Ficha de revisão 1 Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Matemática A | 12.º ano Data
Professor
1.
-
- 20
Lança-se um dado equilibrado, com com as faces numeradas numeradas de 1 a 6, e regista-se o número número da face que fica voltada para cima. Represente, em extensão, os acontecimentos: acontecimentos:
2.
1.1.
A
: “Sair um número menor do que 4”
1.2.
B
: “Sair um número quadrado perfeito”
1.3.
C :
“Sair um divisor de 6”
1.4.
D :
“Sair um múltiplo de 3 ”
1.5.
E :
“Sair um número primo ”
Lançaram-se dois dados equilibrados, equilibrados, ambos ambos com as faces numeradas numeradas de 1 a 6. Qual é a probabilidade: 2.1.
de ter saído o mesmo número em ambos os dados? Apresente o valor pedido na forma de fração irredutível.
2.2.
de a soma de os números saídos ser não inferior a 8? Apresente o valor pedido na forma de fração irredutível.
3.
Um baralho de cartas completo é constituído por 52 cartas repartidas por quatro naipes: espadas, copas, copas, ouros e paus. Em cada naipe há um ás, três figuras fi guras (rei, dama e valete) e mais nove cartas (do 2 ao 10). Extrai-se, ao acaso, uma carta de um baralho completo. Qual é a probabilidade de se obter: 3.1.
uma figura? Apresente a probabilidade na forma de fração irredutível.
3.2.
uma carta preta ou uma carta de copas? Apresente a probabilidade na forma de percentagem.
3.3.
uma carta carta vermelha vermelha e não figura? figura? Apresente Apresente a probabilidade probabilidade na forma de de fração fração irredutível.
Ficha de revisão 1 – Domínio Domínio 1 – Página Página 1
Ficha de revisão 1
4.
Uma turma do 12.º 12.º ano é constituída constituída por alunos de ambos ambos os géneros. O diretor desta turma fez a sua caracterização, onde incluiu a tabela que se segue. Idade
Menos de 17 anos
17 anos ou mais
Rapariga
4
10
Rapaz
2
9
Género
Escolheu-se, Escolheu-se, ao acaso, um aluno desta turma. Qual é a probabilidade de o aluno escolhido:
5.
4.1.
ter 17 anos ou mais? Apresente o valor na forma de dízima.
4.2.
não ser rapaz rapaz e ter menos de 17 anos? Apresente Apresente o valor valor na forma de fração irredutível. irredutível.
4.3.
ser rapariga ou ter menos menos de 17 anos? anos? Apresente o valor na na forma de percentagem. percentagem.
A Cristina tem um saco que que contém contém quatro bolas numeradas, numeradas, indistinguíveis ao tato: uma com o número 5.1.
2
, outra com o número
8,
outra com o número
π
e outra com o número 1.
A Cristina retira, ao acaso, acaso, uma bola bola do do seu seu saco. saco. Qual é a probabilidade de retirar uma bola com número superior a 1? Apresente a probabilidade na forma de fração f ração irredutível.
5.2.
A Cristina retira, ao acaso, duas bolas do seu saco, uma a seguir à outra, com reposição, r eposição, multiplica os números das bolas retiradas e regista esse produto. Qual é a probabilidade de o produto ser um número irracional? Apresente a probabilidade na forma de fração fr ação irredutível.
6.
Em relação relação à escolha das das línguas estrangeiras, dos dos alunos de uma turma, sabe-se sabe-se que: • 55% dos estudantes escolheram a disciplina de Inglês; I nglês; • 40% dos estudantes escolheram a disciplina de Alemão; • 10% dos estudantes escolheram ambas as disciplinas, Inglês e Alemão. 6.1.
Elabore um digrama digrama de Venn para para representar representar a situação descrita.
6.2.
Qual é a probabilidade probabilidade de um aluno desta turma, turma, escolhido ao acaso, acaso, ter escolhido escolhido uma só destas disciplinas? Apresente o valor pedido na forma de percentagem. Ficha de revisão 1 – Domínio Domínio 1 – Página Página 2
Ficha de revisão 1
4.
Uma turma do 12.º 12.º ano é constituída constituída por alunos de ambos ambos os géneros. O diretor desta turma fez a sua caracterização, onde incluiu a tabela que se segue. Idade
Menos de 17 anos
17 anos ou mais
Rapariga
4
10
Rapaz
2
9
Género
Escolheu-se, Escolheu-se, ao acaso, um aluno desta turma. Qual é a probabilidade de o aluno escolhido:
5.
4.1.
ter 17 anos ou mais? Apresente o valor na forma de dízima.
4.2.
não ser rapaz rapaz e ter menos de 17 anos? Apresente Apresente o valor valor na forma de fração irredutível. irredutível.
4.3.
ser rapariga ou ter menos menos de 17 anos? anos? Apresente o valor na na forma de percentagem. percentagem.
A Cristina tem um saco que que contém contém quatro bolas numeradas, numeradas, indistinguíveis ao tato: uma com o número 5.1.
2
, outra com o número
8,
outra com o número
π
e outra com o número 1.
A Cristina retira, ao acaso, acaso, uma bola bola do do seu seu saco. saco. Qual é a probabilidade de retirar uma bola com número superior a 1? Apresente a probabilidade na forma de fração f ração irredutível.
5.2.
A Cristina retira, ao acaso, duas bolas do seu saco, uma a seguir à outra, com reposição, r eposição, multiplica os números das bolas retiradas e regista esse produto. Qual é a probabilidade de o produto ser um número irracional? Apresente a probabilidade na forma de fração fr ação irredutível.
6.
Em relação relação à escolha das das línguas estrangeiras, dos dos alunos de uma turma, sabe-se sabe-se que: • 55% dos estudantes escolheram a disciplina de Inglês; I nglês; • 40% dos estudantes escolheram a disciplina de Alemão; • 10% dos estudantes escolheram ambas as disciplinas, Inglês e Alemão. 6.1.
Elabore um digrama digrama de Venn para para representar representar a situação descrita.
6.2.
Qual é a probabilidade probabilidade de um aluno desta turma, turma, escolhido ao acaso, acaso, ter escolhido escolhido uma só destas disciplinas? Apresente o valor pedido na forma de percentagem. Ficha de revisão 1 – Domínio Domínio 1 – Página Página 2
Miniteste 1.1. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
1.
Matemática A | 12.º ano Data -
- 20
O António tem seis CD de música. 1.1.
Quantos são são os subconjuntos do conjunto conjunto formado pelos seis seis CD de de música?
1.2.
O António vai vai a uma festa de amigos amigos e pretende pretende levar com ele pelo menos menos dois dos CD de música. De quantas maneiras diferentes pode o António escolher os CD que pretende levar?
2.
3.
Considere todos os números naturais entre 5000 5000 e 6999, 6999, inclusive. inclusive. 2.1.
Quantos são estes números?
2.2.
Quantos destes números são múltiplos de 5?
2.3.
Quantos destes números têm os algarismos todos diferentes?
Resolva as equações seguintes. 3.1.
3.2.
n!
n
n
2 !
n 2! 5 n 1! 21n! 0
Miniteste 1.1. – Domínio Domínio 1 – Página Página 1
Questão-aula 1.1. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
Professor
- 20 N.º
Matemática A | 12.º ano Data -
- 20
Item de seleção
De quantas maneiras diferentes se podem sentar sete pessoas em três cadeiras de modo que cada pessoa ocupe uma só cadeira, ficando, assim, quatro pessoas de pé? (A)
35
(B) 210 (C) 840 (D) 5040
Item de construção
Simplifique. 1.
3.
5.
7! 6!
7!
2.
8!
50 ! 48 !
n
2 !
n!
n
! 1 !
n 1 n
6.
2 !
n!
P 100
4.
47 !
P 99 n !
n
2
n
99 !
98 !
n 1
0!
!
n 1
!
Questão-aula 1.1. – Domínio 1 – Página 1
Miniteste 1.2. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Matemática A | 12.º ano Data
Professor
1.
-
- 20
Lança-se três vezes consecutivas um dado equilibrado, com as faces numeradas de 1 a 6. De quantas maneiras diferentes se pode obter:
2.
1.1.
número par em todos os três lançamentos?
1.2.
um número ímpar e dois números pares nos três lançamentos?
1.3.
exatamente dois 6 nos três lançamentos?
1.4.
números iguais nos três lançamentos?
A chave do Euromilhões consiste em cinco números, entre os números naturais de 1 a 50, mais dois números, as estrelas, entre os números naturais de 1 a 12. Quantas chaves diferentes podem ocorrer em cada sorteio do Euromilhões?
3.
Considere o seguinte problema: Um saco contém 12 bolas, indistinguíveis ao tato: quatro bolas com o número 1, cinco bolas com o número 2 e três bolas com o número 3. Retiram-se, do saco, três bolas ao acaso. De quantas maneiras diferentes podem as três bolas ser retiradas, sabendo que a soma dos números saídos é igual a 6? Uma resposta correta para este problema é
5
C 3
453
.
Numa pequena composição explique esta resposta.
Miniteste 1.2. – Domínio 1 – Página 1
Questão-aula 1.2. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
Matemática A | 12.º ano Data -
- 20
Item de seleção
Um baralho de cartas completo é constituído por 52 cartas, repartidas em quatro naipes (espadas, copas, ouros e paus). Em cada naipe há 13 cartas: um ás, três figuras (rei, dama e valete) e mais nove cartas (do 2 ao 10). Utilizando apenas o naipe de copas, quantas sequências diferentes de 13 cartas, iniciadas e terminadas com uma carta que não seja figura, é possível construir? (A) 13! (B)
2 11!
(C) 10 9 11! (D)
13! 2
Item de construção
Considere sete pontos, quatro sobre uma reta
r
e três sobre uma reta
s
, estritamente paralela à
reta r . Quantas circunferências distintas passam por três desses sete pontos?
Uma resposta correta para este problema é
7
C3
4
C 3
1
.
Numa pequena composição explique esta resposta.
Questão-aula 1.2. – Domínio 1 – Página 1
Miniteste 1.3. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
1.
Matemática A | 12.º ano Data -
- 20
Na figura está representada uma circunferência. Os pontos
A B C D E e F pertencem à circunferência. ,
,
,
,
1.1. Quantas cordas existem com extremos nos
pontos assinalados na circunferência?
1.2. Quantos triângulos existem com vértices nos
2.
Prove que
3.
Considere a expressão
n 1
C1
n 1
C3
n 1
C5
n 1
x
P x
C7
5
n 1
C9
pontos assinalados na circunferência?
2
9
.
100
.
Quantos termos do desenvolvimento de
têm coeficiente positivo?
P x
Miniteste 1.3. – Domínio 1 – Página 1
Questão-aula 1.3. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
Professor
- 20 N.º
Matemática A | 12.º ano Data -
- 20
Item de seleção
Sete amigos vão passear deslocando-se num automóvel e numa mota, ambos alugados. O automóvel dispõe de cinco lugares: o do condutor e mais quatro. A mota dispõe de dois lugares: o do condutor e mais um. Apenas três elementos do grupo, o António, o Borges e o João, têm carta de condução, podendo qualquer um deles conduzir quer o automóvel quer a moto. Os sete amigos têm de se separar em dois grupos, de modo que um grupo viaje no automóvel e o outro na moto. De quantas maneiras diferentes podem ficar constituídos os dois grupos de amigos (admita que os grupos ficam constituídos de maneira diferente se tiverem pelo menos uma pessoa diferente ou se pelo menos um dos condutores for diferente)? (A)
10
(B)
30
(C) 120
(D) 360
Item de construção
De um grupo de 120 alunos de uma escola secundária, sabe-se que: • a quarta parte não pratica desporto; • metade são rapazes que praticam desporto; • a terça parte são raparigas.
Pretende-se formar uma comissão de cinco destes alunos para organizar uma atividade escolar. Quantas comissões diferentes se podem formar com: 1. 2.
exatamente dois rapazes que pratiquem desporto? pelo menos três raparigas que não pratiquem desporto?
Questão-aula 1.3. – Domínio 1 – Página 1
Miniteste 1.4. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Matemática A | 12.º ano Data
Professor
1.
-
No Triângulo de Pascal, considere a linha que contém os elementos da forma 1.1.
Quantos elementos dessa linha são menores que
1.2.
Qual é o terceiro elemento da linha anterior?
1.3.
Qual é o maior elemento da linha seguinte?
2. Considere a expressão A x
99
- 20
C k .
C 5 ?
99
12
x
2
x
Relativamente ao desenvolvimento de
,
x
0.
pelo Binómio de Newton, três alunos de uma
A x
turma do 12.º ano, o António, a Beatriz e a Cristina, escreveram as proposições
p , q
e , r
respetivamente. p :
q:
“O termo independente de
x
do desenvolvimento de
é T
A x
7920 .”
“O desenvolvimento de A x tem um termo de grau 2. ”
r :
5
9
“O 8.º termo do desenvolvimento de A x é 101 376 x 2 .”
Mostre que apenas um destes três alunos escreveu uma proposição verdadeira.
3.
Resolva, em
, a equação seguinte. cos
4
3
2
x 4 cos x 6 cos x 4 cos x 1 0
Miniteste 1.4. – Domínio 1 – Página 1
Questão-aula 1.4. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
Matemática A | 12.º ano Data -
- 20
Item de seleção
O terceiro elemento de uma certa linha do Triângulo de Pascal é 3240. Qual é o maior elemento da linha seguinte? (A)
80
(B)
81
(C)
81
(D)
82
C 40
C 41
C 42
C 41
Item de construção n
2 Considere a seguinte expressão A x x 2 3 , x 0 e x
Determine o menor valor de independente de
x
n
n
.
de tal forma que o desenvolvimento de
tenha um termo
A x
.
Questão-aula 1.4. – Domínio 1 – Página 1
Miniteste 1.5. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Matemática A | 12.º ano Data
Professor
1.
-
- 20
Uma escola aplicou um miniteste de Matemática A aos seus alunos do 12.º ano. Esse miniteste era constituído por apenas duas questões. Sabe-se que: • 132 alunos acertaram a primeira questão; • 86 alunos erraram a segunda questão; • 120 alunos acertaram ambas as questões; • 54 alunos acertaram somente uma das questões. 1.1.
Quantos alunos não acertaram qualquer questão?
1.2.
Qual é a probabilidade de escolhendo um aluno, ao acaso, dos que realizaram este miniteste, este ter acertado apenas a segunda questão? Apresente o valor pedido na forma de fração irredutível.
1.3.
Escolheu-se, ao acaso, dois alunos dos que realizaram este miniteste. Qual é a probabilidade de cada um deles ter acertado exatamente numa questão? Apresente o valor pedido na forma de fração irredutível.
2.
Considere o conjunto
A
1
formar com os elementos de
,
2 3 4 5 e todos os números de seis
A
,
,
,
algarismos que se podem
.
Escolhendo um desses números, ao acaso, qual é a probabilidade: 2.1.
de não ter o algarismo 4? Apresente o valor pedido na forma de fração irredutível.
2.2.
de ter pelo menos um algarismo 4? Apresente o valor pedido na forma de fração irredutível. Miniteste 1.5. – Domínio 1 – Página 1
Questão-aula 1.5. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
Matemática A | 12.º ano Data -
- 20
Item de seleção
Três prateleiras estão vazias e cada uma tem espaço para cinco livros. A Cristina tem 15 livros diferentes e vai dispô-los pelas três prateleiras. Destes livros, quatro são de Física, cinco são de Matemática e os restantes são de outras áreas científicas. Qual é a probabilidade de os livros de Matemática ficarem juntos, numa das prateleiras, e os livros de Física ficarem na prateleira debaixo? (A)
(B)
(C)
(D)
1 63 063
1 126 126
1 1 728 000
1 86 400
Item de construção
Seja E um conjunto finito,
P
uma probabilidade em
P B | A
Prove que
B
e
P E
, tais que:
A B P E ,
0, 2 , P A B 0, 3 e P A B 0,05
e B são acontecimentos equiprováveis.
Questão-aula 1.5. – Domínio 1 – Página 1
Miniteste 1.6. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
1.
Matemática A | 12.º ano Data -
- 20
Para assistir a um dos festivais de verão que se realizou em Portugal encontram-se acampados jovens de ambos os géneros. Sabe-se que: •
60% dos jovens são do género masculino;
•
a quarta parte dos jovens são portugueses do género masculino;
•
a quinta parte das jovens do género feminino são portuguesas.
Escolheu-se, ao acaso, um jovem de entre todos os jovens acampados. Qual é a probabilidade de ser escolhido: 1.1.
um jovem português? Apresente o valor pedido na forma de fração irredutível.
1.2.
um jovem do género masculino embora seja estrangeiro? Apresente o valor pedido na forma de fração irredutível.
2.
Seja E um conjunto finito,
P
uma probabilidade em
P E e A, B P E , tais que A e B
são acontecimentos independentes. Prove que:
P A B
P B P B
P A
Miniteste 1.6. – Domínio 1 – Página 1
Questão-aula 1.6. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
Matemática A | 12.º ano Data -
- 20
Item de seleção
Num saco existem 20 bolas, 15 são brancas e 5 são verdes, todas elas indistinguíveis ao tato. Extraiu-se sucessivamente, ao acaso e sem reposição, duas bolas deste saco. A probabilidade de a segunda bola extraída ser verde, sabendo que a primeira bola extraída era branca, é: (A)
15 20
5
(B)
19
1 15
1
(C)
5
5 19
(D)
1 4
Item de construção
Um saco tem dez bolas, das quais quatro estão numeradas com o número 1, cinco com o número 2 e uma com o número 3. 1.
Extrai-se, ao acaso, uma bola e, caso tenha um número par, volta-se a colocar no saco e faz-se uma segunda extração. Em contrapartida, caso tenha um número ímpar, extrai-se uma segunda bola do saco sem repor a primeira bola. Qual é a probabilidade de a segunda bola extraída do saco estar numerada com o número 2? Apresente o valor pedido na forma de fração irredutível.
2.
Admita que se volta a extrair uma bola, ao acaso, do saco. Observa-se o número da bola extraída e repõe-se a bola no saco juntamente com mais quatro bolas com o mesmo número. Seguidamente, extrai-se, ao acaso, uma segunda bola do saco. Sejam
A
e B os acontecimentos:
A :
“Sair bola com um número par na primeira extração”
B :
“Sair bola com o número 2 na segunda extração”
Sem aplicar a fórmula da probabilidade condicionada, indique, na forma de fração irredutível, o valor de P B | A . Numa pequena composição, explique o seu raciocínio, começando por explicar o significado de
P B | A
no contexto da situação descrita.
Questão-aula 1.6. – Domínio 1 – Página 1
Miniteste 1.7. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20
Matemática A | 12.º ano
N.º
Data
Professor
1.
-
Três caixas idênticas, A caixa
A
A B ,
e
C , têm
- 20
bolas vermelhas e bolas azuis.
tem três bolas vermelhas e cinco bolas azuis.
A caixa B tem quatro bolas vermelhas e uma bola azul. A caixa
C tem
três bolas vermelhas e duas bolas azuis.
Escolhe-se, ao acaso, uma caixa e extrai-se dessa caixa uma bola. Qual é a probabilidade de a bola extraída ter cor azul? Apresente o resultado na forma de fração irredutível.
2.1. Seja
E
um conjunto finito,
P
uma probabilidade em
e A
P E
,
, com P B 0 .
B P E
Prove que P B A 1 P B P A | B . 2.2. Dos alunos de uma turma do 12.º ano, sabe-se que:
• a quarta parte tem um smartphone; •
metade dos que têm smartphone têm acesso à
Internet. Escolhendo aleatoriamente um aluno desta turma, qual é a probabilidade de não ter smartphone ou não ter acesso à Internet? Apresente o resultado na forma de fração irredutível. Sugestão: Se
o desejar, pode utilizar a igualdade da alínea anterior (nesse caso, comece por
identificar claramente, no contexto do problema, os acontecimentos
A
e B ). No entanto, pode
optar por resolver o problema por outro processo (como, por exemplo, através de uma tabela de dupla entrada ou de um diagrama em árvore).
Miniteste 1.7. – Domínio 1 – Página 1
Questão-aula 1.7. Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20
Matemática A | 12.º ano
N.º
Data
Professor
-
- 20
Item de seleção
Seja E um conjunto finito,
P
uma probabilidade em
0 e P C 0 , tais que
P B
C A e
A
e A, B e C
P E
, com P A 0 ,
P E
e B são acontecimentos incompatíveis.
Qual das igualdades é verdadeira?
1
(B)
P C | B
(D)
P A B
(A)
P A | B
(C)
P A | C
0
0
| C 1
Item de construção
Na figura está representado um tabuleiro, o qual se encontra dividido em nove quadrículas iguais, numeradas com os números naturais de 1 a 9.
Pretende-se colocar, aleatoriamente, neste tabuleiro, três fichas de cores diferentes, não mais do que uma por quadrícula. 1.
De quantas maneiras diferentes podem as três fichas ser colocadas no tabuleiro?
2.
Qual é a probabilidade de as três fichas: 2.1.
ficarem todas na mesma fila horizontal? Apresente o valor pedido na forma de fração irredutível.
2.2.
ficarem em quadrículas com número primo? Apresente o valor pedido na forma de fração irredutível.
2.3.
ficarem colocadas em quadrículas cujo produto é um número par, sabendo que ficaram colocadas na última fila (na que tem cinco quadrículas). Apresente o valor pedido na forma de fração irredutível. Ficha de preparação para o teste de avaliação 1 – Domínio 1 – Página 1
Ficha de preparação para o teste de avaliação 1 Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20 N.º
Professor
1.
Matemática A | 12.º ano Data -
- 20
Uma turma do 12.º ano é constituída por 24 alunos, dos quais 15 são raparigas e 9 são rapazes. Vai formar-se, ao acaso, uma comissão de trabalho que terá um coordenador, um subcoordenador e um porta-voz. 1.1.
De quantas formas pode ser feita a comissão? E se o coordenador for um rapaz?
1.2.
Qual é a probabilidade de o António, um dos rapazes da turma, fazer parte da comissão? Apresente o valor pedido na forma de fração irredutível.
2.
Um saco contém seis bolas indistinguíveis ao tato, três são vermelhas, duas são brancas e uma é azul. Foram extraídas sem reposição três bolas do saco. Determine de quantas maneiras diferentes é possível obter três bolas de cor diferente.
3.
Utilizando os algarismos do conjunto
A 2 , 3 , 4 , 5 , 6 , 8 , 9
, quantos números de quatro
algarismos é possível formar de modo que:
4.
3.1.
tenham exatamente dois algarismos iguais a 9?
3.2.
os números sejam múltiplos de 5 e maiores que 7000?
3.3.
o produto dos algarismos seja um número ímpar?
Um saco contém seis cartões indistinguíveis ao tato e numerados de 1 a 6. 4.1.
Foram extraídos sem reposição três cartões do saco e dispostos por ordem formando um número. Qual é a probabilidade de o produto dos algarismos do número formado ser par? Apresente o valor pedido na forma de fração irredutível.
4.2.
Admita que foram extraídos dois cartões do saco em simultâneo. Qual é a probabilidade de o produto dos números dos cartões retirados ser superior à soma dos números dos cartões não retirados? Apresente o valor na forma de fração irredutível.
Ficha de preparação para o teste de avaliação 1 – Domínio 1 – Página 1
Ficha de preparação para o teste de avaliação 1
5.
Lança-se três vezes um dado equilibrado, com as faces numeradas de 1 a 6. Qual é a probabilidade de o produto dos números saídos ser igual a 6 ou a soma dos números saídos ser igual, também, a 6? Uma resposta correta a este problema é
3! 7 6
3
.
Numa pequena composição, explique porquê incluindo: • uma referência à R egra de Laplace; • uma explicação do número de casos possíveis e
6.
de casos favoráveis.
13
Considere a expressão x 4 . 6.1.
Determine a soma dos sétimo e décimo termos do desenvolvimento desta expressão pelo Binómio de Newton.
6.2.
Escolhem-se aleatoriamente duas das parcelas deste desenvolvimento pelo Binómio de Newton. Determine a probabilidade de o respetivo produto ser negativo. Apresente o valor pedido na forma de fração irredutível.
7.
Seja E um conjunto finito,
P
0 , tais que P A | B
P B
Prove que P
8.
uma probabilidade em
P E , A B P E , ,
com P A 0 e
.
P B
.
A B P B P B
O António necessita de comprar um computador portátil que apenas se pode encontrar disponível para venda em três lojas, que designamos por loja 1, loja 2 e loja 3. A probabilidade desse computador portátil se encontrar disponível na loja 1 é de 0,8, na loja 2 é de 0,75 e na loja 3 é de 0,9. O António, habitualmente, gosta de fazer compras na loja 2, pelo que a probabilidade de escolher esta loja é tripla da probabilidade de escolher qualquer uma das outras duas lojas. O António não encontrou o computador portátil que necessitava. Qual é a probabilidade de ter escolhido a loja 2? Apresente o valor pedido na forma de fração irredutível.
Ficha de preparação para o teste de avaliação 1 – Domínio 1 – Página 2
Teste de avaliação 1 Nome da Escola
Ano letivo 20
Nome do Aluno
Turma
- 20
Matemática A | 12.º ano
N.º
Data
Professor
1.
-
- 20
A soma de todos os elementos de uma certa linha do Triângulo de Pascal é igual a 512. Qual é o quarto elemento dessa linha? (A)
56
(B)
70
2. Do desenvolvimento de
3.
(A)
70 x
Seja
E
P A
3
1
x
x
um conjunto finito, 0 3 e P B ,
(A) 0,24
,
126
x
0 , resulta um termo do tipo (D)
uma probabilidade em
0 8 e A e B ,
(D)
(C) 70 x 3
P
P A A B
84
8
(B) 56 x 3
Qual é o valor de
4.
4
(C)
kx
56 x
e
P E
3
. Qual é esse termo?
3
, tais que
A B P E ,
são acontecimentos independentes.
?
(B) 0,5
(C)
0,86
(D)
0,14
Na figura está representado um hexágono regular ABCDEF . Escolheram-se aleatoriamente três vértices do hexágono. Qual é a probabilidade de o triângulo por eles definido ser equilátero? (A) (C)
5.
Seja
1 10 3 20
E
(B)
(D)
3 10 1 4
um conjunto finito,
P A B
P
uma probabilidade em
e
P E
tais que
A, B P E
0.
O valor de P B | B A é: (A)
1 2
(B)
1
(C)
P B
(D)
1
P B A
Teste de avaliação 1 – Domínio 1 – Página 1
Teste de avaliação 1
6.
O António tem um dado viciado com as faces numeradas de 1 a 6. Sabe que ao lançar uma única vez o dado: •
as faces pares são equiprováveis;
•
as faces ímpares são equiprováveis;
•
a probabilidade de sair face com número par é tripla da probabilidade de sair face com número ímpar.
Qual é a probabilidade de num único lançamento obter número primo? Apresente o valor pedido na forma de fração irredutível. 7.
Numa caixa estão seis bolas, indistinguíveis ao tato, numeradas de 1 a 6. 7.1.
De quantas maneiras diferentes se podem colocar, lado a lado, as seis bolas de modo
que as bolas com os números múltiplos de 3 fiquem ao lado uma da outra? 7.2.
Considere a experiência aleatória que consiste em retirar ao acaso e em simultâneo três bolas da caixa e observar os seus números. Sejam A : B
A
e B os acontecimentos seguintes:
“A soma dos núme ros das bolas retiradas é ímpar”
: “A soma dos números das bolas retiradas é inferior a 10 ”
Determine P B | A sem recorrer à fórmula da probabilidade condicionada. A sua resposta deve incluir:
8.
•
o significado de
no contexto da situação descrita;
•
a apresentação dos casos possíveis considerados;
•
a apresentação dos casos favoráveis;
•
o valor da probabilidade pedida.
P B | A
Considere todos os números de cinco algarismos diferentes. 8.1.
Quantos desses números têm como algarismo das dezenas de milhar 7 e são ímpares?
8.2.
Escolhendo um desses números, ao acaso, qual é a probabilidade de ser superior a 75 000? Apresente o valor pedido na forma de fração irredutível.
9.
Resolva a equação
32
C2 x 1
31
Cx 3
31
C x 4
.
Teste de avaliação 1 – Domínio 1 – Página 2
Proposta de resoluções Ficha de revisão 1
Págs. 23 e 24
4.2.
1, 2 , 3 1 , 4
1.1.
A
1.2.
B
1.3.
C
1.4.
D
1.5.
E
2.1.
No lançamento de dois dados equilibrados, o acontecimento
A :
1 , 2 , 3 , 6 3 , 6
A probabilidade pedida é, pela Regra de Laplace, 4.3.
2 , 3 , 5
“Sair o mesmo número em ambos os dados”, pode ser
representado em extensão por: A
5.1.
A probabilidade pedida é, pela Regra de Laplace,
6
1
36
6
.
+
1
2
3
4
5
6
1
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
2 3 4 5 6
3.1.
52
0, 7 5
12 52
3 13
64%
.
3 4
.
2
8
8 π
2
8
π
2
8
π
2 4
4 8
2π
8π
2π
8π π
2
A probabilidade pedida é, pela Regra de Laplace,
.
6.1.
11 16
.
45% dos estudantes desta turma escolheram Inglês e não escolheram Alemão, pois 55% – 10% = 45%. Por outro lado, 30% dos estudantes desta turma escolheram Alemão e não escolheram Inglês, pois 40% – 10% = 30%. Já 15% dos estudantes desta turma não escolheram qualquer uma destas duas disciplinas, porque 100% – 45% – 30% – 10% = 15%. Assim:
7 5% .
O baralho completo é constituído por 26 cartas vermelhas (13 de ouros e 13 de copas). Destas, 6 são figuras (3 de ouros e 3 de copas), logo, o número de casos favoráveis é 26 6 20 . O número de casos possíveis é 52. A probabilidade pedida é, pela Regra de Laplace,
4.1.
.
12
O baralho completo é constituído por 26 cartas pretas (13 de paus e 13 de espadas) e por 13 cartas de copas, pelo que o número de casos favoráveis é 39. O número de casos possíveis é 52. A probabilidade pedida é, pela Regra de Laplace, 39
3.3.
36
5
O baralho completo é constituído por 12 figuras (3 de cada naipe), pelo que o número de casos favoráveis é 12. O número de casos possíveis é 52. A probabilidade pedida é, pela Regra de Laplace,
3.2.
15
25
O número de casos possíveis é 16. O número de casos favoráveis é 11.
a 8”.
A probabilidade pedida é, pela Regra de Laplace,
1 1
2
π
acontecimento “Soma de os números saídos ser não inferior
16
Vamos organizar todos os resultados possíveis, recorrendo a uma tabela de dupla entrada. × 1
Há 36 casos possíveis e destes 15 são favoráveis ao
.
.
A probabilidade pedida é, pela Regra de Laplace, 5.2.
25
O número de casos possíveis é 4. O número de casos favoráveis é 3 e corresponde ao número de bolas numeradas com um número superior a 1: 2 , 8 e π
Vamos construir uma tabela de dupla entrada.
4
O número de casos favoráveis é igual à soma do número de raparigas com o número de rapazes que têm menos de 17 anos, ou seja, 14 2 16 . O número de casos possíveis é 25. A probabilidade pedida é, pela Regra de Laplace,
1 , 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 , 5 , 6 , 6
O número de casos favoráveis é 6. O número de casos possíveis é 36.
2.2.
Há 4 alunos que não são rapazes e têm menos de 17 anos: são as 4 raparigas com menos de 17 anos. Portanto, o número de casos favoráveis é 4. O número de casos possíveis é 25.
20 52
5
13
.
Há 19 alunos dos quais 10 são raparigas e 9 são rapazes, com 17 anos ou mais. Portanto, o número de casos favoráveis é 19. A turma é constituída por 25 alunos, logo, o número de casos possíveis é 25. A probabilidade pedida é, pela Regra de Laplace,
19 25
0,76
onde: • E é o espaço de resultados • A e I são os acontecimentos: • A : “O aluno escolheu Alemão” • I : “O aluno escolheu Inglês”
. Resoluções – Domínio 1 – Página 1
Proposta de resoluções 6.2.
O valor pedido é a soma das percentagens de alunos que escolheram Alemão e não escolheram Inglês e de alunos que escolheram Inglês e não escolheram Alemão, ou seja, 30% + 45% = 75%. Assim, o valor pedido é 75%.
Miniteste 1.1.
Pág. 25
Se o cardinal do conjunto é 6, então o conjunto tem 2 64 subconjuntos. 1.2. O valor pedido pode ser dado pela diferença entre todos os subconjuntos que se podem formar com 6 elementos e a soma de um (conjunto vazio – corresponde a nenhum CD) com seis (há 6 subconjuntos de um elemento – correspondem aos 6 subconjuntos que se podem formar com exatamente um CD). Assim, o número pedido é 2 1 6 57 . 6
1.1.
6
2.1.
2
×
10
×
10
×
Questão-aula 1.1. Item de seleção
(existem sete escolhas diferentes para a 1.ª pessoa se sentar, para cada uma destas escolhas existem seis escolhas diferentes para a 2.ª pessoa se sentar e para cada escolha das duas primeiras pessoas a sentar-se, existem cinco escolhas diferentes para a 3.ª pessoa o fazer). O número pedido é 210. Resposta: (B) 7 6 5 210
Item de construção 1. 2. 3.
10
Pág. 26
7! 6!
7!
8!
n2 ! n!
7 6! 6!
50! 48! 47!
7!
n2
8 7!
5 ou 6
Em qualquer dos casos pode ser escolhido um número de 0 a 9 O número pedido é 2 10 2000 .
n!
2
×
10
×
10
×
5 ou 6
Em qualquer dos casos pode ser escolhido um número de 0 a 9 O número pedido é 2 10 400 .
2
×
9
5 ou 6
8
5.
Diferente dos algarismos dos milhares e das centenas
3.1.
n
2
n
Como 3.2.
n
n 1
n
0
n
n
n
2
n
2 !
2n
6.
7 Diferente dos algarismos dos milhares, das centenas e das dezenas
n
2
n
2
0
n 1 n!
n 1
5
n 1
n
n 2 0 n
0 n 2.
n! 21 n! 0
21 0
n 1
2
n 3n 2 5n 5 21 0 n
n
2
2n 24
2
2
0
2
4 24
2 n 4 n
Como
n
0
6
, temos
n
6.
3n 2
2
n
n!
2
!
n
n
n
n
n 1
99!
99 1
n 1 n ! n 1
n
n
!
100 99!
! ! 1 ! 2 1! 2 1! ! 1! ! 1 ! 1 1! 1! 1 ! n
n
n 1
98!
1
0
! 1! 1!
n
99 98!
99!
n 1
n!
n
1
100!
n
n!
! 2 2 !
n
0!
99
48 117648
n
n
n
n
n
n
n
n
n
n
n
n
n
1 n 1 1 n 1 n 2 n 1 n 1 n 1 n!
Miniteste 1.2.
Pág. 27
O dado tem três números pares (2 , 4 e 6), pelo que, em cada lançamento, há três possibilidades de sair número par. O número pedido é 3 27 . 1.2. O dado tem três números pares (2 , 4 e 6) e três números ímpares (1 , 3 , 5). Vamos recorrer a um esquema para contabilizar todos os casos: Par Par Ímpar ou Par Ímpar Par 3 × 3 × 3 + 3 × 3 × 3 ou Ímpar Par Par 3 × 3 × 3 O número pedido é 3 3 81 . 1.3. Recorrendo a um esquema: 6 6 1, 2, 3, 4 ou 5 ou 6 1,2,3,4 ou 5 6 1 × 1 × 5 + 1 × 5 × 1 6 ou 1,2,3,4 ou 5 6 + 5 ×1 × 1 O número pedido é 5 × 3 = 15. 1.4. Há apenas seis possibilidades: 1, 1, 1 ; 2, 2, 2 ; 3, 3, 3 ; 4, 4, 4 ; 5, 5, 5 e 6, 6, 6 O número pedido é 6. 1.1.
3
5
2
3
n n n 1 n
temos que
n 2 n 1 n
2 !
n 2 ! 5 n 1! 21n! 0
100
98!
n
2
e n 2,
n
n
2 !
n
n
P 99
Diferente do algarismo dos milhares O número pedido é 2 9 8 7 1008 . n!
99!
n
×
8
47!
50 49 48
2
×
57
50 49 48 47! 48 47!
P 100
2.3.
2
4.
2 0 ou 5
8
47!
3
2.2.
1
7
n 1 n!
47! 50 49 48 48
Resoluções – Domínio 1 – Página 2
Proposta de resoluções 2.
Escolhe-se cinco números de um conjunto de 50, o que pode ser feito de 50C 5 maneiras diferentes, em seguida escolhe-se
O desenvolvimento de
3.
coeficientes alternadamente positivos e negativos. Como o primeiro coeficiente é positivo 1 x , podemos concluir
dois números de um conjunto de 12, o que pode ser feito de C maneiras diferentes.
100
12
2
que há 51 termos de coeficiente positivo e 50 termos de coeficiente negativo. O número pedido é, portanto, 51.
De acordo com o princípio geral da multiplicação, existem C C 139 838 160 chaves possíveis. 50
12
5
3.
2
Para que a soma dos números saídos seja 6, ou se retiram três bolas com o número 2, ou se retiram uma bola com o número 1, uma bola com o número 2 e uma bola com o número 3. No primeiro caso, temos de escolher três bolas com o número 2, de entre cinco, pelo que existem C maneiras diferentes 5
3
de o fazer. No segundo caso, temos de escolher uma bola com o número 1, de entre quatro, uma bola com o número 2, de entre cinco, e uma bola com o número 3, de entre três, pelo que existem 4 5 3 maneiras diferentes de o fazer. O número pedido é C 4 5 3 . 5
3
Questão-aula 1.2.
tem 101 termos de
P x
Questão-aula 1.3.
Pág. 30
Item de seleção
Comecemos por observar que uma vez escolhidas as cinco pessoas que vão viajar no automóvel e o condutor da moto, o grupo que vai viajar na moto fica univocamente determinado. Para os condutores, existem A 6 hipóteses de escolher os dois 3
2
jovens que vão conduzir. De seguida, escolhe-se, por exemplo, os restantes quatro ocupantes para o automóvel, para o qual existem 5 hipóteses. C 5
4
Assim, existem
3
5
maneiras diferentes de os
6 5 30
A2 C 4
dois grupos de amigos ficarem constituídos. Resposta: (B)
Pág. 28
Item de seleção
Existem 10 escolhas possíveis para a primeira carta da sequência, Para cada uma destas, existem 9 escolhas possíveis para a última carta da sequência e para cada escolha da primeira carta e da última, existem 11! maneiras diferentes de dispor as restantes cartas do naipe de copas. O número pedido é 10 × 9 × 11!. Resposta: (C)
Item de construção
Vamos organizar os dados numa tabela. Rapazes
Raparigas
20
10
Não praticam desporto Praticam desporto
1 2
120
Total
Item de construção
Por três pontos não colineares passa uma única circunferência e nenhuma circunferência passa por três pontos colineares. N.º de maneiras de escolher 3 pontos de entre os 7: C
1.
7
3
Contudo, é necessário subtrair o número de casos em que os três pontos não definem uma circunferência (correspondem às situações em que os três pontos escolhidos estão sobre a reta r ), ou seja, C
1 4
120
30
60 1
80
Total
3
120
30
90
120
40
Pretende-se formar uma comissão de cinco alunos com exatamente dois rapazes que pratiquem desporto. Existem 60 rapazes que praticam desporto e pretende-se escolher dois, ou seja, existem C maneiras de o fazer e 60
2
para cada uma destas maneiras existem
4
maneiras
60
C 3
3
ou os três pontos escolhidos estão sobre a reta s , ou seja, 3C 3 Assim, a expressão
7
C3
diferentes de escolher os restantes três alunos de entre os outros 60 que não são rapazes que praticam desporto. O número pedido é C C 60 569 400 .
1.
é uma resposta correta a este
4
C 3 1
60
60
2
problema.
2.
Miniteste 1.3. 1.1.
Pág. 29
O número de cordas diferentes corresponde ao número de conjuntos de dois elementos escolhidos de entre 6 (que são os pontos assinalados), ou seja, C 15 . 6
2
1.2.
O número de triângulos diferentes corresponde ao número de conjuntos de três elementos escolhidos de entre 6, ou seja, C 20 . 6
3
2.
n 1
C1
n 1
n
C0
C3 n
C1
n
C6
n 1
C5
n
n
C7
C2
n 1
n
C3
C7
n
C8
n 1
9
C9
2
C C
n
n
n
9
4
29
Pretende-se formar uma comissão de cinco alunos com pelo menos três raparigas que não pratiquem desporto, ou seja, com exatamente três raparigas que não pratiquem desporto ou com exatamente quatro raparigas nestas condições ou, ainda, com exatamente cinco. Existem 10 raparigas que não praticam desporto, portanto existem 110 alunos que não são raparigas que praticam desporto. O número pedido é: 10
C3
C 0 2 i 0
9
9
2
2
9
110
10
C2
C4
110
C1
10
C5 742 752
C 5
Miniteste 1.4. 1.1. Os elementos 99
99
desta linha que são menores que
99
C3
C4
,
99
C95
,
99
C96
,
99
são:
C 5
C97
,
C98 e
99
, ou seja, são os cinco primeiros elementos mais os
C2
,
99
C 99
C1
,
99
,
99
,
Pág. 31 99
C0
9
n
3
cinco últimos elementos. O número pedido é 10. Resoluções – Domínio 1 – Página 3
Proposta de resoluções 1.2.
A linha anterior tem ordem 98, pelo que o terceiro elemento dessa linha é C 4753 .
A linha seguinte é a de ordem 82, onde o maior elemento é o central, que é C .
A linha seguinte tem ordem 100, onde o maior elemento é o central, que é C .
Resposta: (D)
O termo geral do desenvolvimento de A x é:
Item de construção
98
2
1.3.
82
41
100
50
2.
T p 1 C p 12
C p
12
2
12
C p
2
12 p
x p
p
6
p
6
x
3
2
1
12
p
x 1
2
x
12
3
6
2
2
2
p
6
x
2
x
p
C p x n
, caso exista, é aquele em que
x
p 0
p6 p4
2
12
2
C4
4
x
0
2
p
2 x3
n p
2n 2
p
3
C p x 2n
n
2p
C p x 2 n
n
C p
C p
n
n
1 2 x p
p
2
2
p
p
3
2p
2
p
x
x2 n n2 n
p
x
2
3p
2p 3p
5p
O termo independente de
1
3
T p 1 C p x n
p
Substituindo p por 4 em T p : T4 1
O termo geral do desenvolvimento de A x é:
p
0 , com p 12 .
p
Cp
p
1 2 x p
p
O termo independente de 3 6 p 0 2
12 p
p 2 x C p x
7920
2n 5 p
A proposição p é verdadeira, já que o termo independente de x do desenvolvimento de A x é T 7920 . 5
0
é tal que
2n
5p
0
.
2n
p
x
5
Como p 0 p n , n tem de ser múltiplo natural de 5. Portanto, o menor valor de n é 5.
Relativamente ao termo de grau 2: 3
6
2
2 p
p
p
3
6
2
2
3
p
2
8
Como
0
0
3
, com
Miniteste 1.5. 1.1. Sejam os acontecimentos
p 12
8
4
p
3
, o desenvolvimento de
não tem termo
A x
de grau 2, pelo que a proposição q é falsa. O 8.º termo do desenvolvimento de A x é obtido substituindo p por 7 em T p . 1
T7 1
12
2
C7
7
x
6
3 2
9
7
792
A proposição r é falsa. Conclui-se que apenas proposição verdadeira. 3.
cos
4
x
3
4 cos
cos x 1
cos x
x
4
2
6 cos
0
1 x
x
128 x
2
9
101 376x
2
António
escreveu
uma
“O aluno acerta a primeira questão”
A2 :
“O aluno acerta a segunda questão”
# A1 A2 120 ; # A1 132 ; # A2
cos x 1 0
A1 A2 A1 A2 54
A
Como
1
A2
A
e
1
A2
são
acontecimentos
incompatíveis, podemos dizer que: # A1 A2 A1 A2 54
A # A A
# A1
2
1
2
54
# A1 # A1 A2 # A2 # A1 A2 54
# A 2 # A A 54
# A1
2
Como # A
86 e
#
4 cos x 1 0
que:
A1 :
o
Pág. 33 A1 e A2 tais
1
132
1
2
e # A
1
A2
120 , substituindo:
2 120 54 # A 162
2kπ, k
132 # A2
As soluções da equação são x 2kπ, k .
2
O número total de alunos é 248:
# A # A # E 162 86 # E 248
# E
Questão-aula 1.4.
Pág. 32
2
2
Construindo uma tabela:
Item de seleção
Seja
a ordem dessa linha, então
n
linha e, portanto, n
C2
3240
é o terceiro elemento da
C 2 3240 .
n n 1
C 2
A2
3240
n
2
n
6480
2 n
2
n 6480 0
1
n
n
n
1
2
4 6480
2
n
80
Como n
n
n
A2
A1
A1
120 12
42 74
162 86
132
116
248
O número de alunos que não acertaram qualquer questão corresponde a # A1 A2 , ou seja, é 74.
81
é um número natural maior ou igual a 2, tem-se que
81 .
Resoluções – Domínio 1 – Página 4
Proposta de resoluções 1.2.
Pretende-se determinar P A
1
P A1
A2
42
248
. Assim:
Item de seleção
Tem-se que
21
124 21
A probabilidade pedida é 1.3.
A2
124
0, 2
conjuntos de dois elementos escolhidos entre 248. O número de alunos que acertaram exatamente numa questão é:
Como
# A1
A2
12
248
C 2
42
54
C 2
1431
C 2 C 2
2.1.
30 628
5
6
A6 5
4
, corresponde ao
B
e
5
A6
2.2.
6
5
4096 15 625
1.1.
B
P B
P A
1
P A
A
, ou seja,
A
4096
15625
4096 15 625
0,6
A quarta parte dos jovens são portugueses do género
Questão-aula 1.5.
P A B
1
4
e, finalmente,
0,25
uma quinta parte das jovens do género feminino são portugueses, ou seja, P A | B
é:
P A B
1
5
P A|B
0, 2 .
P A
B
1 P B P A B P A | B 1 P B Assim, P A B 0, 2 1 0,6 P A B
.
15 625
, ou seja,
P B
: “O jovem é do género masculino”
P B
Assim, a probabilidade pedida é
“O jovem é português”
P B
.
11529
P B
Sejam os acontecimentos:
15 625
pelo que
Pág. 35
P A | B
11 5 29
0,5 ,
são acontecimentos equiprováveis.
: “O número não tem o algarismo 4”
Portanto,
1 0,5
60% dos jovens são do género masculino, pelo que
“O número tem pelo menos um
O acontecimento contrário de Pela questão 2.1.,
P B 0,5
masculino, portanto, A :
.
A B 0, 2 P B 1 P A B 0, 2 P B
1
B
algarismo 4”. A
P A
0, 25 P B 0,05 P A B 0, 2 P B
A :
6
.
Seja o acontecimento
Miniteste 1.6.
não tem o algarismo 4, dispõe-se de quatro algarismos para colocar em seis lugares, podendo ou não ser repetidos). A probabilidade pedida é, pela Regra de Laplace, 6
P B A
0,05 .
P A P B P A B , então:
1 0,3 0, 2 P B
6
4
P A B
A 0, 25
P
P A B
P B
número da sequência de seis algarismos, repetidos ou não, que se podem formar usando os cinco elementos do conjunto A . O número de casos favoráveis é A 4 (como o número
A6
P A
P A B
.
O número de casos possíveis é
4
0, 2 e
Do enunciado, P A B 0,3 , logo:
.
A probabilidade pedida é, pela Regra de Laplace, 248
0,05
1 P
54
Assim, o número de casos favoráveis é 54
. , pois corresponde aos
Por outro lado, P B | A
O número de casos possíveis é
# A1 A2
P B | A
.
0,08
Construindo uma tabela, temos: Pág. 34
B
Item de seleção
B
Na prateleira debaixo há 5 lugares para os 4 livros de Física, pelo que estes podem ocupar esta prateleira de A maneiras diferentes. 5
A
A
0,25 0,08 0,33
0,35 0,32 0,67
0,6 0,4 1
4
Os livros de Matemática podem ocupar a prateleira do meio ou a prateleira de cima e em cada uma das prateleiras podem permutar entre si de 5! maneiras diferentes. Restam 6 lugares para os restantes 6 livros e estes podem ocupá-los de 6! maneiras diferentes. Assim, o número de casos favoráveis é A 2 5! 6! . 5
4
O número de casos possíveis é 15!, pois corresponde ao número de permutações dos 15 livros. A probabilidade pedida é, pela Regra de Laplace, 5
A4
2 5! 6!
15!
Resposta: (A)
1
63063
A probabilidade de ser português, isto é, 0,33
1.2.
33
100
, é igual a
P A
.
Pretende-se determinar a probabilidade de ser escolhido um jovem do género masculino embora seja estrangeiro, ou seja, P B | A .
P B A
P
B | A
P B | A
P A
.
0, 35 0, 67
35 67
A probabilidade pedida é
35 67
.
Resoluções – Domínio 1 – Página 5
Proposta de resoluções 2.
P A B
P
P B P B
extração, repomos essa bola no saco, juntamente com mais quatro bolas com o número 2. O saco fica, assim, com nove bolas com o número 2, num total de 14 bolas.
P A
A B P A 1 P B P B
1
P A B
P A P A P B P B
A probabilidade pedida é, pela Regra de Laplace,
1 P A P B P A B P A P 1
A P B P B
P A B
1.
A P B P B
Como A e
B
são acontecimentos independentes, então:
P A P B
Assim:
1 P
.
Pág. 37
Sejam os acontecimentos: A1 :
“A caixa escolhida é A ”
B1 :
“A caixa escolhida é B ”
C 1
: “A caixa escolhida é
V
: “A bola extraída é vermelha”
C ”
Construindo um diagrama em árvore:
P B P A P B P A
1 P A
P
14
Miniteste 1.7.
P B P A B P A
P A P
9
A P B P B
P B
P B
B
P B
Questão-aula 1.6.
Pág. 36
Item de seleção
Sejam os acontecimentos: B1 :
“A primeira bola extraída é branca”
V 2 :
“A segunda bola extraída é verde”
Pretende-se determinar P V .
Pretende-se determinar P V2 | B1 . Na segunda extração, o saco tem 19 bolas (primeira bola, que era branca, não foi reposta no saco), das quais 5 são bolas verdes (a primeira não era verde). Assim, P V2 | B1
5
19
P V B P V C P A P V | A P B P V | B P C P V | C
P V
1
Sejam os acontecimentos: D
A1
3
8
1
5
1
3
1
5
1
3
“A 1.ª bola extraída tem um número ímpar»
2.1.
: “A 2.ª bola extraída está numerada com o número 2”
P B A P
Construindo um diagrama em árvore:
B
2
5
A
1
P
1 2
I P D | I P I P D | I
5 9
1 2
1 2
1
1
49
120
49 120
.
P B
P A B
P B
“O aluno tem acesso à Internet”
: “O aluno tem um smartphone”
A probabilidade pedida é P B A . Do enunciado, sabemos que, dos alunos desta turma: • a quarta parte tem um smartphone, ou seja,
P B
19 36
A probabilidade pedida é 2.
Sejam os acontecimentos: B
P D I P D I
1
1 P B P A | B
P
A :
P D
1
B A 1 P A B P B A P A B P B A P B A 2.2.
1
1
A probabilidade pedida é
Item de construção I :
P V
1
.
Resposta: (C) 1.
19 36
.
É pedida a probabilidade de sair bola com o número 2 na segunda extração, sabendo que saiu bola com número par, ou seja, saiu bola com o número 2 na primeira extração. Ao observarmos que saiu bola com o número 2 na primeira
1
4
;
• metade dos que têm smartphone têm acesso à Internet, ou 1 seja, P A | B . 2
P B A
1 P B P A | B
1
1 4
1
2
1
1 8
7
8
Resoluções – Domínio 1 – Página 6
A probabilidade pedida é
7 8
.
Proposta de resoluções Ao todo, podem formar-se Questão-aula 1.7.
Pág. 38
Item de seleção
•
P A | B
P A B
P B
0 0 P B P B são incompatíveis, P
A e B
logo, A B .
•
P C | B
(1)
P C
1 PB
P C B 1 P B
P B
B
P B , porque B
P A C
1 P C P C P A B C • P A B | C P C •
P A | C
C
A probabilidade pedida é, pela Regra de Laplace,
C A C
A B
entre os quatro) para colocar os dois algarismos iguais a 9. Para cada uma destas maneiras, existem A 6 maneiras 6
diferentes de escolher os restantes dois algarismos, repetindoos ou não, de entre os restantes seis elementos de A (diferentes de 9). Assim, podemos formar C A 216 números distintos 4
3
6
2
diferentes de serem colocadas. O número de casos favoráveis é:
3! A3
O número de casos possíveis é:
A3
5
9
66
504
A probabilidade pedida é, pela Regra de Laplace,
2.2.
.
Existem quatro quadrículas com número primo: as que têm os números 2, 3, 5 e 7. Assim, o número de casos favoráveis é A 24 . O número de casos possíveis é
9
A3
para os restantes dois algarismos. Ao todo temos 1 2 A 98 números distintos.
504 .
7
2
A probabilidade pedida é, pela Regra de Laplace, 2.3.
2
nas condições pedidas. 3.2. Um número é múltiplo de 5 se o seu algarismo das unidades é zero ou cinco. Como 0 A e 5 A , existe apenas uma opção de escolha para o algarismo das unidades, o 5. Por outro lado, o número deve ser maior que 7000, pelo que, de entre os elementos de A , apenas o 8 e o 9 podem ser os algarismos a ocupar a casa dos milhares. E para cada uma destas duas escolhas, temos 7 A2 72 escolhas diferentes
4
3
2
2
5
84
.
2
As três fichas podem ficar na fila do meio e têm 3! maneiras de serem colocadas ou podem ser colocadas na última fila (a que tem cinco quadrículas) e, nesse caso, têm A maneiras
504
8
4
3
11
12 144
9
1
Esquematizando: vermelha branca azul 3 × 2 × 1 = 6 e, para cada uma destas maneiras, as três cores podem permutar entre si de 3! 6 maneiras diferentes, pelo que o número pedido é 6 3! 36 . 3.1. Existem C maneiras diferentes de escolher dois lugares (de
As três fichas têm cores diferentes e vão ser distribuídas por nove quadrículas, pelo que o número de maneiras diferentes de o fazer é A 504 .
66
1518
2.
1 P C P C
Item de construção
2.1.
comissões
A
Resposta: (D)
1.
12144
diferentes. Para cada comissão temos nove opções de escolha para o coordenador, por este ter de ser um rapaz, 23 opções de escolha para o subcoordenador e 22 opções de escolha para o porta-voz. Neste caso, o número de comissões diferentes que podem ser formadas é 9 23 22 4554 . 1.2. O António poderá fazer parte da comissão sendo o coordenador, subcoordenador ou porta-voz. Assim, temos 1 23 22 comissões em que o António é o coordenador. Como há igual número de comissões em que o António é subcoordenador e porta-voz, são, no total, 3 23 22 1518 comissões de que o António faz parte, ou seja, o número de casos favoráveis é 1518. O número de casos possíveis é 24 23 22 12144 .
P C
C
.
24 23 22
24 504
1
21
.
Número de casos possíveis: C 10 (número de maneiras de escolher três lugares na 5
3
última fila) Número de casos favoráveis: 9 (só não serve a escolha 5, 7 e 9) A probabilidade pedida é, pela Regra de Laplace,
9 10
.
3.3.
O produto de quatro algarismos é ímpar se e somente se os quatro algarismos são ímpares. O conjunto A tem três números ímpares, 3, 5 e 9, estes podem ou não ser repetidos, pelo que existem A 3 81 números nas condições 3
4
4
pedidas. 4.1. O produto de três algarismos só não é par quando os três algarismos são ímpares. Como existem três cartões com números ímpares (1, 3 e 5), podem ser formados 3 2 1 6 números com três algarismos ímpares. Por outro lado, podem ser formados ao todo A números 6
3
Ficha de preparação para o teste de avaliação 1 1.1.
Págs. 39 e 40
Para cada comissão temos 24 opções de escolha para o coordenador, 23 opções de escolha para o subcoordenador e 22 opções de escolha para o porta-voz.
distintos. A probabilidade pedida é 1
6 6
A3
19
20
.
Resoluções – Domínio 1 – Página 7
Proposta de resoluções 4.2.
O número de casos possíveis corresponde ao número de conjuntos diferentes que é possível formar com dois elementos escolhidos de entre seis, ou seja, C 15 .
na situação anterior, isto é, quando o produto dos números saídos é igual a 6. Portanto, o número de casos favoráveis é 3! + 3 + 3 + 1 = 3! + 7.
Destes 15 casos vamos ver quais são os favoráveis, isto é, quais são aqueles em que o produto dos números dos cartões retirados é superior à soma dos números dos cartões não retirados.
A probabilidade pedida é, pela Regra de Laplace,
6
2
Cartões retirados
1e2 1e3 1e4 1e5 1e6 2e3 2e4 2e5 2e6 3e4 3e5 3e6 4e5 4e6 5e6
Produto
2 3 4 5 6 6 8 10 12 12 15 18 20 24 30
Cartões não retirados
6.1.
com
3,4,5,6 2,4,5,6 2,3,5,6 2,3,4,6 2,3,4,5 1,4,5,6 1,3,5,6 1,3,4,6 1,3,4,5 1,2,5,6 1,2,4,6 1,2,4,5 1,2,3,6 1,2,3,5 1,2,3,4
T7
18 17 16 15 14 16 15 14 13 14 13 12 12 11 10
5.
5
13, a
x
e
C pa n pb p
b
4
.
T10 T6 1 T9 1
1716 x
6.2.
7
9
4096 715 x 262 144 4
7 028 736 x
7
187 432 960 x
4
13
O desenvolvimento de x 4
tem 14 termos de
coeficientes alternadamente positivos e negativos, pelo que há sete termos de coeficiente positivo e sete termos de coeficiente negativo. Por outro lado, o produto das duas parcelas deste desenvolvimento é negativo se um dos termos tiver coeficiente positivo e o outro tiver coeficiente negativo. Portanto, o número de casos favoráveis é 7 7 49 . O número de casos possíveis corresponde ao número de conjuntos de dois elementos escolhidos de entre 14, ou seja, C 91 . 14
2
A probabilidade pedida é, pela Regra de Laplace, 1 3
.
7.
1
Existem três hipóteses em alternativa que se excluem mutuamente: ou os números saídos são 4, 1 e 1, ou são 2, 2 e 2, ou são 1, 2 e 3. Na primeira hipótese temos três possibilidades (a face 4 pode sair ou no primeiro lançamento ou no segundo ou no terceiro). Na segunda hipótese temos somente uma possibilidade (a face 2 sai no primeiro lançamento, no segundo e no terceiro). Relativamente à terceira hipótese, esta já foi considerada
91
13
.
P B
P B
P B P A B P B P B
P A
1 P A P B P A P A B P B P B
P A B P B P B 1 P B P A | B P B P B P B 1 P B P B P B P B P B P B P B P B P B P B P B 1 P B P B P B P B P B P B P B
“O produto dos números saídos ser igual a 6”
“A soma dos números saídos ser igual a 6”
7
1 P A P B P A B P B P B
3
Existem duas hipóteses em alternativa que se excluem mutuamente: ou os números saídos são 1, 2 e 3 ou são 1 e 6. Na primeira hipótese, temos 3! possibilidades, que é o número de permutações de três elementos. Na segunda hipótese, temos três possibilidades (a face 6 pode sair ou no primeiro lançamento, ou no segundo ou no terceiro).
P A B
49
1 P A B P B P B
favoráveis ao acontecimento A e o número de casos possíveis. O número de casos possíveis é 6 , pois, como em cada lançamento existem seis hipóteses, no conjunto dos três lançamentos existem 6 6 6 possibilidades. Relativamente aos casos favoráveis, temos duas situações:
•
n
6
De acordo com a Regra de Laplace, dado um espaço de resultados E , finito, se os acontecimentos elementares forem equiprováveis, a probabilidade de um acontecimento A P E é igual ao quociente entre o número de casos
•
n
1
13C6 x136 4 13C9 x139 4
15
.
3
Logo:
Pela análise da tabela existem cinco casos favoráveis. A probabilidade pedida é, pela Regra de Laplace,
6
O termo geral do desenvolvimento é: T p
Soma
3! 7
8.
1 P B
Sejam os acontecimentos: A : B
“O António escolheu a loja 1”
: “O António escolheu a loja 2” “O António escolheu a loja 3”
C : D
: “O António encontrou o computador portátil que
necessitava” P A P B P C
1
,
3P A e
P B
P B 3P C
P B P C 1
P A
5
3
1 P B
P B
P B 3
P
B
P B
1
3
3 5
Resoluções – Domínio 1 – Página 8
Proposta de resoluções
Assim,
1
1
5
5
1
e P C .
P A
0,8 ; P D | B 0,75 e P D | C 0,9
1 P A P B P A B
P B P A B P A P B P A P B , pois 1 1
Por outro lado: P D | A
P A B P A
e
A
B
são
independentes, logo P A B P A P B .
Construindo um diagrama em árvore:
4.
1 0, 3 0,8 0, 3 0,8
0,14
Resposta: (D) O número de casos possíveis é
6
C 3
20 (escolhe-se
três dos
seis vértices do hexágono). O número de casos favoráveis é 2 (são os triângulos ACE e BDF ). A probabilidade pedida é, pela Regra de Laplace,
2
1
20
10
.
Resposta: (A) 5.
Pretende-se determinar P B | D .
P B D
P
B | D
P B | D
6.
3
P
1
5 5
0, 2
5 3
Resposta: (B) As faces pares
0,25 0, 25
P
1
5
0,1
5
.
7
n
P
9
9
Resposta: (C) O termo geral do desenvolvimento pelo Binómio de Newton é:
8 8
C p
p
1
x
8 p
1 x C p x 1
8
4
p
4
1
4
x
P
1 P 2 P 3 P 4 P 5 P 6 1 3 P 1 3 P 2 1 P 2 3 P 2 1
1 4
e, consequentemente, P 1
8
C4
12
.
Assim: P (“sair
2 , 3 , 5
P
número primo”)
P 2 P 3 P 5
8 5p
x
p
8
Cp
1
p
x
4
Como
p
P
3
P
5
4
1
x
3
70x
P
2 P 3 P 5
A probabilidade pedida é
3
P A A B P A A A B
P A B P A B P A B
1
P
1 12
e
2
P
1
4
,
temos:
4
Resposta: (A) 3.
1
3 8 5 p 12
T5
5 .
P
Assim, o termo de grau – 3 é: T4 1
2
p
p
P
Como se pretende o termo de grau – 3: 8 5 p
3
4 P 6 3 P 1 P 3 P 5 3 P 2 3 3P 1 P 2 3P 1
3
p
2
8 p
P
Por outro lado:
Págs. 41 e 42
os elementos da linha de ordem n do Triângulo de Pascal é 2 . Como 2 512 , trata-se da linha de ordem 9 e o seu quarto elemento é C 84 .
4
(“Sair face com número par”) = = 3 P (“Sair face com número ímpar”)
P
Teste de avaliação 1 1. A soma de todos
x
P 4
equiprováveis, logo P 1
B | D 7
T p 1 8C p
são equiprováveis, portanto, P 6 e as faces ímpares são, também,
Por outro lado:
5
A probabilidade pedida é
2.
A P B A 1 P B A P B A
P 2
P D | B P A P D | A P B P D | B P C P D | C
P B B A P B A
P BB
P D
B | D
P B
P
P B | B A
7.1.
5 12
1 4
1 12
1 12
5
12
.
As bolas com números múltiplos de 3 são a bola com o número 3 e a bola com o número 6. Estas duas bolas podem ficar ao lado uma da outra de cinco maneiras diferentes: ou ocupando as duas primeiras posições, ou a segunda e a Resoluções – Domínio 1 – Página 9
terceira, ou a terceira e a quarta, ou a quarta e a quinta, ou as duas últimas posições.