section
C 1.0.
F
material,
tu
of the
4.8.2.5
Analysis
(midway
24
stress
concentration
stress
for
The
where
modified
stiffeners)
factor,
compression tension
given flange
stress
for
by the attachment
in Figure can
be found
a tension
efficiency
23.
flange
by the methods is given
by
factor.
of Rivets The
V = h-V (I +0.414k)
h' = beam
the
allowable
Web-to-Flange:
q
between
depth
flange-web
shear
flow
at the line
of attachment
,
between
is
(36)
attachment
line
of flange
web.
SectionB4.8 15 October 1969 Page48 Web-to-Stiffener: develop
The
sufficient
a unit
until
=
b The
i
t
failure
b
strength
occurs.
The
for double
to make
shear
the
strength
stiffeners,
must
two stiffeners
should
act as
be
Q (37)
e
= outstanding
S
shear
rivets,
cy L S
where
longitudinal
column 2F
q
stiffener-web
stiffener-web
--- 0.15t
F
= 0.22t
Ftu
tu
stiffener
flange
connectors
must
width. carry
a tension
component
as follows:
(double
stiffener)
(38)
(single
stiffener)
(39)
and N' The
interaction
of shear
and
Stiffener-to-Flange: the
empirical
P which into
U
gives the
4.8.2.6
axial case.
in the connectors
stiffener-to-flange
is given
connectors
in Reference are
11.
designed
with
relationship
U
A
(.i0)
tie
the load
in the
The
stiffener.
connection
must
transfer
this
load
cap. Analysis
The beam.
=f
The
tension
of End of Beam
previous The
vertical
compression Since
discussion
the
has
stiffeners loads,
diagonal
been
in these
as presented. tension
effect
concerned areas The results
with are outer,
the
subject,
"interior" primarily,
or "end
in an inward
Oays of a only
to
bay, " is a special pull
on the
end
SectionB4.8 15 October 1969 Page49 stiffener, it produces bending in it, as well as the usual compressive axial load. Obviously, the end stiffener must be considerably heavier than the others, or at least from
supported
edge
component
members
w
to reduce
of the running-load-per-inch
that
is given
the
stresses
resulting
edge
parallel
in such
formulas
moment
edge
it must
There
I.
II.
to the
member
three
(stiffeners).
to w,
loads.
the
greater
k,
additional
and
additional
a combination
for
thereby
end reduce
(This members
reduce parts.
the
of the
member.
thereby
the weight
is inefficient
the thickness
Provide
of dealing
or strengthen
(This
edge
ways
to keep
"beef-up"
Increase
and
axis
subjected
being
or to reduce
III.
neutral
in general,
Simply
in the
(stringers)
and
(42)
the object
its
axis
The
longer
the unsupported
will
be the
bending
carry.
are,
to bending,
to the neutral
_
normal
of the
Actually,
bending
(41)
members
members
length
by the
produces
-- kq tml o'
_) = kq cot
for
members
bending. The
for
by additional
edge
member
so it can
long unsupported bay panel
either
the running
(stiffeners)
methods
edge
member
subjected
load
moment
because
might
be best.
of w.
of
it nonbuckling
large the
all
)
producing
for
to support
carry
lengths. to make
inefficient
) of these
the
down.
is usually
its bending
with
bending panels.
edge
member
(This
requires
)
SectionB4.8 15October 1969 Page50 4.8.2.7
Beam Design
This
paragraph
of tension
field
for
strength.
b.
The
spacing,
permanent than
which
conform
The
b
dashed
spacing
aspect
line
can
be seen
b/h
= 0.2
from b/h the
Stiffener
Area
structural These required
right
"oil
the curve
for
= 1.0 are
sheet
thickness,
is the
approximate
when
b/h
the on b
the possibility
design
at full
strength.
b'
of k
t,
the
and
is loaded , the
max
shear given
max
to
m:uximum wrinkling spacings
flow
availables
in Paragraph
the absolute
m_iX'
flow,
boundary
Stiffener
by using
value
sheet
shear
of excessive
4.8.2.2.
maximum
stiffener
"
in the construction has
only
0. 050 she(-t,
plotted.
The
of Fig_ure
a small where
effect
on the
additional
relationship
for
28 is that curves,
curves other
the :is
for
sheet
gages
is
same. Estimation:
index.
This
area
preliminary
allowable
is a limitation
canning.
made
as a function
are
line
establishes
plotted
curves
beams
on the
Varying
left
if necessary,
limitation
= 0.5.
the ultimate
on the
to minimize
assumptions
approximately
ratio
dashed
to prevent
b/h
and
efficient
of the
tension-field
be used,
at the
of the
line
the web works
can
max
28 gives
dashed
central
to the
ratio
to facilitate
as a function
and
when
in order
One
area
The
in order set
greater
Figure
sheet
shear-resistant
stiffener and
Flow:
Alclad
spacing,
between full
Shear
7075S-T6
stiffener
methods
beams.
Allowable q,
presents
index
to be used
of stiffener
for
Figure of b/h
29 presents and x/q/h,
is a measure
stiffener
the square
of the loading
only as a me:ins preliminary
the
of roughly
desig_
and
root
are:_
to web
,)f ttm
intensity
on the
approximating preliminary
the weight
beam.
Section
B4.8
15 October Page
Ioooo 9000 1
i969
5i
aMAX TO PREVENT EXCESSIVE I WRINKLING AND PERMANENT SET| WHEN WEB WORKS AT FULL I ',TR ENGTH
J
7000 t 6OO0
._00
4OOO
3OO0 'I
f
2,$00
20GO
I,$00 quit lb. tn.
I000
BOO 70_ 6OO
I 30O
,
2. WEB SI/_PLY SUPPORTED 3. THE STRESS CONCENTRATION FACTOR DUE TO FLANGE
--m
Q
FLEXIBILITY.
(2 = 0.2
I i
.
f
_0 Io
12
h b.
NOTE: FIGURE
FOR 28.
BARE
7075S-T6,
ULTIMATE
MULTIPLY
ALLOWABLE
16
la
20
1 22
i 24
26
28
,_.
BY 1.07
SHEAR
FLOW
ALCLAD
7075S-T6
SHEET
Section B4.8 15 October 1969 Page
52
Q
i
i C/3
I
LC_ L'--
D
N
c_c_ _Z
Z_
! _-
! zr_
r_m Z_
M b-
i
o
C)
°1v-
Section B4.8 15 October 1969 Page
estimation. area
might
cannot f
If the be larger
always
Curves
for
found
stiffener
that
2.
The
desi_m
This
fixes
The
h,
3.
flow,
q_-_,
the
is desirable
a zero
7075S-T
material,
that
the
root
b,
of the
for
and
square
similar
required
margin
of safety
single-angle
stiffeners.
to Figure
of 7075S-T
is often
29, can
web-stiffener
be
can
be
excessive
secondary
bending
0.5
to around
0.8
are
The
required
web
thickness,
b are
known.
This
the maximum
4.
Estimate
the
required
5.
Compute
the approximate
figure
value
equal
spacing, Au/bt
with
cross-sectional
might
b the
beam
of depth,
from
system.
induce b/h
tension-field
be used
not
web-stiffener
In general,
for
also
known.
inspection
to the
spacing
can be obtained can
case,
of the
in the flange.
t,
allowable
b,
design
used
usually
by considerations
stiffener
commonly
are
index.
is the
spacing,
wide
h,
structural
If such
weight
that
of beam,
determined
designer.
minimum
it is possible
depth of the
a stiffener
However,
against
for
design
q,
spacing,
29 shows
q and
29 since
the
manner:
the control
Figure
are
preliminary
shear
stiffener
under
curves
sections,
12.
Method:
The
to standard
in Figure
or 2024S-T
at in the following
1.
is limited
given
The
stiffeners
in Reference
arrived
than
be obtained.
double
Design
design
53
ratios
from
beams. Figure
to check
28 since the
stiffener
max"
aid of Figure area
of stiffener
29. as follows:
Section B4.8 15 October 1969 Page
e
Choose or unless
a stiffener there
is an efficient resistance of failure.
with are
other
design. against
the proper
forced
design
Also,
area.
considerations,
a stocky,
crippling,
Unless
the beam
is very
a single-angle
equal-legged which
54
is usually
angle
gives
the
dominant
deep,
stiffener greater mode
Section
B4.8
15 October Page
1969
55
REFERENCES 1.
Wagner,
H.,
"Flat
Sheet
Parts
I-III,
NACA
TMS
Cook,
I. T. , and Rockey,
Metal
Girders
604-606,
with
Very
Thin
Metal
Web,
"
1931.
f
2.
Supported
Infinitely
Aeronautical 3.
Cook, with
T.,
Mixed
Rockey,
and
K.
Plates Vol.
Rockey,
Boundary
November 4.
Long
Quarterly,
I.
K. C. , "Shear Reinforced XIII,
K.
C.,
pp.
349-356.
C.,
and
Cook,
"Shear
1962,
p.
Buckling
Aeronautical
I. T.,
of Clamped
by Transverse
February
Conditions,"
1963,
Buckling
"Shear
and Simply
Stiffeners," 41.
of Rectangular
Quarterly,
Buckling
Plates
Vol.
XIV,
of Orthogonally
Stiffened
/-
Infinitely
5.
Long
Flexural
Rigidities,"
Rockey,
K. C.,
the
Rockey,
Rockey,
Infinitely
Transverse
Long f
1964,
Plates
Aeronautical
Quarterly,
upon
and
Cook,
-- Influence Quarterly,
Buckling
Reinforced
Rivet Webs,"
and
p. 75.
Postition
upon
Aeronautical
T.,
XV,
I. T.,
of Torsional February
XIII,
"Influence
August
of the
Buckling
May "Shear
1964,
p.
p.
Torsional
p.
212.
Rigidity Plates,"
198. of Clamped
of Transverse 92.
and Simply Transverse
1962,
of Stiffened
Buckling
Rigidity 1965,
of Clamped
by Closed-Section
Vol.
the Shear
Vol.
1969,
and
on Shear
"Shear
Quarterly, I.
Thickness
Torsional
97.
Plates
and Cook,
Having
February
Stiffeners
I. T.,
Long
Quarterly, K. C.,
p.
Cook,
Stiffeners
Aeronautical Rockey,
C.,
-- Stiffeners
of Stiffener
Aeronautical K.
Plates
of Single-Sided
K. C. , and
Stiffeners,"
8.
"Influence
February
Supported
7.
Supported Aeronautical
Effectiveness
Quarterly, 6.
Simply
Infinitely Stiffeners,"
of
Section B4.8 15 October 1969 Page
o
Rockey,
K. C.,
Supported
10.
12.
T.,
Plates
"Shear
Buckling
by Transverse
Aeronautical
of Clamped
Stiffeners
Quarterly,
Vol.
and
XIII,
and Simply a Central
May,
1962,
95-114.
Bleich,
F.,
Bruhn,
E.
Buckling New
F.,
Analysis
Company,
Kuhn,
P.,
York,
" Parts L.
Ratios
of Web
of Metal
and Design
J.
P.,
"Strength Depth
of Flight
Ohio, and
I and II, NACA
R.,
Structures,
McGraw-Hill
Book
1952.
Cincinnati,
Peterson,
Levin,
May
Strength
Inc.,
Offset
Tension, 13.
I.
Long
Stiffener,"
Company, 11.
Cook,
Infinitely
Longitudinal pp.
and
56
to Web
Structures,
Tri-state
1965. Levin,
TN266
Analysis
Vehicle
L.
R.,
1 and
TN2662,
of Stiffened
Thickness
"A Summary
Thick
of Diagonal
1952. Beam
of Approximately
Webs 60,"
with
NACA
TN2930,
1953.
BIBLIOGRA
PHY :
Rockey,
K.
Subjected Stein,
April
"The
to Shear," M.,
Simply
C.,
and
Supported
Design
of Intermediate
Aeronautical
Fralich, Plate
R. W., with
Vertical
Quarterly, "Critical
Transverse
Vol. Shear
VII, Stress
Stiffeners,"
1949.
Structural
Design
Manual,
Northrop
Aircraft,
Stiffeners
Inc.
on Web
November,
1956.
of Infinitely
Long,
NACA
TNi_51,
Plates
SECTION B5 FRAMES
TABLE
OF
CONTENTS
Page B5.0.0
Frames
5.1.0
Analysis The 5.1.1
of
Statically
Method
of
Discussion
5.1.2
Sample
5.1.3
Application
5.1.4
Particular
5.2.1
Sample
the
Problem
Arches Analysis
of
Indeterminate
Frames
Moment-Distribution of
Problems
5.2.0
I
................................................
Method
By
...............
of
Moment-Distribution
................................ of
Moment-Distribution
to
9
Advanced
.................................... Solution
of
Bents
and
ii
Semicircular
...................................... Arbitrary Problem
Ring
by
Tabular
Method
................................
B5-iii
i 2
II ......
27 39
v
Section 12 Page B
5.0.0
B5
September
1961
1
FRAMES
This
section
indeterminate circular
deals
with
structures.
rings
are
specialized The
given
in
methods
procedures
detail
in
of
of
analyzing
analyzing
Section
B
rigid
5,1.0
and
B
statically bents
and
5.2.0
respectively.
A given
sample in
problem
each
to
of ion,
Statically
Moment-distribution indeterminate does
\,
not
structures
involve
a
series
of
precision
the
methods
and
procedures
is
section,
B 5.1.0 Analysis Moment -d is tr ibut
of
illustrate
of
the
required
is
a
convenient
to
a
problem
solution
converging by
Indeterminate
of
cycles the
Frames
method in
simultaneous that
problem.
may
of
statics.
by
reducing
Method
of
statically
Moment-distribution
equations, be
the
terminated
but at
consists the
degree
Section
B5
12 September Page 2
B
5.1.1
Discussion
of
the
Method
1961
of Moment-distribution.
The method of moment-distribution requires a knowledge of momentarea theorems and slope-deflection equations. The five basic factors involved in the method of moment-distribution are: fixed-end moments, stiffness factors, distribution factors, distributed moments, and carry-over
moments.
Only structures comprised of prismatic translation are considered in this article. to be elastic.
members with All members
The fixed-end moments are obtained through "end-moment" equation derived in the development method. (See Fig. B 5.1.1-1)
the of
use the
no joint are assumed
of a general slope-deflection
MBA: --f--
where
MAB MBA E I L 0
is the is the is the is the
moment moment modulus moment
acting on the "A" acting on the "B" of elasticity. of inertia.
end end
of member of member
AB. AB.
is the length of member AB. is the rotation of the tangent to the elastic curve at the end of a member and is positive for clockwise rotation. is the rotation of the chord joining the ends of the elastic curve referred to the original direction of the member and is positive for clockwise rotation.
(_o) A
is the static moment about a vertical axis through "A" area under the M o portion of the bending-moment diagram on Fig. B 5.1.1-1.
(_O)B
is
the
static
moment
about
an
axis
through
"B",
of the shown
Section B5 12 September 1961 Page3 BS.I.I
Discussion
of the
Method
Any
of
Moment-distribution
,(Cont'd_
Loading
MBA
_A
El
B
MAB
i
AA
Fig.
B 5.1. I-I
[
Section B5 12 September Page 4
B
5.1.1 If
Discussion 9A,
eB
of
and
the
_AB
Method
are
all
of
equal
member are completely fixed against member is called a fixed-end beam. are therefore equal to the so-called fixed
end
moments
FEMAB
= _2
FEMBA
_
as
I
FEM
(_°)
and
Moment-distribution
CA, _B
2 (_°)B
2[
2(_°) A
(_o) B
zero,
then
(C0nt'd) both
rotation or translation The last terms of Eqs. "fixed end moments".
setting
A
to
and _AB
1
1
equal
ends
of
....
,°°°,°°
the
and the (I) and (2) Denoting to zero.
...................
°°"
1961
(3)
.........
L Fixed
end
moments
for
various
type
of
loading
Equations (3) and (4) are summarized calling the near end of a member "N" and
then
KNF
= stiffness
factor
the
fundamental
slope
MNF
= 2EKNF
N +
(20
for
member
are
by the
NF
one far
equation
9 F - 3_r NF)
+ FEMNF
in Table
B 5.1.1-1
general equation by end "F". Also let
INF = -LNF
deflection
given
. .............
(5)
...............
(6)
is
The conditions to be met at a joint are: (i) that the angle of rotation be the same for the ends of all members that are rigidly connected at that joint and (2) that the algebraic sum of all moments is zero. The method of moment-distribution renders to zero by iteration any unbalance in moment at a joint to satisfy the latter condition. To distribute the unbalanced moment mentioned factor DF is required. This factor represents the the unbalanced moment which is reacted by a member DFbm
is given
above, a distribution relative portion of and for any bar bm,
by
%m DFbm-
where
the The
. .......................................... E K b summation
is meant
distributed
moment
Mbm Equation
= -DFbmM
(8) may
be
to
include
in any
bar
all bm
members
is
meeting
as
at
joint
then
....................................... interpreted
(7)
(8)
follows:
"The distributed moment developed at the as joint 'b' is unlocked and allowed to rotate moment 'M' is equal to the distribution factor moment 'M' with the sign reversed."
'b' end of member 'bm' under an unbalanced DFbm times the unbalan,
b.
-r B 5.1.1
Discussion
of
Table Notation:
the
Method
B 5.1.1-1
Moments
2.
L
t i _
L
l_ 2
PL
PL
M^ - -F..
aB =
_
for
unit load (Ib per (in.-Ib) positive
P
^
Ib/In.
MA
L wL 2 " I-_--
MA
(Cont'd) Beams
linear in.). when clockwise.
a
3_ I
.I
b L pa2b
"7
MB w
-
e2
lb/in.
It flll_, a
"V
1964
9, 5
P
o
w
ttttttltttt
July Page
Pab 2
F"
o
ltf_!
B5
Moment-dlstribution
Fixed-end
P - load (ib); w = M - bending moment
I.
of
Section
,m|
L
•
MB
wL 2 = " i-_--
I_
11wL 2 192
MA" 6.
L 2 = _ 5wL 2 _
MB __
w
Ib/In.
A+_..,'mmilt, iiiih,..
A
_
B
B-
2 MB
. . wa_._._ (4aL.3a2) 12L 2
Q
_B a ! wL 2 " T
MA
"
MB
|
2
wL 2 " 3-"0-
MA
.
wa (10L2_10aL+3a 60--U
MB
wa 3 - - -(5L-3a) 60L 2
2)
10.
B
A a
-i-
r MA
b L
"-_-
(
- I),
__ -
M B-
- -_- (3
-I',
MA
wL 2 " 3"-_
MB
"
wL 2 " 3"-_
Section B5 July 9, 1964 Page6 B 5.1.1
Discussion Table
of
the
B 5.1.1-1
Method
of Moment-distribution
Fixed-end
Moments
for
12. Ii.A _.--
a _P
a
P
tMA = Pa(1
L
MB = - MA
L
L
13.
L
MA
e
=
-
/
15PL 48
MB
14. !._-_ ___
IllIIII" llt11111: B A_'.._ ,,__.. I I.__. _ __._
, ,_B
/--
-,
- _)
(Cont'd)
A_
B
L
Beams
(Cont'd)
w
Iblin
__
= - MA a _.
.... flIItifIIIl A_
i_ _'
L
e MA
i5.
2 (3L-2a) = wa6---L
_
_
" -
MB
w (L3_a2L+4a3) MA = 12--"L
= - MA
__..t_
16.
MB
=-M A
------ L J
A
B
,_--
A;, ;=
L
,, L¸
v _ i
I
wL 2 MA = 3T
MA
30
MB-
3 _v_ ZOLZ
17.
..w
MB "
3wL 2 160
(5L-4a)
elliptic
load
18.
:IItIItItttitt7ttl_'_,,
A_
MA
=
wL 2 13.52
MB
wL 2 = - 15.8"----_
L.
L
MA = l___ L2
x(L_x)2f(x)d
x
o L
MB
_ -i [ L 2 ,)
x2(L_x)f
(x)dx
O
_J
Sect ion B5 12 September Page 7 B5.1.1
Discussion
of
the
Method
of
_,j--'-
Fig.
The @m = _bm one-half
Mbm
"carry-over"
moment
Moment-distribution
r_b _
b
1961
(Cont'd)
Mbm
B 5.1.i-2
Eq.
(6)
considering
= o (see Fig. B 5.1.1-2). The carry-over moment of its corresponding distributed moment and has
is the
equal to same sign.
= 4EKbm@ b and Mmb
is obtained
=
by
applying
2EKbm0 b
Henc e, Mmb
I = _Mbm
..........................................
(9)
f
The sign convention adopted for this work deviates from the usual convention used in elemen_ beam analysis as found in Sec. B 4.1.1 of this manual. The positive sense for moments has been adopted from the convention used in slope-deflection equations; namely, moments acting clockwise on the ends of a member are positive. (See Fig. B 5.1.1-3)
M
Fig.
B 5.1.1-3
Positive
The following procedure distribution analysis: i.
Compute as
shown
the in
stiffness example
sense
is established
factor problem
for one.
for
bending for
each
the
member
moments process
and
of moment-
record
Section
B5
12 September Page 8
Discussion
of
the
Method
of Moment-distribution
(Cont'd)
Compute the distribution factor for each member and record as shown in example problem one. o
o
o
.
Compute the with proper
J
Draw a horizontal sum of all moments be zero. Record
the
span one.
and
joint
record
line below the balancing at any joint above the
carry-over moments moments
moment
at
the
moment. horizontal
opposite
ends
The algebraic line must
of
the
member.
have the same sign as the corresponding and are one-half their magnitude.
Move to a new joint and repeat the process for the balance and carry-over of moments for as many cycles as desired to meet the accuracy required by the problem. The unbalanced moment for each cycle will be the algebraic sum of the moments at the joint recorded below the last horizontal line. Obtain
the
algebraic total of be zero. g
moments for each loaded shown in example problem
at each
Balance the moments at a Joint by multiplying the unbalanced moment by the distributor factor, changing sign, and recording the balancing moment below the fixed-end moment. The unbalanced moment is the algebraic sum of the fixed-end moments of a joint.
Carry-over balancing .
fixed-end signs as
1961
Reactions,
final
moment
at
the
end
of
each
sum of all moments tabulated at the final moments for all members
vertical
may be found final moments
through (step
shear, statics 8).
and by
bending
member
moments
utilizing
as
the
this point. The at any joint must
the
of
the
above
member
mentioned
Section B5 12 September 1961 Page9 B 5.1.2 PROBLEM moment
Sample
Problem.
#I. Compute diagrams for
the this
end moments frame.
and
draw
the
shear
and
bending-
'D_Z-T 1=2 I P1 = w
5 kip
i0
kip
= 2 klp/ft i_
15-,-
_A 1=2 _ B 1=3.5 _ 25'-_35
AB
BA
× I04
.08
.I
.44
.56
-104 +38
+18 +48
+2
-4 +2
+2
+2
-62
+62
+19
-4
+I
--- +124 _
BC
Fig.
I=5
C
_
40'
_!
I
I DF
25' P2 =
DC
× 0
CB
CE
CD .08
.i
.129
.33
.41
-25 -8
+50 -i0
0 -7
+24 -8
-I0
-6
26 -5O
-5
-5
-3
-6
EC
-17
B 5.1.2-1
+30
-13
-60
Section
B5
12 September Page i0
B 5.1.2
Sample
Problem
(Cont'd)
5 kip
i0 kip
2 kip/ft I
i
II ----20'---_
--'--25'----"-
+27.48
35
40'
I,,,
kip
+3.42
+4.25
kip
kip
-1.58
'-5.75 kip
kip -22.52
kip - SHEAR
DIAGRAM
-
-6 klp-ft [+189
kip-ft +13 kip-ft
i
|
+7
kip-ft
\
+55
kip-ft -60
-62 -124
kip-ft
kip-ft - FINAL
Fig.
MDMERT
DIAGRAM
B 5.1.2-2
-
kip-ft
1961
Section
B5
15 February Page II B 5.1.3
Application
of Moment-dlstribution
to Advanced
1970
Problems.
f
In article B 5.1.1, "Discussion of moment-distribution", the basic principles of moment-distribution were founded. Moment-distribution may be applied to complex structures involving joint translation, settlement of supports, non-prismatic members, symmetrical and unsymmetrical bents and other involved structures. For information on the technique of solving such structures see the references listed in Section B 5.0.0. Methods for accelerating the convergence and other short-cuts may also be obtained in these references.
B 5.1.4
Particular
Solution
of
Bents
and
Semicircular
Arches
In the tables that follow, formulas for computing reactions are given for several load cases. In all cases constraining moments, reaction, and applied loads are positive when acting as shown and
I2h K
_
IL 1
for
cases
i through
for
cases
19
18
IIS 2 K
_
m
12S 1
through
28
Section B5 ,,12 September 1961 Page 12 B 5.1.4
Particular Table
i • VERT. LOAD
Solution
B 5.1.4.1 Two
CONCENTRATED
of Bents
and
Semicircular
Reactions and Constraining Legged Rectangular Bents VA
= Qb L
Arches
(Cont'd_
Moments
VE = Q
- VA
a =b=
L 2
in
30ab H =
,1 !g c
!
2Lh(2K
D
F
FOR
h
'9_-"--
+
SPECIAL
3) CASE:
L "-"_
i
V A = V E =Q 2
I !
_-I I
l
Ii-_ !
H
4
=
3QL 8h(2K +
H
I 3) L
VA 2.
="
'
VE
VERT. LOAD
CONCENTRATED
VA
Q
H
=QbL
=
I I +
3qab 2Lh(K !
@(b - a) VE L2(6K + i) -I
= Q
_ VA
2)
V I
'_--'-
L
_
__Qab |
l
L
+
2)
1 2(K +
2)
MA
I i
[ 2(K
(b,- a) 2L(6K + I)
h qab L
i
ME
E
A
VA
=
FOR
SPECIAL
VA
= V E =R
v=q
Q
B
a_
13_
CASE:
2
FOR
J
_
SPECIAL
V . 9-bL
L
E
.__ HE
V
V
=
HE
HA
= Q
= HA = Q 2
CASE:
.L, qL
8(K +
2)
" HE
QaibK(a + h) 2h h2(2K + 3) +
= j I
' hI
HE
D
I/
L
l
L a = b = -
MA = ME
CONCE_RATED
C'
2L(6K + 1)_
2
VE
3. HORIZ.
+ (b -
] I
b = O,
a =h -i
Section
B5
12 September Page 13
/--
B 5.1.4
Particular Table
HORIZ. LOAD
of
Bents
and
B 5.1.4-1 Two
4.
Solution
CONCENTRATED
Reactions and Leg Ied Rectangular
Semicircular
Arches
HE
= Qab h 2h 2 L b
MA
= Qa 2h L
ME
Qa [ 2h [
FOR
SPECIAL
(Cont'd)
Constraining Moments Bents (Cont'd)
_ 3(_a2K V = Lh(6K + i)
HA
h +
b + K h(K +
b(hh(K+ +b +2) bE)
in
= Q
a)
(b 2)
1961
HE
I
+ h
f /
E;
V
5. VERT. UNIFORM RUNNING LOAD
3qhK = e(6K +
-b(h + b + bE) h(K + 2) CASE:
b
]
+ h (6K
= O.
a
+
i)
= h
i)
HA
= HE
= 2_
_-I
MA
= ME
: Qh(3K 2(6K
VA
:
+ +
I) I)
"I
_
_
wcd
= wc w
r
BC_'_'_1
d4" ]Xl _
H =
)
+ x2 + _\
12dL-12d2-c
3wc = 24Lh(2K
+
+
3
2
3)
ii
where: I-,---L h
X1
I1
:
wc 24L
24-L
+ 4c
- 2_d 2
L
I_ F
X2
=__[ wc 24L
d 3 " bT 24_-"bc2
+
3_+
2c2
- 48d2
+ L
FOR
SPECIAL
CASE:
a = O,
c = b = L,
d
=2
VA
wL
VF
VA d=L
a 2
b 2
VF :T wL 2
H= 4h(2K
+ 3)
Ip
u
24di
Section B5 12 September 1961 Page 14 B 5.1.4
Particular Table
6.
Solution
Bents
and
B 5.1.4-1 Reactions and Two Legged Rectangular
VA
VERT. UNIFORM RUNNING LOAD w
of
_
wcd = _
+
V F = wc
h
H
X 2 are
X 2)
+
2)
MA
X1 + X2 = 2(K
FOR
7. VERT. TRIANGULAR RUNNING LOAD
given
in case
5
+
XI -
2) +
SPECIAL
2(6K
CASE:
a
X1 + X2 = 2(K + 2)
X1
2 wL = 4h(K + 2)
2(6K
i)
X2 + I) = O,
L d = 2
c = b = L,
wL 2 MA
= MF
=
12(K
+
2)
n_
,r
2-iwc
we
+
_--VA'2-_
2c
_-
3 [x3+x4 3wc+ 3) [ de H ffi _ 2K + _'_= 4LN(2K
c182
d2 ]
WHERE:
i
h
X3
=
we " _
c + _-
51c 3 + _ +
c2b 6L
. d2
I1
I
X4
t d
+
wcd
VA= VF=
.,-
X2
wL ffiV F = _-
VA
H
in
- VA
= 2h(K
MF
_Cont'd)
XI " X2 L(6K + I)
3(X 1 + _--- b ----_I _------L -.-_
Arches
Constraining Moments Bents (Cont'd)
X 1 and
d_-r
Semicircular
_L
a 3
ffi
wc 2L
FOR
SPECIAL
V
wL -6
s
2b 3
d3 c2 L + _ + CASE:
c2b 6L
2d 2 + L
a=o,
c=b=L,
d
=_
.==c_ wL 2
H
51c 3 810L
= 8h(2K
+
3)
dL
Section B5 12 September Page 15 B
5.1.4
Particular Table
Solution
of
Bents
and
B 5.1.4-1 Reactions and Two Legged Rectangular
8. VERT. TRIANGULAR RUNNING LOAD
Semicircular
Constraining Moments Bents (Cont'd)
X3 VA
=wcd 2L
+
L(6K
+
X 3 and X 4 are given in case
i)
- VA
H =
X 3 + X4 = 2(K
+
X3 + MF
_
SPECIAL
= 6--
]
IO(6K
I +
20(6K
a 3
VF
V F = _--
2b 3
H
UNIFORM LOAD
8h(K
+
wL2
I)
+
I) L 3
I
c=b=L,
d =
i 1 +
i)
+
I)
iI
2
i
6K+
c27
H4
2L
----
HF
=
w
CASE:
1
= w(a
Ii j
h
V
HA
=
8hB(2K c=o,
b=o,
--
2L
= wh
V HF =
- HF
4E
I +
2(2K
- c)
KIw_a2-c2)(2h2-a2.c2)
wh 2
V
2)
2)
I K+ 5
v =w%_"
FOR
__[
+
wL 2
=
MF=_
D _---iL
+
a=o,
wL 2 [ --+6K+ 5 2 MA--Z-=12v K+
9. HORIZ. RUNNING
2h(K
- X4
2(6K
CASE:
+ X4)
MF
VA
d =L
X3
2) 4
7
- X4
2(6K
X4
wL I
VA MA_
X3
2)
= 2(K +
FOR
in
3(X3
V F = _-
(Cont'd)
- X4
wc
MA
Arches
1961
K 1 +
3)
+
3)
a=d=h
- HF I
Section B5 12 September 1961 Page 16 B5.1.4
Particular Table
i0. HORIZ. RUNNING
_---L
Solution
of
Bents
and
B 5.1.4-1 Reactions and Two Legged Rectangular
UNIFORM LOAD
w(a 2 V=
HA
-----
Arches
Constraining Moments Bents (Cont'd)
- c2> 2L
= w(a
Semicircular
- c)
MA "_-
(Cont'd) in
MF -L'-
- HF
E
D
• 2
2,
X=
X_(K
- I)
%-12 nF
-
4h
- 2-h _ _
_
WHERE:
HA
JM A V
_
-_MFHF
X5
= l_h2
[d3(4h
- 3d)
- b3(4h
-3b) 1
X6
= w--w--- [a3(4h 12h 2
- 3a)
- c3(4h
-3 c)l
V (3K + MA
I)[ w_a2 -2 c2)
=
2(6K
2
+
i)
K +------26K +
(3K +
l)[w(a2
MF =
2_6K
2" +
i
+ X5
c2)
- X51
I)
6K + FOR
_PECIAL
CASE:
- X5 J
c=o,
f b=o,
a=d=h:
wh2K V
= L(6K
+
i)
HF
wh(2K + 37 = 8(K + 2)
MA
= 2-4--
6K +
HA
= wh
- HF
wh 2 F 18K MF
- 24
1 + +------2 K
|
+ 5
6K +
i
w 213°K+7 ii H
K+2
Section B5 12 September 1961 Page 17 B 5.1.4
Particular Table
II. HORIZ.
Solution
of
Bents
and
B 5.1.4-1 Reactions and Two Legged Rectangular
Semicircular
Arches
Constraining Moments Bents (Cont'd)
(Cont'd)
in
TRIANGULAR
RUNNING
LOAD
V = _w
(a 2 + ac
VL
--I
a
HF
= _
X7
=
HA
= w(a2-
c)
_ HF
KX7 +
(2K +3)h
w 120h2(d-b)
SPECIAL
WHERE:
13(4d5+b5)
20h2(2d3+b
h FOR
- 2c 2)
3)
CASE:
_ 15h(3d4+b
4)
+
_ 15bd2(2h_d)2 b=c=o,
a=d=h:
wh V HA
_
_ V
HF
= 6--L-wh2
HA
wh
7K
2 =--
_ HF
_ )
V
=
12. HORIZ. TRIANGULAR RUNNING LOAD
V
1 + 10(mE + 3)
w " _
(2a +
c)(a
- c) KX
HA
D --L
= w(a 2
c)
_ HF
HF
_ 2-_ VL + h(2K I0 + 3)
WHERE: I
f=-
I I b
i
W
Xlo
=
-30h2c
(a2-c 2) +
+
15c(a4-c
4)
h
_ V
FOR
SPECIAL
V
wh 2 -3L
=
CASE:
HF 1 '
HA
wh =,_-
HF=_
20h2(a3-c
120h2(a.c)
- HF
whI4K 2K+3+
5 ]
b=c=o,
a=d=h:
- 12(a5-c 5)
3)
Section B5 12 September 1961 Page 18 B5.1.4
Particular Table
13.
Solution
of
Bents
and
B 5.1.4-1 Reactions and Two Legged Rectangular
HORIZ. TRIANG_ RUbbING LOAD
V
"
wl_a2
_
Semicircular
Arches
Constraining Moments Bents (Cont'd)
ac
2c 2)
-
6L
(Cont'd) in
MA L
MF L
X8 " _
. x9(K-l) _
w(a - c) HA
=
u "F
=
2
" HF
--- L
°I,II
w( a2 + "
ac - 2c 2) i mh'
WHERE: X_
= ._.._w
_
[15(h+b)(d4.b4
60h2(d-b)
i.Jc/
|
) _ 12(d5_b
5)
3
-20bh(d3-b3)I
HA ,../MA V
_._M F F
Xo
V
= ----_m 60hZ(d-b) b2h_b 3)
[lOd2h2(2d.3b) L _ d4(30h+15b)
+ +
lObh(4d3+
12d 5 +
3b 5 ]
J
Ew ac 0a2+ 2c2 x8 1 MA
"_"
+
2(6K
x9 _-
[K +I
(3K +
2 + 6K
i)[
w(a2
MF
I)
3K + i]+X s
+ ac6
2(6K
xsl _'- K+ 1 2
+
+
2c2)].
X8
I)
6K+3K i 1 ii=....i.
FOR
SPECIAL
CASE:
blclo
, a=d=h
wh2K V = 4L(6K
+
wh I)
HF
wh(3K + 4) = 40(K + 2)
MA
wh2 " _O-
I
27K 2(6K
+ +
7 I) +
HA
=-_
HF
wh 2 [ '2(6K+I) 27K+7 =6-'_
3K + K +
7 1 2
- HF
K+2
Section B5 12 September 1961 Page 19 B 5.1.4
Particular Table
14. HORIZ. RUNNING
Solution
of
Bents
and
B 5.1.4-1 Reactions and Two Legged Rectangular
TRIANGULAR LOAD
V
=w(2a
=
Arches
Constraining Moments Bents (Cont'd)
+ c)(a 6L
w(a
HA
Semicircular
- c_
MA L
(Cont'd) in
MF L
c)
. HF
2
E H
/
F
=
w(2a2_ac.c 12h
2)
_ XII 2h
+ XI2(K 2h(K
+
I) 2)
where: r
x H "_-'-'_}B
"_---_
_A
"_ V
5 -20hdb3-12b
60h2(d_b)
4 ] (d+h)
I F
A
5hd4-3d
= ----w--w I
II
b.a_MF
X
= w-----E-60h2(a_c)
12
15 (h+c) (a4-c 4 )
12(a5-c 5)
L
V
- 20ch(a3-c3)]
x,:l MA
=
2(6K
x:2 +--2--
MF
=
I K +1
+
2
I)
6K 3K + I ]+X:I
I 3K+I](w(2a2-'ac-c2) 6 2(6K + i)
K+2 FOR
+
- XII ] _ X22 2
6K+l
SPECIAL
CASE:
P
3Kwh 2 V = 4L(6K
!HF
=
+
I)
wh(7K + II} 40(K + 2)
HA
" w__h_h . 2
MA
wh 2 = _-_
V97K+22 L 6K+I
3 " + K-_
f-
MF
wh2 " _-
I 21K 6K ++ 6i
K +1 2']
Jl
Section B5 12 September 1961 Page 20 B 5.1.4
Particular Table
15.
MOMENT SPAN
B
Solution
of
Bents
and
5.1.4-1 Reactions and Two Legged Rectangular
ON HORIZ.
Semicircular
Arches
Constraining Moments Bents (Cont'd)
(Cont'd) in
M V
_.
w
L
H
= 3(b
- L/2)M
nh(2K + 3) FOR
SPECIAL
CASE:
a=o,
b=L
M I
h
V=-L
I1
_-_M I
l MOMENT SPAN
V
= 6(ab
+ 3)'
V ON
HORIZ. + L2K)M
L3(6K
H
+
i)
= 3(b - a)M 2Lh(K + 2)
MA =
M
-6ab(K+2) b
ME
= VL
FOR
V
i
i
t
V 16.
H
3M = 2h(2K
V
V
- L
[a(7K+3)
- b(5K-l)l
J
2L 2 (K+2) (6K+I) - M
SPECIAL
- MA CASE:
a=o,
b=L
CM
_._
L
I {
H -
3M 2h(K
i + 2)
(sK- I)M IdA " 2(K
+
2)(6K
+
I)
Section B5 12 September 1961 Page 21 B5.1.4
Particular Table
17.
MOMENT C " I'
'6
Solution
of
and
B 5.1.4-1 Reactions and Two Legged Rectangular
ON
SIDE
SPAN V=--
D
Semicircular
, b
h Ii_ _----- L -P
H____
A
Arches
Constraining Moments Bents (Cont'd)
M L
H
=
3 [K(2ab+a 2h3(2K
_b FOR
f
Bents
SPECIAL
CASE:
a-o,
(Cont'd) in
2) + h_M + 3)
b--h
M V
=
--
f-_M
L
k
_L
H
E
3M 2h(2K +
=
lv 1'8.
MOMENT ON SIDE
3) q)
SPAN 6bKM
V=
3bM
y--L
+
I)
2h 3 (K +
-M MA
[ 4a 2+2ab+b2+K
!A __._,-
MA_-J
2)
(26a2-5b2)
+ 6aK2(2a-b)]
12 ME
r
+ b ]
= 2h2(K+2)(6K+I)
b
b
[2a(K+l)
H
hL(6K
_ ! BM:
q)
I
=VL-M-M
FOR
A
SPECIAL
CASE:
a=o ; b=h
_ E _,_
H
6KM
V =
L(6K
I
+
i)
+
2)
V 3M
H=
2h(K
= MA
2(K
M(5Ki) + 2)(6K +
I)
Section
B5
15 February Page 22 B
5.1.4
Particular Table
19.
VERT. LOAD
Solution
B 5.1.4-2
of
Bents
Reactions Triangular
and
Semicircular
and Constraining Bents (C,:'_'d)
Arches Moments
1970
_Cont'd) in
CONCENTRATED VA
= Q
VD
=L
- VD
Re
_
Re = h
20.
VERT. LOAD
rb
d _a+c)
Li
+ 2a2(K
+
] i)
J
CONCENTRATED VA
=Q
- VD
] D
L
,
L
4,
M
= A
-
2a 2
6La_h(K+l)
^qcd 6a_(K+l)
J
[L
r(a+d)(BK+4) L
qc2d MD 21.
HORIZ. LOAD
2a2(K
+
I)
CONCENTRATED C
!H ,A=Q
-H D
d _h+c) ] 2h2(K + i)
+
2(2L+b)(a+c)
- 2(a+c)] J
+ 3ac
Section B5 12 September 1961 Page 23 B5.1.4
Particular
Table
22. HORIZ. LOAD
Solution
B 5.1.4-2
of
Bents
Reactions Triangular
CONCENTRATED
and
Semicircular
and Constraining Bents (Cont'd) r-
Arches
Moments
(Cont'd)
in
]
v 11- 1 = L
2h 2
HAQ Ho
J;
=
-
C i HD
= Qc Lh'
4 va_ q_- b --_r
HA
e
_
V
VERTICAL RUNNING
d 6h2(K+I)
(h+d)(-b[3K+4] [ + 2(2L+b)(h+e)
- 2L) +
_MD I_ HD
V
23.
b +
UNIFORM LOAD
MA
qcd + , I) [ (h+d)(3K+4) = 6h2(K
MD
=
VA
= wa
' B
_cd 6h2(K +
. i)
(h +
-
2c +
2(h+c)
I
d)
I - a_2L]
wa 2
Vc = 2-i1_ ii_j
_S
2
I2
H = wa2 8-_- 14b l- + 1 +-----f i ]
24.
VERTICAL RUNNING
uNIFORM LOAD
V A = wa
LB
12
H
! I 3a I - 8-_
wa 24Lh(K +
__
i)
S2 MA
=
M
=
wa2{3K + 2) 24(K + I) 2
VA
___
VC._ L_D-
H
"dMc
c
wa 24(K
+
i)
:
b(10
VC
+
9K)
--
+
3wa 2 8L
2L +
a
]
I] 3acl
1
Section B5 12 September 1961 Page24 B 5.1.4
Particular
Table
B
25. HORIZ. RUNNING
Solution
5.1.4-2
of
Bents
Reactions Triangular
UNIFORM LOAD
and
Semicircular
and Constraining Bents (Cont'd)
Arches
Moments
(Cont'd)
in
wh 2 V
:
2L
W
I1
12 _A = wh wh
_c "_HA
_I_
.
vf 26.
HORIZ. RUNNING
4b i Hc
_-+_ K+I
_
L----_v UNIFORM LOAD
3wh 2 8L
_A
" wh
-M C wh
k_
_
8L(K
+
I)
[ b(3K
+
_A "
24(K
+
I)
V
27.
APPLIED AT APEX
MOMENT
M L
.I.b1
!s,iJ vr
L
_'_h'L
L!
K+I
a]
wh 2
wh2(SK+ 2) V
4) +
MC
= 24(K
+
I)
Section B5 12 September 1961 Page 25 B 5.1.4
Particular Table
28.
APPLIED AT APEX
Solution
of
Bents
and
Semicircular
B 5.1.4-3
Reactions
and
Triangular
Bents and or Arches
Semicircular (Cont'd)
Arches
Constraining
Moments
(Cont'd) in
Frames
MOMENT V
=
H
=
3M(a - bK) 2he(K + I)
MA
KM = 2(K +
I)
MC
=
M 2(K +
I)
/
_-
3M 2L
b b_
S.
c
jMc L
V
29. _k
-T V
S INUSOIDAL NORMAL PRESSURE
V
-
C_R 4 CR 4
I b(Ib/in.) M0
- CR24
(Positive f
*V
b=c
sin@
Vt
section
[(n-28)cos
moment ahead.)
acts
8 - _ +
3 sin
clockwise
on
Q]
Section B5 12 September 1961 Page26 B5.1.4
Particular Table
30.
Solution
of Bents
and
Semicircular
Arches
B 5.1.4 Reactions and Constraining Moments Semicircular Frames or Arches (Cont'd)
(Cont'd)
in
S INUSOIDAL NORMAL PRESSURE
V
-
C_R 4
b(Zb/in.) 13_8 2 _2- 32 ]
H=_L
M_
CR2 4
[_3i0_.]_ 8 2
sin0
31974CR
=
.05478CR
2
F
/ b=C
=
M 0 = CR 2 |.81974
rv
sin
0
cosO _ - o) } - .s4018 + -7-(7 (Positive section
31 • UN IFORM PRESSURE
moment ahead.)
acts
clockwise
on
NORMAL
I M m
0 at all points since pin points permit a uniform hoop tension. T, where :
T m V = in. ) H_O It
bR
B5.2.0
Analysis
The originally
may
procedure define
is
given
is
with by
in
a
ends
the
Tabular
1968
Page
27
Method
corrected
be
built
version
in,
procedure
tabular
to
by
B5
9,
of
work
taken
6.
frames
analyzed
sequence
Ring
analysis
Reference
or
be
the
Arbitrary
following from
Rings pinned
of
Section July
form
elastically
outlined
(Table
in
B5.2.0-1)
restrained,
or
this
section.
The
with
added
notes
to
illustrate
the
pro-
followed.
f-
A cedure.
This
loads. sample
sample
The
problem
sample effects
is
problem of
given
in
See.
considers
shear
flow
B5.2.1
the
are
to
energy
due
presented
as
to
a
direct
and
supplement
shear
to
the
problem.
Procedure Procedure
(i)
(2)
to
Obtain
Initial
Set
out
the
neutral
and
O.
(In
a
Divide
the
twenty the
complete
a
not
T
into
a
usually
Elastic
Data
ring
between
the
O
of of
should
of
segments
equal
length
sufficient the lie
end
points
T
coincide.)
_umber
give
points
segment
and
and
necessarily
central
complete
the
ring
will
and
of
axis
but
segments
Joints
rings
axis
neutral
conveniently
Geometric
which As.
Ten
accuracy.
segments. each
are
In
side
of
to
Mark
symmetrical
the
axis
of
symmetry. (3)
Calculate
the
values
As/E1,
As/EA,
As/GA'
at
the
segment
centers.
(4)
For a which
built-in defines
Figures
(5)
B5.2.0-I
For
a
Use
the
and
-4,
For
a
_'
at
and
pinned-end X
and
built-in
directly. sidered.
ring, calculate a the elastic center
the
axes
ring
segment In
from equation the axes X'
and
(I) below Y' (See
0
is
-2.)
ring, Y
and b C and
no as
obtain centers.
syLi_etrica]
translation
they
are
the
co-ordinates
For rings
of
defined
a only
pinned half
axes in
from
necessary.
Figures
B5.2.0-3
x',
and
ring the
y', obtaiL_
ring
need
x,
the y, be
angles and con-
Section
B5
July 9,1968 Page 28
B 5.2.0
Analysis
of Arbitrary
Angles Measured in Direction of Arrow
Ring
by
Tabular
Method
(Cont!d)
Positive 5
fo
4
--
9
3
/
'
Neutral_
Fig.
B5.2.0-I
General
Ring
with
Built-ln
y
Ends
Note :
i
Neutral
7
6
9
'
Fig.
B5.2.0-2
Symmetrical
X
j
2 0
4
T
Built-ln
Ring
e=O
Section
B5
July 9,1968 Page 29
B 5.2.0
Analysis
of Arbitrary
Ring
by Tabular
6
Method
(Cont'd)
5
4
with
Pinned
O
Fig.
B 5.2.0-3
General
Ring
End
Y 7 Neutral
6
Axis
9
4
_S
3
"%\1 O Fig.
B 5.2.0-4
71/' T
Symmetrical
Pinned-End
Ring
Section
(6)
Note
that
The
_,
angle
8,
must
and
_'
are
originate
counterclockwise
to
measured
at
the
the
end
For
the
slope
of
the
tangent
the
slope
at
the
midspan
of
As/GA'
are
:
As/EA
and
most
cases
compared
the
to
with
the
II.
Limits
of
30
in
from
neutral
1968
Figure
O,
and
B5.2.0-I. be
measured
axis
of
the
element,
element.
not
usually shear
bending
9,
Page
T.
the
and
July
shown
coming to
the
thrust
General
I.
end
going
use
NOTE
as
B5
required,
energies
since
are
in
negligible
energy.
Notes
Application
The method deflections
may be applied to any are linear functions
elementary
formula
connecting
ring or curved beam of the loads and in
curvature
in which the which the
and
bending
moment
holds.
as
redundant
reactions
can
calculate
them
Calculations
(1)
The
advantage
due
to
without
(2)
The
The
referenced
General
In
but in
cos
(5)
Mc
one
is
tabular be
form
used
set
out
the
supports In
is
using
and in
for
finite
segments.
exceptional
steps
arbitrary
T
all
work
IV
an
and
other
essentially
numerical notes
equations.
cases
an
applied.
6.)
form
is
directly
and
of
additional
columns,
Accuracy.
Although
is
0
built-in
"give"
cases the
the
same.
possible
when
ring,
size A
of
the
considerable
the
ring
is
VI.)
the
calculation
e.g.,
for
x
may and
y
will
not
four
or
exceed five
results
three-figure
figures shall
in be
the correct
the
data
accuracy remaining to
three
in it
columns is
be one
conveniently requires
1-6
necessary
columns figures.
in
but
elastically
x'
etc.
Numerical
final
the
certain
with @,
also
III,
the
(See
practice
done
in
may
when
Note
reduced
and
simultaneous
be
table
Y, Thus,
shown
may
applicable
symmetrical
(4)
are
method
reduction
X,
solve
integration
also
(See is
to
calculations
analytical
is
choosing
orthogonality.
having
Graphical
(3)
of
their
order
and to
24-26 retain
that
the
table
Section B5 July 9, 1968 Page 31
III.
#-
Arbitrary
Built-In
Ring
Equations
required
and
(Fig.
the
B
5.2.0-i)
stage
at
which
they
are
used
are
as
follows:
Z F
(i)
x o As
E1
a .
YO
&s
b=
E1
(2)
After
column
12,
A_Ks _ 2Ex'y' tan
20
(3)
(4)
M
x'
, N
.0
0
tree
at
After
As >; sin
2_h'
_,(
=
y,(x
x =
E1
'rz
-
.,)
As _--
sin
0;
y'
cos
0 +
y'
, and
S
are
y
>;
cos
=
y'
calculated
2, r_,
cos
for
0
tile
As
As GA'
- x'
sin
ring
built
0
O.
colunu_
33,
,fAs
-EMoY X
=
_
+ _3N o
cos
_' _ As
_
LSo
sin
_" As _,
-
Z'Y_ As
.-, _, As
As
0.
in
at
T and
Section July Page
B
5.2.0
Analysis
of
Arbitrary
Ring
by
As EM
Tabular
Method
As
ox _-__ _I +
ZN
sin
o
B5 9,1968 32
(Cont'd)
As
_-
es o cos _-GA'
y
As _
Zx2
ZM M
=
+
_
sin2
_
As E-A + _
c°se
As G--A'
_
As -E1
o
-
c
As It. E-"_
(5)
After
column
M
: M c-
N
=
N
Xy
39,
+
Yx
+ M °
+
Xcos
_ +
Y
sin
+
X sin
_
Ycos
0
S
"
S
-
o
(6)
Effect the
of
Elastic
supports
T
coefficients, moment
Supports. and
kTm
required
force
to
distance,
direction
the
elastically support
For
the be
to
in
the
purposes
of
represented
centrated
at
T
and
the
and
the
two when
i
As
1
E1
_m'
EA
kTn'
As
I
As
1
two
defined
by
force is
is no
are
three is
is
$_
move At
displacements
, there
kTm k la
distance.
a
of
radian,
to
at
sets
Thus
required
unit
i.e., @_
koS.
one
force
the
the through
T
in
a
each assumed
applied rotation
to and
the no
_$ the
calculations
by
two
O,
of
additional which
the
respectively: As
kon,
the
direction
through
direction to
a
characteristics
by
kom,
in
is
_
rotation
normal
may
kTS
elastic
T through
T
orthogonal, T
movement
rotate
and
The represented
krs;
move
normal
support
are
, kTn, to
required
unit
O
As GA'
As
1 kTS
I
'
the
support
segments "elastic
flexibilities
considered weights"
conare
Section B5 July 9,1968 Page33
"r
B
5.2.0
Analysis
of
Arbitrary !
r--
Note
that
Symmetrical
(I)
and
_0
(2)
is
the
as
X,
Y1and
Any
For half
the
X
(4)
20,
and
may
the
external
28,
30,
are
loading.
half
Thus, 36, N,
V.
that
i.e.,
elements
(I)
(2)
required
an
the
the
supports
of
this
tional
segment
and
anti-
and
12,
O,
18,
columns
in
M c and
in
N
and
III
need 0 .
S
20,
X are
of
determinate equal and about
C
external
22,
27,
29,
31,
expressions
omitted.
considered
For
in
Y
is
course,
only
elastic by in
to
For
anti-
and
S
be
taken
symmetover
characteristics introducing
III
table,
loading
antisymmetrical
applies
the
symmetrical
antisymmetrical.
are
(4).
the
the
and
omitted.
(4). be
described
B
III
21, in
columns
are
statically XC and
19,
required,
still
(Fig.
Y
load
symmetrical
as
table, required,
in
are,
have
the
involving
formulas
being hence be
not
included
support
section
Ring
are
external
and
M
at
terms
ring
symmetrical
method
S
in
39
be
formula
half
When
Thus and
involving
the
7-12
determinate, and should
the
terms
ring.
X
and
of
the
the
an
the addi-
(6).
5.2.0-3)
23,
27,
28,
30,
33,
35,
38,
and
39
are
required.
is
the
(3)
entered
not
hence
table,
half
4,
moment
not
summations
Y
are
symmetrical
the
the
rical.
not
4-12
loading X and M c are load in the direction
should
loading
Columns
a
38,
N,
are
are
Pinned
M,
37
only
The
35,
from
the
symmetrical
Arbitrary
columns
as
in
from
N
of
are
directly.
and
S
Note
and
values
5.2.0-2)
loading.
for
they
determined
M
the
coordinates
Y is statically the direction YC
determined
to
M,
_Cont'd>
be
and
and
33,
For antisymmetrical being half the total
for
B
analyzed
loading load in
respectively;
(6)
be
in
Mc
34,
necessarily
calculated
23,
opposite
(5)
(Fig.
expressions
32,
not
symmetry
are
Iymmetrical the total
18,
Method
loading.
included
in
of
_
loading
need
Ring
line
symmetrical
(3)
Tabular
The values above of the table.
Built-ln
CY
by
!
_T
_' at T and O. in rows T and 0
IV.
Rin_
is
statically external
determined
determinate
and
should
hence
loadillg.
from
the
formula
in
Ill
(4).
be
included
in
Section B5 July 9, 1968 Page 34 B5.2.0 (4)
Analysis
The
M
(5)
of
Arbitrary
formulas
• Mo
Effect
for
- Xy; of
N
Symmetrical
(i)
Any
Elastic
Pinned
loading
symmetrical
the
total
For
considered
(4)
(Fig.
be
the
When
_
; S In
=
So
this
noting
(Cont'd)
*
X
case
that
sin the
the
_. procedure
terms
of
kTm , kom
B5.2.0-4)
analyzed
loading, in in
the
as
a
the
the
solved
an
additional
IV
(6)
and
this
is
in
have section
(5).
the
purely
segment V
table,
loading load
supports
of
the
symmetrical
load
direction
procedure
total is
method
_Method
S are:
cos
Ring
the
problem
X
Tabular
Supports.
antisymmetrical
half
and
applied,
load
Otherwise,
(3)
by
and
an
anti-
loading.
For be
N,
be
may
symmetrical
(2)
M,
- No +
III (6) should do not exist.
Vl.
Ring
by
Y
Y,
i.e., the
X
is
should
O
is
only
elements same
as
in
X.
obviously half
the
half
the
7-12
statically
direction
and
ring
general
in
O.
case.
determinate, Thus,
need
support
this
being case
the
statics.
symmetrical still
at and
elastic
applies. bu
For
introduced
characteristics
the
the
loading
at
symmetrical O,
as
described
in
Section B5 July 9, 1968 Page 35 Notation
Mo,
No,
A A' C E G I
: cross-sectional area = effective area of cross section for shear stiffness : elastic center : centroid of elastic weights As/E1 = Young's modulus = shear modulus
k
: elastic
Mc
- moment
SO
- bending
= moment
of
inertia
constants at
elastic
the
at
T,
reactions
(e.g.,
in
a
determined).
to
• total
outer
any
T
s
terminus, area
s
- length
_' xp
y
of
ordinates
X,
Y
direct
and
may Y
be is
in
ring
any
of
statically
always
positive is
for
positive
com-
for
com-
acting outwards (Subscripts do
load,
convention e,d
as
point
right-hand
end
referred built-in
axes
and for
of
on not
shear
Mo,
load
No,
at
SO
ring
point
of
where
- angle
between
CX'
- angle
defining
built-in
CY
in
ring
or
cross-sectional
OX
passes
or
in
of and
built-in
ring,
elastic
ring; axes
through
axes
or,
OX,
OY
coof
T
CX of
to
axis
built-ln
orthogonal
and
orthogonal
geometric
of
neutral
CX(_
directions
ring,
neutral
to
slope
respect
arbitrary
to
CX,
ring,
= reactions
of
to CX' referred
referred
with
to ring
slope
with respect = co-ordinates
ring,
load
segment
orthogonal
8
N o
111,6)
"O")
def_nlng
pinned
is
note
ring
co-ordinates OX', OY' of - angle
shear
positive when of a section
left-hand or
of
is side
(see
loading
ring
M o
O
ring
which
fibers.
Sign
or
Mc,
and
and
pinned
moment,
section.
= origin,
Yo"
point
bending
O
xo,
load,
statically
refer S
T fixed
external
to
determined
So
in
due
and
in
section
direct
Y,
pression and the right-hand
N,
supports
X,
pression
M,
cross
of
center
moment,
supported
of
CX,
=
axis _'
CY
for
built-ln
at
directions
elastic
OX,
OY
center for
for
pinned
ring x',y'
,
coordinates axes
CX'
referred and
CY'
of
to
geometric
built-in
ring
and
elastic
orthogonal
Section
[e__] gV sVJ
!
o
L_
' _Z uT
B5
July
9,1968
Page
36
Section
/f
"0
X v
!
0
i
B5
July
9,
Page
37
1968
o= v
I
0
Section
B5
July Page
1968
9, 38
Section
,aO
¢q
Z
÷ '.0
cO I
p_ on 4t_ ¢,q
oO ¢,3 ._.
tr3 -a-on ¢.4 "44,, --..1"
o
p_ ,.-.4 O_ on u o oO on
! ,--4
o o4
p-. on
¢0
soo
X
_u._s
H_
X
0 Z_
< E-4
X
co u_ oO
X >*
X
>4 on
bO
-,-4 0 I
B5
July
9,
Page
39
1968
Section
B5.2.1
Sample The ring
segments
for
segment
are
section
of
at
results
each
to
be
analyzed
illustrated this
as
The
is
in
shown
plotted
problem
Given
section for
Figure
calculations
are
been
this
in on
data,
sample
5.2.1-1.
values
shown
necessary
in
Figure The
average
ring
segment have
in
problem.
used the
The S
9,
Page
40
1968
Problem
frame
built-ln
B5
July
properties the
is
ring
is
at
entire
the
symmetrical
divided
the
into
center
segment.
A
of
typical
determine form
graphs,
which
statement,
and
the
on
pages
are
shown
magnitudes
of
42
46.
through
on
conditions
pages
47
M,
= :
M
= I000
R
= 50
o
I00 I00
Ib Ib in.-Ib in.
follow.
Ra E
= 47 I0
in. 6 x I0
C
=
A
= 11 x
l
A'
= 5/6
A
3.85
x
psi
106
(See
load
S
the for
the
bending given
moment conditions
M,
direct
load
by
of
use
N, Sec.
psi
Ref.
and
N_and
through
7)
Problem:
Determine
cross
The
:
P Q
24
each
5.2.1-2.
to
tabular
problem
The
shear
B5.2.0.
49.
B5.2.
i
Sample
Problem
Section B5 July 9,1968 Page 41
(Cont'd)
>
> T
/ 0
o
O_
|
Imaginary Bracket
Figure
B5.2.1-1
Frame _-"
Section Figure
B5.2.
1-2
Typical
for 1.0
Sample
Problem
in.
A-A Frame
Cross
Section
Rigid
Section July Page
B5.2.
i
Sample
Problem
(Cont'd)
I
2
3
AS
AS
4
5
6
9, 42
B5 1968
7
8
.=
Segment or
AS
r_ X
EA
EI
¢q
_q
i
!
GA'
0 o
Points m this
Operations T
10-6
10_-6
10-e
1 2
.11608 .05156
.24631 .18591
.76774
3
•11608
.24631
.76774
4
.11608
.24631
.76774
5
.05156
.18591
.57946
6
.I1608
.24631
7
.11608
.24631
.76774 .76774
8
.05156
.18591
9
.11608
10
•11608
II
.05156
p"
24631
[.24631 .18591
row
described
in terms
of column
numbers
.57946
.57946 .76774 .76774 .57946
i
12
.11608
.24631
13
.11608
.76774 .76774
14
.05156
.24631 18591
15
.11608
_24631
16
.I1608
.76774
17
.05156
1.24631 i.18591
18
.11608
.24631
.76774
19
.11608
.24631
.76774
20
.05156
.18591
.57946
21
.11608
• 24631
.76774
22
.11608
.24631
.76774
23
.05156
.18591
24
.11608
•24631
.57946 .76774
.57946 .76774
.57946
0 E
2.26979
Sum
of Columns
Columns for
4 through
a symmetrical
12 not built-in
required ring;
Section July Page B5.2.1
9
Sample
Problem
i0
iI
9, 43
B5 1968
(Cont'd)
12
13
14
15
16
17
_9
_9 0 0
W !
!
Y ! g_
O o
4x 5x I
(42 _5 z )
(2-3) x7
×i
_J
CD .,-4
0
i
(2-3) ×8
47.
See 070
Note IV(i) 277.5 6. 197
.99144
.i3051
43.
15_5
17.
875
292.5
.92387
.38267
37.
666
28.
902
28. 902
37. 666
307.5 322.5
.79334 - 60875
.60875 .79334
17. 875
43.
155
337.5
-. 38268
.92387
6. 197
47.
O7O
47.
O7(}
• 13051 • 13051
•99144
- 6. 197
352.5 7.5
-17. 875
4:].
155
22.5
.38267
.92387
-28. 9(12
37.(;(i(i 28.
D02
.60875 .79334
.79334
-37.
37.5 52.5
17. 875
67.5
.92387
.38267
6. 197
-43.
G(i(; 155 07O 070
m
o
o2
%
-43.
155
-37.
(;66
.60875
82.5
.99[44
197
97.5
.99144
875
I12.5
.92387
-•13051 -.38267
-6. -17.
.99144
.13051
-28.902
127.5
• 79334
-.60875
-28. 902
-37.
666
142.5
.60875
-.79334
-17. 875
-43.
155
157.5
•38267
-.92387
- 6. 197
-47.
070
172.5
-.99144
G. 197
-17.
070
187.5
.13051 .13051
--13.155
17. 875 2_. 902
-37.
202.5
•38268
-•92387
(;6(;
2[7.5
902
232.5
•60875 .79334
-.79334 -.60875
•92387
-.38267
37. (;(it;
-2_.
43.
-17.875
247
I_ 6.1!)7
262.5
155
47. 070
J
-.99144
5
•991.44
.13051
Section B5 July 9, 1968 Page 44
B5. 2. I
Sample
Problem
21
2O
19
18
(Cont'd)
% 14 I
172x2
16zx2
23
%
0 o
u)
t3Zxl
22
24
25
26
M o
No
So
o o
162×3
172×3
See
Note
10 -6
10 -6
10 ±_
10 -6
.24212
.00420 .02722
.01308 .08485
11.
.15868
.75466 .49459
.15503
.09128
164.69
•09128
.15503
•48322 .28451
.28451 .48322
22.
7
16.47
96.02
.02722
.15868
•00420
.24212
.49459 .75466
7
257.19
_,08485 •01308
-1.
4.46
-63.0
10-_
10-6
4.46
257.19 96.02 164.69 96,96
16.47 96.96
4.46
257.19
•00420
,24212
013o8
16.47
96.02
.02722
.15868
.08485
96.96 164.69
164.69 96.96
.09128 .15503
.15503 •09128
.28451
96,02
t6.47
.15868
.02722
.49459 .75466
257.19
4.46
.24212
.00420
257,19 96.02
4.46 16.47
.24212 .15868
.00420 _02722
164.69 96.96 16.47
96.96 164.69 96.02
.15503
.09128
.09128
•15503
2.356
.962
1.661
1.441
•
-1.996 -8.366
-5.799
-211.2
-26•356
-13.065
-500.6
-35.790
-23.116
-43.784 -49.024
-35,664 -50.058
.48322 .28451
-880.3 -1457.8
.08485
-2259.2
-50.361
-65,318
-3169.8
-46.935
-80,198
-2527.4 -2244_8
47.798 29.656
18.909 27,523
-1920.2
12.470
31.835
-1535.4
-2.385
32,319
.75466 .49459
708485
.48322 •28451
.28451 .48322 1.49459
29.736 25,028
.75466 .49459
-532•4
-25. 028
19.205
.15868
.01308 .08485
-337.5
-24.849
13.224
.15503
.28451
.48322
-171.
4
-21,647
7.890
.28451
-81.
4
-16.406
3,772
• 24212
•02722 • 09128
,24212
.08485 .01308
96.96
.15503
.09128
.48322
96.02
16.47
•15868
.02722
.49459
.08485
-41.4
-10,278
257.19
4.46
.24212
.00420
.75466
.01308
-11.2
-4.448
2543.
16
*Calculations
2543.16
2.7141 on
pages
50
-1,251
-16.810
-21.484
•00420
164.69
• 957
-814.6
257.19
164.69
9
16. 2
-1166.6
4.46 96.96
.246
.75466
.02722 .00420
.15868
257.19
96.02
• 320
7
-13.896
4.46
16.47
.48322
.75466 .49459
II1(3)
2.7141
8.45964
through
53
8.45964_'.__
1. i5t 0.000
Section
B5.2.1
Sample
27
Problem
(Cont'd)
28
29
31
30
U3
<
U3
32
< U_
B5
July
9,1968
Page
45
33
34
35
L0
,3 Lt_
t-4
03 _.1
O
O
O
03
O O
-,q 09
O
03
O
z
0 U
-r4
O3
See 24x I
10-6
-1.35
24×13×i
111(5)
10-6
10 -6
-63.7
-8.4
-.06000
.00791
-.24357
.03206
32.403
-1193.318
3.6
-.40466
.16761
-.51500;
.2[332
93.465
_-i094.065
.24905
-.87768
.67347
151.123
-954.908
-.44727
.58289
196.948
-732.723
.27741
-.66972
225.649
-4,53.
.58105
-4.4140
246.120
-157.106
8.7
i0-6
70.7
54.2 '''t-
. 32457
76.2
99.4
.29928
-.39003
-.09
-I
-3.7
.59519
-1.4369
.6
-24.52
152.0
-25.81
461.4
-102.19
2953.4
-344. t .54037 -4.1050 -li54.2 F-.84724 -6.4362 -1113.9 -2.5462 -6.1472 -3849.0-6.5650-8.5568
_169.22
6374.0
-4890.0
-116.48
5026.7
-2082.1-8.
-367.97
17320.4
-2280.2
-293.39
13810.1
1818.2
-115.74
4994.7
-222.90
8395.8
-178.23
5151.2
6713.2
!- .3576
-60.14 -94.56
1075.1 586.0
2595.6
-.9886
4450.9
-61.80
-382.9
-45.3 )
-17.40 -19.89 -355.8
-2.13
-92.1
-1.30
-61.3
64567.7
Yxt3
10-6
10-6
[ 67
-9.9447
246.120
157 .106
-5.1259
-12.375
225.649
453
-16.668
-21.722
196.948
732.723
-7.3507
-30.489
-23.395
151.123
954.908
-3.5828
-34.968
-14.484
93.465
1094.065
-11.462
-1.5088
-61.044
-8.036
32.403
1193.318
11.672
-1.5365
14.393
-1.895
-32.403
1193.318
2068.9
5.094
-2.1098
14.734
-6.103
-93.465
1094.065
6442.3
2. 437
1.8698
19.390
-14.878
-151.123
954.908
-9.5797 6498
-1.
3091
.46605
15.10.5
-[9.685
-196.948
732.72
-.6906
2.3867 5.2464
6.594 2.508
-15.919 -19.051
-255.649 -246.120
453.1 157.1
2908.8
.8046
6.1119
-1.924
750.9
!1.7679
749.3
-9.45
Xxt4
Note
10-6
i .88
-1887.15
26x17x3
25x 16x2
2.64
-7.31
26x16x3:
24x 14xl
.2O
f
125xt7x2
>*
0
O
Z
x
273.0 38.1 8. I
13248.01
3. 2458 13.2059
.167
-14.618
-246.120
-157.1
-2.932
-'7.079
-225.649
-453.
4.2300
-3.688
-4.806
-196.948
-732.723
2.4599
-2.267
-]
-151.123
-954.9
4.2679
.763
67 06 06 l 67
1.7654
.7312
-.6162
-.25523
-93.465
-1094.0
i. 0862
.143
0.0000
0.00000
-32.403
-1193.32
-9.9626
-18.563
-89.533
-199.59
08 7
Section July 9, Page
B5.2.1
Sample
Problem
36
X×
16
38
O o
.=
X
>. Note
Xx
17
-.682
.682 2.001 3.183 4. 148 4.831 5.184
.682 2.001 3.183
5.184 4.831 4.148
-5.184 -4.831 -4.148
4.148 4. 831 5.184 _.184 4.831 4.148
46
(Cont'd)
37
See
B5 1968
HI
39
O o
(5) Y×
16
Yx17
41
M
N
25+
-406.0 -352.3 -258.4
26.063
-9.702 -15.433 -20.113 -23.422 -25.135
-3.309 -9.702 -15.433
-25.135 -23.422 -20.113
3. !83
-20.113
2.001 .682 -.682 -2.001 -3.183
-23.422 -25.135 -25.135 -23.422
-15.433 -9.702 -3.309 3.309
177.4 -427.2 -1177.5 -470.3
9.702 15.433 20.113 23.422
-225.8 17.2 225.6 343.6
25.135 25.135 23.422 20.113 15.433 9.702 3. 309
420.0 388.0 266.3 124.2 -53.8 -210.6
-15.433 -9.702 -3. 309 3. 309 9.702 15.433 20.113 23.422
25.!35
42
M c + '24 -34 +35
25.135 23.422 20.113 15.433 9.702 3.309
-20.i13
-3. 309
40
37
+ 38
365.2
27.779 24.957 17.585 6.167 -8.317
531.2 558.4 486.9
-24.481 -40.661 -55.069
-34o.?
-65.954 -71.782 -71.388 2'i.981 4.233 -10.826 -21.966 -28.429 -29.997 -26.903 -19.978 -10.362 .524 11. 143 26.005
26 + 36 - 39
-1.555
5.83_ 12.726 17.887 20.170 18.654 12.752 2.307 -12.368 -30.477 -5O.785 -71.705 20.784 22.652 20.550 15.389 8.315 .575 -6.612 -12.199 -15.406 -15.809 -13. 382
July Page
9, 47
1908
P
:
:
•
"
:i ......
i
i |
•
: ..... '''
i........
i........
...'.
. •
i": ....
|
':
.......
, .....
•,i....i ........ .._..! ;_-;i[ • .'
:
.....
"..
1
,
;
S "1
i
""
[ :.:fill
'
:
i
:.'>.iii
:!'"
_:"_ .... i .................
,1..
i
....
i
•
,
•
:
:
I
i
r
l
i.,,:-,;-:i,; :t
.'I :
...
l
,,
,
,:'. ':'..
",
!..,:1.
....
:," I
:
i
] ...._
;
_
!
,i.....
"', ....
.'I:
;
":'l
" "".
l
• ,
'.
".
,
Figure
B5.2.
I-3
(See
Bending
Moment
Fig.
B5.2.1-1)! Diagram
of Sample
i" ':: ' :"" I ....
,
::
Segment
"•
Problem
..] ..,.....,.........::::::::::::::::::: "."
.:..'::" :': ":;: : :
I I
!
: ":
:'.':: ::1.:::: ,,.
....
, ;',,::':::I , ......
Section B5 July Page
Figure
B5.2.
t-4
Shear
Diagram
of Sample
Problem
9, 48
1968
v
'l: :: ; I;'L .:::".'.:'::".
V.':'::':I ::"::': : ".
:L• - .... i'i'i]lt5 .
2• I
"
l':..::.'"! " ::':: " ":1:':"• '"' ." '
S;irnldC ..
i)roi,l('rn
":': " "s'.::--": _:'" •
ICont'd) . ....
.......
!: :
'
.:: :::.::i..iLF:r
:
I . :" . :
:.....:1', .... ::i: "} :l . . .............
.-_-.*'" ."%'.'"---.*:-.'-."'--.:
_/...:hl..'i-_7-:..-.,T-.-::.!7.:i_;!:.:iiT_!:.i:.:.L:: l::i:::i i::. : _i: :.:.I ..:': :! :!:.. i i ::_:.i _ i..;;. .F.:: i... i.: .. i I'--o-:
o-'_.
.......
:.."
"-'I'--":--.:','-'T"T""
! "
."
"i.':'i
'"
: ....
'.':'"I:
'
: "i'"
.........
_,.--:::--"I'."
i.
........
! .....
": :'.J.
:'d':
.:'.L
'
......
::,_":
..'
L ": "
.....
':
I:"::':" • .: }
...............
•
"'
}:... . •
:
: ......
.q........
" :
"
i"
|_.:::::'":"
"':
. ""._1
i i
: .......
:
.
. : .
.!. !.. .I:_ !: : .. :;.... _l:_.i.4
.
":i
..
'i
:.
: .....
"':"
:
:"
•
"
"':
!
'"
I-IL...L-;:.I i :_::i:...:I_.:. !...L:.L.::!....:.:.; ....:::::::::::::::::::::::::-:.:;..].. i:.:.::....i:.-l:i..i:::.ii.-!:.:.;l:i:.:.:..! ....:...:.. i:.. i
'
.....
l:i :...;!i i.:ii_l:::;...!...:..;..: : .. ! ....._.::.;..,:....._..:.. .:::..,::.;.:.. ....!..;.:..!::..;.:, .: ....... .... .... •
|.'"
:
.
••
• .'.l•
' I:::• ..:..I.... .: ..... .... : ".:'.I" :!'_'..:: .... !--I;I,'i • i
Jt
•
i
" ". • I ::.:" '. ---: ::;-- i :::. _
" : ": ...........
"
I......
"" :
"
: .... ," :
I
I
::.;'"
I'
",".
• ...;
.........
i
,
.
,
.
'_!
.
: "l'
• :: • ,. i .......
,.
I
,
.
."
I_ --
.......................................
I::..,_1...L • ''.
'
•
. . .
•
":
,
. .
,
•
I_1
.
|'
" ....
;
' : '; " : -.i._ i.-.
"1" :
:'
'""'" .,...1;;..{
.....
.
":..
;
:
•
l
•
,
", ...... • "I";'. : .... I .... : • ;!.!i _- '- ;
: :.,
' ................
I_
'
"
"'.
t
"
.
i:!
,i ",;
'':"
":
':
;'.:
.....
""
|
.:
:
"
.
.'
_
"".,l'
.......
:"
[
I
l_.l--"'! i. .-".:: , !_".-_-! " I " : ::.... : :_ _!
"
'-'!" I I
'
..":: : I,
I .......
":
;'...:
::
.
:
.....
•
,':.
,
_
•
i
"
•
:
""
":
:
.......
:__
.
:
• ;
....
: .....
. '
'':
:....
'
:""
;
"
"
_:: :.,I...; !:............ :......... ,_. ....... !.:.'..:: -=....,-t..... I:..,-',..:, ......... _...-: ......_ i_..::i..._ ..... '::: Pi" I • ' ;" ; ": I_L : t" • "1 ' ! " I ; "t :'" " F ": 'i
:" ...... •:
_i!i_.] ;; ! .... i.-._:.: ....... !\ ....I......::1::......:II...:!
i.
":;"
.-_"
: "
::....
I.::i"
'.-,,':T, ..... • ,: ......
","
" "'
"!
.
"
:
_
•
"
!
:
......:..... ITS:::i: Ii:: :,
:"
:1" :!" 'i::':i"
.....
",
i
I
I];
"
l ,
;
.
"
' I
I
_
:
•
........
I ........
:l "........
..:.:...,
:%'::':"
iL'._2:.I-..:...
I
::::::;
"I
. " _ ..
''
i{:::!._;i .. •":-E::._-ta":
..
i : .:!
'. " i:
"
........ :;.... :.-.:
':::
_i_ii_!:::l i: :: " :.:j !:: " ::.
'::
::
.
.... -=...;:..-
'
•
::" :" 1"" .... i :::":::':::
::'-'-_:T-_:'..: .... :_,,|,,,.. .....
:
:
!
....
I
•
.......
'.
'
!
:;::'"::r
.i
"
"
.:
!
"
"
"
,
• ;
: i
•
•
•
Fig_ure B5.2.
"
''
"
:" 'T"
;
I
,
:"
'
'
:
.., '!1"1, ...,,.
• I
/;
'
"
]
•
-..---..-
:';i: .,
I!!
_'-
:
I '" I,d ....... '
:
III
'
;: "t.,,, "
"
'
'
'.
'.
-.;.';: ..........
-'_
:i:Y _i:!il
: " i .:;[;:-
'
i'i;:: ......
!........ :!'-;H'i'i,"
,...: ..:.; • ..:_::::'.::;;:;;
_ii,!__ .
"
"|:
":
I ..... "'", .... ",............ "|
I
."
""
Load
•
I},) I
"
"
:;.:':'.,,i : • ':....
_..,.:::L.;;;_...;_I: |' Ig
: "
:
;
I!i : "!!i_i;:. :l: !;-:;1::. :-.!....:..,!...."-'l_;:;!;-i.::!.. • :;::_i:_i_!i
(S(_('
' •
"" ';'
I
:.1_;: +_ I
Direct
!
I..... _
1"
..."1
_
.
'
................ ,:....... . ...... i : i::: i
r__
" ,.r.'
::-...... ::: ", ,";....""1........ ,....... : t'rh
•
";:
.. • -_,•
i
r
:
k-i ---! .... ;'t--.=1.,-;;
"
" ",.4._."
_' ""
"
.... ! ..... _£.:....i:_;....._.........
_'
:
'
...... ,_,;...._, .,L._ ....,ll....,., t..l.. 1,.,.....i,.,....
... , _ ,...:L.,:: _ .....
I-5
' •
, !
! ; : •
"":.,-.':"";
I
, "" ':'1 ......
;:;i
".... _..',_=-...=_ ...... ,....... :,.......
;-
. ::.,..: .;:.:
i"
'I
.'::
.:.I
..1',]
L ..........
I
.-:1 ...... :;.:
i
':: ::;:,! " • ,I-- : ,,i " .... I : ..'. :.._( gll
__.-,.l:;'''-::"'
•
:::.i.... I: :ItL
.,: ! .....
-'"
:
:'1 ....
"
I ; : • .I .':'" I .:: : i " •'"":r .... I ..... • i ......... ' _ •l_ _1'" ...... • _ :':":" ........ "::
.:--:-'.-:-.: .......
:
: li
'
,
,,1
i. i !: ::!
............
• : ..::1 .. ,
•
...... ;..... :'-": ....... ..I.......... ;.
........ _ ............. :::;':: ..... • • : •,":---_;=._.-
.......
"
....... .... i: ii: ',
•
,':_;i: i : : :_'. ';" :_ "" ' i:.:' r • .."--:...! ......... 1I........ ...... i'-::' ...... "1_ .................|,,..I...:--:: _ ; • ..... ''
I
:
:
,
..... !' I
"' '
,
I
_
."
:."l:
_
:
• ........... i ::\
I
"
';
!k:
.
'
..
:I...
..........
T -"; . I': .'i''_"'i"
. ""
.I.
:
._
-'
:
. ._ ..i... i...:..:;_
"
" :
""
I :
.......
'
....
:
:•
•
. i ' i .:ii. : i
I ....... :::i..'...:
:
|
i
: •
.i ....
. :'
%
:
:
| ................
'"
•
:" ; " "'" J_ ;""' •: i'" .- "" .... i......... ":'
..... :..l
I .'. ......
I..,
,', :
•
: ,. :..: •
"
;
•
I :':.: ...... I "-_.i .!
........
I_: _, _-,,I._ ."ri.;.;.......I
:
•
..li:._. _ .:.: :+:;: ; ;:1
1
.... ""
:
:_i:"':i.:. _
:
"i
":"
............ . ' -:.
_ ":..
i:..
.._
"
..
:l
" " "
,..
:
.......
,_i;''
,
i_:::.i.I... ::.i:: .: :.i .:_:_i;...r i i, i,::l ::: i:!_::l i
•
I ....:
....
.......
:. -I •l Y :i; I:i !:,,::; .....
:"
...
....
: " ..' " ! "".J i:: ;:::i:-,
li::.:::...;-... I. ....__. : : _::.i: :_. ! :: lli:Ti :1 ii :i i i:i__ i:: .....
• "
2
'
'
:
"'"":"':I .'".."
'
Diagram
.....
"
•...... I :";":'I'.-.':'::';':";"E; , I,
I.....
I
!-'_'-
_ ,-_"
of Sample
:
i
"|
:
;
" _ _
:'"
i :i
I
:
I
'":' ;................ I ......... _.... :.::'::::':" :::::':::" " '::':'::"
.: .l::".:J'W:::: ,, ,,,;., ; '-":,-"
1- ! _'
: h .,,,,_t_'..;.. I .... .....
'1
I,
I:'" :':
:""'1 • - _
• ": "'!"
I:.'.; .... I:":":: -_"''-":
-!'!
Problem
.....
'1"""."" .. ........
:1
:'; ..... :" :'.:::::::1
"'" :1
'" '::!!
!
"''_
"
.......
Section B5 July 9, 1968 Page 50 B5.2.1
Sample
Problem
(Cont'd)
The values for Mo, No, and S o are calculated and shown in the tables on pages 52 and 53. The necessary formulas for computing the shear flows are shown below. In these equations, counterclockwise shear flow is considered positive.
Figure
B5.2.
t-6
Symbols Mo,
and
Sign
N o and
Conventions
for
Computation
of
So
P
-M
qPot
= lrR---o sin
_
qM_
qQc_
= ---Q'-sin 7rR °
(c_ + 90 ° ) - 21rR _
o
qa
-
2_R:
= qPoL + qQo_
+ qMc_
In order to perform the calculations for Mo, No, and So, the shear force acting on each segment must be known. This shear force is obtained by multiplying the average shear flow acting on the segment by the length over which it acts.
Section
B5.2.1
This the
Sample
Problem
average
shear
typical
segment
l
July
9,
Pa_e
51
1968
(Concluded)
flow
in
qavg. = _ {qa
B5
is
Figure
÷
determined
by
B5.2.1-7,
tt
using
this
Simpson's
average
Rule.
shear
flow
F_
r
is:
tit)
4qa + q_
where: t
cl_
= Shear
flow at left
end of the segment.
tt
qc_ = Shear
flow at center
of the segment.
q_!
= Shear
flow
at right
end of the segment. f!
q_
Figure B5. 2. I-7
The and
53
number No, and omitted.
formulas
used
for
are
listed
and
its
range
are
applicable
M o
under is
Shear Flow Acting on a Typical Segment
computing
the
cables.
the The
indicated
where
for
values
all
values index necessary. of
n,
in (n)
the
tables
on
refers
to
The
formulas
therefore,
the
the
pages
52
column for
index
So, was
Section
B5
July 9, 1968 Page 52
B6.2.
i
Sample
Problem
(_Cont'dJ_
e_
+
+
t!
+
h
+
W
fl e_
H
I$ el
e_
II
>
0
II e_
II
II
II
fl
II
Section B5 July 9, 1968 Page 53 B5.2. I
Sample
Problem
(Cont'd)
+
0 i@4
_
_
_
u_
_
_D
_D
_
¢q
Q0
x-_
OO
Cq
OO
_
c_D ¢q'O
r _- P-
¢q_
_--
o
I r"
0
Z
O
_
I
......................................... Ill
I[I
t._
d
lllliJi
+ O I
IIIIII I
II O
.............
............
%,_°_=_ II
e-,
il
O
I
.= iilllll
I II O
4_'_'_'_'4'_'_'d'_'C'_'_'_'d'_4 i'_ _ _ _ ,I
_, _
_
_
_
z
"'_'_'
,
II
c_ °,
.,
°.
°,
°.
°,
°.
0.
..
°
.I
°1
°i
.i
.i
.i
°1
01
°1
ol
°1
.i
°
" _ " ®" '<>-=_ _,i_ '° " _ " '7
+ I
I
I
I
I
I
O c_
>
!
_
q
O
Vl I
--;I
II
II
II
Section
B5.0.O
-
B5
July
9,
Page
54
1968
Book
Company,
FRAMES
References Timoshenko,
1
New
,
.
H.
Wiley
Wilbur,
&
J.
No
E.,
Co.,
D.
J.,
York,
Argyris,
Structures,
H.
Inc.,
McGraw-Hill
Theory
H.,
Co.,
of
York,
Structural
York,
C.
Book
New
L.,
New
Norris,
L.
Perry,
of
Bowman,
and
Grinter,
and
•
B.
McGraw-Hill
New
.
and
Sons,
Edition,
Macmillan
o
Theory
Inc.,
1945.
Sutherland, John
,
S.,
York,
Theory,
Fourth
Edition,
1954.
Elementary Inc.,
Modern
New
Steel
Structural York,
Analysis,
First
1948.
Structures,
Vol.
II,
The
1949.
Aircraft
Structures,
McGraw-HiLl
Book
Co.,
W.,
Structural
Inc.,
1950.
J.
Data,
H.,
Fourth
Dunne,
P.
Edition,
C.,
Tye,
The
New
Era
et
al.,
Publishing
Co.,
Principles
Ltd.,
London,
date.
Roarke, McGraw-Hill
R.
J., Book
Formulas Co.,
for Inc.,
Stress New
and
York,
Strain,
p
1120,
Third
Edition,
1954.
r
SECTION B6 RINGS
TABLE
OF
CONTENTS Page
B6.0.O
Rings
...............................................
6.1.0 Rigid Rings 6.1.1 In-Plane 6.1.2
..................................... Load Cases .........................
(Index to In-Plane Cases) ................... Out of Plane Load Cases ..................... (Index to Out of Plane Load Cases) ...........
6.2.0 Analysis of Frame-Reinforced 6.2.1 Calculations by Use of
..._.
B6-iii
Cylindrical Shells.. Tables ...............
I
2 7 8 57 58 59 70
.,.r..z
B 6.0.0
and
with
loading,
respect the free
p
Only load the
section
--._..
B be
are
presented
shells.
Section
to the resisting body
is
given on of shear
B
"flexible"
should
6
July
9,
1964
Page
l
of a ring
to facilitate B
6.1.0
medium,
supported
by
the analysis
deals
with
i.e.,
for an
rings
of rings that are
out-of-plane
a thin shell
is as
follows:
".
bending
cases effects
Section by
tables
ring-supported
rigid
B
Rin_s
Charts and
Section
6.2.0 rings.
6.1.0 gained
considered
in
the
pages 9 through 54. and normal forces.
deals The
for any on both
with choice
given
circular between
problem
methods.
deflection Refer
curves to
page
cylindrical the use
for
the
56.1
to
shells
supported
of this section
is left to the analyst.
in-plane include
over
Experience
Section
B 6
15 September Page 2 B
on
6.1.0
Rigid
Rings
In general, a ring loaded
four basic loadings in the plane of the
Loading Loading
by by
3. 4.
Loading Loading
by a single moment by a distributed load.
for
a single a single
are required ring. They
I. 2.
Special cases B 6.1.2.
1961
out-of-plane
to define are:
all
loads
radial force tangential force
loadlngs
are
considered
in
Section
The procedure for calculating the Bending Moments of the basic in-plane loading is briefly reviewed in the following discussion. Many other loading conditions may be analyzed by using these basic cases by applying the principal of superposition. The general a cross-section) dm ds
S =
The
general
N+dN
equation is
for
dm rd_
equation
S+dS
I
the
transverse
force
(shearing
force
................................
for
the
axial
force
is derived
(i)
as
follows:
X
(N+dN) 7P_Rd_ N_N
(a)
(b) Fig.
B 6.1.0-1
de 2
on
B6.1.0
Rigi d Rings
(Cont'd)
7_Fx = 0 = -S +
(S + dS)
= dS
Neglecting
N
The
the
dS = - d-_
second
+ Nd_
second
- P_R
term
(P_R)
The procedure i11ustrated by the
+
+ dN
order
term,
B
July
9,
1964
Page
3
P.Rd_
QdN
_
_
..........................................
occurs
in the
to obtain following
6 .
d_ + P_ Rd_ + N -_--
(N + dN)
d___+ 2
Section
case
of
a distributed
an expression for specific case:
the
(2)
load.
bending
moment
is
Load
q
q
P
2
(h)
(a) Fig.
B 6.1.0-2 Because
is is
The shear flow distribution is obtained the static moment of half the ring, S is the moment of inertia of the section. ¢ =
S _R 3
2
f _ O
Rd95 R
cos _
=
S
of
symmetry
Y = 0
from q = SQ/I, where Q the shearing force, and I
sin _5 _R
=
P sin _R
Section
B 6
15 September Page 4 B 6.1.0
Rigid
Rin_s
(Cont'd)
dMq
= q_
R [1 - cos ( _-e)]
Rde
= P-_R
Mqfl =
R [1-cos
sine
TPR
_ PR ¢_
(I
R2de
(C-e)] [1-cos
(¢-9)]
sin0
[1-cos
(¢-0)]d@
_ cos
¢
sin ¢)2
o P
T Fig.
P = -_ R
Mp¢
sin
¢
B 6.1.0-3
Z =+i R_Y
- +I R
sln¢
0
Mx
- -R cos_
1961
My
=-R
sin_
Fig. B 6.1.0-4
M z = +I
Section 15 Page B
6.1.0
Rigid
The
Rings
B
6
September
1961
5
(Cont'd)
displacement
"i"
due
to
load
system
"k"
=
= f
5ik
MiMkd E1
s
_R 3 E1
5xx
=
/
(-R
cos
_
)2
Rd_
2
o Deflections E1
5yy
=
/
(-R
sin
¢)2
Rd¢
R3
to
2
shown
o
E1
5zz
--
unit
Fig.
f
(+1) 2 Rd_
due loads
in B
6.1.0-4
= _R
o Displacements
E1
due
5xo
to
applied
=
(Mp
forces
+ Mq)
and
Mxds
reactions
Because
of
symmetry
MpMx
=
0
3PR 3 / o
E1
5zo
=
<
I _ cos__
(Mp
/_
o/
_
+ Mq)
PR_
_ -2sin
P
_
PR
(-R
c°s_
) Rd_
Mzd
_2 sin_
+
i _
cos_ ._
psinp_ (+I)2 _
Rd_
-
o
_ xo
3P
X; 4_ xx Redundant 5 Z
obtained
by
equating
deflections. zo
3PR
-
= 2_ gz
By
superposition
M
= Mp
_
+
dM R_
-
dS d-_
XM x
+
3PR 2 _
S"
=
+
PR 2 sin_
+
N
Mq
=
ZM z
<
_I
(+i)
=
- cos_
_
( _-¢
_
_sin_ 2 n
) sin
¢
_
PR
+<
- _3P_
-
- sin_ 2
[ (_"
+
_)
sin_
(_-_)
+
cos
3
cos 2
_
R cos
i 2
[
=
+
]
2_
P 2--_-
]
2nP
3P"2
Section
B 6
15 September Page 6 B 6.1.0 Sign
Rigid
Rings
(Cont'd)
Convention
Moments
which
Transverse
produce
forces
tension
on
act
upward
which
the
inner
to
the
fibers left
of
are
positive.
the
cut
are
positive. Axial
forces
which
produce
tension
in the
frame
+S
+M
Fig.
B 6.1.0-5
Positive
Sign
Convention
are
positive.
1961
Section
B 6
15 September Page 7
B6.1.1
In-Plane
Coefficients
Load to
and axial force along some of the frequently
1961
Cases
obtain
slope,
deflection,
with equations occuring load
for these cases.
bending values
moment, are
given
shear, for
Section
B 6
15 September Page 8
B 6.1.1
In-Plane
Load
Cases
1961
(Cont'd)
Index .
I0.
o
i
p
IP
13.
_.d
M'
18.
20. P_ =Pmax cos (2_
P_ =Pmax c o s
ax
21. P_=PmaxC
23.
os
25.
p _a
P_ =Pmax c o s
x
P_ =Pmax
co_
P_= Pmax (a +b cos_ +c cos2_)
Section
B
6
15 September Page 9
B6.1.1
In-Plane
Load
Cases
k
r
1961
(Cont'd_
_f
f
'-
il . I N
/ f
/
/ /
\
./
I
\
"o cu
i
'b o
\
\ }
>-...
/ C jf J
/r i, r
I
jl
"o
f / /
/, 0
q
o
o•
o.
9 9
I_
_-
9
?. o,.
Lf'__
Section 15 Page B
6.1.1
In-Plane
Load
Cases
B
6
September
1961
i0
(Cont'd)
/
/
/
J
j/ r
I
......
/
J
/
•
!
g¢_
r
5
r
/
/
.o
_,.
----+p--
0
8
/
/
/ J
\
O
0
/ _b
\\
e4
/ •
Q
F
+
\
i IN ".\
\
8 N
b
\ % \
0 Q
0
\
\
. J
" ,/ /j/I %%
/X
"
"/
+
....
o °
! _
0
0 __
__
_,]
S /
//
/
/
d
/ / i \
/
\
t
v
t
......
N.
(D
__
O
0
t "_
I
/
O
i
- ..........
0
eo
O4
O4
(D
o.
I
_'_
___
o. I
v
............. ..... _
0
o/
/ io
_--
f
/ O E
....
/ \kk// /-
!< Z
/ /
/
o.
O
f
I'
I'
I"
o
q
-
-
C_
I
I
I
I
I
i_
,t °0
Section
B
February Page
B 6.1.1
In-Plane
Load
Cases
l l
'd )
(Cont
,f
4\
n
yl J J
f b_
_
I,
/
LI f
J P f
h
f
I
r Z
f
J
f
f
(
f
Xx
.. _<
f
-i
6
15, 1976
Section
B 6 1961
15 September Page 12 B6.1.1
In-Plane
Load
Cases
(Cont 'd
f
i
j
o 0
I 0
J
f \
j
J
I' f
\
/
J
f
o
I
/
i fl
t
0
i
o
i" 0
o J _;oz
¢q
_
0
oz
o _0 oJ
\
L
%
o-
Y-. J
\.o
-.
)o j \
i
11
° \
\
7
-... J
k
i
) J J
j-
A
_J z
-j
_J
cO
1
/ O/t
(
J f/
\
i i
/ /r
•
I
i
t
f
,i f
_
v
_"
o
_
N
oJ
o
-
o
_'
o
o
I"
_
co
o.I
(0
o
q
-
-
I
I
I
I
o I
Section
B
6
15 September Page 13 B 6.1.1
In-Plane
Load
Cases
(Cont'd) J i'
b ,/
/
b
h
I_..
/ I
a. k
b J i
i
f
\
r
\
i
/
f
f
J
i
i
J s v
i
i
\
f
i Fs
4
w
\ \
\ \
k )
_>
l
\
jf J
J
J
J i
f
J
/
J f
_J
/ f
-_.
q
O.
O.
q
Q
o
o.
0
0
0
I"
I'
I"
0 I
1961
Section 15
In-Plane
Load
Cases
f jr
o
/
.,_"
/
/
//
i
n
ii
1961
14
(Cont'd)
Q.
--_
6
September
Page B6.1.1
B
/,
/
!--
o
7-....
,o
,I
ON
,/
Ii
o
• _
5:oz
i
b
i
0
'N,_" •
\
b
",_,,,
_
k'M 0
/
j,-
/
/
i"
/
,-
i
,
t
,
i
vv
..,, "
/
_
•
-0
"
<' 0
i o ° 0 o
\ _
.,_ _
b
_
, _.
o
f
\ "\
-
._
j'/
"\
'
/
b
....
-_
/_ _oz_
/ t
( i;
v
/
/
/
\_
o
," ----7-
/
I//
__ z
/"
,i I
i
_. -.
o
7
e_ I'
_
I"
_. I
to. i
Section 15 Page B6.1.1
In-Plane
Load
Cases
B
September 15
(Cont'd) I
I
\
i
f ....
J
\
O
O
J f
,F
oJ O
O O ro
\
O
o
a.
O
O oJ
J
@
O
J
a.
jf
\
J ro
oJ
)
J J
/
f
J
/
f
O ¢q
J
I! J
O
J
f
0J
O GO
J J
\
o
J
O
O
/
O
x
(
O
O oJ
\
\ O
"\\
8 O
S o r
jJ
\
_f J
7 J
_/
f
f
o O
/ --%.
<)=
0
--. I
0
o.
O
o. I
04 I'
rO l"
CO
Od
o I
I
6 1961
Section B 6 15 September 1961 Page 16 B 6.1.1
In-Plane
Load
Cases
(Cont'd)
V _J J
J
f
0
0 od I¢)
_J
/
J
f J
/
I
l¢)
o,I --.
/
_o
,
E,
oJ
v II
=E
o.
o-
0 X
Z
t
L
oJ
iJ
||
0
\
Z L
od
\
0
0 oO
\ j
O.
_p
i\
0
J
_f I.
0
J
f
I J
i
/
r
S J
J
f
/
/
f
/
0
0 0
/
oD
f
@
0 _P
f
_r
_Z
0
I 0 0 V.
N
0 o,I
"
I
c_ I
to !
I"
I
I"
I
I
0 I"
T v
Section 15
6.1.1
In-Plane
Load
Cases
_-'-
6 1961
September
Page B
B
17
(Cont'd)
,
-_._
to O
L
f-
O
O
J
J
I ,f
a,.
_'_1_.
f
I
I
f
J
j
)
o
O _
f 0
O
0
O 0
O N 1
) L.._.._
o
_
_....-
O
n
f
0
_
O
o
O
O
J f J
) o
lJ
f
f-
_
_
s
J
8
_ Q
O (10
t
_ i
) f I J i
0J
r
I
f
l_
ff N
Q
--
Q
O
O --
_ O
O
Q
o
?. O
9.
O m
9.
Section
B
July
1964
9,
Page In-Plane
B6.1.1
Load
Cases
J
/
(.I
o
_;v
2"
v
v i|
I|
i
i
/
z
18
(Cont'd)
/ W
6
i
/ f
/ ,I
(!
II
f
f
,
fA
0.
\
I'\,"" /
- _
O4
..2
l
/
J
]
/
,i
1/
/
/
t
\
t
/
f
f
_p.-,
/ I
% /"
,/
I
ir
i
i
f
J
/
i
I
I
/
(
I •
\
/
f
i/,,
_
>'..._
/ \
/
/" /
i
i
I
/
/ /
/
f
i
/
i J
(
f
t
/
\
\ •
ix
\
A
__ t
/
¢t,
,¢
-
o.
I"
I
I
o
o
-.
I
I
I
¢0
-
O.
0
I
I
I
-vf
Section July
B
9,
Page B
6.1.1
In-Plane
Load
Cases
6
1964
19
(Cont'd) I ]
I
I.--
b, ---
- +----
_
I
_....,. i i
I
-
---
I i
[-
I
ro
[
b
I
,
-1- -K
?:>
b '- .,,,
i
--4 -I _
_I
.
_
÷___
_
oJ 1
J ....
-_!__
I
-1 ....
'
+
i
--*-
, t--
--I
\
I
_
,
/
1
\,
I
_'[_. /
,
_
/
i ....
__ ____,
....
1 ____+
....
1
-
44
I
1
I
l
r
I I
\ C
Q I
I
0
0
0
0
0
0
--
o.
o.
o.
_.
o.
I
I
i
o. I
!
Section
B 6
15 September Page 20 B6.1.1
In-Plane
Load
Cases
(Cont'd)
\.
i
f" O
_L O
o i'M rO 0
Z
_--
........
"7 O
Ivv I
II
\
II
I"
%.
iOZ
I
-
t
li
i GO ¢J
'\/I
O
O
I
/i
"_
%
\\ k,
N o
_=
................
_
o
\
(Xl i'M
\
I _-..
/ p
_
,,s
J .,._
_
_ _
o o
_t.., 7 .............
7
/
0
0
/
_o
1\/" I/'_, X" / /
F
0
o
\
t
_
L ........
/
/
0
/
Oa
o
-
_/ o.
_-" 7-"
.......
/ _. --.
/
_ --
_. 0
N. _
•
o
N. 0 I"
_,I"
0 I"
_.
q
_
0
'
I'
--.. I
I"
T
I"
1961
Section 15 Page B
6.1.1
In-Plane
Load
Cases
B
6
September
1961
21
(Cont'd)
i r I
k_
O
0
-\
0
/ 0
0 0 0
11
O
"+"
/
/
_N
11/
/
fl
/
( \
_'o O4
q
LO
N
cO
_1"
o
o
o o•
o o•
•
0
_
_
oa
_
0
o 9°
o ot'
-oI"
-9"
q=
Section
B 6
15 September Page 22 In-Plane
B 6.1.1
Load
Cases
1961
(Cont'd) f
./
I I
t J
/
,,j
/ /
/
\ \ \ \ \
\
N
/
\ \
/
e"
/
,
Q
/
\/ /
t I /
fl"
/ o. z
/
/ /
II
/
/
/
!
f
Z
% v
!
! \
I
/
II
% o
(3
\
\
IE n v II
=E
"o
(M
0
Z--
Section
B
]5 September Page 23 B
6.1.1 In-Plane
Load
C,'_ses ____
6 1961
Section B 6 15 September 1961 Page 24 B 6.1.1
In-Plane
Load
Cases
_J
(Cont'd)
,, ,, ,
\,
IF. o;z
•
/
\
/" \
"_
.
_
"
pJ
/"
/°o
// _-
oo
/
I
f /
/
\
>-
a
/
J
. ,-
N
1
%
J
-
)oo
%
\
.i
\
/
_ o_
\ Z
I'
v_9
_.
Q
o
o
i •
o"
i
Section 15 Page B
6.1.1
In-Plane
Load
Cases
B
September
6 1961
25
(Cont'd)
°J,I
J
jr I
) a.
11
J I
m-
f
'° _I
_
f_
J i
)
a. J f f f
J
_I
I
f
fJ
/ \
I
"o
J
f
L
J J I"-J
I
I
f _v
11
_.
, I
_ I"
' I'
.
Section 15 Page
B 6.1.1
In-Plane Load Cases •
(Cont
ro
oJ
I
q
o
0
X II
0 II
_j_
_
¢_
r0
q
q
q
/ /
\ O_
1961
26
'd )
0
\
B 6
September
0
0
Z
0
__
II
\
_'_OZ
0
0
0 "-L
0
/
// 0
0
_I I I vP D
0
0
0 l
o.
0
0 0
\ \
\
\
I°
0
0
/ "\
I
_D 0
0
f
J
/J
/
J/
0
0
./
J 0
0
I
/
T
J
¢.f /
/-
J
N.
o
f
/
°0
,./
/'o
N
"
I I"
0 0
I
l
--.
0 _
_
/
_zj
v
I
0
9
_ 0 l"
oo 0 I"
I"
_ -I
I
_D -I
I'
0 /
]_
SecEkun
15
Suptembec
Page B
6.1.I
In-Plane
Load
Cases
27
(Cont'd) o
0 \_
If
k
(.D to)
_0
0
0
0 to
<1
n
!_
_
-"
_
"_
.....
0
0 0 0
3.
"_A/"J
_'--r',_
.........
\\
_
0
:
--
00 0
0 cxl I1.
/
._t
-----
Y
0
0
0
0
t
cJ 0
0
0 _'_
,
.........
0
_
0
_1 _ _
__. .........
kO_
.......
jf J
_--''"
0
f
0 I
/
0
f
/,I
X
0
/
0
$ \
J
jl
0
o
0 (0 0 Q
o. _ 0 8 o •
o
9 8
_. 0 o I"
I
I
D
]-_JU I
Section 15 Page B 6.1.1
In-Plane
Load
Cases
B
September 28
_Cont'd)
b
o
0 0 0
0 CO oJ 0
0 OJ 0
0
0
0 oJ OJ 0
0 0 0
0 co 0
0
0
0
0
0 oJ 0
0 0
0
0
0
0 0
0
2_ o
_
_
_
o
_
6 1961
Section
B 6
15 September Page 29 B 6.1.1
In-Plane
Load
Cases
(Cont'd)
11 J Itl
J
Q 0 O,J r'O
F I
/i" 0
f -
/I
0,,]
I
0 0
\ k
OJ
1.1(_
J N O,J f
/
I I.
0 N
f
r
J
I
L r \.
J I J f
,q"
) J
0,,]
\ jJ
_J f
J
J
j
'
0
I
I
f
I
/
f
J
/
(
J
\
..p--
_
-''
% N
"\ o.
Q
¢D 0
_. O
¢M O
o.
q
=
_
_
0
0
0
O
o I"
0
o I
?.
1961
Section 15 Page B
6.1.1
In-Plane
•
-
Load
O
C@ses
o
B
6
September
1961
30
(Cont'd)
O
O
0
v
0
0
0 0 0
0 (1) 0
0 cO 0
0
0
0 oJ Z
"
q
Section
B 6
15 September Page 31 B6.1.1
In-Plane
Load
Cases
1961
(Cont'd) 1
1
_o J ft_
/
! f I
°o
J I'-f J f
jo
I
...i o
I r_ I
0,I
J _k
_
J
.......
J
"8
I
a.r.
,Y
I
jJ
_f II
.s
f
0o
jl
II
W
J J _p
\
.ff
.# h
f
f
oo ,-...,..
J
I
r
I f I
J
I i
J
'r
I I
J J
J f
,i
Q_
I
J
J 0
° 0
I N
,o
9
o
Section 15 Page B
In-Plane
6.1.1
Load
Cases
B
6
September
1961
32
(Cont'd)
ro
QZ
j
_..-
m
m-
\
_I
f
_'-"
\ mr
I!
N
N
OZ
_Z
_L
r
/
...--
/
/
Y \
f-
/
-
I
11
I
/
/
J
11 J J f
J J I
J
O,4
o_:1
i
v
N I _
_1"
_
l"
I"
I"
!
_.
0 '
,-r_
0 !
I"
uu
Section 15
B
6.1.1
In-Plane
on
U
_
Load
Cases
6
September
Page
_r
B
1961
33
(Cont'd)
°c> 0
o
o
•
"
o
o "
o
o
o
I"
I"
I"
o r
Section
B 6
15 September Page 34 B 6.1.1
In-Plane
Load
Cases
_Cont'd)
I,
\
\
\ \ l
\
\
\
\
j
\
\
\
\
l
,
\
\
I
\
r'
\
/
\ x i
Z2_ I! _
Ig V
• I! _
L
/ 24 //
!
J
/,vJ
J
!
,
/
1
/
:/
/ / /
-i
l
(
/
Ii
i
J
/ / [o/
,"\
/
\
"4
\
\
N.
\
1
\\
/
l"
i
\
/ 0
"7 I"
I"
I
I'
1961
Section 15 Page B
6.1.1
_n-Plane
Load
Cases
B
6
September 35
(Cont'd_ f I
;I
f ff
O
t_
f
/
f
/
f
f \
,,i
/
b GO ,OJ
O0
||
\
\ %
J
\
J
L
f I
Jl
f J
:b GO
/
J I I 14
I f
f \
/
f
J f
/
/ _o
.J J
¢q
f
J
<
\
\
J J j-
\
I -%.
0
_,-_i_ 11 1 PO "_. OJ I
0
q
q
o
o
_
l"
I"
_. _ I"
_ _.
u'_
i
I"
_ I"
o!
1961
Section 15 Page
B 6.1.1
In-Plane
Load
Cases
B
6
September
1961
36
(Cont'd)
\ \
\
\ \ \
\
\ \ \ \ \ \ "_ IQ= • o _ _ 0 II
II
0 \ \ \
II
\
\
\ \
0
\ \,
0
\
\
\
I
0 \
\ \ ]
\
Q
\ \ \
\
\ \
\ N
0 I
|"
I"
$
I'
Section 15 Page B
6.1.1
In-Plane
Load
Cases
I
B
6 1961
September 37
(Cont'd)
\
i ro
,_;I_ _;lW !
0J rO
k
b
@
b_
j
o I jl I I
I
f
f f \
f
..ow
f"
@
O
I
0J @
8
\ \
b
L
Q
O
t f !
/ f_
@
O
@
O i
o
& --
\ @
O Lo
f
\
j
@
O f
.-_
[ f
J
L
I
°
J
/
@
O N
i
f"
! Q
o.
q
5
O
,
?
o
o
o
I
I
--
{q
o I
!
N
Section 15 Page B
6.1.1
In-Plane
Load
Cases
(Cont
9 J
/
-%
J
=
/
\
/
II
,x,
J J
/
J J
J
0
/
0 0
\
0
/
J
j-
N
#
J i
/
j
I
f
__D
/
CM J
/
jl/
/
J
/ b.i--
fd
/
J
f
-e.
/
0
0
J
/;
_0
1961
38
I
)
\
n
6
'd )
\
II
B
September
/
!
0
/ (
/ /
_b
/
\,,
/ 0
0
,\
f
\ \
\
f
/
0
0
X i / /
\
\ \
!
I
\ 0
0
\ \
0
0
\
z
\
\
\
%
\ 0 Z
I
.. N
0
0
/,
\
0
0
0
0
N r
N I
I
I IL
i
r
I
Section 15 Page B
6.1.1
In-Plane
Load
Cases
B
6 1961
September 39
(Cont'd)
\ \\
J
J Od rO
J
f N
o
I
_y
O0 OJ
> l'=Z
,
J
____
o OJ
-----_7
jl
F
f
f
i D
J
o
f_
<
/ CO
J
\ J
I
>
Od
J
o
11FJ_
\ /
I _F I --I
J f
I"--
f j_
<-
fl
...I--
,4_L o
o ¢x;
\
v
o
o
o
N
o
,o.
r.j
o 0'
i'
¥
i" P
0
,q-
f,O
¢_
--
0
0
0
0
.
.
.
0 |.
9
0 I"
Section 15
Page B
6.1.1
In-Plane
Load
Cases
B 6
September
1961
40
(Cont'd_
/ /
_ II
z II
.
\ .i/
°_
II
I
/ / /
\
f
/
f
N
/
J
J f
"_
/
/
_1N
o_
/
/ /
/
/
/
/
/
/
/
/
N
/ /
/
! /
%
/
v"
/
\ f
\
I J
\
\ \
\
/
/
\ o_
\ \ \ \
Z
\
\
\
_.
N.
o
O_ I'
O
!
I"
m I
Section 15 Page B
6.1.1
In-Plane
Load
Cases
(Cont
B
September 41
'd
I
\
i [
o
0 ro
\
)
0
0 oJ ro 0
J
0
/
f
f
0 co cxl
f
J
\
0 0 rid
h
J
J
J F
7
(
J
LO oJ 0
J w
eJ
f 0
0 oJ oJ
h,
0
0 0
/ II
II
<_
..i r-f f f J
i
f
r
0
8
J J
f-
J J
(
0
s
\
J 0
0
/ \
0
\,
\ 0
0 00 0
_J
0 10
f
J
I j f
)
f'
J
0
0
f 0
0 oJ
ro
oJ
q
q
¢J
GO
_
oo
5.. 0 0 •
o
o
9
9
0 0
0 0
O.
,I"
I"
I
6 1961
Section
B 6
15 September Page 42 In-Plane
Load
Cases
v"
(Cont'dJ
0
0 0
0
0 o 1,0 G
o oJ 0
o o,I 0
o @
o 0,I Q
o o II,
o
CO 0
o i
¢I) ,0
o 0
o oJ i
1961
0
o o 0
o 0
o 0
o ,,¢ 0
o
Section 15 Page B
6.1.1
In-Plane
Load
Cases
(Cont'd)
B
September 43
6 1961
Section 15 Page B6.1.1
In-Plane
Load
Cases
B
6
September
1961
44
(Cont'd)
0
0 I¢) 0 N (.)I
0
0
_b 0
8 N
0
0
_b _b 0 0
0
0
0
0
0
_b cJ Z
N.
0 I
I 0
0
I tD
0
o. I
0 I
!
I
Section 15
In-Plane
Load
Cases
6
September
Page
B6.1.1
B
1961
45
(Cont'd)
_r
X
X
X
0
-I _ UI
o 0
×
.
n
.
rO
.
0 c_
_:
0
i
....
_.-
0 0 rO
GO c_
._ _._;
...
o
0
j _leJ J J
oJ
/
i
0
0 ed c_
I f
/
0
/
8 C_l
/
0
0 GO
CO X
0
0
\ c_
_,
o 0 IZ) 0 °
o 0
0
OJ
7
Q
N
0
eu I"
_
_. I
m
I"
o
.-F
Section 15 Page B6.1.1
In-Plane
Load
Cases
(Cont
B
September 46
'd) f
I f J
J_
_k.,, H
x
,.,<_
\ 0
\ II
II
0
\
)
N
/ J f
J J
J
o. f
L/
(n 0
/
r
/
J
t
/
0
0
o
./ f
X
J f
\
dl
-
/
0
0
X /
\\
v
,%
\ 0
0
\ )
e 0
I
°
J jjF
j_
f
_
_J
0
o
J
f
0
J
J
ql) J
/ (D O v
(4) O
_
o
q
OJ o
q
o
e4
9.
_ I
_
o I'
_ I"
_O
9
_
6 1961
Section 15 Page
B 6.1.1
In-Plane
Load
Cases
B
6
September
1961
47
(Cont'd)
0
0
aD 0 I" I'
I"
!
I"
Section 15
6.1.1
In-Plane
II
Load
Cases
6
September
Page B
B
1961
48 v
(Cont'd_
II
I)
/i
,,,
/
o
I_I_
I
_.._ _
/
"'-
I"
-
o
....
o
o
o
o,
o
I"
o
l'
o
7
Section 15
September
Page B
6.1.1
In-Plane
Load
Cases
B
49
(Cont'd)
k
_/j
,\
0
f./
0
<,
ro 0
0
-
°
(
ro
X
(._1
0 ro 0
I_.
0
&
J1____ jJ /
J
N
:EO ,_, E
/"
J
_<<
o
/ v
Z
0
/ s
/ k
o
J
N ---
f
J
•_
_s
--
0
.J
0 _0 --
0
0 _0
* I _-'
0
0
(/
0
\
0 oJ
\
° 0
(2I _ . 0
/I
_o
J j-
Z
)
j f
J
/
J J J
o-
/
J '
r
XZ., o4
--
f
O
I
I"
1901
Section 15 Page
B 6.1.1
In-Plane
Load
Cases
B
6
September
1961
50
(Cont'd) f I J
\
0
s _
0
I J
0
0 oJ iv')
F"
¢
0
0 0 Iv)
oJ 0
0
rq 0
0
o
0 0 ¢J 0
0 co
0
0
0
\
)
8 0
0 co
/ 0
0 tO J 0
I
0
@
0
_0
o
_•
to
o
o.
,N
_.
O
o--,.
N
Iv)
o.
9
_; ,.
LO 0 I"
Section 15 Page B
6.1.1
In-Plane
Load
o. 13. 13. :E (_ Z "4 _ "I " I' "
Cases
B
51
(Cont'd)
/
\
/
'\
/I
t
I L/
J
.
"9"
ro o 0 OJ
_°x
o" 0
13..
(_
"
¢d_
_
/
6
September
N
\
! f
/ f_
/
/
/ /
/
/
/
/
f
/
/
/ /
b
/
!
I
/ / J
I
I j"
\
/
\
m
f
i
\
t
\
\
I I
\ \
®
\
\
\
\
0
0
\
\
\
0
\
_?.
F)
N
0
I'
(_1 I"
i_i"
,_. I
_'_ i'
1961
Section 15 Page B
6.1.1
In-Plane
Load
Cases
B
September 52
(Cont'd_
\
f
f
I
/ i /
(\
N o-I_
n
II
0
0 0 ro
II
\ cO 04 a.
/ 0 U
_0 04
J
/"
x J f
Dl!
o4 04
/
/
o.
/
/
0
/
0 0 04
/
0
J
\
0
f
0
0 /
B--
/
0
/
0 0
0 04
\ 'N
\ \
0 0
0
/ "X J
0
0
f
fJ
J
0
0
lJ
f
/
/
I
04
J
/ _D
Q 0
•
I¢) 0
0 .
04 Q
04
?
{_.
o
(.0 0 I"
_0 0
0
Q
I'
oJ
0
o
0 I
i
I"
I
&
6 1961
Section 15
B
September
Page B
6.1.1
In-Plane
• o
Load
_.
Cases
53
(Cont'd)
_
_
•
o
o
I'
o
o
I"
I"
o I"
o I"
\
.
/
I_
N
o,I II
II
II
\ I _I
gl
_c •
0 C_l
I I I
!
....
\
I
\,
X
x
B
\
| I I
_EOz
j--I ......
__
/
/
n-
/ jj/ t
,q f,,¢ __
m_
f"
____
8
__
\
8
\ \ I
,..,, I
I"
9
o
_'
_
I
I"
(_. 0
,,i
I'
!
6 1961
Section 15 Page B
6.1.1
In-Plane
Load
Cases
B
6
September
1961
54
(Cont'd)
I
J
ro 0
0 N rO 0
0
\ 0
O N
J /
N
J
-)
j" O-Wa"
II
<::1
J
J II
U
(_
n.
/
D.
I
/
_
- ,r_
_v f f 0
/
0 0 N
%
\ \, 0
0
/ 0
0
\ 0
f
0
0
0 0
\
\
0
0
/
0
/ J f
"_
J
0
I
¢,,
/
j
o i 0
._
/ v
! LO
o
J
oa Q
0
o I
o,I 0
re) 0
_I" 0
I"
I'
a'
lo 0 I'
Section 15 Page
_r-
B
6.1.1
In-Plane
Load
Cases
B
6
September
1961
55
(Cont'd)
0
0
o
0 It') Q
0
Q
0 N o
0 0
0
0
0 N 0
0 0 o
0
o
0 o
0
o
0
0
0
0 I
I
0 -p It
0
0
0
Section 15
In-Plane
Load
Cases
(Cont
I"
I"
I"
I'
I"
I"
I"
I'
r
"r
¢
\1
mo
\
\
Nffl
56
\
]
-e.
\
I °
0 0
1961
'd)
Orn ZZ,,--
\
6
September
Page B6.1.1
B
_'_
f
%
_o
:J, /
_L
\
7,,
mo #
/
0
J
I
O0
m
÷
"
"" X
Inn Ii
oJ 0
!/'
m I
\
/ !
,,
Z
:;
'
/
_
0
0
_ O
j
(M
_o
r'x
n
II
_
O.
_;
_
Z
II
/
/
0
0 0
'v
..
O
X
0
I
j
II
Z
OJ
\
j/ X
/
/
0
8
/
/
0
i/ /
!
_x21-
.) :t
t
._-
!
_
I
0
I
J/
I
o
• 0
0 0
N
i!
0
0
[
_0
, ....
\/
/
j
!
/ J
, I
! /
.J f
i
I ?-,
!
i.-
!
[
Or
II
o 0 _'M
tO "-r
0 _
I_ 0
-.
_.
,0.
'_.
_o
I
t
I
I
r
0 t"
0 _ _
Lo _ I
0 oa r
0
Section July
B 9,
Page
6
1964
56.
1
f
B
6.1. I
In-plane
Deflection normal F
forces
Load
curves are
Cases
for
displayed
(Cont'd)
the three on
basic
the foI!owing
(/_) that is to be used with the curves cross-sections is tabulated below.
Cross-Section
for
Shear Area
of
AQ=
th
to shear
A
shape
deflection
and
factor
of vario,_s
Shape
Factor,
Web
i_=
Area
A Q -- b h
Entire
due
pages.
shear
h
_i_
cases
Area
Entire
--f-
load
1.00
_ = 1.20
for
b
> 0.50h
l_ = 1.00
for
b
<
0
50
h
Area =2.00
AQ=
27rr
t 13q
Entire
Area =[1+
AQ = (w) z -
"1ab3
[
t t-O--tip 2 .I
( 2a)(w-2t) N.A.
3-(bZ-- aZ) a t__ll ]
,---:--e, p
= radius
of
If the flanges nonunifo r m
gyration
with respect neutral axis
to
the
they by
may an
section have
Fig.
B6.1.1-1
are thickne
be
of s s,
replaced
"equivalent" the
and
area
the
actual
whose same as
flanges width '.hos_
section.
of
Section
B
6.
1.
I
In-Plane
Load
Cases
B6
August 15, 1972 Page 56.2
{Co,[',l)
\
N\ \
\ \ \
_
i
"/
_m
m<
(_ I
-! __/
\
/ , ,z
\
/
/
/
/ /
/ J
/
I f
f
°
J
I
!
_.J o
o
_
o
o
o
_
J
• t
0 i
i
I
i
i
o
h r
Section B
6.1,
!
In-Plane
Load
Cases
(Contld)
B
July
9,
Page
56.
6
1964 3
r
f
i
oo
J
I
r
I J f o
f
/
/r_
/
\
\
<
0
,,1 -%
\ ,?.
) /
/
o"
J
J
oo
J z
f
J f
J
J
I
f
fi
\
I i"
i"
/
i_
i'
o
_oction B
6.
I. I
In-Plane
Lt,ad
Cases
July
(Cont'd]
Pa_e
Z
o
o
o
o
_
o
o
o
o
B 9, 56.
6
1064 4
Section March I, Page 57
B 6.1.2 Sign
Out-of-plane
Load
B 6 1965
Cases
Convention
The following sign convention directions for out-of-plane loads.
is
given
to define
Moments which produce tension on the inner fibers Torque "I"' and lateral shear "V" are positive as shown B 6.1.2-1.
+T
Fig.
+V
B 6.1.2-1
the
positive
are positive. in Fig.
Section
B6
March Page
B6.1.Z
Out-of-PlaneLoad
Cases
1,
1965
58
(Cont'd)
Index .
PA
For
0 all
cross
sections
0 For
all
3"
cro_s
r MA
V
sections
..
Fo .cross
Fig.
sections
B 6.
1.Z-g
v
_
Section March B
6. 1.2
Out-of-Plane
Load
Cases
(Conttd)
Page
"
B6 1, 58.1
1965
B
6.
I.Z
Out-of-Plane
I_,_,iidCas,.s
(Contld) l'uK{_ 5x. 2
B6.l.g Out-of-Plane Load
Cases
Section
B6
(Cont'd) March Page
i,
i965
58.3
o
B
6.
1.2
Out-of-Plane
Load
Cases
(Contld)
M
r_'h
,
o
i
_t+';5
m
-
Z-
----
1,
-7. /
....................
-_
o
X
\ \, H
B
6.1.2
Out-oi-Plane
Load
Case8
(Cont°d)
Secclon March Page
B6 I+ 58.5
1965
o
o
.
_v
°
°
.
Section
B 6
15 September Page 59 P
B 6.2.0
Analysis
of Frame-Reinforced
Cylindrical
1961
Shells
Tables are presented giving the loads and displacements in a flexible frame supported by a circular cylindrical shell and subjected to concentrated radial tangential, and moment loads. Additional tables give the loads in the shell. The solutions are presented in terms of two basic parameters, one of which is of second-order importance. account for presented.
Procedure for modifying the important certain non-uniform properties of the
parameter structureare
to
Notation 2.25
A Lr
2
E
Young's
modulus
Ef
Young's
modulus
of unloaded
Eo
Young's
modulus
of
loaded
Esk
Young's
modulus
of
skin
base
natural
logarithms
G
of
axial
force
shear
modulus
moment
of
-
in
ib
loaded -
inertia
/in 2 frames frame ~
frame
-
of
a typical
Io
moment
of
i
I/_o
-
ib/in 2
ib
ib/in 2
of an unloaded ~ in 4
inertia
~
ib/in 2
Ib/in 2
moment of inertia the loaded frame
of
-
the
unloaded
frame
frame,
loaded
frame
l_Lr_
2
-
distance
~
in 4 "_"
from
in4
in 3
n2
Kn 3 distance
from
loaded
frame
Lc to undistorted
shell
section
-
in
Section 15
6.2.0
Analysis
Notation
Lc
of
Frame-Reinforced
Cylindrical
characteristic
length
(see
Glossary)
=
characteristic
length
J_o
frame
~
in
M
bending
in
loaded
Mo
externally
applied
concentrated
moment
Po
externally
applied
radial
-
P
axial
load
per
q
shear
flow
in
r
radius
of
skin
S
transverse
shear
force
s
transverse
shear
per
To
externally
applied
t
skin
thickness
t'
effective
t e
weighted
spacing
moment
panel
ib/in
line
~
in
(Cont'd)
radial
x
axial
co-ordinate
7
"beef
up"
N
to
of
of
parameter
nearby
heavy
in.lb
~
ib
~
Ib/in
load
~
Ib
for
the
bending
the
loaded
shell
-
in.
-
in.
shell
shell
Io/2i frame
-
Lc
in.
in.
loads
material frame, in.
~
of
axial
~
shell
of
~
in ~
ib/in
frame
perimeter
displacement
displacement
i/4
in
all
the
I
%E/_-_-V G--I--
~
shell
thickness
of
displacement
for
in
t'r2 T
Ib
~
loaded
inch
panel
around
w
in
r -_-
[
in-lb
shell
tangential
distributed
tangential
the
--[--r A/_
=
~
load
~
adjacent
v
frame
shell
average
axial
Glossary)
in
skin
u
(see
inch
stiffeners)
y
1961
60
(Cont'd)
Lr
7_
Shells
6
September
Page B
B
-
(skin assumed
in
and uniformly
in
Section 15 Page /I
B
6.2.0
Analysis
of
Notations
polar
In a
the
the
a
the
co-ordinate
a
frame.
finite
attack
(Cont'd)
radians
frame
and
shell
along
length the
the
(i)
solution are
free
no
axial
(3)
The
(4)
The
away
from
in
the
frame
has
or for
shearing
of
shell
consists the
moments
of
inertia.
bending
stiffness.
the
to
plane
nonFor
the
skin,
to
but
the
sides.
skin is
has
of
attachment ignored
and
of
It It
moment
different
have
the
for
frames with
longerons
properties
or
both
twist.
possibly
and
and
one
constant.
longerons,
skin
on
Its is
of
frame,
frame
either
flexibility.
and
frame neutral axis unloaded frames.
All
some Procedures
and
infinity
bending
The
at
frame.
on
bending
its
loaded
perturbations
loaded
away
extends
of
to
of
propagated
sections.
to
eccentricity
the and
similar
the
flexibilities.
the
be
a
sides
made:
circumferential
respect to the loaded
can
loaded
following
distance
of
both
negligible
the
in-plane
out
frame
concerned,
obtain
on
practice,
applied
shell
mainly to
discontinuities
are
are
is
used
worst,
for
infinite
warp
effects
with both
inches
The
to
inertia
at
loads
loaded
is
In
are,
an
sides.
any
shell.
account
is
infinity
of
assumptions
reacted
The
to
theory"
discussed
Concentrated
both
the
section
6.2.0-1)
effects
to
following
are
(2)
"Lc"
this
B
stretching the
beam
which
(Fig.
shell
distance
properties used,
with
model
Clearly
"elementary
modifying
uniform model
of
uniform
characteristic for
~
of
structural
loaded
from
displacement
method
for
only
Shells
1961
61
Assumptions
simplified
solution
Cylindrical
6
(Cont'd)
rotational
Basic
Frame-Reinforced
B
September
shell
no are
uniform.
(5)
The
longerons
giving
an
effective
(6)
The
shell
out"
in
are
"smeared
equivalent skin),
frames, the
equivalent circumferential
for
but
direction moment
out"
constant
of bending
axial
the
circumference t',
(including
loads.
not of
over thickness,
the the
inertia loads.
loaded shell per
frame, axis,
inch,
are
giving "i",
for
"smeared an
Section B 6 15 September 1961 Page 62 B6.2.0
Analysis
Basic
The bear
Frame-Reinforced
Assumptions
slight
discussed
structural
is
in
the
Glossary
of
system at
x
=
provided
distance brating that
required stress
the
frames
of
to
I/e
for system
Shell
In
(e
to rigid
with
is
lowest
the
basic
assumptions
vehicleshells, of
of
skin
section the
certain
however
parameters
of
decay
to
in
bending.
I/e
Flexible
are
two
required
as
characteristic for
self-equilibrating
natural
panels
envelope
there
distance
order
~ base
the the
this
Lc
the
that
are
-
follows:
envelope decay
by
space
pages.
length
o,
Cont'd_
Terminology
as
to
Shells
described
practical
by, modification
following
defined
exponential
to
compensated
Characteristic lengths,
model
resemblance
difference
Cylindrical
(Cont'd)
simplified
only
the
of
logarithms)
are the
rigid lowest
of
its
value
in
of
its
shear.
order at
the
stress
x
=
o,
provided
to_ v
Loaded B
Frame
6.2.0-1
/
u / f q W
B
6.2.0-2
placements at
x=o)
the
Frames
_-.Externally
Fig.
is
self-equili-
H Fig.
value
Lr
in
Load
per
the
shell
inch
and
(Loaded
disframe
Section 15
6.2.0
Analysis
of
Evaluation Case
In listed
of
be
the
previous
area,
and
and
Cylindrical
Lr,
Lo,
and
Shells
1961
63 (Cont'd)
7
shell
where
the
axial
Parameters
uniform
cases in
stringer the
of
Frame-Reinforced
6
September
Page B
B
shell
happens
pages,
and
shell-frame
to
in
moment
circumferential
satisfy
all
particular, of
inertia
directions,
the
if
the
assumptions
the
are
skin
thickness,
uniform
following
in
both
formulas
may
used:
1/4 Lc=
Lr
__E__r V 2
=
E t' Gt
.......................
(1)
.......................
(2)
I o
..................................
7
(3)
2 iL c
Young's equal. in the
modulus
for
Coefficients tables. These
mations
when
use
modified
the
substituted
of
non-uniform
(a)
In
the
over
-
that
r
=
the of
formulas
I
V
2
Eo
and
The
be a
stiffness
averaged characteristic
over
frames
is
assumed
thru in
21. the
In
(Lc, Lr, and defor-
non-uniform
following
shells,
equations:
Esk G
properties,
shell
to
]
i,
t,
a moderate are
and
t',
degree,
vary the
appropriate:
. .....................
I/4
(4)
.........................
t' t
(5)
Io ................................
2Ef
neighborhood
all
of these parameters the required loads
definitions
r2
=
the
14
shell the
Esk te Ef i
_-
Lr
Eqs. indicated
surface
following
and
by use yield
shell
case the
stiffeners
into
parameters
Case
Lc
skin,
are obtained coefficients
(6)
i Lc
factors, of
the
a
length
length
Gt,
loaded of from
Esk,
te,
frame. shell the
and
The
extending loaded
Efi,
factors
frame
must Gt
be and
approximately in
both
averaged Eski
one-half
directions.
in
shall of
7)
Section B 6 15 September 1961 Page 64 B 6.2.0
Analysis
Case
of
(b)
When
of
Frame,Reinforced
non-uniform
shell
unloaded
frames
unequally
spaced,
computing
Efi:
Efi
=
(Efi)fw
d
Shells
(Cont'd)
(Cont'd)
_ave
the
+
Cylindrical
(Efi)af
-
i Lc fwd
E
(Efi)fwd
=
I Lc----aft
Z
(Efi)aft
unequal
moment
following
t
of
weighting
inertia
factor
or is
.........................
(WEflf)
(WEflf)
are
used
for
(7)
...................
(8)
...................
(9)
Where X
W
=
1
=
o
for
is
measured
(x
The frames
heavy,
to
rigid
be
applied,
the
applying
Eqs.
is
near
end,
the
the
for
a
the
effect
the
more
The
Since in
end
shell
of
to
free
of
in were
of
or
are
the
the
of
correction an
Lc
used
be
(7),
Eqs.
be the
in
are
ignored loaded
in frame
beyond
the
(9),
frame
and
extended
loaded
the of (8),
exaggerates
when
compared
next
section.
Efi and
as
frame.
sub-section
estimate (7),
correction
and
the
this
such
(8),
average
given
particular
the
continued
loaded
in
initial in
if
Eqs.
than
less
corrections must
of
and
single,
symmetry,
those
sides
heavier
I/4,
a
all
discontinuities
must
the
indicated are
of
over gives
frame
of
particular,
of
both
extended
loaded
If
about on
calculation
neighboring
shell
summations
Lc
be
of
case
a plane
In
frame)
to
discontinuity
(9).
which
(Efi)
the the
other
other
symmetric than
to
or
loaded
method
For
for
shell, the
method on
(9)
closest
calculation
calculate
and
applicable.
and
the
of
The
end,
is
(8)
aft
away. or
frame
frames
accurate
L c depends
order
frames
a
greater
method
(8)
and
frame.
discussed
(7),
length
Eqs.
frame,
heavy
< Lc
Lc
farther
fictitiously,
though
>
x
forward
to
those
bulkheads, to
x
loaded
neighboring
factors
for
in
the
importance
importance
as
Lc
summations
except
greater
-
is (9).
required
with
Section
B 6
15 September Page 65 B6.2.0
Analysis Corrections
to
The
form
general 7"
where
of Frame-Reinforced
7
fb, and etc.
=
7
7
of
by
factors
Modification
"Beef-Up"
parameter
the modified
"beef-up"
.fa.fb.fc.
is computed fc are
, the
for
Cylindrical
, etc.,
the
different
(Cont'd)
parameter,
7 *,
........................
methods
accounting
Shells
of for
the
preceding
effects
value
is: (i0)
section,
of nearby
1961
and
heavy
fa,
frames
of Lr/Lc
The value of Lr/L c used in the graphs are 0.2, 0.4, and 1.0. To account for values of this parameter between 0.2 and 1.0, graphical interpolation should be used. Otherwise, the following formula may be
7 * =
7
+
Lr
h*
Lc
/
2
Lr i +
•
where (Lr/Lc)" is the (Lr/Lc)* is the value graphs
are
2
(ii)
/
,,
value of the parameter for the shell, of the parameter closest to (Lr/Lc)",
available.
Modification The
2
for
modification
7 * =
7
finite for
1 +
frame
finite
2LcK 2
spacing
frame
spacing
1 +
2 7 K2/
is as
follows:
where z distance
from
loaded 2
K2
-
Lc
/
2
frame
to adjacent
frames
2
and for which
Section
B 6
15 September Page 66 B 6.2.0
Analysis
of Frame-Reinforced
Modification for discontinuities.
nearby
heavy
The corrections to "7 account for discontinuities form of the correction for
7 *
:
7
frames
Cylindrical and
for
Shells
other
(Cont'd_
similar
"
in a previous section are in circumferential bending these effects is:
nearby
not intended stiffness.
......................................
-f(2)
1961
to The
(13)
Fig. B 6.2.0-3 shows f(2) plotted for nearby heavy frames and for nearby rigid bulkheads. Fig. B 6.2.0-4 shows f(2) plotted for a finite length of shell terminated in various ways on one side of the loaded frame. The validity of the correction is considered doubtful for f(2) < 0.25, due to the importance of higher order stress systems. Figures B 6.2.0-3 and B 6.2.0-4 are for Lr/L c = 0.4, but their variation with Lr/L c is negligible for conventional shell-frame structures and adequate in other applications for Lr/L c < 0.75. The corrections for nearby planes of symmetry and antisymmetry can be used to solve problems where two similar frames are simultaneously loaded. To illustrate the method the two following examples are given: Example
1
A frame concentrated
of moment loads is
of inertia 4.0 in 4 that is subjected to supported in a uniform shell whose characteristic
length, Lc, is 200 inches and moment of inertia per unit length, i, is 0.i0 in. 3 A heavy frame having a moment of inertia 16.0 in 4 is 50 inches to one side of this frame. The loaded frame and shell loads are
required. The
parameters
7
=
7_
=
needed
4.0 2(.1)(200)
are:
= 0.i0
by
Eq.
(3)
16 = 2(.1)
_
50
Lc
Using
7_
and
0.40
200
= 0.25
200
_/L c
-'- 7"
in Fig.
= 0.75
B 6.2.0-3
(0.i0)
=
0.075
yields
by
f(2)
Eq.
= 0 75
(13)
Section B 6 15 September Page 67
F¸
B
6.2.0
Example
Analysis
of
Frame-Reinforced
by f_
Shells
(Cont'd)
i (Cont'd)
Use 7 = 0.075 instead presence of the heavy frame. Example
Cylindrical
1961
of 0.i0 in the curves frame on the stresses
to account for the in and near the loaded
2
A shell whose characteristic length, Lc, is 250 inches is supported a large number of identical frames whose moments of inertia are 2.0
in4, spaced 24 inches apart. A pair of frames 96 inches apart are subjected to concentrated loads at the same polar angle, _ . The two radial loads are of equal magnitude but opposite sign, while the tangential loads are of the same magnitude and sign. The loads in the loaded frames and shell are to be found. I
2
i =
-
-
Io
Io 2iLc
7 =
-
f
Lc
.0833
24
2 = 2(.0833)(250)
48 250
= 0.048
by
Eq.
(3)
- 0. 192
For the tangential loads there is a plane of syn_netry midway between the loaded frames, while for the radial loads a plane of antisy_netry exists at the same place. From Fig. B 6.2.0-4 it is seen that for the radial load stress system, f(2) = 0.32, while for the tangential loading f(2) = 1.75. Hence, the values of 7 * to be used in
the
graphs
Eccentricity
are
0.015
between
and
skin
0.084,
line
and
respectively. neutral
axis
of
the
loaded
frame.
In the three types of perturbation just discussed, it is possible to account for the effects by modifying 7 only, since the "elementary beam-theory" part of the solution is always valid. In the case when the eccentricity between skin line and neutral axis of the loaded frame exists, the "elementary-beam-theory" solution is also affected. This particular aspect is discussed in Appendix E of reference i.
-
Section B 6 15 September 1961 Page 68 B6.2.0
Analysis
I
of
Frame-Reinforced
Cylindrical
Shells
(Cont'd_
I
7£=0.1
7s= o.5 7_= 1.o 7_ =
2.0
Two Rigid BuIkheads Sy_'_etrically Placed about the Loaded Frame
I --
0 0
0.2
Lc Fig.
B 6.2.0-3
A single frame on one side of loaded frame or two rigid bulkheads symmetrically placed about the loaded frame curves of f(2) and f(3). Lr/L c = 0.4.
Section
B 6
15 September Page 69 B6.2.0
4.0
Analysis
I
I
of Frame-Reinforced
Cylindrical
I
1
i
I
I
,,..----
_
I
Plane
End
at x
I
I
(Cont'd)
I
I
---__
Loaded
x
Free
Shells
1961
Frame
=
of
Symmetry
At
Plane x =
Built-ln
At
x
of
Anti-Symmetry
at
=
_/L c Fig.
B 6.2.0-4
Finite vs
length
_/L c for
of
various
shell
on
boundary
one
side
of
conditions
loaded at x
frame =£
f(2)
, Lr/L c - 0.4.
Section 15 Page B6.2.1
Calculations
Eqs. of
a
(14)
thru
(21)
concentrated
computed
by
is and
by
load
using
axial
in
load
at
displacements
The
given
in
moment
on
previous
this
a
section,
in
loaded
parts
the
frame
of
the
by
1961
70
which
shell-supported The
section.
points
the
following
tabulated
are
6
Tables
tabulatedcoefficients.
a
all
of
of
or
the
indicated
Use
B
September
These and
be
computed.
to
overall
method
the
solution
be
computing
the
shear
internal
are
effects
may
of
enable
shell
the
frame
flow
loads
omitted
and
in
the
coefficients:
(i)
The
"elementary-beam-theory"
which
(2)
The
(3)
is
calculated
part
from
beam
"elementary-beam-theory"
intensity
in
from
theory.
beam
The
rigid
of
part
longerons
which
translations
of
should
and
skin
shear
flow
theory.
rotation
the
axial
load
be
calculated
of
the
loaded
frame.
As
a
consequence
intensity
in
directly The
to
shear
assumed
the the
flow to
shell
that
axial
loads
possible
of
an
unsymmetric
about
derive
a
indicated
shell
a
the
correction
of
on
be
obtained
of
"p"
adjacent
to
At
the
present
time
internal
forces
bending loaded l_/i
"m",
simple and
moment frame, (see
in
load
in
for and
other an
then
Appendix
the it frames
matter
the
is
in
loaded
frame.
this
tables
frame.
the
load
added
calculation.
the
loaded
frame,
for are
be
shear It
effect,
are
In
a
flows is
but
and
not the
exact
applicable.
on
one
frame
concentrated The axial
loads "q"
on
are
may
be
obtained
by
loads into which the load and shear flow in
several
tabulated
frames in
by
Ref.
a
similar
3 NASA
TN
D402
x/L c.
Frames
a
the
axial
can
frame
a distributed
since
function
inch,
a
the
2
the effects of the load can be resolved. can
however,
by
simple
reference
to
and
theory"
given
loaded
ahout
load
effect
the
flow
tables,
bending
respect
symmetric
in
shear the
distributions
is
not
(2), from
"engineers
load with
superposition, as
axial
symmetrical
superimposing distributed
and
results
Distributed
the
(i)
calculated
be
to
The
items as
and
are
solutions
of
shell,
to
frame
is
possible
not
adjacent tabulate
internal
adjacent
of
forces
by
reference
by
to the
frame,
obtained D
loaded
due
the
of
tables frame.
frame-bending
moment
as
a
function
of
to
a
force
multiplying I).
use loaded
"m"
applied at
the
to
compute
It
is,
per
x/Lc. at frame
The the station
Section
B 6
15 September Page 71 B
6.2.1
Calculations
Effect It charts,
of
by
local
Use
of
Tables
reinforcement
is not practical the many possible
1961
(Cont'd)
of
the
loaded
to attempt to cover, reinforcing patterns
frame
by a set of tables or that can be used to
locally strengthen frames in the region of applied concentrated loads. solution is presented in Appendix A of reference 3, together with a simple example, to illustrate the numerical procedure. A loaded frame, whose moment of inertia varies around the circumference in any manner can be treated as a frame of constant moment of inertia that is rein-
A
forced
to produce
the
actual
inertia
variation.
Tables
F
The loads and displacements of the loaded frame and loads in the shell are given in terms of the non-dimensional coefficients of the tables by the formulas below. The tables contained in this section are for M, S, F, p, and q at x = o.
along
Coefficients for displacements with coefficients for "q" and
q
= Cqp
Po _+r
To r
Cqt
M
= Cmp
r
Por
+
Cmt
........................
(16)
M ___2_o r
........................
(17)
M _._.9__ r
........................
(18)
F
-- Cfp
Po +
Ctt
To + Cfm
V
= Cvp
Po
W
: Cw p po
Csm
Cvt
+
To
To Cwt
+ C8 El °
•
Mo
Cmm
To t
Cpm
_r3 El o
_r3 + El o
_r2 El °
+ Cvm
Cwm
+
(19)
(20)
7 r2 El o
Mo m
r
2 7 r El o
Mo
Mo
Ce
7
(15)
+
To +
_r3 El o
o
r
Cst
+
..................... (14)
__2__o
Po +
-_ El o
Ref.
CP t
S = Csp
8 =, C e p Po _
i
Tor
Mo r--_--
+ Cqm
+ p m Cpp
v, w, and 7 are tabulated in "p" as a function of x/Lc.
___ El °
.. .....
(21)
3
Section
B 6
15 September Page 72 B 6.2.1 Sign
frame
Calculations
by
use
of Tables
(Cont'd_
Convention
Loads, moments, and displacements as shown in Fig. B 6.2.1-1.
M
are
positive
in the
loaded
o To
Neutral
eo
F M S
M
axis
1961
Section B 6 15 September 1961 Page 73 f-
B 6.2.1
Calculations
by Use of Tables (Cont'd_
Frame Loads
Index of Tables
Coefficient
Lr/Lc=.200
Lr/Lc=.400
Lr/Lc=l. O00
Cmp
B 6.2.1-1
B 6.2.1-5
B 6.2.1-9
Cmt
B 6.2.1-13
B 6.2.1-17
B 6.2.1-21
Cram
B 6.2.1-25
B 6.2.1-29
B 6.2.1-33
Csp
B 6.2.1-2
B 6.2.1-6
B 6.2.1-10
Cst
B 6.2.1-14
B 6.2.1-18
B 6.2.1-22
Csm
B 6.2.1-26
B 6.2.1-30
B 6.2.1-34
Cfp
B 6.2.1-3
B 6.2.1-7
B 6.2.1-11
Cft
B 6.2.1-15
B 6.2.1-19
B 6.2.1-23
Cfm
B 6.2.1-27
B 6_2.1-31
B 6.2.1-35
Shear
Cqp
B 6.2.1-4
B 6.2.1-8
B 6.2.1-12
Flow, q At Ring
Cqt
B
6.2.1-16
B 6.2.1-20
B 6.2.1-24
C
B 6.2.1-28
B 6.2.1-32
B 6.2.1-36
Bending Moment, M
Shear, S
Axial Load, F
qm
•
i r-¸
Section 15 Page
0
_ _ _ _ 0 _ _00000000000000000000000000
_
_
_
_
_
_
_
00
B
6
September
1961
74
_
_
0
_
|IIIIIIIIIIIIIII 0 II
x o! _00000000000000000000000000 ,,.,,.°.t°,...e°...,_,..°,oQ IIIIIIIIIIIIIIII
_ _ _ _ _ _ _ _ _ _0 _ _ __0_____0000__ _000000000000000000000000000
0 c'%
_ _
_ _
_ _
0_ _
_ _
_
_ _
_ _
O_ _0_
_ _0
_ _
__ _
_
0 _
IIIIIIIIIIIIIIIII
,-4 !
0 ! c'4
C%1
____
___0_0__
0_00__ _0000000000 °o.°._....._.°°.°.....,.°°,.
___0000000_ 00000000000000000 Iiiiiiiiiiiiiiiii
_ __ _ 0 _ _ _ _ _ _ 0 _ _ _000___000000000000000 0000000000000000000000000000 ....,..o,..,°.....,.......,, iiiiiiilliiiiiiiii
,-4
II
___ _0______00__ _00000000000000000000000000 0000000000000000000000000000 ..°_°......o°..°o..°.o°,,.., IIIIIIIIIIIIIIIIIII
u% CD
__0____0____ _0_____1__0000__ _00000000000000000000000000 0000000000000000000000000000 ,,._,,,..,.......°,.°.,..... IIIIIIIIIIIIIIIIIII
____0_
on 0
0 °i
_______0__ _0______0000000_ _00000000000000000000000000 0000000000000000000000000000 IIIIIIIIIIIIIII1111
0
_ _
_
_ 0
_ _
__ _
_
_
_0_
_
_ _
Section
B 6
15 September Page 75
oo
o__o_z__o::o_:o_ o_o _0 _
0 0
__ o
_
_
_
ooo0oo
_
_
_
_
_
o_
_ oo
_ oO
_
_
o
o
_ o
IIIIIIIIIIIIII
nI o
o_
_
_
o_
_
_o_
_
_
oooo_ooog_
_
_
_
o
IIIIIIIIIIIII
f
o
O4 !
O_
_
O_ _
__ _ _oo0ooo0oooooooo00oooo
_
_
_
_ o
o
_ 0
_
o_
_
o
_
_
_
_
_
_ _
_
_
_o _
_
oo
IIIIIIIIIII
0 0 Oq
0
_° I .I II _j
_0_
_ _
__0
,-1
_
000 0000
_o_
_
0000 O0000000000000
__o_
o
00_
000
0 O0
IIIIIIIII
00_00000 _ _000o
o
O00000ogg 000000
OO
o
oo
gg_
O0 O000
O0
0o00 O0
IIIIII
o.
_
0000000000000000000000 Illll
ID _.)
o_°_°_°_______o_ _oo
04 0
0_ _ _ IIII
o
0oo
oO
oo
oo
oo
OO
o
oo oo
o_ 0 0
ooo oo
oo oooo
O0
o
_
o_
ooo o oo
00oo 00o
1961
Section
B 6
15 September Page 76 _____0___0__ 0______0____ _ __ _ ____ o.°l°.°.,°°,°°..°.°.°°._,°°. Iiiiiiiiiiiiiiiiiiiiii
0 0
0__
__
O_
0__ O00_
___0
1961
_ _
o 0 II X
o
0
!
___0_0_0__0___ ___0__0_0_ __0_0_ _0___000000000000000000 .....°..,..°.° NN_IIIIIIIIIIIIIIII III
0 oq
0 0 o_
_0_ ___00000__ .......
.....,°
__0_0___0__0__ ____0__0__0_ ___0__00000000000_0_0 ___00000000000000000000 .o.,........_,°...,....o.... NNNIIIIIIIIIIIIII III
0 II
_ _ _0_ _____0_0__0_00 ___0_0000_0000000000_0 __0000000000000000000000 _°,..°°..°.°,..°°_°°°._°,.. _NNIIIIII iii
Lrh 0
0__00_____0__0 ____0_0__000__ ___0__0_000_0000_0 __00000000000000000000000 ....°.°°,...o..°,°...°°°.°.. _111 III
0
I
_
_
_
_
_0_
__
II
I
0_
III
II
I
I
_
_
I
I
I
I
I
I
_
_
I
I
I
I
Q _0____0___0_ _ _ __00000000000000000000000 _NIII III
0
_ I
0_0 II
__ I
I
O0 I
I
Section
B 6
15 September Page 77
1961
0 o
.4
0 o
f--
o_
,-4
_0_o___oo_o__o _o_ ___
__o_ _ o
oooo
_ o
_ o
_ o
_ oo
_ o
o_ _ o
_ o
_ o
oe°le,lo.I°o.,°o.°°.oo,°°°
o
IIIIIIIIIIIII
II o
o__oo_o___o__ ___o______
f
•
°-°°°Io,°°°°,o°°
..... IIIIIIIIIIIII|
o 0_ °oei,°,eJ°o.oot°o,°,°...°° _
o I
_o 0 o
1.4 u'h o
c_ o
¢'4 0
0 _'_
Illlllllltllllll
°,°,
o
_ o
o
Section 15
B
6
September
Page
1961
78 ,,,,,......
0 0 c"q '-'_
'-I
000000000
0000000000000000 I
I
I
I
I
I
I
!
I
I
!
I
I
I
I
_________0_
O_
o.i ,.-4
_ 0_ O_ _ _0000000000000000000000000 -o.......e.°....°0.o..i°...i IIIIIIIIiiiIiiii
_
_
__
_
00_
_
_
_
0 II _0_0___0_____ ___0__0__0___
XO t_
_00000000000000000000000000 o.-*.oo.°°.........o.0..°.. IIIIIIIIIIiIiiii
_0_________ _0__0__0_____ __ O_ _ _ _00 O0000 O0 "'..-..--°........o......... IIIIIIIIIIIiiiiii
0
_ 0 _ _ 0 _ _ _____0__0__ _ _ -T _ 00 _ _ _000000000000000000000000000 _.--,--,.....°...,.,,,,...,, IIIIIIIIIiiiiiiii
0 I
.
_ O0
_ _ O000000
_
_'_
_
_
_
_
_
0
_
_0_
_
_
_
c_
_
_
_
_
_
_
_
_
_
_
_
0000000000000
_
_0000_ O0
O000000
_
_
_
_
_
_
0000000
_
_0
oOi 0 ,-4 II
___0_0_0__0____ __0___0__0__ _ _ _ 00 _ _ 0000000000000000000000000000 _.°_°°°._°.°°.°°..°.°..°.._. IIIIIIIIIIiiiiiiii
_
_0_0_0____0__0 _0_0_00_0___000__ _00_ 0000000000000000000000000000 ,,_.°.,°°°,,°.°.°,°,°°,,°,_° IIIIIIIIIIiiiiiii
t_ 0
___ ____ _00000000000000000000000000 0000000000000000000000000000 °,°_°°...°.°_°°_°°°°°.°,..°_ IIIIIIIIIIIIiiiiii
0
__0_0__0___0__ _0____ _00000000000000000000000000 0000000000000000000000000000
L) 0
IIiIIIIIIIIIiiiiii
0
_0000000000000000000
__0___
0_0__ _oJ__O00__
___000000_
_
_
_
_
_
0
_
_
_
Section 15
B
6
September
Page
1961
79
I0111111111111!
o I!
X o Lr_
0 m
I O4 _
m
m
_
_
_
_
_
o
o
o
o_
o
o
o
o
o
o
o
o
o
o
o
o
o o
o o
oo oo
_
_- o
o
o
o
o o
_ o
_ _
oo oo
IIIIIIIIII
< E_ 0 0_0
I
0 _o __o
o
ooo
oo
_o oo
ooo ooo
oo oo
_ o
IIIIIII
o __ oo_ 0 _ _ _
0
___ _oo _ oo
o o
_o __ooooooooo oooooo
0
___m_
___ ___ oo
ooo
oo
o _ _ ooo ooooo
_ ooo ooo
_o _o oo
IIIIII
L)
0__ 0_0_0___ 0_ _ _00
c_ 0
IIIII
o
_ _0
_ _0000000000000000000 O0 O0 O0000000
__ _ _
_ _
O000000000
_
__0 _
_00
o
Section 15
B
6
September
Page
1961
80
o 0 °°.°°_o°.°°.°.°°°°°°°°°°°°°° IIIIIIIIIIIIIIIIIIIIII
____ ___0_
____ __0__0__
_0_
0 0 • 0
,--_
.°°°..°°.°°o°.°.°°.°°°°
....
IIIIIIIIIIIIIIIIIIIII
II
X 0 Lr_ .°
....
°°._°°°°..°°
..........
IIIIIIIIIIIIIIIIIIII
_ 0 O_
________0_
_______00___ _ _ _ _ °°.°°°o°°°°°°°.°..°..°°.
_
L_
_
_
_J
o_
_
_
0000000000000000 ....
IIiiiiiiiiiiiiiiiii
I T--I
0 Oq
_J
____00000000000000000 • . ° ° N_IIIIIIIIIIIIIIIII Ii
_D
.
.
....
°
....
.
.
°
.
.
.
°
......
0 _
_
_
0
_
_
_
_0___ ___0000_00000000000000 • .....
0
0
_
_
0
_
_
,_
_
_
_I
_
_
_
_
_
_
°°..°
..............
____1'_____0_ _ _
_ _ °°
t_ _1
_ _
_ _
....
_ _
L_ _ °,
_ ¢J 0 cl _ 000000000000000000000 ....................
_
_
00000000000000
Iii
C_ 0
_0,_0_00_0_00000000000000 __0000000000000000000000 °°...°°.°.°0
....
.
.....
iii
________0_0_ _00________ _0___00_0_000000000000 __0000000000000000000000 °.°°.°°°.°°°.°°°.
Oq 0
iii
0
_
_
°.°
III
w_ 0
,_
_000000000000__
...........
°°°°°.
_
Section 15 Page 0 0
81
_00____0___ 0
c_
_ ,_lt°°o,°°,°t.o°llo°°°_.°0
000
000000
0000 IIIIIIIIIIII
0 0
O' II
0 u_
0 oq
00 I
B
September
0
0 0 .._'0
III
0
0
0
O0
6 1961
Section 15 Page
0 0
B
6 1961
September 82
_0_0_0__0__0___ __000000000000000000000000 .t,..o,..o..e...o........o.. iiiiiiiiiiiiiii
__0___ _0000000000000000000000000 _°°_l°°°.°._°..°.°..°.°.°°.°
0 0
___0__
IIIIIIIIIIIIIII
0 II X
_0__0_0__0_000__ 0 __0_____00__ _00000000000000000000000000 ...........0........._...... IIIIIIIIIIIIIIII
_ __L_O_ _______0__0_
0
______
_00000000000000000000000000 ..i......°°......o....°.°°.. IIIIIIIIIIIIIIII
!
0 _00000000000000000000000000 ..... ..°..°..°..°°._.......° IIIIIIIIIIIIIIII
,-1
0 0 0
o
_____0___0__ _000000000000000000000000000 °.......°.o..°...._.°..o_°.° iiiiiiiiiiiiiiii
_ _ _ _ 0 _ _ _ _ _ _ ____t_O__ _00___00000000000000 0000000000000000000000000000 .. .... .°°.°°.°.o..°...o.°o°. IIIIIIIIIIIIIIIII
0
"I
____0__0_0___ _ _ _ _ _ _ _ _00__00000000000000000 0000000000000000000000000000 °.°0.°...°..°°o°°.°.°....°._ IIIIIIIIIIIIIIIII
0
______0____
E
_00_00000000000000000000 0000000000000000000000000000
0
IIIIIIIIIIIIIIIIII
0 O.
_
_
_
0
_
_
_
0
_
_
0
_
_
_ _ 00__
_
_
L_
0
_
_
_
_
_
_
_
_
_
_
_
00
_
_
e_
_
_
_
Section 15
B
Page
oo__ •
__
___
___
_
_
ooooo
_
1961
83
__0
oo
6
September
_
_o00
_
__
_
o
_
o
IOIIIIlJiOIllll
o_
_
_
__
_0
_o
_o_o__
o '0 _
_
_oo
o
o_ oooo
oo
ooo
oo
ooo
o
ooo
lllifltillOlfl
0 I!
)4 o u% /
0 0%
o ,-4 I ,--4
0 04
< E_
°io o _
o
__o _oo
IIIIIIII
o'I 0 r
0
0_0_0__00000000000000 __00000000000000000000000
0
IIIIII f
o
_
_ __ ooooooooo
_
_oo
o o
o o
oo oooo
oo
Section
B 6
15 September Page 84
1961
0 o
o o 0,--_ II
o
0 c_
_Ot_O__O_ _____0000000000000 ....0°
___0___ .....
°..°.°°..°...°..+
IIIiiiiiiiiiiiiiiiii
.--I
0 ¢',1
! ,--I
__ _____000000000000000 °...°...°°°..°.+...+
ol
__0___0___ .....
°0°
Iiiiiiiiiiiiiiiiiii
o o o
_J
.--4
0___i__000____ _ 0 _ ......°
II
_
_
_1101111111111 ii
L_ 0
0,1 0
O__O__t___O__O ___000000000000000000000 .°°...°°.,..+,o..°°...,.°... III
o 0
t_
_
_
_1 ....
_
_
00000000000000000 ,..°°.....
.....
..
Section 15
B
September
Pa_e
0
m 0000
____ O0 O000 t°Io...,o.o,..I,e.....e.,o
_
_
0
O0
_
_
O00000000000000000 iIIiiIiII|i
o II
0 u_
0
.,-4 I ,--I
o c.4
oq
r-_ ,-1
o o 0 .o ____oooo___0oo II iiiiiiiiiiiiii o
.1 o
0
0
_
_
1961
85
_
_
6
0
Section 15 Page
0 0
_ _ O_
0 0
0 u',,
O000
_0
_ _ _
_ _ O0
_ _ _ 0000_ O000
_
_ _
_ _0 O00
0_ _ _
_ _ _ O000
O_
_ _
_ _ _
_ _ _ O0
___0_0_0____ 0___0___0__0_ ____000000__000 00000000000000000000000000 °.°..°°..°..°o.°..°.°°.°°° IIIIIIIIIIIiiii
____0____0_ __0___0___ 00___00000000000000000 00000000000000000000000000 ......°..°°...........°°.. IIIIIIIIIIiiiii
o °i
,-1 E-'
_ _ __
_
_ N__O_____ ___0__0___ 00___000000000000000000 00000000000000000000000000 0.o...°........° IIIIIIIIiiiiiii
0
0_ _
....
°.....
0 0 c_
II
0 ,-4
0000000000000000000000000000 00000000000000000000000000 .°°...°......°.......°..°. IIIIIIIiiiiiii
.1
0 _____ _ ___ O000000000000000000000000000 00000000000000000000000000 °....°...........o.°..°... IIIIIIIIIIiiii
u_ 0
0
O0
_ 00_______0_ ____000000000__000 00000000000000000000000000 0 0000000000000000000000000 • ...°...oo.. IIIIIIIIIiiiii
_0_0_0______ _ ___00000000000000000 0000000000000000000000000000 00000000000000000000000000 ..°......oo.......°..°.... IIIIIIIIIIIiii
oq
0
____ _00000__
_
....
.o........
6
86
__0_00___0_0__0_ _____0__0_ 0_____00000___00 00000000000000000000000000 i°oo°.o°.°l°°o°°°°°°o°°°°. IIIIIIIIIIiiiiii
C II
oq I
_ _ _ _ _ _ _00 __ _ 0 O00 O00 °.o.e...o°l°..o.0°...oo..° IIIIIIIIIIIIIiii
B
September
O0
O0
1961
Section 15
B
6
September
Page
1961
87
0 0
0 0 e-4
0
_0_ _ _ _ _ _ _0 __ _0_____00__ _000 00000000000000000000000 °.,,o°,.,.,..°..b,.,..,.,e.. IIIIII
_
_
_
_
_0
__0
_
IIIIII
II
0 Lr_
0
_
_
_
_
_
_
_
_
_
_0
_
_
_
_
_
_
0
_0
_
0
0
0
0
0
__0_____0000__ _000000000000000000000000000 IIIII
IIIIII
,-'4 I ,-'4 ___000_____00 0 C'.l
_O00000CDO0000000000000000000 ,4.,. ..... IIIII
..........°....... IIIIII
_q _q _q
___0_______
<
0
r04_O00_O__O00000000000000 0000000000000000000000000000 ...b....°..........°........ IIII
0 0-4
IIIIII
n
_0000000000000000 00000000000000000000 °....°..°... III
C_9
0 • III
O0 ....
(n
000 000 ..... IIIIII
Cj .......
_
_.
_
r_
-, q.
'_ _ .-_-...--....''"
0000000000000 IIIIII
_______0_0_ _0____]__000000_ _00000000000000000000000000 O0 O0 O0 0 0 ._..°°..°...°°°..°..°.°°..°° Ill
O4 0
00000 00000
..°....
0
0
0
0
0
0
0
0
0
c_
0
0
0
0
0
0
O0
iIiIII
0 0
_0
_0_0
_0
_0
_0
_0
_0,_
0
0
0
0
0
0
0
Section 15
B
6
September
Page
1961
88
0 0
0__0___0_0__0_ 0_0_0_0__0____ 0____0_____ _ _
0 0
0 _
_
_
_
0
0
0
0
0
0
0
0
O0
0
0
0
0
O0
O0
oo..°.l.°°Q.°o°°°.°o°.,°°e° IIIIIIIIIIIIII
II X
0_ _______0_ 0__ 0____00____0 ___00000000000000000000
0 u_
•
....
_0__0____ 0
...°°..
....
°.°°.,°0°..
IIIIIIIIIIIII
0 e_
0_______0__ 0__0_0__0____ 0_0___00_____0 __000000000000000000000
0
°.°.0°.,°°°.°0°°°°.°,°°.°°0 IIIIIIIIIIII
,--I !
0
O_ _____0___0_ 0__0_0____00_ 0___0000___ __0000000000000000000000
__ __00
°°°°.°°,0°°
.........
0
,,°°0°°
IIIIIIIIIII
0 0 ,-..1
0
0_0___0___0_0_ O_ _ _ O_ 0 0__00000000000_000000 __0000000000o000000000000
II L
_
0
_
_
_
_
_
_
_000
_
__ 0
°.°°.°0.°...,°.°
,--1
_
.....
.°°°°,
IIIIIIIII
u_
0_________
o.I
00_0000000000000000000000 _000000000000000000000000 •
....
0
°°
....
,°.°°
.......
°.°.
IIIIII
0___0____ 0________00 0__0000000000000000000000 _000000000000000000000000
o.i
__ 0
0°°°°.°°.°°°.°0°..°°,._°°°. IIIII
4-
0_0_0_ 0_0__00_0__ 0_000000000000000000000000 _ 0000000000000000000000000
0
• IIII
0_0
I
.°.°°
.....
_0___
__ _
,0°.°°.°°°°,,..,
0_00
Section 15
B
6 1961
September
Page
89
o II x 0
0
0
,5
0 _'_ 0 • ,-_ II
O_
_
_
_
0
,_
_
_
_
_
_
_
_
_
_
_
_
00000000000
_
_
_
_
_
0
_
_
_
_
_
IIIIIIIIIIIIIIIIII
0
_
_
_
_._
_
_
_
_
_
_
_
0
O0
_
0
0
IIIIIIIIIIIIIIIIII
0
_ _____®o_____ 0_0_ _
,.%
0_0_0_0
_0_
_0
_
_0_0
_
__
O0
00000
IIIIIIIIIIIIIIIIIII
_0_0_0
_0
_0
_
O0
0
0
0
0
0
Section
B 6
15 September Page 90 0 0 c_
0_ 00
_ O00000
_
_
_
_ O00000
_
_
_
000_ O0
_ O000000000
_
_
_
_
_
_
_
__
_
_
_
_
_0
llOllOllllilitli
0 0 .-4
00000000000000000000000000 ...,.°.o....°.....°..°...-. llllOltIIllilil
It
___0__0__0__0_ c 0____000000__000 00000000000000000000000000 o..°....0°°...°..°.°o...°. IIIIIIIIIIIIIii
0
o
I
_J
_ _ O_ _ _0_0_0_0__00__ 00____000000000_00000 00000000000000000000000000 .....°......°.°........°.. IIIIIIIIIIIiiii
_________0 _____0_ 00___000000000000000000 00000000000000000000000000 °...°..°°.°.i°.°.°..°.°... IIIIIIIIIIIIii
0 0 ,-1 II
C ,'-
U
lip C
0
_ _____0_0_00 _0_0___00____ 00__000000000000000000000 00000000000000000000000000 .....°......°..°..°°...°°. IIIIIIIIIIiiii
_0____0__0_0_0_ ____00000___0 0000000000000000000000000000 00000000000000000000000000 °.°.°.°°.°°°..°°°°....°... IIIIIIIIIiiii
_____0____ ____00000000__000 0000000000000000000000000000 00000000000000000000000000 °....°°...........°°...... IIIIIIIIIIIii
4J 0
___0__0____ ___00000000000000000 0000000000000000000000000000 00000000000000000000000000 ..°.°..°_.°°..°.°°....°... IIIIIIIIiiiii
_
____
_
_
1961
Section 15 Page 0 0
_0____0____ __0____ _0000000000000000000000000 .**..0_,,°.,.°.-°..°.,°00..,. IIIIIIi
_0__
IIIIII
_________0_ 0 0 0
,--I
_0_0_____00__ _0000000000000000000000000 ''',,*.*.*,...,.,0°°,°°,..... IIIIII
IIIIII
U X 0 u_
0
_0_________ _ 0__0__0_____ __ 0____ _000000000000000000000000000 °'°°*°'°°'°°,-°°°.°.°,°°°l°. IIIII
_0000__
IIIIII
cO !
0 c_
_0_0__0_0____0_
_000000000000000000000000000 °,,° .... IIiii
0q
0 0 .-.1"0
___0_0_
0000000000000000000000000000 • ,,.,...°. IIii
II
CD
0
r_
0q 0
_0_0_0____0__0 _0_0_00____000__ _00__0000000000000000000 0000_000000 *°°.,.0.,,.°..0 IIII
.0°..°..,,...,°,.,.. IIIIII
0
__0__
__
.........
....0..°, IIIIII
_DO000000000000000 ....
°..°.,..° IIIIII
_____0___0_0__ N_____NNO]_O00__ _000000000_0000000000000000 0000000000000000000000000000 ,*°..**,°°°°,°°°°°.°,°.._,.. III
_o_s__S____ooooo._ _ oooo oo ooo oooooooooooooooooooooooooooo ,,°°_,**°°,°.,.°°°°...**°.°. III
IIIiii
oo
oooooo IIIIII
B
September 91
6 1961
Section 15
B
6
September
Page
1961
92
I0 0
0 0 0 II
X !0 Lf_
0 0 __
_ _
_ _
_m
_ _ _ 000
_
_
_
_
_ _
0
_ _
_
_ _ O0
_ 0
0 _ _ O00
_ _
_
0
_
_
_
_ _
_ _
_
_ _0_
_ __ O00
_
_ _ O00
_
_ _ _ _ O00
0 _
_
_
_
_
O0
_ _
_ O_ __000
_ _
O_ _ _
O0
0
,,,.,°.,,,.°..°,..,,o,...., IIIIIIIIIIIII
0_________ 0____00___0__ 0 _ _ 0 _0 ___00000000000000000000 0,°°,°,°°°°°..°..°,o..,.,,. IIIIIIIIIII
0
I
0 _ O_ 0 _ _ _ _ O_O___O0_c_ __000000000000000000000 4.e°°°,.° iiiiiiiiii
0 oq
A
r_ ,-1
< [-4
_
_
_ _ __
.........
_
_
_
_ _ °.
....
_
_
°.,
0 0 0__0_____0__ • 0 ,--4
0___00____000000 __00000000_0000000000000 o°°.o.°o,.°°...°.,....,°°,. IIiiiiii
II
,-I
Lf_ 0
0_____0__0_0_ 0___ 0_0_00_00000000000000000 __00000000000000000000000 °,°,°..°..°...,°...,..,.o,, IIIIIII
0_______0__ 00_00_0______0 0__0__000000000000000000 _ 000 ......_o.°..°°.°.°o.°..°°°o iiiiii
0
Cxl 0
_
O00
0__0_____ 0_0_0______000 0_0_00000000000000000000 _ _ O0 O00000 ,,,°°°..°°.°°,°°.°°,o.°,°°° iiiii
__
O0000
____
O0000000000
O0
__ O00
O0000
.
O0000000
0
/
Section 15 Page
0
_0__0______0_ 0000000000000
O000000
O0000000
IIIIIIIIIIIIIII
0 II
0
0 o'3
0 ¢q 0 __0000___00000000000 .t..Q.o.*.b....,t....o...... IIIIIIIIIIIIIIII
0 0 -.I"0 • ,-4 __000____0000000000 .,t.,o....t..........,,o.... IIIIIIIIIIIIIIIIl
II 0
u% 0
ItIItIIIIIIIIIIII
j
0
___000__0__0__ _ _0 _ _ __ ,....,..t.....o............. IIIIIIIIIIIItIIIIl
O"
u) 0
o
_
_
0
O000000000
B
September 93
6 1961
Section
B 6
15 September Page 94
o
0 0 O_
_____ OO
o0o
0oo
oo0
_oo oooo
ooo
___
1961
_o oo
o
OO
ooo
IIIIIIIIIIIIIIII
___o__ 0 0
o
,--4
_____0o ooo
__ ooo
ooo
o
oo
_
ooo
o
oo_ oo
ooo
_
_
__oo ooo
o
o
o o
oo o
|illlllillilllll
o U
o u_
0 o 0_
________o_ _0_0 _ 000000
_
_0_
_
_
___
___000000_
_000 O00
O00000000
O0000000
IIIIIIIiIIIIIII
,-4 O4 I ,-4
o o cq
_ o
_ oo
_ 0
_ _ oo
_ o
_ oo
_ o
_o oo
ooo ooo
o oo ooo
o _ oo
_ o
_ o
_o oo
t.e.ool..m,o,oeo°ooeo,eeoo IIIIIIIIIIIIIII
_0 _a o o oo •
00 r-I ¸
____ _ _ _ 00000000
_ __ _
_
0_ _0000000 O0000
_
_ _0
__ _
O00
_ _o ____ O00000000 O00 O000000
_ O0
IIIIIIIIIIIIII
u_ I _-_ 0
o
_o_o__oo____o o__oooooooooooooooooooo 0oo0o0o0oooo0ooooooooooooo
0
...o..°.°,.e°.o°....,.,,.. IIIIIIIIIIIII
o 0
_o_ __ o oo o oo
_oo_0 __ 000o oooo
___o _oooo ooooo ooooo
0oo ooo
_ _ ooo ooo
_ _ ooo oo
o
__ _ _o ooo000 ooo
o oo
.,..e....,,...o,.,,..o.,,. IIIIIIIIIIII
_J 0
o
___ ___ ooooo ooo0o IIIIIIIIIIII
0
oo oo
o o
_ _ __o _ _o oo ooo ooo ooo oo oooooooooo
__ _ _ _ ooooo ooo
_
_ _ _ _oo ooooo o oooo
o 0
Section 15 Pa_e
O O
_0______ __000000000000000000000000 °.°°° .... Illllll
B
6
September
1961
95
_0__ °°°°o°°°oo°°°°o°o°° IIIIll
0 0 0 II X _O__O_O_ 0 U_
__O_OO
O__
__O_____ _OOOOOOOOOOOOOOOOOOO .°0°_° ............ IIIIII
O o_
_
OO__ OOOOOOO 0.°0.°.°.o iiiiii
__100_____ _OOOOOOOOOOOOOOOOOOO 0°°0. ...... IIIIII
OO__ OOOOOOO .°°
....
_
°°°°°0°°.° iiiiii
O I ,--4 ° c'q _D
_,_000000000 • ........ IIIIII
_ 0000000000000000 ................
.
.o IIIIII
O O O ,-.i
,.4 II
O ,-_ _OOOOOOOOC_OOOOOOOOC o°°00°°°°0. iii1|
.4
OO ....
°°
OOOOOOO 0°..0°. iiiiiii
....
-1
_ 0
O
_ 0
e,i 0
°o. iiii
e_ 0
0 0
0 0 ........
_ 0
_ 0
_ 0
_ 0
_ 0
_ 0
_ 0
_ 0 °0°..-
_ 0
0 0
0 0
,_ c)
_ 0 ........
C 0
0 ,_
_D 0
0 0
0 0
0 0
0 0
III
O
0 0
O
O
iiiiiii
______O___ _OO_OOOOOOOOOOOOOOOOOOOO OO O O O OO O OO
0 0
iiiiiii
_OO__OOOOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOO °,_°o°0oo°°°..°0°°°o.°°°°°o0 IIII
oq O
0 0 0°o°
_ OO
OOO
O
O
O
O
O
O
OO iiiiiii
O
O
O
Section
B 6
15 September Page 96
1961
0 0 __
_
_
_
_
_
0
0000
_
_0_ _ _
0
O0000
O0
_
_
_
_
O00
***,.,**,,.,..,.....,,..... II|lll|lll|llll
0 0
0_ _
_ _ ,°.l**...°.,..°°.....,°..,. IIIIIIIIIIIIII
0 II
_
O_ _
0_
_ _ O000000000
__
_
0_
_
0
0 _ _ 0___0____0__
0
0
_00_
00
_0
ooo °"
_
_
0
_
0 O0
ooo
,°**°..,..**°°o,.°.°,,.o.., llllllllllll
I
0 cq
I:Q 0 oo II
o u_ 0
0_0________ 0_0___00_____ 0__00____000000000 _ _ _ _00 °....**..°°...***.,°°,°,°., IIIIIIII
O0000
0____0_0_0___ 0 _ _ _ _ 0_ _ 00_ _ _ _ O0000000 ****.°...,°°°0..,...°..°..° IIIIIII
O000000000
_
_ _
_
_ _ _ O0
O0
0 _ _ O0 O000
_ O0 O00
_ _ O000000 O0
O00
_ O0
4-. u,_ rj
0_________ c'4 0
0 _
0
_ 0 _ _ O0000 °,°.**°,..o.,.°°,°,...**... iiiiii
0
_
_ O0
_
000 O0000
0000 O0
000000 O00000000
O0
0
Section 15
B
6
September
PaRe
1961
97
___0___0__0__ g
_____0_0__0_0_ __0000____000__ 0000000000000000000000000000 ,.o,.IoIe..,,....°...,..,.., IIII1|111111111
O0
O000 O00000 ,,,°.,,,,ao,.,...,.,..o,°..,
O0000
O000
O00
O000
IIIIIIIIIIiiiiI
o II o t_ _
0000000
O0
O00
O0
O00
O0000
O00
IIIIIIIIIIIiiii
0 o')
__
_o_
_
0
_ O0 ,°,,°,°ool°m.,,,,l,..,,°,ool
____ O0
0
O0
0
0
0
0
0
0
0
0
_
_
__
GO
O0
O0
0
0
IIIIIIIIIiiiiii
...le.,.i
,5
___00_____
C)
_
__
_ _ °llil.o.eo.......°..°.0°....
0
O
CD 0
_
_
_
_
_
O
_0
_0
0
00
O0
0
IIIIIIiiiiiiiii
!0 iO 0
E-I
o
II 0
,-1
t_ 0
_O_O__g_ __000____0000000000
__0_0__
IIIIIIiiiiiiiiii
0
_0 _0 __00____0000000000
__
_
_
_
_
_
_
IIIIIIIIIIIIIIIII
4-1
/
__ __ _0__ __00_
0,1
o
•
0
_0 00_
___ __
__ ___0__0 _ _
00_ _ _ "
"
"
"
I"
I"
I"
I'
I"
I"
I"
I"
_ I"
_00__ __ _00000000000
I"
I"
I"
I"
_0 I"
I"
_0 _
__ I"
I"
"
"
"
"
"
"
Section 15 Page
B
6
September
1961
98
0 0
0 0 ,,.°,°oo°,..,o**..°,,oa,,., o
IIIIIIIIIIIIII
ii
X_
o_G_o_o_
0 u_
®
.
_
_
___00000000000000000000 ,°°.°.°.°°,°°..°°,°._°..°°° Iiiiiiiiiiiiiii
00_0_00_0____0__ 00__0_____0_0_ 0__0_000_____000 __000000000000000000000 °°.o0o°.°.°°.0°......°.°.°_
0
IIIIIIIIIIIIiiiii
I
0_______0__ 0____,___0__ 0 __o_000____00000 __0000000000000000000000 o.°....°.°.o°......°_°..°..
0
&
IIIIIIIIIiiiiiiiii
r._
D •'_ •
0____0__0_0_0__ 0_0_0_00_____ 0__0000_000000000000000 __00000000000000000000000 °.°.°..°0.o.°°.°..°°eo.o°..
0 r-I
II
II1|111111111111111
0______0_0__ 0________00 00_o100000000000000000000000 _000000000000000000000000 °°.°....°°°°°°.°°..°.°.°°.° IIIIIIIIIIIIIIiiiiiii
u_ 0
oq 0
0__00_0__0__0_0__ 00_0_0___ 0_00_000000000000000000000 _000000000000000000000000 .°°°°o°.°°°.°°.°°.°._o_°o°° IIIIIIIIIIIIIIIiiiiiii
C
0__0__ 0____0_0__0_0_00 0_0_0000000000000000000000 _0000000000000000000000000 IIIIIIIIIIIIIIIIIIIII
0 0_0_0_0_0_0_0_0_0_0000000000
___0_00
__0__0_
I
Npction 15
Spptember
Pa_e
0 0 eq
•
.
I
0 C_
•
I
_
°
I
_
.......
I
_
_
,
I
_
I
I
tq
o,.,,
I
-T
_
I
_
I
_
I
_
....
°
I
_
.
I
_
,
I
_
.....
I
_
,
I
O
I
I
O
I
O
O
.°,.,,,°
I
O
]_ 6 1961
99
....
,
•
,
I
O
O
O
O
O
.......
O
O
O
%,..
IIIIIIIIIIIIIIIIIIII
II X 0 u_
_0
____oJ_
0
_0_
0__0_
_
OO___J_OOOOOOOOOOOOOOOO *,.,,,,°,,,,,,,,
.....
,,,,,..
TTIIIIIIII'II'IIII,
0 _
__
_000000000000000000
................
,
........
,,.
_1111111111111111 II
_0
eq
Cq
c_i
00".-1"
I'--
u'h
r'_
r'f)
_-_ _'4
_D
_
OJ
m l --I
I'--
_0
I'--
r'l
_D
I_
I"D
000
_
_0
O0
oJ
OJ
-1"
I_-
Lth
I
u_
TM-
O0 cq
ch ,-41
_
_ 0 _ .....................
_q
i
I
tD
00
o!
C.._ 000000000 ,
.....
i
_q
_:_ _-_
0 00 c_
Oh r:q
,-_
I"-. ,_ ,_D C-I
•
•
O cq O0 u7
•
•
t',,l cq
•
I',-O" _ C)
•
•
_th C
,_ (-
_ -b
C)h C) C:,
O O
C, O
O O _'D 2,
C_ O
0 ,2_
•
•
O O
O O
C) O
O O
rD O
C, <_
0 O
0 O
O O
O O
O O
O O
O O
O O
O O
.....................
II I
I
I
q_
0
O0 C4 p'B O • C_I
_
I
0
f_ e,I
•
_
•
1_-4 I
0 __
_ _ ,,O ¢'q •
CO -1" 0 ,._ {-'} (D
•
I
I
, I
• I
0 O
,'-4 _D
,
.
I
"_J 00 O O
•
.
_ O
O .
I
•
•
I
"_ (D
0 O
....
o
I
I
0 O
0 O
.
•
I
00 O .
0 O
O
o
.
I
0 O .
.
I
I
I
_
_
_
_ c,_ ol 0 _ _ 00000000000000000000000
00
_
0
_
0
_
0
_
0
_
000000
.,.,,,,,o.o,°°,.,,o,..°.,.,, _111
I
II
I
II
I
I
I
I
I
I
I
I
III
__00000000000000000000000 ,,,,,,°.°,,°,,°°.°°,.°°,o,,° _111 III
0
I
I
I
I
Section 15 Page
B
6
September
1961
i00
!0 0
0__0__0____0 ,...°...,,,.,.o....,,..°., IIIIIIIIIIIIIIIIIIIIIIIIII
_0________ 0 0 .,.,,,.,....,..,..,,..°... 0
IIIIIIIIIIIIIIIIIIIIIlII|l
II
X 0 L_
0_0__0__0____0_000 __0____0000000000 ...°.°...°..o°._....°°.°°. N_NNNIIIIIIIIIIIIIIIIII IIIIII
I
o
I
0 oq
&
0__0_____0_
_
___,__0000000000000 .°°.°....°...o.0..,.°....° IIIIII
,-1
o Oq
__0___0__0__ __0_0__0_0__
_
,-4 It
___-_00_00000000000000 ....°°...o.°.....°.......° IIIIII
L_ 0
0
0
_
0
,_r_
0
u'_
0
,r_
0
_
0
_r_
0
_,'_
0
u"_
0000000000
v
Section 15 Page
0 0 cq
0 0 r-4 0
X 0
00 ! C ¢-d ¢,q
0 0 c'q 0
< II
0
cq 0
0
0
B 6
September 101
1961
Section 15
___0___
1961
102
__ _
6
September
Page
0_0 ___
B
_
_00000000000000000 IIIJIIIIiiii|
0 n
X 0 un
0
O_ c'q I 0__ 0
_
_
0_ _ __0000000000000000000000
___
__
O_
_
__
_
_
_
_ 000
IIIIIIIIIIIiiiiiii
,-1 < 0 0
0
0______0_0__0 0_0_____0___ 0__00___000000000 _ _00000
O00000000000
O00000
IIIIIIIIIIIIiiiiiii
I!
0
0
0___0____0__0 O_ ___ 00_ _0000
_0
_
_ O0000
_ _0000000000
_
_
_
O0000
O00
_
_ O0000 O0000
_
_00 O0 O0
IIIIIIIIIIIIIiiiiiiiii
oq 0
O_ __ _0 _0 0___0_____0_00 O_ _0 _ _00000000000000 _ _00000000000000000000 IIIIIIIIIIIIIiiiiiiiii
I
_
__
__0
_0
_0 O000 O000
0
Section 15
B
6
September
Page
1961
103
0 o
0 o ,--4
o II o
f
o
o i
o 04
_D Im 0 o 4o • ,-i II o
o
u% o
__o___oo0oooooooo0o ___oooooooooo0ooooooooo0 _
_
_
I
I
I
I
I
I
I
III
_ t_ o
o_
_
_o
_
O_
_o_0_0__o_oooo0ooooooooo _ o _ _ o oo _1111 III
E 0
0 "8
_ oo
o
_
_
_
oo
o
o
_ o I
o
_
o
o I
o I
_
_
o
o I
o
_
o
o_
o
o
oo I
I
Section 15
1961
104
____0____0 0_____0__0__0 ________000 °,°°,°o°°o°°.o°..°.ooo°o..
c_
o o
6
September
Page
o o
B
IIIIIIIIIIIIIIIIIIIIIIIIIl
0__0__00____0_ __0__0___0__ 0_0____0_0__0 _______000000 °°°°.°°°°.°°.0.°°°.°°..°._
o
IIIIIIIIIIIIIIIIIIIIIIIIII
II
o u_
______ _____0____ 0________0_000 _00____000000000 °0°°°°0°°°°°.°.°°°°.°°o°°_ I__111111111111111111111 IIII
_0_0_
0
,--4 eq I
0 Cq
_4 0 0 v II
0 ,-_ 0
cJ
_ _
_ _ _ 0 °.°.°..°°0°°
_ _
_ 0
0 L_
_ _
_ _
_ _
_ _
0 _
_ _
_ ,_ _ _ 00000000000000 ....
_
_T
00
_
_
_
_
_
_
0
°°°°°o°°°0
IIIIII
0
c_ 0 0
___'_ ____ .°°.°°°°°°°.°...°°°.°°°°°° __lll IIIIII
Oq 0
_
_ __0__0 00_0_0000000000 II
I
II
I
I
I
Section 15 Page
B
6
September
1961
105
0 0 eq
0 0
,0 II X 0 L_
0
c'q I
0
0 0 .0 ,--I
___ _ ___00_0_0__00_ °°...°....0..°°..°°...°°.°.° _0__
II qJ ,-1
Ii
0
cq 0
L_ c'q 0
0
0__
_
_
I
__
I
0_0_
I
I
IIII
I
Section 15
B
6
September
Page
1961
106
o II
0 Lf_
0
0____0_00____0 0_ 0____0_____00 _ _ _
_
__ _
_0_
_
_000000
_0
_
_
_0
_
_0
_
0_
O0000000000000 iiiiiiiiiiiiiiii
I
0 o4
0_0__00_____0 0__ _ 0_0_0_0_____000 ___00000000000000000000
_0
_
_
_
_
__
_
_
_
_
_
_
iiiiiiiiiiiiiiii
,.-1
< 0 0 0
0
0___0______0 0_00________ 0 _ _ _ _
_0'0 _ _00
_00
_ O00
_ _ O000
_ _ O00
_
_ O0
_
_
O0
_
_ 000000 O000000
IIIIIIIIIIIIIIIIII II
Lr_ 0
0_____0___0_0_0 0______0___ 0 _ _0 _ __0000000000000000000000
0 0
_
_
_
_
O00
O000
O00
O000
IIIIIIIIIiiiiiiiiii
0
0____0____0_0 00_0__0_0____00 0__0___000000000000 _,_0000000
O00000
O00
IIIIIIIIIIIIIIIit111
0___0__0____0 0____0____0000 0_0_00 __00000000000000000000000 ....o0°o°.0.0°.°.°,..,...._
_
_
IIIIIIIIIiiiiiiiiiiii
_
_
_
O00000000000
O0
Section 15
B
6 1961
September
Page
107
oo
_0
__
_
_
__
_
0__
_
_0
o /pk
O ,-4
oooe0eI._.o.°o0°i°°.I..QI.° IIIIIIIIIIIIIIIIIIIII
O II
O u% /
_0_0_0____0_0__ _000__00__0_0_0__
0 e_
_
I
_ _ ........°_.o..°..°.°°..°o.°° IIIIIIIIIIIIIIIIII
_
O0
0
O0
000
0
0 ______00____ ____0000000000000000 IIIIIIIIIIIIIIIII
I:Cl
o 0 0 .0 ,-4 ,_ II (J
.I
u_ 0
_0_0_0______0 _0_ __
0
_0__0___ _
_
0
_
_
_
__
_
_ _
_ 0
0 0
_ 0
O0
o
ooo oo o 0
O0
_
_
_ 0
_ O0
O0
0
_ O_ O0
0
0
0
0
_
_
_0
_ 0 O0
0 0
0 0
0
O0
_
_
0 0
O0 O0
0
0
0
0 0
0 0 O0
_llllllO Ill
_ _0 ____0__00__0_0_ _ _0 O_ _
eq 0
_ O0
_ 0
_
0 0
_
z _N_IIIIII III
0
I
I
I
I
Section
B
6
15 September Page 108
1961
O O
O O Oi II XOu_
___O_O_OO_O___ _ _O___ O_O___O_____O _ _ __ °°°.°°°..°°°°°°°.°..°°.°°. IIIIIIIIIIIIIIIIIIIIIiiiii
___O_ _
_
_
_
_
_
_
_
_
_
_
O
O
OO
O
O oq
u_ oq !
O
<
O O O• O r-4 II _J
____ OO_O_OOO____O_O_O_OO _ __O____OOOOOOOOOO .°°°0.....°o.°.°°°0..°°°.. I_NN_NIIIIII|IIIIIII IIIII
___O_
_t_
___O___O_O__ OO___ __O___OOOOOOOOOOOO ..°°°)°°.°°.°°.°°....=°°.°
O_O_,_O__
O_O_OO
IIIIIII
O
O O
_n_
__
_ _ _ _1 _ _ _ __O_O__OOOOOOOOOOOOOO ...............°..°.......
_
__O_ _
_
_
_
_
_
_
O_ O
_
_
_
_
_ _
_
_
_
_
O
O
IIIIIII
O
OO_ _O___O__OO___ O____O__O_OO__O __ °.°_......°.°°°°°.°°°..°°° __NIIIIII IIIIII
O_O__O___
_
__OOO_OOOOOOOOOOOO I
I
I
I
I
E
t4-
O
_
O
_
O
_
O
_
O
_
O
t_
O
_
O
_
O
_
O
O
O
O
O
O
O
O
O
O
v
Section
B 6
15 September Page
1961
109
,7--
0 0
/
0 0 _=4 0 II 0 u_
0
@_1 II
IIIIIIll
_1 II
IIIIIIII
,,O I ,-i
0
0 0
0 _l:
II
_BIN II
0
/
0
II
U F
0
0
NNN
NN
I
I
I
IIII
I
Section
B 6
15 September Page ii0
1961
References
,
1
MacNeal, Richard H., and John A. Bailie, Analysis of FrameReinforced Cylindrical Shells, Part I - Basic Theory. NASA TN D-400, 1960. MacNeal, Richard H., and John A. Bailie, Analysis of FrameReinforced Cylindrical Shells, Part II - Discontinuities o_ Circumferential-Bending NASA TN D-401, 1960.
,
Stiffness
in
the
MacNeal, Richard H., and John A. Bailie, Reinforced Cylindrical Shells, Part III NASA TN D-402, 1960.
Axial
Directions.
Analysis of Frame- Applications.
I
\