Metallic Materials Properties Development and Standardization (MMPDS)
April 2011 Scientific Source: Metallic Materials design data acceptable to Government procuring or certification agencies.
A joint effort of government, industrial, educational, and international aerospace organizations.
MMPDS-06 Copyright 2011 Federal Aviation Administration and licensed exclusively to Battelle Memorial Institute for distribution. All rights reserved. Unauthorized duplication or distribution may violate the Copyright Laws of the United States and of other jurisdictions.
Except as expressly provided below, the copyrighted work contained herein may not be copied, modified, adapted, translated, included in derivative works or transferred to a third party. The user represents and warrants that the information will not be exported, transferred, sublicensed, copied, shared, disclosed, or used in any way except in compliance with all applicable export control laws and regulations of the United States. The owner of this copy of the Handbook is hereby granted a limited license to make copies of no more than 10 individual pages of the Handbook (but specifically not including multiple sections or volumes) from this copy at a time for the sole purpose of attaching as reference and supporting information to a document authored by the owner. The user of this Handbook assumes the responsibility for the selection of material properties from it to meet their requirements. The information contained herein is provided as-is without warranty. There are no warranties of any kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.
MMPDS-06 1 April 2011
FOREWORD The Metallic Materials Properties Development and Standardization (MMPDS) Handbook, is an accepted source for metallic material and fastener system allowables for the Federal Aviation Administration (FAA), all Departments and Agencies of the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA). Per guidance provided by FAA Advisory Circular (AC) 25.613-1 and FAA policy memorandum PS-AIR100-2006-MMPDS, the A and B values contained in the MMPDS have been determined to satisfy the regulatory requirements defined in Title 14 of the Code of Federal Regulations (CFR) 27.613(d), 29.613(d), 25.613(b) and 23.613(b). MMPDS-06 is the replacement to MMPDS-05 and prior editions as well as the replacement for all editions of MIL-HDBK-5, Metallic Materials and Elements for Aerospace Vehicle Structures Handbook that was maintained by the U.S. Air Force. The last edition, MIL-HDBK-5J, was classified as noncurrent in the Spring of 2004. This document contains design information on the strength properties of metallic materials and elements for aircraft and aerospace vehicle structures. All information and data contained in this Handbook has been reviewed and approved in a standardized development process. The development and ongoing maintenance process involves certifying agencies, including the FAA, DoD, and NASA, and major material suppliers and material users worldwide. The data and procedures in this Handbook are continuously reviewed, and if needed, are modified or removed for consistency. With advances in materials and fastener systems, and with the review process of existing information, annual updates of the MMPDS are expected. As such, it is recommended that the latest version of the MMPDS be used. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may be of use in improving this document should be addressed to Secretariat, MMPDS Coordination Activity (614424-6496 voice or
[email protected] email), Battelle, MMPDS, 505 King Avenue, Columbus, OH 43201. You may also contact the Secretariat through the handbook website, www.mmpds.org This Handbook has been approved for public release with unlimited distribution.
Preparing activity: FAA - William J. Hughes Technical Center
i
MMPDS-06 1 April 2011
EXPLANATION OF NUMERICAL CODE For chapters containing materials properties, a deci-numeric system is used to identify sections of text, tables, and illustrations. This system is explained in the examples shown below. Variations of this deci-numerical system are also used in Chapters 1, 8, and 9. 2.4.2.1.1
Example A
General material category (in this case, steel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A logical breakdown of the base material by family characteristics (in this case, intermediate alloy steels); or for element properties . . . . . . . . . . . . . . . . . . . . . . . . . Particular alloy to which all data are pertinent. If zero, section contains comments on the family characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . If zero, section contains comments specific to the alloy; if it is an integer, the number identifies a specific temper or condition (heat treatment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Type of graphical data presented on a given figure (see following description) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example B
3.2.3.1.X
Aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000 Series Wrought Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2024 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T3, T351, T3510, T3511, T4, and T42 Tempers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specific Property as Follows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tensile properties (ultimate and yield strength) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
Compressive yield and shear ultimate strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Bearing properties (ultimate and yield strength) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
Modulus of elasticity, shear modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
Elongation, total strain at failure, and reduction of area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
Stress-strain curves, tangent-modulus curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
Fatigue-Crack Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
ii
MMPDS-06 1 April 2011
REGISTERED TRADEMARKS Trademark
Registered by
Chemistry
UNS Number
15-5PH®
AK STEEL CORP.
15Cr - 4.6Ni - 0.22Cb - 2.8Cu
J92110
15Cr - 4.5Ni - 0.30Cb - 3.5Cu
S15500
16Cr - 4.1Ni - 0.28Cb - 3.2Cu
J92200
16.5Cr - 4.0Ni - 4.0Cu - 0.30Cb
S17400
17-4-PH®
1
ARMCO INC. CORP.
17-7PH®
ARMCO INC. CORP
17Cr-7.1Ni-1.1Al
J17700
ACRES® sleeves
CLICK BOND, INC.
NA
NA
AerMet® 100
CRS HOLDINGS INC.
3.1Cr-11.5Ni-13.5Co-1.2Mo (0.21 0.25C)
K92580
AM-350™
ALLEGHENY LUDLUM CORP.
16.5Cr - 4.5Ni - 2.9Mo - 0.10N
S35000
AM-355™
ALLEGHENY LUDLUM CORP.
15.5Cr - 4.5Ni - 2.0Mo - 0.10N
S35500
Cherry®
TEXTRON FASTENING SYSTEMS, INC.
NA
NA
Cherrybucks®
TEXTRON FASTENING SYSTEMS, INC.
NA
NA
Custom450®
CRS HOLDINGS INC.
15Cr - 6.5Ni - 0.75Mo - 0.30 (Cb + Ta) - 1.5Cu
S45000
Custom455®
CRS HOLDINGS INC.
12Cr-8.5Ni-2.0Cu-1.1Ti
S45500
Custom465®
CRS HOLDINGS INC.
6A1- 6V - 2SN
none
10Cr-5.5Ni-14Co-2Mo-1W (0.190.23C)
S10500
Ferrium® S53® Ques Tek Innovations LLC
1
Hastelloy® X
HAYNES INTERNATIONAL, INC.
47.5Ni-22Cr-1.5Co-9.0Mo
N06002
Elektron® 21
MAGNESIUM ELEKTRON
EV31A
Similar to M12310
HAYNES®
HAYNES INTERNATIONAL, INC.
NA
NA
230®
HAYNES INTERNATIONAL, INC.
59Ni-22Cr-2Mo-14W-0.35Al
N06230
Hi-Lok®
HI-SHEAR CORP.
NA
NA
Hi-Shear®
HI-SHEAR CORP.
NA
NA
HR-120®
HAYNES INTERNATIONAL, INC.
35Fe - 24Cr - 37Ni - 0.65Cb - 0.2N
N08120
HSL180TM
HITACHI METALS AND SUMITOMO PRECISION PRODUCTS
12.5Cr-1.0Ni-15.5Co-2.0Mo
NA
INCONEL®
HUNTINGTON ALLOYS CORP.
NA
NA
Shown in the customary form of 17-4PH in the Handbook.
iii
MMPDS-06 1 April 2011 Trademark
Registered by
Chemistry
UNS Number
MP159®
SPS TECHNOLOGY
19Cr - 36Co - 25Ni - 7.0Mo - 0.50Cb 2.9Ti - 0.20Al - 9.0Fe
R30159
MP35N®
SPS TECHNOLOGY
20Cr - 35Ni - 35Co - 10Mo
R30035
PH13-8® Mo
ARMCO INC. CORP.
13Cr-8.0Ni-2.2Ni-1.1Al
S13800
PH15-7® Mo
ARMCO INC. CORP.
15Cr - 7.1Ni - 2.5Mo - 1.1A1
S15700
RENE3 ® 41
TELEDYNE INDUSTRIES INC.
54Ni - 19Cr - 11Co - 9.8Mo - 3.2Ti 1.5Al - 0.006B
N0704
ToughMet® 3
Brush Wellman Inc.
77Cu-15Ni-8Sn
C72900
iv
MMPDS-06 1 April 2011
CONTENTS Section
Page
Chapter 1 1.0 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Purpose and Use of Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 Scope of Handbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Symbols and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 International Systems of Units (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Commonly Used Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Simple Unit Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3 Combined Stresses (see Section 1.5.3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.4 Deflections (Axial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.5 Deflections (Bending) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.6 Deflections (Torsion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.7 Biaxial Elastic Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.8 Basic Column Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.9 Inelastic Stress-Strain Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.3 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.4 Tensile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.5 Compressive Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.6 Shear Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.7 Bearing Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.8 Temperature Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.9 Fatigue Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.10 Metallurgical Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.11 Biaxial Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.12 Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.13 Fatigue Crack Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Types of Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2 Material Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.3 Instability Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.2 Primary Instability Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.3 Local Instability Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.4 Correction of Column Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 Thin-Walled and Stiffened Thin-Walled Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 Allowables-Based Flow Stress for Nonlinear Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . 1.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8.3 Reporting Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
1-1 1-1 1-1 1-1 1-3 1-3 1-3 1-5 1-5 1-5 1-5 1-5 1-5 1-6 1-6 1-6 1-7 1-9 1-9 1-10 1-10 1-11 1-17 1-17 1-18 1-19 1-21 1-24 1-24 1-26 1-35 1-39 1-39 1-39 1-40 1-41 1-41 1-41 1-41 1-42 1-51 1-53 1-53 1-53 1-55
MMPDS-06 1 April 2011
CONTENTS Section
Page
1.9
Estimation of Average Tensile Properties from A- and B-Basis Design Allowables . . . . . . 1.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9.2 General Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
1-57 1-57 1-57 1-61
Chapter 2 2.0 Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Alloy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Environmental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Obsolete Alloys, Heat Treatments, and Product Forms . . . . . . . . . . . . . . . . . . . . . . . 2.2 Carbon Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.0 Comments on Carbon Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 AISI 1025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Low-Alloy Steels (AISI Grades and Proprietary Grades) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.0 Comments on Low-Alloy Steels (AISI and Proprietary Grades) . . . . . . . . . . . . . . . . 2.3.1 Specific Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Intermediate Alloy Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.0 Comments on Intermediate Alloy Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 5Cr-Mo-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 9Ni-4Co-0.20C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 9Ni-4Co-0.30C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 High-Alloy Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.0 Comments on High-Alloy Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1 18 Ni Maraging Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 AF1410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 AerMet 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.4 Ferrium S53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Precipitation- and Transformation-Hardening Steels (Stainless) . . . . . . . . . . . . . . . . . . . . . . 2.6.0 Comments on Precipitation- and Transformation-Hardening Steels (Stainless) . . . . 2.6.1 AM-350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.2 AM-355 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.3 Custom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.4 Custom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.5 Custom 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.6 PH13-8Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.7 15-5PH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.8 PH15-7Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.9 17-4PH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.10 17-7PH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.11 HSL 180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6.12 MLX17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7 Austenitic Stainless Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.0 Comments on Austenitic Stainless Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 AISI 301 and Related 300 Series Stainless Steels . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-1 2-1 2-1 2-2 2-7 2-7 2-11 2-11 2-12 2-15 2-15 2-19 2-71 2-71 2-71 2-79 2-84 2-95 2-95 2-97 2-107 2-110 2-117 2-129 2-129 2-129 2-136 2-142 2-154 2-166 2-172 2-191 2-206 2-218 2-236 2-243 2-250 2-261 2-261 2-263
II
MMPDS-06 1 April 2011
CONTENTS Section
Page
2.8
Element Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.1 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.2 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.3 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
2-283 2-283 2-283 2-286 2-293
Chapter 3 3.0 Aluminum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Aluminum Alloy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Manufacturing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 Obsolete Alloys, Tempers, and Product Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 2000 Series Wrought Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 2013 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 2014 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.3 2017 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.4 2024 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.5 2025 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.6 2026 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.7 2027 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.8 2050 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.9 2056 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.10 2090 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.11 2098 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.12 2099 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.13 2124 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.14 2196 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.15 2198 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.16 2219 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.17 2297 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.18 2397 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.19 2424 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.20 2519 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.21 2524 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.22 2618 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 3000 Series Wrought Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 4000 Series Wrought Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 5000 Series Wrought Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.1 5052 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.2 5083 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.3 5086 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.4 5454 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5.5 5456 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 6000 Series Wrought Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.1 6013 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.2 6061 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.3 6151 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6.4 6156 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-1 3-1 3-1 3-2 3-26 3-31 3-35 3-35 3-50 3-89 3-92 3-176 3-178 3-180 3-189 3-195 3-201 3-204 3-213 3-221 3-239 3-243 3-255 3-283 3-292 3-295 3-298 3-301 3-305 3-315 3-315 3-315 3-315 3-329 3-335 3-345 3-350 3-357 3-357 3-361 3-389 3-392
III
MMPDS-06 1 April 2011
CONTENTS Section
Page
3.7
7000 Series Wrought Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.1 7010 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.2 7040 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.3 7049/7149 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.4 7050 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.5 7055 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.6 7056 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.7 7068 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.8 7075 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.9 7085 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.10 7136 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.11 7140 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.12 7150 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.13 7175 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.14 7249 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.15 7349 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.16 7449 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7.17 7475 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 200.0 Series Cast Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8.1 A201.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 300.0 Series Cast Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.1 354.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.2 355.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.3 C355.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.4 356.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.5 A356.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.6 A357.0/F357.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.7 D357.0/E357.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9.8 359.0 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10 Element Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10.1 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10.2 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10.3 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
3-397 3-397 3-405 3-408 3-425 3-475 3-494 3-499 3-506 3-580 3-603 3-607 3-620 3-633 3-648 3-656 3-660 3-676 3-705 3-705 3-715 3-715 3-717 3-720 3-722 3-725 3-729 3-733 3-737 3-739 3-739 3-740 3-742 3-747
Chapter 4 4.0 Magnesium Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Alloy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.2 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.3 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.4 Environmental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.5 Alloy and Temper Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.6 Joining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.7 Obsolete Alloys, Tempers, and Product Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Magnesium-Wrought Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 AZ31B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.2 AZ61A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.3 ZK60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1 4-1 4-1 4-1 4-2 4-2 4-2 4-5 4-5 4-9 4-9 4-21 4-23
IV
MMPDS-06 1 April 2011
CONTENTS Section
Page
4.3
Magnesium Cast Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 AM100A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 AZ91C/AZ91E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.3 AZ92A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 EV31A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.5 EZ33A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.6 QE22A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.7 ZE41A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Element Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.3 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
4-31 4-31 4-33 4-37 4-43 4-49 4-54 4-58 4-63 4-63 4-63 4-66 4-67
Chapter 5 5.0 Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Titanium Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.3 Manufacturing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.4 Environmental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.5 Obsolete Alloys, Tempers, and Product Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Unalloyed Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Commercially Pure Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Alpha and Near-Alpha Titanium Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Ti-5Al-2.5Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Ti-8Al-1Mo-1V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3 Ti-6Al-2Sn-4Zr-2Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Alpha-Beta Titanium Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Ti-6Al-4V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Ti-6Al-6V-2Sn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.3 Ti-4.5Al-3V-2Fe-2Mo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.4 Ti-4Al-2.5V-1.5Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Beta, Near-Beta, and Metastable-Beta Titanium Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 Ti-13V-11Cr-3Al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 Ti-15V-3Cr-3Sn-3Al (Ti-15-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.3 Ti-10V-2Fe-3Al (Ti-10-2-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6 Element Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.1 Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5-1 5-1 5-1 5-1 5-5 5-5 5-6 5-7 5-7 5-17 5-17 5-32 5-48 5-57 5-57 5-122 5-140 5-149 5-169 5-169 5-186 5-190 5-195 5-195 5-197
Chapter 6 6.0 Heat-Resistant Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 General ............................................................ 6.1.1 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.2 Obsolete Heat Resistant Alloys, Tempers, and Product Forms . . . . . . . . . . . . . . . . .
6-1 6-1 6-3 6-3
V
MMPDS-06 1 April 2011
CONTENTS Section
Page
6.2
Iron-Chromium-Nickel-Base Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.0 General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 A-286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.2 N-155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Nickel-Base Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.0 General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Hastelloy X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Inconel 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 Inconel 625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Inconel 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 718 alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.6 Inconel X-750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.7 Rene 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.8 Waspaloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.9 230 alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.10 HR-120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 Cobalt-Base Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.0 General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1 L-605 (25 alloy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 188 alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
6-5 6-5 6-5 6-16 6-21 6-21 6-23 6-29 6-36 6-47 6-53 6-92 6-98 6-120 6-126 6-139 6-145 6-145 6-146 6-169 6-185
Chapter 7 7.0 Miscellaneous Alloys and Hybrid Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1.1 Obsolete Alloys, Tempers, and Product Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.0 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 Standard Grade Beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Copper and Copper Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.0 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.1 Maganese Bronzes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.2 Copper Beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3.3 Copper-Nickel-Tin (Spinodal Alloy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 Multiphase Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.0 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.1 MP35N Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4.2 MP159 Alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Aluminum Alloy Sheet Laminates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.0 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.1 2024-T3 Aramid Fiber Reinforced Sheet Laminate . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5.2 7475-T761 Aramid Fiber Reinforced Sheet Laminate . . . . . . . . . . . . . . . . . . . . . . . . 7.6 Aluminum-Beryllium Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.0 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6.1 AL-62Be . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
7-1 7-1 7-1 7-3 7-3 7-3 7-9 7-9 7-10 7-13 7-22 7-31 7-31 7-31 7-37 7-43 7-43 7-43 7-52 7-61 7-61 7-61 7-73
VI
MMPDS-06 1 April 2011
CONTENTS Section
Page
Chapter 8 8.0 Structural Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 Introduction and Fastener Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.2 Solid Rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.3 Blind Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.4 Swaged Collar/Upset-Pin Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.5 Threaded Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.6 Special Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Metallurgical Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.2 Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2.3 Brazing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Bearings, Pulleys, and Wire Rope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
8-1 8-3 8-3 8-14 8-40 8-113 8-128 8-150 8-153 8-153 8-153 8-175 8-177 8-179
Chapter 9 9.0 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.2 Cross Index Table for Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.3 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.4 Approval Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.5 Documentation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.7 Data Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1.8 Rounding Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 Material, Specification, Testing, and Data Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.1 Material Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Specification Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.3 Required Test Methods/Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.4 Data Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Submission of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.1 Recommended Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.2 Computer Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3.3 General Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Substantiation of Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4.1 S-Basis Minimum Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4.2 Validating Design Properties for Existing Material . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4.3 Confirmation of Design Properties for Legacy Alloys . . . . . . . . . . . . . . . . . . . . . . . . 9.5 Analysis Procedures for Statistically Computed Minimum Static Properties . . . . . . . . . . . . 9.5.1 Specifying the Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.2 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.3 Combinability of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.4 Determining the Form of Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.5 Direct Computation Without Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.5.6 Direct Computation by Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9-1 9-7 9-7 9-7 9-7 9-7 9-7 9-10 9-12 9-14 9-15 9-15 9-15 9-15 9-29 9-52 9-63 9-63 9-63 9-63 9-73 9-73 9-74 9-75 9-81 9-81 9-93 9-106 9-111 9-126 9-134
VII
MMPDS-06 1 April 2011
CONTENTS Section
Page
9.5.7 Indirect Computation without Regression (Reduced Ratios/Derived Properties) . . . 9.5.8 Indirect Computation using Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6 Analysis Procedures for Dynamic and Time Dependent Properties . . . . . . . . . . . . . . . . . . . 9.6.1 Load and Strain Control Fatigue Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.2 Fatigue Crack Growth Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.3 Fracture Toughness Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.6.4 Creep and Creep-Rupture Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7 Analysis Procedures for Structural Joint Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.1 Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.7.2 Fusion-Welded Joint Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8 Examples of Data Analysis and Data Presentation for Static Properties . . . . . . . . . . . . . . . . 9.8.1 Direct Analyses of Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8.2 Indirect Analyses of Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8.3 Tabular Data Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.8.4 Room Temperature Graphical Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . 9.8.5 Elevated Temperature Graphical Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . 9.9 Examples of Data for Dynamic and Time Dependent Properties . . . . . . . . . . . . . . . . . . . . . 9.9.1 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9.2 Fatigue Crack Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9.3 Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9.4 Creep and Creep Rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9.5 Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9.6 Fusion-Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10 Statistical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.1 One-Sided Tolerance Limit Factors, K, for the Normal Distribution, 0.95 Confidence, and n-1 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.2 0.950 Fractiles of the F Distribution Associated with n1 and n2 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.3 0.950 Fractiles of the F Distribution Associated with n1 and n2 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.4 0.95 and 0.975 Fractiles of the t Distribution Associated with df Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.5 Area Under the Normal Curve from -4 to the Mean +Zp Standard Deviations . . . . . 9.10.6 One-Sided Tolerance-Limit Factors for the Three-Parameter Weibull Acceptability Test with 95 Percent Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.7 One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution With 95 Percent Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10.8 γ-values for Computing Threshold of Three-Parameter Weibull Distribution . . . . . . 9.10.9 Ranks, r, of Observations, n, for an Unknown Distribution Having the Probability and Confidence of T99 and T90 Values . . . . . . . . . . . . . . . . . . . . . . . . 9.10.10 Fractiles of F Distribution Associated with n1(numerator) and n2 (denominator) Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References ...................................................................
9-136 9-139 9-141 9-141 9-161 9-164 9-172 9-179 9-179 9-199 9-203 9-203 9-216 9-220 9-226 9-247 9-267 9-267 9-285 9-291 9-292 9-299 9-332 9-335 9-336 9-338 9-339 9-340 9-341 9-342 9-343 9-349 9-352 9-354 9-357
Appendices A.0 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 A.1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 A.2 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 VIII
MMPDS-06 1 April 2011
CONTENTS Section
B.0 C.0 D.0 E.0
Page
A.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 Conversion of U.S. Units of Measure Used in MMPDS to SI Units . . . . . . . . . . . . . Alloy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specification Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.1 Cross Reference of Canceled MIL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IX
A-6 A-17 B-1 C-1 C-11 D-1 E-1
MMPDS-06 1 April 2011
CONTENTS Section
Page
This page is intentionally blank.
X
MMPDS-06 1 April 2011
CHAPTER 1 GENERAL 1.1 PURPOSE AND USE OF DOCUMENT 1.1.1 INTRODUCTION — Since many aerospace companies manufacture both commercial and military products, the standardization of metallic materials design data which are acceptable to Government procuring or certification agencies is very beneficial to those manufacturers as well as governmental agencies. Although the design requirements for military and commercial products may differ greatly, the required design values for the strength of materials and elements and other needed material characteristics are often identical. Therefore, this publication provides standardized design values and related design information for metallic materials and structural elements used in aerospace structures. The data contained herein, or from approved minutes of the Metallic Materials Properties Development and Standardization (MMPDS) handbook coordination meetings, are acceptable to the Federal Aviation Administration (FAA), the Department of Defense (DoD), and the National Aeronautics and Space Administration (NASA). The minutes are copyright protected and are considered approved 30 days after release of meeting minutes, if no objections or corrections have been received by Battelle, or 30 days after a technical change. Approval by the procuring or certificating agency must be obtained for the use of design values for products not contained herein. MMPDS-06 was prepared by Battelle under contract with the FAA William J. Hughes Technical Center. It is covered under U.S. Copyright and is the only current form of the MMPDS Handbook. It renders MMPDS-03, and prior published versions of MMPDS and MIL-HDBK-5 obsolete. If computerized third-party MMPDS databases are used, caution should be exercised to ensure that the information in these databases is identical to that contained in the Handbook. Approved printed and electronic copies of MMPDS-06 are available for purchase through Battelle and its approved licensees. Official copies of MMPDS-06 may also be obtained through participation in the MMPDS Industrial Steering Group (ISG) or Government Steering Group (GSG), whichever is appropriate. The ISG is open to membership by all commercial and education organizations, while the GSG is open to membership by all U.S. and foreign government entities. See www.mmpds.org for further information.
1.1.2 SCOPE OF HANDBOOK — This Handbook is primarily intended to provide a source of design mechanical and physical properties and joint allowables. Material property and joint data obtained from tests by material and fastener producers, government agencies, and members of the airframe industry are submitted to MMPDS for review and analysis. Results of these analyses are submitted to the membership during semiannual coordination meetings for approval and, when approved, published in this Handbook. This Handbook also contains some useful basic formulas for structural element analysis. These formulas are provided in chapter 1 to illustrate how the material data contained in the Handbook may be used. However, structural design and analysis are beyond the scope of this Handbook. While an attempt is made to assure the accuracy of the formulas and analytical methods contained in chapter 1, there is no attempt in this Handbook to provide currently accepted design or analytical methods. References for data and various test methods are listed at the end of each chapter. The reference number corresponds to the applicable paragraph of the chapter cited. Such references are intended to provide sources of additional information, but should not necessarily be considered as containing data suitable for design purposes.
1-1
MMPDS-06 1 April 2011 Applicable testing standards are identified by number only in the text. Full titles for these standards are listed in Appendix D. The content of this Handbook is arranged as follows: Chapter(s) 1 2-7 8 9
Subjects Nomenclature, Systems of Units, Formulas, Material Property Definitions, Failure Analysis, Column Analysis, Thin-Walled Sections Material Properties Joint Allowables Data Requirements, Statistical Analysis Procedures
1-2
MMPDS-06 1 April 2011
1.2 NOMENCLATURE 1.2.1 SYMBOLS AND DEFINITIONS — The various symbols used throughout the Handbook to describe properties of materials, grain directions, test conditions, dimensions, and statistical analysis terminology are included in Appendix A. 1.2.2 INTERNATIONAL SYSTEM OF UNITS — Design properties and joint allowables contained in this Handbook are given in customary units of U.S. measure to ensure compatibility with government and industry material specifications and current aerospace design practice. Appendix A.4 may be used to assist in the conversion of these units to Standard International (SI) units when desired.
1-3
MMPDS-06 1 April 2011
This page is intentionally blank.
1-4
MMPDS-06 1 April 2011
1.3 COMMONLY USED FORMULAS 1.3.1 GENERAL — Formulas provided in the following sections are listed for reference purposes. Sign conventions generally accepted in their use are quantities associated with tension action (loads, stresses, strains, etc.) are usually considered as positive, and quantities associated with compressive action are considered as negative. When compressive action is of primary interest, it is sometimes convenient to identify associated properties with a positive sign. Formulas for all statistical computations relating to allowables development are presented in Chapter 9. 1.3.2 SIMPLE UNIT STRESSES — ft fc fb fs fx fx fs
= = = = = = =
fA =
P / A (tension) P / A (compression) My / I = M / Z (bending) (where z = I/y = section modulus) S / A (average direct shear stress) SQ / Ib (longitudinal or transverse shear stress) Ty / Ip (shear stress in round tubes due to torsion) (T/2At) (shear stress due to torsion in thin-walled structures of closed section. Note that A is the area enclosed by the median line of the section.) BfH ; fT = BfL (axial and tangential stresses, where B = biaxial ratio)
[1.3.2(a)] [1.3.2(b)] [1.3.2(c)] [1.3.2(d)] [1.3.2(e)] [1.3.2(f)] [1.3.2(g)] [1.3.2(h)]
1.3.3 COMBINED STRESSES (SEE SECTION 1.5.3.5) — fA = fc + fb [Axial (tension or compression) and bending] [1.3.3(a)] 2 2 1/2 f1,2 = {(fx + fy)/2} ± [fs + {(fx - fy)/2} ] [Bi-axial (tension or compression) + shear] [1.3.3(b)] where f1 is the maximum principal stress, f2 is the minimum principal stress, positive fx or fy is tension.
1.3.4 DEFLECTIONS (AXIAL) — e = δ / L (unit deformation or strain) (in./in.) E = f/e (This equation applied when E is obtained from the same tests in which f and e are measured.) δ = eL = (f / E)L = PL / (AE) (This equation applies when the deflection is to be calculated using a known value of E.) (units in inches)
[1.3.4(a)] [1.3.4(b)] [1.3.4(c)] [1.3.4(d)]
1.3.5 DEFLECTIONS (BENDING) — di/dx = M / (EI) (Change of slope per unit length of a beam; radians per unit length) i = slope of a beam
1-5
[1.3.5(a)]
MMPDS-06 1 April 2011
x2
i 2 = i1 +
∫ [M /( EI)]dx — Slope at Point 2. (This integral denotes the area under the
[1.3.5(b)]
curve of M/EI plotted against x, between the limits of x1 and x2.)
x1 x2
y 2 = y1 + i( x 2 − x1 ) +
∫ (M / EI)(x
2 −x
) dx — Deflection at Point 2.
[1.3.5(c)]
x1
y = deflection of the beam (This integral denotes the area under the curve having an ordinate equal to M/EI multiplied by the corresponding distances to Point 2, plotted against x, between the limits of x1 and x2.) x2
∫
y 2 = y1 + idx — Deflection at Point 2. (This integral denotes the area under the x1 curve of x1(i) plotted against x, between the limits of x1 and x2.)
[1.3.5(d)]
1.3.6 DEFLECTIONS (TORSION) — dφ / dx = T / (GJ) (Change of angular deflection or twist per unit length of a member, radians per unit length.)
[1.3.6(a)]
x2
Φ = ∫ [T / (GJ )] dx — Total twist over a length from x1 to x2. (This integral denotes the x1
[1.3.6(b)]
area under the curve of T/GJ plotted against x, between the limits of x1 and x2.)
Φ = TL/(GJ) (Used when torque T/GJ is constant over length L.)
[1.3.6(c)]
1.3.7 BIAXIAL ELASTIC DEFORMATION — µ = eT/eL (Unit lateral deformation/unit axial deformation.) This identifies Poisson’s ratio in uniaxial loading.
[1.3.7(a)]
Eex = fx - µfy
[1.3.7(b)]
Eey = fy - µfx
[1.3.7(c)]
Ebiaxial = E /(1 - µB) = where B = biaxial elastic modulus.
[1.3.7(d)]
1.3.8 BASIC COLUMN FORMULAS — Fc = π2 E / (L' / ρ )2 — standard Euler formula
[1.3.8]
where L' = L / %c where c may vary from 1 to 4 depending on degree of end fixity for simply supported columns having varying degrees of rotational fixity (flag pole columns, for example, may have a fixity coefficient of c=0.25 or less). 1-6
MMPDS-06 1 April 2011
If the cross section has no thin outstanding members subject to crippling, then a conservative form of Euler's formula uses the tangent modulus Et: Fc = π2 Et / (L' / ρ )2 - conservative using tangent modulus where ρ = o(I/A)
[1.3.8(a)]
If the cross section is subject to local instability before the full buckling load can be realized, then the Euler buckling allowable load can be unconservative. In this case, further analysis may be required such as crippling and local buckling. A column instability curve should then be constructed to take these effects into consideration. 1.3.9 INELASTIC STRESS-STRAIN RESPONSE — etotal = f / E + ep (elastic strain response plus inelastic or plastic strain response)
[1.3.9(a)]
where ep = 0.002 (f/Fty)n,
[1.3.9(b)]
n = Ramberg-Osgood parameter Equation [1.3.9(b)] implies a log-linear relationship between inelastic strain and stress, which is observed with many metallic materials, at least for inelastic strains ranging from the material’s proportional limit to its yield stress.
Traditionally, the Ramberg-Osgood fit to the stress-strain data has used a single n value. For some materials, however, the stress-strain data can be better fit to a modified form of the Ramberg-Osgood equation that uses an n1 and an n2 factor. Beginning in the MMPDS-05 the values of the single n and the two n1 and n2 factors will be given for each material (when known). The user should decide whether the single parameter approach or the double parameter approach is more applicable to the given situation.
1-7
MMPDS-06 1 April 2011
This page is intentionally blank.
1-8
MMPDS-06 1 April 2011
1.4 BASIC PRINCIPLES 1.4.1 GENERAL — It is assumed that users of this Handbook are familiar with the principles of strength of materials. A brief summary of that subject is presented in the following paragraphs to emphasize principles of importance regarding the use of allowables for various metallic materials. Requirements for adequate test data have been established to ensure a high degree of reliability for allowables published in this Handbook. Statistical analysis methods, provided in Chapter 9, are standardized and approved by all government regulatory agencies as well as MMPDS members from industry.
1.4.1.1 Basis CC Primary static design properties are provided for the following conditions: Tension
Ftu and Fty
Compression
Fcy
Shear
Fsu
Bearing
Fbru and Fbry
These design properties are presented as A- and B- or S-Basis room temperature values for each alloy. Design properties for other temperatures, when determined in accordance with Section 1.4.1.3, are regarded as having the same basis as the corresponding room temperature values. Definitions of A-, B- and S-Basis are: A-Basis.-The lower of either a statistically calculated T99 value (See Appendix A for definition), or the specification minimum (S-Basis). The T99 value indicates that at least 99 percent of the population is expected to equal or exceed it, with a confidence of 95 percent. B-Basis.-Based on the calculated T90 (See Appendix A for definition), at least 90 percent of the population of values are expected to equal or exceed the B-Basis mechanical property allowable with a confidence of 95 percent. S-Basis.-The S-value represents or is based on the minimum property value specified by the governing industry specification (as issued by standardization groups such as SAE Aerospace Materials Division, ASTM, etc.) or federal or military standards for the material. (See MIL-STD-970 for order of preference for specifications.) For certain products heat treated by the user (for example, steels hardened and tempered to a designated Ftu), the S-value may reflect a specified quality-control requirement. Statistical assurance associated with this value is not known. The S-basis value may also represent downgraded derived properties where reduced ratios were questionable, even though the primary tensile values have A- and B-Basis allowables. For more information see Section 9.1.7 Data Basis. For aerospace application, A-Basis values are generally used for single loadpath applications (like lugs) and B-Basis values for redundant loadpath applications (like skins, stringers and frames). Elongation and reduction of area design properties listed in room temperature property tables represent procurement specification minimum requirements and are designated as S-values. Elongation and reduction of area at other temperatures, as well as moduli, physical properties, creep properties, fatigue properties, and fracture toughness properties, are all typical values unless another basis is specifically indicated.
1-9
MMPDS-06 1 April 2011 Use of B-Values — The use of B-Basis design properties is permitted in design by the Air Force, the Army, the Navy, and the FAA, subject to certain limitations specified by each agency. Reference should be made to specific requirements of the applicable agency before using B-values in design.
1.4.1.2 Statistically Calculated Values — Statistically calculated values are S (since 1975), T99 and T90. S, the minimum properties guaranteed in the material specification, are calculated using the same requirements and procedure as AMS and is explained in Chapter 9. T99 and T90 are the local tolerance bounds, and are defined and may be computed using the data requirements and statistical procedures explained in Chapter 9. 1.4.1.3 Ratioed Values — A ratioed design property is one that is determined through its relationship with an established design value. This may be a tensile stress in a different grain direction from the established design property grain direction or it may be another stress property, e.g., compression, shear or bearing. It may also be the same stress property at a different temperature. Refer to Chapter 9 for specific data requirements and data analysis procedures. Derived properties are presented in two manners. Room temperature-derived properties are presented in tabular form with their baseline design properties. Other than room temperature-derived properties are presented in graphical form as percentages of the room temperature value. Percentage values apply to all forms and thicknesses shown in the room temperature design property table for the heat treatment condition indicated therein unless restrictions are otherwise indicated. Percentage curves usually represent short time exposures to temperature (30 minutes) followed by testing at the same strain rate as used for the room temperature tests. When data are adequate, percentage curves are shown for other exposure times and are appropriately labeled.
1.4.2 STRESS — The term stress, written as f (for an applied stress) or as F (for an allowable stress), implies a force per unit area and is a measure of the intensity of the force acting on a definite plane passing through a given point (see Equations 1.3.2(a) and 1.3.2(b)). The stress distribution may or may not be uniform, depending on the nature of the loading condition. For example, tensile stresses identified by Equation 1.3.2(a) are considered to be uniform. The bending stress determined from Equation 1.3.2(c) refers to the stress at a specified distance perpendicular to the normal axis. The shear stress acting over the cross section of a member subjected to bending is not uniform. (Equation 1.3.2(d) gives the average shear stress.) 1.4.3 STRAIN — Strain is the change in length per unit length in a member or portion of a member. It can be expressed in terms of the original length Lo of the specimen, as in ε = L/Lo, in which case it is called "engineering strain", or in terms of the final length L of the specimen using the natural log ε = Ln (L/Lo), in which case it is called "true strain". In this handbook the "engineering strain" is given and tabulated. As in the case of stress, the strain distribution may or may not be uniform in a complex structural element, depending on the nature of the loading condition. Strains are usually present in directions other than the directions of applied loads.
1.4.3.1 Poisson’s Ratio Effect — - (written as µ in this Handbook) A normal strain is that which is associated with a normal stress; a normal strain occurs in the direction in which its associated normal stress acts. Normal strains that result from an increase in length are designated as positive (+), and those that result in a decrease in length are designated as negative (-). Under the condition of uniaxial loading, strain varies directly with stress. The ratio of stress to strain has a constant value (E) within the elastic range of the material, but decreases when the proportional limit is exceeded (plastic range). Axial strain is always accompanied by lateral strains of opposite sign in the two 1-10
MMPDS-06 1 April 2011 directions mutually perpendicular to the axial strain. Under these conditions, the absolute value of a ratio of lateral strain to axial strain is defined as Poisson’s ratio. For stresses within the elastic range, this ratio is approximately constant. For stresses exceeding the proportional limit, this ratio is a function of the axial strain and is then referred to as the lateral contraction ratio. The maximum value of Poisson's Ratio is 0.5 for the fully plastic case. Information on the variation of Poisson’s ratio with strain and with testing direction is available in Reference 1.4.3.1. Under multiaxial loading conditions, strains resulting from the application of each directional load are additive. Strains must be calculated for each of the principal directions taking into account each of the principal stresses and Poisson’s ratio (see Equation 1.3.7 for biaxial loading).
1.4.3.2 Shear Strain — When an element of uniform thickness is subjected to pure shear, each side of the element will be displaced in opposite directions. Shear strain is computed by dividing this total displacement by the right angle distance separating the two sides. 1.4.3.3 Strain Rate — Strain rate is a function of loading rate. Test results are dependent upon strain rate, and the American Society for Testing and Materials (ASTM) testing procedures specify appropriate strain rates. Design properties in this Handbook were developed from test data obtained from coupons tested at the stated strain rate or up to a value of 0.01 in./in./min, the standard maximum static rate for tensile testing materials per specification ASTM E 8. 1.4.3.4 Elongation and Reduction of Area — Elongation and reduction of area are measured in accordance with specification ASTM E 8. 1.4.4 TENSILE PROPERTIES — Tensile strengths are given for the longitudinal, long-transverse, and short-transverse directions wherever data are available. Short-transverse strengths may be relatively low, and transverse properties should not be assumed to apply to the short-transverse direction unless so stated. In those instances where the direction in which the material will be used is not known, the lesser of the applicable longitudinal or transverse properties should be used. When a metallic specimen is tested in tension using ASTM E 8 standard procedures, it is customary to plot results as a stress-strain diagram. Typical tensile stress-strain diagrams are characterized in Figure 1.4.4(a). Such diagrams, drawn to scale, are provided in appropriate chapters of this Handbook. The general format of such diagrams is to provide a strain scale nondimensionally (in./in.) and a stress scale in 1000 lb/in. (ksi). The stress-strain relationships presented, which include elastic and compressive tangent moduli, are typical curves based on three or more lots of test data. Being typical, these curves will not correspond to yield strength data presented as design allowables (minimum values). However, the stress-strain relationships are no less useful, since there are well-known methods for using these curves in design by reducing them to a minimum curve scaled down from the typical curve or by using Ramberg-Osgood parameters obtained from the typical curves. Properties required for design and structural analysis are discussed in Sections 1.4.4.1 to 1.4.4.6.
Note that in the bottom stress-strain curve shown in Figure 1.4.4(a), which represents a clad alloy, the initial slope of the modulus line typically has two different linear segments, representing the primary and secondary modulus lines for the stress-strain curve, as shown in Figure 1.4.4(b). This is caused by yielding of the very low strength cladding material in the range of 8 to 12 ksi; leaving only the higher strength base material to continue to respond elastically with increasing stress (up to the proportional limit for the base material).
1-11
MMPDS-06 1 April 2011
Figure 1.4.4(a). Typical tensile stress-strain diagrams.
1-12
MMPDS-06 1 April 2011
Figure 1.4.4(b). Illustration of primary and secondary modulus segments of a stress-strain curve for a clad material.
The secondary modulus can be approximated from the primary modulus as follows: Esec ~ Ep * (t1 - t0) / t1 where
Esec = secondary modulus Ep = primary modulus t0 = total cladding thickness t1 = sheet or plate thickness
The exact yield strength of the cladding typically is unimportant with respect to the bulk yield behavior of high strength clad aluminum products. However, the thickness of the cladding relative to the thickness of the core typically does have a substantial effect on the bulk modulus of the clad product because it yields long before the core material reaches its proportional limit. The change in "linear elastic" slope is subtle in the stress-strain curve, but it is quite obvious in the initial portion of a compression 1-13
MMPDS-06 1 April 2011
tangent-modulus curve, as shown in Figure 1.4.4(c). (Definitions for tangent and secant moduli are given in the next section.) The change from primary to secondary modulus can be approximated on the tangent modulus curve by beginning the "yielding" of the cladding at 8 ksi and to considering it "fully yielded" at 12 ksi. This can be approximated on the tangent modulus curve by simply connecting with a straight line the primary modulus at 8 ksi with the secondary modulus at 12 ksi (as shown in Figure 1.4.4(c).
Figure 1.4.4(c). Illustration of Initial Portion of Tangent Modulus Curve for a Clad Material
1-14
MMPDS-06 1 April 2011
1.4.4.1 Modulus of Elasticity (E) — Referring to Figure 1.4.4, it is noted that the initial part of stress-strain curves are straight lines. This indicates a constant ratio between stress and strain. Numerical values of such ratios are defined as the modulus of elasticity, denoted by the letter E. This value applies up to the proportional limit stress (see Section 1.4.4.2) at which point the initial slope of the stress-strain curve then decreases. Modulus of elasticity has the same units as stress. See Equation 1.3.4(b). Other moduli of design importance are tangent modulus, Et, and secant modulus, Es. Both of these moduli are functions of strain. Tangent modulus is the instantaneous slope of the stress-strain curve at any selected value of strain. Secant modulus is defined as the ratio of total stress to total strain at any selected value of strain. See Figure 1.4.4.1. Both of these moduli are used in structural element designs. Except for materials described with discontinuous behaviors, such as the upper stress-strain curve in Figure 1.4.4, tangent modulus is the lowest value of modulus at any state of strain beyond the proportional limit. Similarly, secant modulus is the highest value of modulus beyond the proportional limit. Clad aluminum alloys may have two separate modulus of elasticity values, as indicated in the typical stress-strain curve shown in Figure 1.4.4. The initial slope or primary modulus denotes a response of both the low-strength cladding and higher-strength core elastic behaviors. This value applies only up to the proportional limit of the cladding. For example, the primary modulus of 2024-T3 clad sheet applies only up to about 6 ksi. Similarly, the primary modulus of 7075-T6 clad sheet applies only up to approximately 12 ksi. A typical use of primary moduli is for low-amplitude, high-frequency fatigue. Primary moduli are not applicable at higher stress levels. Above the proportional limits of cladding materials, a short transition range occurs while the cladding is developing plastic behavior. The material then exhibits a secondary elastic
Figure 1.4.4.1 Modulus of elasticity
1-15
MMPDS-06 1 April 2011 modulus up to the proportional limit of the core material. This secondary modulus is the slope of the second straight line portion of the stress-strain curve. In some cases, the cladding is so little different from the core material that a single elastic modulus value is used.
1.4.4.2 Tensile Proportional Limit Stress (Ftp ) — The tensile proportional limit is the maximum stress for which strain remains proportional to stress. Since it is practically impossible to determine precisely this point on a stress-strain curve, it is customary to assign a small value of plastic strain to identify the corresponding stress as the proportional limit. In this Handbook, the tension and compression proportional limit stress corresponds to a plastic strain of 0.0001 in./in. 1.4.4.3 Tensile Yield Stress (TYS or Fty ) — Stress-strain diagrams for some ferrous alloys exhibit a sharp break at a stress below the tensile ultimate strength. At this critical stress, the material elongates considerably with no apparent change in stress. See the upper stress-strain curve in Figure 1.4.4. The stress at which this occurs is referred to as the yield point. Most nonferrous metallic alloys and most high strength steels do not exhibit this sharp break, but yield in a monotonic manner. This condition is also illustrated in Figure 1.4.4. Permanent deformation may be detrimental, and the industry adopted 0.002 in./in. plastic strain as an arbitrary limit that is considered acceptable by all regulatory agencies. For tension and compression, the corresponding stress at this offset strain is defined as the yield stress (see Figure 1.4.4). This value of plastic axial strain is 0.002 in./in. and the corresponding stress is defined as the yield stress. For practical purposes, yield stress can be determined from a stress-strain diagram by extending a line parallel to the elastic modulus line and offset from the origin by an amount of 0.002-in./in. strain. The yield stress is determined as the intersection of the offset line with the stress-strain curve. 1.4.4.4 Tensile Ultimate Stress (TUS or Ftu ) — Figure 1.4.4 shows how the tensile ultimate stress is determined from a stress-strain diagram. It is simply the maximum stress attained. It should be noted that all stresses are based on the original cross-sectional dimensions of a test specimen, without regard to the lateral contraction due to Poisson’s ratio effects. That is, all strains used herein are termed engineering strains as opposed to true strains, which take into account actual cross-sectional dimensions. Ultimate tensile stress is commonly used as a criterion of the strength of the material for structural design, but it should be recognized that other strength properties may often be more important. 1.4.4.5 Elongation (e) — An additional property that is determined from tensile tests is elongation. This is a measure of ductility. Elongation, also stated as total elongation, is defined as the permanent (plastic strain) increase in gage length, measured after fracture of a tensile specimen. It is commonly expressed as a percentage of the original gage length. Elongation is usually measured over a gage length of 2 inches for rectangular tensile test specimens and in 4D (inches) for round test specimens. Welded test specimens are the exception. Refer to the applicable material specification for appropriate specified gage lengths. Although elongation is widely used as an indicator of ductility, this property can be significantly affected by testing variables such as thickness, strain rate, and gage length of test specimens. Elongation values are included in the tables of room temperature mechanical properties. In some cases where the elongation is a function of material thickness, a supplemental table is provided. Short-transverse elongations may be relatively low, and long-transverse values should not be assumed to apply to the short-transverse direction. See Section 1.4.1.1 for data basis. 1.4.4.6 Reduction of Area (RA) - Another property determined from tensile tests is reduction of area, which is also a measure of ductility. Reduction of area is the difference, expressed as a percentage of the original cross-sectional area, between the original cross section and the minimum cross-sectional area adjacent to the fracture zone of a tested specimen. This property is less affected by testing variables than elongation, but is more difficult to compute on thin section test specimens. See Section 1.4.1.1 for data basis. 1-16
MMPDS-06 1 April 2011 1.4.5 COMPRESSIVE PROPERTIES — Compressive strengths are given for the longitudinal, long-transverse, and short-transverse directions wherever data are available. Short-transverse strengths may be relatively low, and transverse properties should not be assumed to apply to the short-transverse direction unless so stated. In those instances where the direction in which the material will be used is not known, the lesser of the applicable longitudinal or transverse properties should be used. Results of compression tests completed in accordance with ASTM E 9 are plotted as stress-strain curves similar to those shown for tension in Figure 1.4.4. Preceding remarks concerning tensile properties of materials, except for ultimate stress and elongation, also apply to compressive properties. Moduli are slightly greater in compression for most of the commonly used structural metallic alloys. Special considerations concerning the ultimate compressive stress are described in the following section. An evaluation of techniques for obtaining compressive strength properties of thin sheet materials is outlined in Reference 1.4.5 and ASTM E 9. 1.4.5.1 Compressive Ultimate Stress (Fcu ) — Since the actual failure mode for the highest tension and compression stress is shear, the maximum compression stress is limited to Ftu. The driver for all the analysis of all structure loaded in compression is the slope of the compression stress-strain curve, the tangent modulus. 1.4.5.2 Compressive Yield Stress (CYS or Fcy ) — Compressive yield stress is measured in a manner identical to that done for tensile yield strength. It is defined as the stress corresponding to 0.002-in./in. plastic strain. 1.4.6 SHEAR PROPERTIES — Shear strengths vary to some extent with plane of shear and direction of loading, but the differences are not as consistent as with bearing strengths. Shear strength values are presented without reference to grain direction when it is unknown (older alloys). Since MMPDS-04, the grain orientation is referenced using the ASTM test orientations, when known. For hand forgings, the shear strength in the short-transverse direction may be significantly lower than for the other two grain directions. Results of torsion tests on round tubes or round solid sections are plotted as torsion stress-strain diagrams. The shear modulus of elasticity is considered a basic shear property. Other properties, such as the proportional limit stress and shear ultimate stress, cannot be treated as basic shear properties because of form factor effects. The theoretical ratio between shear and tensile stress for homogeneous, isotropic materials is 0.577. Reference 1.4.6 contains additional information on this subject. 1.4.6.1 Modulus of Rigidity (G) — This property is the initial slope of the shear stress-strain curve. It is also referred to as the modulus of elasticity in shear. The relation between this property and the modulus of elasticity in tension is expressed for homogeneous isotropic materials by the following equation:
G=
E 2(1 + µ)
[1.4.6.1]
1.4.6.2 Yield and Ultimate Stresses in Shear (SYS or Fsy) and (SUS or Fsu) C These properties, usually obtained from ASTM test procedures tests, are not strictly basic properties, as they will depend on the shape of the test specimen. In such cases, they should be treated as moduli and should not be combined with the same properties obtained from other specimen configuration tests. Design values reported for shear ultimate stress (Fsu) in room temperature property tables for thin sheet alloys, typically less than 0.25 inches, are based on slotted shear type test, ASTM B 831, except when noted. Thicker products use ASTM B 769, otherwise known as the Amsler shear test. These two tests only provide 1-17
MMPDS-06 1 April 2011 ultimate strength and are designed for aluminum alloys, but are often used for steels, titanium, magnesium, and heat resistant alloys. Results from these tests are not interchangeable. ASTM B 565 and NASM 1312/13, which are primarily designed for fasteners, should not be used for shear ultimate stress in the room temperature property tables. As noted in these specifications, they are not interchangeable with the other shear test specifications discussed.
1.4.7 BEARING PROPERTIES — Bearing stress limits are of value in the design of mechanically fastened joints and lugs. Only yield and ultimate stresses are obtained from bearing tests. Bearing stress is = P/Dt, where P = applied load, D = fastener diameter and t = nominal plate thickness. A bearing test requires the use of special cleaning procedures as specified in ASTM E 238. Results are identified as dry-pin values. The same tests performed without application of ASTM E 238 cleaning procedures are referred to as wet-pin tests. Results from such tests can show bearing stresses at least 10 percent lower than those obtained from dry-pin tests. See Reference 1.4.7 for additional information. Additionally, ASTM E 238 requires the use of hardened pins that have diameters within 0.001 of the hole diameter. As the clearance increases to 0.001 and greater, the bearing yield and failure stress tends to decrease. Dry bearing values are identified in MMPDS. Due to differences in results obtained between dry-pin and wet-pin tests, designers are encouraged to consider using a reduction factor with published bearing stresses for use in design. In the definition of bearing values, t is sheet or plate thickness, D is the pin diameter, and e is the edge distance measured from the center of the hole to the adjacent edge of the material being tested in the direction of applied load.
1.4.7.1 Bearing Yield (BYS or Fbry) and Ultimate (BUS or Fbru ) Strength — BUS is the maximum stress withstood by a bearing specimen. BYS is computed from a bearing stress-deformation curve by drawing a line parallel to the initial slope at an offset of 0.02 times the pin diameter. Tabulated design properties for bearing yield strength (Fbry) and bearing ultimate strength (Fbru) are provided throughout the Handbook for edge margins of e/D = 1.5 and 2.0. Bearing values for e/D of 1.5 are not intended for designs of e/D < 1.5. Bearing values for e/D < 1.5 must be substantiated by adequate tests, subject to the approval of the procuring or certificating regulatory agency. For edge margins between 1.5 and 2.0, linear interpolation of properties may be used. For values of e/D > 2, the e/D = 2 value is used. Bearing design properties are applicable to t/D ratios from 0.25 to 0.50. Bearing design values for conditions of t/D < 0.25 or t/D > 0.50 must be substantiated by tests. The percentage curves showing temperature effects on bearing strength may be used with both e/D ratios of 1.5 and 2.0.
1.4.7.2 Bearing Load Orientation — Bearing strengths are most often presented without reference to grain direction and may be assumed to be the same in all directions, unless otherwise noted. However, a reduction factor may be required for edgewise bearing load, depending on the material and product form. The results of bearing tests on longitudinal and long-transverse specimens taken edgewise from plate, die forging, and hand forging have shown that the edgewise bearing strengths are may be substantially lower than those of specimens taken parallel to the surface. The bearing specimen orientations in thick plate are shown in Figure 1.4.7.2(a). For plate, bearing allowables are based on specimens are oriented so that the width of the specimen is parallel to the surfaces of the plate (flatwise). Consequently, in cases where the stress condition approximates that of the longitudinal or long-transverse edgewise orientations, the reductions in design values should be made. See the alloy chapter for known reductions. 1-18
MMPDS-06 1 April 2011
Figure 1.4.7.2(a). Bearing specimen orientation in thick plate.
For die and hand forgings, bearing allowables are based on specimens oriented edgewise,so that no reduction factor is necessary. In the case of die forgings, the location of bearing specimens is shown in Figures 1.4.7.2(b) and 1.4.7.2(c). For die forgings with cross-sectional shapes in the form of an I-beam or a channel, longitudinal bearing specimens are oriented so the width of the specimens is normal to the parting plane (edgewise). The specimens are positioned so the bearing test holes are midway between the parting plane and the top of the flange. The severity of metal flow at the parting plane near the flash can be expected to vary considerably for web-flange type die forgings; therefore, for consistency, the bearing test hole should not be located on the parting plane. However, in the case of large, bulky-type die forgings with a cross-sectional shape similar to a square, rectangle, or trapezoid (as shown in Figure1.4.7.2(c)), longitudinal- bearing specimens are oriented edgewise to the parting plane, but the specimens are positioned so the bearing test holes are located on the parting plane. Similarly, for hand forgings, bearing specimens are oriented edgewise and the specimens are positioned at the ½ thickness location.
Figure 1.4.7.2(b). Bearing specimen orientation for webflange type die forging.
Figure 1.4.7.2(c). Bearing specimen orientation for thick cross-section die forging.
1.4.8 TEMPERATURE EFFECTS — Temperature effects require additional considerations for static, fatigue, and fracture toughness properties. In addition, this subject introduces concerns for time-dependent creep properties.
1-19
MMPDS-06 1 April 2011 1.4.8.1 Low Temperature — Temperatures below room temperature generally cause an increase in strength properties of metallic alloys. Ductility, fracture toughness, and elongation usually decrease. For specific information, see the applicable chapter and references noted therein. 1.4.8.2 Elevated Temperature — Temperatures above room temperature usually cause a decrease in the strength properties of metallic alloys. This decrease is dependent on many factors, such as temperature and the time of exposure which may degrade the heat treatment condition, or cause a metallurgical change. Ductility may increase or decrease with increasing temperature depending on the same variables. Because of this dependence of strength and ductility at elevated temperatures on many variables, it is emphasized that the elevated temperature properties obtained from this Handbook be applied for only those conditions of exposure stated herein. The effect of temperature on static mechanical properties is shown by a series of graphs of property (as percentages of the room temperature allowable property) versus temperature. Data used to construct these graphs were obtained from tests conducted over a limited range of strain rates. Caution should be exercised in using these static property curves at very high temperatures, particularly if the strain rate intended in design is much less than that stated with the graphs. The reason for this concern is that at very low strain rates or under sustained loads, plastic deformation or creep deformation may occur to the detriment of the intended structural use. 1.4.8.2.1 Creep and Stress-Rupture Properties — Creep is defined as a time-dependent deformation of a material while under an applied load. It is usually regarded as an elevated temperature phenomenon, although some materials creep at room temperature. If permitted to continue indefinitely, creep terminates in rupture. Since creep in service is usually typified by complex conditions of loading and temperature, the number of possible stress-temperature-time profiles is infinite. For economic reasons, creep data for general design use are usually obtained under conditions of constant uniaxial loading and constant temperature in accordance with ASTM E 139. Creep data are sometimes obtained under conditions of cyclic uniaxial loading and constant temperature or constant uniaxial loading and variable temperatures. Section 9.4 provides a limited amount of creep data analysis procedures. It is recognized that, when significant creep appears likely to occur, it may be necessary to test under simulated service conditions because of difficulties posed in attempting to extrapolate from simple to complex stress-temperature-time conditions. Sustained stressing at elevated temperature sufficient to result in appreciable amounts of creep deformation (e.g., more than 0.2 percent) may result in decreased strength and ductility. It may be necessary to evaluate an alloy under its stress-temperature environment for critical applications where sustained loading is anticipated [Reference 1.4.8.2.1 ]. Creep damage is cumulative similar to plastic strain resulting from multiple static loadings. This damage may involve significant effects on the temper of heat-treated materials, including annealing, and the initiation and growth of cracks or subsurface voids within a material. Such effects are often recognized as reductions in short-time strength properties or ductility, or both. 1.4.8.2.2 Creep-Rupture Curve — Results of tests conducted under constant loading and constant temperature are usually plotted as strain versus time up to rupture. A typical plot of this nature is shown in Figure 1.4.8.2.2. Strain includes both the instantaneous deformation due to load application and the plastic strain due to creep. Other definitions and terminology are provided in Appendix A.3.
1-20
MMPDS-06 1 April 2011
Figure 1.4.8.2.2. Typical creep-rupture curve.
1.4.8.2.3 Creep or Stress-Rupture Presentations — Results of creep or stress-rupture tests conducted over a range of stresses and temperatures are presented as curves of stress versus the logarithm of time to rupture. Each curve represents an average, best-fit description of measured behavior. Modification of such curves into design use are the responsibility of the design community since material applications and regulatory requirements may differ. Refer to Section 9.9.4 for data reduction and presentation methods and References 1.4.8.2.3(a) and 1.4.8.2.3(b). 1.4.9 FATIGUE PROPERTIES — Repeated loads are one of the major considerations for design of both commercial and military aircraft structures. Static loading, preceded by cyclic loads of lesser magnitudes, may result in mechanical behaviors (Ftu , Fty , etc.) lower than those published in room temperature allowables tables. Such reductions are functions of the material and cyclic loading conditions. A fatigue allowables development philosophy is not presented in this Handbook. However, basic laboratory test data are useful for materials selection. Such data are, therefore, provided in the appropriate materials sections. In the past, common methods of obtaining and reporting fatigue data included results obtained from axial loading tests, plate bending tests, rotating bending tests, and torsion tests. Rotating bending tests apply completely reversed (tension-compression) stresses to round cross section specimens. Tests of this type are now seldom conducted for aerospace use and have, therefore, been dropped from importance in this Handbook. For similar reasons, flexural fatigue data have also been dropped. No significant amount of torsional fatigue data have ever been made available. Axial loading tests, the only type retained in this Handbook, consist of completely reversed loading conditions (mean stress equals zero) and those in which the mean stress was varied to create different stress (or strain) ratios (R = minimum stress or strain divided by maximum stress or strain). Refer to Reference 1.4.9(a) for load control fatigue testing guidelines and Reference 1.4.9(b) for strain control fatigue testing guidelines.
1-21
MMPDS-06 1 April 2011 1.4.9.1 Terminology — A number of symbols and definitions are commonly used to describe fatigue test conditions, test results, and data analysis techniques. The most important of these are described in Appendix A. 1.4.9.2 Graphical Display of Fatigue Data — Results of axial fatigue tests are reported on S-N and ε - N diagrams. Figure 1.4.9.2(a) shows a family of axial load S-N curves. Fatigue data for each S-N curve represent constant values of either R-ratio or mean stress, as shown in Figure 1.4.9.2(a). A note is included to indicate that the stresses are based on net section. The net section = (cross sectional area) - (area removed by any holes). S-N and ε - N diagrams are shown in this Handbook with the raw test data plotted for each stress or strain ratio or, in some cases, for a single value of mean stress. A best-fit curve is drawn through the data at each condition. Rationale used to develop best-fit curves and the characterization of all such curves in a single diagram is explained in Section 9.6.1. For load control test data, individual curves are usually based on an equivalent stress that consolidates data for all stress ratios into a single curve. Equivalent stress (Seq) is a parameter that combines maximum and cyclic stress components in a fatigue cycle which can be used to estimate the fatigue life at a particular maximum stress for a wide range of different mean stresses. Refer to Figure 1.4.9.2(b). For strain control test data, an equivalent strain consolidation method is used. Section 9.6.1.4 includes a detailed discussion of several commonly used equivalent stress modeling procedures.. Elevated temperature fatigue test data are treated in the same manner as room temperature data, as long as creep is not a significant factor and room temperature analysis methods can be applied. In the limited number of cases where creep strain data have been recorded as a part of an elevated temperature fatigue test series, S-N (or ε - N) plots are constructed for specific creep strain levels. This is provided in addition to the customary plot of maximum stress (or strain) versus cycles to failure. The above information may not apply directly to the design of structures for several reasons. First, the Handbook information may not take into account specific stress concentrations unique to any given structural design. Design considerations usually include stress concentrations caused by re-entrant corners, notches, holes, joints, rough surfaces, structural damage, and other conditions. Localized high stresses induced during the fabrication of some parts have a much greater influence on fatigue properties than on static properties. These factors significantly reduce fatigue life below that which is predictable by estimating smooth specimen fatigue performance with estimated stresses due to fabrication. Fabricated parts have been found to fail at less than 50,000 cycles of loading when the nominal stress was far below that which could be repeated many millions of times using a smooth-machined test specimen. Notched fatigue specimen test data are shown in various Handbook figures to provide an understanding of deleterious effects relative to results for smooth specimens. All of the mean fatigue curves published in this Handbook, including both the notched fatigue and smooth specimen fatigue curves, require modification into allowables for design use. Such factors may impose a penalty on cyclic life or upon stress. This is a responsibility for the design community. Specific reductions vary between users of such information and depending on the criticality of application, sources of uncertainty in the analysis and requirements of the certificating activity. ASTM E 466 and ASTM E 606 contain more specific information on fatigue testing in load and strain control, procedures, organization of test results, influences of various factors, and design considerations.
1-22
MMPDS-06 1 April 2011 . .
80 M a te ria l= A , K t= B , N o tc h T yp e = C , M e a n S tre ss o r S tre s s R a tio =
x
70
Maximum Stress, ksi
x
60
x x
+ ++
++
x x
x+
+ + + ++
50
+
+ +
x →
x x
40
x x
x
+
x
+ +
++ +
+
x→ x→ +→ + → +→ + +→ → +→
+ +
+++
+
+
30
→ →
20 10
L e ve l 1 L e ve l 2 L e ve l 3 L e ve l 4 Runout
N o te :
→ → → →
S tre ss e s a re b a se d o n n e t se c tio n .
0 10 3
104
105
10 6
10 7
108
F a tig ue L ife , C ycle s Figure 1.4.9.2(a). Best fit S/N curve diagram for a material at various stress ratios.
. .
100 Material=A, Kt=B, Notch Type=C, Mean Stress or Stress Ratio =
90
Equivalent Stress, Seq
80
x +
70
+ ++
x ++
x
x+
Level Level Level Level
1 2 3 4
+
60
x
+ ++ + +
x
+
x
50
x x + x
40
+
+
x x++ x + +
x
+ +
+++
30
+
+
20 10 0 10 3
Note: Stresses are based on net section.
10 4
10 5
10 6
10 7
10 8
Fatigue Life, Cycles Figure 1.4.9.2(b). Consolidated fatigue data for a material using the equivalent stress parameter.
1-23
MMPDS-06 1 April 2011 1.4.10 METALLURGICAL INSTABILITY — In addition to the retention of strength and ductility, a structural material must also retain surface and internal stability. Surface stability refers to the resistance of the material to oxidizing or corrosive environments. Lack of internal stability is generally manifested (in some ferrous and several other alloys) by carbide precipitation, spheroidization, sigma-phase formation, temper embrittlement, and internal or structural transformation, depending upon the specific conditions of exposure. Environmental conditions that influence metallurgical stability include heat, level of stress, oxidizing or corrosive media, and nuclear radiation. The effect of environment on the material can be observed as either improvement or deterioration of properties, depending upon the specific-imposed conditions. For example, prolonged heating may progressively raise the strength of a metallic alloy as measured on smooth tensile or fatigue specimens. However, at the same time, ductility may be reduced to such an extent that notched tensile or fatigue behavior becomes erratic or unpredictable. The metallurgy of each alloy should be considered in making material selections. Under normal temperatures, i.e., between -65E and 160EF, the stability of most structural metallic alloys is relatively independent of exposure time. However, as temperature is increased, the metallurgical instability becomes increasingly time-dependent. The factor of exposure time should be considered in design when applicable.
1.4.11 BIAXIAL PROPERTIES — Discussions up to this point pertained to uniaxial conditions of static, fatigue, and creep loading. Many structural applications involve both biaxial and triaxial loadings. Because of the difficulties of testing under triaxial loading conditions, few data exist. However, considerable biaxial testing has been conducted and the following paragraphs describe how these results are presented in this Handbook. This does not conflict with data analysis methods presented in Chapter 9. Therein, statistical analysis methodology is presented solely for use in analyzing test data to establish allowables. An example of a biaxial properties chart is given in Figure 2.3.1.3.6(d) for carbon steel. If stress axes are defined as being mutually perpendicular along x-, y-, and z-directions in a rectangular coordinate system, a biaxial stress is then defined as a condition in which loads are applied in both the x- and y-directions. In some special cases, loading may be applied in the z-direction instead of the y-direction. Most of the following discussion will be limited to tensile loadings in the x- and y-directions. Stresses and strains in these directions are referred to as principal stresses and principal strains. See Reference 1.4.11. When a specimen is tested under biaxial loading conditions, it is customary to plot the results as a biaxial stress-strain diagram. These diagrams are similar to uniaxial stress-strain diagrams shown in Figure 1.4.4. Usually, only the maximum (algebraically larger) principal stress and strain are shown for each test result. When tests of the same material are conducted at different biaxial stress ratios, the resulting curves may be plotted simultaneously, producing a family of biaxial stress-strain curves as shown in Figure 1.4.11 for an isotropic material. For anisotropic materials, biaxial stress-strain curves also require distinction by grain direction. The reference direction for a biaxial stress ratio, i.e., the direction corresponding to B=0, should be clearly indicated with each result. The reference direction is always considered as the longitudinal (rolling) direction for flat products and the hoop (circumferential) direction for shells of revolution, e.g., tubes, cones, etc. The letter B denotes the ratio of applied stresses (usually fx/fy) in the two loading directions. For example, biaxiality ratios of 2 and 0.5 shown in Figure 1.4.11 indicate results representing both biaxial stress ratios of 2 or 0.5, since this is a hypothetical example for an isotropic material, e.g., cross-rolled sheet. In a similar manner, the curve labeled B=1 indicates a biaxial stress-strain result for equally applied stresses in both directions. The curve labeled B = 4, 0 indicates the biaxial stress-strain behavior when loading is applied in 1-24
MMPDS-06 1 April 2011 only one direction, e.g., uniaxial behavior. Biaxial property data presented in the Handbook are to be considered as basic material properties obtained from carefully prepared specimens.
Figure 1.4.11. Typical biaxial stress-strain diagrams for isotropic materials.
1.4.11.1 Biaxial Modulus of Elasticity — Referring to Figure 1.4.11, it is noted that the original portion of each stress-strain curve is essentially a straight line. In uniaxial tension or compression, the slope of this line is defined as the modulus of elasticity. Under biaxial loading conditions, the initial slope of such curves is defined as the biaxial modulus. It is a function of biaxial stress ratio and Poisson’s ratio. See Equation 1.3.7.(d). 1.4.11.2 Biaxial Yield Stress — Biaxial yield stress is defined as the maximum principal stress corresponding to 0.002 in./in. plastic strain in the same direction, as determined from a test curve. In the design of aerospace structures, biaxial stress ratios other than those normally used in biaxial testing are frequently encountered. Information can be combined into a single diagram to enable interpolations at intermediate biaxial stress ratios, as shown in Figure 1.4.11.2. An envelope is constructed through test results for each tested condition of biaxial stress ratios. In this case, a typical biaxial yield stress envelope is identified. In the preparation of such envelopes, data are first reduced to nondimensional form (percent of uniaxial tensile yield stress in the specified reference direction), then a best-fit curve is fitted through the nondimensionalized data. Biaxial yield strength allowables are then obtained by multiplying the uniaxial Fty (or Fcy) allowable by the applicable coordinate of the biaxial stress ratio curve. To avoid possible confusion, the reference direction used for the uniaxial yield strength is indicated on each figure.
1-25
MMPDS-06 1 April 2011
Figure 1.4.11.2. Typical biaxial yield stress envelope.
1.4.11.3 Biaxial Ultimate Stress — Biaxial ultimate stress is defined as the highest nominal principal stress attained in specimens of a given configuration, tested at a given biaxial stress ratio. This property is highly dependent upon geometric configuration of the test parts. Therefore, such data should be limited in use to the same design configurations. The method of presenting biaxial ultimate strength data is similar to that described in the preceding section for biaxial yield strength. Both biaxial ultimate strength and corresponding uniform elongation data are reported, when available, as a function of biaxial stress ratio test conditions. 1.4.12 FRACTURE TOUGHNESS — The occurrence of flaws in a structural component is an unavoidable circumstance of material processing, fabrication, or service. Flaws may appear as cracks, voids, metallurgical inclusions, weld defects, design discontinuities, or some combination thereof. The fracture toughness of a part containing a flaw is dependent upon flaw size, component geometry, and a material property defined as fracture toughness. The fracture toughness of a material is literally a measure of its resistance to fracture. As with other mechanical properties, fracture toughness is dependent upon alloy type, processing variables, product form, geometry, temperature, loading rate, and other environmental factors. This discussion is limited to brittle fracture, which is characteristic of high-strength materials under conditions of loading resulting in plane-strain through the cross section. Very thin materials are described as being under the condition of plane-stress. The following descriptions of fracture toughness properties applies to the currently recognized practice of testing specimens under slowly increasing loads. Attendant and interacting conditions of cyclic loading, prolonged static loadings, environmental influences other than temperature, and high strain rate loading are not considered. 1.4.12.1 Brittle Fracture — For materials that have little capacity for plastic flow, or for flaw and structural configurations, which induce triaxial tension stress states adjacent to the flaw, component behavior is essentially elastic until the fracture stress is reached. Then, a crack propagates from the flaw suddenly and completely through the component. A convenient illustration of brittle fracture is a typical loadcompliance record of a brittle structural component containing a flaw, as illustrated in Figure 1.4.12.1. Since little or no plastic effects are noted, this mode is termed brittle fracture. 1-26
MMPDS-06 1 April 2011 This mode of fracture is characteristic of the very high-strength metallic materials under plane-strain conditions.
Figure 1.4.12.1. Typical load deformation record of a structural component containing a flaw subject to brittle fracture.
1.4.12.2 Brittle Fracture Analysis — The application of linear elastic fracture mechanics has led to the stress intensity concept to relate flaw size, component geometry, and fracture toughness. In its very general form, the stress-intensity factor, K, can be expressed as
K = f a Y, ksi ⋅ in.1/ 2
[1.4.12.2]
where f = a = Y =
stress applied to the gross section, ksi measure of flaw size, inches factor-relating component geometry and flaw size, nondimensional. See ASTM E 399 for values.
For every structural material that exhibits brittle fracture (by nature of low ductility or plane-strain stress conditions), there is a lower-limiting value of K termed the plane-strain fracture toughness, KIc. The specific application of this relationship is dependent on flaw type, structural configuration, and type of loading, and a variety of these parameters can interact in a real structure. Flaws may occur through the thickness, may be imbedded as voids or metallurgical inclusions, or may be partial-through (surface) cracks. Loadings of concern may be tension and/or flexure. Structural components may vary in section size and may be reinforced in some manner. The ASTM Committee E 8 on Fatigue and Fracture has developed testing and analytical techniques for many practical situations of flaw occurrence subject to brittle fracture. They are summarized in ASTM E 399. 1.4.12.3 Critical Plane-Strain Fracture Toughness — A tabulation of fracture toughness data is printed in the general discussion prefacing most alloy chapters in this Handbook. These critical planestrain fracture toughness values have been determined in accordance with recommended ASTM testing 1-27
MMPDS-06 1 April 2011 practices. This information is provided for information purposes only due to limitations in available data quantities and product form coverages. The statistical reliability of these properties is not known. Listed properties generally represent the average value of a series of test results. Fracture toughness of a material commonly varies with grain direction. When identifying either test results or a general critical plane-strain fracture toughness average value, it is customary to specify specimen and crack orientations by an ordered pair of grain direction symbols per ASTM E 399. The first digit denotes the grain direction in the load direction. The second digit denotes the grain direction parallel to the fracture plane. For flat sections of various products, e.g., plate, extrusions, forgings, etc., in which the three grain directions are designated (L) longitudinal, (T) transverse, and (S) short transverse, the six principal fracture path directions are L-T, L-S, T-L, T-S, S-L and S-T. Figure 1.4.12.3(a) identifies these orientations. For cylindrical sections where the direction of principle deformation is parallel to the longitudinal axis of the cylinder, the reference directions are identified as in Figure 1.4.12.3(b), which gives examples for a drawn bar. The same system would be useful for extrusions or forged parts having circular cross section.
Figure 1.4.12.3(a). Typical principal fracture path directions.
Figure 1.4.12.3(b). Typical principal fracture path directions for cylindrical shapes.
1.4.12.3.1 Environmental Effects — Cyclic loading, even well below the fracture threshold stress, may result in the propagation of flaws, leading to fracture. Strain rates in excess of standard static rates may cause variations in fracture toughness properties. There are significant influences of temperature on fracture toughness properties. Temperature effecting data are limited. This information is included in each alloy section, when available. Under the condition of sustained loading, it has been observed that certain materials exhibit increased flaw propagation tendencies when situated in either aqueous or corrosive environments. When such is known to be the case, appropriate precautionary notes have been included with the standard fracture toughness information. 1.4.12.4 Fracture in Plane-Stress and Transitional-Stress States — Plane-strain conditions do not describe the condition of certain structural configurations, which are either relatively thin or exhibit appreciable ductility. In these cases, the actual stress state may approach the opposite extreme, 1-28
MMPDS-06 1 April 2011 plane-stress, or more generally, some intermediate- or transitional-stress state. The behavior of flaws and cracks under these conditions is different from those of plane-strain. Specifically, under these conditions, significant plastic zones can develop ahead of the crack or flaw tip, and stable extension of the discontinuity occurs as a slow-tearing process. This behavior is illustrated in a compliance record by a significant nonlinearity prior to fracture, as shown in Figure 1.4.12.4. This nonlinearity results from the alleviation of stress at the crack tip by causing plastic deformation.
Figure 1.4.12.4. Typical load deformation record for non-plane strain fracture.
1.4.12.4.1 Analysis of Plane-Stress and Transitional-Stress State Fracture — The basic concepts of linear elastic fracture mechanics as used in plane-strain fracture analysis also applies to these conditions. The stress-intensity factor concept, as expressed in general form by Equation 1.4.12.2, is used to relate load or stress, flaw size, component geometry, and fracture toughness. However, interpretation of the critical flaw dimension and corresponding stress has two possibilities. This is illustrated in Figure 1.4.12.4.1. One possibility is the onset of nonlinear displacement with increasing load. The other possibility identifies the fracture condition, usually very close to the maximum load. Generally, these two conditions are separated in applied stress and exhibit large differences in flaw dimensions due to stable tearing.
1-29
MMPDS-06 1 April 2011
Figure 1.4.12.4.1. Crack growth curve.
When a compliance record is transformed into a crack growth curve, the difference between the two possible K-factor designations becomes more apparent. In most practical cases, the definition of nonlinear crack length with increasing load is difficult to assess. As a result, an alternate characterization of this behavior is provided by defining an artificial or apparent stress-intensity factor.
Kapp = f ao Y
[1.4.12.4.1]
where f = stress level, ao = crack length and Y is a geometry factor. The apparent fracture toughness is computed as a function of the maximum stress and initial flaw size. This datum coordinate corresponds to point A in Figure 1.4.12.4.1. This conservative stress-intensity factor is a first approximation to the actual property associated with the point of fracture. 1.4.12.5 Apparent Fracture Toughness Values for Plane-Stress and TransitionalStress States — When available, each alloy chapter contains graphical formats of stress versus flaw size. This is provided for each temper, product form, grain direction, thickness, and specimen configuration. Data points shown in these graphs represent the initial flaw size and maximum stress achieved. These data have been screened to ensure that an elastic instability existed at fracture, consistent with specimen type. The average Kapp curve, as defined in the following subsections, is shown for each set of data. 1.4.12.5.1 Middle-Tension Panels — The calculation of apparent fracture toughness for middletension panels is given by the following equation. 1/ 2
K app = fc ( π a o ⋅ sec π a o / W)
[1.4.12.5.1(a)]
For a middle tension panel, also known as a center crack panel, the ao length is ½ of the total crack length.
1-30
MMPDS-06 1 April 2011 Data used to compute Kapp values have been screened to ensure that the net section stress at failure did not exceed 80 percent of the tensile yield strength; that is, they satisfied the criterion:
fc ≤ 0.8(TYS) / (1 − 2a / W)
[1.4.12.5.1(b)]
This criterion ensures that the fracture was an elastic instability and that plastic effects are negligible. The average Kapp parametric curve is presented on each figure as a solid line with multiple extensions where width effects are displayed in the data. As added information, where data are available, the propensity for slow stable tearing prior to fracture is indicated by a crack extension ratio, ∆2a/2ao, which represents the change in the total crack length divided by the original total crack length. The coefficient (2) indicates the total crack length; the half-crack length is designated by the letter “a.” In some cases, where data exist covering a wide range of thicknesses, graphs of Kapp versus thickness are presented. 1.4.12.6 Crack Resistance (R-Curve)— The test method adopted within the MMPDS Handbook for characterizing the resistance to fracture of metallic materials under plane stress (Mode I) loading at static rates is the KR curve. A KR curve provides a record of toughness development (resistance to crack extension) as a function of effective crack extension. These curves have a number of uses to evaluate crack growth under plane stress; however, it is important to consider the specimen geometry, thickness, initial flaw size, and material (yield strength). R-curves are used for several specialized fracture assessments. Skin crack propagation is an obvious assessment. Residual strength calculation of stiffened panels is directly applicable. A plastic zone estimate is often applied as a correction factor to a linear elastic analysis to account for small elastic plastic effects. (Note that K-R-curves are generated in predominantly elastic conditions.) The relative energy required for crack propagation of one material versus another can be applied as material selection criteria. An example of an experimentally determined R-curve data is shown in Figure 1.4.12.6(a). These results are summarized in Table 1.4.12.6(a). The curve illustrates the stress intensity (KR ) versus the effective crack extension (∆aeff), where the effective crack extension is the sum of the physically measured (or estimated from compliance) crack extension and the estimated plastic zone at the crack tip. The table for each test performed must summarize the relevant data and follow the reporting requirements of ASTM E561 paragraph 12.1.14 and Table 3. A KR vs ∆aeff curve must represent at least 8 valid tests before it is considered for inclusion in the MMPDS Handbook. An example of such a curve is given in Figure 1.4.12.6(b). The associated KR data table is also shown in Figure 1.4.12.6(b).
1-31
MMPDS-06 1 April 2011
80
Fra cture Tough ness, KR (ksi-in 0.50)
70 60
Kc
50
Tangent Applied K-Curve 40
ac
30 20 10 0 0
0.1
0.2
0.3
0.4
0.5
0.6
Effective Crack Size, aeff (in.) Figure 1.4.12.6(a) Example Plot of the Intersection of the Plane Stress Fracture Toughness Curve and KR Curve for a Material
1-32
MMPDS-06 1 April 2011 Table 1.4.12.6(a). Example Tabulation of Data Used to Construct KR Curves Shown in Figures 1.4.12.6(a) and (b)
Input Data
B=0.157
E=10005 ksi
2a0=0.511 in
a0=0.256 in
Y=0.063 in
W=1.968 in
v=0.33
2an=0.393 in
af=0.059 in
Load (kips)
Displacement (in)
V/P
EBv/P
aeff (in)
KR
∆ (in)
2.08
0.00079
3.794E-04
0.595
0.268
6.46
0.013
4.06
0.00158
3.901E-04
0.612
0.274
12.78
0.018
5.76
0.00236
4.100E-04
0.643
0.283
18.5
0.027
7.37
0.00315
4.271E-04
0.670
0.291
24.13
0.035
8.85
0.00396
4.480E-04
0.702
0.300
29.53
0.044
10.00
0.00472
1.723E-04
0.740
0.310
34.11
0.054
10.99
0.00551
5.015E-04
0.786
0.321
38.37
0.065
11.68
0.00630
5.392E-04
0.845
0.334
41.93
0.079
12.17
0.00709
5.824E-04
0.913
0.349
44.94
0.093
12.45
0.00790
6.346E-04
0.995
0.364
47.40
0.108
12.63
0.00870
6.890E-04
1.080
0.378
49.42
0.122
12.68
0.00946
7.456E-04
1.169
0.391
50.89
0.135
12.69
0.01028
8.104E-04
1.271
0.404
52.19
0.148
12.39
0.01107
8.727E-04
1.368
0.415
53.26
0.159
12.66
0.01193
9.422E-04
1.477
0.425
54.21
0.170
12.62
0.01287
1.021E-03
1.600
0.436
55.04
0.180
12.57
0.01341
1.066E-03
1.672
0.441
55.38
0.186
12.46
0.01432
1.149E-03
1.801
0.449
22.74
0.194
12.39
0.01497
1.208E-03
1.893
0.454
55.93
0.199
12.35
0.01576
1.276E-03
2.001
0.459
56.25
0.204
The typical curve is determined through an analysis of the relationship between KR and estimated physical crack extension, as shown in Figure 1.4.12.6(c). The average estimated physical crack extension at each KR is added to the computed plastic zone size for that stress intensity to develop typical values of effective crack extension as a function of KR.
1-33
MMPDS-06 1 April 2011 2198-T8, T-L, 75F, 0.064 - 0.102 in. thick sheet 280 W = 29.9 in Fty = 77 ksi
240
KR, ksi-in 0.5 0
200
160
120
Mean Curve 0.064 0.072 0.072 0.073 0.073 0.079 0.087 0.102
80
40
0 0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
Delta a effective, in.
Figure 1.4.12.6(b) Example KR vs ∆aeff Curve Constructed from a Collection of Individual KR Curves 2198 T-L Thin Sheet 1.00
0.50
l og delta a ph ysical, in.
0.00
-0.50
-1.00
-1.50
0.064 in. <= t <= 0.102 in.
-2.00
Linear (0.064 in. <= t <= 0.102 in.) -2.50 1.7
1.8
1 .9
2.0
2.1
2.2
2.3
2.4
log KR, ksi-in0.50
Figure 1.4.12.6(c) Variability in Estimated Physical Crack Extension as a Function of KR
1-34
MMPDS-06 1 April 2011 1.4.13 FATIGUE CRACK GROWTH — Crack growth deals with material behavior between crack initiation and crack instability. In small size specimens, crack initiation and specimen failure may be nearly synonymous. However, in larger structural components, the existence of a crack does not necessarily imply imminent failure. Significant structural life exists during cyclic loading and crack growth. 1.4.13.1 Fatigue Crack Growth Rate Testing — Fatigue crack growth is manifested as the growth or extension of a crack under cyclic loading. This process is primarily controlled by the maximum load or stress ratio. Additional factors include environment, loading frequency, temperature, and grain direction. Certain factors, such as environment and loading frequency, have interactive effects. Environment is important from a potential corrosion viewpoint. Time at stress is another important factor. Standard testing procedures are documented in ASTM E 647. Fatigue crack growth data presented herein are based on constant-amplitude tests. Crack growth behaviors based on spectrum loading cycles are beyond the scope of this Handbook. Constant-amplitude data consist of crack length measurements at corresponding loading cycles. Such data are presented as crack growth curves, as shown in Figure 1.4.13.1(a). Since the crack growth curve is dependent on initial crack length and the loading conditions, the above format is not the most efficient form to present information. The instantaneous slope, ∆a/∆N, corresponding to a prescribed number of loading cycles, provides a more fundamental characterization of this behavior. In general, fatigue crack growth rate behavior is evaluated as a function of the applied stress-intensity factor range, ∆K, as shown in Figure 1.4.13.1(b).
Figure 1.4.13.1(a). Fatigue crack-growth curve.
1-35
MMPDS-06 1 April 2011
Figure 1.4.13.1(b). Fatigue crack-growthrate curve.
1.4.13.2 Fatigue Crack Growth Analysis — It is known that fatigue crack growth behavior under constant-amplitude cyclic conditions is influenced by maximum cyclic stress, Smax, and some measure of cyclic stress range, ∆S (such as stress ratio, R = fmin/fmax, or minimum cyclic stress, Smin), the instantaneous crack size, a, and other factors such as environment, frequency, temperature, and geometry. Thus, fatigue crack growth rate behavior can be characterized, in general form, by the relation da/dN . ∆a/∆N = g(Smax, ∆S or R or Smin, a, ...).
[1.4.13.3(a)]
By applying concepts of linear elastic fracture mechanics, the stress and crack size parameters can be combined into the stress-intensity factor parameter, K, such that Equation 1.4.13.3(a) may be simplified to da/dN . ∆a/∆N = g(Kmax, ∆K, ...)
[1.4.13.3(b)]
where Kmax
=
the maximum cyclic stress-intensity factor
∆K
=
(1-R)Kmax, the range of the cyclic stress-intensity factor, for R $ 0
∆K
=
Kmax, for R # 0.
At present, in the Handbook, the independent variable is considered to be simply ∆K and the data are considered to be parametric on the stress ratio, R, such that Equation 1.4.13.3(b) becomes da/dN . ∆a/∆N = g(∆K, R).
[1.4.13.3(c)]
1.4.13.3 Fatigue Crack Growth Data Presentation — Fatigue crack growth rate data for constant amplitude cyclic loading conditions are presented as logarithmic plots of da/dN versus ∆K. Such information, such as that illustrated in Figure 1.4.13.3, are arranged by material alloy and heat treatment condition. Each curve represents a specific stress ratio, R, environment, and cyclic loading frequency. Specific details regarding test procedures and data interpolations are presented in Chapter 9. 1-36
MMPDS-06 1 April 2011
Figure 1.4.13.3. Sample display of fatigue crack growth rate data.
1-37
MMPDS-06 1 April 2011
This page is intentionally blank.
1-38
MMPDS-06 1 April 2011
1.5 TYPES OF FAILURES 1.5.1 GENERAL — In the following discussion, failure will usually indicate fracture of a member or the condition of a member when it has attained maximum load. 1.5.2 MATERIAL FAILURES — Fracture can occur in either ductile or brittle fashions in the same material, depending on the state of stress, rate of loading, and environment. The ductility of a material has a significant effect on the ability of a part to withstand loading and delay fracture. Although not a specific design property for ductile materials, some ductility data are provided in this Handbook to assist in material selections. The following paragraphs discuss the relationship between failure and the applied or induced stresses. 1.5.2.1 Direct Tension or Compression — This type of failure is associated with ultimate tensile or compressive stress of the material. For compression, it can only apply to members having large cross-sectional dimensions relative to their lengths. See Section 1.4.5.1. The allowables for direct tension are Fty and Ftu and the allowables for parts under compression not liable to buckle are Fcy or Fcu (Fcu is defined in paragraph 1.4.5.1). 1.5.2.2 Shear — Pure shear failures are usually obtained when the shear load is transmitted over a very short length of a member. This condition is approached in the case of rivets and bolts. In cases where ultimate shear stress is relatively low, a pure shear failure can result. But, generally, members subjected to shear loads fail under the action of the resulting normal stress, usually the compressive stress (= fc = P/A). Failure of tubes in torsion are not caused by exceeding the shear ultimate stress, but by exceeding a normal compressive stress, which causes the tube to buckle. It is customary to determine stresses for members subjected to shear in the form of shear stresses, although they are actually indirect measures of the stresses actually causing failure. The allowable for shear is Fsy or Fsu. 1.5.2.3 Bearing — Failure of a material in bearing can consist of crushing, splitting, tearing, or progressive rapid yielding in the direction of load application. A failure of this type depends on the relative size and shape of the two connecting parts. The maximum bearing stress may not be applicable to cases in which one of the connecting members is relatively thin. The allowables for bearing are Fbry and Fbru at the appropriate e/D ratio. 1.5.2.4 Bending — For sections not subject to geometric instability, a bending failure can be classed as either a tensile or compressive failure. Reference 1.5.2.4 provides methodology by which actual bending stresses above the material proportional limit can be used to establish maximum stress conditions. Actual bending stresses are related to the bending modulus of rupture. The bending modulus of rupture (fb) is determined by Equation 1.3.2(c). When the computed bending modulus of rupture is found to be lower than the proportional limit strength, it represents an actual stress. Otherwise, it represents an apparent stress and is not considered as an actual material strength. This is important when considering complex stress states such as combined bending and compression or tension. The allowable for elastic bending is Fty and for inelastic (plastic) bending is usually computed from Ftu. The allowable extreme fiber stress for elastic bending of stable cross sections is Fty or Fcy. For inelastic (plastic) bending, the allowable is Fb, a fictitious maximum fiber stress based on an assumed elastic distribution (Equation 1.3.2(c)) corrected for material inelastic stress-strain behavior as applied to a particular cross section (Reference 1.5.2.4). A plastic bending moment allowable "Mall" can also be obtained (Reference 1.5.2.4) and compared with the applied bending moment for margin of safety calculations.
1-39
MMPDS-06 1 April 2011 1.5.2.5 Failure Due to Stress Concentrations — Static stress properties represent pristine materials without notches, holes, or other stress concentrations. Such simplistic structural design is not always possible. Consideration should be given to the effect of stress concentrations. When available, references are cited for specific data in various chapters of this Handbook. Stress Concentrations play a major part in fatigue life calculations. 1.5.2.6 Failure From Combined Stresses — Under combined stress conditions, where failure is not due to buckling or instability, it is necessary to refer to some theory of failure. The maximum shear theory is widely accepted as a working basis in the case of isotropic ductile materials. It should be noted that this theory defines failure as the first yielding of a material. Any extension of this theory to cover conditions of final rupture must be based on evidence supported by the user. The failure of brittle materials under combined stresses is generally treated by the maximum stress theory. Section 1.4.11 contains a more complete discussion of biaxial behavior. References 1.5.2.6(a) through 1.5.2.6(c) offer additional information. 1.5.3 INSTABILITY FAILURES — Practically all structural members, such as beams and columns, particularly those made from thin material, are subject to failure due to instability. In general, instability can be classed as (1) primary or (2) local. For example, the failure of a tube loaded in compression can occur either through lateral deflection of the tube acting as a column (primary instability) or by collapse of the tube walls at stresses lower than those required to produce a general column failure. Similarly, an I-beam or other formed shape can fail by a general sidewise deflection of the compression flange, by local wrinkling of thin outstanding flanges, or by torsional instability. It is necessary to consider all types of potential failures unless it is apparent that the critical load for one type is definitely the controlling condition. Instability failures can occur in either the elastic range below the proportional limit or in the plastic range(see Timoshenko, Theory of Elastic Stability, section 6.7). These two conditions are distinguished by referring to either elastic instability or plastic instability failures. Neither type of failure is associated with a material’s ultimate strength, but largely depends upon geometry. A method for determining the local stability of aluminum alloy column sections is provided in Reference 1.7.1(b). Documents cited therein are the same as those listed in References 3.20.2.2(a) through 3.20.2.2(e). 1.5.3.1 Instability Failures Under Compression — Failures of this type are discussed in Section 1.6 (Columns). 1.5.3.2 Instability Failures Under Bending — Round tubes, when subjected to bending, are subject to plastic instability failures. In such cases, the failure criterion is the modulus of rupture. Equation fb = My/I = M/Z, which was derived from theory and confirmed empirically with test data, is applicable. 1.5.3.3 Instability Failures Under Torsion — The remarks given in the preceding section apply in a similar manner to round tubes under torsional loading. In such cases, the modulus of rupture in torsion is derived through the use of fx = Ty/Ip. See Reference 1.5.3.3. 1.5.3.4 Failure Under Combined Loadings — For combined loading conditions in which failure is caused by buckling or instability, no theory exists for general application. Due to the various design philosophies and analytical techniques used throughout the aerospace industry, methods for computing margin of safety are not within the scope of this Handbook.
1-40
MMPDS-06 1 April 2011
1.6 COLUMNS 1.6.1 GENERAL — A theoretical treatment of columns can be found in standard texts on the strength of materials. Some of the problems which are not well defined by theory are discussed in this section. Actual strengths of columns of various materials are provided in subsequent chapters. 1.6.2 PRIMARY INSTABILITY FAILURES — A column can fail through primary instability by bending laterally (stable sections) or by twisting about some axis parallel to its own axis. This latter type of primary failure is particularly common to columns having unsymmetrical open sections. The twisting failure of a closed section column is precluded by its inherently high torsional rigidity. Since the amount of available information is limited, it is advisable to conduct tests on all columns subject to this type of failure. 1.6.2.1 Columns With Stable Sections — The Euler formula for columns which fail by lateral bending is given by Fc = π2 E / (L' /ρ)2. A conservative approach in using this equation is to replace the elastic modulus (E) by the tangent modulus (Et) to give Fc = π2 Et / (L' /ρ)2. Values for the restraint coefficient (c) depend on degrees of ends and lateral fixities. End fixities tend to modify the effective column length by changing the value of c in the equation L' = L / %c. For a pin-ended column having no end restraint, c = 1.0 and LN = L. A fixity coefficient of c = 2 corresponds to an effective column length of LN = 0.707 times the total length. The tangent modulus equation takes into account plasticity of a material and is valid when the following conditions are met: (a) (b) (c) (d)
The column adjusts itself to forcible shortening only by bending and not by twisting. No buckling of any portion of the cross section occurs. Loading is applied concentrically along the longitudinal axis of the column. The cross section of the column is constant along its entire length.
MMPDS provides typical stress versus tangent modulus diagrams for many materials, forms, and grain directions. This information is not intended for design purposes. Methodology is contained in Chapter 9 for the development of allowable tangent modulus curves. 1.6.2.2 Columns with Unstable Sections — If a column has a cross section composed of thin elements, then the full Euler buckling load will not be obtained for the shorter lengths. This is quite common in aerospace applications. In this case, the local buckling of a flange member or the lateral-torsional twisting of the column may further reduce the allowable load that the column can withstand before failure. Standard engineering manuals must be used to calculate these allowables. 1.6.2.3 Column Stress (Fco ) — The upper limit of column stress for primary failure is designated as Fco. By definition, this term should not exceed the compression ultimate strength, Fcu (see paragraph 1.4.5.1), regardless of how the latter term is defined. 1.6.2.4 Other Considerations — Methods of analysis by which column failure stresses can be computed, accounting for fixities, torsional instability, load eccentricity, combined lateral loads, or varying column sections are contained in References 1.6.2.4(a) through 1.6.2.4(d). 1.6.3 LOCAL INSTABILITY FAILURES — Columns are subject to failure by local collapse of walls at stresses below the primary failure strength. The buckling analysis of a column subject to local instability requires consideration of the shape of the column cross section and can be quite complex. Local buckling, which can combine with primary buckling, leads to an instability failure commonly identified as crippling. 1-41
MMPDS-06 1 April 2011 1.6.3.1 Crushing or Crippling Stress (F cc ) — The upper limit of column stress for local failure is defined by either its crushing or crippling stress. The strengths of round tubes have been thoroughly investigated and considerable amounts of test results are available throughout literature. Fewer data are available for other cross-sectional configurations and testing is suggested to establish specific information, e.g., the curve of transition from local to primary failure. 1.6.4 CORRECTION OF COLUMN TEST RESULTS — In the case of columns having unconventional cross sections that are subject to local instability, it is necessary to establish curves of transition from local to primary failure. In determining these column curves, sufficient tests should be made to cover the following points. 1.6.4.1 Nature of “Short Column Curve” — Test specimens should cover a range of LN/ρ values. When columns are to be attached eccentrically in structural application, tests should be designed to cover such conditions. This is important particularly in the case of open sections, as maximum load-carrying capabilities are affected by locations of load and reaction points. 1.6.4.2 Local Failure — When local failure occurs, the crushing or crippling stress can be determined by extending the short column curve to a point corresponding to a zero value for LN/ρ. When a family of columns of the same general cross section is used, it is often possible to determine a relationship between crushing or crippling stress and some geometric factor. Examples are wall thickness, width, diameter, or some combination of these dimensions. Extrapolation of such data to conditions beyond test geometry extremes should be avoided. 1.6.4.3 Reduction of Column Test Results on Aluminum and Magnesium Alloys to Standard Material — The use of correction factors provided in Figures 1.6.4.3(a) through 1.6.4.3(i) is acceptable to the Air Force, the Navy, the Army, and the FAA for use in reducing aluminum and magnesium alloys column test data into allowables. (Note that an alternate method is provided in Section 1.6.4.4.) Using Figures 1.6.4.3(a) through 1.6.4.3(i), the correction of column test results to standard material is made by multiplying the stress obtained from testing a column specimen by the factor K. This factor may be considered applicable regardless of the type of failure involved, i.e., column crushing, crippling, or twisting. Note that not all the information provided in these figures pertains to allowable stresses, as explained below. The following terms are used in reducing column test results into allowable column stress: Fcy
is the design compression yield stress of the material in question, applicable to the gage, temper, and grain direction along the longitudinal axis of a test column.
FcN
is the maximum test column stress achieved in test. Note that an uppercase letter (F) is used rather the customary lowercase (f). This value can be an individual test result.
FcyN
is the compressive yield strength of the column material. Note that an uppercase letter (F) is used rather than the customary lowercase (f). This value can be an individual test result using a standard compression test specimen.
Using the ratio of (FcN / FcyN), enter the appropriate diagram along the abscissa and extend a line upwards to the intersection of a curve with a value of (FcyN / Fcy). Linear interpolation between curves is permissible. At this location, extend a horizontal line to the ordinate and read the corresponding K-factor. This factor is then used as a multiplier on the measured column strength to obtain the allowable. The basis for this allowable is the same as that noted for the compression yield stress allowable obtained from the room temperature allowables table. 1-42
MMPDS-06 1 April 2011 If the above method is not feasible, due to an inability of conducting a standard compression test of the column material, the compression yield stress of the column material may be estimated as follows: Conduct a standard tensile test of the column material and obtain its tensile yield stress. Multiply this value by the ratio of compression-to-tensile yield allowables for the standard material. This provides the estimated compression yield stress of the column material. Continue with the analysis as described above using the compression stress of a test column in the same manner. If neither of the above methods are feasible, it may be assumed that the compressive yield stress allowable for the column is 15 percent greater than minimum-established allowable longitudinal tensile yield stress for the material in question.
1-43
MMPDS-06 1 April 2011
.
1.2
F cy'
F cy'
C olum n m aterial com pressive yield stress =
F cy
F cy
C om pressive yield stress (std)
1.1
.90
K = Correction Factor
.95
1.00
1.0
1 .05 1.10 0.9
1.15 1.20 1.2 5 1.30
0.8
1.3 5
0.7 0.3
0.4
0.5
0 .6
F c'
0.7
0.8
0.9
1.0
1.1
1.2
1.3
M axim um test colum n Stress =
F cy'
Colum n m aterial com pressive yield stress
Figure 1.6.4.3(a). Nondimensional material correction chart for 2024-T3 sheet.
.
1 .2
F c y' F cy
F cy '
C o lu m n m a te ria l c o m p re s sive yie ld s tre s s =
F cy
C o m p re s s ive yie ld stre s s (s td )
1 .1 .90
K = Correction Factor
.95
1.0 0
1 .0
1 .05 1.1 0 1.1 5
0 .9
1 .20 1 .25 1 .30 1.3 5 0 .8
0 .7 0 .3
0 .4
0.5
0 .6
F c' F c y'
0 .7
0 .8
0.9
1 .0
1.1
1 .2
1 .3
M a xim u m te s t c o lu m n S tre s s =
C o lu m n m a te ria l c o m p re s sive yie ld s tre ss
Figure 1.6.4.3(b). Nondimensional material correction chart for 2024-T3 clad sheet.
1-44
MMPDS-06 1 April 2011
.
1.2
Fcy' Fcy
F cy'
Column material compressive yield stress =
F cy
Compressive yield stress (std)
.90
1.1
K = Correction Factor
.95
1.00
1.0
1.05
1.10
0.9
1.15 1.20 1.25
0.8
1.30 1.35
0.7 0.3
0.4
0.5
0.6
Fc'
0.7
0.8
0.9
1.0
1.1
1.2
1.3
Maximum test column Stress =
Fcy'
Column material compressive yield stress
Figure 1.6.4.3(c). Nondimensional material correction chart for 2024-T4 extrusion less than 1/4 inch thick. .
1.2
F cy'
F cy'
Column material compressive yield stress
F cy
=
F cy
Compressive yield stress (std)
.90 1.1
K = Correction Factor
.95
1.00
1.0
1.05
1.10
0.9
1.15 1.20 0.8
1.25 1.30 1.35
0.7 0.3
0.4
0.5
0.6
F c'
0.7
0.8
0.9
1.0
1.1
1.2
Maximum test column Stress =
F cy'
Column material compressive yield stress
Figure 1.6.4.3(d). Nondimensional material correction chart for 2024-T4 extrusion 1/4 to 1-1/2 inches thick.
1-45
1.3
MMPDS-06 1 April 2011 .
1.2
Fcy' Fcy
Fcy'
Column material compressive yield stress
Fcy
=
Compressive yield stress (std)
.90
1.1
K = Correction Factor
.95
1.00
1.0
1.05 1.10 0.9 1.15 1.20 1.25 0.8 1.30 1.35
0.7 0.3
0.4
0.5
0.6
F c' Fcy'
0.7
0.8
0.9
1.0
1.1
1.2
1.3
Maximum test column Stress =
Column material compressive yield stress
Figure 1.6.4.3(e). Nondimensional material correction chart for 2024-T3 tubing.
.
1.2
Fcy'
Fcy' Fcy
Column material compressive yield stress =
Compressive yield stress (std)
Fcy
K = Correction Factor
1.1
.90
.95 1.00
1.0
1.05
1.10
0.9
1.15 1.20 1.25
0.8
1.30 1.35 0.7 0.3
0.4
0.5
0.6
Fc' Fcy'
0.7
0.8
0.9
1.0
1.1
1.2
1.3
Maximum test column Stress =
Column material compressive yield stress
Figure 1.6.4.3(f). Nondimensional material correction chart for clad 2014-T3 sheet.
1-46
MMPDS-06 1 April 2011
.
1.2
Fcy'
F cy'
Column material compressive yield stress
F cy
=
Fcy
Compressive yield stress (std)
1.1
.90
K = Correction Factor
.95
1.00
1.0
1.05 1.10 0.9 1.15 1.20 1.25
0.8
1.30 1.35
0.7 0.3
0.4
0.5
0.6
Fc '
0.7
0.8
0.9
1.0
1.1
1.2
1.3
Maximum test column Stress =
F cy'
Column material compressive yield stress
Figure 1.6.4.3(g). Nondimensional material correction chart for 7075-T6 sheet.
.
1.2
F cy'
Fcy'
Column material compressive yield stress
F cy
=
F cy
Compressive yield stress (std)
K = Correction Factor
1.1
.90
1.0
1.00
0.9
1.10 0.8 1.20
1.30 0.7 0.2
0.3
0.4
0.5
Fc ' F cy'
0.6
0.7
0.8
0.9
1.0
1.1
1.2
Maximum test column Stress =
Column material compressive yield stress
Figure 1.6.4.3(h). Nondimensional material correction chart for AZ31B-F and AZ61A-F extrusion.
1-47
MMPDS-06 1 April 2011
.
1.2
Fcy'
Fcy' F cy
Column material compressive yield stress =
Fcy
Compressive yield stress (std)
K = Correction Factor
1.1
.90 1.0
1.00 0.9
1.10 0.8 1.20
1.30 0.7 0.2
0.3
0.4
0.5
Fc'
0.6
0.7
0.8
0.9
1.0
1.1
1.2
Maximum test column Stress =
Fcy'
Column material compressive yield stress
Figure 1.6.4.3(i). Nondimensional material correction chart for AZ31B-H24 sheet.
1.6.4.4 Reduction of Column Test Results to Standard Material-Alternate Method — For materials that are not covered by Figures 1.6.4.3(a) through 1.6.4.3(i), the following method is acceptable for all materials to the Air Force, the Navy, the Army, and the FAA. (1)
Obtain the column material compression properties: Fcy, Ec, nc.
(2)
Determine the test material column stress (fcN) from one or more column tests.
(3)
Determine the test material compression yield stress (fcyN) from one or more tests.
(4)
Assume Ec and nc from (1) apply directly to the column material. They should be the same material.
(5)
Assume that the geometry of the test column is the same as that intended for design. This means that a critical slenderness ratio value of (LN/ρ) applies to both cases.
(6)
Using the conservative form of the basic column formula provided in Equation 1.3.8(a), this enables an equality to be written between column test properties and allowables. If
(L'/ ρ ) for design = ( L'/ ρ ) of the column test
[1.6.4.4(a)]
( Fc / E t ) for design = ( fc '/ E t ') from test
[1.6.4.4(b)]
Then
1-48
MMPDS-06 1 April 2011 (7)
Tangent modulus is defined as: [1.6.4.4(c)]
E t = df / de
(8)
Total strain (e) is defined as the sum of elastic and plastic strains, and throughout the Handbook it is used as:
e = ee + e p
[1.6.4.4(d)]
or f f e = + 0.002 E fy
n
[1.6.4.4(e)]
Equation 1.6.4.4(c) can be rewritten as follows: Et =
f f f + 0.002 n E fy
[1.6.4.4(f)]
n
Tangent modulus, for the material in question, using its compression allowables is: Et =
Fc F Fc + 0.002 n c c Ec Fcy
[1.6.4.4(g)]
nc
In like manner, tangent modulus for the same material with the desired column configuration is: Et ' =
fc ' f ' fc ' + 0.002 n c c Ec f cy '
[1.6.4.4(h)] nc
Substitution of Equations 1.6.4.4(g) and 1.6.4.4(h) for their respective terms in Equation 1.6.4.4(b) and simplifying provides the following relationship:
F Fc + 0.002nc c Ec Fcy
nc
f ' f ' = c + 0.002nc c Ec f cy '
nc
[1.6.4.4(i)]
The only unknown in the above equation is the term Fc , the allowable column compression stress. This property can be solved through an iterative process. This method is also applicable at other than room temperature, having made adjustments for the effect of temperature on each of the properties. It is critical that the test material be the same in all respects as that for which allowables are selected from this Handbook. Otherwise, the assumption made in Equation 1.6.4.4(c) above is not valid. Equation 1.6.4.4(i) must account for such differences in moduli and shape factors when applicable. 1-49
MMPDS-06 1 April 2011
This page is intentionally blank.
1-50
MMPDS-06 1 April 2011
1.7 THIN-WALLED AND STIFFENED THIN-WALLED SECTIONS A bibliography of information on thin-walled and stiffened thin-walled sections is contained in References 1.7(a) and (b).
1-51
MMPDS-06 1 April 2011
This page is intentionally blank.
1-52
MMPDS-06 1 April 2011
1.8 ALLOWABLES-BASED FLOW STRESS FOR NONLINEAR STATIC ANALYSIS 1.8.1 INTRODUCTION — Finite element analysis is often required to determine stress, strain and deflection of complex structural components wherein the materials are stressed well beyond the elastic limit. In these cases the materials allowables in Chapters 2 through 8 are insufficient to enable a nonlinear analysis, and knowledge of the flow stress curve is required. Typical stress-strain curves developed by conventional testing procedures, such as ASTM E 8, are not directly suitable because the strain is averaged over a fixed gage length. Such relationships may, however, be converted first into typical room temperature flow stress curves then further into A-, B-, or S-Basis flow stress curves using the procedures described in this section. Allowables-based flow stress relationships are also useful in determining fictitious stress, required for stability and bending analyses [Ref. 1.8.1]. The assumed "typical" flow stress versus strain relationship should be substantiated before using it in an MMPDS analysis. One way to substantiate the flow curve is through modeling of the baseline ASTM E8 specimen and comparing the predicted stress-strain behavior to the experimental test result. It should be noted that the assumed failure stress value may need to be raised or lowered to improve the predictive quality of the material flow stress curve. Once established for a given material, the flow stress curve may then be converted to an A, B, or S-Basis flow stress curve which incorporates the appropriate strength allowables from Chapters 2 through 8. The general procedure is as follows; 1) Obtain typical uniaxial engineering stress versus average (fixed gage length) strain data for the material of interest using the procedures outlined in ASTM E 8. 2) Create a candidate flow stress curve by converting the strain at failure to infinitesimal strain and assuming a flow stress relationship between ultimate engineering stress and failing stress. If reduction-of-area measurements are not available for the determination of infinitesimal failure strain then failure strain shall be assumed to be equal to the elongation percent in 2 inches at failure. 3) Validate the flow curve by modeling the original ASTM E 8 specimen's stress-strain behavior and modifying as required until the predictive quality is within acceptable limits. 4) Determine the proportional limit, Fpl, and failure stress, Ff, by proportionally reducing Spl and Sf by the ratio of Fty/Sy and Ftu/Su respectively. The proportional limit may also be calculated using the Ramberg-Osgood number and the appropriate strain offset value. The allowables based stresses, Fpl, Fty, Ftu and Ff shall "plot" on the allowable based flow curve along a line directed from Spl, Sy, Su and Sf having the slope of the elastic modulus. In the foregoing discussion S designates stresses which are typical, non-basis, room temperature values, while F designates stresses which have a statistical basis and may be corrected for temperature. 1.8.2
PROCEDURE —
a) The preferred test and analysis specimens are the dog bone coupons of ASTM E 8. Typical full-range curves from MMPDS may be used if available. Otherwise at least three (3) specimens should be tested and the engineering stress versus average engineering strain curves averaged. A sample curve is shown in Figure 1.8.2.
1-53
MMPDS-06 1 April 2011 b) The engineering stress-strain curve is made into a flow stress curve by substituting the fixed-gage-length failure strain with the corresponding infinitesimal-gage-length failure strain as follows; ef = RA/(1-RA) in which ef is the infinitesimal gage length strain at failure and RA is the reduction of area [Ref. 1.8.2(a)]. In the event that reduction-of-area measurements are not available for the determination of infinitesimal failure strain then failure strain shall be assumed to be equal to the elongation percent in 2 inches at failure or the strain at maximum stress, whichever is appropriate. c) Mathematical relationships are then derived for the transition regions between the proportional limit and yield, between yield and ultimate, and between ultimate and failure. The analyst may consider convex or concave shape functions, splines, or straight lines. If the finite element code incorporates a total Lagrangian formulation, engineering stress-strain units are used. If the code uses an updated Lagrangian formulation, the assumed flow stress curve must be converted into true stress vs. true strain before proceeding with the analysis, as described in Section 1.8.2(h). d) Stress-strain data pairs (or, if the finite element software permits it, an equation describing the relationship) are extracted from this flow stress curve and used for nonlinear modeling. The piecewise-linear representation of the flow curve should be sufficiently refined to produce suitably accurate results. Finite element predictions from an updated Lagrangian analysis must be converted back into engineering units before comparison to MMPDS allowables may be made. e) The flow curve derived above should be used to predict the stress-strain behavior of the baseline ASTM E 8 test specimen, and suitably modified as required to replicate the experimental test results with sufficient accuracy (e.g., 5%). Modifications to the flow curve should be limited to the assumed failure stress, as this is the most uncertain of the parameters governing the shape of the flow stress curve. f) Once the predictability of the flow stress curve is established and accepted, it may be remapped as an allowables-based flow curve as follows; • Lower the proportional limit by the ratio of Fty to Sy. • Lower the failure stress by the ratio of Fu to Su • The allowables-based flow curve will pass through the new proportional limit, Fty, Ftu, and the new failure stress as determined above. The transition regions between the proportional limit and Fty, between Fty and Ftu, and between Ftu and the new failure stress will be identical to those used to validate the "average" flow stress curve. The points corresponding to Fty, Ftu and failure stress will lie on lines extending from Sy, Su, and Sf respectively on a slope equal to the elastic modulus. Refer to Figure 1.8.2 g) Finite element analysis may be either 2D (plane strain, plane stress, or axisymmetric) or 3D (solid elements), and may take advantage of symmetry planes to minimize computational cost (i.e., element count). The mesh must be sufficiently refined to ensure convergence of the solution between runs of different mesh densities. Note that the element formulation must be capable of handling large strain, large rotation and large displacement. Total Lagrangian and updated Lagrangian element formulations are specifically designed to handle this class of problems.
1-54
MMPDS-06 1 April 2011 h) Updated Lagrangian finite element formulations require that the material stress-strain properties be entered in terms of true (Cauchy) stress and true (logarithmic) strain. These may be obtained from engineering stress and zero-gage-length engineering strain as follows [Ref. 1.8.2(b)]: g = ln(1+e) σ = S(1+e)
Figure 1.8.2 Superimposed plots of (a)Experimental Result, .(b) Extended Curve to Account for Infinitesimal Strain, and (c) Derived Allowables Flow Curve
1.8.3 REPORTING REQUIREMENTS — Analyses using the procedures outlined herein shall document the following data and information: • Average (i.e., "typical") ASTM E 8 stress-strain curve • Test specimen stress and strain data pairs ("way points":SPL, SY, SU, SF, ePL, ey, eu, ef, and elongation in 2" or reduction of area) • Calculation showing the derivation of ef (zero-gage-length strain). • Formulas describing the transition regions between SPL, SY, SU, and SF) for the ASTM E8 analysis. • Allowables-Based stress and strain data pairs ("way points":FPL, Fty, Ftu, FF, ePL, ey, eu, ef) • Formulas describing the transition regions between FPL, Fty, Ftu, and FF) for the ASTM E8 analysis.
1-55
MMPDS-06 1 April 2011
This page is intentionally blank.
1-56
MMPDS-06 1 April 2011
1.9 ESTIMATION OF AVERAGE TENSILE PROPERTIES FROM A- AND B-BASIS DESIGN ALLOWABLES 1.9.1 INTRODUCTION — Users of the MMPDS Handbook who perform damage tolerance analyses sometimes need to estimate average or typical material properties (Ftu, Fty, etc.) from A and B values published in the Handbook. This has led some Handbook users to ask: • Is it possible to theoretically derive a relationship between typical and A and B values assuming that the property distribution follows a specific statistical distribution (normal, Weibull, etc.)? • How can these theoretical estimates be corrected knowing that in reality the data do not strictly follow a normal or Weibull distribution? • How can the statistical nature of A and B values be taken into account when estimating average or typical properties? The reality is that back-calculation of typical values from A-, B-, or S-Basis allowables must invariably involve approximations because the relationship between these values depends on the analysis method used (normal, Weibull, Pearson, or nonparametric), the sample size, sample skewness, level of upper-tail censoring (if any), and level of backoff (if any). Some of the allowables in the MMPDS Handbook have been computed by regression analysis, which adds product thickness and the degrees of freedom used in the regression analysis to the list of variables. In most cases, the average handbook user does not have access to all of this secondary information because it only appears in the original data proposal and is never documented in the handbook. At the same time anyone who has access to this information would also have access to the computed average material properties, so no estimation would be necessary. 1.9.2 GENERAL TRENDS — A limited survey was completed to examine the actual relationship between average Ftu and Fty values compared with A and B values, as well as T99 values. A total of 138 typical values of Ftu and Fty from different orientations and thickness ranges for 2050-T84, 2098-T8, 7056-T7651, 7075-T7351, 7140-T7651, Ti-6Al-4V annealed, 15-5PH H1025, and Ferrium S53 were examined. This collection provided a broad range of typical tensile properties, ranging from about 50 ksi to over 280 ksi. The correlations were good overall, with the best correlation being found between the B-basis values and the typical values. This was anticipated because the B-Basis value is always a precisely calculated statistical value (T90), while the A-basis value is sometimes a precisely calculated statistical value (T99) and sometimes a specification minimum value. While not quite as good as the correlation between the B-basis value and the typical values, the correlation between the T99 statistic and the typical values was also quite good. Figure 1.9.2(a) shows the correlation obtained between typical and B-basis values. A correlation coefficient of over 99.8% was obtained. Figure 1.9.2(b) shows the correlation obtained between typical and A-basis values. The correlation coefficient in this case was reduced somewhat to 99.3%. Figure 1.9.2(c) shows the correlation obtained between typical and T99 statistics. The correlation coefficient for this final case fell intermediate to the A- and B-Basis correlations. Note that each of these figures includes a slope term, which represents the multiplier on each statistic that produced the highest correlation coefficient. These optimum multipliers were 1.034, 1.080, and 1.058 for the B-, A-, and T99 statistics.
1-57
MMPDS-06 1 April 2011
Figure 1.9.2(a) Correlation between Computed B-Basis Design Allowables and Typical Values
Figure 1.9.2(b) Correlation between Computed A-Basis Design Allowables and Typical Values
1-58
MMPDS-06 1 April 2011
Figure 1.9.2(c) Correlation between Computed T-99 Statistics and Typical Values
It is interesting to note that the standard deviation in the ratio of predicted to actual typical values ranged from 1.44% for the B-Basis correlation, 3.57% for the A-basis correlation and 2.25% for the T99 statistic correlation. Clearly, the correlation between B-Basis statistics and the actual typical values is the strongest. Table 1.9.2 was created to summarize the average multipliers to the B statistics that were required to exceed the actual average values in 50% of the cases examined. Table 1.9.2 Multiplier Required to Obtain Average Estimate of the Average Yield and Ultimate Strength
Percent of Data Sets Examined With Lower Ratio
Nature of Estimated Typical Property
Ratio of Mean to Specific Lower Bound Statistic
50%
Average
1.029
1-59
B
MMPDS-06 1 April 2011
This page is intentionally blank.
1-60
MMPDS-06 1 April 2011
REFERENCES 1.4.3.1
Goodman, S. and Russell, S.B., U.S. Air Force, “Poisson’s Ratio of Aircraft Sheet Materials for Large Strain,” WADC-TR-53-7, 58 pp. (June 1953).
1.4.5
Hyler, W.S., “An Evaluation of Compression-Testing Techniques for Determining Elevated Temperature Properties of Titanium Sheet,” Titanium Metallurgical Laboratory Report No. 43, Battelle Memorial Institute, 38 pp. Appendix 28 pp. (June 8, 1956).
1.4.6
Stange, A.H., Ramberg, W., and Back, G., “Torsion Tests of Tubes,” National Advisory Committee for Aeronautics, Report No. 601, pp. 515-535 (February 1937).
1.4.7
Stickley, G.W. and Moore, A.A., “Effects of Lubrication and Pin Surface on Bearing Strengths of Aluminum and Magnesium Alloys,” Materials Research and Standards, 2, (9), pp. 747-751 (September 1962).
1.4.8.2.1
Van Echo, J.A., Page, L.C., Simmons, W.F., and Cross, H.C., Part I, “Short Time Creep Propertiesof Structural Sheet Materials for Aircraft and Missiles,” WADC TR 6731, 65 pp. (August 1952).
1.4.8.2.3(a)
Rice, Richard, “Reference Document for the Analysis of Creep and Stress Rupture Data in MIL-HDBK-5,” AFWAL-TR-81-4097 (September 1981).
1.4.8.2.3(b)
Aarnes, M.N. and Tuttle, M.M., “Presentation of Creep Data for Design Purposes,” ASD Technical Report 61-216 (June 1961) (MCIC 45114).
1.4.9.2(a)
Grover, H.J., “Fatigue of Aircraft Structures,” Prepared for Naval Air Systems Command, Department of the Navy, 335 pp. (1966).
1.4.9.2(b)
Osgood, C.C., “Fatigue Design,” Wiley-Interscience, A Division of John Wiley and Sons, Inc., 523 pp. (1970).
1.4.11
Bert, C.W., Mills, E.J., and Hyler, W.S., “Mechanical Properties of Aerospace Structural Alloys Under Biaxial-Stress Conditions,” AFML-TR-66-229 (August 1966).
1.4.13.2
Paris, P.C., “The Fracture Mechanics Approach to Fatigue,” Proc. 10th Sagamore Conference, p. 107, Syracuse University Press (1965).
1.5.2.4
Cozzone, F.P., “Bending Strength in the Plastic Range,” Journal of the Aeronautical Sciences, 10, pp. 137-151 (1943).
1.5.2.6(a)
Dieter, G.E., Jr., “Mechanical Metallurgy,” McGraw-Hill Book Company, Inc., 615 pp. (1961).
1.5.2.6(b)
Freudenthal, A.M., “The Inelastic Behavior of Engineering Materials and Structures,” John Wiley and Sons, Inc., New York, 587 pp. (1950).
1.5.2.6(c)
Parker, E.R., “Brittle Behavior of Engineering Structures,” John Wiley and Sons, Inc., New York, 323 pp. (1957).
1-61
MMPDS-06 1 April 2011 1.5.3.3
Lundquist, E.E., “Strength Tests of Thin-Walled Duralumin Cylinders in Pure Bending,” U.S. National Advisory Committee for Aeronautics, Technical Note No. 479, 17 pp. (December 1933).
1.6.2.4(a)
Hill, H.N. and Clark, J.W., “Straight-Line Column Formulas for Aluminum Alloys,” Aluminum Company of America, Aluminum Research Laboratories, Technical Paper No. 12, 8 pp. (1955).
1.6.2.4(b)
AFFDL-TR-69-42, “Stress Analysis Manual,” Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base (February 1970).
1.6.2.4(c)
“Astronautic Structure Manual,” George C. Marshall Space Flight Center (August 15, 1970).
1.6.2.4(d)
Niles, A.S. and Newell, J.S., “Airplane Structure,” 2, Third Edition, John Wiley and Sons (1943).
1.7(a)
“Index of Aircraft Structures Research Reports,” U.S. National Advisory Committee for Aeronautics, Index No. 7E29, 40 pp. (June 1947).
1.7(b)
Gerard and Becker, H., “Handbook of Structural Stability,” National Advisory Committee for Aeronautics Technical Note, Nos. 3781, 102 pp. (July 1957); 3782, 72 pp. (July 1957); 3783, 154 pp. (August 1957); 3784, 93 pp. (August 1957); and 3785, 89 pp. (August 1957).
1.8.1
Cozzone, F.P.: Bending strength in plastic range. J. Aeronaut. Sci. 10, 137-151 (1943)
1.8.2(a)
Dieter, G.E.: Mechanical metallurgy. McGraw-Hill Series in Materials Science and Engineering. McGraw Hill Book Company, New York, NY (1986), pp280
1.8.2(b)
Dieter, G.E.: Mechanical metallurgy. McGraw-Hill Series in Materials Science and Engineering. McGraw Hill Book Company, New York, NY (1986)
1-62
MMPDS-06 1 April 2011
CHAPTER 2 STEEL This chapter contains the engineering properties and related characteristics of steels used in aircraft and missile structural applications. General comments on engineering properties and other considerations related to alloy selection are presented in Section 2.1. Mechanical and physical property data and characteristics pertinent to specific steel groups or individual steels are reported in Sections 2.2 through 2.7. Element properties are presented in Section 2.8.
2.1 GENERAL The selection of the proper grade of steel for a specific application is based on material properties and on manufacturing, environmental, and economic considerations. Some of these considerations are outlined in the sections that follow. 2.1.1 ALLOY INDEX — The steel alloys listed in this chapter are arranged in major sections that identify broad classifications of steel partly associated with major alloying elements, partly associated with processing, and consistent ,generally, with steel-making technology. Specific alloys are identified as shown in Table 2.1.1. Table 2.1.1. Steel Alloy Index
Section 2.2 2.2.1 2.3 2.3.1 2.4 2.4.1 2.4.2 2.4.3 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5
Alloy Designation Carbon steels AISI 1025 Low-alloy steels (AISI and proprietary grades) Specific alloys Intermediate alloy steels 5Cr-Mo-V 9Ni-4Co-0.20C 9Ni-4Co-0.30C High alloy steels 18 Ni maraging steels AF1410 AerMet 100 Ferrium S53 Precipitation and transformation hardening steel (stainless) AM-350 AM-355 Custom 450 Custom 455 Custom 465 Continued
2-1
MMPDS-06 1 April 2011
Table 2.1.1. Steel Alloy Index (Continued)
Section 2.6.6 2.6.7 2.6.8 2.6.9 2.6.10 2.6.11 2.6.12 2.7 2.7.1
Alloy Designation PH13-8Mo 15-5PH PH15-7Mo 17-4PH 17-7PH HSL180 MLX17 Austenitic stainless steels AISI 301 and Related 300 Series Stainless Steels
2.1.2 MATERIAL PROPERTIES — One of the major factors contributing to the general utility of steels is the wide range of mechanical properties which can be obtained by heat treatment. For example, softness and good ductility may be required during fabrication of a part and very high strength during its service life. Both sets of properties are obtainable in the same material. All steels can be softened to a greater or lesser degree by annealing, depending on the chemical composition of the specific steel. Annealing is achieved by heating the steel to an appropriate temperature, holding, then cooling it at the proper rate. Likewise, steels can be hardened or strengthened by means of cold working, heat treating, or a combination of these. Cold working is the method used to strengthen both the low-carbon unalloyed steels and the highly alloyed austenitic stainless steels. Only moderately high-strength levels can be attained in the former, but the latter can be cold rolled to quite high strength levels, or tempers. These are commonly supplied to specified minimum strength levels. Heat treating is the principal method for strengthening the remainder of the steels (the low-carbon steels and the austenitic steels cannot be strengthened by heat treatment). The heat treatment of steel may be of three types: martensitic hardening, age hardening, and austempering. Carbon and alloy steels are martensitic-hardened by heating to a high temperature, or austenitizing, and cooling at a recommended rate, often by quenching in oil or water. This is followed by tempering, which consists of reheating to an intermediate temperature to relieve internal stresses and to improve toughness. The maximum hardness of carbon and alloy steels, quenched rapidly to avoid the nose of the isothermal transformation curve, is a function, in general, of the alloy content, particularly the carbon content. Both the maximum thickness for complete hardening or the depth to which an alloy will harden under specific cooling conditions and the distribution of hardness can be used as a measure of a material’s hardenability. A relatively new class of steels is strengthened by age hardening. This heat treatment is designed to dissolve certain constituents in the steel, then precipitate them in some preferred particle size and distribution. Since both the martensitic-hardening and the age-hardening treatments are relatively complex, specific details are presented for individual steels in Section 2.6.
2-2
MMPDS-06 1 April 2011 Recently, special combinations of cold working and heat treating have been employed to further enhance the mechanical properties of certain steels. At the present time, the use of these specialized treatments is not widespread. Another method of heat treatment for steels is austempering. In this process, ferrous steels are austenitized, quenched rapidly to avoid transformation of the austenite to a temperature below the pearlite and above the martensite formation ranges, allowed to transform isothermally at that temperature to a completely bainitic structure, and finally cooled to room temperature. The purpose of austempering is to obtain increased ductility or notch toughness at high hardness levels, or to decrease the likelihood of cracking and distortion that might occur in conventional quenching and tempering. 2.1.2.1 Mechanical Properties 2.1.2.1.1 Strength (Tension, Compression, Shear, Bearing) — The strength properties presented are those used in structural design. The room temperature properties are shown in tables following the comments for individual steels. The variations in strength properties with temperature are presented graphically as percentages of the corresponding room temperature strength property. These strength properties may be reduced appreciably by prolonged exposure at elevated temperatures. The strength of steels is temperature-dependent, decreasing with increasing temperature. In addition, steels are strain rate-sensitive above about 600E to 800EF, particularly at temperatures at which creep occurs. At lower strain rates, both yield and ultimate strengths decrease. The modulus of elasticity is also temperature-dependent, and when measured by the slope of the stress-strain curve, it appears to be strain rate sensitive at elevated temperatures because of creep during loading. However, on loading or unloading at high rates of strain, the modulus approaches the value measured by dynamic techniques. Steel bars, billets, forgings, and thick plates, especially when heat treated to high-strength levels, exhibit variations in mechanical properties with location and direction. In particular, elongation, reduction of area, toughness, and notched strength are likely to be lower in either of the transverse directions than in the longitudinal direction. This lower ductility and/or toughness results from both the fibering caused by the metal flow and from nonmetallic inclusions, which tend to be aligned with the direction of primary flow. Such anisotropy is independent of the depth-of-hardening considerations discussed elsewhere. It can be minimized by careful control of melting practices (including degassing and vacuum-arc remelting) and of hot-working practices. In applications where transverse properties are critical, requirements should be discussed with the steel supplier and properties in critical locations should be substantiated by appropriate testing. 2.1.2.1.2 Elongation — The elongation values presented in this chapter apply in both the longitudinal and long transverse directions, unless otherwise noted. Elongation in the short transverse (thickness) direction may be lower than the values shown. 2.1.2.1.3 Fracture Toughness — Steels (as well as certain other metals), when processed to obtain high strength or when tempered or aged within certain critical temperature ranges, may become more sensitive to the presence of small flaws. Thus, as discussed in Section 1.4.12, the usefulness of high-strength steels for certain applications is largely dependent on their toughness. It is generally noted that the fracture toughness of a given alloy product decreases relative to the increase in the yield strength. The designer is cautioned that the propensity for brittle fracture must be considered in the application of high-strength alloys for the purpose of increased structural efficiency.
2-3
MMPDS-06 1 April 2011 Minimum, average, and maximum values, as well as coefficient of variation of plane-strain fracture toughness for several steel alloys, are presented in Table 2.1.2.1.3. These values are presented as indicative information and do not have the statistical reliability of room temperature mechanical properties. Data showing the effect of temperature are presented in the respective alloy sections where the information is available.
2-4
Table 2.1.2.1.3. Values of Room Temperature Plane-Strain Fracture Toughness of Steel Alloysa Alloy
Product Form
Orientationb
D6AC
1650EF, Aus-Bay Quench 975EF, SQ 375EF, 1000EF 2 + 2
Plate
L-T
217
1.5
1
19
D6AC
1650EF, Aus-Bay Quench 975EF, SQ 400EF, 1000EF 2 + 2
Plate
L-T
217
0.8
1
D6AC
1650EF, Aus-Bay Quench 975EF, SQ 400EF, 1000EF 2 + 2
Forging
L-T
214
0.8-1.5
D6AC
1700EF, Aus-Bay Quench 975EF, OQ 140EF, 1000EF 2 + 2
Plate
L-T
217
D6AC
1700EF, Aus-Bay Quench 975EF, OQ 140EF, 1000EF 2 + 2
Forging
L-T
AerMet 100
Anneal, HT to 280ksi
Bar
AerMet 100
Anneal, HT to 280ksi
AerMet 100
Approved
Specimen KIC, ksi /in. Thickness, Max. Avg. Min. COVd inches
Spec. Min.
Date
Item
1972-1973
4/74
73-01
0.6
88
62
40
22.5
...
103
1972-1973
4/74
73-01
0.6-0.8
92
64
44
18.9
...
1
53
1972-1973
4/74
73-01
0.6-0.8
96
66
39
18.6
67
0.8-1.5
1
30
1972-1973
4/74
73-01
0.6-0.8
101
92
64
8.9
...
214
0.8-1.5
1
34
1972-1973
4/74
73-01
0.7
109
95
81
6.7
67
L-R
236-281
2.75-10
1
183
1993-1998
4/01
M01-07
1
146
121
100
7.9
100
Bar
C-R
223-273
2.75-10
1
156
1993-1998
4/01
M01-07
1
137
112
90
8.5
...
Anneal, HT to 290ksi
Bar
L-R
251-265
3-10
1
29
1993-1998
4/01
M01-07
1
110
99
88
6.5
80
AerMet 100
Anneal, HT to 290ksi
Bar
C-R
250-268
3-10
1
24
1993-1998
4/01
M01-07
1
101
88
73
9.7
...
9Ni-4Co-.20C
Quench and Temper
Hand Forging
L-T
185-192
3.0
2
27
1973-1976
4/74
73-01
1.0-2.0
147
129
107
8.3
110
9Ni-4Co-.20C
1650EF, 1-2 Hr, AC, 1525EF, 1-2 Hr, OQ, -100EF, Temp
Forging
L-T
186-192
3.0-4.0
3
17
1973-1976
4/74
73-01
1.5-2.0
147
134
120
8.5
110
Custom 465
H950
Bar
L-Rc
229-249
3-12
1
40
2001
4/01
M02-01
1-1.5
104
89
76
7.4
70
Custom 465
H950
Bar
R-Lc
231-246
3-12
1
40
2001
4/01
M02-01
1-1.5
94
82
73
6.4
...
Custom 465
H1000
Bar
L-Rc
212-227
3-12
1
40
2001
4/01
M02-01
1-1.5
131
120
108
5.2
95
Custom 465
H1000
Bar
R-Lc
212-225
3-12
1
40
2001
4/01
M02-01
1-1.5
118
109
100
3.7
...
These values are for information only. Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. L-R also includes some L-T, R-L also includes some T-L. COV = Coefficient of Variation
MMPDS-06 1 April 2011
2-5 a b c d
Yield Product Number Strength Thickness, of Sample Date of Data Range, ksi inches Sources Size Generation
Heat Treat Condition
Table 2.1.2.1.3. Values of Room Temperature Plane-Strain Fracture Toughness of Steel Alloysa (Continued) Product Thickness Number Sample Date of Data Range, of Size Generation inches Sources
Date
Item
Approved
KIC, ksi /in. Specimen Thickness Range, inches Max. Avg. Min. COV
Spec. Min.
Alloy
Heat Treat Condition
Product Form
Orientationb
Ferrium S53
H280
Bar, Forging
L-R
216-233
1.75-8.00
1
102
2007
4/08
M08-01
0.5-1.0
80
66
50
8.4
50
Ferrium S53
H280
Bar, Forging
C-R
216-232
1.75-8.00
1
33
2007
4/08
M08-01
0.5-1.0
83
63
50
10.3
50
PH13-8Mo
H1000
Forging
L-T
205-212
4.0-8.0
3
12
1967
4/74
73-01
0.7-2.0
104
90
49
21.5
...
PH13-8Mo
H1000 per AMS 5934
Forging
S-T, C-R
202-204
5.5-7.9
1
6
2007
4/07
180
161
141
9.7
120
These values are for information only. Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. L-R also includes some L-T, R-L also includes some T-L.
M07-02 2.00-2.25
2-6
MMPDS-06 1 April 2011
a b c
Yield Strength Range, ksi
MMPDS-06 1 April 2011
2.1.2.1.4 Stress-Strain Relationships — The stress-strain relationships presented in this chapter are prepared as described in Section 9.8.4. 2.1.2.1.5 Fatigue — Axial-load fatigue data on unnotched and notched specimens of various steels at room temperature and at other temperatures are shown as S/N curves in the appropriate section. Surface finish, surface-finishing procedures, metallurgical effects from heat treatment, environment and other factors influence fatigue behavior. Specific details on these conditions are presented as correlative information for the S/N curve. 2.1.2.2 Physical Properties — The physical properties (ω, C, K, and α) of steels may be considered to apply to all forms and heat treatments unless otherwise indicated. 2.1.3 ENVIRONMENTAL CONSIDERATIONS — The effects of exposure to environments such as stress, temperature, atmosphere, and corrosive media are reported for various steels. Fracture toughness of high-strength steels and the growth of cracks by fatigue may be detrimentally influenced by humid air and by the presence of water or saline solutions. Some alleviation may be achieved by heat treatment and all high-strength steels are not similarly affected. In general, these comments apply to steels in their usual finished surface condition, without surface protection. It should be noted that there are available a number of heat-resistant paints, platings, and other surface coatings that are employed either to improve oxidation resistance at elevated temperature or to afford protection against corrosion by specific media. In employing electrolytic platings, special consideration should be given to the removal of hydrogen by suitable baking. Failure to do so may result in lowered fracture toughness or embrittlement.
2.1.4 OBSOLETE ALLOYS, HEAT TREATMENTS, AND PRODUCT FORMS – Table 2.1.4 includes a summary of the steel alloys, heat treatments, and product forms that have been removed from the Handbook, along with information regarding why and when they were removed.
2-7
MMPDS-06 1 April 2011
Table 2.1.4 Obsolete Steel Alloys, Heat Treatments, and Product Forms
Alloy
17-4PH
19-9DL
Heat Product SpeciTreatment(s) Form fication
H900, H925, H1000, and H1100
Investment Casting
AMS 5355
H925
Sand Casting
AMS 5398
Hot or cold rolled, annealed
Sheet, Strip, and Plate
AMS 5526
Hot or cold Sheet, finished, Strip, stress relieved and Plate
AMS 5527
Warm rolled, stress relieved
Bar
AMS 5720
Warm rolled, stress relieved
Bar
AMS 5721
Warm Bar and worked, stress Forging relieved Hot or cold rolled, annealed
19-9DX
4330Si
Warm rolled, stress relieved
Item No.
Spec. properties based on 87-15 separately cast test bars
Last Shown
Mtg
Edition
Date
74
MILHDBK5E
June 87
Obsolete alloy
NA
NA
MILHDBK- July 72 5B, CN1
Obsolete alloy
NA
NA
MILHDBK- July 72 5B, CN1
70
MILHDBK5D, CN2
AMS 5722
Sheet, Strip, and Plate
AMS 5538 AMS 5539
Bar
AMS 5724 AMS 5729
Warm Bar and worked, stress Forging relieved
AMS 5723
Forging and Tubing
AMS 6407
Q&T
Basis for Removal
Removal Approved
Obsolete alloy 85-17
2-8
May 85
MMPDS-06 1 April 2011 Table 2.1.4 Obsolete Steel Alloys, Heat Treatments, and Product Forms (cont.)
Alloy
Heat Product SpeciTreatment(s) Form fication
Basis for Removal
Removal Approved Item No.
Last Shown
Mtg
Edition
Date
NA
MILHDBK- Jan 70 5A, CN4
NA
MILHDBK- Jan 70 5A, CN4
70
MILHDBK5D, CN2
May 85
70
MILHDBK5D, CN2
May 85 May 85
Sheet, Strip, and Plate
AMS 6546
Q&T
Bar and Forging
AMS 6541
9-4-0.45
Q&T
Sheet and Forging
AMS 6542
Obsolete alloy
98BV40
Q&T
Bar and Forging
AMS 6423
Obsolete alloy 85-17
Q&T
Tubing
MIL-T6732
Cancelled specification
Q&T
Tubing
MIL-T6734
Cancelled specification
85-17
70
MILHDBK5D, CN2
AISI 8735
Q&T
Tubing
MIL-T6733
Cancelled specification
85-17
70
MILHDBK5D, CN2
May 85
AISI 1025
Normalized
Tubing
AMS 5077
Cancelled specification
17
MMPDS05
Apr 2010
Q&T 9-4-0.25
Obsolete alloy
NA
NA
85-17
AISI 8630
AM 350
Double Aged
PH 148Mo
SRH950, SRH1050
Sheet and MIL-SStrip 8840
Strip
AMS 5603
10-02
Obsolete heat treatment
75-21
60
MILHDBK- Aug 75 5B, CN4
Obsolete alloy
86-19
72
MILHDBK- May 86 5D, CN3
2-9
MMPDS-06 1 April 2011
This page is intentionally blank.
2-10
MMPDS-06 1 April 2011
2.2 CARBON STEELS 2.2.0 COMMENTS ON CARBON STEELS 2.2.0.1 Metallurgical Considerations — Carbon steels are those steels containing carbon up to about 1 percent and only residual quantities of other elements except those added for deoxidation. The strength that carbon steels are capable of achieving is determined by carbon content and, to a much lesser extent, by the content of the residual elements. Through cold working or proper choice of heat treatments, these steels can be made to exhibit a wide range of strength properties. The finish conditions most generally specified for carbon steels include hot-rolled, cold-rolled, colddrawn, normalized, annealed, spheroidized, stress-relieved, and quenched and tempered. In addition, the low-carbon grades (up to 0.25 percent C) may be carburized to obtain high surface hardness and wear resistance with a tough core. Likewise, the higher carbon grades are amenable to selective flame hardening to obtain desired combinations of properties. 2.2.0.2 Manufacturing Considerations Forging — All of the carbon steels exhibit excellent forgeability in the austenitic state provided the proper forging temperatures are used. As the carbon content is increased, the maximum forging temperature is decreased. At high temperatures, these steels are soft and ductile and exhibit little or no tendency to work harden. The resulfurized grades (free-machining steels) exhibit a tendency to rupture when deformed in certain high-temperature ranges. Close control of forging temperatures is required. Cold Forming — The very low-carbon grades have excellent cold-forming characteristics when in the annealed or normalized conditions. Medium-carbon grades show progressively poorer formability with higher carbon content, and more frequent annealing is required. The high-carbon grades require special softening treatments for cold forming. Many carbon steels are embrittled by warm working or prolonged exposure in the temperature range from 300E to 700EF. Machining — The low-carbon grades (0.30 percent C and less) are soft and gummy in the annealed condition and are preferably machined in the cold-worked or the normalized condition. Medium-carbon grades (0.30 to 0.50 percent C) are best machined in the annealed condition and high-carbon grades (0.50 to 0.90 percent C) in the spheroidized condition. Finish machining must often be done in the fully heattreated condition for dimensional accuracy. The resulfurized grades are well known for their good machinability. Nearly all carbon steels are now available with 0.15 to 0.35 percent lead, added to improve machinability. However, resulfurized and leaded steels are not generally recommended for highly stressed aircraft and missile parts because of a drastic reduction in transverse properties. Welding — The low-carbon grades are readily welded or brazed by all techniques. The mediumcarbon grades are also readily weldable but may require preheating and postwelding heat treatment. The high-carbon grades are difficult to weld. Preheating and postwelding heat treatment are usually mandatory for the latter, and special care must be taken to avoid overheating. Furnace brazing has been used successfully with all grades. Heat Treatment — Due to the poor oxidation resistance of carbon steels, protective atmospheres must be employed during heat treatment if scaling of the surface cannot be tolerated. Also, these steels are subject to decarburization at elevated temperatures and, where surface carbon content is critical, should be heated in reducing atmospheres.
2-11
MMPDS-06 1 April 2011 2.2.0.3 Environmental Considerations — Carbon steels have poor oxidation resistance above about 900E to 1000EF. Strength and oxidation-resistance criteria generally preclude the use of carbon steels above 900EF. Carbon steels may undergo an abrupt transition from ductile to brittle behavior. This transition temperature varies widely for different carbon steels, depending on many factors. Caution should be exercised in the application of carbon steels to ensure that the transition temperature of the selected alloy is below the service temperature. Additional information is contained in References 2.2.0.3(a) and 2.2.0.3(b). The corrosion resistance of carbon steels is relatively poor; clean surfaces rust rapidly in moist atmospheres. A simple oil film protection is adequate for normal handling. For aerospace applications, the carbon steels are usually plated to provide adequate corrosion protection. 2.2.1 AISI 1025 2.2.1.0 Comments and Properties — AISI 1025 is an excellent general purpose steel for the majority of shop requirements, including jigs, fixtures, prototype mockups, low-torque shafting, and other applications. It is not generally classed as an airframe structural steel. However, it is available in aircraft quality as well as commercial quality. Manufacturing Considerations — Cold-finished, flat-rolled products are supplied principally where maximum strength, good surface finish, or close tolerance is desirable. Reasonably good forming properties are found in AISI 1025. The machinability of bar stock is rated next to these sulfurized types of free-machining steels, but the resulting surface finish is poorer. Specifications and Properties — Material specifications for AISI 1025 steel are presented in Table 2.2.1.0(a). The room temperature mechanical and physical properties are shown in Table 2.2.1.0(b). The effect of temperature on thermal expansion is shown in Figure 2.2.1.0. Table 2.2.1.0(a). Material Specifications for AISI 1025 Carbon Steel Specification Form ASTM A 108 Bar AMS 5075 Seamless tubing AMS-T-5066a Tubing AMS 5046 Sheet, strip, and plate a Inactive for new design
2-12
MMPDS-06 1 April 2011
Table 2.2.1.0(b). Design Mechanical and Physical Properties of AISI 1025 Carbon Steel AMS 5075 Specification . . . . . . . . . . . AMS 5046a ASTM A 108 AMS-T-5066b Form . . . . . . . . . . . . . . . . . . Sheet, strip, and plate Tubing Bar Condition . . . . . . . . . . . . . . Annealed Normalized All Thickness, in. . . . . . . . . . . ... ... ... Basis . . . . . . . . . . . . . . . . . . S S Sc Mechanical Properties: Ftu, ksi: L .................. 55 55 55 LT . . . . . . . . . . . . . . . . . 55 55 55 ST . . . . . . . . . . . . . . . . . ... ... 55 Fty, ksi: L .................. 36 36 36 LT . . . . . . . . . . . . . . . . . 36 36 36 ST . . . . . . . . . . . . . . . . . ... ... 36 Fcy, ksi: L .................. 36 36 36 LT . . . . . . . . . . . . . . . . . 36 36 36 ST . . . . . . . . . . . . . . . . . ... ... 36 Fsu, ksi . . . . . . . . . . . . . . . 35 35 35 Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . ... ... ... (e/D = 2.0) . . . . . . . . . . . 90 90 90 Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . ... ... ... (e/D = 2.0) . . . . . . . . . . . ... ... ... e, percent: d d L .................. ... d LT . . . . . . . . . . . . . . . . . ... ... E, 103 ksi . . . . . . . . . . . . . 29.0 Ec, 103 ksi . . . . . . . . . . . . 29.0 3 G, 10 ksi . . . . . . . . . . . . . 11.0 µ ................... 0.32 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . 0.284 C, Btu/(lb)(EF) . . . . . . . . 0.116 (122E to 212EF) K, Btu/[(hr)(ft2)(EF)/ft] . . 30.0 (at 32EF) α, 10-6 in./in./EF . . . . . . . . See Figure 2.2.1.0 a b c d
Properties based on MIL-S-7952. Inactive for new design. Properties based on MIL-T-5066. Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. See applicable specification for variation in minimum elongation with ultimate strength.
2-13
MMPDS-06 1 April 2011
α, 10-6 in./in./F
9
α, - Between 70 F and indicated temperature
8
7
6
5 0
200
400
600
800
1000
1200
1400
1600
Temperature, F Figure 2.2.1.0. Effect of temperature on the thermal expansion of 1025 steel.
2-14
MMPDS-06 1 April 2011
2.3 LOW-ALLOY STEELS (AISI GRADES AND PROPRIETARY GRADES) 2.3.0 COMMENTS ON LOW-ALLOY STEELS (AISI AND PROPRIETARY GRADES) 2.3.0.1 Metallurgical Considerations — The AISI or SAE alloy steels contain, in addition to carbon, up to about 1 percent (up to 0.5 percent for most airframe applications) additions of various alloying elements to improve their strength, depth of hardening, toughness, or other properties of interest. Generally, alloy steels have better strength-to-weight ratios than carbon steels and are somewhat higher in cost on a weight, but not necessarily strength, basis. Their applications in airframes include landing-gear components, shafts, gears, and other parts requiring high strength, through hardening, or toughness. Some alloy steels are identified by the AISI four-digit system of numbers. The first two digits indicate the alloy group and the last two the approximate carbon content in hundredths of a percent. The alloying elements used in these steels include manganese, silicon, nickel, chromium, molybdenum, vanadium, and boron. Other steels in this section are proprietary steels, which may be modifications of the AISI grades. The alloying additions in these steels may provide deeper hardening, higher strength, and toughness. These steels are available in a variety of finish conditions, ranging from hot or cold rolled to quenched and tempered. They are generally heat treated before use to develop the desired properties. Some steels in this group are carburized, then heat treated to produce a combination of high surface hardness and good core toughness. 2.3.0.2 Manufacturing Conditions Forging — The alloy steels are only slightly more difficult to forge than carbon steels. However, maximum recommended forging temperatures are, generally, about 50EF lower than for carbon steels of the same carbon content. Slower heating rates, shorter soaking period, and slower cooling rates are also required for alloy steels. Cold Forming — The alloy steels are usually formed in the annealed condition. Their formability depends mainly on the carbon content and is, generally, slightly poorer than for unalloyed steels of the same carbon content. Little cold forming is done on these steels in the heat-treated condition because of their high strength and limited ductility. Machining — The alloy steels are generally harder than unalloyed steels of the same carbon content. As a consequence, the low-carbon alloy steels are somewhat easier to finish machine than their counterparts in the carbon steels. It is usually desirable to finish machine the carburizing and through-hardening grades in the final heat-treated condition for better dimensional accuracy. This often leads to two steps in machining: rough machining in the annealed or hot-finished condition, then finish machining after heat treating. The latter operation, because of the relatively high hardness of the material, necessitates the use of sharp, well-designed, high-speed steel cutting tools, proper feeds, speeds, and a generous supply of coolant. Medium- and high-carbon grades are usually spheroidized for optimum machinability and, after heat treatment, may be finished by grinding. Many of the alloy steels are available with added sulfur or lead for improved machinability. However, resulfurized and leaded steels are not recommended for highly stressed aircraft and missile parts because of drastic reductions in transverse properties. Welding — The low-carbon grades are readily welded or brazed by all techniques. Alloy welding rods comparable in strength to the base metal are used, and moderate preheating (200E to 600EF) is usually necessary. At higher carbon levels, higher preheating temperatures, and often postwelding stress relieving, are required. Certain alloy steels can be welded without loss of strength in the heat-affected zone provided that the welding heat input is carefully controlled. If the composition and strength level are such that the
2-15
MMPDS-06 1 April 2011 strength of the welded joint is reduced, the strength of the joint may be restored by heat treatment after welding. Heat Treatment — For the low-alloy steels, there are various heat treatment procedures that can be applied to a particular alloy to achieve any one of a number of specific mechanical (for example tensile) properties. Within this chapter, there are mechanical properties for three thermal processing conditions: annealed, normalized, and quenched and tempered. The specific details of these three thermal-processing conditions are reviewed in Reference 2.3.0.2.5. In general, the annealed condition is achieved by heating to a suitable temperature and holding for a specified period of time. Annealing generally softens the material, producing the lowest mechanical properties. The normalized condition is achieved by holding to a slightly higher temperature than annealing, but for a shorter period of time. The purpose of normalizing varies, depending on the desired properties; it can be used to increase or decrease mechanical properties. The quenched and tempered condition, discussed in more detail below, is used to produce the highest mechanical properties while providing relatively high toughness. The mechanical properties for these three processing conditions for specific steels are as shown in Tables 2.3.1.0(c), 2.3.1.0(f), and 2.3.1.0(g). Maximum hardness in these steels is obtained in the as-quenched condition, but toughness and ductility in this condition are comparatively low. By means of tempering, their toughness is improved, usually accompanied by a decrease in strength and hardness. In general, tempering temperatures to achieve very high strength should be avoided when toughness is an important consideration. In addition, these steels may be embrittled by tempering or by prolonged exposure under stress within the “blue brittle” range (approximately 500E to 700EF). Strength levels that necessitate tempering within this range should be avoided. The mechanical properties presented in this chapter represent steels heat treated to produce a quenched structure containing 90 percent martensite at the center and tempered to the desired Ftu level. This degree of through hardening is necessary (regardless of strength level) to ensure the attainment of reasonably uniform mechanical properties throughout the cross section of the heat-treated part. The maximum diameter of round bars of various alloy steels capable of being through hardened consistently are given in Table 2.3.0.2. Limiting dimensions for common shapes other than round are determined by means of the equivalent round concept in Figure 2.3.0.2. This concept is essentially a correlation between the significant dimensions of a particular shape and the diameter of a round bar, assuming in each instance that the material, heat treatment, and the mechanical properties at the centers of both the respective shape and the equivalent round are substantially the same. For the quenched and tempered condition, a large range of mechanical property values can be achieved as indicated in Table 2.3.0.2. Various quench media (rates), tempering temperatures, and times can be employed, allowing any number of processing routes to achieve these values. As a result of these processing routes, there are a large range of mechanical properties that can be obtained for a specific alloy. Therefore, the properties of a steel can be tailored to meet the needs for a specific component/application.
Because of the potential for several different processing methods for these three conditions, the MIL, Federal, and AMS specifications do not always contain minimum mechanical property values (S-Basis). They may contain minimum mechanical property values for one specific quenched and tempered condition. Those specifications cited in this Handbook that do not contain mechanical properties are identified with a footnote in Tables 2.3.1.0(a) and 2.3.1.0(b). The possible mechanical properties for these alloys covered in the specifications for the normalized, and quenched and tempered conditions in Table 2.3.0.2 are presented in Tables 2.3.1.0(g1) and 2.3.1.0(g2). Although there are no statistical basis (A, B, S) for these values in Tables 2.3.1.0(g1) and 2.3.1.0(g2), S-basis is shown when the heat treatment is done per AMS 2759 or
2-16
MMPDS-06 1 April 2011 equivalent and when a tensile test is taken to confirm it meets the Ftu, Fty, e, and RA minimum shown.
Hardness measurements shall not be used as a basis for use of these mechanical properties.
Table 2.3.0.2. Maximum Round Diameters for Low-Alloy Steel Bars (Through Hardening to at Least 90 Percent Martensite at Center) Maximum Diameter of Round or Equivalent Round, in.a Ftu, ksi
0.5
0.8
1.0
1.7
2.5
3.5
5.0
270 & 280
...
...
...
...
...
...
300Mc
260
...
...
...
AISI 4340b
AISI 4340c
AISI 4340d
...
220
...
...
...
AMS Gradesb,e
AMS Gradesc,e
D6ACb
D6ACc
200
...
AISI 8740
AISI 4140
AISI 4340b AMS Gradesb,e
AISI 4340c AISI 4340d c,e AMS Grades
D6ACc
#180
AISI 4130 and 8630
AISI 8735 4135 and 8740
AISI 4140
AISI 4340b AMS Gradesb,e
AISI 4340c AISI 4340d AMS Gradesc,e D6ACb
D6ACc
a This table indicates the maximum diameters to which these steels may be through hardened consistently by quenching as indicated. Any steels in this table may be used at diameters less than those indicated. The use of steels at diameters greater than those indicated should be based on hardenability data for specific heats of steel. b Quenched in molten salt at desired tempering temperature (martempering). c Quenched in oil at a flow rate of 200 feet per minute. d Quenched in water at a flow rate of 200 feet per minute. e 4330V, 4335V, and Hy-Tuf.
Figure 2.3.0.2. Correlation between significant dimensions of common shapes other than round and the diameters of round bars.
2-17
MMPDS-06 1 April 2011 2.3.0.3 Environmental Considerations — Alloy steels containing chromium or high percentages of silicon have somewhat better oxidation resistance than the carbon or other alloy steels. Elevated temperature strength for the alloy steels is also higher than that of corresponding carbon steels. The mechanical properties of all alloy steels in the heat-treated condition are affected by extended exposure to temperatures near or above the temperature at which they were tempered. The limiting temperatures to which each alloy may be exposed for no longer than approximately 1 hour per inch of thickness or approximately one-half hour for thicknesses under one-half inch without a reduction in strength are listed in Table 2.3.0.3. These values are approximately 100EF below typical tempering temperatures used to achieve the designated strength levels. Low-alloy steels may undergo a transition from ductile to brittle behavior at low temperatures. This Table 2.3.0.3. Temperature Exposure Limits for Low-Alloy Steels
Exposure Limit, EF Ftu, ksi
125
150
180
200
220
260
270 & 280
...
...
...
...
Alloy: AISI 4130 and 8630
925
775
575
AISI 4140 and 8740
1025
875
725
625
...
...
...
AISI 4340
1100
950
800
700
...
350
...
AISI 4135 and 8735
975
825
675
...
...
...
D6AC
1150
1075
1000
950
900
500
...
Hy-Tuf
875
750
650
550
450
...
...
4330V
925
850
775
700
500
...
...
4335V
975
875
775
700
500
...
...
...
475
300M
...
...
...
...
...
...
a Quenched and tempered to Ftu indicated. If the material is exposed to temperatures exceeding those listed, a reduction in strength is likely to occur.
transition temperature varies widely for different alloys. Caution should be exercised in the application of low-alloy steels at temperatures below -100EF. For temperatures below -100EF, an alloy with a transition temperature below the service temperature should be selected. For low temperatures, the steel should be heat treated to a tempered martensitic condition for maximum toughness. Heat-treated alloy steels have better notch toughness than carbon steels at equivalent strength levels. The decrease in notch toughness is less pronounced and occurs at lower temperatures. Heat-treated alloy steels may be useful for subzero applications, depending on their alloy content and heat treatment. Heat treating to strength levels higher than 150 ksi Fty may decrease notch toughness. The corrosion properties of the AISI alloy steels are comparable to the plain carbon steels.
2-18
MMPDS-06 1 April 2011 2.3.1 SPECIFIC ALLOYS 2.3.1.0 Comments and Properties — AISI 4130 is a chromium-molybdenum steel that is in general use due to its well-established heat-treating practices and processing techniques. It is available in all sizes of sheet, plate, and tubing. Bar stock of this material is also used for small forgings under one-half inch thick. AISI 4135, a slightly higher carbon version of AISI 4130, is available in sheet, plate, and tubing. AISI 4140 is a chromium-molybdenum steel that can be heat treated in thicker sections and to higher strength levels than AISI 4130. This steel is generally used for structural-machined and forged parts one-half inch thick and over. It can be welded, but it is more difficult to weld than the lower-carbon grade AISI 4130. AISI 4340 is a nickel-chromium-molybdenum steel that can be heat treated in thicker sections and to higher strength levels than AISI 4140. AISI 8630, 8735, and 8740 are nickel-chromium-molybdenum steels that are considered alternates to AISI 4130, 4135, and 4140, respectively. There are a number of steels available with compositions that represent modifications to the AISI grades described above. Four of the steels that have been used rather extensively at Ftu = 220 ksi are D6AC, Hy-Tuf, 4330V, and 4335V. It should be noted that this strength level is not used for AISI 4340 due to embrittlement encountered during tempering in the range of 500E to 700EF. In addition, AISI 4340 and 300M are utilized at strength levels of Ftu = 260 ksi or higher. The alloys, AISI 4340, D6AC, 4330V, 4335V, and 300M, are available in the consumable electrode-melted grade. Material specifications for these steels are presented in Tables 2.3.1.0(a) and 2.3.1.0(b). The room temperature mechanical and physical properties for these steels are presented in Tables 2.3.1.0(c) through 2.3.1.0(g). Mechanical properties for heat-treated materials are valid only for steel heat treated to produce a quenched structure containing 90 percent or more martensite at the center. Figure 2.3.1.0 contains elevated temperature curves for the physical properties of AISI 4130 and AISI 4340 steels. 2.3.1.1 AISI Low-Alloy Steels — Elevated temperature curves for heat-treated AISI low-alloy steels are presented in Figures 2.3.1.1.1 through 2.3.1.1.4. These curves are considered valid for each of these steels in each heat-treated condition but only up to the maximum temperatures listed in Table 2.3.0.3. 2.3.1.2 AISI 4130 and 8630 Steels — Typical stress-strain and tangent-modulus curves for AISI 8630 are shown in Figures 2.3.1.2.6(a) through 2.3.1.2.6(c). Best-fit S/N curves for AISI 4130 steel are presented in Figures 2.3.1.2.8(a) through 2.3.1.2.8(h). 2.3.1.3 AISI 4340 Steel — Typical stress-strain and tangent-modulus curves for AISI 4340 are shown in Figures 2.3.1.3.6(a) through 2.3.1.3.6(c). Typical biaxial stress-strain curves and yield-stress envelopes for AISI 4340 alloy steel are presented in Figures 2.3.1.3.6(d) through 2.3.1.3.6(g). Best-fit S/N curves for AISI 4340 are presented in Figures 2.3.1.3.8(a) through 2.3.1.3.8(o). 2.3.1.4 300M Steel — Best-fit S/N curves for 300M steel are presented in Figures 2.3.1.4.8(a) through 2.3.1.4.8(d). Fatigue crack propagation data for 300M are shown in Figure 2.3.1.4.9. 2.3.1.5 Figure 2.3.1.5.9.
D6AC Steel — Fatigue crack propagation data for D6AC steel are presented in
2-19
MMPDS-06 1 April 2011 Table 2.3.1.0(a). Material Specifications for Air-Melted, Low-Alloy Steels Form Alloy
Sheet, strip, and plate a
a
Bars and Forgings b
Tubing a
a
4130
AMS 6350 , AMS 6351 , AMS6345
AMS-S-6758 , AMS 6348 , AMS 6370a, AMS 6528a,, AMS 6346
AMS 6371 , AMS 6360, AMS 6361, AMS 6362, AMS 6373, AMS 6374
8630
...
MIL-S-6050b, AMS 6280a
AMS 6281a
4135
AMS 6352a
...
AMS 6372a, AMS 6365,
8735
AMS 6357a
AMS 6320a
AMS 6282a
4140
AMS 6395a
AMS 6382a, AMS 6349a, AMS AMS 6381a 6529a
4340
AMS 6359a
AMS 6415a, AMS 6484a
AMS 6415a, AMS 6484a
8740
AMS 6358a
AMS 6327, AMS 6322a
AMS 6323a
4330V
...
AMS 6427a
AMS 6427a
4335V
AMS 6433
AMS 6430
AMS 6430
a b
Specification does not contain minimum mechanical properties. Inactive for new design.
Table 2.3.1.0(b). Material Specifications for Consumable Electrode-Melted, LowAlloy Steels Form Alloy
Sheet, Strip, and Plate
4340
AMS 6454
D6AC
a
Bar and Forgings
Tubing
AMS 6414
AMS 6414
AMS 6439
AMS 6431, AMS 6439
AMS 6431
4330V
...
AMS 6411, AMS 6340
AMS 6411, AMS 6340
Hy-Tuf
...
AMS 6425
AMS 6425
4335V
AMS 6435
AMS 6429
AMS 6429
300M (0.40C)
...
AMS 6417
AMS 6417
300M ... AMS 6419, AMS 6257 (0.42C) a Specification does not contain minimum mechanical properties.
2-20
AMS 6419, AMS 6257
MMPDS-06 1 April 2011 Table 2.3.1.0(c1). Design Mechanical and Physical Properties of Air-Melted, Low-Alloy Steels Alloy . . . . . . . . . . . . . . . . . . . . .
AISI 4130
Specification [see Tables 2.3.1.0(a) and (b)] . . . . . . . . . .
AMS 6374
Form . . . . . . . . . . . . . . . . . . . . .
Tubing
AISI 4130
AISI 4135
AMS 6345 AMS 6360 AMS 6373
AMS 6365
Sheet, Strip, Plate, and Tubing
Tubing
Normalized and tempered, stress relievedb Condition . . . . . . . . . . . . . . . . . HT-95
HT-95a
HT-90a
HT-100
HT-95
Thickness or diameter, in. . . . .
all
#0.188
>0.188
#0.188
>0.188
Basis . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
Ftu, ksi . . . . . . . . . . . . . . . . . .
95
95
90
100
95
Fty, ksi . . . . . . . . . . . . . . . . . .
75
75
70
85
80
Fcy, ksi . . . . . . . . . . . . . . . . . .
75
75
70
89
84
Fsu, ksi . . . . . . . . . . . . . . . . . .
57
57
54
60
57
(e/D = 1.5) . . . . . . . . . . . . . .
...
...
...
...
...
(e/D = 2.0) . . . . . . . . . . . . . .
200
200
190
190
180
(e/D = 1.5) . . . . . . . . . . . . . .
...
...
...
...
...
(e/D = 2.0) . . . . . . . . . . . . . .
129
129
120
146
137
e, percent . . . . . . . . . . . . . . . .
12
Mechanical Properties:
Fbru, ksi:
Fbry, ksi:
See Table 2.3.1.0(d)
E, 103 ksi . . . . . . . . . . . . . . . .
29.0
Ec, 103 ksi . . . . . . . . . . . . . . .
29.0
G, 103 ksi . . . . . . . . . . . . . . . .
11.0
µ ......................
0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . .
0.283
C, K, and α . . . . . . . . . . .
See Figure 2.3.1.0
Last Revised: 04-2009, MMPDS-04CN1, Item 08-16. a Mechanical properties are based on MIL-T-6736. b Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing.
2-21
MMPDS-06 1 April 2011 Table 2.3.1.0(c2). Design Mechanical and Physical Properties of Air-Melted, Low-Alloy Steels
Alloy . . . . . . . . . . . . . . . . . . Specification [see Tables 2.3.1.0(a) and 2.3.1.0(b)] . .
AISI 4130 AMS 6361
Form . . . . . . . . . . . . . . . . . .
AMS 6362 Tubing
Quenched and temperedb Condition . . . . . . . . . . . . . . HT-125a
HT-150a
#0.188
#0.188
S
S
Ftu, ksi . . . . . . . . . . . . . . .
125
150
Fty, ksi . . . . . . . . . . . . . . .
100
135
Fcy, ksi . . . . . . . . . . . . . . .
109
141
Fsu, ksi . . . . . . . . . . . . . . .
75
90
(e/D = 1.5) . . . . . . . . . . .
194
231
(e/D = 2.0) . . . . . . . . . . .
251
285
(e/D = 1.5) . . . . . . . . . . .
146
210
(e/D = 2.0) . . . . . . . . . . .
175
232
Thickness or diameter, in. Basis . . . . . . . . . . . . . . . . . . Mechanical Properties:
Fbru, ksi:
Fbry, ksi:
e, percent . . . . . . . . . . . . .
See Table 2.3.1.0(e)
E, 103 ksi . . . . . . . . . . . . .
29.0
Ec, 103 ksi . . . . . . . . . . . .
29.0
G, 103 ksi . . . . . . . . . . . . .
11.0
µ ...................
0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . .
0.283
C, K, and α . . . . . . . . . . .
See Figure 2.3.1.0
Last Revised: Apr-2009, MMPDS-04CN1, Item 08-16 a Mechanical properties were established under MIL-T-6736 b Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing.
2-22
MMPDS-06 1 April 2011 Table 2.3.1.0(c3). Design Mechanical and Physical Properties of Air-Melted, Low-Alloy Steels
Alloy . . . . . . . . . . . . . . . . . . .
AISI 8630
AISI 8740
Specification [see Tables 2.3.1.0(a) and 2.3.1.0(b)] . . . .
MIL-S-6050a
AMS 6327
Form . . . . . . . . . . . . . . . . . . . .
Bars and forgings
Condition . . . . . . . . . . . . . . . .
Quenched and temperedb
Thickness or diameter, in. . . .
#1.500
#1.750
Basis . . . . . . . . . . . . . . . . . . . .
S
S
Ftu, ksi . . . . . . . . . . . . . . . . .
125
125
Fty, ksi . . . . . . . . . . . . . . . . .
100
100
Fcy, ksi . . . . . . . . . . . . . . . . .
109
109
Fsu, ksi . . . . . . . . . . . . . . . . .
75
75
(e/D = 1.5) . . . . . . . . . . . . .
194
194
(e/D = 2.0) . . . . . . . . . . . . .
251
251
(e/D = 1.5) . . . . . . . . . . . . .
146
146
(e/D = 2.0) . . . . . . . . . . . . .
175
175
Mechanical Properties:
Fbru, ksi:
Fbry, ksi:
e, percent . . . . . . . . . . . . . . .
See Table 2.3.1.0(e)
E, 103 ksi . . . . . . . . . . . . . . .
29.0
Ec, 103 ksi . . . . . . . . . . . . . .
29.0
G, 103 ksi . . . . . . . . . . . . . . .
11.0
µ .....................
0.32
Physical Properties:
a b
ω, lb/in.3 . . . . . . . . . . . . . . .
0.283
C, K, and α . . . . . . . . . . . . .
See Figure 2.3.1.0
Inactive for new design. Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing.
2-23
MMPDS-06 1 April 2011
Table 2.3.1.0(d). Minimum Elongation Values for Low-Alloy Steels in Condition N Elongation, percent Full tube
Strip
Less than 0.062 . . . . . . . . . . . . . . . . . .
--
8
Over 0.062 to 0.125 incl. . . . . . . . . . .
--
10
Over 0.125 to 0.187 incl. . . . . . . . . . .
--
12
Over 0.187 to 0.249 incl. . . . . . . . . . .
--
15
Over 0.249 to 0.749 incl. . . . . . . . . . .
--
16
Over 0.749 to 1.500 incl. . . . . . . . . . .
--
18
Up to 0.035 incl. (wall) . . . . . . . . . . .
10
5
Over 0.035 to 0.188 incl. . . . . . . . . . .
12
7
Over 0.188 . . . . . . . . . . . . . . . . . . . . .
15
10
Form
Thickness, in.
Sheet, strip, and plate (T) . . . . . . . .
Tubing (L) . . . . . . . . . . . . . . . . . . . .
Table 2.3.1.0(e). Minimum Elongation Values for Heat-Treated, Low-Alloy Steels Elongation in 2 in., percent Sheet specimens
Round specimens (L)
Tubing (L)
Reduction of area, percent
Less than 0.032 in. thick
0.032 to 0.060 in. thick
Over 0.060 in. thick
Ftu, ksi
Elongation in 4D, percent
125
17
55
5
7
140
15
53
4
150
14
52
160
13
180 200
Full tube
Strip
10
12
7
6
9
10
6
4
6
9
10
6
50
3
5
8
9
6
12
47
3
5
7
8
5
10
43
3
4
6
6
5
2-24
MMPDS-06 1 April 2011 Table 2.3.1.0(f1). Design Mechanical and Physical Properties of Low-Alloy Steels Alloy . . . . . . . . . . . . . . . Hy-Tuf
Specification . . . . . . . .
AMS 6425a
4330V
4335V
4335V
D6AC
AISI 4340
0.40C 300M
0.42C 300M
AMS 6411a AMS 6340
AMS 6430
AMS 6429a
AMS 6431a
AMS 6414a
AMS 6417a
AMS 6257a AMS 6419a
Form . . . . . . . . . . . . . . .
Bar, forging, tubing
Condition . . . . . . . . . . .
Quenched and temperedb
Thickness or diameter, in. . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent (S-Basis): L ............... LT . . . . . . . . . . . . . .
c
d
e
f
S
S
S
S
A
B
S
S
S
220 185 193 132
220 185 193 132
205 190 199 123
240 210 220 144
220g 190g 198h 132h
233 209 ... ...
260 217 235 156
270 220 236 162
280 230 247 168
297 385
297 385
315 389
369 465
297h 385h
... ...
347 440
414i 506i
430i 525i
267 294
267 294
296 327
327 361
274h 302h
... ...
312 346
344i 379i
360 i 396 i
10 5a
10 5a
10 7
10 7
12h 9h
... ...
10 ...
8 ...
7 ...
E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................
29.0 29.0 11.0 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . C, K, and α . . . . . . . .
0.283 See Figure 2.3.1.0
Issued: Jan 1970, MIL-HDBK-5A, CN4, Item 66-6; Last Revised: Apr 2005, MMPDS-02, Item 04-23 a Applicable to consumable-electrode vacuum-melted material only. b Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. c Thickness# 1.70 in. for quenching in molten salt at desired tempering temperature (martempering); #2.50 in. for quenching in oil at flow rate of 200 feet/min. d Thickness# 3.50 in. for quenching in molten salt at desired tempering temperature (martempering); #5.00 in. for quenching in oil at flow rate of 200 feet/min. e Thickness# 1.70 in. for quenching in molten salt at desired tempering temperature (martempering); #2.50 in. for quenching in oil at flow rate of 200 feet/min.; #3.50 in. for quenching in water at a flow rate of 200 feet/min. f Thickness #5.00 in. for quenching in oil at a flow rate of 200 feet/min. g A-Basis value is specification minimum. The rounded T99 for Ftu = 226 ksi and for Fty = 201 ksi. h S-Basis. i Bearing values are “dry pin” values per Section 1.4.7.1.
2-25
MMPDS-06 1 April 2011
Table 2.3.1.0(f2). Design Mechanical and Physical Properties of Low-Alloy Steels Alloy . . . . . . . . . . . . . . . . . . . . .
4335V
D6AC
Specification . . . . . . . . . . . . . . .
AMS 6435a
AMS 6439
Form . . . . . . . . . . . . . . . . . . . . .
Sheet, strip, and plate
Condition . . . . . . . . . . . . . . . . .
Quenched and temperedb
Thickness or diameter, in. . . . .
c
#0.250
$0.251
Basis . . . . . . . . . . . . . . . . . . . . .
S
S
S
Ftu, ksi . . . . . . . . . . . . . . . . . .
220
215
224
Fty, ksi . . . . . . . . . . . . . . . . . .
190
190
195
Fcy, ksi . . . . . . . . . . . . . . . . . .
198
198
203
Fsu, ksi . . . . . . . . . . . . . . . . . .
132
129
134
(e/D = 1.5) . . . . . . . . . . . . . .
297
290
302
(e/D = 2.0) . . . . . . . . . . . . . .
385
376
392
(e/D = 1.5) . . . . . . . . . . . . . .
274
274
281
(e/D = 2.0) . . . . . . . . . . . . . .
302
302
310
L .....................
10
...
...
LT . . . . . . . . . . . . . . . . . . . .
7
7
7
Mechanical Properties:
Fbru, ksi:d
d
Fbry, ksi:
e, percent:
E, 103 ksi . . . . . . . . . . . . . . . .
29.0
Ec, 103 ksi . . . . . . . . . . . . . . .
29.0
G, 103 ksi . . . . . . . . . . . . . . . .
11.0
µ ......................
0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . .
0.283
a
Current specification minimums are higher than shown. It is anticipated that minimums will be updated to correspond with the AMS specification. b Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. c Thickness #1.70 in. for quenching in molten salt at desired tempering temperature (martempering); #2.50 in. for quenching in oil at a flow rate of 200 feet/min. d Bearing values are “dry pin” values per Section 1.4.7.1.
2-26
MMPDS-06 1 April 2011 Table 2.3.1.0(g1). Design Mechanical and Physical Properties of Low-Alloy Steels Alloy . . . . . . . . . . . . . . . . . . . .
AISI 4130
AISI 4135
AISI 8630
AISI 8735
Specification [see Tables 2.3.1.0(a) and 2.3.1.0(b)] . . . .
AMS 6348 AMS 6350 AMS 6528 AMS-S-6758a
AMS 6352 AMS 6372
AMS 6281
AMS 6357
Form . . . . . . . . . . . . . . . . . . . .
Sheet, strip, plate, bars, and forgings
Sheet, strip, plate, and tubing
Tubing
Sheet, strip, and plate
Normalized and tempered, stress relievedb
Condition . . . . . . . . . . . . . . . . Thickness or diameter, in. . . .
#0.188
>0.188
#0.188
>0.188
#0.188 >0.188 #0.188
>0.188
Sc
Basis . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . .
95
90
95
90
95
90
95
90
Fty, ksi . . . . . . . . . . . . . . . . .
75
70
75
70
75
70
75
70
Fcy, ksi . . . . . . . . . . . . . . . . .
75
70
75
70
75
70
75
70
Fsu, ksi . . . . . . . . . . . . . . . . .
57
54
57
54
57
54
57
54
(e/D = 1.5) . . . . . . . . . . . . .
...
...
...
...
...
...
...
...
(e/D = 2.0) . . . . . . . . . . . . .
200
190
200
190
200
190
200
190
(e/D = 1.5) . . . . . . . . . . . . .
...
...
...
...
...
...
...
...
(e/D = 2.0) . . . . . . . . . . . . .
129
120
129
120
129
120
129
120
Fbru, ksi:
Fbry, ksi:
e, percent . . . . . . . . . . . . . . .
See Table 2.3.1.0(d)
3
E, 10 ksi . . . . . . . . . . . . . . .
29.0
Ec, 103 ksi . . . . . . . . . . . . . .
29.0
3
G, 10 ksi . . . . . . . . . . . . . . .
11.0
µ .....................
0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . .
0.283
C, K, and α . . . . . . . . . . . . . Last Revised: Apr 2011, MMPDS-06, Item 08-02
See Figure 2.3.1.0
a Inactive for new design. Mechanical properties were established under MIL-S-6758. b Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. c There is no statistical basis (T99 or T90) or material specification basis (S) to support the mechanical property values in this table. See Heat Treatment in Section 2.3.0.2. Values shown are only applicable to user heat treated parts when processed per AMS 2759, or equivalent. Minimum properties must be substantiated by tensile testing of production material after heat treatment. Hardness measurements alone are not adequate to substantiate these minimum mechanical properties.
2-27
MMPDS-06 1 April 2011 Table 2.3.1.0(g2). Design Mechanical and Physical Properties of Low-Alloy Steels Alloy . . . . . . . . . . . . . . . . .
4330V
See steels listed in Table 2.3.0.2 for the applicable strength levels
Specification . . . . . . . . . .
AMS 6427
See Tables 2.3.1.0(a) and 2.3.1.0(b)
Form . . . . . . . . . . . . . . . . .
All wrought forms
Condition . . . . . . . . . . . . .
Quenched and tempereda
Thickness or diameter, in.
b
# 2.5
c
Sd
Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent: L ................. LT . . . . . . . . . . . . . . . .
220 185 193 132
125 100 109 75
140 120 131 84
150 132 145 90
160 142 154 96
180 163 173 108
200 176 181 120
297 385
194 251
209 273
219 287
230 300
250 326
272 355
267 294
146 175
173 203
189 218
202 231
230 256
255 280
10 5a
See Table 2.3.1.0(e)
E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ..................
29.0 29.0 11.0 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . . Last Revised: Apr 2011, MMPDS-06, Item 08-02
0.283 See Figure 2.3.1.0
a
Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. b For Ftu # 180 ksi, thickness # 0.50 in. for AISI 4130 and 8630; # 0.80 in. for AISI 8735, 4135, and 8740; # 1.00 in. for AISI 4140; # 1.70 in. for AISI 4340, 4330V, 4335V, and Hy-Tuf [Quenched in molten salt at desired tempering temperature (martempering)]; # 2.50 in. for AISI 4340, 4330V, 4335V, and Hy-Tuf (Quenched in oil at a flow rate of 200 feet/min.); # 3.50 in. for AISI 4340 (Quenched in water at a flow rate of 200 feet/min.); # 5.00 in. for D6AC (Quenched in oil at a flow rate of 200 feet/min.) c For Ftu = 200 ksi AISI 4130, 8630, 4135, 8740 not available; thickness # 0.80 in. for AISI 8740; # 1.00 in. for AISI 4140; # 1.70 in. for AISI 4340, 4330V, 4335V, and Hy-Tuf [Quenched in molten salt at desired tempering temperature (martempering)]; # 2.50 in. for AISI 4340, 4330V, 4335V, and Hy-Tuf (Quenched in oil at a flow rate of 200 feet/min.); # 3.50 in. for AISI 4340 (Quenched in water at a flow rate of 200 feet/min.); # 5.00 in. for D6AC (Quenched in oil at a flow rate of 200 feet/min.) d There is no statistical basis (T99 or T90) or material specification basis (S) to support the mechanical property values in this table. See Heat Treatment in Section 2.3.0.2. Values shown are only applicable to user heat treated parts when processed per AMS 2759, or equivalent. Minimum properties must be substantiated by tensile testing of production material after heat treatment. Hardness measurements alone are not adequate to substantiate these minimum mechanical properties.
2-28
MMPDS-06 1 April 2011
45
0.9
35
0.7
30
0.5 0.4
K, Btu/[(hr)(ft2)(F)/(ft]
0.8
0.6
C, Btu/(lb)(F)
40
9 α - Between 70 oF and indicated temperature K - At indicated temperature C - At indicated temperature
8 α, 4130 7
α, 4340
6 K, 4130
25
5
20
4 K, 4340
15
3
0.3
10
2
0.2
5
0.1
0 -400
1
C, 4130
-200
0
200
400
600
800
α, 10-6in./in./F
1.0
1000
1200
1400
0 1600
Temperature, oF
Figure 2.3.1.0. Effect of temperature on the physical properties of AISI 4130 and AISI 4340 alloy steels.
2-29
MMPDS-06 1 April 2011
200 Strength at temperature Exposure up to 1/2 hr
180
Percentage of room Temperature Strength
160 140 120 Fty
100 80 Ftu
60 Fty
40 20 0 -400
-200
0
200
400
600
800
1000
1200
Temperature, F Figure 2.3.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and tensile yield strength (Fty) of AISI low-alloy steels (all products).
2-30
MMPDS-06 1 April 2011 100 Strength at temperature Exposure up to ½ hr
Percentage of Room Temperature Strength
80
60
Fcy 40 Fsu
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.3.1.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of heat-treated AISI low-alloy steels (all products).
100 Fbry
Strength at temperature Exposure up to ½ hr
Percentage of Room Temperature Strength
80 Fbru Fbry 60
40
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.3.1.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of heat-treated AISI low-alloy steels (all products).
2-31
MMPDS-06 1 April 2011
120
110
Percentage of Room Temperature Modulus
E & Ec 100
90
80
Modulus at temperature Exposure up to 1/2 hr TYPICAL
70
60 -200
0
200
400
600
800
1000
Temperature, °F
Figure 2.3.1.1.4. Effect of temperature on the tensile and compressive modulus (E and Ec) of AISI low-alloy steels.
Figure 2.3.1.2.6(a). Typical tensile stress-strain curves at room temperature for heat-treated AISI 8630 alloy steel (all products).
2-32
MMPDS-06 1 April 2011 200
150-ksi level
150
Stress, ksi
125-ksi level
100 Normalized
50 TYPICAL
0 0
5
10
15
20
25
30
3 Compressive Tangent Modulus, 10 ksi
Figure 2.3.1.2.6(b). Typical compressive tangent-modulus curves at room temperature for heat-treated AISI 8630 alloy steel (all products).
120 500 °F 100 850 °F
Stress, ksi
80 1000 °F 60
Ramberg-Osgood 40
n (500 °F) = 9.0 n (850 °F) = 19 n (1000 °F) = 4.4 TYPICAL
20
1/2-hr exposure
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.3.1.2.6(c). Typical tensile stress-strain curves at elevated temperatures for heat-treated AISI 8630 alloy steel, Ftu = 125 ksi (all products).
2-33
MMPDS-06 1 April 2011
Figure 2.3.1.2.8(a). Best-fit S/N curves for unnotched AISI 4130 alloy steel sheet, normalized, longitudinal direction.
Correlative Information for Figure 2.3.1.2.8(a) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi TYS, ksi Temp., EF 117 99 RT
Specimen Details:
Unnotched 2.88-3.00 inches gross width 0.80-1.00 inch net width 12.0 inch net section radius
Surface Condition: References:
Test Parameters: Loading - Axial Frequency - 1100-1800 cpm Temperature - RT Environment - Air No. of Heats/Lots: Not specified Equivalent Stress Equations:
Electropolished
For stress ratios of -0.60 to +0.02 Log Nf = 9.65-2.85 log (Seq - 61.3) Seq = Smax (1-R)0.41 Std. Error of Estimate, Log (Life) = 0.21 Standard Deviation, Log (Life) = 0.45 R2 = 78%
3.2.3.1.8(a) and 3.2.3.1.8(f)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Sample Size = 23 For a stress ratio of -1.0 Log Nf = 9.27-3.57 log (Smax-43.3)
2-34
MMPDS-06 1 April 2011
Figure 2.3.1.2.8(b). Best-fit S/N curves for notched, Kt = 1.5, AISI 4130 alloy steel sheet, normalized, longitudinal direction.
Correlative Information for Figure 2.3.1.2.8(b) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi TYS, ksi 117 99 123
--
Test Parameters: Loading - Axial Frequency - 1100-1500 cpm Temperature - RT Environment - Air
Temp., EF RT (unnotched) RT (notched) Kt 1.5
No. of Heats/Lots: Not specified Equivalent Stress Equations: Log Nf = 7.94-2.01 log (Seq - 61.3) Seq = Smax (1-R)0.88 Std. Error of Estimate, Log (Life) = 0.27 Standard Deviation, Log (Life) = 0.67 R2 = 84%
Specimen Details:Edge Notched, Kt = 1.5 3.00 inches gross width 1.50 inches net width 0.76 inch notch radius Surface Condition:
Electropolished Sample Size = 21
Reference:
3.2.3.1.8(d) [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-35
MMPDS-06 1 April 2011
Figure 2.3.1.2.8(c). Best-fit S/N curves for notched, Kt = 2.0, AISI 4130 alloy steel sheet, normalized, longitudinal direction.
Correlative Information for Figure 2.3.1.2.8(c) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi TYS, ksi 117 99 120
Temp., EF RT (unnotched) RT (notched) Kt 2.0
--
Specimen Details:Notched, Kt = 2.0 Notch Gross Net Type Width Width Edge 2.25 1.500 Center 4.50 1.500 Fillet 2.25 1.500
Test Parameters: Loading - Axial Frequency - 1100-1800 cpm Temperature - RT Environment - Air No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 17.1-6.49 log (Seq) Seq = Smax (1-R)0.86 Std. Error of Estimate, Log (Life) = 0.19 Standard Deviation, Log (Life) = 0.78 R2 = 94%
Notch Radius 0.3175 1.500 0.1736
Sample Size = 107 Surface Condition: References:
Electropolished [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.3.1.8(b) and 3.2.3.1.8(f)
2-36
MMPDS-06 1 April 2011 . .
80
x
Maximum Stress, ksi
60
4130 Sheet Normalized, Kt=4.0, Edge and Fillet Notches, Mean Stress = 0.0 10.0 + 20.0 30.0 x Runout →
x
70
x x
+ ++
++
x +
+
x
+ + + ++
50
x+
x x
+
40
x x
x
x
+ + ++ +
+ +++
30
+ + +
+
→ →
20 10
x→ x→ + → + → + → + + → → + →
→ → → →
Note: Stresses are based on net section.
0 10 3
10 4
10 5
106
10 7
10 8
Fatigue Life, Cycles Figure 2.3.1.2.8(d). Best-fit S/N curves diagram for notched, Kt = 4.0, AISI 4130 alloy steel sheet, normalized, longitudinal direction. Correlative Information for Figure 2.3.1.2.8(d) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi TYS, ksi 117 99 120
—
Test Parameters: Loading - Axial Frequency - 1100-1800 cpm Temperature - RT Environment - Air
Temp., EF RT (unnotched) RT (notched) Kt = 4.0
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 12.6-4.69 log (Seq) Seq = Smax (1-R)0.63 Std. Error of Estimate, Log (Life) = 0.24 Standard Deviation, Log (Life) = 0.70 R2 = 88%
Specimen Details:Notched, Kt = 4.0 Notch Gross Net Notch Type Width Width Radius Edge 2.25 1.500 0.057 Edge 4.10 1.496 0.070 Fillet 2.25 1.500 0.0195
Sample Size = 87 Surface Condition: References:
Electropolished [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.3.1.8(b), 3.2.3.1.8(f), and 3.2.3.1.8(g)
2-37
MMPDS-06 1 April 2011
Figure 2.3.1.2.8(e). Best-fit S/N curves diagram for notched, Kt = 5.0, AISI 4130 alloy steel sheet, normalized, longitudinal direction.
Correlative Information for Figure 2.3.1.2.8(e) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi 117 120
TYS, ksi 99 —
Test Parameters: Loading - Axial Frequency - 1100-1500 cpm Temperature - RT Environment - Air
Temp., EF RT (unnotched) RT (notched) Kt = 5.0
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 12.0-4.57 log (Seq) Seq = Smax (1-R)0.56 Std. Error of Estimate, Log (Life) = 0.18 Standard Deviation, Log (Life) = 0.87 R2 = 96%
Specimen Details:Edge Notched, Kt = 5.0 2.25 inches gross width 1.50 inches net width 0.075 inch notch radius Surface Condition:
Electropolished Sample Size = 38
Reference:
3.2.3.1.8(c) [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-38
MMPDS-06 1 April 2011
Figure 2.3.1.2.8(f). Best-fit S/N curves for unnotched AISI 4130 alloy steel sheet, Ftu = 180 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.2.8(f) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi TYS, ksi 180 174
Test Parameters: Loading - Axial Frequency - 20-1800 cpm Temperature - RT Environment - Air
Temp., EF RT
Specimen Details:Unnotched 2.88 inches gross width 1.00 inch net width 12.0 inch net section radius Surface Condition: Reference:
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 20.3-7.31 log (Seq) Seq = Smax (1-R)0.49 Std. Error of Estimate, Log (Life) = 0.39 Standard Deviation, Log (Life) = 0.89 R2 = 81%
Electropolished
3.2.3.1.8(f)
Sample Size = 27 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-39
MMPDS-06 1 April 2011 . .
140 4130 Sht Hard, KT=2.0 EN Mean Stress 0.0 50.0
120
Runout
Maximum Stress, ksi
→
100
80 → →
60
40
→ → →
20
Note: Stresses are based on net section.
0 10 3
10 4
10 5
10 6
10 7
10 8
Fatigue Life, Cycles Figure 2.3.1.2.8(g). Best-fit S/N curves for notched, Kt = 2.0, AISI 4130 alloy steel sheet, Ftu = 180 ksi, longitudinal direction. Correlative Information for Figure 2.3.1.2.8(g) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi TYS, ksi 180 174
Test Parameters: Loading - Axial Frequency - 21-1800 cpm Temperature - RT Environment - Air
Temp., EF RT
Specimen Details:Edge Notched 2.25 inches gross width 1.50 inches net width 0.3175 inch notch radius Surface Condition: Reference:
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 8.87-2.81 log (Seq - 41.5) Seq = Smax (1-R)0.46 Std. Error of Estimate, Log (Life) = 0.18 Standard Deviation, Log (Life) = 0.77 R2 = 94%
Electropolished
3.2.3.1.8(f)
Sample Size = 19 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-40
MMPDS-06 1 April 2011
Figure 2.3.1.2.8(h). Best-fit S/N curves for notched, Kt = 4.0, AISI 4130 alloy steel sheet, Ftu = 180 ksi, longitudinal direction. Correlative Information for Figure 2.3.1.2.8(h) Product Form:
Sheet, 0.075 inch thick
Properties:
TUS, ksi TYS, ksi 180 174
Test Parameters: Loading - Axial Frequency - 23-1800 cpm Temperature - RT Environment - Air
Temp., EF RT
Specimen Details:Edge Notched 2.25 inches gross width 1.50 inches net width 0.057 inch notch radius Surface Condition: Reference:
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 12.4-4.45 log (Seq) Seq = Smax (1-R)0.60 Std. Error of Estimate, Log (Life) = 0.11 Standard Deviation, Log (Life) = 0.90 R2 = 98%
Electropolished
3.2.3.1.8(f)
Sample Size = 20 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-41
MMPDS-06 1 April 2011 200 200-ksi level 180-ksi level 150
Stress, ksi
140-ksi level 100
50
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.3.1.3.6(a). Typical tensile stress-strain curves at room temperature for heattreated AISI 4340 alloy steel (all products).
300
-312 °F
Longitudinal 1/2-hr exposure
-110 °F
250 RT
Stress, ksi
200
150
Ramberg-Osgood 100
n (RT) = 7.0 n (-110 °F) = 8.2 n (-312 °F) = 8.9 TYPICAL
50
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.3.1.3.6(b). Typical tensile stress-strain curves at cryogenic and room temperature for AISI 4340 alloy steel bar, Ftu = 260 ksi.
2-42
MMPDS-06 1 April 2011
250
Stress, ksi
200
150
100
Ramberg-Osgood
50
n (RT) = 13 TYPICAL 0 0
2
4
6
8
10
12
20
25
30
Strain, 0.001 in./in.
0
5
10
15
Compressive Tangent Modulus, 103 ksi
Figure 2.3.1.3.6(c). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for AISI 4340 alloy steel bar, Ftu = 260 ksi.
2-43
MMPDS-06 1 April 2011
Figure 2.3.1.3.6(d). Typical biaxial stress-strain curves at room temperature for AISI 4340 alloy steel (machined thin-wall cylinders, axial direction = longitudinal direction of bar stock), Ftu = 180 ksi. A biaxial ratio, B, denotes the ratio of hoop stresses to axial stresses.
2-44
MMPDS-06 1 April 2011
B= 4
OO 120
3
2
1.5
1
Axial Stress, FA, percent Fty
100
80
0.67
60
0.50
40
0.33 0.25
20
Cylindrical Specimens 0 0
20
40
60
80
100
0 120
Hoop Stress, FH, percent Fty
Figure 2.3.1.3.6(e). Biaxial yield-stress envelope at room temperature for AISI 4340 alloy steel (machined thin-wall cylinders, axial direction = longitudinal direction of bar stock), Ftu = 180 ksi, Fty measured in the hoop direction.
2-45
MMPDS-06 1 April 2011
300
B=
2 0.5
Maximum Principal Stress, ksi
250
1 0, ∞
200
150
100
50
0 0
4
8
12
16
20
24
Strain, 0.001 in./in.
Figure 2.3.1.3.6(f). Typical biaxial stress-strain curves at room temperature for AISI 4340 alloy steel (machined thin-wall cylinders, axial direction = longitudinal direction of bar stock), Ftu = 260 ksi. A biaxial ratio, B, of zero corresponds to the hoop direction.
2-46
MMPDS-06 1 April 2011
B= 4
OO 120
3
2
1.5
1
Axial Stress, FA, percent Fty
100
80
0.67
60
0.50
40
0.33 0.25
20
Cylindrical Specimens 0 0
20
40
60
80
100
0 120
Hoop Stress, FH, percent Fty
Figure 2.3.1.3.6(g). Biaxial yield-stress envelope at room temperature for AISI 4340 alloy steel (machined thin-wall cylinders, axial direction = longitudinal direction of bar stock), Ftu = 260 ksi, Fty measured in the hoop direction.
2-47
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(a). Best-fit S/N curves for unnotched AISI 4340 alloy steel bar, Ftu = 125 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(a) Product Form: Rolled bar, 1.125-inch diameter, air melted. Properties:
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - RT Atmosphere - Air
TUS, ksi TYS, ksi Temp., EF 125 — RT (unnotched) 150 — RT (notched)
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 14.96-6.46 log (Seq-60) Seq = Smax (1-R)0.70 Std. Error of Estimate, Log (Life) = 0.35 Standard Deviation, Log (Life) = 0.77 R2 = 75%
Specimen Details: Unnotched 0.400 inch diameter Surface Condition: Hand polished to RMS 10 Reference:
2.3.1.3.8(a) Sample Size = 9 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-48
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(b). Best-fit S/N curves for notched, Kt = 3.3, AISI 4340 alloy steel bar, Ftu = 125 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(b) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - RT Atmosphere - Air
TUS, ksi TYS, ksi Temp., EF 125 — RT (unnotched) 150 — RT (notched)
No. of Heat/Lots: 1
Specimen Details: Notched, V-Groove, Kt=3.3 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 9.75-3.08 log (Seq-20.0) Seq = Smax (1-R)0.84 Std. Error of Estimate, Log (Life) = 0.40 Standard Deviation, Log (Life) = 0.90 R2 = 80%
Surface Condition: Lathe turned to RMS 10
Sample Size = 11
Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(a)
2-49
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(c). Best-fit S/N curves for unnotched AISI 4340 alloy steel bar, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(c) Product Form: Rolled bar, 1.12- inch diameter, air melted Properties:
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - RT Atmosphere - Air
TUS, ksi TYS, ksi Temp., EF 158 147 RT (unnotched) 190 — RT (notched)
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 10.76-3.91 log (Seq - 101.0) Seq = Smax (1-R)0.77 Std. Error of Estimate, Log (Life) = 0.17 Standard Deviation, Log (Life) = 0.33 Adjusted R2 Statistic = 73%
Specimen Details: Unnotched 0.400-inch diameter Surface Condition: Hand polished to RMS 10 Reference:
2.3.1.3.8(b) Sample Size = 9 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-50
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(d). Best-fit S/N curves for notched, Kt = 3.3, AISI 4340 alloy steel bar, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(d) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
TUS, ksi 158 190
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - RT Atmosphere - Air
TYS, ksi Temp.,EF 147 RT (unnotched) — RT (notched)
No. of Heat/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 3.3 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 7.90-2.00 log (Seq-40.0) Seq = Smax (1-R)0.60 Std. Error of Estimate, Log (Life) = 0.27 Standard Deviation, Log (Life) = 0.74 R2 = 86%
Surface Condition: Lathe turned to RMS 10
Sample Size = 11
Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(a)
2-51
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(e). Best-fit S/N curves for unnotched AISI 4340 alloy steel bar at 600E EF, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(e) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - 600EF Atmosphere - Air
TUS, ksi TYS, ksi Temp., EF 158 147 RT (unnotched) 153 121 600 (unnotched) 190 — RT (notched) 176 — 600 (notched)
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 22.36-9.98 log (Seq-60.0) Seq = Smax (1-R)0.66 Std. Error of Estimate Log (Life) = 0.24 Standard Deviation, Log (Life) = 1.08 R2 = 95%
Specimen Details: Unnotched 0.400-inch diameter
Sample Size = 11 Surface Condition: Hand polished to RMS 10 Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(b)
2-52
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(f). Best-fit S/N curves for notched, Kt = 3.3, AISI 4340 alloy steel bar at 600E EF, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(f) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
TUS, ksi 158 153 190 176
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - 600E Atmosphere - Air
TYS, ksi Temp., EF 147 RT (unnotched) 121 600 (unnotched) — RT (notched) — 600 (notched)
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 10.39-3.76 log (Seq-30.0) Seq = Smax (1-R)0.62 Std. Error of Estimate, Log (Life) = 0.36 Standard Deviation, Log (Life) = 1.06 R2 = 89%
Specimen Details: Notched, V-Groove, Kt = 3.3 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Sample Size = 11 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Surface Condition: Lathe turned to RMS 10 Reference:
2.3.1.3.8(b)
2-53
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(g). Best-fit S/N curves for unnotched AISI 4340 alloy steel bar at 800E EF, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(g) Product Form: Rolled bar, 1.125 inch diameter, air melted Properties:
TUS, ksi 158 125 190 154
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - 800EF Atmosphere - Air
TYS, ksi Temp., EF 147 RT (unnotched) 101 800 (unnotched) — RT (notched) — 800 (notched)
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 17.53-7.35 log (Seq-60.0) Seq = Smax (1-R)0.66 Std. Error of Estimate, Log (Life) = 0.42 Standard Deviation, Log (Life) = 0.99 R2 = 82%
Specimen Details: Unnotched 0.400-inch diameter
Sample Size = 15 Surface Condition: Hand polished to RMS 10 Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(b)
2-54
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(h). Best-fit S/N curves for notched, Kt = 3.3, AISI 4340 alloy steel bar at 800E EF, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(h) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
TUS, ksi 158 125 190 154
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - 800EF Atmosphere - Air
TYS, ksi Temp., EF 147 RT (unnotched) 101 800 (unnotched) — RT (notched) — 800 (notched)
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 7.31-2.01 log (Seq-48.6) Seq = Smax (1-R)0.92 Std. Error of Estimate, Log (Life) = 0.60 Standard Deviation, Log (Life) = 1.14 R2 = 72%
Specimen Details: Notched, V-Groove, Kt = 3.3 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Sample Size = 9 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Surface Condition: Lathe turned to RMS 10 Reference:
2.3.1.3.8(b)
2-55
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(i). Best-fit S/N curves for unnotched AISI 4340 alloy steel bar at 1000E EF, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(i) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
TUS, ksi 158 81 190 98
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - 1000EF Atmosphere - Air
TYS, ksi Temp., EF 147 RT (unnotched) 63 1000EF (unnotched) — RT (notched) — 1000EF (notched)
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 16.85-7.02 log (Seq-40.0) Seq = Smax (1-R)0.80 Std. Error of Estimate, Log (Life) = 0.42 Standard Deviation, Log (Life) = 1.20 R2 = 88%
Specimen Details: Unnotched 0.400-inch diameter
Sample Size = 13 Surface Condition: Hand polished to RMS 10 Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(b)
2-56
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(j). Best-fit S/N curves for notched, Kt = 3.3, AISI 4340 alloy steel bar at 1000E EF, Ftu = 150 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(j) Product Form: Rolled bar, 1.125-inch diameter, air melted
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - 1000EF Atmosphere - Air
Properties: TUS, ksi TYS, ksi Temp., EF 158 147 RT (unnotched) 81 63 1000EF (unnotched) 190 — RT (notched) 98 — 1000EF (notched) Specimen Details: Notched, V-Groove, Kt = 3.3 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
No. of Heat/Lots: 1 Equivalent Stress Equation: Log Nf = 9.76-3.75 log (Seq-30.0) Seq = Smax (1-R)0.50 Std. Error of Estimate, Log (Life) = 0.40 Standard Deviation, Log (Life) = 1.22 R2 = 89% Sample Size = 12
Surface Condition: Lathe turned to RMS 10 Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(b)
2-57
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(k). Best-fit S/N curves for unnotched AISI 4340 alloy steel bar and die forging, Ftu = 200 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(k) Product Form: Rolled bar, 1.125-inch diameter, air melted Die forging (landing gear B-36 aircraft), air melted Properties:
TUS, ksi 208, 221 251
TYS, ksi 189, 217 —
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - RT Atmosphere - Air
Temp., EF RT (unnotched) RT (notched)
Specimen Details: Unnotched 0.300- and 0.400-inch diameter Surface Condition:
No. of Heat/Lots: 2 Equivalent Stress Equation: Log Nf = 9.31-2.73 log (Seq-93.4) Seq = Smax (1-R)0.59 Std. Error of Estimate, Log (Life) = 0.49 Standard Deviation, Log (Life) = 0.93 R2 = 72%
Hand polished to RMS 5-10 Sample Size = 26
References:
2.3.1.3.8(a) and 2.3.1.3.8(c) [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-58
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(l). Best-fit S/N curves for notched, Kt = 3.3, AISI 4340 alloy steel bar, Ftu = 200 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(l) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
TUS, ksi TYS, ksi 208 — 251
—
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - RT Atmosphere - Air
Temp., EF RT (unnotched) RT (notched)
No. of Heat/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 3.3 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 7.52-1.96 log (Seq-31.2) Seq = Smax (1-R)0.65 Std. Error of Estimate, Log (Life) = 0.16 Standard Deviation, Log (Life) = 0.62 R2 = 93%
Surface Condition: Lathe turned to RMS 10
Sample Size = 26
Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(a)
2-59
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(m). Best-fit S/N curves for unnotched AISI 4340 alloy steel bar and billet, Ftu = 260 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(m) Product Form: Rolled bar, 1.125-inch diameter, air melted Billet, 6 inches RCS, air melted Properties:
TUS, ksi 266, 291 352
TYS, ksi 232 —
Test Parameters: Loading - Axial Frequency - 1800 to 2500 cpm Temperature - RT Atmosphere - Air
Temp., EF RT (unnotched) RT (notched)
No. of Heat/Lots: 2
Surface Condition: Hand polished to RMS 10
Equivalent Stress Equation: Log Nf = 11.62-3.75 log (Seq-80.0) Seq = Smax (1-R)0.44 Std. Error of Estimate, Log (Life) = 0.64 Standard Deviation, Log (Life) = 0.86 R2 = 45%
References:
Sample Size = 41
Specimen Details: Unnotched 0.20- and 0.40-inch diameter
2.3.1.3.8(a) and 2.3.1.3.8(d)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-60
MMPDS-06 1 April 2011
Figure 2.3.1.3.8(n). Best-fit S/N curves for notched, Kt = 2.0, AISI 4340 alloy steel bar, Ftu = 260 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(n) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
TUS, ksi 266 390
Test Parameters: Loading - Axial Frequency - 2000 to 2500 cpm Temperature - RT Atmosphere - Air
TYS, ksi Temp., EF 232 RT (unnotched) — RT (notched)
No. of Heat/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 2.0 0.300-inch gross diameter 0.220-inch net diameter 0.030-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 9.46-2.65 log (Seq-50.0) Seq = Smax (1-R)0.64 Std. Error of Estimate, Log (Life) = 0.22 Standard Deviation, Log (Life) = 0.34 R2 = 58%
Surface Condition: Lathe turned to RMS 10
Sample Size = 30
Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.3.8(a)
2-61
MMPDS-06 1 April 2011 . .
250 225
+ +
Maximum Stress, ksi
200 175 150
AISI 4340 RT Kt=3.0 Stress Ratio -1.00 0.00 + 0.54 Runout → +
+ +
Note: Stresses are based on net section.
+ + + +
125
+
+ → + → + →
+
100 75 → →
50
→
→ → →→
25 0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 2.3.1.3.8(o). Best-fit S/N curves for notched, Kt = 3.0, AISI 4340 alloy steel bar, Ftu = 260 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.3.8(o) Product Form: Rolled bar, 1.125-inch diameter, air melted Properties:
Test Parameters: Loading—Axial Frequency—2000 to 2500 cpm Temperature—RT Atmosphere—Air
TUS, ksi TYS, ksi Temp., EF 266 232 RT (unnotched) 352 — RT (notched)
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 7.14-1.74 log (Seq - 56.4) Seq = Smax (1-R)0.51 Std. Error of Estimate, Log (Life) = 0.32 Standard Deviation, Log (Life) = 0.59 R2 = 71%
Specimen Details: Notched, V-Groove, Kt = 3.0 0.270-inch gross diameter 0.220-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Sample Size = 29
Surface Condition: Lathe turned to RMS 10
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Reference: 2.3.1.3.8(a)
2-62
MMPDS-06 1 April 2011
Figure 2.3.1.4.8(a). Best-fit S/N curves for notched, Kt = 2.0, 300M alloy forged billet, Ftu = 280 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.4.8(a) Product Form: Forged billet, unspecified size, CEVM Properties:
TUS, ksi 290 456
Test Parameters: Loading - Axial Frequency - NA Temperature - RT Atmosphere - Air
TYS, ksi Temp., EF 242 RT (unnotched) — RT (notched)
No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 12.87-5.08 log (Seq-55.0) Seq = Smax (1-R)0.36 Std. Error of Estimate, Log (Life) = 0.79 Standard Deviation, Log (Life) = 1.72 R2 = 79%
Specimen Details: Notched, 60E V-Groove, Kt=2.0 0.500-inch gross diameter 0.250-inch net diameter 0.040-inch root radius, r 60E flank angle, ω Surface Condition: Heat treat and finish grind notch to RMS 63 ± 5; stress relieve Reference:
Sample Size = 70 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.4.8(b)
2-63
MMPDS-06 1 April 2011
Figure 2.3.1.4.8(b). Best-fit S/N curves for notched, Kt = 3.0, 300M alloy forging, Ftu = 280 ksi, longitudinal and transverse directions.
Correlative Information for Figure 2.3.1.4.8(b) Product Forms: Forged billet, unspecified size, CEVM Die forging, 10 x 20 inches, CEVM Die forging, 6.50 x 20 inches, CEVM
Test Parameters: Loading - Axial Frequency - NA Temperature - RT Atmosphere - Air No. of Heats/Lots: 5
Properties:
TUS, ksi 290-292 435
TYS, ksi 242-247 —
Temp., EF RT (unnotched) RT (notched)
Specimen Details: Notched 60E V-Groove, Kt = 3.0 0.500-inch gross diameter 0.250-inch net diameter 0.0145-inch root radius, r 60E flank angle, ω Surface Condition: Heat treat and finish grind notch to RMS 63 or better; stress relieve References:
2.3.1.4.8(a), 2.3.1.4.8(b), 2.3.1.4.8(c)
2-64
Equivalent Stress Equation: Log Nf = 10.40-3.41 log (Seq-20.0) Seq = Smax (1-R)0.51 Std. Error of Estimate, Log (Life) = 18.3 (1/Seq) Standard Deviation, Log (Life) = 2.100 R2 = 97.4 Sample Size = 99 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
MMPDS-06 1 April 2011
Figure 2.3.1.4.8(c). Best-fit S/N curves for notched, Kt = 5.0, 300M alloy forged billet, Ftu = 280 ksi, longitudinal direction.
Correlative Information for Figure 2.3.1.4.8(c) Product Forms: Forged billet, unspecified size, CEVM Properties:
TUS, ksi 290 379
Test Parameters: Loading - Axial Frequency - NA Temperature - RT Atmosphere - Air
TYS, ksi Temp., EF 242 RT (unnotched) — RT (notched)
No. of Heat/Lots: 2 Equivalent Stress Equation: Log Nf = 9.61-3.04 log (Seq-10.0) Seq = Smax (1-R)0.52 Std. Error of Estimate, Log (Life) = 0.28 Standard Deviation, Log (Life) = 0.81 R2 = 88%
Specimen Details: Notched, 60E V-Groove, Kt=5.0 0.500-inch gross diameter 0.250-inch net diameter 0.0042-inch root radius, r 60E flank angle, ω Surface Condition: Heat treat and finish grind notch to RMS 63 maximum; stress relieve Reference:
Sample Size = 48 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.4.8(b)
2-65
MMPDS-06 1 April 2011
Figure 2.3.1.4.9. Fatigue crack propagation data for 3.00-inch hand forging and 1.80-inch thick, 300M steel alloy plate (TUS: 280 - 290 ksi) [References 2.3.1.4.9(a) and 2.3.1.4.9(b)] Specimen Thickness: Specimen Width: Specimen Type:
0.900 - 1.00 inches 3.09 - 7.41 inches C(T)
2-66
Environment: Low-humidity air Temperature: RT Orientation: L-T and T-L
MMPDS-06 1 April 2011
Table 2.3.1.4.9 Typical Fatigue Crack Growth Rate Data for 300M Plate, as Shown Graphically in Figure 2.3.1.4.9 Stress Ratio Stress Ratio ∆K, ksiin0.50
0.30
0.08
∆K, ksiin0.50
0.50
da/dN, in./cycle
0.08
0.30
0.50
da/dN, in./cycle
8.41
4.27E-07
19.95
3.90E-06
4.67E-06
6.60E-06
8.91
4.93E-07
21.14
4.51E-06
5.44E-06
8.20E-06
9.44
5.69E-07
7.70E-07
22.39
5.20E-06
6.38E-06
1.04E-05
10.00
6.57E-07
7.35E-07
9.17E-07
23.71
6.00E-06
7.51E-06
1.34E-05
10.59
7.60E-07
8.77E-07
1.08E-06
25.12
6.95E-06
8.90E-06
11.22
8.81E-07
1.04E-06
1.27E-06
26.61
8.06E-06
1.06E-05
11.89
1.02E-06
1.22E-06
1.48E-06
28.18
9.41E-06
1.28E-05
12.59
1.19E-06
1.43E-06
1.72E-06
29.85
1.11E-05
1.55E-05
13.34
1.38E-06
1.66E-06
1.99E-06
31.62
1.32E-05
1.90E-05
14.13
1.60E-06
1.93E-06
2.32E-06
33.50
1.60E-05
2.36E-05
14.96
1.86E-06
2.23E-06
2.70E-06
35.48
1.98E-05
2.97E-05
15.85
2.17E-06
2.59E-06
3.17E-06
37.58
2.52E-05
16.79
2.51E-06
2.99E-06
3.74E-06
39.81
3.31E-05
17.78
2.92E-06
3.46E-06
4.46E-06
42.17
4.53E-05
18.84
3.37E-06
4.01E-06
5.39E-06
44.67
6.49E-05
2-67
MMPDS-06 1 April 2011
1.E-03
Fatigue Crack Propagation Rate, da/dN, in./cycle
Stress Ratio, R
Frequency No. of f, Hz Specimens
No. of Data Points
0.09 - 0.10
0.1 - 3.0
9
208
0.50
0.1 - 3.0
3
61
1.E-04
1.E-05
1.E-06 10
100 0.50
Stress Intensity Factor Range, ksi-in
Figure 2.3.1.5.9. Fatigue crack propagation data for 0.80-inch D6AC steel alloy plate. Data include material both oil-quenched and salt quenched (TUS: 230 - 240 ksi) [Reference 2.3.1.5.9] Specimen Thickness: Specimen Width: Specimen Type:
0.70 - 0.75 inches 1.5 - 5.0 inches C(T)
Environment: Temperature: Orientation:
2-68
Dry and lab air RT L-T
MMPDS-06 1 April 2011
Table 2.3.1.5.9 Typical Fatigue Crack Growth Rate Data for D6AC Plate, as Shown Graphically in Figure 2.3.1.5.9 Stress Ratio Stress Ratio ∆K, ksi-in0.50
0.09 - 0.10
0.50
∆K, ksi-in0.50
da/dN, in./cycle
0.09 - 0.10
0.50
da/dN, in./cycle
12.59
1.06E-06
31.62
1.40E-05
2.55E-05
13.34
1.30E-06
33.50
1.62E-05
3.13E-05
14.13
1.57E-06
35.48
1.87E-05
14.96
1.89E-06
37.58
2.17E-05
15.85
2.26E-06
3.52E-06
39.81
2.51E-05
16.79
2.68E-06
4.37E-06
42.17
2.92E-05
17.78
3.17E-06
5.32E-06
44.67
3.41E-05
18.84
3.73E-06
6.34E-06
47.32
4.00E-05
19.95
4.36E-06
7.45E-06
50.12
4.70E-05
21.14
5.09E-06
8.65E-06
53.09
5.56E-05
22.39
5.91E-06
9.98E-06
56.23
6.61E-05
23.71
6.85E-06
1.15E-05
59.57
7.91E-05
25.12
7.93E-06
1.32E-05
63.10
9.53E-05
26.61
9.16E-06
1.53E-05
66.83
1.16E-04
28.18
1.06E-05
1.79E-05
70.80
1.41E-04
29.85
1.22E-05
2.12E-05
2-69
MMPDS-06 1 April 2011
This page is intentionally blank
2-70
MMPDS-06 1 April 2011
2.4 INTERMEDIATE ALLOY STEELS 2.4.0 Comments on Intermediate Alloy Steels — The intermediate alloy steels in this section are those steels that are substantially higher in alloy content than the alloy steels described in Section 2.3, but lower in alloy content than the stainless steels. Typical of the intermediate alloy steels is the 5Cr-Mo-V aircraft steel and the 9Ni-4Co series of steels. 2.4.0.1 Metallurgical Considerations — The alloying elements added to these steels are similar to those used in the lower alloy steels and, in general, have the same effects. The difference lies in the quantity of alloying additions and the extent of these effects. Thus, higher chromium contents provide improved oxidation resistance. Additions of molybdenum, vanadium, and tungsten, together with the chromium, provide deep air-hardening properties and improve the elevated temperature strength by retarding the rate of tempering at high temperatures. Additions of nickel to nonsecondary-hardening steels lower the transition temperature and improve low-temperature toughness. 2.4.1 5CR-MO-V 2.4.1.0 Comments and Properties — Alloy 5Cr-Mo-V aircraft steel exhibits high strength in the temperature range up to 1000EF. Its characteristics also include air hardenability in thick sections; consequently, little distortion is encountered in heat treatment. This steel is available either as air-melted or consumable electrode vacuum-melted quality, although only consumable electrode vacuum-melted quality is recommended for aerospace applications. The heat treatment recommended for this steel consists of heating to 1850EF ± 50EF, holding 15 to 25 minutes for sheet or 30 to 60 minutes for bar depending on section size, cooling in air to room temperature, tempering three times by heating to the temperature specified in Table 2.4.1.0(a) for the strength level desired, holding at temperature for 2 to 3 hours, and cooling in air. Table 2.4.1.0(a). Tempering Temperatures for 5Cr-Mo-V Aircraft Steel
Ftu, ksi
Temperature, EF
Hardness, Rc
280 260 240 220
1000 ± 10 1030 ± 10 1050 ± 10 1080 ± 10
54-56 52-54 49-52 46-49
Material specifications for 5Cr-Mo-V aircraft steel are presented in Table 2.4.1.0(b). The room temperature mechanical and physical properties are shown in Tables 2.4.1.0(c) and 2.4.1.0(d). The mechanical properties are for 5Cr-Mo-V steel heat treated to produce a structure containing 90 percent or more martensite at the center prior to tempering . Table 2.4.1.0(b). Material Specifications for 5Cr-Mo-V Aircraft Steel
Specification AMS 6437 AMS 6487
Form Sheet, strip, and plate (air melted) Bar and forging (CEVM)
2-71
MMPDS-06 1 April 2011 The room temperature properties of 5Cr-Mo-V aircraft steel are affected by extended exposure to temperatures near or above the tempering temperature. The limiting temperature to which the alloy may be exposed for extended periods without significantly affecting its room temperature properties may be estimated at 100EF below the tempering temperature for the desired strength level. The effect of temperature on the physical properties is shown in Figure 2.4.1.0.
19
8
6
-6
17
α, 10 in./in./°F
7
2
K, Btu/[(hr)(ft )(°F)/ft]
α
18
K 16
5
α - Between 70 °F and indicated temperature K - At indicated temperature
15
4
14 0
200
400
600
800
1000
1200
1400
3 1600
Temperature, °F
Figure 2.4.1.0. Effect of temperature on the physical properties of 5Cr-Mo-V aircraft steel.
2-72
MMPDS-06 1 April 2011 Table 2.4.1.0(c). Design Mechanical and Physical Properties of 5Cr-Mo-V Aircraft Steel Bar and Forging
Specification . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 6487a
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bars and forgings
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quenched and tempered
2
Cross-sectional area, in. . . . . . . . . . . . . . . . . .
b,c
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sd
Sd
... 240
260b 260c
... 280
... 200
215b 215c
... 240
... 220 144
... 234 156
... 260 168
... 400
... 435
... 465
... 315
... 333
... 365
9 ...
8b ...
7 ...
... ...
30b 6c
... ...
S
Mechanical Properties: Ftu, ksi: L ................................ T ................................ Fty, ksi: L ................................ T ................................ Fcy, ksi: L ................................ T ................................ Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . e, percent: L ................................ T ................................ RA, percent: L ................................ T ................................ E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . µ..................................
d
30.0 30.0 11.0 0.36
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . . . K and α . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.281 0.11 (32EF)e See Figure 2.4.1.0
Last Revised: Apr-2009, MMPDS–04CN1, Item 08-16 a Mechanical properties are based on AMS 6485 and also met AMS 6488. b Longitudinal properties applicable to cross-sectional area #25 sq. in. c Transverse properties applicable only to product sufficiently large to yield tensile specimens not less than 4.50 inches in length. d Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. e Calculated value.
2-73
MMPDS-06 1 April 2011 Table 2.4.1.0(d). Design Mechanical and Physical Properties of 5Cr-Mo-V Aircraft Steel Sheet, Strip, and Plate
Specification . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ........................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ........................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ........................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . e, percent: L ........................... LT, in 2 inchesb . . . . . . . . . . . . . . . . LT, in 1 inch . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . µ............................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . K and α . . . . . . . . . . . . . . . . . . . . . . .
Sa
AMS 6437 Sheet, strip, and plate Quenched and tempered ... Sa
Sa
... 240
... 260
... 280
... 200
... 220
... 240
... 220 144
... 240 156
... 260 168
... 400
... 435
... 465
... 315
... 340
... 365
... 6 8
... 5 7 30.0 30.0 11.0 0.36
... 4 6
0.281 0.11c (32EF) See Figure 2.4.1.0
a Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. b For sheet thickness greater than 0.050 inch. c Calculated value.
2-74
MMPDS-06 1 April 2011 2.4.1.1 Heat-Treated Condition — The effect of temperature on various mechanical properties for heat-treated 5Cr-Mo-V aircraft steel is presented in Figures 2.4.1.1.1(a) through 2.4.1.1.4.
Percentage of Room Temperature Ftu
100
Strength at temperature Exposure up to 1000 hr
80
60
1/2 hr 10 hr
40 100 hr 1000 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.4.1.1.1(a). Effect of temperature on the ultimate tensile strength (Ftu) of 5CrMo-V aircraft steel.
Percentage of Room Temperature Fty
100
Strength at temperature Exposure up to 1000 hr
80
60
1/2 hr
10 hr
40
100 hr 20
1000 hr
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.4.1.1.1(b). Effect of temperature on the tensile yield strength (Fty) of 5Cr-Mo-V aircraft steel.
2-75
MMPDS-06 1 April 2011
100
Percentage of Room Temperature Fcy
Strength at temperature Exposure up to 1000 hr 80
60
1/2 hr and 10 hr
100 hr
40
1000 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.4.1.1.2(a). Effect of temperature on the compressive yield strength (Fcy) of 5Cr-Mo-V aircraft steel.
100
Percentage of Room Temperature Fsu
Strength at temperature Exposure up to 1000 hr 80 1/2 hr and 10 hr 60
100 hr
40
1000 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.4.1.1.2(b). Effect of temperature on the ultimate shear strength (Fsu) of 5Cr-Mo-V aircraft steel.
2-76
MMPDS-06 1 April 2011
100
Percentage of Room Temperature Fbru
Strength at temperature Exposure up to 1000 hr 80
1/2 hr and 10 hr 60
40
100 hr
1000 hr 20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.4.1.1.3(a). Effect of temperature on the ultimate bearing strength (Fbru) of 5Cr-Mo-V aircraft steel.
.
100
Strength at temperature Exposure up to 1000 hr
Percentage of Room Temperature Fbry
80
60
1/2 hr and 10 hr
40
100 hr 20
1000 hr
0
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.4.1.1.3(b). Effect of temperature on the bearing yield strength (Fbry) of 5Cr-Mo-V aircraft steel.
2-77
MMPDS-06 1 April 2011
.
100
Percentage of Room Temperature Modulus
80
E & Ec 60
40
Modulus at temperature Exposure up to 1000 hr 20
0
TYPICAL
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.4.1.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 5Cr-Mo-V aircraft steel.
2-78
MMPDS-06 1 April 2011 2.4.2 9NI-4CO-0.20C 2.4.2.0 Comments and Properties — The 9Ni-4Co-0.20C alloy was developed specifically to have excellent fracture toughness, excellent weldability, and high hardenability when heat-treated to 190 to 210 ksi ultimate tensile strength. The alloy can be readily welded in the heat-treated condition with preand post-heat usually not required. The alloy is through hardening in section sizes up to at least 8 inches thick. The alloy may be exposed to temperatures up to 900EF (approximately 100EF below typical tempering temperature) without microstructural changes, which degrade room temperature strength. The heat treatment for this alloy consists of normalizing at 1650EF ± 25EF for 1 hour per inch of cross section, cooling in air to room temperature, heating to 1525EF ± 25EF for 1 hour per inch of cross section, quenching in oil or water, hold at -100EF ± 20EF for 2 hours within 2 hours after quenching, and double tempering at 1035EF ± 10EF for 2 hours. A material specification for 9Ni-4Co-0.20C steel is presented in Table 2.4.2.0(a). Room temperature mechanical and physical properties are shown in Table 2.4.2.0(b). The effect of temperature on thermal expansion is shown in Figure 2.4.2.0. Table 2.4.2.0(a). Material Specification for 9Ni-4Co-0.20C Steel Specification Form AMS 6523 Sheet, strip, and plate
2-79
MMPDS-06 1 April 2011 Table 2.4.2.0(b). Design Mechanical and Physical Properties of 9Ni-4Co-0.20C Steel Plate
Specification . . . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . RA, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . µ............................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . . .
AMS 6523 Plate Quenched and tempered <0.250 Sa
$0.250 Sa
186 190
186 190
173 175
173 175
188 187 114
188 187 114
... ...
... ...
... ...
... ...
5
10
45
45 28.8 28.8 11.1 0.30 0.283 ... 14.2 (75EF) See Figure 2.4.2.0
a Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing.
2-80
MMPDS-06 1 April 2011 9
α - Between 70 °F and indicated temperature
α, 10-6 in./in./°F
8
7
6
5
4 -400
-200
0
200
400
600
800
1000
Temperature, °F
Figure 2.4.2.0. Effect of temperature on the thermal expansion of 9Ni-4Co-0.20C steel.
2.4.2.1 Heat-Treated Condition — Effect of temperature on various mechanical properties is presented in Figures 2.4.2.1.1, 2.4.2.1.2, and 2.4.2.1.4. Typical tensile stress-strain curves at room and elevated temperatures are shown in Figure 2.4.2.1.6(a). Typical compression stress-strain and tangentmodulus curves are presented in Figure 2.4.2.1.6(b). 100
Percentage of Room Temperature Strength
80
Ftu Fty
60
40
Strength at temperature Exposure up to 1/2 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.4.2.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and tensile yield strength (Fty) of 9Ni-4Co-0.20C steel plate.
2-81
MMPDS-06 1 April 2011 100 Fcy 80
Percentage of Room Temperature Strength
Strength at temperature Exposure up to 1/2 hr
Fsu
Fsu 60
40
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.4.2.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of 9Ni-4Co-0.20C steel plate.
100 E & Ec
Percentage of Room Temperature Modulus
90
80
70 Modulus at temperature Exposure up to ½ hr 60 TYPICAL 50 0
200
400
600
800
1000
Temperature, °F
Figure 2.4.2.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 9Ni-4Co-0.20C steel plate.
2-82
MMPDS-06 1 April 2011
/RQJLWXGLQDO DQG /RQJWUDQVYHUVH
57
KUH[SRVXUH
)
)
6WUHVVNVL
5DPEHUJ2VJRRG
Q57
Q)
Q)
7<3,&$/
7KLFNQHVVLQ
6WUDLQLQLQ
Figure 2.4.2.1.6(a). Typical tensile stress-strain curves for 9Ni-4Co-0.20C steel plate at various temperatures.
250
1/2-hr exposure
Longitudinal and Long transverse
RT
RT
200 700 °F
Stress, ksi
700 °F 900 °F
150
900 °F
100 Ramberg-Osgood n (RT) = 15 n (700 °F) = 12 n (900 °F) = 9.0
50
TYPICAL Thickness: 1.000 - 4.000 in.
0 0
2
4
6
8
10
12
20
25
30
Strain, 0.001 in./in. 0
5
10
15
Compressive Tangent Modulus, 103 ksi
Figure 2.4.2.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 9Ni-4Co-0.20C steel plate at various temperatures.
2-83
MMPDS-06 1 April 2011 2.4.3 9Ni-4Co-0.30C 2.4.3.0 Comments and Properties — The 9Ni-4Co-0.30C alloy was developed specifically to have high hardenability and good fracture toughness when heat treated to 220 to 240 ksi ultimate tensile strength. The alloy is through hardening in section sizes up to 4 inches thick. The alloy may be exposed to temperatures up to 900EF (approximately 100EF below typical tempering temperature) without microstructural changes which degrade room temperature strength. This grade must be formed and welded in the annealed condition. Preheat and post-heat of the weldment is required. The steel is produced by consumable electrode vacuum melting. The heat treatment for this alloy consists of normalizing at 1650EF ± 25EF for 1 hour per inch of cross section, cooling in air to room temperature, heating to 1550EF ± 25EF for 1 hour per inch of cross section but not less than 1 hour, quenching in oil or water, subzero treating at -100EF for 1 to 2 hours, and double tempering at 975EF ± 10EF (sheet, strip, and plate) or 1000EF ± 10EF (bars, forgings, and tubings) for 2 hours. Material specifications for 9Ni-4Co-0.30C steel are presented in Table 2.4.3.0(a). The room temperature mechanical and physical properties are shown in Table 2.3.4.0(b). The effect of temperature on thermal expansion is shown in Figure 2.4.3.0. Table 2.4.3.0(a). Material Specifications for 9Ni-4Co-0.30C Steel
Specification AMS 6526
Form Bar, forging, and tubing
2-84
MMPDS-06 1 April 2011 Table 2.4.3.0(b). Design Mechanical and Physical Properties of 9Ni-4Co-0.30C Steel Specification . . . . . . . . . . . . . . . . . . . AMS 6526 Form . . . . . . . . . . . . . . . . . . . . . . . . . . Bar, forging, and tubing Condition . . . . . . . . . . . . . . . . . . . . . . Quenched and tempered Thickness, in. . . . . . . . . . . . . . . . . . . #4.000 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . Sa Mechanical Properties: Ftu, ksi: L .......................... 220 LT . . . . . . . . . . . . . . . . . . . . . . . . . ... Fty, ksi: L .......................... 190 LT . . . . . . . . . . . . . . . . . . . . . . . . . ... Fcy, ksi: L .......................... 209 LT . . . . . . . . . . . . . . . . . . . . . . . . . ... 137 Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksib: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . 346 (e/D = 2.0) . . . . . . . . . . . . . . . . . . . 440 b Fbry, ksi : (e/D = 1.5) . . . . . . . . . . . . . . . . . . . 291 (e/D = 2.0) . . . . . . . . . . . . . . . . . . . 322 e, percent: L .......................... 10 LT . . . . . . . . . . . . . . . . . . . . . . . . . ... RA, percent: L .......................... 40 LT . . . . . . . . . . . . . . . . . . . . . . . . . ... 3 E, 10 ksi . . . . . . . . . . . . . . . . . . . . . 28.5 29.8 Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . 3 G, 10 ksi . . . . . . . . . . . . . . . . . . . . . ... ... µ ........................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . 0.28 ... C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . 2 K, Btu/[(hr)(ft )(EF)/ft] . . . . . . . . . . 13.3 (75EF) See Figure 2.4.3.0 α, 10-6 in./in./EF . . . . . . . . . . . . . . . a Design values are applicable only to parts for which the indicated Ftu has been substantiated by adequate quality control testing. b Bearing values are “dry pin” values per Section 1.4.7.1.
2-85
MMPDS-06 1 April 2011
9
α - Between 70 °F and indicated temperature
α, 10-6 in./in./°F
8
7
6
5
4 -400
-200
0
200
400
600
800
1000
Temperature, °F Figure 2.4.3.0. Effect of temperature on the thermal expansion of 9Ni-4Co-0.30C steel.
2.4.3.1 Heat-Treated Condition — Effect of temperature on various mechanical properties is presented in Figures 2.4.3.1.1. through 2.4.3.1.4. Typical stress-strain and tangent-modulus curves are presented in Figures 2.4.3.1.6(a) through 2.4.3.1.6(d). Notched fatigue data at room temperature are illustrated in Figure 2.4.3.1.8.
2-86
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength
120
9Ni-4Co-0.30C Strength at temperature Exposure up to 1/2 hr
110
100 Ftu 90 Fty 80
70
60 -200
-100
0
100
200
300
400
500
600
Temperature, oF Figure 2.4.3.1.1. Effect of temperature on the tensile yield strength (Fty) and the tensile ultimate strength (Ftu) of 9NI-4Co-0.30C steel hand forging.
Percentage of Room Temperature Strength
120
9Ni-4Co-0.30C Strength at temperature Exposure up to 1/2 hr
110
100
Fsu
90
Fcy
80
70
60 -200
-100
0
100
200
300
400
500
600
o
Temperature, F
Figure 2.4.3.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of 9NI-4Co-0.30C steel hand forging. 2-87
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength
120
9Ni-4Co-0.30C Strength at temperature Exposure up to 1/2 hr
110
100 Fbry 90 Fbru 80
70
60 -200
-100
0
100
200
300
400
500
600
o
Temperature, F Figure 2.4.3.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of 9NI-4Co-0.30C steel hand forging.
Percentage of Room Temperature Strength
120
9Ni-4Co-0.30C Modulus at temperature Exposure up to 1/2 hr
110 TYPICAL
100
E and Ec
90
80
70
60 -200
-100
0
100
200
300
400
500
600
o
Temperature, F
Figure 2.4.3.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 9NI-4Co-0.30C steel hand forging.
2-88
MMPDS-06 1 April 2011
300
All directions 1/2-hr exposure
-110 °F 250
-110 °F RT
RT 300 °F 500 °F
300 °F 500 °F
Stress, ksi
200
150
Ramberg-Osgood n (-110 °F) = 11 n (RT) = 12 n (300 °F) = 12 n (500 °F) = 10
100
50
TYPICAL Thickness: < 4.000 in.
0 0
2
4
6
8
10
12
14
16
20
24
28
32
Strain, 0.001 in./in.
0
4
8
12
16
Compressive Tangent Modulus, 103 ksi
Figure 2.4.3.1.6(a). Typical compressive stress-strain and compressive tangentmodulus curves for 9Ni-4Co-0.30C steel hand forging at various temperatures.
2-89
MMPDS-06 1 April 2011
260 o
-110 F 240
Longitudinal
o
70 F
1/2 hr exposure
o
300 F
220
Thickness = < 4.00 in. o
500 F 200
180
X X X
Stress, ksi
160
140
X 120
100
80
60
9Ni-4Co-0.30C Hand Forging
40
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
Strain, in./in.
Figure 2.4.3.1.6(b). Typical tensile stress-strain curves (full range) for 9Ni-4Co-0.30C hand forging at various temperatures.
2-90
MMPDS-06 1 April 2011
260 o
-110 F 240
Long Transverse
o
70 F
1/2 hr exposure o
300 F
220
Thickness = < 4.00 in. o
500 F 200
X 180
X
X X
Stress, ksi
160
140
120
100
80
60
9Ni-4Co-0.30C Hand Forging
40
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
Strain, in./in.
Figure 2.4.3.1.6(c). Typical tensile stress-strain curves (full range) for 9Ni-4Co-0.30C hand forging at various temperatures.
2-91
MMPDS-06 1 April 2011
260
-110o F 240
Short Transverse 70o F
1/2 hr exposure o
300 F 220
Thickness = < 4.00 in.
500o F
200
X 180
X X X
Stress, ksi
160
140
120
100
80
60
9Ni-4Co-0.30C Hand Forging
40
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
Strain, in./in.
Figure 2.4.3.1.6(d). Typical tensile stress-strain curves (full range) for 9Ni-4Co-0.30C hand forging at various temperatures.
2-92
MMPDS-06 1 April 2011
Figure 2.4.3.1.8. Best-fit S/N curves for notched, Kt = 3.0, 9Ni-4Co0.30C steel hand forging, long and short transverse directions.
Correlative Information for Figure 2.4.3.1.8
Product Form: Hand forging, 3 x 9 inches Properties:
TUS, ksi 231
TYS, ksi 197
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
Temp.,EF RT (LT)
Specimen Details: Notched, V-Groove Kt=3.0 0.354-inch gross diameter 0.250-inch net diameter 0.01-inch root radius 60E flank angle, ω
No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 7.77-2.15 log (Seq-28.32) Seq = Smax (1-R)0.79 Std. Error of Estimate, Log (Life) = 0.12 Standard Deviation, Log (Life) = 0.47 R2 = 93%
Surface Condition: Not specified Reference:
2.4.3.1.8
Sample Size = 22 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-93
MMPDS-06 1 April 2011
This page is intentionally blank.
2-94
MMPDS-06 1 April 2011
2.5 HIGH-ALLOY STEELS 2.5.0 COMMENTS ON HIGH-ALLOY STEELS — The high-alloy steels in this section are those steels that are substantially higher in alloy content than the intermediate alloy steels described in Section 2.4 but are not stainless steels. The 18 Ni maraging and AF1410 steels are in this category. 2.5.0.1 Metallurgical Considerations — The 18 Ni maraging steels are iron-based alloys with nominally 18 percent nickel, 7 to 9 percent cobalt, 3 to 5 percent molybdenum, less than 1 percent titanium, and very low carbon content (below 0.03 percent). Upon cooling from the annealing or hot-working temperature, these steels transform to a soft martensite that can be easily machined or formed. The steels can be subsequently aged (maraged) to high strengths by heating to a lower temperature (900EF). AF1410 is an iron-based alloy with nominally 14 percent cobalt, 10 percent nickel, 2 percent chromium, 1 percent molybdenum, and 0.15 percent carbon. When quenched from austenitizing temperatures, AF1410 forms a highly dislocated lath martensitic structure with very little twinning or retained austenite. At aging temperatures ranging from 900E to 1000EF, a precipitation of extremely fine alloy carbide containing chromium and molybdenum occurs, which simultaneously develops strength and toughness properties. 2.5.0.2 Environmental Considerations — The stress corrosion cracking resistance of highstrength steels is of concern for highly loaded structural components such as landing gears and wing attach fittings that are subjected to corrosive environments such as sea spray or water. Figure 2.5.0.2(a) indicates the relative, average stress corrosion cracking resistance of several high-strength steel alloys. Figure 2.5.0.2(b) shows the relative, approximate lower bound stress corrosion cracking resistance of these same high-strength steel alloys. The approximate mean and lower bound curves were calculated for each material based on an assumed log-linear relationship between time to failure and crack tip stress intensity, KI, Log(t) - A0 + A1 log(KI - A2)
(2.5.0.2)
The standard error of estimate (SEE) for each material determined with the above equation was used to calculate the approximate lower bound curves (2 SEE below each mean curve.) The data in these figures were obtained from Reference (2.5.0.2). The stress corrosion cracking threshold stress intensity (KIscc) for each steel was defined as the value at which cracking did not occur. For most of these alloys, this value is about 20 ksi/in. As indicated, there is a definite difference in the stress corrosion resistance between the alloys. In general, the high-strength steels do not reach a true threshold stress intensity until after 1000 hours of exposure. The highest stress corrosion cracking resistance in high-strength steels is associated with low carbon levels and lath martensite microstructure containing a fine distribution of M2C type carbides; alloys AF1410 and AerMet 100. The effect of low carbon is indicated in Figures 2.5.0.2(a) and 2.5.0.2(b) between the 0.15%C AF140 and 0.20%C AF1410.. The lower stress cracking corrosion resistance is associated with higher carbon and the martensite is of plate morphology that exhibits a twinned structure; alloys 4340 and 300M. A slight anisotropic effect was observed for Hy-Tuf (TL vs LT); however, the effect was not apparent for AF1410. The differences in anisotropic properties may be due to differences in the cleanliness of the steels since Hy-Tuf was an air-melted product and the others were either vacuum induction melted (VIM) or electroslag remelted (ESR).
2-95
MMPDS-06 1 April 2011
Figure 2.5.0.2(a). The relative average stress corrosion cracking resistance of several high strength steels tested in an environment of 3.5% NaCl (Reference 2.5.0.2).
Figure 2.5.0.2(b). The relative lower-bound (-2 SEE) stress corrosion cracking resistance of several high strength steels tested in an environment of 3.5% NaCl (Reference 2.5.0.2).
2-96
MMPDS-06 1 April 2011 2.5.1 18 NI MARAGING STEELS 2.5.1.0 Comments and Properties — The 250 and 280 (300) maraging steels are normally supplied in the annealed condition and are heat treated to high strengths, without quenching, by aging at 900EF. The steels are characterized by high hardenability and high strength combined with good toughness. The 250 and 280 (300) designation refers to the nominal yield strengths of the two alloys. The two alloys are available in the form of sheet, plate, bar, and die forgings. Only the consumable electrode vacuum-melted quality grades are considered in this section. Manufacturing Considerations — The 250 and 280 grades are readily hot worked by conventional rolling and forging operations. These grades also have good cold-forming characteristics in spite of the relatively high hardness in the annealed (martensitic) condition. The machinability of the 250 and 280 grades is not unlike 4330 steel at equivalent hardness. The 18 Ni maraging steels can be readily welded in either the annealed or aged conditions without preheating. Welding of aged material should be followed by aging at 900EF to strengthen the weld area. Environmental Considerations — Although the 18 Ni maraging steels are high in alloy content, these grades are not corrosion resistant. Since the general corrosion resistance is similar to the low-alloy steels, these steels require protective coatings. The 250 grade reportedly has better resistance to stress corrosion cracking than the low-alloy steels at the same strength. Specifications and Properties — Material specifications for these steels are shown in Table 2.5.1.0(a). The room temperature properties for material aged at 900EF are shown in Tables 2.5.1.0(b) and 2.5.1.0(c), and the effect of temperature on physical properties is shown in Figure 2.5.1.0. Table 2.5.1.0(a). Material Specifications for 18 Ni Maraging Steels
Grade 250 250 280 (300)
Specification AMS 6520a AMS 6512 AMS 6514
Form Sheet and plate Bar Bar
a Inactive for new design.
2.5.1.1 Maraged Condition (aged at 900E EF) — Effect of temperature on 250 and 280 grade maraging steel is presented in Figures 2.5.1.1.1 through 2.5.1.1.4. Figures 2.5.1.1.6(a) and 2.5.1.1.6(b) are room and elevated temperature tensile stress-strain curves. Typical compressive stress-strain and tangent-modulus curves at room temperature are presented in Figures 2.5.1.1.6(c) and 2.5.1.1.6(d). Figure 2.5.1.1.6(e) is a full-range stress-strain curve at room temperature for 280 grade maraging steel.
2-97
MMPDS-06 1 April 2011 Table 2.5.1.0(b). Design Mechanical and Physical Properties of 250 Grade Maraging Steel Specification . . . . . . . . . . . . . . AMS 6520a AMS 6512 Form . . . . . . . . . . . . . . . . . . . . Sheet Plate Bar Condition . . . . . . . . . . . . . . . . Maraged at 900EF Maraged at 900EF Thickness or diameter, in. . . . #0.187 0.187-0.250 >0.250 <4.000 4.000-10.000 Basis . . . . . . . . . . . . . . . . . . . . S S S S S Mechanical Properties: Ftu ksi: L .................... 247 252 ... 255 245 T .................... 255 255 255 255 245 Fty, ksi: L .................... 238 242 ... 250 240 T .................... 245 245 245 250 240 Fcy, ksi: L .................... 221 ... ... 260 ... T .................... 225 255 ... ... ... 148 155 ... 148 ... Fsu, ksi . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . 327 352 ... ... ... (e/D = 2.0) . . . . . . . . . . . . 444 448 ... ... ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . 278 324 ... ... ... (e/D = 2.0) . . . . . . . . . . . . 353 354 ... ... ... e, percent: L .................... ... ... ... 6 5 b b b T .................... 4 3 RA, percent: L .................... ... ... ... 45 30 T .................... ... ... ... 35 20 3 E,10 ksi . . . . . . . . . . . . . . . 26.5 Ec, 103 ksi: L .................... 28.2 T .................... 29.4 3 ... G, 10 ksi . . . . . . . . . . . . . . . µ...................... 0.31 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . 0.286 C, K, and α . . . . . . . . . . . . . See Figure 2.5.1.0 a Inactive for new design b Elongation properties vary with thickness as follows: #0.090 2.5% 0.091-0.125 3.0% 0.126-0.250 4.0% 0.251-0.375 5.0% $0.376 6.0%
2-98
MMPDS-06 1 April 2011
Table 2.5.1.0(c). Design Mechanical and Physical Properties of 280 Grade Maraging Steel Specification . . . . . . . . . . . . . . . AMS 6514 Form . . . . . . . . . . . . . . . . . . . . . Bar Condition . . . . . . . . . . . . . . . . . Maraged at 900EF Thickness or diameter, in. . . . . <4.000 4.000-10.000 Basis . . . . . . . . . . . . . . . . . . . . . S S Mechanical Properties: Ftu ksi: L ..................... 280 275 T ..................... 280 275 Fty, ksi: L ..................... 270 270 T ..................... 270 270 Fcy, ksi: L ..................... 281 ... T ..................... ... ... 162 ... Fsu, ksi . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . ... ... (e/D = 2.0) . . . . . . . . . . . . . ... ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . ... ... (e/D = 2.0) . . . . . . . . . . . . . ... ... e, percent: L ..................... 5 4 T ..................... 4 2 RA, percent: L ..................... 30 25 T ..................... 25 20 E,103 ksi . . . . . . . . . . . . . . . . 26.5 Ec, 103 ksi: L ..................... 28.6 T ..................... 29.6 G, 103 ksi . . . . . . . . . . . . . . . . ... µ....................... 0.31 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . 0.286 C, K, and α . . . . . . . . . . . . . . See Figure 2.5.1.0
2-99
MMPDS-06 1 April 2011
24
0.55
7
20
0.40
0.35
280
18
5 4
250 & 280 250 K
16
280
3
14
2
0.25
12
1
0.20
10
0.15
8
0.10
6
0.05
4
0.30
o
C, Btu/(lb)( F)
α
o
0.45
6
α, 10 in./in./ F
22
K, Btu-ft./ft.hr.-oF
0.50
-6
250 and 280 maraging steel
250
0
C
-1 250 o α - Between 70 F and indicated temperature -2 K - At indicated temperature C - At indicated temperature
-3 -400
-200
0
200
400
600
800
1000 1200 1400 1600
Temperature, oF
Figure 2.5.1.0. Effect of temperature on the physical properties of 250 and 280 maraging steels.
2-100
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength
140
250 and 280 maraging steel Strength at temperature Exposure up to 1/2 hr
130 120 110 100
Fty 90 80
Ftu
70 60 50 40 -400
-200
0
200
400
600
800
1000
o
Temperature, F Figure 2.5.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of 250 and 280 maraging steel sheet and plate.
Percentage of Room Temperature Strength
100
250 and 280 maraging steel Strength at temperature Exposure up to 1/2 hr
90 Fcy 80 Fsu 70
60
50
40 0
100
200
300
400
500
600
700
800
900
1000
Temperature, oF
Figure 2.5.1.1.2. Effect of temperature on the shear ultimate strength (Fsu) and the compressive yield strength (Fcy) of 250 and 280 maraging steel sheet and plate.
2-101
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength
100
250 and 280 maraging steel Strength at temperature Exposure up to 1/2 hr
90 Fbru
Fbry
80
70
60
50
40 0
100
200
300
400
500
600
700
800
900
1000
Temperature, oF Figure 2.5.1.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of 250 and 280 maraging steel sheet and plate.
Percentage of Room Temperature Strength
120
250 and 280 maraging steel Modulus at temperature Exposure up to 1/2 hr
110
Typical
100
90 E and Ec 80
70
60 -200 -100
0
100
200
300
400
500
600
700
800
900 1000
o
Temperature, F
Figure 2.5.1.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 250 and 280 maraging steel.
2-102
MMPDS-06 1 April 2011
300
Longitudinal 1/2-hr exposure
-100 F RT 300 F
240
600 F 800 F
Stress, ksi
180
1000 F 120
Ramberg - Osgood n (-100 F) = 24 n (RT) = 26 n (300 F) = 29 n (600 F) = 26 n (800 F) = 11 n (1000 F) = 11
60
TYPICAL 0 0
4
8
12
16
20
24
Strain, 0.001 in./in.
Figure 2.5.1.1.6(a). Typical tensile stress-strain curves at room and elevated temperatures for 250 grade maraging steel bar.
360
Longitudinal 1/2-hr exposure
-100 F
300
RT 300 F 600 F
240
Stress, ksi
800 F
180
1000 F Ramberg - Osgood n (-100 F) = 19 n (RT) = 22 n (300) = 17 n (600) = 17 n (800) = 12 n (1000) = 11
120
60
TYPICAL 0 0
4
8
12
16
20
24
Strain, 0.001 in./in.
Figure 2.5.1.1.6(b). Typical tensile stress-strain curves at room and elevated temperatures for 280 grade maraging steel bar.
2-103
MMPDS-06 1 April 2011
350
Longitudinal
300
Stress, ksi
250
200
150 Ramberg - Osgood n = 22 100 TYPICAL
50
0 0
4
0
5
8
12 16 Strain, 0.001 in./in.
20
10 15 20 25 3 Compressive Tangent Modulus, 10 ksi
24
30
Figure 2.5.1.1.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for 250 grade maraging steel bar at room temperature.
2-104
MMPDS-06 1 April 2011
350 Longitudinal 300
Stress, ksi
250
200
150
100 Ramberg - Osgood n = 21 50 TYPICAL
0 0
4
0
5
8
12 16 Strain, 0.001 in./in.
20
24
10 15 20 25 3 Compressive Tangent Modulus, 10 ksi
30
Figure 2.5.1.1.6(d). Typical compressive stress-strain and compressive tangent-modulus curves for 280 grade maraging steel bar at room temperature.
2-105
MMPDS-06 1 April 2011
300 Longitudinal
250
Stress, ksi
200
150
100
50 TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
Strain, in./in.
Figure 2.5.1.1.6(e). Typical tensile stress-strain curve (full range) for 280 grade maraging steel bar at room temperature.
2-106
0.12
MMPDS-06 1 April 2011 2.5.2 AF1410 2.5.2.0 Comments and Properties — AF1410 alloy was developed specifically to have high strength, excellent fracture toughness, and excellent weldability when heat treated to 235 to 255 ksi ultimate tensile strength. AF1410 has good weldability and does not require preheating prior to welding. The alloy maintains good toughness at cryogenic temperatures, as well as high strength and stability at temperatures up to 800EF. The alloy is available in a wide variety of sizes and forms, including billet, bar, plate, and die forgings. The alloy is produced by vacuum induction melting followed by vacuum remelting. Heat Treatment — The heat treatment for this alloy consists of heating to 1650EF ± 25EF for 1 hour, forced-air cooling to room temperature, reheating to 1525EF ± 25EF for 1 hour, forced-air cooling to room temperature, cooling to -100EF ± 15EF, holding at temperature for 1 hour, warming to room temperature, and aging at 950EF ± 10EF for 5 hours, and air cooling. A forced-air cool from austenitizing temperatures should be used for section thicknesses up to 2 inches. For sections of greater thickness, an oil quench should be utilized. A single austenitizing treatment (1525EF ± 25EF) can be used to minimize heat-treating distortion with a resulting slight decrease in fracture toughness. Environmental Considerations — AF1410 has general corrosion resistance similar to the maraging steels. It should not be used in the unprotected condition. The alloy is highly resistant to stress-corrosion cracking compared to other high-strength steels. Specification and Properties — A material specification for AF1410 is presented in Table 2.5.2.0(a). Room temperature mechanical properties are shown in Table 2.5.2.0(b). Table 2.5.2.0(a). Material Specification for AF1410 Steel
Specification AMS 6527
Form Bar and forging
2-107
MMPDS-06 1 April 2011
Table 2.5.2.0(b). Design Mechanical and Physical Properties of AF1410 Steel Bar Specification . . . . . . . . . . . . . . . . . . . . . . . . AMS 6527 Bar Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a Condition . . . . . . . . . . . . . . . . . . . . . . . . . . Cross-sectional area, sq. in. . . . . . . . . . . . . #100b Thickness or diameter, in. . . . . . . . . . . . . . #4.25b Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S Mechanical Properties: Ftu, ksi: L .............................. 235 LTc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 STc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Fty, ksi: L .............................. 215 c LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 STc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Fcy, ksi: L .............................. 223 STc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . 334 (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . 435 Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . 269 (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . 300 e, percent: L .............................. 12 LTc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 c ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 RA, percent: L .............................. 60 c LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 STc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 E, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . 29.4 3 Ec, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . 30.9 G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . ... µ................................ ... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . 0.283 C, K, and α . . . . . . . . . . . . . . . . . . . . . . . ... a b c
Heat at 1650EF ± 25EF for one hour, forced-air cool to room temperature, heat at 1525EF ± 25EF for one hour, forced-air cool to room temperature, cool at -100EF ± 15EF for one hour, age at 950EF ± 10EF for 5 hours, and air cool. Maximum size from which test specimens were rough machined prior to heat treatment. Applicable providing LT or ST dimension is $2.500 inches.
2-108
MMPDS-06 1 April 2011 2.5.2.1 Heat-Treated Condition — Typical stress-strain curves at room temperature are shown in Figures 2.5.2.1.6(a) and 2.5.2.1.6(b). 300
250 Longitudinal
Stress, ksi
200
Longitudinal
150 Short transverse Ramberg-Osgood
100
n (longitudinal) = 11 n (short transverse) = 9.1
50
TYPICAL Thickness <= 4.250in.
0 0
2
4
6
8
10
12
14
16
Strain, 0.001 in./in.
Figure 2.5.2.1.6(a). Typical tensile stress-strain curves at room temperature for heat-treated AF1410 steel bar. 300 1/2-hr exposure 250 Short Transverse Longitudinal Stress, ksi
200
150 Ranberg-Osgood 100
n (Longitudinal) = 9.0 n (Short transverse) = 10
50
TYPICAL Thickness <= 4.250 in.
0 0
2
4
6
8
10
12
14
16
24
28
32
Strain, 0.001 in./in. 0
4
8
12
16
20
3 Compressive Tangent Modulus, 10 ksi
Figure 2.5.2.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for heat-treated AF1410 steel bar.
2-109
MMPDS-06 1 April 2011 2.5.3 AERMET 100 2.5.3.0 Comments and Properties — AerMet 100 is a higher-strength derivative of AF1410. The Ni-Co-Fe alloy can be heat treated to 280-300 ksi or to 290-310 ksi tensile strength while exhibiting excellent fracture toughness and high resistance to stress-corrosion cracking. AerMet 100 has good weldability and does not require preheating prior to welding. AerMet 100 is available in a wide variety of sizes and forms including billet, bar, sheet, strip, plate, wire, and die forgings. The alloy is produced by vacuum induction melting followed by vacuum-arc remelting. Heat Treatment — This alloy can be heat treated to several strength levels. Consult the applicable materials specification for specific procedures. Environmental Considerations — AerMet 100 is not considered corrosion resistant; consequently, parts should be protected with a corrosion-resistant coating. The alloy is highly resistant to stress corrosion cracking compared to other high-strength steels of the same strength level. This alloy displays good toughness at cryogenic temperatures as well as high strength and stability at temperatures up to 800EF. Specification and Properties — A material specification for AerMet 100 is shown in Table 2.5.3.0(a). Room temperature mechanical properties are presented in Table 2.5.3.0(b) for both heat-treated conditions. Table 2.5.3.0(a). Material Specification for AerMet 100
Specification AMS 6532
Form Bar and Forging
2-110
MMPDS-06 1 April 2011
Table 2.5.3.0(b). Design Mechanical and Physical Properties of AerMet 100 Steel Bar Specification . . . . . . . . . . . . . AMS 6532 Form . . . . . . . . . . . . . . . . . . . Bar and forging Condition . . . . . . . . . . . . . . . Solution treated and aged Aged at 900EF Aged at 875EF 2 Cross-sectional area, in. . . . . # 100 Thickness or diameter, in. . . . # 10.000 A B S Basis . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................... 275 284 290 LTa . . . . . . . . . . . . . . . . . . . 280 284 290 a b ST . . . . . . . . . . . . . . . . . . . 280 ... 290 Fty, ksi: L .................... 235 247 245 a LT . . . . . . . . . . . . . . . . . . . 235 246 245 STa . . . . . . . . . . . . . . . . . . . 235b ... 245 Fcy, ksi: L .................... 262 276 281 a ST . . . . . . . . . . . . . . . . . . . 263 277 279 Fsu, ksi (L and ST) . . . . . . . . 174 177 182 Fbruc, ksi: L (e/D = 1.5) . . . . . . . . . . . 432 440 448 L (e/D = 2.0) . . . . . . . . . . . 569 579 581 c Fbry , ksi: L (e/D = 1.5) . . . . . . . . . . . 361 380 378 L (e/D = 2.0) . . . . . . . . . . . 411 432 442 e, percent: (S-Basis) L .................... 10 ... 10 a LT . . . . . . . . . . . . . . . . . . . 8 ... 8 STa . . . . . . . . . . . . . . . . . . . 8 ... 8 RA, percent: (S-Basis) L .................... 55 ... 50 a d LT . . . . . . . . . . . . . . . . . . . 45 ... 35 a ST . . . . . . . . . . . . . . . . . . . 45 ... 35 E, 103 ksi . . . . . . . . . . . . . . . 28.0 Ec, 103 ksi . . . . . . . . . . . . . . 28.1 G, 103 ksi . . . . . . . . . . . . . . . ... µ...................... 0.305 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . 0.285 C, K, and α . . . . . . . . . . . . . ... Issued: Dec-1992, Mil-Hdbk-5F, CN1, Item 91-29. Last Revised: Oct 2006, MMPDS-03, Item 06-01. a Applicable providing LT or ST dimension is #2.500 inches. b S-Basis value c Bearing values are “dry pin” values per Section 1.4.7.1. d Rounded T99 value is 41%.
2-111
MMPDS-06 1 April 2011 2.5.3.1 280-300 ksi Heat-Treated Condition — Typical stress-strain curves at room temperature are shown in Figures 2.5.3.1.6(a) and 2.5.3.1.6(b). A full-range tensile stress-strain curve is presented in Figure 2.5.3.1.6(c).
250
Longitudinal and Short Transverse
200
Stress, ksi
150
Ramberg - Osgood n (longitudinal) = 6.8 n (short transverse) = 6.8
100
TYPICAL 50
Thickness ≤ 10.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.5.3.1.6(a). Typical tensile stress-strain curve at room temperature for AerMet 100 steel bar, heat treated to 280-300 ksi.
2-112
MMPDS-06 1 April 2011
300
250
Longitudinal and Short transverse
Stress, ksi
200
150
100
Ramberg-Osgood n (longitudinal) = 11 n (short transverse) = 12
50
TYPICAL Thickness: 0
0
2
4
6
< = 10.000
8
in. 10
12
25
30
Strain, 0.001 in./in. 0
5
10
15
20
3
Compressive Tangent Modulus, 10 ksi
Figure 2.5.3.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for AerMet 100 steel bar, heat treated to 280300 ksi.
2-113
MMPDS-06 1 April 2011
300
280
Longitudinal 260
Thickness = < 10.00 in. 240
220
200
Stress, ksi
180
X
160
140
120
100
80
AerMet 100
60
Bar Based on one heat 40
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
Strain, in./in.
Figure 2.5.3.1.6(c). Typical tensile stress-strain curve (full range) at room temperature for AerMet 100 steel bar, heat treated to 280-300 ksi.
2-114
MMPDS-06 1 April 2011 2.5.3.2 290-310 ksi Heat-Treated Condition — Typical tensile and compression stressstrain curves and compression tangent-modulus curves at room temperature are shown in Figures 2.5.3.2.6(a) and 2.5.3.2.6(b). A full-range tensile stress-strain curve is presented in Figure 2.5.3.2.6(c). 300
Longitudinal and S hort T ransv erse
250
Stress, ksi
200
150
100
R am berg-O sgood T Y S (ksi) n (L-tension) = 15.9 258 n (S T -tension) = 16.1 2 58
50
T Y P IC A L T hickne ss: < 10.00 0 in. 0 0
2
4
6
8
10
12
S tra in , 0.0 01 in ./in.
Figure 2.5.3.2.6(a). Typical tensile stress-strain curve at room temperature for AerMet 100 steel bar, heat treated to 290-310 ksi. 350
Longitudinal and Short Transverse
300
Stress, ksi
250
200
R am berg-O sgood n (L) = 9.6 n (S T) = 13
150
100
TYS (ksi) 297 297
TYP IC A L Thickness: <10.000 in.
50
0 0
5
10
15
20
25
30
S train, 0.001 in./in. C om pressive Tangent M odulus, 10 3 ksi. Figure 2.5.3.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for AerMet 100 steel bar, heat treated to 290310 ksi.
2-115
MMPDS-06 1 April 2011
350
300
Short transverse 250
Stress, ksi
X 200
Longitudinal
X
150
100
TYPICAL 50
Thickness: 5.00 inches Based on one heat
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
Strain, in./in. Figure 2.5.3.2.6(c). Typical tensile stress-strain curve (full range) at room temperature for AerMet 100 steel bar, heat treated to 290-310 ksi.
2-116
MMPDS-06 1 April 2011 2.5.4 FERRIUM S53 2.5.4.0 Comments and Properties — Ferrium S53 is a secondary hardening, martensitic corrosion resistant steel used for parts requiring good fracture toughness, good corrosion resistance, and high resistance to stress-corrosion cracking (per ASTM F1624) with ultimate tensile strength greater than 280 ksi. Ferrium S53 is available in a wide variety of sizes and forms, including billet, bar, and forgings. The alloy is produced by vacuum induction melting followed by vacuum-arc remelting. Manufacturing Considerations - Ferrium S53 is supplied in a normalized and annealed condition. The alloy is readily forged and machined. A dimensional expansion of approximately 0.003 in./in. occurs upon quenching and age-hardening from the annealed condition. This fact should be considered before finish machining prior to heat treatment. Heat Treatment - The heat treatment for this alloy consists of heating to 1985 ±27ºF for 1 hour, quenching in oil (or equivalent), cooling to -100ºF or lower for 1 hour, warming in air to room temperature, aging at 934 ±12ºF for 3 hours, quenching in oil (or equivalent), cooling to -100ºF or lower for 1 hour, warming in air to room temperature, aging at 900 ±18ºF for 12 hours, and cooling in air (or equivalent). Environmental Considerations - While the alloy is corrosion resistant, users should consider the specific application and environment when determining surface coatings, preparation, or treatment. The alloy is more resistant to stress-corrosion cracking compared to other ultra high-strength steels such as 300M. Table 2.5.4.0(a). Material Specifications for Ferrium S53 Specification AMS 5922
Form Bars and Forgings
2.5.4.1 Heat Treated Condition— Typical tensile and compressive stress-strain and tangentmodulus curves are presented in Figures 2.5.4.1.6(a) and 2.5.4.1.6(b). Typical full-range stress-strain curves are presented in Figure 2.5.4.1.6(c).
2-117
MMPDS-06 1 April 2011 Table 2.5.4.0(b). Design Mechanical and Physical Properties of Ferrium S53 Steel Bar AMS 5922 Specification . . . . . . . . . Bar and Forging Form . . . . . . . . . . . . . . . HT to 280 ksi Temper . . . . . . . . . . . . . 1.750-8.000 Diameter, in. . . . . . . . . . B Basis . . . . . . . . . . . . . . . A a Mechanical Properties : Ftu, ksi: 284 280b L ................ 283 280 T ................ Fty, ksi: 218 213b L ................ 211 218 T ................ Fcy, ksi: 245 250 L ................ 251 257 T ................ Fsu, ksi . . . . . . . . . . . . . 176 178 Lc . . . . . . . . . . . . . . . . 176 178 d T ................ e Fbru , ksi (e/D = 1.5) : 440 446 L ................. 437 443 T ................ e Fbru , ksi (e/D = 2.0) : ... ... L ................. ... ... T ................ e Fbry , ksi (e/D = 1.5) : 351 359 L ................. 348 357 T ................ e Fbry , ksi (e/D = 2.0) : 417 426 L ................. 423 433 T ................ 11 ... e, percent (S-Basis) . . . 44 ... RA, percent (S-Basis) E, 103 ksi : . . . . . . . . . . 29.6 Ec, 103 ksi: . . . . . . . . . . 30.7 G, 103 ksi: . . . . . . . . . . . ... µ, . . . . . . . . . . . . . . . . ... Physical Properties: 0.288 ω, lb/in.3 . . . . . . . . . . . See Figure 2.5.4.0 C, K, and α . . . . . . . . . a b c d e
Issued: Apr 2009, MMPDS-04CN1, Item 08-01. Last Modified: Apr 2009, MMPDS-04CN1, Item 08-38. Mechanical properties shown in the T (transverse) orientation were based on the radial direction. Specification minimum. The rounded T99 values are as follows: Ftu(L)= 281 ksi, and Fty(L) = 214 ksi. L shear properties were based on longitudinal samples loaded in the radial direction ( L-R) per ASTM B769 T shear properties were based on radial samples loaded in the longitudinal direction (R-L) per ASTM B769 Bearing values are Adry pin@ values per Section 1.4.7.1.
2-118
MMPDS-06 1 April 2011
o
α
6
20
-6
K, Btu-ft./ft.hr.-oF
Ferrium S53
K
0.3
15
0.2
10
0.1
5
5
4
C
o
C, Btu/(lb)( F)
0.4
7
25
α, 10 in./in./ F
0.5
3
α - Between 70F and indicated temperature K - At indicated temperature C - At indicated temperature
0.0
2
0 0
200
400
600
800
1000
1200
1400
1600
1800
o
Temperature, F
Figure 2.5.4.0. Effect of temperature on the physical properties of Ferrium S53.
250 Ferrium S53 Bar 200
Stress, ksi
Longitudinal and Transverse
150
100 TYPICAL Ramberg-Osgood 50
n = 7.1
TYS 225
1.750-8.000 inches 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.5.4.1.6(a). Typical tensile stress-strain curve for Ferrium S53 corrosion resistant steel bar at room temperature.
2-119
MMPDS-06 1 April 2011
300 Transverse Ferrium S53 Bar
250
Longitudinal
Stress, ksi
200
150 Ramberg-Osgood n (L) = 7.0 n (T) = 7.2
100
CYS (ksi) 258 266
TYPICAL
50
Diameters: 1.75-8.00 inches 0 0
5
10
15
20
25
30
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 2.5.4.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for Ferrium S53 corrosion resistant steel bar at room temperature.
2-120
MMPDS-06 1 April 2011
300
250
200
Stress, ksi
X
150
100
Ferrium S53 Bar Longitudinal and Transverse 1.750 - 8.000 inches
50
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 2.5.4.1.6(c). Typical tensile stress-strain (full-range) curve for Ferrium S53 corrosion resistant steel bar at room temperature.
2-121
0.16
MMPDS-06 1 April 2011
Figure 2.5.4.1.8(a) Best-fit S/N curves for unnotched Ferrium S53 alloy bar, longitudinal direction. Correlative Information for Figure 2.5.4.1.8(a) Product Form: Bar, 4 in. X 4 in., AMS 5922 Properties:
TUS, ksi TYS, ksi 288 226
Specimen Details:
Test Parameters: Loading - Axial Frequency - 25 Hz Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not Specified
Unnotched 0.250 inch diameter
Equivalent Stress Equation: Log Nf =17.865-5.922 log (Seq-100.0) Seq = Smax (1-R)0.708 ksi Std. Error of Estimate, Log (Life) = 0.346 Standard Deviation, Log (Life) = 0.751 R2 = 78.7%
Specimens heat treated in rough machined condition Surface Condition: Ground; final polish parallel with specimen length to 8 Ra or finer
Sample Size = 82 Reference:
2.5.4.1.8 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-122
MMPDS-06 1 April 2011
Figure 2.5.4.1.8(b) Best-fit S/N curves for unnotched Ferrium S53 alloy bar, transverse direction.
Correlative Information for Figure 2.5.4.1.8(b) Product Form: Bar, 4 in. X 4 in., AMS 5922 Properties:
TUS, ksi 288
TYS, ksi 226
Test Parameters: Loading - Axial Frequency - 25 Hz Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not Specified
Specimen Details: Unnotched 0.250 inch diameter
Equivalent Stress Equation: Log Nf =16.778-5.774 log (Seq-75.0) Seq = Smax (1-R)0.475 ksi Std. Error of Estimate, Log (Life) = 0.512 Standard Deviation, Log (Life) = 0.815 R2 = 60.6%
Specimens heat treated in rough machined condition Surface Condition: Ground; final polish parallel with specimen length to 8 Ra or finer
Sample Size = 58 Reference:
2.5.4.1.8 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-123
MMPDS-06 1 April 2011
Figure 2.5.4.1.8(c) Best-fit S/N curves for notched, Kt = 3.2, Ferrium S53 alloy bar, longitudinal direction.
Correlative Information for Figure 2.5.4.1.8(c) Product Form: Bar, 4 in. X 4 in., AMS 5922 Properties:
TUS, ksi 288
TYS, ksi 226
Test Parameters: Loading - Axial Frequency - 25 Hz Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not Specified
Specimen Details: Notched 60E V-Groove 0.354 inch gross diameter 0.250 inch net diameter 0.0134 inch root radius, r 60E flank angle,
Equivalent Stress Equation: Log Nf = 9.018-2.733 log (Seq-73.7) Seq = Smax (1-R)0.866 ksi Std. Error of Estimate, Log (Life) = 0.287 Standard Deviation, Log (Life) = 0.896 R2 = 89.8%
Specimens excised from fully hardened bar Surface Condition: Ground; final polish parallel with specimen length to 8 Ra or finer Reference:
Sample Size = 29 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.5.4.1.8
2-124
MMPDS-06 1 April 2011
Figure 2.5.4.1.8(d) Best-fit S/N curves for notched, Kt = 3.2, Ferrium S53 alloy bar, transverse direction. Correlative Information for Figure 2.5.4.1.8(d) Product Form: Bar, 4 in. X 4 in., AMS 5922 Properties:
TUS, ksi TYS, ksi 288 226
Specimen Details:
Test Parameters: Loading - Axial Frequency - 25 Hz Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not Specified
Notched 60E V-Groove 0.354 inch gross diameter 0.250 inch net diameter 0.0134 inch root radius, r 60E flank angle,
Equivalent Stress Equation: Log Nf = 12.625-4.430 log (Seq-40.8) Seq = Smax (1-R)0.571 ksi Std. Error of Estimate, Log (Life) = 0.239 Standard Deviation, Log (Life) = 0.955 R2 = 93.8%
Specimens excised from fully hardened bar Surface Condition: Ground; final polish parallel with specimen length to 8 Ra or finer Reference:
Sample Size = 15 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.5.4.1.8
2-125
MMPDS-06 1 April 2011
0.100
Strain Range, in./in.
Strain Ratio = -1.0
0.010 100
1000
10000
100000
Cycles to Failure
Figure 2.5.4.1.8(e) Best-fit ε/N curve for Ferrium S53 alloy bar, longitudinal direction. Correlative Information for Figure 2.5.4.1.8(e) Product Form: Bar, 4 in. X 4 in., AMS 5922 Properties:
TUS, ksi TYS, ksi 288 226
Specimen Details:
Test Parameters: Loading - Axial Frequency - 0.5 Hz Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not Specified
Unnotched 0.250 inch diameter
Equivalent Strain Equation: Log Nf = -0.8529 (∆g - 0.0136) + 1.370 Std. Error of Estimate, Log (Life) = 0.07 Standard Deviation, Log (Life) = 0.533 R2 = 97.8%
Specimens heat treated in rough machined condition Surface Condition: Ground; final polish parallel with specimen length to 8 Ra or finer Reference:
Sample Size = 11
2.5.4.1.8
2-126
MMPDS-06 1 April 2011
1.E-03 Stress Ratio, R L-R 0.10 R-C 0.10
Fatigue Crack Propagation Rate, da/dN, inches/cycle
1.E-04
Frequency f, Hz 25
No. of Specimens 6
25
6
No. of Data Points 436 424
1.E-05
1.E-06
1.E-07
1.E-08 1
10
100
Stress Intensity Factor Range, ∆ K, ksi-in0.50 Figure 2.5.4.1.9 Fatigue crack propagation data for 8.00-inch diameter Ferrium S53 bar. [Reference 2.5.4.1.9] Specimen Thickness: Specimen Width: Specimen Type:
0.35 inch 3.00 inch C(T)
Environment: Temperature: Orientation:
2-127
Lab Air RT L-R and R-C
MMPDS-06 1 April 2011
Table 2.5.4.1.9. Fatigue crack propagation rate look-up table for best-fit mean curve shown in Figure 2.5.4.1.9 Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.10 da/dN, in./cycle
0.10 da/dN, in./cycle
5.01
4.74E-08
14.96
1.57E-06
5.31
5.27E-08
15.85
1.90E-06
5.62
5.94E-08
16.79
2.28E-06
5.96
6.80E-08
17.78
2.72E-06
6.31
7.89E-08
18.84
3.20E-06
6.68
9.27E-08
19.95
3.74E-06
7.08
1.10E-07
21.13
4.32E-06
7.50
1.32E-07
22.39
4.94E-06
7.94
1.59E-07
23.71
5.60E-06
8.41
1.94E-07
25.12
6.28E-06
8.91
2.38E-07
26.61
6.98E-06
9.44
2.93E-07
28.18
7.71E-06
10.00
3.62E-07
29.85
8.49E-06
10.59
4.48E-07
31.62
9.32E-06
11.22
5.55E-07
33.50
1.03E-05
11.89
6.88E-07
35.48
1.14E-05
12.59
8.50E-07
37.58
1.27E-05
13.34
1.05E-06
39.81
1.45E-05
14.13
1.29E-06
42.17
1.68E-05
2-128
MMPDS-06 1 April 2011
2.6 PRECIPITATION- AND TRANSFORMATION-HARDENING STEELS (STAINLESS) 2.6.0 COMMENTS ON PRECIPITATION AND TRANSFORMATION-HARDENING STEELS (STAINLESS) 2.6.0.1 Metallurgical Considerations — The transformation- and precipitation-hardening stainless steels are martensitic or semiaustenitic stainless steels that are hardenable by heat treatment.* The martensitic alloys require only a single-step heat treatment to develop maximum strength. The others are austenitic in the fully annealed condition but become martensitic during subsequent heat treatment or as a result of extensive cold working. During a final heat treatment designed to temper the martensite, several of these steels are hardened further by the precipitation of copper, aluminum, or titanium. Some dimensional change may be experienced during the heat treatment of the semiaustenitic steels. A dimensional expansion of approximately 0.0045-in./in. occurs during the transformation from the austenitic to the martensitic condition; during aging, a contraction of about 0.0005-in./in. takes place. 2.6.0.2. Manufacturing Considerations — The martensitic precipitation-hardening steels, before age hardening, are similar to the straight-chromium martensitic stainless steels (Type 410 or 431) in their general fabricating characteristics. The semiaustenitic grades, in the annealed condition, are similar to the austenitic stainless steels (Types 301, etc.) in this respect and are readily cold-formed. Forming of hardened steels after final heat treatment should be avoided. These alloys can be welded by the conventional methods used for the austenitic stainless steels. Inert gas-shielded welding is recommended to prevent the loss of titanium or aluminum in certain of these alloys. Postweld annealing is recommended for some grades. The heat treatments for these steels are compatible with the cycles used for honeycomb panel brazing. Vapor blasting of scaled parts, after final heat treatment, is recommended because of the hazards of intergranular corrosion in inadequately controlled acids pickling operations. 2.6.0.3 Environmental Considerations — The precipitation-hardening stainless steels have good strength and oxidation and corrosion resistance in their service range. Prolonged exposures above 600EF and below the tempering range may cause further hardening, with possible decrease in ductility. Prolonged exposures in or above the temperature range result in loss of strength due to overtempering, overaging, or reaustenizing. 2.6.1 AM-350 2.6.1.0 Comments and Properties — AM-350 has high strength up to 800EF and good oxidation resistance up to about 1000EF. The alloy can be hardened by subzero cooling and tempering (Condition SCT). Manufacturing Considerations — AM-350 is readily formed, welded, and brazed. Its forming characteristics are similar to the AISI 300 series stainless steels; however, it does have a higher rate of strain hardening. When fabricating AM-350 in the annealed condition, proper design allowance must be made for growth, which occurs upon hardening. To obtain proper response to the SCT treatment after welding, the alloy must be reannealed. Environmental Considerations — AM-350 shows good corrosion-resisting properties in ordinary atmospheres and also in a number of chemical environments. Exposure in the 600E to 800EF range for 1,000 hours at stress levels below the short-time yield strength tends to increase room temperature yield strength and room temperature tensile strength slightly. Exposure to 800EF results in a decrease in elongation. Typical data are presented in Table 2.6.1.0(a).
*
Heat treating procedures for these steels are specified in MIL-H-6875 and are further described in producers’ literature.
2-129
MMPDS-06 1 April 2011
Table 2.6.1.0(a). Effect of Elevated Temperature Exposure on Typical Tensile Properties of AM-350 Alloy in the SCT 850 Condition
Exposure temperature, EF RT . . . . . . . . . . . . . . . . . . . . . . 600 . . . . . . . . . . . . . . . . . . . . . . 700 . . . . . . . . . . . . . . . . . . . . . . 800 . . . . . . . . . . . . . . . . . . . . . . 600 . . . . . . . . . . . . . . . . . . . . . . 700 . . . . . . . . . . . . . . . . . . . . . . 800 . . . . . . . . . . . . . . . . . . . . . .
Exposure stress, ksi ... 60 60 60 90 90 90
Exposure time, hr ... 1,000 1,000 1,000 1,000 1,000 1,000
Room temperature properties TUS, ksi TYS, ksi e, % 158 12.0 201 198 162 14.0 204 169 11.0 190 7.0 220 202 177 13.0 206 180 11.0 214 192 7.0
Specifications and Properties — A material specification for AM-350 stainless steel is presented in Table 2.6.1.0(b). The room temperature properties of AM-350 in the SCT 850 condition are shown in Table 2.6.1.0(c). Figure 2.6.1.0 presents elevated temperature physical property information. Table 2.6.1.0(b). Material Specifications for AM-350 Stainless Steel
Specification AMS 5548
Form Sheet and strip
2-130
MMPDS-06 1 April 2011
Table 2.6.1.0(c). Design Mechanical and Physical Properties of AM-350 Stainless Steel Sheet and Strip Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AMS 5548 Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sheet and stripa
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCT 850
Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
# 0.187
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L ............................................
183
LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
185
Fty, ksi: L ............................................
147
LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
150
Fcy, ksi: L ............................................
163
LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
121
Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
(e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
373
Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
(e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
252
e, percent: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10b
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.0
3
30.0
3
G, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.0
µ .............................................
0.32
Ec, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Physical Properties:
a b
ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.282
C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.12 (32E to 212EF)
K and α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
See Figure 2.6.1.0
Test direction longitudinal for widths less than 9 in.; transverse for widths 9 in. and over. Elongation is 8 percent for sheet thickness in the range 0.010 to 0.050 inch. Listed value is for thickness > 0.050 inch.
2-131
MMPDS-06 1 April 2011 18
11 AM -350 steel o α - Between 70 F and indicated tem perature K - At indicated tem perature
17
10
16
9 8
α, SCT850
14
7
13
6
12
5
α, 10-6 in./in./oF
K, Btu-ft./ft.hr.-oF
15
K 11
4
10
3
9
2
8 0
200
400
600
800
1000
1200
1400
1 1600
Tem perature, o F
Figure 2.6.1.0. Effect of temperature on the physical properties of AM-350 stainless steel.
2.6.1.1 SCT 850 Condition — Effect of temperature on various mechanical properties of AM350 is presented in Figures 2.6.1.1.1 through 2.6.1.1.4. Typical stress-strain and tangent-modulus curves at several temperatures are shown in Figures 2.6.1.1.6(a) and 2.6.1.1.6(b).
Percentage of Room Temperature Strength
100
A M -350 (S C T850) S trength at tem perature E xposure up to 1/2 hr
90
80
F tu
70
F ty and F cy
60
50
40 0
100
200
300
400
500
600
700
800
900
1000 1100 1200
Tem perature, o F
Figure 2.6.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu), the tensile yield strength (Fty), and the compressive yield strength (Fcy) of AM-350 (SCT 850) stainless steel sheet.
2-132
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength
1 00
A M -350 (S C T 850 ) S treng th a t tem pe ra ture E xposure u p to 1/2 hr
90
80
F su
70
60
50
40 0
100
20 0
3 00
400
500
60 0
7 00
800
90 0
10 00 1 100 120 0
T em perature, o F
Figure 2.6.1.1.2. Effect of temperature on the shear ultimate strength (Fsu) of AM-350 (SCT 850) stainless steel sheet.
Percentage of Room Temperature Strength
100 AM-350 (SCT850) Strength at temperature Exposure up to 1/2 hr
Fbru 90 F bry 80
70
60
e/D = 2.0
50
40 0
100
200
300
400
500
600
700
800
900
1000 1100 1200
o
Temperature, F
Figure 2.6.1.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of AM-350 (SCT 850) stainless steel sheet.
2-133
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength
100
AM-350 (SCT 850) steel Modulus at temperature Exposure up to 1/2 hr
90
Typical
80
70 E and Ec 60
50
40 0
100
200
300
400
500
600
700
800
900
1000 1100 1200
Temperature, oF
Figure 2.6.1.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of AM-350 (SCT 850) stainless steel sheet.
250
1/2-hr exposure
200
RT 400 150
Stress, ksi
600 800
100
Ramberg - Osgood n (RT) = 10 n (400) = 7.0 n (600) = 7.5 n (800) = 6.5
50
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.1.1.6(a). Typical tensile stress-strain curves at various temperature for AM350 (SCT 850) stainless steel sheet.
2-134
MMPDS-06 1 April 2011
250
AM-350 (SCT 850) sheet
Stress, ksi
0.5 hr exposure
RT
200
RT
o
150
400 F 600o F
400o F 600o F
800o F
800o F
100
Ramberg - Osgood n (RT) = 9.3 n (400o F) = 6.2 n (600o F) = 6.8 n (800o F) = 6.2
50
TYPICAL 0 0
2
4
6
8
10
12
20
25
30
Strain, 0.001 in./in. 0
5
10
15
3 Compressive Tangent Modulus, 10 ksi
Figure 2.6.1.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at various temperatures for AM-350 (SCT 850) stainless steel sheet.
2-135
MMPDS-06 1 April 2011 2.6.2 AM-355 2.6.2.0 Comments and Properties — AM-355, like AM-350, has high strength up to 800EF and good oxidation resistance up to 1000EF. The AM-355 alloy is generally hardened by subzero cooling and tempering (Condition SCT). AM-355 is available in all mill products. The manufacturing considerations for AM-355 are similar to those for AM-350. Machining of AM-355 bars and forgings is best accomplished after overtempering at 1000EF to 1100EF. The differences between AM-350 and AM-355 are a result of higher carbon, lower chromium, and reduced delta ferrite in AM-355. This difference in composition makes AM-355 slightly stronger but slightly less corrosion-resistant than AM-350. Environmental Considerations — Exposure in the 600E to 800EF range for 100 hours at stress levels below the short-time yield strength tends to increase room temperature yield strength and room temperature tensile strength slightly, with little change in elongation. Typical data are shown in Table 2.6.2.0(a). Specifications and Properties — Material specifications for AM-355 are presented in Table 2.6.2.0(b). Table 2.6.2.0(a). Effect of Elevated Temperature Exposure on Typical Tensile Properties of AM-355 Alloy in the SCT 850 Condition
Exposure temperature, EF RT 600 700 800 600 700 800
Room temperature properties
Exposure stress, ksi
Exposure time, hr
TUS, ksi
TYS, ksi
e, %
... 66 65 62 99 97 93
... 1,000 1,000 1,000 1,000 1,000 1,000
211 213 218 227 214 218 224
170 172 178 200 180 189 204
11.5 12.0 10.5 12.5 10.5 11.5 12.5
.............................. .............................. .............................. .............................. .............................. .............................. ..............................
The room temperature properties of AM-355 SCT are shown in Table 2.6.2.0(c) through 2.6.2.0(e). The physical properties of this alloy are presented in Figure 2.6.2.0. Table 2.6.2.0(b). Material Specifications for AM-355 Stainless Steel
Specification AMS 5547 AMS 5549a AMS 5743
Form Sheet and strip Plate Bar, forging, and forging stock
a Inactive for new design.
2-136
MMPDS-06 1 April 2011
Table 2.6.2.0(c). Design Mechanical and Physical Properties of AM-355 Stainless Steel
Specification . . . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L .............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . e, percent: L .............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RA, percent: L .............................. E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . µ................................ Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . . . . a b c
AMS 5547 Sheet and stripa SCT850b SCT1000 0.0005-0.187 0.010-0.187 S S
AMS 5743 Bar and forging SCT850b SCT1000 ... ... S S
188 190
... 165
200 ...
170 ...
162 165
... 140
165 ...
155 ...
180 ... 124
... ... ...
... ... ...
... ... ...
... 383
... ...
... ...
... ...
... 278
... ...
... ...
... ...
... c
... 10
10 ...
12 ...
...
...
20
25
29.0 29.0 11.0 0.32 0.282 See Figure 2.6.2.0
Test direction longitudinal for widths less than 9 inches; transverse for widths 9 inches and over. Note: Condition SCT850 has been superseded by Condition SCT1000 in the applicable specifications. The tensile properties in these columns are the values previously specified for Condition SCT850. See Table 2.6.2.0(e).
2-137
MMPDS-06 1 April 2011
Table 2.6.2.0(d). Design Mechanical and Physical Properties of AM-355 Stainless Steel Plate
Specification . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 5549a
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plateb SCT850c
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCT 1000
Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . .
<0.375
0.375-1.000
>1.000
<0.187
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
188 190
... 190
... 190
... 165
162 165
... 150
... d
... 140
180 ... 124
... ... ...
... ... ...
... ... ...
... 383
... ...
... ...
... ...
... 278
... ...
... ...
... ...
10
10
10
12
Mechanical Properties: Ftu, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . µ .................................
29.0 29.0 11.0 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . . . . . . a b c d
0.282 See Figure 2.6.2.0
Inactive for new design. Test direction longitudinal for widths less than 9 inches; transverse for widths 9 inches and over. Note: Condition SCT850 has been superseded by Condition SCT1000 in the applicable specifications. The tensile properties in these columns are the values previously specified for Condition SCT850. As agreed upon by purchaser and vendor.
2-138
MMPDS-06 1 April 2011
Table 2.6.2.0(e). Minimum Elongation Values for AM-355 (SCT 850) Stainless Steel Sheet and Strip
Thickness, inches
e (LT), percent in 2 inches
0.0005 to 0.0015 . . . . . . . . . . . . . . . . . . . . . . . . . .
2
Over 0.0015 to 0.0020 . . . . . . . . . . . . . . . . . . . . . .
3
Over 0.0020 to 0.0050 . . . . . . . . . . . . . . . . . . . . . .
5
Over 0.0050 to 0.0100 . . . . . . . . . . . . . . . . . . . . . .
7
Over 0.0100 to 0.1875 . . . . . . . . . . . . . . . . . . . . . .
8
0.30
35
8
0.25
30
7
0.20
25
6
0.10
0.05
0.00
-0.05
C
20
5
15
4
-6 α, 10 in./in./F
0.15
K, Btu/[(hr)(ft2)(F)/ft]
C, Btu/(lb)(F)
α, SCT850 and SCT1000
K
10
3 α - Between 70F and indicated temperature K - At indicated temperature C - At indicated temperature
5
0 -400 -200
0
200
400
600
2
1 800 1000 1200 1400 1600
Temperature, F
Figure 2.6.2.0. Effect of temperature on the physical properties of AM-355 stainless steel.
2-139
MMPDS-06 1 April 2011 2.6.2.1 SCT Condition — Elevated-temperature properties for AM-355 in the SCT (subzero cooled and tempered) condition are presented in Figures 2.6.2.1.1 through 2.6.2.1.4.
Figure 2.6.2.1.1. Effect of temperature on the tensile ultimate strength (Ftu), the tensile yield strength (Fty), and the compressive yield strength (Fcy) of AM-355 (SCT 850) stainless steel (all products).
100
Percentage of
Room Temperature Fsu
80
60
40
20
Stength at temperature Exposure up to 1/2 hr 0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.6.2.1.2. Effect of temperature on the shear ultimate strength (Fsu) of AM355 (SCT 850) stainless steel (all products).
2-140
MMPDS-06 1 April 2011
Figure 2.6.2.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of AM-355 (SCT 850) stainless steel sheet.
100
E
Percentage of
Room Temperature Modulus
80
60
40
20
Modulus at temperature Exposure up to 1/2 hr TYPICAL
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.6.2.1.4. Effect of temperature on the tensile modulus (E) of AM-355 (SCT 850) stainless steel (all products).
2-141
MMPDS-06 1 April 2011 2.6.3 CUSTOM 450 2.6.3.0 Comments and Properties — Custom 450 is a martensitic, precipitation-hardening stainless steel used for parts requiring corrosion resistance and high strength at temperatures up to 800EF for aged conditions. It is available in the form of forgings, billet, bar, wire, strip, and welded tubing. Manufacturing Considerations — Custom 450 is normally supplied and fabricated in the solutiontreated condition, except wire for cold heading is supplied in the H1150M condition. Forming, machining, and joining operations are similar to those employed for other precipitation-hardening stainless steels. Heat Treatment — Among the alloys of its type, Custom 450 is the only one recommended for use in the solution-treated condition at temperatures up to 500EF. The alloy can also be heat treated to various strength levels having a wide range of properties. Consult the applicable material specification or MIL-H-6875 for specific heat treatment procedures. In all heat treat conditions, Custom 450 has excellent ductility and toughness. Cryogenic properties are optimum in the H1150 condition. Maximum strength is achieved with the 900EF aging treatment while optimum fatigue life is exhibited with a 1050EF age. When the as-supplied, solution-treated condition is altered during processing by hot working, severe cold working, or welding, parts should be resolution annealed prior to aging. A dimensional contraction of about 0.0002-in./in. with the 900EF age and about 0.001-in./in. for the 1050EF aging treatment can be expected. Environmental Considerations — The general corrosion resistance of Custom 450 is similar to AISI Type 304 stainless steel. Custom 450 shows excellent resistance to atmosphere corrosion and mild chemical environments. It has good resistance to stress corrosion cracking in the solution-treated condition. Like all martensitic precipitation hardening alloys, if stress corrosion is of concern, it should be aged at the highest temperature compatible with strength requirements. It offers the best resistance to stress corrosion cracking and hydrogen embrittlement when aged at 1150EF. The general corrosion resistance is only slightly decreased by the higher aging temperatures. Material specifications for Custom 450 are shown in Table 2.6.3.0(a). The room temperature mechanical properties are presented in Tables 2.6.3.0(b) and 2.6.3.0(c). The effect of temperature on thermal expansion is shown in Figure 2.6.3.0. Table 2.6.3.0(a). Material Specifications for Custom 450 Stainless Steel
Specification AMS 5763 AMS 5773
Form Bar, forging, tubing, wire, and ring (air melted) Bar, forging, tubing, wire, and ring (CEM)
2-142
MMPDS-06 1 April 2011
Table 2.6.3.0(b). Design Mechanical and Physical Properties of Custom 450 Stainless Steel Bar
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . . . . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ....................................... ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ....................................... ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ....................................... ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e, percent: L ....................................... RA, percent: L ....................................... E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ......................................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a
Suppliers guaranteed minimum properties.
2-143
AMS 5763 Bar Solution Treated H900 #8.000 #8.000 S S
H1050 #8.000 Sa
125 ...
180 179
145 144
95 ...
170 168
135 133
... ... ...
175 173 114
143 141 93
... ...
298 381
239 307
... ...
265 326
204 257
10
10
12
40 28.0 ... ... ...
40
45 29.0 31.0 11.2 0.29
0.28 ... ... See Figure 2.6.3.0
MMPDS-06 1 April 2011
Table 2.6.3.0(c). Design Mechanical and Physical Properties of Custom 450 Stainless Steel Bar
Specification . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ....................... T ....................... Fty, ksi: L ....................... T ....................... Fcy, ksi: L ....................... T ....................... Fsu, ksi . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . e, percent: L ....................... T ....................... RA, percent: L ....................... T ....................... E, 103 ksi . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . µ......................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . .
AMS 5773 Bar Solution treated H900 H950 H1000 H1050 H1100 H1150 #12.000 S S S S S S S
125 ...
180 180
170 170
160 160
145 145
130 130
125 125
95 ...
170 170
160 160
150 150
135 135
105 105
75 75
... ... ...
175 173 114
... ... ...
... ... ...
143 141 93
... ... ...
... ... ...
... ...
298 381
... ...
... ...
239 307
... ...
... ...
... ...
265 326
... ...
... ...
204 257
... ...
... ...
10 ...
10 6
10 7
12 8
12 9
16 11
18 12
40 ... 28.0 ... ... ...
40 20
40 22
45 27
45 30 29.0 31.0 11.2 0.29
50 30
55 35
0.28 ... ... See Figure 2.6.3.0
2-144
MMPDS-06 1 April 2011
7 H900 Solution treated
α , 10-6 in./in./F
6
5
4
3 α - Between 70F and indicated temperature 2 0
200
400
600
800
1000
1200
1400
Temperature, F
Figure 2.6.3.0. Effect of temperature on the physical properties of Custom 450 stainless steel.
2-145
1600
MMPDS-06 1 April 2011 2.6.3.1 H900 Condition — Elevated temperature curves are presented in Figures 2.6.3.1.1, 2.6.3.1.2, and 2.6.3.1.5. A tensile stress-strain curve at room temperature is shown in Figure 2.6.3.1.6. Fatigue data at room temperature are presented in Figure 2.6.3.1.8.
200
180
160 Strength at temperature Exposure up to ½ hr
Percentage of Room Temerature Strength
140
F ty
120
100
F tu
80 F tu F ty
60
40
20
0 -400
-200
0
200
400
600
800
1000
0
Temperature, F Figure 2.6.3.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of Custom 450 (H900) stainless steel bar.
2-146
MMPDS-06 1 April 2011
200 Strength at temperature Exposure up to 1 hr 180
Percentage of Room Temerature Fsu
160
140
120
100
80
60
40
20
0 -400
-200
0
200
400
600
800
1000
Temperature, F Figure 2.6.3.1.2. Effect of temperature on the ultimate shear strength (Fsu) of Custom 450 (H900) stainless steel bar.
2-147
MMPDS-06 1 April 2011
100
50
Property at temperature Exposure up to 1 hr TYPICAL
40
60
30
RA 40
20
e
20
0 -100
0
100
200
300
400
Elongation, e, percent
Reduction in Area, RA, percent
80
10
500
600
700
0 800
Temperature, F
Figure 2.6.3.1.5. Effect of temperature on the elongation (e) and the reduction of area (RA) of Custom 450 (H900) stainless steel bar.
200 Longitudinal and Long transverse
Stress, ksi
160
120
80 Ramberg-Osgood n = 16 40
TYPICAL Thickness: 1.000 - 12.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.3.1.6. Typical tensile stress-strain curve for Custom 450 (H900) stainless steel bar at room temperature.
2-148
MMPDS-06 1 April 2011
Figure 2.6.3.1.8. Best-fit S/N curves for notched, Kt - 3.0 Custom 450 (H900) stainless steel (ESR) bar, longitudinal direction.
Correlati
ve Information for Figure 2.6.3.1.8
Product Form: Bar, 1.0625-inch diameter Properties:
TUS, ksi 192
TYS, ksi 188
304
—
Temp.,EF RT (unnotched) RT (notched)
Specimen Details: Notched, V-Groove, Kt=3.0 0.283-inch gross diameter 0.200-inch net diameter 0.010-inch root radius, r 60E flank angle, ω Surface Condition: Polished with abrasive nylon cord Reference:
2.6.3.1.8
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 9.64-3.21 log (Seq-39.28) Seq = Smax (1-R)0.65 Std. Error of Estimate, Log (Life) = 0.228 Standard Deviation, Log (Life) = 0.656 R2 = 88% Sample Size = 19 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-149
MMPDS-06 1 April 2011 2.6.3.2 H1050 Condition — Elevated temperature curves are presented in Figures 2.6.3.2.1, 2.6.3.2.2, and 2.6.3.2.5. A tensile stress-strain curve at room temperature is shown in Figure 2.6.3.2.6. Fatigue data at room temperature are presented in Figure 2.6.3.2.8.
200 Strength at temperature Exposure up to 1 hr
180
Percent of Room Temperature Strength
160
140
120
Fty
100
80
Ftu Fty
60
40
20
0 -400
-200
0
200
400
600
800
1000
Temperature, F
Figure 2.6.3.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of Custom 450 (H1050) stainless steel bar.
2-150
MMPDS-06 1 April 2011
200 Strength at temperature Exposure up to 1 hr
180
Percent Fsu at Room Temperature
160
140
120
100
80
60
40
20
0 -400
-200
0
200
400
600
800
Temperature, F
Figure 2.6.3.2.2. Effect of temperature on the ultimate shear strength (Fsu) of Custom 450 (H1050) stainless steel bar.
2-151
1000
MMPDS-06 1 April 2011 100
50 Property at temperature Exposure up to 1 hr 40 TYPICAL
60
30
RA
40
20
Elongation, e, percent
Reduction in Area, RA, percent
80
e
20
10
0 -100
0
100
200
300
400
500
600
700
0 800
Temperature, °F
Figure 2.6.3.2.5. Effect of temperature on the elongation (e) and the reduction of area (RA) of Custom 450 (H1050) stainless steel bar.
200
Longitudinal and Long Transverse
160
Stress, ksi
120
80
Ramberg - Osgood n = 26 TYPICAL 40
Thickness =1.000 - 12.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.3.2.6. Typical tensile stress-strain curve for Custom 450 (H1050) stainless steel bar at room temperature.
2-152
MMPDS-06 1 April 2011
Figure 2.6.3.2.8. Best-fit S/N curves for notched, Kt = 3.0, Custom 450 (H1050) stainless steel (ESR) bar, longitudinal
Correlative Information for Figure 2.6.3.2.8 Product Form: Bar, 1.0625-inch diameter Properties:
TUS, ksi 156
TYS, ksi 151
244
—
Temp.,EF RT (unnotched) RT (notched)
Specimen Details: Notched, V-Groove, Kt=3.0 0.283-inch gross diameter 0.200-inch net diameter 0.010-inch root radius, r 60E flank angle, ω Surface Condition: Polished with abrasive nylon cord Reference:
2.6.3.1.8
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 9.59-3.15 log (Seq-33.23) Seq = Smax (1-R)0.607 Std. Error of Estimate, Log (Life) = 0.188 Standard Deviation, Log (Life) = 0.649 R2 = 92% Sample Size = 18 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-153
MMPDS-06 1 April 2011 2.6.4 CUSTOM 455 2.6.4.0 Comments and Properties — Custom 455 is a precipitation-hardenable stainless steel with a martensitic structure in both the solution-annealed and hardened conditions. It is used for parts requiring corrosion resistance and high strength at temperatures up to 800EF. It is produced by consumable electrode remelting and is available in the form of forgings, billet, bar, wire, strip, and welded tubing. Manufacturing Considerations — Custom 455 is normally supplied and fabricated in the solutionannealed condition. Forming, machining, and joining operations are similar to those employed for other precipitation-hardening stainless steels. Optimum weld ductility is obtained by postweld solution annealing prior to aging. Heat Treatment — The alloy can be heat treated to several strength levels. Consult the applicable materials specification or AMS-H-6875 for specific procedures. The minimum recommended hardening temperature to produce the optimum combination of strength, fracture toughness, and stress corrosion cracking resistance is 950EF. Higher strength is attainable with the 900EF aging treatment but at a sacrifice of fracture toughness and stress corrosion cracking resistance. Like other precipitation-hardening stainless steels, the fracture toughness and stress intensity below which stress corrosion cracking does not occur improve with increasing aging temperature within the range of 900E to 1000EF. Usually parts are aged directly from the as-supplied, solution-annealed condition. When this condition has been altered during processing by hot working, severe cold working, or welding, the parts should be re-solution annealed prior to aging. A dimensional contraction of about 0.0009-in./in. should be expected with the 950EF aging treatment. Environmental Considerations — The general corrosion resistance of Custom 455 is about equivalent to that of AISI Type 430 stainless steel. Hydrogen embrittlement tests in 5 percent by weight acid saturated with H2S at room temperature show the same degree of susceptibility as other high-strength martensitic stainless steels. When stress-corrosion cracking is of concern, one should use the highest aging temperature consistent with the strength properties required. The 900EF aging treatment should not be employed when stress corrosion cracking is a consideration. Consult the material producers literature for available stress corrosion data. Like other precipitation-hardening stainless steels, Custom 455 increases slightly in tensile strength and loses some toughness when exposed for long periods of time at temperatures around 700EF. For most applications, the loss in toughness which occurs is not detrimental to performance. Specifications and Properties — Material specifications for Custom 455 are presented in Table 2.6.4.0(a). The room temperature mechanical properties of Custom 455 are presented in Table 2.6.4.0(b). Physical properties at elevated temperatures are presented in Figure 2.6.4.0. Table 2.6.4.0(a). Material Specifications for Custom 455 Stainless Steel
Specification AMS 5578 AMS 5617
Form Tubing (welded) Bar and forging
2-154
MMPDS-06 1 April 2011 Table 2.6.4.0(b). Design Mechanical and Physical Properties of Custom 455 Stainless Steel Specification . . . . . . . . . . . . . . . . AMS 5578 AMS 5617 Form . . . . . . . . . . . . . . . . . . . . . . . Tubing (Welded) Bar Condition . . . . . . . . . . . . . . . . . . . H950 H950 H1000 Thickness or diameter, in.a . . . . . . 0.020-0.062 >0.062 #4.000 4.001-6.000 #8.000 Basis . . . . . . . . . . . . . . . . . . . . . . . S S S S S Mechanical Properties: Ftu, ksi: L ....................... 220 220 225 220 200 b b LT . . . . . . . . . . . . . . . . . . . . . . ... ... 225 220 ... ST . . . . . . . . . . . . . . . . . . . . . . ... ... 225b 220b ... Fty, ksi: L ....................... 205 205 210 205 185 b b LT . . . . . . . . . . . . . . . . . . . . . . ... ... 210 205 ... ST . . . . . . . . . . . . . . . . . . . . . . ... ... 210b 205b ... Fcy, ksi: 214 193 L ....................... ... ... 219 LT . . . . . . . . . . . . . . . . . . . . . . ... ... 219 214 193 ST . . . . . . . . . . . . . . . . . . . . . . ... ... 219 214 193 Fsu, ksi . . . . . . . . . . . . . . . . . . . . ... ... 133 130 124 Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . ... ... 355 347 324 440 409 (e/D = 2.0) . . . . . . . . . . . . . . . . ... ... 450 Fbry, ksi: 303 285 (e/D = 1.5) . . . . . . . . . . . . . . . . ... ... 311 (e/D = 2.0) . . . . . . . . . . . . . . . . ... ... 366 358 343 e, percent: 10 10 L ....................... 3 4 10 LT . . . . . . . . . . . . . . . . . . . . . . ... ... 5b 5b ... ST . . . . . . . . . . . . . . . . . . . . . . ... ... 5b 5b ... RA, percent: L ....................... ... ... 40 40 40 20b ... LT . . . . . . . . . . . . . . . . . . . . . . ... ... 20b 20b ... ST . . . . . . . . . . . . . . . . . . . . . . ... ... 20b 3 E, 10 ksi . . . . . . . . . . . . . . . . . . 28.5 28.9 Ec, 103 ksi . . . . . . . . . . . . . . . . . 30.0 30.0 3 G, 10 ksi . . . . . . . . . . . . . . . . . . 11.3 11.5 µ......................... 0.27 0.26 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . 0.28 C, Btu/(lb)(EF) . . . . . . . . . . . . . ... 2 K, Btu/[(hr)(ft )(EF)/ft] . . . . . . . See Figure 2.6.4.0 α, 10-6 in./in./EF . . . . . . . . . . . . . See Figure 2.6.4.0 a b
Wall thickness for tubing. For Grade 2 material only.
2-155
MMPDS-06 1 April 2011
15
7
14
6
13
5
K 12
4
11
3
α, 10-6in./in./F
K, Btu/[(hr)(ft2)(F)/(ft]
α
α - Between 70 F and indicated temperature K - At indicated temperature 10 0
200
400
600
800
1000
1200
1400
2 1600
Temperature, F
Figure 2.6.4.0. Effect of temperature on the physical properties of Custom 455 (H950) stainless steel.
2-156
MMPDS-06 1 April 2011
2.6.4.1 H950 Condition — Elevated temperature curves are presented in Figures 2.6.4.1.1, 2.6.4.1.2, and 2.6.4.1.5. A tensile stress-strain curve at room temperature is shown in Figure 2.6.4.1.6. Fatigue data at room temperature are presented in Figures 2.6.4.1.8(a) and 2.6.4.1.8(b).
Figure 2.6.4.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of Custom 455 (H950) stainless steel bar.
2-157
MMPDS-06 1 April 2011
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW) DW5RRP7HPSHUDWXUH W\
7HPSHUDWXUH)
Figure 2.6.4.1.2. Effect of temperature on the ultimate shear strength (Fsu) of Custom 455 (H950) stainless steel bar.
2-158
MMPDS-06 1 April 2011 100
50
Property at temperature Exposure up to 1 hr 40
TYPICAL
60
30
RA
40
20
Elongation, e, percent
Reduction in Area, RA, percent
80
e 20
0 -100
10
0
100
200
300
400
500
600
700
0 800
Temperature, F
Figure 2.6.4.1.5. Effect of temperature on the elongation (e) and reduction of area (RA) of Custom 455 (H950) stainless steel bar.
250 Longitudinal and Long transverse
Stress, ksi
200
150
100 Ramberg-Osgood n = 22 50
TYPICAL Thickness: 1.000 - 6.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.4.1.6. Typical tensile stress-strain curve for Custom 455 (H950) stainless steel bar at room temperature.
2-159
MMPDS-06 1 April 2011
Figure 2.6.4.1.8(a). Best-fit S/N curves for unnotched, Custom 455 (H950) stainless steel bar, longitudinal direction.
Correlative Information for Figure 2.6.4.1.8(a)
Product Form: Bar, 1.0625-inch diameter Properties:
TUS, ksi 245
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 242 RT (unnotched)
No. of Heats/Lots: 1
Specimen Details:Unnotched 0.200-inch diameter Surface Condition: Hand polished in longitudinal direction, finishing with 3 µ diamond paste
Equivalent Stress Equation: Log Nf = 38.1-15.7 log Smax, R = -1.0 = 82.9-34.8 log Smax, R = 0.026 = 85.9-34.7 log Smax, R = 0.50
Reference:
Sample Size = 22
2.6.3.1.8
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-160
MMPDS-06 1 April 2011
Figure 2.6.4.1.8(b). Best-fit S/N curves for notched, Kt = 3.0, Custom 455 (H950) stainless steel bar, longitudinal direction.
Correlative Information for Figure 2.6.4.1.8(b)
Product Form: Bar, 1.062- inch diameter Properties:
TUS, ksi 245 361
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 242 RT (unnotched) — RT (notched)
No. of Heats/Lots: 1
Specimen Details:Notched, V-Groove, Kt = 3.0 0.283-inch gross diameter 0.200-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 7.42-1.90 log (Seq-47.34) Seq = Smax (1-R)0.515 Std. Error of Estimate, Log (Life) = 0.246 Standard Deviation, Log (Life) = 0.568 R2 = 81%
Surface Condition: Polished with abrasive nylon cord Reference:
Sample Size = 17
2.6.3.1.8
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-161
MMPDS-06 1 April 2011 2.6.4.2 H1000 Condition — Elevated temperature curves are shown in Figures 2.6.4.2.1, 2.6.4.2.2, and 2.6.4.2.5. A tensile stress-strain curve at room temperature is presented in Figure 2.6.4.2.6. Fatigue data at room temperature are shown in Figure 2.6.4.2.8.
200 Strength at temperature Exposure up to 1 hr
180
160
Percentage of Room Temerature Strength
140
120
Fty
100
80
Ftu Fty
60
40
20
0 -400
-200
0
200
400
600
800
1000
Temperature, °F Figure 2.6.4.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of Custom 455 (H1000) stainless steel bar.
2-162
MMPDS-06 1 April 2011
200
180
Strength at temperature Exposure up to 1 hr
160
Percent Fsu at Room Temerature
140
120
100
80
60
40
20
0 -400
-200
0
200
400
600
800
1000
Temperature, °F Figure 2.6.4.2.2. Effect of temperature on the ultimate shear strength (Fsu) of Custom 455 (H1000) stainless steel bar.
2-163
MMPDS-06 1 April 2011
Figure 2.6.4.2.5. Effect of temperature on the elongation (e) and the reduction of area (RA) of Custom 455 (H1000) stainless steel bar.
250
Longitudinal and Long Transverse
200
Stress, ksi
150
100
Ramberg - Osgood n = 25 TYPICAL 50
Thickness = 1.000 - 6.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.4.2.6. Typical tensile stress-strain curve for Custom 455 (H1000) stainless steel bar at room temperature.
2-164
MMPDS-06 1 April 2011
Figure 2.6.4.2.8. Best-fit S/N curves for notched, Kt = 3.0, Custom 455 (H1000) stainless steel bar, longitudinal direction.
Correlative Information for Figure 2.6.4.2.8 Product Form: Bar, 1.0625-inch diameter Properties:
TUS, ksi 214 335
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 209 RT (unnotched) — RT (notched)
No. of Heats/Lots: 1
Specimen Details: Notched, V-Groove, Kt=3.0 0.283-inch gross diameter 0.200-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 12.37-4.44 log (Seq-21.43) Seq = Smax (1-R)0.561 Std. Error of Estimate, Log (Life) = 0.359 Standard Deviation, Log (Life) = 0.540 R2 = 56%
Surface Condition: Polished with abrasive nylon cord Reference:
Sample Size = 18
2.6.3.1.8
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-165
MMPDS-06 1 April 2011 2.6.5 CUSTOM 465 2.6.5.0 Comments and Properties — Custom 465 stainless is a double-vacuum melted, martensitic, age-hardenable alloy. This alloy was designed to have excellent notch tensile strength and fracture toughness over a wide range of section sizes. In the H950 condition, the alloy achieves a minimum ultimate tensile strength of 240 ksi while retaining good toughness and resistance to stress corrosion cracking. Overaging to the H1000 condition provides a greater level of toughness at a minimum ultimate tensile strength of 220 ksi. Custom 465 stainless provides a superior combination of strength, toughness, and stress corrosion cracking resistance compared with other high-strength PH stainless alloys such as Custom 455 stainless or PH13-8Mo stainless. Other combinations of strength and toughness are possible employing agehardening temperatures between 900E and 1150EF. Custom 465 stainless is available in the form of forgings, billet, bar, wire, and strip. Manufacturing Considerations —Custom 465 stainless normally is supplied and fabricated in the solution-annealed condition. Billet products will be provided in the hot-finished condition. Forming, machining, and joining operations are similar to those employed for other precipitation-hardening stainless steels. Optimum weld strength and ductility are obtained by postweld solution annealing and subzero cooling prior to aging. Pyromet®X23 stainless filler metal should be considered under multi bead as gas metal arc (GMA) welding conditions. Heat Treatment —Among the corrosion-resistant alloys of its type, Custom 465 stainless provides the highest minimum combinations of strength and toughness in the H950 and H1000 conditions. Usually, parts are aged directly from the mill-supplied, solution-annealed condition. However, if material has been hot-worked or welded, components should be reannealed (1800EF/982EC) and subzero cooled (-100EF/-73EC, 8-hour hold) prior to age hardening. Components should be cooled rapidly from the annealing temperature. Section sizes up to 12" (305 mm) can be cooled in a suitable liquid quench medium. The subsequent subzero treatment should be applied within 24 hours of solution annealing. The refrigeration treatment after annealing is important for achieving optimum aging response by eliminating small amounts of retained austenite from the microstructure. The mill-supplied solution anneal includes the subzero treatment. Aging treatments are performed by heating components to the specified temperature, holding for 4 hours, followed by cooling in air, oil, or other suitable liquid quench medium. The 4-hour aging cycle is important developing optimum toughness and ductility at the specified strength levels. Increased cooling rates from the aging temperature tend to improve toughness and ductility and may be beneficial for 3" (76mm) section sizes and greater. Environmental Considerations — The general corrosion resistance of Custom 465 stainless approaches that of Type 304 stainless. Exposure to 5% neutral salt spray at 95EF (35EC) (per ASTM B 117) caused little or no corrosion after 200 hours, regardless of condition (i.e., annealed or H900-H1100 conditions). Double cantilever beam tests conducted in 3.5% NaCl (pH 6) show Custom 465 stainless to possess inherently good resistance to stress corrosion cracking which improves with increasing aging temperature. Typical results for 1/2" thick double cantilever beam specimens (T-L orientation) from 4-1/2" x 2-3/4" forged bar exposed to 3.5 wt. % NaCl (pH 6) for 1270 hours by constant immersion per NACE Standard TM0177-96 (Reference 2.6.5.0), are shown in Table 2.6.5.0(a).
2-166
MMPDS-06 1 April 2011 Table 2.6.5.0(a). Typical Stress Corrosion Cracking Resistancea
Condition H950 H1000 a
TYS (T), ksi 226 213
KIscc, ksi%in. 68 98
Remarks No cracking No cracking
Double cantilever beam, wedge loaded, constant immersion in 3.5% NaCl (pH 6) per NACE Standard TM0177-96. See Reference 2.6.5.0.
Typical tensile properties following exposure to elevated temperatures for 200 and 1000 hours are shown in Table 2.6.5.0(b). Table 2.6.5.0(b). Effect of Elevated Temperature Exposure on Typical Tensile Properties of Custom 465 Alloya Condition Exposure Temp., EF
H950
H1000
a
Room temperature properties
Exposure Time, Hours
UTS, ksi
TYS, ksi
e, %
RA, %
Room Temp.
Unexposed
255
238
14
62
600 700 800 900
200 200 200 200
258 266 266 236
240 249 249 223
14 13 14 15
61 59 58 64
600 700 800 900
1000 1000 1000 1000
259 268 272 223
242 250 253 211
16 14 13 19
59 56 54 67
Room Temp.
Unexposed
231
218
16
66
600 700 800 900
200 200 200 200
234 241 240 230
220 226 226 218
14 15 14 16
66 64 66 66
600 700 800 900
1000 1000 1000 1000
232 240 245 222
219 226 229 210
18 16 15 20
65 64 62 66
Data from 1 heat, 4.5" x1.5" forged bar, duplicate tests
Specifications and Properties — Material specifications for Custom 465 are shown in Table 2.6.5.0(c). The room temperature mechanical properties are presented in Tables 2.6.5.0(b).
Table 2.6.5.0(c). Material Specifications for Custom 465 Stainless Steel
Specification AMS 5936
Form Bars, Wires, and Forgings
2-167
MMPDS-06 1 April 2011 Table 2.6.5.0(d). Design Mechanical and Physical Properties of Custom 465 Stainless Steel Bar Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 5936
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bar
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H950
H1000
Thickness or diameter, in. . . . . . . . . . . . . . . . . . . . . . . .
#12.000
#12.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ........................................ T ........................................ Fty, ksi: L ........................................ T ........................................ Fcy, ksi: L ........................................ T ........................................ Fsu, ksi (L & T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 1.5): L ........................................ T ........................................ Fbruc, ksi (e/D = 2.0): L ........................................ T ........................................ Fbryc, ksi (e/D = 1.5): L ........................................ T ........................................ Fbryc, ksi (e/D = 2.0): L ........................................ T ........................................ e, percent: (S-Basis) L ........................................ T ........................................ RA, percent: (S-Basis) L ........................................ T ........................................ E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ.......................................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A
B
A
B
240a 240a
251 251
220b 220b
226 226
220a 220a
236 236
200b 200b
212 213
233 233 134
249 250 140
210 211 129
223 224 132
359 ...
375 ...
333 ...
342 ...
462 ...
484 ...
428 ...
440 ...
321 ...
344 ...
294 ...
312 ...
365 ...
391 ...
353 ...
374 ...
10 8
... ...
10 10
... ...
45 35
... ...
50 40
... ...
28.7 28.9 11.2 0.28
28.4 29.4 11.3 0.28
0.28 ... ... ...
0.28 see Figure 2.6.5.0(a) see Figure 2.6.5.0(a) see Figure 2.6.5.0(a)
Issued Jan 2003, MMPDS-01, Item 02-01 Last Revised: Apr 2011, MMPDS-06, Item 10-48 a A-Basis value is specification minimum.. The rounded T99 value for Ftu (L) = 246 ksi, Ftu (T) = 249, Fty (L) = 230 ksi, and Fty (T) = 231 ksi b A-Basis value is specification minimum. The rounded T99 value for Ftu (L) = 221 ksi, Ftu (T) = 221, Fty (L) = 206 ksi, and Fty (T) = 208 ksi c Bearing values are “dry pin” values per Section 1.4.7.1
2-168
0.40 0.35 0.30
C, Btu/(lb)(oF)
0.25 0.20 0.15 0.10 0.05
20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10
14 12 K 10 8
α
6 4
C
α, 10-6 in./in./oF
K, Btu-ft./ft.hr.-oF
MMPDS-06 1 April 2011
2 α, Between 70 oF and indicated temperatue K & C, at indicated temperature 0
200
400
600
800 o Temperature, F
1000
0
1200
Figure 2.6.5.0(a). Effect of temperature on the physical properties of Custom 465 H1000 stainless steel bar. 2.6.5.1 H950 and H1000 Condition — Figure 2.6.5.1.6(a) presents the typical tensile stress-strain curves at room temperature. Figures 2.6.5.1.6(b) and 2.6.5.1.6(c) present the full-range tensile stress-strain curves 3 00
2 50
H 950
Stress, ksi
2 00
H 1000
1 50
R am berg-O sgood TY S (ks i) n (H 950-tension) = 12 241 n (H 1000-tension) = 13 218
1 00
TY P IC A L
50
Longitudinal and T ransv ers e Thic knes s: 5 -10 inc h dia. 0 0
2
4
6
8
10
12
14
S train , 0 .0 01 in ./in.
Figure 2.6.5.1.6(a). Typical tensile stress-strain curves for Custom 465, H950 and H1000 condition bar at room temperature. at room temperature for the H950 and H1000 conditions.
2-169
MMPDS-06 1 April 2011
280
260
240
220
200
180
X
Stress, ksi
160
140
120
100
Longitudinal and Transverse
80
Diameter = < 12.00 in. 60
Custom 465 H950 Bar
40
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 2.6.5.1.6(b). Typical tensile stress-strain (full range) for Custom 465 H950 bar at room temperature.
2-170
MMPDS-06 1 April 2011
280
260
240
220
Longitudinal
200
Transverse
180
Stress, ksi
160
X 140
X
120
100
80
Diameter = < 12.00 in. 60
Custom 465 H1000 Bar
40
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 2.6.5.1.6(c). Typical tensile stress-strain (full range) for Custom 465 H1000 bar at room temperature.
2-171
MMPDS-06 1 April 2011 2.6.6 PH13-8Mo 2.6.6.0 Comments and Properties — PH13-8Mo is a martensitic precipitation-hardening stainless steel used for parts requiring corrosion resistance, high strength, high fracture toughness, and oxidation resistance up to 800EF. When used at temperatures between 600E and 800EF, some loss in notch toughness will occur. The loss is time-temperature dependent and will occur gradually over thousands of hours at 600EF and hundreds of hours at 800EF. Depending upon the application, this loss in notch toughness may not be important and useful engineering properties may still be available. Good transverse mechanical properties are one of the major advantages of PH13-8Mo. PH13-8Mo is produced by double-vacuum melting and is available in the form of forgings, plate, bar, and wire, normally furnished in the solution-treated (A) condition. Manufacturing Considerations — Forming, joining, and machining operations are usually performed on material in Condition A, using similar procedures and equipment to those employed for other precipitationhardening stainless steels. Best machinability is exhibited by Conditions H1150 and H1150M. A dimensional contraction of 0.0004 to 0.0006 and 0.0008 to 0.0012 in./in. occurs upon hardening to the H1000 and H1100 conditions, respectively. Heat Treatment — PH13-8Mo must be used in the heat-treated condition and should not be placed in service in Condition A. The alloy can be heat-treated to various strength levels having a wide range of properties. Consult the applicable material specification or AMS-H-6875 for specific heat-treatment procedures. Environmental Considerations — PH13-8Mo is nearly equal to 17-4PH in general corrosion resistance and surpasses the other hardenable stainless steels in stress corrosion resistance. However, for tensile application where stress corrosion is a possibility, PH13-8Mo should be aged at the highest temperature compatible with strength requirements and at a temperature not lower than 1000EF for 4 hours minimum aging time. Specification and Properties — A material specification for PH13-8Mo is presented in Table 2.6.6.0(a). The room temperature mechanical and physical properties for PH13-8Mo are presented in Tables 2.6.6.0(b) and 2.6.6.0(c). The physical properties of this alloy at elevated temperatures are presented in Figure 2.6.6.0. Table 2.6.6.0(a). Material Specification for PH13-8Mo Stainless Steel
Specification AMS 5629
Form Bar, forging, ring, and extrusion (VIM plus CEVM)
AMS 5934
Bar, forging, ring, and extrusion
2-172
MMPDS-06 1 April 2011 Table 2.6.6.0(b). Design Mechanical and Physical Properties of PH13-8Mo Stainless Steel
Specification . . . . . . . . . . . . .
AMS 5629
Form . . . . . . . . . . . . . . . . . . . .
Round, hex, square and flat bar
Condition . . . . . . . . . . . . . . . .
H950
H1000
Thickness or diameter, in. . . .
<9.0
<8.0
Basis . . . . . . . . . . . . . . . . . . . .
H1025 H1050
H1100 H1150
#12.0
A
B
A
B
S
S
S
S
217 217
221 221
201 201
208 208
185 185
175 175
150 150
135 135
198 198
205 205
190b 190b
200 200
175 175
165 165
135 135
90 90
... ... ...
... ... ...
200 200 117
211 211 122
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
302 402
313 416
... ...
... ...
... ...
... ...
... ...
... ...
263 338
277 356
... ...
... ...
... ...
... ...
10 10
... ...
10 10
... ...
11 11
12 12
14 14
14 14
45 35
... ...
50 40
... ...
50 45
50 45
50 50
50 50
a
Mechanical Properties: Ftu, ksi: L .................... T .................... Fty, ksi: L .................... T .................... Fcy, ksi: L .................... T .................... Fsu, ksi . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent (S-Basis): L .................... T .................... RA, percent (S-Basis): L .................... T .................... E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ......................
28.3 29.4 11.0 0.28
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . .
0.279 0.11 (32E to 212EF)c See Figure 2.6.6.0
C, Btu/(lb)(EF) . . . . . . . . . . K and α . . . . . . . . . . . . . . . .
Issued: Jan 1970, MIL-HDBK-5A, Change Notice 4, Item 67-30. Last Revised: Dec 1992, MIL-HDBK-5F, Change Notice 2, Item 92-4
a
Design allowables were based mainly upon data from samples of material, supplied in the solution-treated condition, which were aged to demonstrate response to heat treatment by suppliers. b A-Basis value is specification minimum. The rounded T99 value = 193 ksi. c Estimated value.
2-173
MMPDS-06 1 April 2011
Table 2.6.6.0(c). Design Mechanical and Physical Properties of PH13-8Mo Stainless Steel
Specification . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............................ T ............................ Fty, ksi: L ............................ T ............................ Fcy, ksi: L ............................ T ............................ Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . e, percent: L ............................ T ............................ RA, percent: L ............................ T ............................ E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . Ec 103 ksi . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . µ.............................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . K and α . . . . . . . . . . . . . . . . . . . . . . . .
H950 S
AMS 5629 Forging, flash welded ring, and extrusion H1000 H1025 H1050 H1100 H1150 #12 S S S S S
220 220
205 205
185 185
175 175
150 150
135 135
205 205
190 190
175 175
165 165
135 135
90 90
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10
10 10
11 11
12 12
14 14
14 14
45 35
50 40
50 45
50 45
50 50
50 50
28.3 29.4 11.0 0.28 0.279 0.11 (32E to 212EF)a See Figure 2.6.6.0
Issued: Aug 1974, MIL-HDBK-5B, Change Notice 3, Item 70-16. Last Revised: Jun 1983, MIL-HDBK-5D, Item 81-21 a
Estimated value.
2-174
MMPDS-06 1 April 2011 Table 2.6.6.0(d). Design Mechanical and Physical Properties of Extra High Toughness PH138Mo Stainless Steel Specification . . . . . . . . . . . . AMS 5934 Form . . . . . . . . . . . . . . . . . . . Bar, Forging, Ring, and Extrusion Condition . . . . . . . . . . . . . . . H950 H1000 H1000 H1025 H1050 H1100 H1150 9.0Thickness or diameter, in. . . #12.0 <9.0 #12.0 12.0 Basis . . . . . . . . . . . . . . . . . . . S A B S S S S S a Mechanical Properties:
Ftu, ksi: L .................. T .................. Fty, ksi: L .................. T .................. Fcy, ksi: L .................. T .................. Fsu, ksi: L-R . . . . . . . . . . . . . . . . R-L . . . . . . . . . . . . . . . . Fbru, ksi (e/D = 1.5): L .................. T .................. Fbru, ksi (e/D = 2.0): L .................. T .................. Fbry, ksi (e/D = 1.5): L .................. T .................. Fbry, ksi (e/D = 2.0): L .................. T .................. e, percent (S-Basis): L .................. T .................. RA, percent (S-Basis): L .................. T .................. E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K and α . . . . . . . . . . . . .
220 220
203 203
207 207
205 205
185 185
175 175
150 150
135 135
205 205
190b 190b
199 199
190 190
175 175
165 165
135 135
90 90
... ...
200 ...
210 ...
... ...
... ...
... ...
... ...
... ...
... ...
128 ...
131 ...
... ...
... ...
... ...
... ...
... ...
... ...
322 ...
328 ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
268 ...
281 ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10
10 10
... ...
10 10
11 11
12 12
14 14
14 14
45 35
50 40
... ...
50 40
50 45
50 45
50 50
50 50
27.9 29.4 10.9 0.28 0.279 See Figure 2.6.6.0(b)
Issued: Apr 2008, MMPDS-04, Item 07-01 a Design allowables were based mainly upon data from samples of material, supplied in the solution-treated condition, which were aged to demonstrate response to heat treatment by suppliers. b A-Basis value is specification minimum The rounded T99 for Fty = 195 ksi.
2-175
13
10
12
8
α 11
6
10
4
α, 10-6 in./in./oF
K, Btu-ft./ft.hr.-oF
MMPDS-06 1 April 2011
K
2
9 PH13-8Mo ο
α - Between 70 F and indicated temperature K - At indicated temperature
0
8 0
200
400
600
800
1000
1200
1400
1600
Temperature, oF
Figure 2.6.6.0(a) Effect of temperature on the physical properties of PH13-8Mo stainless steel. 0.6
8
14.0
K, Btu-ft./ft.hr.-oF
0.5
0.4
0.3
7
13.0 12.5
α 6
12.0 11.5
α, 10-6 in./in./oF
13.5
K
11.0
5
0.2
4
10.0
o
C, Btu/(lb)( F)
10.5
C
9.5 0.1
9.0
3
8.5 0.0
8.0
2 0
100
200
300
400
500
600
700
800
900
Temperature, oF
Figure 2.6.6.0(b). Effect of temperature on the physical properties of extra high toughness PH13-8Mo stainless steel.
2-176
MMPDS-06 1 April 2011 2.6.6.1 H950 and H1000 Conditions — Elevated temperature curves for tensile yield and ultimate strengths are presented in Figure 2.6.6.1.1. Typical tensile and compressive stress-strain and tangentmodulus curves for the H1000 condition at room temperature are depicted in Figures 2.6.6.1.6(a) and 2.6.6.1.6(b). Figure 2.6.6.1.6(c) contains typical full-range, stress-strain curves at room temperature for various heat-treated conditions. Unnotched and notched fatigue information for H1000 condition at room temperature is presented in Figures 2.6.6.1.8(a) through 2.6.6.1.8(c).
Percentage of Room Temperature Strength
120
PH13-8Mo (H950 and H1000) Strength at temperature Exposure up to 1/2 hr
110
100
90
80 Ftu 70 Fty 60 -200 -100
0
100
200
300
400
500
600
700
800
900 1000
Temperature, oF Figure 2.6.6.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of PH13-8Mo (H950 and H1000) stainless steel bar.
2-177
MMPDS-06 1 April 2011
250 Longitudinal
200
Stress, ksi
150
Ramberg-Osgood
100
n = 17 TYPICAL 50 Thickness: 0.750 - 2.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.6.1.6(a). Typical tensile stress-strain curve at room temperature for PH13-8Mo (H1000) stainless steel bar.
250 Longitudinal
200
Stress, ksi
150
100
Ramberg-Osgood n = 17
50
TYPICAL Thickness: 0.875 - 2.000 in. 0 0
2
4
6
8
10
12
20
25
30
Strain, 0.001 in./in. 0
5
10
15
Compressive Tangent Modulus, 103 ksi
Figure 2.6.6.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for PH13-8Mo (H1000) stainless steel bar.
2-178
MMPDS-06 1 April 2011
/RQJLWXGLQDO
; + 6WUHVVNVL
;
+
+
;
; +
7<3,&$/ %DVHGRQKHDW
6WUDLQLQLQ
Figure 2.6.6.1.6(c). Typical tensile stress-strain curves (full range) at room temperature for various heat treated conditions of PH13-8Mo stainless steel bar.
2-179
MMPDS-06 1 April 2011
. .
240
PH13-8M o Kt=1.0 Stress Ratio - 1.000 L - 1.000 LT 0.100 L 0.100 LT
Maximum Stress, ksi
220 200
Runout
→
180
→
→
→
→→ →
160 →
140 120 100 80
→ →
Note: Stresses are based on net section.
60 10 3
10 4
10 5
10 6
10 7
10 8
Fatigue Life, Cycles Figure 2.6.6.1.8(a). Best-fit S/N curves for unnotched PH13-8Mo (H1000) forged bar, longitudinal and transverse directions.
Correlative Information for Figure 2.6.6.1.8(a) Product Form: Forged bar, 4 x 5 and 2 x 6 inches Properties:
Test Parameters: Loading - Axial Frequency - Not Specified Temperature - RT Environment - Air
TUS, ksi TYS, ksi Temp.,EF 205 197 RT
Specimen Details:
Unnotched Gross Net Diameter Diameter 0.50 - 0.75 0.25
No. of Heats/Lots: 4 Equivalent Stress Equation: Log Nf = 16.32 - 5.75 log (Seq - 92.6) Seq = Smax (1 - R)0.64 Std. Error of Estimate, Log (Life) = 0.461 Standard Deviation, Log (Life) = 0.919 R2 = 75%
Surface Condition: Polished to RMS 10 References: 2.6.6.1.8(a), 2.6.6.1.8(b), 2.6.6.1.8(d)
Sample Size: 86 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-180
MMPDS-06 1 April 2011 . .
200 PH13-8Mo →Kt=3.0 → Stress Ratio - 1.000 L → - 1.000 LT → → 0.100 L 0.100 LT 0.500 L 0.500 LT Runout →
180
Maximum Stress, ksi
160 140 120 100 80
→ →→
60
→ →→ → →
40 → → →
Note: Stresses are based on net section.
20 0 10 3
10 4
10 5
10 6
10 7
10 8
Fatigue Life, Cycles Figure 2.6.6.1.8(b). Best-fit S/N curves for notched, Kt = 3.0, PH13-8Mo (H1000) forged bar, longitudinal and long transverse directions.
Correlative Information for Figure 2.6.6.1.8(b) Product Form: Forged bar, 4 x 5 and 2 x 6 inches Properties:
TUS, ksi 205
Specimen Details:
Test Parameters: Loading - Axial Frequency - Not Specified Temperature - RT Environment - Air
TYS, ksi Temp.,EF 197 RT
Notched, Kt = 3.0 No. of Heats/Lots: 4
Gross Diameter 0.750 0.500
Net Diameter 0.252 0.250
Notch Root Radius 0.013 0.013
Equivalent Stress Equation: Log Nf = 9.95 - 3.125 log (Seq - 34.4) Seq = Smax (1 - R)0.68 Std. Error of Estimate, Log (Life) = 23.1 (1/Seq) Standard Deviation, Log (Life) = 1.15 R2 = 92%
60E flank angle Surface Condition:
References:
Notch was polished with abrasively charged wire and rotating wire with oil and aluminum grit
Sample Size: 104 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.6.6.1.8(a), 2.6.6.1.8(b), 2.6.6.1.8(d)
2-181
MMPDS-06 1 April 2011
Figure 2.6.6.1.8(c). Best-fit S/N curves for unnotched PH13-8Mo (H1000) hand forging, longitudinal direction.
Correlative Information for Figure 2.6.6.1.8(c) Product Form: Forged bar, 7 x 7 inches Properties:
Test Parameters: Loading - Axial Frequency - Not Specified Temperature - RT Environment - Air
TUS, ksi TYS, ksi Temp.,EF 210 204 RT
Specimen Details:
Surface Condition:
Unnotched 0.500-inch gross diameter 0.250-inch net diameter
No. of Heats/Lots: 2 Equivalent Stress Equation: Log Nf = 18.12-6.54 log (Seq) Seq = Smax (1-R)0.11 Std. Error of Estimate, Log (Life) = 0.263 Standard Deviation, Log (Life) = 0.475 R2 = 69%
Machined to RMS 63-270, solution treated and aged, grit blasted
Reference: 2.6.6.1.8(c)
Sample Size: 20 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-182
MMPDS-06 1 April 2011 2.6.6.2 Extra-High Toughness H1000 Conditions -Effect of temperature curves for tensile yield and ultimate strengths are presented in Figure 2.6.6.2.1. Effect of temperature curve for compression yield strength is presented in Figure 2.6.6.2.2. Effect of temperature curves on tensile and compressive modulus are presented in Figure 2.6.6.2.4. Effect of temperature curves on elongation and reduction in area are presented in Figure 2.6.6.2.5. Typical tensile and compressive stress-strain and tangent modulus curves for the H1000 condition at room temperature are depicted in Figures 2.6.6.2.6(a1), 2.6.6.2.6(a2) and 2.6.6.2.6(b). Typical full-range, stress-strain curve at room temperature is shown in Figure 2.6.6.2.6(c). Unnotched fatigue information for H1000 condition at room temperature is presented in Figure 2.6.6.2.8. Fatigue crack propagation is presented in Figure 2.6.6.2.9 and Table 2.6.6.2.9.
110
Percent of RoomTemperature Strength
Extra-High Toughness PH13-8Mo (H1000) F tu 100
90
F ty 80
70 -200
Strength at Temperature Exposure up to 0.5 hrs -100
0
100
200
300
400
500
600
700
800
900
Temperature, o F
Figure 2.6.6.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of extra-high toughness PH13-8Mo (H1000) stainless steel.
2-183
MMPDS-06 1 April 2011
100
Percent of RoomTemperature Strength
Extra-High Toughness PH13-8Mo (H1000) 95
90
85
80
75
Strength at Temperature Exposure up to 0.5 hrs
70 0
100
200
300
400
500
600
700
800
900
o
Temperature, F
Figure 2.6.6.2.2. Effect of temperature on the compressive yield strength (Fcy) of extrahigh toughness PH13-8Mo (H1000) stainless steel.
105
Percent of RoomTemperature Modulus
Extra-High Toughness PH13-8Mo (H1000) 100
Ec 95
E 90
85
80 -200
Modulus at Temperature Exposure up to 0.5 hrs -100
0
100
200
300
400
500
600
700
800
o
Temperature, F
Figure 2.6.6.2.4. Effect of temperature on tensile modulus (E) and compressive modulus (Ec) of extra-high toughness PH13-8Mo (H1000) stainless steel.
2-184
900
MMPDS-06 1 April 2011 80
40
75
30
70 65
25 RA 20
60
15
55
10
5
0 -200
Reduction in Area, %
Elongation, %
Extra-High Toughness PH13-8Mo (H1000) 35
50
Elongation
45
Percent at Temperature Exposure up to 0.5 hrs
40 -100
0
100
200
300
400
500
600
700
800
900
Temperature, oF
Figure 2.6.6.2.5. Effect of temperature on elongation (e) and reduction in area (RA) of extra-high toughness PH13-8Mo (H1000) stainless steel
Figure 2.6.6.2.6(a1) Typical tensile stress-strain curve at room temperature for extra-high toughness PH13-8Mo (H1000) stainless steel bar, longitudinal orientation
2-185
MMPDS-06 1 April 2011
Figure 2.6.6.2.6(a2) Typical tensile stress-strain curve at room temperature for extra-high toughness PH13-8Mo (H1000) stainless steel bar, transverse orientation
Figure 2.6.6.2.6(b) Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for extra-high toughness PH13-8Mo (H1000) stainless steel bar, longitudinal orientation
2-186
MMPDS-06 1 April 2011
240
Extra-High Toughness PH13-8Mo (H1000) 220
200
180
160
Stress, ksi
140
120
100
80
Longitudinal 60 TYPICAL 40
Thickness: < 9.0 in. 20
0 0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120 0.130 0.140 Strain, in./in.
Figure 2.6.6.2.6(c). Typical tensile stress-strain (full range) at room temperature for extra-high toughness PH13-8Mo (H1000) stainless steel.
2-187
MMPDS-06 1 April 2011 220
200
Maximum Stress, ksi
180
160
140
120
100
R = -1.00 R = 0.10
80
R = 0.50 Runouts
60 1,000
10,000
100,000
1,000,000
10,000,000
100,000,000
Cycles to Failure
Figure 2.6.6.2.8. Best-fit S/N curve for unnotched PH13-8Mo high toughness forging, longitudinal direction.
Correlative Information for Figure 2.6.6.2.8 Product Form: 8.5-inch diameter forged billet, H1000 condition per AMS 5934 Properties (L orientation): UTS = 217 ksi, TYS = 209 ksi, Elongation = 13%
Test Parameters: Loading – Axial Frequency – 30 Hertz Temperature – RT Atmosphere - Air No. of Heat/Lots = 1
Surface Condition: Longitudinal polish to RMS 16
Equivalent Stress Equation: Log Nf = 24.124 - 8.899 log (Seq - 40.0) Seq = Smax(1-R)0.529 Std. Error of Estimate, Log (Life) = 56.3 x 1/Seq Std. Deviation, Log (Life) = 1.208 R2 = 89.7%
Reference: 2.6.6.2.8
Sample Size = 18
Specimen Details: Unnotched, Uniform gage 0.4 inches, 0.2 inch diameter
2-188
MMPDS-06 1 April 2011
Figure 2.6.6.2.9. Fatigue crack propagation data for PH-13-8Mo SuperTough® Forging [Reference 2.6.6.2.9] Specimen Thickness: Specimen Width: Specimen Type:
0.375 inches 1.50 inches C(T)
Environment: Temperature: Orientation:
2-189
< 10% R.H. RT L-T
MMPDS-06 1 April 2011
Table 2.6.6.2.9 Typical Fatigue Crack Growth Rate Data for PH13-8Mo Super Tough Forgings, as Shown Graphically in Figure 2.6.6.2.9 Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.08 da/dN, in./cycle
0.08 da/dN, in./cycle
9.44
1.66E-07
31.62
9.03E-06
10.00
2.36E-07
33.50
9.95E-06
10.59
3.29E-07
35.48
1.09E-05
11.22
4.46E-07
37.58
1.20E-05
11.89
5.93E-07
39.81
1.32E-05
12.59
7.73E-07
42.17
1.46E-05
13.34
9.88E-07
44.67
1.61E-05
14.13
1.24E-06
47.32
1.78E-05
14.96
1.53E-06
50.12
1.97E-05
15.85
1.87E-06
53.09
2.20E-05
16.79
2.24E-06
56.23
2.45E-05
17.78
2.65E-06
59.57
2.76E-05
18.84
3.11E-06
63.10
3.11E-05
19.95
3.60E-06
66.83
3.53E-05
21.14
4.13E-06
70.80
4.03E-05
22.39
4.70E-06
74.99
4.64E-05
23.71
5.31E-06
79.43
5.37E-05
25.12
5.96E-06
84.14
6.26E-05
26.61
6.65E-06
89.13
7.35E-05
28.18
7.39E-06
94.41
8.71E-05
29.85
8.18E-06
2-190
MMPDS-06 1 April 2011 2.6.7 15-5PH 2.6.7.0 Comments and Properties — 15-5PH is a precipitation-hardening, martensitic stainless steel used for parts requiring corrosion resistance and high strength at temperatures up to 600EF. Alloy 15-5PH has good transverse ductility and strength in large section sizes. This material is supplied in either the annealed or overaged condition and is heat-treated after fabrication. These parts should never be used in Condition A. When good fracture toughness or impact properties are required, both at or below room temperature, conditions H900 and H925 should not be used. Conditions H1025, H1075, H1100, and H1150 provide lower transition temperatures and more useful levels of fracture toughness than the H900 and H925 conditions. The H1150M condition has the best notch toughness and is recommended for cryogenic applications. Manufacturing Considerations — 15-5PH is readily forged and welded. Forging procedures are similar to those used for 17-4PH, the forgeability of 15-5PH being superior to that of 17-4PH in critical types of upset-forging and hot-flattening operations. Machining in the solution-treated condition is done at rates similar to Type 304 and 60 percent of these rates work well for Condition H900. Highest machining rates are possible with Conditions H1150 and H1150M. Material which is hot-worked must be solution-treated before hardening. A dimensional contraction of 0.0004 to 0.0006 and 0.0008 to 0.0010 in./in. will occur on hardening to the H900 and H1150 conditions, respectively. Heat Treatment — 15-5PH must be used in the heat-treated condition and should not be placed in service in Condition A. The alloy can be heat-treated to various strength levels having a wide range of properties. Consult the applicable material specification or AMS-H-6875 for specific heat-treatment procedures. Environmental Considerations — The corrosion resistance of 15-5PH is comparable to that of 17-4PH. For tensile applications where stress corrosion is a possibility, 15-5PH should be aged at the highest temperature compatible with strength requirements and at a temperature not lower than 1025EF for 4 hours minimum aging time. Specifications and Properties — Material specifications for 15-5PH are presented in Table 2.6.7.0(a). Room temperature mechanical and physical properties of 15-5PH are shown in Tables 2.6.7.0(b) through 2.6.7.0(d). The effect of temperature on physical properties is depicted in Figure 2.6.7.0.
Table 2.6.7.0(a). Material Specifications for 15-5PH Stainless Steel
Specification
Form
AMS 5659
Bar, forging, ring, and extrusion
AMS 5862
Sheet, strip, and plate
AMS 5400
Investment casting
2-191
MMPDS-06 1 April 2011
Table 2.6.7.0(b). Design Mechanical and Physical Properties of 15-5PH Stainless Steel Bar and Forging
Specification . . . . . . .
AMS 5659
Form . . . . . . . . . . . . . .
Bara
Condition . . . . . . . . . .
H900
H925
Thickness or diam., in. ...................
#12
#12
Basis . . . . . . . . . . . . . .
S
S
A
190 190
170 170
170 170
Mechanical Properties: Ftu, ksi: L ............... T ............... Fty, ksi: L ............... T ............... Fcy, ksi: L ............... T ............... Fsu, ksi . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent:(S-Basis) L ............... T ............... RA, percent:(S-Basis) L ............... T ...............
H1025
H1075
H1100
H1150
>10-12
#12
#12
#12
B
S
S
S
S
155 155
158 158
155 155
145 145
140 140
135 135
155 155
145b 145b
152 152
145 145
125 125
115 115
105 105
... ... ...
... ... ...
143 143 97
150 150 99
143 143 97
... ... ...
... ... ...
99 99 85
... ...
... ...
263 332
268 339
263 332
... ...
... ...
230 293
... ...
... ...
211 250
222 263
211 250
... ...
... ...
166 201
10 6
10 7
12 8
... ...
12 8
13 9
14 10
16 11
35 20
38 25
45 32
... ...
45 32
45 33
45 34
50 35
#10
E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . µ ................
28.5 29.2 11.2 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . K and α . . . . . . . . . .
0.283 ... See Figure 2.6.7.0
Revised: Apr 2008, MMPDS-04, Item 06-09. a Forging, ring, and extrusion product forms are also covered by AMS 5659. b A-Basis value is specification minimum. The rounded T99 for Fty L & T = 149 ksi. c Bearing values are “dry pin” values per Section 1.4.7.1.
2-192
MMPDS-06 1 April 2011
Table 2.6.7.0(c). Design Mechanical and Physical Properties of 15-5PH Stainless Steel Plate
Specification . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 5862
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plate
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H1025a
Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . .
0.187-0.625
0.626-2.000
2.001-3.000
3.001-4.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
154 155
154 155
154 155
... 155
143 145
143 145
143 145
... 145
150 152 97
150 149 97
150 146 96
... ... ...
257 331
257 331
257 331
... ...
211 246
211 246
211 246
... ...
8
12
12
12
35
40
40
40
Mechanical Properties: Ftu, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RA, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . µ .................................
28.5 29.2 11.2 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . .
0.283 ...
a The H900, H925, H1075, H1100, and H1150 conditions are included in AMS 5862. b Bearing values are “dry pin” values per Section 1.4.7.1.
2-193
MMPDS-06 1 April 2011
Table 2.6.7.0(d). Design Mechanical and Physical Properties of 15-5PH Stainless Steel Investment Casting
Specification . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . Location within casting . . . . Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties:a Ftu, ksi . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . RA, percent . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . .
AMS 5400 Investment casting H935 Any area S 170 150 155 107 269 349 209 240 6 14 28.5 29.2 11.2 0.27 0.283 ...
a Properties apply only when drawing specifies that conformance to tensile property requirements shall be determined from specimens cut from castings or integrally cast specimens. b Bearing values are “dry pin” values per Section 1.4.7.1.
2-194
MMPDS-06 1 April 2011
α%HWZHHQ)DQGLQGLFDWHGWHPSHUDWXUH .$WLQGLFDWHGWHPSHUDWXUH
α+
α+
α, +
αLQLQ)
.%WX>KU IW ) IW@
.+
7HPSHUDWXUH)
Figure 2.6.7.0. Effect of temperature on the physical properties of 15-5PH stainless steel.
2-195
MMPDS-06 1 April 2011 2.6.7.1 Various Heat-Treated Conditions — Elevated temperature curves for the various mechanical properties are shown in Figures 2.6.7.1.1 and 2.6.7.1.4. Typical stress-strain and tangent-modulus curves are shown in Figures 2.6.7.1.6(a) through 2.6.7.1.6(c). These curves are based on VAR (type 1) data.
200 Strength at temperature Exposure up to ½ hr
180
160
Percentage of Room Temperature Strength
140
120
100 Ftu
80
Fty
60
40
20
0 -400
-200
0
200
400
600
800
1000
Temperature, F
Figure 2.6.7.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of 15-5PH (H925, H1025, and H1100) stainless steel bar.
2-196
MMPDS-06 1 April 2011
0RGXOXVDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQWDJHRI
5RRP7HPSHUDWXUH0RGXOXV
7<3,&$/ ( (
&
7HPSHUDWXUH)
Figure 2.6.7.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 15-5PH stainless steel.
2-197
MMPDS-06 1 April 2011 200
H925
Longitudinal
H1025
160
H1100
Stress, ksi
H1150 120
H1150M Ramberg-Osgood n (H925) = 13 n (H1025) = 24 n (H1100) = 22 n (H1150) = 9.0 n (H1150M) = 7.8
80
40
TYPICAL Thickness: 1.000-1.250 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 2.6.7.1.6(a). Typical tensile stress-strain curves at room temperature for various heat-treated conditions of 15-5PH stainless steel bar.
Figure 2.6.7.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for various heat-treated conditions of 15-5PH stainless steel bar.
2-198
MMPDS-06 1 April 2011
200
160
Tensile Compressive
Stress, ksi
120
80
Ramberg-Osgood n (Tension) = 12 n (Comp.) = 12
40
TYPICAL Thickness: 0.500 - 1.875 in.
0 0
2
4
6
8
10
12
30
36
Strain, 0.001 in./in.
0
6
12
18
24 3
Compressive Tangent Modulus, 10 ksi
Figure 2.6.7.1.6(c). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 15-5PH (H935) stainless steel casting.
2-199
MMPDS-06 1 April 2011 2.6.7.2 H1025 Condition — An elevated temperature curve for compressive yield strength is presented in Figure 2.6.7.2.2. Stress-strain and tangent-modulus curves are shown in Figures 2.6.7.2.6(a) and 2.6.7.2.6(b). Fatigue data at room temperature are illustrated in Figures 2.6.7.2.8(a) through 2.6.7.2.8(c). These curves are based on VAR (type 1) data. Fatigue properties may be different for ESR (type 2) material.
Figure 2.6.7.2.6(a). Typical compressive stress-strain and compressive tangentmodulus curves at various temperatures for 15-5PH (H1025) stainless steel bar.
2-200
MMPDS-06 1 April 2011
200 L and LT compression
160
Stress, ksi
L and LT-tension
120
80
40
Ramberg-Osgood
TYS
n (L-tension) = 23 n (LT-tension) = 23 n (L-comp.) = 20 n (LT-comp.) = 21
161 161 169 169
TYPICAL Thickness: 1.500 - 5.500 in.
0 0
2
4
6
8
10
12
20
25
30
Strain, 0.001 in./in.
0
5
10
15
Compressive Tangent Modulus, 103 ksi
Figure 2.6.7.2.6(b). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 15-5PH (H1025) stainless steel plate.
2-201
MMPDS-06 1 April 2011 . .
140 15-5 PH(H1025) LG/TR Kt=3.0 Stress Ratio -1.000 0.100 + 0.500 Runout →
Maximum Stress, ksi
120
100 + + + + ++ ++ ++ + +
80
+→ +→ ++→
+
+→
60
→ →
40 → →
20
Note: Stresses are based on net section.
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 2.6.7.2.8(a). Best-fit S/N curve for notched, Kt = 3.0, 15-5PH (H1025 Type 1) stainless steel bar, longitudinal and long transverse directions.
Correlative Information for Figure 2.6.7.2.8(a) Product Form: Bar, 2 x 6 inches
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
Properties: TUS, ksi TYS, ksi Temp,EF Longitudinal 163 159 RT Long Transverse 164 160 RT Longitudinal 278 — RT (notched) Long Transverse 277 — RT (notched)
No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 19.69 - 9.14 log (Seq - 18.16) Seq = Smax (1 - R)0.595 Std. Error of Estimate, Log (Life) = 0.449 Standard Deviation, Log (Life) = 0.627 R2 = 49%
Specimen Details: Notched, V-Groove, Kt = 3.0 0.375-inch gross diameter 0.250-inch net diameter 0.013-inch root radius, r 60E flank angle, ω
Sample Size: 40 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Surface Condition: Ground notch Reference: 2.6.7.2.8(a)
2-202
MMPDS-06 1 April 2011 . .
180
Maximum Stress, ksi
15-5PH (H1025), Kt = 1.0 Stress Ratio 0.100 Runout →
170
160
→
150 Note: Stresses are based on net section.
140 104
105
106
107
108
Fatigue Life, Cycles Figure 2.6.7.2.8(b). Best-fit S/N curve for unnotched, Kt = 1.0, 15-5PH (H1025 Type 1) stainless steel plate, longitudinal and long transverse directions.
Correlative Information for Figure 2.6.7.2.8(b) Product Form:
Plate, 0.808-inch, 2.024-inches, and 2.579-inches thick
Test Parameters: Loading - Axial Frequency - 30 Hz Temperature - RT Atmosphere - Air
Properties: TUS, ksi TYS, ksi Temp,EF Longitudinal 169.9 165.7 RT Long Transverse 170.2 166.1 RT
No. of Heats/Lots: 4 Specimen Details: Unnotched 0.250-inch diameter
Fatigue Life Equation: Log Nf = 110.1 - 47.22 log (Smax) Std. Error of Estimate, Log (Life) = 0.58 Standard Deviation, Log (Life) = 0.84 R2 = 52.8%
Surface Condition: Axial, ground RMS 8 Reference: 2.6.7.2.8(b)
Sample Size = 19
2-203
MMPDS-06 1 April 2011 . .
120 15-5PH (H1025), Kt = 3.0 Stress Ratio 0.100 Runout →
Maximum Stress, ksi
110 100 90 80 70 60
→
50
→ → Note: Stresses are based on net section.
40 30 103
104
→
105
106
107
108
Fatigue Life, Cycles Figure 2.6.7.2.8(c). Best-fit S/N curve for notched, Kt = 3.0, 15-5PH (H1025 Type 1) stainless steel plate, longitudinal and long transverse directions.
Correlative Information for Figure 2.6.7.2.8(c) Product Form:
Plate, 0.215-inch, 0.269-inch, 0.277-inch, 0.394-inch, 0.524-inch, 0.908-inch, 2.024-inch, and 2.579-inch
Test Parameters: Loading - Axial Frequency - 30 Hz Temperature - RT Atmosphere - Air
Properties: TUS, ksi TYS, ksi Temp,EF Longitudinal 170.8 165.6 RT Long Transverse 170.2 166.1 RT
No. of Heats/Lots: 10 Fatigue Life Equation: Log Nf = 8.72 - 2.56 log (Smax - 34.9) Std. Error of Estimate, Log (Life) =10.9 (l/Smax )
Specimen Details: Notched, V-Groove, Kt = 3.0 Flat, 0.590-inch gross width 0.500-inch net width 0.025-inch root radius 60E flank angle, ω
R2 = 88.2% Sample Size = 55
Round, 0.374-inch gross diameter 0.252-inch net diameter 0.013-inch root radius 60E flank angle, ω Surface Condition: RMS 32 notch Reference: 2.6.7.2.8(b)
2-204
MMPDS-06 1 April 2011 2.6.7.3 H1150 Condition — An elevated temperature curve for compressive yield strength is presented in Figure 2.6.7.3.2. Compressive stress-strain and tangent-modulus curves at various temperatures are shown in Figure 2.6.7.3.6. These curves are based on VAR (type 1) data.
Figure 2.6.7.3.2. Effect of temperature on the compressive yield strength (Fcy) of 15-5PH (H1150) stainless steel bar.
Figure 2.6.7.3.6. Typical compressive stress-strain and tangent-modulus curves at various temperatures for 15-5PH (H1150) stainless steel bar.
2-205
MMPDS-06 1 April 2011 2.6.8 PH15-7Mo 2.6.8.0 Comments and Properties — PH15-7Mo is a semiaustenitic stainless steel used where high strength and good corrosion and oxidation resistance are needed up to 600EF. This steel is supplied in Condition A for ease of forming or in Condition C when the highest strength is required. Manufacturing Considerations — PH15-7Mo in Condition A is readily cold-formed. Conventional inert gas-shielded arc and resistance techniques are generally used for welding. The heat treatments for this steel are compatible with the cycles used for honeycomb panel brazing. Vapor blasting of scaled Condition TH1050 parts is recommended because of the hazards of intergranular corrosion in adequately controlled pickling operations. In hardening this steel from Condition A to Condition TH1050, a net dimensional growth of 0.004-in./in. should be anticipated. Use of this steel in Conditions T and T-100 is not recommended. Environmental Considerations — The resistance of PH15-7Mo to stress-corrosion cracking in chloride environments has been evaluated and found to be superior to that of the alloy steels and the hardenable chromium steels. Conditions C and CH 900 provide maximum resistance to stress corrosion. Specification and Properties — A material specification for PH15-7Mo stainless steel is presented in Table 2.6.8.0(a). The room temperature properties of PH15-7Mo are shown in Tables 2.6.8.0(b) and 2.6.8.0(c). The physical properties of this alloy at room and elevated temperatures are presented in Figure 2.6.8.0.
Table 2.6.8.0(a). Material Specification for PH157Mo Stainless Steel
Specification AMS 5520
Form Plate, sheet, and strip
2-206
MMPDS-06 1 April 2011
Table 2.6.8.0(b). Design Mechanical and Physical Properties of PH15-7Mo Stainless Steel Sheet, Strip, and Plate
Specification . . . . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ............................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ............................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . µ................................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . K and α . . . . . . . . . . . . . . . . . . . . . . . . . . . a
AMS 5520 Sheet, strip, and plate TH1050 0.0015-0.500 S
185 190 165 170 182 188 120 327 377 259 272 a
29.0 30.0 11.4 0.28 0.277 ... See Figure 2.6.8.0
See Table 2.6.8.0(c).
2-207
MMPDS-06 1 April 2011
Table 2.6.8.0(c). Minimum Elongation Values for PH15-7Mo (TH1050) Stainless Steel Sheet
Thickness, inches 0.0015 to 0.0049 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.0050 to 0.0099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.010 to 0.019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.020 to 0.1874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1875 to 0.500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
e (LT), percent 2 3 4 5 6
14
11
13
10
12
9
K
11
8
10
7 α
9
6
8 0
200
400
600
800
1000
1200
1400
5 1600
Temperature, F
Figure 2.6.8.0. Effect of temperature on the physical properties of PH15-7Mo (TH1050) stainless steel.
2-208
-6 α, 10 in./in./F
K, Btu/[(hr)(ft2)(F)/(ft]
α - Between 70 F and indicated temperature K - At indicated temperature
MMPDS-06 1 April 2011 2.6.8.1 TH1050 Condition — Effect of temperature on various mechanical properties for this condition is presented in Figures 2.6.8.1.1 and 2.6.8.1.4. Typical stress-strain and tangent-modulus curves at room temperature and elevated temperature are presented in Figures 2.6.8.1.6(a) through 2.6.8.1.6(c). Unnotched and notched fatigue information at room and elevated temperatures are illustrated in Figures 2.6.8.1.8(a) through 2.6.8.1.8(f).
Figure 2.6.8.1.1. Effect of temperature on the tensile ultimate strength (Ftu), tensile yield strength (Fty), and compressive yield strength (Fcy) of PH15-7Mo (TH1050) stainless steel sheet.
Figure 2.6.8.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of PH15-7Mo (TH1050) stainless steel sheet.
2-209
MMPDS-06 1 April 2011
Figure 2.6.8.1.6(a). Typical tensile stress-strain curves at various temperatures for PH15-7Mo (TH1050) stainless steel sheet.
Figure 2.6.8.1.6(b). Typical compressive stress-strain curves at various temperatures for PH15-7Mo (TH1050) stainless steel sheet.
2-210
MMPDS-06 1 April 2011
Figure 2.6.8.1.6(c). Typical compressive tangent-modulus curves at various temperatures for PH15-7Mo (TH1050) stainless steel sheet.
2-211
MMPDS-06 1 April 2011
Figure 2.6.8.1.8(a). Best-fit S/N curves for unnotched PH15-7Mo (TH1050) sheet, longitudinal direction.
Correlative Information for Figure 2.6.8.1.8(a) Product Form:
Sheet, 0.025-inch
Properties:
TUS, ksi TYS, ksi Temp.,EF 201 196 RT
Test Parameters: Loading - Axial Frequency - 24 and 1800 cpm Temperature - RT Environment - Air
Specimen Details: Unnotched 2.0-inch gross width 0.75-inch net width
No. of Heats/Lots: Not specified
Surface Condition: Specimen edges machined in longitudinal direction, edges polished with 320 grit emery paper
Equivalent Stress Equation: Log Nf = 23.24-8.32 log Seq Seq = Smax (1-R)0.47 Std. Error of Estimate, Log (Life) = 0.35 Standard Deviation, Log (Life) = 0.94 R2 = 86%
References: 2.6.8.1.8(a) and 2.6.8.1.8(b) Sample Size: 124 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-212
MMPDS-06 1 April 2011
Figure 2.6.8.1.8(b). Best-fit S/N curves for notched, Kt = 4.0, PH15-7Mo (TH1050) sheet, longitudinal direction.
Correlative Information for Figure 2.6.8.1.8(b) Product Form: Sheet, 0.025-inch Properties:
Test Parameters: Loading - Axial Frequency - 24 and 1800 cpm Temperature - RT Environment - Air
TUS, ksi TYS, ksi Temp.,EF 201 196 RT
Specimen Details: Edge Notched, Kt = 4.0 2.25-inch gross width 1.50-inch net width 0.058-inch notch radius 0E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 10.42-3.91 log (Seq-32) Seq = Smax (1-R)0.58 Std. Error of Estimate, Log (Life) = 0.36 Standard Deviation, Log (Life) = 1.07 R2 = 89%
Surface Condition: Drilled holes near edges and slots milled from edge, corners of notch were beveled with rubber abrasive
Sample Size: 74 Reference: 2.6.8.1.8(b) [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-213
MMPDS-06 1 April 2011
Figure 2.6.8.1.8(c). Best-fit S/N curves for unnotched PH15-7Mo (TH1050) sheet at 500E EF, longitudinal direction.
Correlative Information for Figure 2.6.8.1.8(c) Product Form: Sheet, 0.025-inch Properties:
Test Parameters: Loading - Axial Frequency - 24 and 1800 cpm Temperature - 500EF Environment - Air
TUS, ksi TYS, ksi Temp.,EF 201 196 RT 179 173 500
No. of Heats/Lots: Not specified
Specimen Details: Unnotched 2.0-inch gross width 0.75-inch net width
Equivalent Stress Equation: Log Nf = 11.71-4.00 log (Seq-96) Seq = Smax (1-R)0.70 Std. Error of Estimate, Log (Life) = 0.44 Standard Deviation, Log (Life) = 0.79 R2 = 69%
Surface Condition: Machined in longitudinal direction, edges polished with 320-grit emery paper Reference: 2.6.8.1.8(b)
Sample Size: 55 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-214
MMPDS-06 1 April 2011
Figure 2.6.8.1.8(d). Best-fit S/N curves for notched, Kt = 4.0, PH157Mo (TH1050) sheet at 500E EF, longitudinal direction.
Correlative Information for Figure 2.6.8.1.8(d) Product Form: Sheet, 0.025-inch Properties:
Test Parameters: Loading - Axial Frequency - 24 and 1800 cpm Temperature - 500EF Environment - Air
TUS, ksi TYS, ksi Temp.,EF 201 196 RT 179 173 500
Specimen Details: Edge Notched, Kt = 4.0 2.2- inch gross width 1.5-inch net width 0.058-inch notch radius 0E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 18.60-7.92 log (Seq) Seq = Smax (1-R)0.55 Std. Error of Estimate, Log (Life) = 0.41 Standard Deviation, Log (Life) = 0.86 R2 = 77%
Surface Condition: Drilled holes near edges and slots milled from edge, corners of notch were beveled with rubber abrasive
Sample Size: 37
Reference: 2.6.8.1.8(b)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-215
MMPDS-06 1 April 2011
Figure 2.6.8.1.8(e). Best-fit S/N curves for PH15-7Mo (TH1050) sheet at 700E EF, transverse direction.
Correlative Information for Figure 2.6.8.1.8(e) Product Form: Sheet, 0.050-inch Properties:
Test Parameters: Loading - Axial Frequency - 1200 cpm Temperature - 700EF Environment - Air
TUS, ksi TYS, ksi Temp.,EF 175 161 700 (LT)
Specimen Details: Unnotched 2.0-inch gross width 0.375-inch net width
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 56.92-24.46 log (Seq) Seq = Smax (1-R)0.58 Std. Error of Estimate, Log (Life) = 0.77 Standard Deviation, Log (Life) = 0.99 R2 = 39%
Surface Condition: Polished in longitudinal direction with wet 600-grit silicon carbide paper Reference: 2.6.8.1.8(c)
Sample Size: 17 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-216
MMPDS-06 1 April 2011
Figure 2.6.8.1.8(f). Best-fit S/N curves for notched, Kt = 3.0, PH15-7Mo (TH1050) sheet at 1000E EF, transverse direction.
Correlative Information for Figure 2.6.8.1.8(f) Product Form: Sheet, 0.050-inch Properties:
Test Parameters: Loading - Axial Frequency - 1200 cpm Temperature - 1000EF Environment - Air
TUS, ksi TYS, ksi Temp.,EF 107 92 1000 (LT)
Specimen Details: Edge Notched, Kt = 3.0 0.535-inch gross width 0.375-inch net width 0.021-inch notch radius 60E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 21.00-9.80 log (Seq) Seq = Smax (1-R)0.78 Std. Error of Estimate, Log (Life) = 0.33 Standard Deviation, Log (Life) = 0.99 R2 = 89%
Surface Condition: Polished longitudinally Reference: 2.6.8.1.8(c)
Sample Size: 16 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-217
MMPDS-06 1 April 2011 2.6.9 17-4PH 2.6.9.0 Comments and Properties — Alloy 17-4PH is a precipitation-hardening, martensitic stainless steel used for parts requiring high strength and good corrosion and oxidation resistance up to 600EF. The alloy is available in all product forms. Manufacturing Considerations — 17-4PH is readily forged, machined, welded, and brazed. Machining requires the same precautions as the austenitic stainless steels except that work-hardening is not a problem. Best machinability is exhibited by Conditions H1150 and H1150M. A dimensional contraction of 0.0004 to 0.0006 and 0.0008 to 0.0010 in./in. occurs upon hardening to the H900 and H1150 conditions, respectively. This fact should be considered before finish machining prior to aging treatment. When permanent deformation is performed, such as cold-straightening of hardened parts, reaging is recommended to minimize internal stresses. Alloy 17-4PH can be fusion welded with any of the normal processes using 17-4PH filler metal without preheat. For details up to ½ inch thickness, Condition A is satisfactory prior to welding, but for heavy sections, an overaged condition (H1150) is recommended to preclude cracking. After welding, weldments should be aged or solution-treated and aged. Alloy 17-4PH castings are produced in sand molds, investment molds, and by centrifugal casting. While 17-4PH has good castability, it is subject to hot-tearing, so heavy X or T sections, sharp corners, and abrupt changes in section size should be avoided. Alloy 17-4PH castings are susceptible to microshrinkage, which will decrease the ductility but have no effect on the yield or ultimate strength. During heat treatment, care must be exercised to avoid carbon or nitrogen contamination from furnace atmospheres. Combusted hydrocarbon and dissociated ammonia atmospheres have been sources of contamination. Air is commonly used and both vacuum and dry argon are effective for minimizing scaling. Oxides formed during solution treating in air may be removed by grit blasting or abrasive tumbling. Alloy 17-4PH can be heat treated to develop a wide range of properties. Heat-treatment procedures are specified in applicable material specifications and AMS-H-6875. Design and Environmental Considerations — For tensile applications where stress corrosion is a possibility, 17-4PH should be aged at the highest temperature compatible with strength requirements and at a temperature not lower than 1025EF for 4 hours minimum. The impact strength of 17-4PH, especially large size bar in the H900 and H925 conditions, may be very low at subzero temperatures; consequently, the use of 17-4PH for critical applications at low temperatures should be avoided. For nonimpact applications, such as valve seats, parts in the H925 condition have performed satisfactorily down to -320EF. The H1100 and H1150 conditions have improved impact strength so that parts made from small-diameter bar can be used down to -100EF with low risk. For critical lowtemperature applications, a similar alloy, 15-5PH (consumable electrode vacuum melted), should be used instead of 17-4PH because of its superior impact strength at low temperature. Specifications and Properties — Material specifications for 17-4PH are presented in Table 2.6.9.0(a). Room temperature mechanical and physical properties for various conditions of 17-4PH products are presented in Tables 2.6.9.0(b) through 2.6.9.0(f). The physical properties of this alloy at room and elevated temperatures are presented in Figure 2.6.9.0.
2-218
MMPDS-06 1 April 2011
Table 2.6.9.0(a). Material Specifications for 174PH Stainless Steel
Specification AMS 5604 AMS 5643 AMS 5342 AMS 5343 AMS 5344
Form Sheet, strip, and plate Bar, forging, and ring Investment casting (H1100) Investment casting (H1000) Investment casting (H900)
2-219
MMPDS-06 1 April 2011 Table 2.6.9.0(b). Design Mechanical and Physical Properties of 17-4PH Stainless Steel Sheet, Strip, and Plate Specification . . . . . . . . . . . . . . . . . . . . . . . . AMS 5604 Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sheet, stripa, and plate Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . H900 H925 H1025 H1075 H1100 H1150 Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . # 4.000 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S S S S S S Mechanical Properties: Ftu, ksi: L ............................... ... ... ... ... ... ... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 170 155 145 140 135 Fty, ksi: L ............................... ... ... ... ... ... ... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 155 145 125 115 105 Fcy, ksi: L ............................... ... ... ... ... ... ... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... e, percent: b b b b b b LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . 28.5 Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . 30.0 G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 µ................................. 0.27 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.282 (H900), 0.283 (H1075), 0.284 (H1150) C, K, and α . . . . . . . . . . . . . . . . . . . . . . . . See Figure 2.6.9.0 a b
Test direction longitudinal for widths less than 9 inches; long transverse for widths 9 inches and over. See Table 2.6.9.0(c).
Table 2.6.9.0(c). Minimum Elongation Values for 17-4PH Sheet, Strip, and Plate
Thickness 0.015 through 0.186 0.187 through 0.625 0.626 through 4.000
H900 5 8 10
H925 5 8 10
2-220
e, percent (LT) H1025 H1075 5 5 8 9 12 13
H1100 5 10 14
H1150 8 10 16
MMPDS-06 1 April 2011
Table 2.6.9.0(d). Design Mechanical and Physical Properties of 17-4PH Stainless Steel Forging, Tubing, and Rings
Specification . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ....................... T ....................... Fty, ksi: L ....................... T ....................... Fcy, ksi: L ....................... T ....................... Fsu, ksi . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . e, percent: L ....................... E, 103 ksi . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . µ......................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . .
AMS 5643 Forging, tubing, and rings H1025 H1075 H1100 H1150 <8.000 S S S S
H1150Ma
H900
H925
S
S
190 ...
170 ...
155 ...
145 ...
140 ...
135 ...
115 ...
170 ...
155 ...
145 ...
125 ...
115 ...
105 ...
75 ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10
10
12
13 28.5 30.0 11.2 0.27
14
16
18
0.282 (H900), 0.283 (H1075), 0.284 (H1150) See Figure 2.6.9.0
a Not covered by AMS 5643. S values are producers’ guaranteed minimum tensile properties.
2-221
S
MMPDS-06 1 April 2011
Table 2.6.9.0(e). Design Mechanical and Physical Properties of 17-4PH Stainless Steel Bar
Specification . . . . . . . . . . .
AMS 5643
Form . . . . . . . . . . . . . . . . . .
Bar
Condition . . . . . . . . . . . . . .
H900
H925
H1025
Thickness or diameter, in. . Basis . . . . . . . . . . . . . . . . . .
H1075
H1100
H1150
H1150Ma
<8.000 A
B
A
B
S
A
B
S
A
B
Sa
140
125
134
115
...
...
...
...
115 ...
100 ...
115 ...
75 ...
Mechanical Properties:b Ftu, ksi: L . . . . . . . . . . . . . . . . . . 190 195 170 178 T .................. Fty, ksi:
...
...
...
...
L . . . . . . . . . . . . . . . . . . 170 175 155c 167 T . . . . . . . . . . . . . . . . . . ... ... ... ... Fcy, ksi: L . . . . . . . . . . . . . . . . . . 170 175 ... ... T . . . . . . . . . . . . . . . . . . ... ... ... ... Fsu, ksi . . . . . . . . . . . . . . . 123 126 ... ... Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . 313 322 ... ... (e/D = 2.0) . . . . . . . . . . . 380 390 ... ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . 255 262 ... ... (e/D = 2.0) . . . . . . . . . . . 280 288 e, percent (S-basis): L . . . . . . . . . . . . . . . . . . 10 ...
155 ...
125d 143 ... ... ... ...
... ...
... ...
90 ...
104 ...
... ...
95
...
...
...
79
85
...
263e 332e
... ...
... ...
... ...
213e 228e 270e 289e
... ...
211e
... ...
... ...
152e 175e 181e 208e
... ...
...
14
...
...
250
... ...
10
...
12
13
e
16
...
28.5
3
Ec, 10 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ....................
30.0 11.2 0.27 0.282 (H900), 0.283 (H1075), 0.284 (H1150)
C, K, and α . . . . . . . . . . .
c d e
...
139 ...
E, 10 ksi . . . . . . . . . . . . .
a b
...
145 ...
3
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . .
143 150
See Figure 2.6.9.0
Not covered by AMS 5643. S values are producer’s guaranteed minimum tensile properties. Design allowables were based upon data from samples of material, supplied in the solution treated condition, which were aged to demonstrate response to heat treatment by suppliers. A-Basis value is specification minimum. Rounded T99 value = 157 ksi. A-Basis value is specification minimum. Rounded T99 value = 136 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
2-222
18
MMPDS-06 1 April 2011
Table 2.6.9.0(f). Design Mechanical and Physical Properties of 17-4PH Stainless Steel Investment Casting
Specification . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . Location within casting . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . Mechanical Propertiesd: Ftu, ksi . . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . Fbrue, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . Fbrye, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . . . RA, percent . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . µ........................ Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . .
AMS 5344
AMS 5342
S
AMS 5343 Investment Casting H1000b Any area S
180 160 ... ...
150 130 132 98
130 120 ... ...
... ...
254 329
... ...
... ... 4 12
189 222 4 12 28.5 30.0 12.7 0.27
... ... 6 15
H900a
0.282 (H900) See Figure 2.6.9.0
a b c d
Aged at 900E to 925EF for 90 minutes. Aged at 985E to 1015EF for 90 minutes. Aged at 1085E to 1115EF for 90 minutes. Properties apply only when drawing specifies that conformance to tensile property requirements shall be determined from specimens cut from casting or integrally cast specimens. e Bearing values are “dry pin” values per Section 1.4.7.1.
2-223
H1100c S
MMPDS-06 1 April 2011
17
0.20
10
α (H1075)
0.18
8
α (H900)
13
0.16
6
K 11
0.14
4
C 9
α - Between 70 °F and indicated temperature except from -100 °F for 70 °F value
0.12
2
K - At indicated temperature C - At indicated temperature 7
0.10 0
200
400
600
800
1000
1200
1400
0 1600
Temperature, °F
Figure 2.6.9.0. Effect of temperature on the physical properties of 17-4PH stainless steel.
2-224
α, 10-6 in./in./°F
15
C, Btu/ (lb)(°F)
K, Btu/[(hr)(ft2)(°F)/ft]
α (H1150)
MMPDS-06 1 April 2011 2.6.9.1 H900 Condition — Elevated temperature curves for various mechanical properties are presented in Figures 2.6.9.1.2 through 2.6.9.1.4. Unnotched and notched fatigue information at room temperature is presented in Figures 2.6.9.1.8(a) through 2.6.9.1.8(c).
100
Strength at temperature Exposure up to 1/2 hr
Percentage of Room Temperature Strength
80
60
40
Fsu Fcy
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.6.9.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of 17-4PH (H900) stainless steel bar and forging.
2-225
MMPDS-06 1 April 2011 100
Strength at temperature Exposure up to 1/2 hr
Percentage of Room Temperature Strength
80
60
Fbry Fbru 40
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.6.9.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of 17-4PH (H900) stainless steel bar and forging.
100
Percentage of room Temperature Modulus
E & EC 80
60
Modulus at temperature Exposure up to 1/2 hr
40
TYPICAL
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F Figure 2.6.9.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 17-4PH (H900) stainless steel bar and forging.
2-226
MMPDS-06 1 April 2011
Figure 2.6.9.1.8(a). Best-fit S/N curves for unnotched 17-4PH (H900) bar, longitudinal direction.
Correlative Information for Figure 2.6.9.1.8(a) Product Form: Bar, 1-inch and 1.125-inch diameter Properties:
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
TUS, ksi TYS, ksi Temp.,EF 202 195 RT
No. of Heats/Lots: Not specified
Specimen Details: Unnotched 1.25-inch gross diameter 0.252-inch net diameter
Equivalent Stress Equation: Log Nf = 30.6-11.2 log (Seq) Seq = Smax (1-R)0.52 Std. Error of Estimate, Log (Life) = 0.531 Standard Deviation, Log (Life) = 0.672 R2 = 38%
Surface Condition: Polished References: 2.6.9.1.8(a)
Sample Size: = 42 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-227
MMPDS-06 1 April 2011
Figure 2.6.9.1.8(b). Best-fit S/N curves for notched, Kt = 3.0, 17-4PH (H900) bar, longitudinal direction.
Correlative Information for Figure 2.6.9.1.8(b) Product Form: Bar, 1 inch and 1.125 inch diameter Properties:
TUS, ksi 202
TYS, ksi 195
Test Parameters: Loading - Axial Frequency - Not specified Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Circumferential V-Groove, Kt = 3.0 Gross diameter inches 0.430 0.357
Net diameter inches 0.300 0.252
No. of Heats/Lots: Not specified
Notch radius inches 0.016 0.013
Equivalent Stress Equation: Log Nf = 9.10-2.79 log (Seq - 48.4) Seq = Smax (1-R)0.67 Std. Error of Estimate, Log (Life) = 0.235 Standard Deviation, Log (Life) = 0.897 R2 = 93%
60E flank angle, ω Sample Size: 39 Surface Condition: Polished [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Reference: 2.6.9.1.8(a)
2-228
MMPDS-06 1 April 2011
Figure 2.6.9.1.8(c). Best-fit S/N curves for notched, Kt = 4.0, 17-4PH (H900) bar, longitudinal direction.
Correlative Information for Figure 2.6.9.1.8(c) Product Form: Bar, 0.787-inch diameter, vacuum melted Properties:
Test Parameters: Loading - Axial Frequency - 2000 cpm Temperature - RT Environment - Air
TUS, ksi TYS, ksi Temp.,EF 207 — RT
No. of Heats/Lots: 1
Specimen Details: Circumferential V-Groove, Kt = 4.0 0.492-inch gross diameter 0.256-inch net diameter 0.008-inch notch radius, n 60E flank angle, ω Surface Condition: Machined and aged
Equivalent Stress Equation: Log Nf = 9.03-2.91 log (Seq - 26.1) Seq = Smax (1-R)0.51 Std. Error of Estimate, Log (Life) = 0.345 Standard Deviation, Log (Life) = 0.812 R2 = 82%
Reference: 2.6.9.1.8(b)
Sample Size: = 22 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-229
MMPDS-06 1 April 2011 2.6.9.2 Various Heat Treat Conditions — Elevated temperature curves for tensile yield and ultimate strengths are depicted in Figure 2.6.9.2.1. Room temperature stress-strain and tangent-modulus curves are shown in Figures 2.6.9.2.6(a) and 2.6.9.2.6(b). 2.6.9.3 H1000 Condition — Room temperature stress-strain and tangent-modulus curves for castings are shown in Figures 2.6.9.3.6(a) and 2.6.9.3.6(b). 2.6.9.4 H1025 Condition — Notched fatigue information is presented in Figure 2.6.9.4.8 for bar. 2.6.9.5 H1100 Condition — Notched fatigue information is presented in Figure 2.6.9.5.8 for bar. 2.6.9.6 H1150 Condition — Elevated temperature curves for tensile yield and ultimate strengths are shown in Figure 2.6.9.6.1.
Percentage of Room Temperature Strength
100
80
Ftu
60
Fty
40
Strength at temperature Exposure up to 1/2 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F Figure 2.6.9.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of 17-4PH (H900, H925, H1025, and H1075) stainless steel bar.
2-230
MMPDS-06 1 April 2011 200 H900
Longitudinal H1025 160
Stress, ksi
H1150 120
80
Ramberg-Osgood n (H900) = 11 n (H1025) = 24 n (H1150) = 13
40
TYPICAL Thickness: 1.000 - 4.500 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.9.2.6(a). Typical tensile stress-strain curves at room temperature for various heat-treated conditions of 17-4PH stainless steel bar.
200
Longitudinal H1025 H1025
160
Stress, ksi
H1150 H1150
120
80
Ramberg-Osgood n (H1025) = 22 n (H1150) = 13
40
TYPICAL Thickness: 1.000 - 4.500 in. 0 0
2
0
5
4
6 Strain, 0.001 in./in.
8
10 15 20 Compressive Tangent Modulus, 103 ksi
10
12
25
30
Figure 2.6.9.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for various heat-treated conditions of 17-4PH stainless steel bar.
2-231
MMPDS-06 1 April 2011
6WUHVVNVL
5DPEHUJ2VJRRG Q
7<3,&$/ 7KLFNQHVVLQ
6WUDLQLQLQ
Figure 2.6.9.3.6(a). Typical tensile stress-strain curve for 17-4PH (H1000) stainless steel casting at room temperature.
200
Stress, ksi
160
120
80
Ramberg-Osgood n = 13 40
TYPICAL Thickness: 0.375 - 3.000 in.
0 0
2
0
5
4
6 Strain, 0.001 in./in.
8
10 15 20 Compressive Tangent Modulus, 103 ksi
10
12
25
30
Figure 2.6.9.3.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 17-4PH (H1000) stainless steel casting at room temperature.
2-232
MMPDS-06 1 April 2011
Figure 2.6.9.4.8. Best-fit S/N curves for notched, Kt = 3.0, fatigue behavior of 174PH (H1025) stainless steel bar, longitudinal and long transverse directions.
Correlative Information for Figure 2.6.9.4.8 Product Form: Bar, 2 x 6 inches Properties: Longitudinal Long Transverse Longitudinal Long Transverse
TUS, ksi TYS, ksi 165 161 164 158 280
—
275
—
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
Temp,EF RT RT
No. of Heats/Lots: 3
RT (notched) RT (notched)
Equivalent Stress Equation: Log Nf = 21.60-9.24 log (Seq) Seq = Smax (1-R)0.581 Std. Error of Estimate, Log (Life) = 0.413 Standard Deviation, Log (Life) = 0.724 R2 = 67%
Specimen Details: Notched V-Groove, Kt = 3.0 0.375-inch gross diameter 0.250-inch net diameter 0.013-inch root radius, r 60E flank angle, ω
Sample Size: = 44
Surface Condition: Notched: Ground notch
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Reference: 2.6.7.2.8(a)
2-233
MMPDS-06 1 April 2011
Figure 2.6.9.5.8. Best-fit S/N curves for notched, Kt = 4.0, 17-4PH (H1100) bar, longitudinal direction.
Correlative Information for Figure 2.6.9.5.8 Product Form: Bar, 0.787-inch diameter Properties:
TUS, ksi 151
TYS, ksi —
Test Parameters: Loading - Axial Frequency - 2000 cpm Temperature - RT Environment - Air
Temp,EF RT
Specimen Details: Circumferential V-Groove, Kt=4.0 0.492-inch gross diameter 0.256-inch net diameter 0.008-inch notch radius, r 60E flank angle, ω Surface Condition: Machined then aged Reference: 2.6.9.1.8(b)
No. of Heats/Lots: Not Specified Equivalent Stress Equation: Log Nf = 14.6-5.56 log (Seq) Seq = Smax (1-R)0.69 Std. Error of Estimate, Log (Life) = 0.301 Standard Deviation, Log (Life) = 0.556 R2 = 71% Sample Size: = 21 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2-234
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength
100
80
Fty Ftu
60
40
20
Strength at temperature Exposure up to 1/2 hr
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.6.9.6.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of 17-4PH (H1150) stainless steel bar.
2-235
MMPDS-06 1 April 2011 2.6.10 17-7PH 2.6.10.0 Comments and Properties — 17-7PH is a semiaustenitic stainless steel used where high strength and good corrosion and oxidation resistance are needed up to 600EF. This steel is supplied in Condition A for ease of forming. Manufacturing Considerations — 17-7PH in Condition A is readily cold formed. Conventional inert gas shielded arc and resistance techniques are generally used for welding. Vapor blasting of scaled Condition TH1050 parts is recommended because of the hazards of intergranular corrosion during pickling operations. Heat Treatment — 17-7PH must be used in the heat-treated condition and should not be placed in service in Condition A or T. Condition A should be restored by resolution treating when this condition has been altered during processing operations such as hot working, welding, or brazing. The heat-treatment procedures for this steel are compatible with the cycles used for honeycomb panel brazing. In hardening this steel from Condition A to Condition TH1050, a net dimensional growth of 0.0045 in./in. will occur. The heat treatment to anneal is: Treatment 1950EF ± 25EF and air cool
Designation Condition A
The transformation treatment from Condition A is as follows: Treatment 1400EF ± 25EF - 90 minutes and cool to 55 ± 5EF for 30 minutes
Designation Condition T
The aging treatment is: Designation TH1050
Treatment 1050EF ± 10EF - 90 minutes and air cool
Environmental Considerations — The resistance of 17-7PH to stress corrosion cracking in chloride environs has been evaluated and found to be superior to that of the alloy steels and the hardenable chromium steels. Strength properties are lowered by exposure to temperatures above about 975EF for periods longer than one-half hour. Specifications and Properties — Material specifications for 17-7PH stainless steel is presented in Table 2.6.10.0(a). The room temperature properties of 17-7PH are shown in Tables 2.6.10.0(b) and 2.6.10.0(c). The effect of temperature on the physical properties of this alloy are presented in Figure 2.6.10.0. Table 2.6.10.0(a). Material Specification for 17-7PH Stainless Steel
Specification AMS 5528
Form Plate, sheet, and strip
2-236
MMPDS-06 1 April 2011
Table 2.6.10.0(b). Design Mechanical and Physical Properties of 17-7PH Stainless Steel Sheet and Plate
Specification . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . Mechanical Properties:a Ftu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . µ....................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . a
b c d
AMS 5528 Sheet
Plate
0.015-0.187
TH1050 0.188-0.500 S
0.501-1.000 S
A
B
177 177
183 184
... 180
... 180
150b 150c
167 167
... 150
... 150
160 166 112
179 185 117
160 166 114
... ... ...
305 351
317 365
310 357
... ...
228 240
254 267
228 240
... ...
6
6
d
... 29.0 30.0 11.5 0.28
0.276 See Figure 2.6.10.0
Design allowables were based on data from samples of material, supplied in the solution-treated condition, which were austenite-conditioned and aged to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be different if the material has been formed or otherwise cold worked. The rounded T99 value of 158 ksi was reduced to agree with transverse specification value. A-Basis value is specification minimum. The rounded T99 value equals 159 ksi. See Table 2.6.10.0(c).
2-237
MMPDS-06 1 April 2011
Table 2.6.10.0(c). Minimum Elongation Values for 17-7PH (TH1050) Stainless Steel Sheet
Thickness, in.
Elongation (LT), percent
0.005 to 0.010 0.011 to 0.019 0.020 to 0.187
4 5 6
28
0.16 α − Between 70F and indicated temperature K - At indicated temperature C - At indicated temperature
26
0.14
0.10
22
C
20
0.08
18
0.06
16
7 K, TH1050
14
6
α, TH1050
12
5
10
4
8
3
-400
-200
0
200
400
600
800
1000
1200
1400
α, 10-6 in./in./F
K, Btu/ [ (hr)(ft2)(F)/ft]
C, Btu/(lb)(F)
0.12
24
1600
Temperature, F
Figure 2.6.10.0. Effect of temperature on the physical properties of 17-7PH stainless steel.
2.6.10.1 TH1050 Condition — Elevated temperature curves for various mechanical properties are presented in Figures 2.6.10.1.1, 2.6.10.1.2, and 2.6.10.1.4(a) and 2.6.10.1.4(b). Tensile and compression stress-strain curves at room temperature and at several elevated temperatures are presented in Figures 2.6.10.1.6(a) and 2.6.10.1.6(b). Typical compressive tangent-modulus curves at various temperatures are presented in Figure 2.6.10.1.6(c).
2-238
MMPDS-06 1 April 2011
100
Strength at temperature Exposure up to 1/2 hr
Percentage of Room Temperature Strength
80
Fty
60
}
Ftu
Fcy 40
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.6.10.1.1. Effect of temperature on the tensile ultimate strength (Ftu), tensile yield strength (Fty), and compressive yield strength (Fcy) of 17-7PH (TH1050) stainless steel sheet.
100
Percentage of Room Temperature Fsu
Strength at temperature Exposure up to 1/2 hr 80
60
40
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.6.10.1.2. Effect of temperature on the ultimate shear strength (Fsu) of 17-7PH (TH1050) stainless steel sheet.
2-239
MMPDS-06 1 April 2011
Percentage of Room Temperature Modulus
100
E
80
Ec 60
40
TYPICAL
20
Modulus at temperature Exposure up to 1/2 hr
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.6.10.1.4(a). Effect of temperature on the tensile and compressive moduli (E and Ec) of 17-7PH (TH1050) stainless steel sheet.
0.33
Poisson's Ratio
0.32
0.31
0.30
TYPICAL
0.29
Poisson's Ratio at temperature Exposure up to 1/2 hr
0.28 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.6.10.1.4(b). Effect of temperature on Poisson’s ratio (µ) for 17-7PH (TH1050) stainless steel sheet.
2-240
MMPDS-06 1 April 2011 250 Ramberg-Osgood n (RT) = 12 n (200 F) = 8.3 n (400 F) = 9.0 n (600 F) = 12 n (800 F) = 8.3 n (900 F) = 8.0 n (1000 F) = 7.7
200
Stress, ksi
1/2-hr exposure
150
RT 200 F 400 F 600 F 800 F
TYPICAL
900 F
100
1000 F 50
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.10.1.6(a). Typical tensile stress-strain curves at various temperatures for 17-7PH (TH1050) stainless steel sheet.
250 Ramberg-Osgood
RT
n (RT) = 9.3 n (200 F) = 11 n (400 F) = 9.3 n (600 F) = 11 n (800 F) = 8.3 n (900 F) = 9.3
200
Stress, ksi
1/2-hr exposure
150
200 F 400 F 600 F 800 F
TYPICAL
900 F
100
50
0 0
2
4
6
8
10
Strain, 0.001 in./in.
Figure 2.6.10.1.6(b). Typical compressive stress-strain curves at various temperatures for 17-7PH (TH1050) stainless steel sheet.
2-241
12
MMPDS-06 1 April 2011
250 1/2-hr exposure
RT
200
200 F 400 F 600 F 800 F
Stress, ksi
150
900 F
100 Ramberg-Osgood n (RT) = 9.3 n (200 F) = 11 n (400 F) = 9.3 n (600 F) = 11 n (800 F) = 8.3 n (900 F) = 9.3
50
TYPICAL
0 0
5
10
15
20
25
30
Compressive Tangent Modulus, 103 ksi
Figure 2.6.10.1.6(c). Typical compressive tangent-modulus curves at various temperatures for 17-7PH (TH1050) stainless steel sheet.
2-242
MMPDS-06 1 April 2011 2.6.11 HSL180 (12.5CR-1.0NI-15.5CO-2.0MO) 2.6.11.0 Comments and Properties – HSL180 is a precipitation hardening martensitic stainless steel used for parts requiring tensile strength levels of 255ksi (1758MPa) and higher with good fracture toughness and corrosion resistance. HSL180 has the best combination of high strength and good fracture toughness among high strength stainless steels. For example, this alloy provides tensile strength almost as high as 4340 steel and fracture toughness twice as high as 4340 steel. This alloy also provides much higher tensile strength than 15-5PH stainless steel and fracture toughness as high as 15-5PH. This alloy is produced by double vacuum melting. Manufacturing Considerations– HSL180 is normally supplied and fabricated in the annealed condition. Forgeability is similar to that used for 15-5PH. Machining in the annealed condition is almost as same as that of 15-5PH stainless steel in the solution-treated condition and that in the austenitized and tempered condition is almost as same as that of 4340 type steel in the austenitized and tempered condition. Heat Treatment – HSL180 must be heat-treated from the annealed condition with hardness not higher than BHN 363 as follows. The heat treatment for this alloy should be austenitized at 1985°F (1085°C) for not less than 1 hour, quenched in oil not hotter than 140°F (60°C), cooled to –100°F (-73°C) for not less than 2 hours, tempered twice at 725°F (385°C) for 2 hours, and cooled to room temperature. Parts are preferred to be austenitized in the inert gas atmosphere or vacuum in order to prevent surface oxidation and decarburization. Good combinations of high strength and toughness can be obtained for 2 inch (50mm) section sizes and smaller. Environmental Considerations – The general corrosion resistance of HSL180 stainless steel is comparable to that of 15-5PH. This alloy indicates no corrosion after exposure to 5% salt spray at 95°F (35°C) for 1000 hours in the quenched and tempered condition. Stress corrosion resistance of this alloy in 3.5% NaCl solution at room temperature is better than that of 300M steel but smaller than that of 15-5PH. Specification and Properties – A material specification for 12.5Cr-1.0Ni-15.5Co-2.0Mo corrosion resistant stainless steel is presented in Table 2.6.11.0(a). The room temperature properties are shown in Table 2.6.11.0(b). Table 2.6.11.0(a). Material Specification for HSL180 (12.5Cr-1.0Ni-15.5Co-2.0Mo) Corrosion Resistant Steel Specification Form AMS 5933 Bars and Forgings
2.6.11.1. Austenitized and Tempered Condition – Typical stress-strain curves at room temperature are shown in Figures 2.6.11.1.6(a) and 2.6.11.1.6(b). A full-range tensile stress-strain curve is presented in Figure 2.6.11.1.6(c).
2-243
MMPDS-06 1 April 2011
Table 2.6.11.0(b). Design Mechanical and Physical Properties of HSL180 (12.5Cr-1.0Ni-15.5Co-2.0Mo) Corrosion Resistant Steel Specification . . . . . . . . . . AMS 5933 Form . . . . . . . . . . . . . . . . . Bars Condition . . . . . . Austenitized and tempered Thickness or diameter (in.) < 2.750 2.750-5.100 5.101-6.000 Basis . . . . . . . . . . . . . . . . . S S S a Mechanical Properties : Ftu, ksi: L.................. 255 255 255 T.................. … 252 … Fty, ksi: L.................. 185 185 185 T.................. … 181 … Fcy, ksi: L.................. … 209 … T.................. … 210 … … 163 … Fsu, ksi: L,T . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) L, T . . . . . . . . . . . . . . . … 397 … ST . . . . . . . . . . . . . . . . … … … Fbrub, ksi: (e/D = 2.0) L, T . . . . . . . . . . . . . . . … 497 … … ST . . . . . . . . . . . . . . . . … … Fbryb, ksi: (e/D = 1.5) L, T . . . . . . . . . . . . . . . … 317 … ST . . . . . . . . . . . . . . . . … … … Fbryb, ksi: (e/D = 2.0) L, T . . . . . . . . . . . . . . . … 366 … ST . . . . . . . . . . . . . . . . … … … e, percent: L.................. 15 15 15 T.................. … 13 … RA, percent: L.................. 40 40 40 T.................. … 39 … E, 103 ksi (L) . . . . . . . . . . 30.7 E, 103 ksi (T) . . . . . . . . . . 29.5 Ec, 103 ksi . . . . . . . . . . . . … G, 103 ksi . . . . . . . . . . . . . … : . . . . . . . . . 0.28 Physical Properties: ω, lb./in.3 . . . . . 0.283 C, K, and α . . . . See Figure 2.6 11.0 Issued: Oct 2006, MMPDS-03, Item 05-06 a Response to heat treatment properties. b Bearing values are “dry pin” values per Section 1.4.7.1.
2-244
MMPDS-06 1 April 2011
22
8 HSL180 Bar
20 K, Btu-ft./ft.hr.-oF
0.4
0.3
C, Btu/(lb)(oF)
0.2
α
18 16 14
4
K
12 10
2
8 0.1
6
α, 10-6 in./in./oF
0.5
C
6
0
4 0.0
2
-2 0
200
400
600
800
1000
1200
1400
1600
1800
2000
o
Temperature, F
Figure 2.6.11.0. Effect of temperature on the physical properties of 12.5Cr-1.0Ni15.5Co-2.0Mo (HSL180) stainless steel bar.
2-245
MMPDS-06 1 April 2011
Figure 2.6.11.1.6(a) Typical tensile stress-strain curve at room temperature for 12.5Cr-1.0Ni-15.5Co-2.0Mo stainless steel bar, longitudinal and long transverse orientation HSL180 Bar 200
Stress, ksi
150
100
TYPICAL 50
Ramberg-Osgood
TYS
n 1 = 5.9
215.0
0 0
2
4
6
8
10
12
14
25
30
35
Strain, 0.001 in./in. 0
5
10
15
20
Compressive Tangent Modulus, 10 3 ksi.
Figure 2.6.11.1.6(b). Typical compressive stress-strain and compressive tangent modulus curves for longitudinal direction at room temperature for 12.5Cr-1.0Ni15.5Co-2.0Mo stainless steel bar.
2-246
MMPDS-06 1 April 2011
280
Longitudinal 260
240
Long Transverse 220
X X
200
180
Stress, ksi
160
140
120
100
80
60
HLS180 Bar
40
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
Strain, in./in.
Figure 2.6.11.1.6(c). Typical tensile (full-range) stress-strain curves at room temperature for 12.5Cr-1.0Ni-15.5Co-2.0Mo stainless steel bar.
2-247
0.20
MMPDS-06 1 April 2011
Figure 2.6.11.1.8(a) Best-fit S/N curves for unnotched HSL180 bar, longitudinal direction.
Correlative Information for Figure 2.6.11.1.8(a) Product Form: Austenitized and tempered bar, 2.75 – 5.10 inches thick Properties: UTS = 262 ksi, TYS = 197 ksi Specimen Details: Unnotched, round fatigue specimen Diameter = 0.200 in. Gage length = 0.75 in. Transition radius = 1.65 in. Surface Condition: Heat-treated and finish-ground to RMS 8 Reference: 2.6.11.1.8 Test Parameters: Loading – Axial Frequency – 10 - 30 Hertz Temperature – RT Atmosphere – lab air
No. of Heat/Lots = 2 Maximum Stress Equation (R = -1.0): log Nf = 15.020 - 5.427 log (Smax - 69.5) Std. Error of Estimate, Log (Life) = 0.101 Std. Deviation, Log (Life) = 0.875 R2 = 98.7% Sample Size = 8 Equivalent Stress Equation (0.10 >= R <= 0.30): log Nf = 50.545 - 19.678 log (Seq) where Seq = Smax (1 – R)0.33 Std. Error of Estimate, Log (Life) = 80.6 x 1/Seq Std. Deviation, Log (Life) = 1.016 R2 = 78.7% Sample Size = 25
2-248
MMPDS-06 1 April 2011
Figure 2.6.11.1.8(b) Best-fit S/N curves for notched, Kt = 3.0, HSL180 bar, longitudinal direction.
Correlative Information for Figure 2.6.11.1.8(b) Product Form: Austenitized and tempered bar, 2.75 – 5.10 inches thick Properties: UTS = 262 ksi, TYS = 197 ksi, Notched UTS = 392 ksi
Test Parameters: Loading – Axial Frequency – 30 Hertz Temperature – RT Atmosphere – lab air No. of Heat/Lots = 1
Specimen Details: Circumferentially notched fatigue specimen Notch root radius = 0.012 in. Notch depth = 0.042 Flank Angle = 60° Net section diameter = 0.200 in.
Equivalent Stress Equation: log Nf = 11.380 - 4.275 log (Seq - 78.4) where Seq = Smax (1 – R)0.54 Std. Error of Estimate, Log (Life) = 69.4 x 1/Seq Std. Deviation, Log (Life) = 1.123 R2 = 78.3%
Surface Condition: Heat-treated and finish-ground to RMS 8
Sample Size = 26
Reference: 2.6.11.1.8
2-249
MMPDS-06 1 April 2011 2.6.12 MLX17 2.6.12.0 Comments and Properties — MLX17 stainless is a Vacuum Induction plus Vacuum Consumable Electrode Melted, martensitic, age-hardenable alloy. This alloy was designed to have excellent notch tensile strength and fracture toughness over a wide range of section sizes. In the H950 condition, the alloy achieves a minimum ultimate tensile strength of 240ksi while retaining good toughness and high resistance to stress corrosion cracking. Over aging to the H1000 condition provides a greater level of toughness at a minimum ultimate tensile strength of 220ksi. MLX17 provides superior corrosion and stress corrosion resistance compared to other PH stainless grades of equivalent strength. MLX17 stainless is available in the form of forgings, billet, bar, wire, strip and semi products. Manufacturing Considerations - MLX17 stainless normally is supplied and fabricated in the solution-annealed condition. Billet products will be provided in the hot-finished condition. Forming, machining, and joining operations are similar to those employed for other precipitation-hardening stainless steels. Optimum weld strength and ductility are obtained by post weld solution annealing and subzero cooling prior to aging. Heat Treatment - Among the corrosion-resistant alloys type, MLX17 stainless provides a high combination of strength and stress corrosion resistance in the H950 and H1000 conditions. Usually, parts are aged directly from the mill-supplied, solution-annealed condition. However, if material has been hot-worked or welded, components should be re annealed (1562°F/850°C) and subzero cooled (-100°F/-73°C, 8 hours hold) prior to age hardening. Components should be cooled rapidly from the annealing temperature. Section sizes up to 11" (280 mm) can be cooled in a suitable liquid quench medium. The subsequent subzero treatment should be applied within 24 hours of the solution annealing. The refrigeration treatment after annealing is important for achieving optimum aging response by eliminating small amounts of retained austenite from the microstructure. The mill-supplied solution anneal includes the subzero treatment. Aging treatments are performed by heating components to the specified temperature, holding for 8 hours, followed by cooling in air, oil, or other suitable liquid quench medium. The 8 hours aging cycle is important to get the optimum toughness and ductility at the specified strength levels. Increased the cooling rates from aging temperature tend to improve toughness and ductility and may be beneficial for 3" (76mm) section sizes and greater. Environmental Considerations - The general corrosion resistance of MLX17 stainless approaches that of Type 304 Stainless. Exposure to 5% neutral salt spray at 95°F (35°C) (per ASTM B 17) caused no corrosion after 200 hours, regardless of condition (i.e., annealed or H950-H1000 conditions). Cleaning and passivation of the product after aging is recommended to improve the corrosion resistance. Double cantilever beam tests conducted in 3.5% NaCl (pH 6) show MLX17 stainless to possess resistance to stress corrosion which improves with increasing aging temperature. Typical results can be found in the Naval Air Warfare Center, Patuxent River, MD USA Report "Aircraft Steels" Report N°AD-A494348; NAWCADPAX/TR-2009/12 Specifications and Properties — Material specifications for MLX17 stainless steel is presented in Table 2.6.12.0(a). The room temperature properties of MLX17 are shown in Tables 2.6.12.0(b). The effect of temperature on the physical properties of this alloy are presented in Figure 2.6.12.0.
2-250
MMPDS-06 1 April 2011
Table 2.6.12.0(a). Material Specification for MLX17 Stainless Steel
Specification AMS 5937
Form Bars, forgings
2.6.12.1 H950 Condition — Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 2.6.12.1.6(a) through 2.6.12.1.6(d). Typical room temperature full range tensile stress-strain curves are shown in Figure 2.6.12.1.6(e). 2.6.12.2 H1000 Condition — Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 2.6.12.2.6(a) through 2.6.12.2.6(d). Typical room temperature full range tensile stress-strain curves are shown in Figure 2.6.12.2.6(e).
2-251
MMPDS-06 1 April 2011
Table 2.6.12.0(b). Design Mechanical and Physical Properties of MLX17 Stainless Steel Bar and Forging Specification . . . . . . . . . . . . . . . . AMS 5937 Form . . . . . . . . . . . . . . . . . . . . . .
Bar and Forgings
Condition . . . . . . . . . . . . . . . . . .
H950
H1000
Thickness, in. . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . .
#12.000
#12.000
Mechanical Properties: Ftu, ksi: L ...................... T ...................... Fty, ksi: L ...................... T ...................... Fcy, ksi: L ...................... T ...................... Fsu,c ksi L-R . . . . . . . . . . . . . . . . . . . . C-R . . . . . . . . . . . . . . . . . . . . Fbru,d ksi (e/D = 1.5): L ...................... T ...................... Fbru,d ksi (e/D = 2.0): L ...................... T ...................... Fbry,d ksi (e/D = 1.5): L ...................... T ...................... Fbruyd ksi (e/D = 2.0): L ...................... T ...................... e, percent (S-Basis): L ...................... T ...................... RA, percent (S-Basis): L ...................... T ...................... E, 103 ksi . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . µ........................
A
B
A
B
240 240b
245 247
220a 220a
230 229
220b 220b
234 234
200a 200a
220 220
232 235
247 250
211 214
232 235
139 145
142 149
132 134
138 139
373 380
380 391
349 342
365 356
478 478
488 492
446 446
466 464
312 323
332 343
286 282
315 310
362 362
385 385
322 322
354 354
10 8
... ...
10 10
... ...
45 35
... ...
50 40
... ...
28.0 29.0 10.8 0.292
Continued on next page.
2-252
MMPDS-06 1 April 2011 Table 2.6.12.0(b). Design Mechanical and Physical Properties of MLX17 Stainless Steel Bar and Forging Specification . . . . . . . . . . . . . . . .
AMS 5937
Form . . . . . . . . . . . . . . . . . . . . . .
Bar and Forgings
Condition . . . . . . . . . . . . . . . . . .
H950
H1000
Thickness, in. . . . . . . . . . . . . . . .
#12.000
#12.000
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . .
0.277 See Figure 2.6.12.0.
Issued: Apr 2011, MMPDS-06, Item 10-30
a
A-Basis value is specification minimum. The rounded T99 for H1000 condition for Ftu (L) = 224 ksi, for Ftu (T) = 225 ksi, for
b
A-Basis value is specification minimum. The rounded T99 value for H950 condition for Ftu (T) = 243 ksi and for Fty (L) and
Fty(L) = 213 ksi, and for Fty(T) = 218 ksi.
(T) = 231 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
0.16
15 MLX17
0.14
0.13
0.12
C
14 2 K, Btu / [(hr)(ft )(°F)/(ft)]
C, Btu/(lb)(°F)
0.15
0.282
7
α
K
13
6
5
0.280
0.278
12
4
0.276
11
3
0.274
2
0.272
1 1000
0.270
ω 0.11
10
Density (ω), lb/in3
Shear value grain orientations and loading orientations per ASTM. B769
d
α, 10-6 in./in./oF
c
α - Between 86 °F and indicated temperature K, C, ω - At indicated temperature 0.10
9 0
200
400
600
800
Temperature, °F
Figure 2.6.12.0. Effect of temperature on the physical properties of MLX17 stainless steel.
2-253
MMPDS-06 1 April 2011 250 MLX17 H950 Bar and Forging
Stress, ksi
200
Dual Parameter
Single Parameter
150 Longitudinal Thickness: < 12.000 in. 100 TYPICAL Ramberg-Osgood 50
TYS
(Single) n = 11.8 (Dual) n1 = 4.3 n2 = 29.9
237 K1 = 3.110 K2 = 2.471
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 2.6.12.1.6(a). Typical tensile stress-strain curves in the longitudinal direction for MLX17 H950 bar and forging at room temperature.
250 MLX17 H950 Bar and Forging 200
Single Parameter
Stress, ksi
Dual Parameter 150 Transverse Thickness: < 12.000 in. 100 TYPICAL Ramberg-Osgood 50
TYS
(Single) n = 14.0 (Dual) n1 = 4.9 n2 = 30.9
240 K1 = 3.031 K2 = 2.473
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 2.6.12.1.6(b). Typical tensile stress-strain curves in the transverse direction for MLX17 H950 bar and forging at room temperature.
2-254
MMPDS-06 1 April 2011
300 Dual Parameter
MLX17 H950 Bar and Forging
250
Single Parameter
Stress, ksi
200
Longitudinal 150
TYPICAL Thickness < 12.000 in.
100
Ramberg-Osgood CYS (ksi) (Single) n = 11.8 256 (Dual) n1 = 4.3 K1 = 3.144 n2 = 29.9 K1 = 2.505
50
0 0
5
10
15
20
25
30
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 2.6.12.1.6(c). Typical compression stress-strain and compression tangent modulus curves in the longitudinal direction for MLX17 H950 bar and forging at room temperature. 300
MLX17 H950 Bar and Forging 250
Stress, ksi
200
Transverse 150
TYPICAL Thickness < 12.000 in.
100
Ramberg-Osgood n = 17.0
50
CYS (ksi) 256
0 0
5
10
15
20
25
30
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 2.6.12.1.6(d). Typical compression stress-strain and compression tangent modulus curves in the transverse direction for MLX17 H950 bar and forging at room temperature.
2-255
MMPDS-06 1 April 2011
260
Transverse
240
Longitudinal 220
200
180
Stress, ksi
160
X X
140
120
100
80
60
t <12.000 in.
40
Bar and Forging
MLX17 H950
TYPICAL 20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 2.6.12.1.6(e). Typical tensile (full range) stress-strain curves for MLX17 H950 bar and forging at room temperature.
2-256
MMPDS-06 1 April 2011
250 MLX17 H1000 Bar and Forging 200
Single Parameter
Stress, ksi
Dual Parameter 150 Longitudinal Thickness: < 12.000 in. 100 TYPICAL Ramberg-Osgood 50
TYS
(Single) n = 14.8 (Dual) n1 = 4.5
223 K1 = 3.063
n2 = 33.9
K2 = 2.433
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 2.6.12.2.6(a). Typical tensile stress-strain curves in the longitudinal direction for MLX17 H1000 bar and forging at room temperature. 250 MLX17 H1000 Bar and Forging 200
Single Parameter
Stress, ksi
Dual Parameter 150 Transverse Thickness: < 12.000 in. 100 TYPICAL Ramberg-Osgood 50
TYS
(Single) n = 12.0 (Dual) n1 = 4.6 n2 = 37.4
223 K1 = 3.030 K2 = 2.426
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.6.12.2.6(b). Typical tensile stress-strain curves in the transverse direction for MLX17 H1000 bar and forging at room temperature.
2-257
MMPDS-06 1 April 2011 260
MLX17 H1000 Bar and Forging
240 220 200
Stress, ksi
180 160 140
Longitudinal
120
TYPICAL
100
Thickness < 12.000 in.
80
Ramberg-Osgood n = 16.9
60 40
CYS (ksi) 244
20 0 0
5
10
15
20
25
30
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 2.6.12.2.6(c). Typical compression stress-strain and compression tangent modulus curves in the longitudinal direction for MLX17 H1000 bar and forging at room temperature.
260
MLX17 H1000 Bar and Forging
240 220 200
Stress, ksi
180 160 140
Transverse
120
TYPICAL
100
Thickness < 12.000 in.
80
Ramberg-Osgood n = 18.6
60 40
CYS (ksi) 246
20 0 0
5
10
15
20
25
30
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 2.6.12.2.6(d). Typical compression stress-strain and compression tangent modulus curves in the transverse direction for MLX17 H1000 bar and forging at room temperature.
2-258
MMPDS-06 1 April 2011
240
220
Longitudinal 200
Transverse 180
160
Stress, ksi
140
XX 120
100
80
60
t <12.000 in. MLX17 H1000 40
Bar and Forging TYPICAL
20
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 2.6.12.2.6(e). Typical tensile (full range) stress-strain curves for MLX17 H1000 bar and forging at room temperature.
2-259
MMPDS-06 1 April 2011
This page is intentionally blank.
2-260
MMPDS-06 1 April 2011
2.7 AUSTENITIC STAINLESS STEELS 2.7.0 COMMENTS ON AUSTENITIC STAINLESS STEEL 2.7.0.1 Metallurgical Considerations — The austenitic (18-8) stainless steels were developed as corrosion-resistant alloys. However, they possess excellent oxidation resistance and good creep strength at elevated temperatures, along with good cold formability and other properties in airframe and missile applications. They are used in sheet form for portions of the airframe having ambient temperatures too high for aluminum alloys and, with the development of sandwich structures, are gaining additional uses. These steels are also used extensively at cryogenic temperatures. The two alloying elements in the austenitic stainless steels are chromium and nickel. Chromium adds corrosion and oxidation resistance and high-temperature strength, and nickel gives an austenitic structure, with its associated toughness and ductility. The AISI 300 series stainless steels constitute a wide variety of compositions designed for different applications. The basic grade, Type 302, contains 18 percent chromium and 8 percent nickel. Varying one or both of these elements creates special characteristics. Type 301 (17 percent chromium and 7 percent nickel) work hardens to very high strengths. Type 310 (25 percent chromium and 20 percent nickel) has higher elevated temperature strength and greater oxidation resistance than Type 302. Sulfur and selenium additions promote free machining. Low carbon and/or columbium or titanium additions minimize intergranular corrosion for elevated temperature applications and welded construction. The addition of molybdenum improves corrosion resistance in reducing environments and gives improved creep resistance over Type 302. The characteristics of some of the AISI 300 series stainless steels are presented in Table 2.7.0.1. These alloys are not hardenable by heat treatment but can achieve high-strength levels through cold working. The strength imparted by cold working is decreased by exposure to temperatures above about 900EF. 2.7.0.2 Manufacturing Considerations Forging — The stainless steels have lower thermal conductivity than lower alloy steels and are susceptible to grain growth at forging temperatures. Hence, soaking times must be adequate to permit thorough heating of the billet but must be controlled carefully to limit grain growth when small reductions are involved during forging. At forging temperatures, the stainless steels are stronger than alloy steels, and forging must be conducted at higher temperatures and heavier forging equipment and more frequent reheating are required. The stainless steel billets forge much better when the surface is free of defects, and machine turning of the billets is advisable. Cold Forming — Because of their austenitic structure at room temperature, the stainless steels have excellent ductility for cold-forming operations when in the annealed condition. These steels work harden rapidly, and intermediate anneals may be required in deep drawing. Machining — The machining of the austenitic stainless steels is not difficult if proper steps are taken to combat the work-hardening tendencies of these steels. The use of heavy machines, slow speeds, deep cuts, and properly designed cutting tools with a fairly steep top rake produces the best results. Coldworked material possesses somewhat better machinability than hot-finished, annealed material. These steels are also available in free-machining grades containing sulfur or selenium.
2-261
MMPDS-06 1 April 2011 Welding — The austenitic stainless steels can be welded by almost any usual technique except carbon arc, provided adequate steps are taken to prevent oxidation or carburization of the weldment. The stabilized grades are preferred for welded parts that are used in the as-welded condition under corrosive conditions. The free-machining grades are not recommended for welding. Filler rods should be the same composition, or slightly higher in alloy content, as the material to be welded. Special fluxes designed for use with stainless steels should be employed, except in atomic hydrogen or inert gas-shielded arc welding. Spot and roll seam welding are also used to a considerable extent. Table 2.7.0.1. Characteristics of Some AISI 300 Series Stainless Steels
AISI
Characteristics
301
High work-hardening rate; applications requiring high strength and ductility.
302
Higher carbon modification of Type 304 for higher strength on cold rolling.
303
Free-machining sulfur modification of Type 302.
303Se Free-machining selenium modification of Type 302. 304
General-purpose austenitic grade for enhanced corrosion resistance.
304L Low-carbon modification of Type 304 for welding applications. 305
Low work-hardening rate; spin-forming and severe spin-drawing operations.
309
High-temperature strength and oxidation resistance.
309S
Low-carbon modification of Type 309 for welded construction.
310
High-temperature strength and oxidation resistance greater than Type 309.
310S
Low-carbon modification of Type 310 for welded construction.
314
Increased oxidation resistance over Type 310.
316
Mo added to improve corrosion resistance in reducing environments; improved creep resistance over Type 302.
316L Low-carbon modification of Type 316 for welded construction. 317
Increased Mo to improve corrosion resistance over Type 316 in reducing media.
321
Titanium stabilized for service in 800E to 1600EF range and to minimize carbide precipitation when welding for resistance to intergranular corrosion.
Brazing — Special techniques have been developed for silver-soldering and brazing these steels. Solders and fluxes especially designed should be used, surfaces must be thoroughly cleaned, and close control of temperature must be followed. 2.7.0.3 Environmental Considerations — The austenitic stainless steels have excellent oxidation resistance at high temperatures, and their elevated temperature service is usually limited by strength criteria. They also possess unusually good resistance to corrosion by most media. Prolonged exposure of the nonstabilized grades to temperatures between 700E and 1650EF makes them susceptible to intergranular corrosion.
2-262
MMPDS-06 1 April 2011 2.7.1 AISI 301 AND RELATED 300 SERIES STAINLESS STEELS 2.7.1.0 Comments and Properties — Of the austenitic stainless steels, AISI 301 is the one most frequently used at high-strength levels in aircraft, mainly because of its greater work-hardening characteristics. Type 301 is strengthened by cold working. If cold-worked Type 301 is subjected to temperatures above 900EF, its room temperature strength is reduced. Type 301 should not be used for extended periods at temperatures of 750E to 1650EF and should not be cooled slowly from higher temperatures through this range. Material specifications for AISI 301 and related stainless steel are presented in Table 2.7.1.0(a). The room temperature mechanical and physical properties for AISI 301 stainless steel are presented in Tables 2.7.1.0(b1), for AISI 302 are presented in Table 2.7.1.0(b2), for AISI 304 are presented in Table 2.7.1.0(b3), for AISI 316, 321, and 347 are presented in Table 2.7.1.0(b4). Elongation properties are presented in Table 2.7.1.0(c). The physical properties of these alloys at room and elevated temperatures are presented in Figure 2.7.1.0. Table 2.7.1.0(a). Material Specifications for AISI 301 and Related 300 Series Stainless Steels
Alloy AISI 301
AISI 302
AISI 304
AISI 316 AISI 321 AISI 347
Specification AMS 5901 AMS 5517 AMS 5518 AMS 5902 AMS 5519 AMS 5516 AMS 5903 AMS 5904 AMS5905 AMS 5906 AMS 5513 AMS 5910 AMS 5911 AMS 5912 AMS 5913 AMS 5524 AMS 5907 AMS 5510 AMS 5512
Form Plate, sheet, and strip, Annealed Sheet and strip, 1/4 Hard Sheet and strip, ½ Hard Sheet and strip, 3/4 Hard Sheet and strip, Full Hard Plate, sheet, and strip, Annealed Sheet and strip, 1/4 Hard Sheet and strip, ½ Hard Sheet and strip, 3/4 Hard Sheet and strip, Full Hard Plate, sheet, and strip, Annealed Sheet and strip, 1/4 Hard Sheet and strip, ½ Hard Sheet and strip, 3/4 Hard Sheet and strip, Full Hard Plate, sheet, and strip, Annealed Sheet and strip, 1/4 Hard Plate, sheet, and strip, Annealed Plate, sheet, and strip, Annealed
2.7.1.1 Annealed Condition — Elevated temperature curves for tensile yield and ultimate strengths are presented in Figures 2.7.1.1.1(a) and 2.7.1.1.1(b).
2-263
MMPDS-06 1 April 2011 2.7.1.2 ¼ Hard Condition — Typical room temperature stress-strain and tangent-modulus curves are presented in Figures 2.7.1.2.6(a) and 2.7.1.2.6(b). 2.7.1.3 ½ Hard Condition — Elevated temperature curves for various mechanical properties are presented in Figures 2.7.1.3.1 through 2.7.1.3.4. Typical stress-strain and tangent-modulus curves are presented in Figures 2.7.1.3.6(a) and 2.7.1.3.6(b). 2.7.1.4 ¾ Hard Condition — Typical room temperature stress-strain and tangent-modulus curves are presented in Figures 2.7.1.4.6(a) and 2.7.1.4.6(b). 2.7.1.5 Full-Hard Condition — The full-hard condition is a standard AISI temper and is developed by cold rolling 40 to 50 percent. Elevated temperature curves for various mechanical properties are presented in Figures 2.7.1.5.1 through 2.7.1.5.4. Tensile and compressive stress-strain as well as tangentmodulus curves at room temperature and several elevated temperatures are presented in Figures 2.7.1.5.6(a) through 2.7.1.5.6(d).
2-264
MMPDS-06 1 April 2011
Table 2.7.1.0(b1). Design Mechanical and Physical Properties of AISI 301a Stainless Steel
Specification . . . . . .
AMS 5901
Form . . . . . . . . . . . .
Sheet, strip, and plate
Condition . . . . . . . . .
Annealed
Thickness, in. . . . . . .
...
Basis . . . . . . . . . . . .
S
A
B
A
73 75
124 122
129 127
26 30
69 67
23 29 50
Mechanical Properties: Ftu, ksi: L.............. LT . . . . . . . . . . . . Fty, ksi: L.............. LT . . . . . . . . . . . . Fcy, ksi: L.............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent (S-Basis): LT . . . . . . . . . . . .
AMS 5517
AMS 5518
AMS 5902
AMS 5519
Sheet and strip ¼ Hard
½ Hard
¾ Hard
Full Hard
B
A
B
A
B
141 142
151 152
157 163
168 173
174 175
185 186
83 82
93 92
110 105
118 113
135 133
137 125
153 142
44 71 66
54 88 69
61 100 77
69 116 82
75 127 88
88 152 93
83 142 95
94 164 100
... 162
... 262
... 273
... 292
... 310
... 327
... 342
... 346
... 361
... 55
... 123
... 149
... 167
... 189
... 202
... 234
... 222
... 249
40
25
...
b
...
b
...
b
...
#0.187
3
E, 10 ksi: L ............. LT . . . . . . . . . . . . Ec, 103 ksi: L ............. LT . . . . . . . . . . . . G, 103 ksi . . . . . . . . µ ..............
29.0 29.0
27.0 28.0
26.0 28.0
26.0 28.0
26.0 28.0
28.0 28.0 11.2 0.27
26.0 27.0 10.6 0.27
26.0 27.0 10.5 0.27
26.0 27.0 10.5 0.27
26.0 27.0 10.5 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . . Issued: Mar 1959, MIL-HDBK-5 a b
0.286 See Figure 2.7.1.0 Last Revised: Apr 2010, MMPDS-05, Item 09-32.
Mechanical properties were established under MIL-S-5059 See Table 2.7.1.0(c).
Note: Yield strength, particularly in compression, and modulus of elasticity in the longitudinal direction may be raised appreciably by thermal stress-relieving treatment in the range 500E to 800EF.
2-265
MMPDS-06 1 April 2011
Table 2.7.1.0(b2). Design Mechanical and Physical Properties of AISI 302a Stainless Steel
Specification . . . . . .
AMS 5516
Form . . . . . . . . . . . .
Sheet, strip, and plate
Condition . . . . . . . . .
Annealed
Thickness, in. . . . . . .
...
Basis . . . . . . . . . . . .
S
A
B
A
73 75
124 122
129 127
26 30
69 67
23 29 50
Mechanical Properties: Ftu, ksi: L.............. LT . . . . . . . . . . . . Fty, ksi: L.............. LT . . . . . . . . . . . . Fcy, ksi: L.............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent (S basis): LT . . . . . . . . . . . . E, 103 ksi: L ............. LT . . . . . . . . . . . . Ec, 103 ksi: L ............. LT . . . . . . . . . . . . G, 103 ksi . . . . . . . . µ ..............
AMS 5903
a b
AMS 5905
AMS 5906
Sheet and strip ¼ Hard
¾ Hard
Full Hard
½ Hard B
A
B
A
B
141 142
151 152
157 163
168 173
174 175
185 186
83 82
93 92
110 105
118 113
135 133
137 125
153 142
44 71 66
54 88 69
61 100 77
69 116 82
75 127 88
88 152 93
83 142 95
94 164 100
... 162
... 262
... 273
... 292
... 310
... 327
... 342
... 346
... 361
... 55
... 123
... 149
... 167
... 189
... 202
... 234
... 222
... 249
40
25
...
b
...
b
...
b
...
#0.187
29.0 29.0
27.0 28.0
26.0 28.0
26.0 28.0
26.0 28.0
28.0 28.0 11.2 0.27
26.0 27.0 10.6 0.27
26.0 27.0 10.5 0.27
26.0 27.0 10.5 0.27
26.0 27.0 10.5 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . . Issued: Aug, 1962, MIL-HDBK-5
AMS 5904
0.286 ... Last Revised: Apr 2010, MMPDS-05, Item 09-32.
Mechanical properties were established under MIL-S-5059 See Table 2.7.1.0(c).
Note: Yield strength, particularly in compression, and modulus of elasticity in the longitudinal direction may be raised appreciably by thermal stress-relieving treatment in the range 500E to 800EF.
2-266
MMPDS-06 1 April 2011
Table 2.7.1.0(b3). Design Mechanical and Physical Properties of AISI 304a Stainless Steel
Specification . . . . . .
AMS 5513
Form . . . . . . . . . . . .
Sheet, strip, and plate
Condition . . . . . . . . .
Annealed
Thickness, in. . . . . . .
...
Basis . . . . . . . . . . . .
S
A
B
A
73 75
124 122
129 127
26 30
69 67
23 29 50
Mechanical Properties: Ftu, ksi: L.............. LT . . . . . . . . . . . . Fty, ksi: L.............. LT . . . . . . . . . . . . Fcy, ksi: L.............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent (S basis): LT . . . . . . . . . . . .
AMS 5910
AMS 5911
AMS 5912
AMS 5913
Sheet and strip ¼ Hard
½ Hard
¾ Hard
Full Hard
B
A
B
A
B
141 142
151 152
157 163
168 173
174 175
185 186
83 82
93 92
110 105
118 113
135 133
137 125
153 142
44 71 66
54 88 69
61 100 77
69 116 82
75 127 88
88 152 93
83 142 95
94 164 100
... 162
... 262
... 273
... 292
... 310
... 327
... 342
... 346
... 361
... 55
... 123
... 149
... 167
... 189
... 202
... 234
... 222
... 249
40
25
...
b
...
b
...
b
...
#0.187
3
E, 10 ksi: L ............. LT . . . . . . . . . . . . Ec, 103 ksi: L ............. LT . . . . . . . . . . . . G, 103 ksi . . . . . . . . µ ..............
29.0 29.0
27.0 28.0
26.0 28.0
26.0 28.0
26.0 28.0
28.0 28.0 11.2 0.27
26.0 27.0 10.6 0.27
26.0 27.0 10.5 0.27
26.0 27.0 10.5 0.27
26.0 27.0 10.5 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . . Issued: Aug, 1962, MIL-HDBK-5 a b
0.286 ... Last Revised: Apr 2010, MMPDS-05, Item 09-32.
Mechanical properties were established under MIL-S-5059 See Table 2.7.1.0(c).
Note: Yield strength, particularly in compression, and modulus of elasticity in the longitudinal direction may be raised appreciably by thermal stress-relieving treatment in the range 500E to 800EF.
2-267
MMPDS-06 1 April 2011
Table 2.7.1.0(b4). Design Mechanical and Physical Properties of AISI 316, 321, and 347 Stainless Steels
AMS 5524a (AISI 316)
AMS 5510 (AISI 321), AMS 5512 (AISI 347)
Specification . . . . . .
AMS 5907a (AISI 316)
Form . . . . . . . . . . . .
Sheet and strip
Sheet, strip, and plate
Condition . . . . . . . . .
¼ Hard
Annealed
Thickness, in. . . . . . .
#0.187
...
Basis . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L.............. LT . . . . . . . . . . . . Fty, ksi: L.............. LT . . . . . . . . . . . . Fcy, ksi: L.............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent (S basis): LT . . . . . . . . . . . . E, 103 ksi: L ............. LT . . . . . . . . . . . . Ec, 103 ksi: L ............. LT . . . . . . . . . . . . G, 103 ksi . . . . . . . . µ ..............
A
B
S
S
124 122
129 127
73 75
68 70
69 67
83 82
26 30
22 25
44 71 66
54 88 69
23 29 50
19 24 47
... 262
... 273
... 162
... 151
... 123
... 149
... 55
... 46
25
...
40
b
27.0 28.0
29.0 29.0
26.0 27.0 10.6 0.27
28.0 28.0 11.2 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . . Issued: Aug, 1962, MIL-HDBK-5
0.286 ... Last Revised: Apr 2010, MMPDS-05, Item 09-32.
a Mechanical properties were established under MIL-S-5059 b Elongation minimums for > 0.002 - 0.003 inches = 20%, for > 0.003-0.004 inches = 30%, for > 0.004 inches = 40%. Note: Yield strength, particularly in compression, and modulus of elasticity in the longitudinal direction may be raised appreciably by thermal stress-relieving treatment in the range 500E to 800EF.
2-268
MMPDS-06 1 April 2011
Table 2.7.1.0(c). Minimum Elongation Values for AISI 301 Stainless Steel Sheet and Strip
Condition ½ hard . . . . . . . . . . . . . . . . . ¾ hard . . . . . . . . . . . . . . . . . Full hard . . . . . . . . . . . . . . .
0.45
40
0.40
35
0.35
30
0.30
25
0.25
20
0.20
10
0.015 and under 0.016 and over 0.030 and under 0.031 and over 0.015 and under 0.016 and over
15 18 10 12 8 9
α - Between 70 °F and indicated temperature K - At indicated temperature C - At indicated temperature
12 11 10
α, annealed 9 8
α, 10-6 in./in./°F
45
15
Elongation (LT), percent
0.50
C, Btu/ (lb)(°F)
K, Btu/ [ (hr)(ft2)(°F)/ft]
50
Thickness, inches
7 6
0.15
C 5
0.10 K
5
0.05
0
0.00 -400
-200
0
200
400
600
800
1000 1200 1400 1600
Temperature, °F
Figure 2.7.1.0. Effect of temperature on the physical properties of AISI 301 stainless steel.
2-269
MMPDS-06 1 April 2011
200 180 Strength at temperature Exposure up to 1/2 hr
Percent Fty at Room Temperature
160 140 120 100 80 60 40 20 0 -400
-200
0
200
400
600
800
1000
1200
1400
1600
Temperature, °F
Figure 2.7.1.1.1(a). Effect of temperature on the tensile yield strength (Fty) of AISI 301, 302, 304, 304L, 321, and 347 annealed stainless steel.
2-270
MMPDS-06 1 April 2011
260
240
220 Strength at temperature Exposure up to ½ hr
200
Percent Ftu at Room Temperature
180
160
140
120
100
80
60
40
20
0 -400
-200
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.7.1.1.1(b). Effect of temperature on the tensile ultimate strength (Ftu) of AISI 301, 302, 304, 304L, 321, and 347 annealed stainless steel.
2-271
MMPDS-06 1 April 2011 150
120 Longitudinal
Long transverse
Stress, ksi
90
60 Ramberg-Osgood n (L) = 3.9 n (LT) = 5.8
30
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.7.1.2.6(a). Typical tensile stress-strain curves at room temperature for AISI 301 1/4-hard stainless steel sheet.
150 Ramberg-Osgood n (L) = 3.8 n (LT) = 4.8
Long transverse
120
Stress, ksi
TYPICAL 90
60 Longitudinal
30
0 0
2
0
5
4
6 Strain, 0.001 in./in.
8
10 15 20 3 Compressive Tangent Modulus, 10 ksi
10
12
25
30
Figure 2.7.1.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for AISI 301 1/4-hard stainless steel sheet.
2-272
MMPDS-06 1 April 2011
3HUFHQWDJHRI
5RRP7HPSHUDWXUH6WUHQJWK
) W\
) WX
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 2.7.1.3.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of AISI 301 1/2-hard stainless steel sheet.
Percentage of Room Temperature Strength
100
Fcy
80
60
Fsu
40
Strength at temperature Exposure up to 1/2 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.7.1.3.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of AISI 301 1/2-hard stainless steel sheet.
2-273
MMPDS-06 1 April 2011
Percentage of room Temperature Strength
100
80
60
Fbry Fbru
40
Strength at temperature Exposure up to 1/2 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.7.1.3.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of AISI 301 1/2-hard stainless steel sheet.
100
Percentage of Room Temperature Modulus
E & EC 80
60
Modulus at temperature Exposure up to 1/2 hr
40
TYPICAL
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.7.1.3.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of AISI 301 1/2-hard stainless steel sheet.
2-274
MMPDS-06 1 April 2011 200
Stress, ksi
160
Longitudinal
120
Long transverse
80
Ramberg-Osgood n (L) = 4.5 n (LT) = 5.9
40
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.7.1.3.6(a). Typical tensile stress-strain curves at room temperature for AISI 301 1/2-hard stainless steel sheet.
200
Ramberg-Osgood Long transverse
n (L) = 3.4 n (LT) = 4.3
160
Stress, ksi
TYPICAL
120
80
Longitudinal 40
0 0
2
0
5
4
6 Strain, 0.001 in./in.
8
10 15 20 3 Compressive Tangent Modulus, 10 ksi
10
12
25
30
Figure 2.7.1.3.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for AISI 301 1/2-hard stainless steel sheet.
2-275
MMPDS-06 1 April 2011
250
200
Stress, ksi
Long transverse
150 Longitudinal 100 Ramberg-Osgood 50
n (L) = 4.7 n (LT) = 5.4 TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.7.1.4.6(a). Typical tensile stress-strain curves at room temperature for AISI 301 3/4-hard stainless steel sheet.
250
Long transverse
200
Ramberg-Osgood
Stress, ksi
n (L) = 3.5 n (LT) = 4.7 150
TYPICAL
100
Longitudinal
50
0 0
2
0
5
4
6 Strain, 0.001 in./in.
8
10 15 20 3 Compressive Tangent Modulus, 10 ksi
10
12
25
30
Figure 2.7.1.4.6(b). Typical compressive stress-strain and compressive tangentmodulus curves at room temperature for AISI 301 3/4-hard stainless steel sheet.
2-276
MMPDS-06 1 April 2011
100
Percentage of Room Temperature Strength
Strength at temperature Exposure up to 1/2 hr 80
60
40
Ftu & Fty 20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F Figure 2.7.1.5.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of AISI 301 full-hard stainless steel sheet.
2-277
MMPDS-06 1 April 2011
3HUFHQWDJHRI5RRP7HPSHUDWXUH)F\
/RQJWUDQVYHUVH
/RQJLWXGLQDO
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 2.7.1.5.2(a). Effect of temperature on the compressive yield strength (Fcy) of AISI 301 (full-hard) stainless steel sheet.
Percentage of Room Temperature Fsu
100
80
60
40
Strength at temperature Exposure up to 1/2 hr
20
0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 2.7.1.5.2(b). Effect of temperature on the ultimate shear strength (Fsu) of AISI 301 (full-hard) stainless steel sheet.
2-278
MMPDS-06 1 April 2011
3HUFHQWDJHRI
5RRP7HPSHUDWXUH6WUHQJWK
) EU\
) EUX
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 2.7.1.5.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of AISI 301 (full-hard) stainless steel sheet.
3HUFHQWDJHRI
URRP7HPSHUDWXUH0RGXOXV
( (
&
0RGXOXVDWWHPSHUDWXUH
([SRVXUHXSWRKU
7<3,&$/
7HPSHUDWXUH)
Figure 2.7.1.5.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of AISI 301 (full-hard) stainless steel sheet.
2-279
MMPDS-06 1 April 2011 250
Longitudinal 1/2-hr exposure
RT
200
400 F 600 F
Stress, ksi
800 F 150
1000 F 100
Ramberg-Osgood n (RT) = 4.4 n (400 F) = 3.4 n (600 F) = 4.6 n (800 F) = 4.2 n (1000 F)= 4.3
50
TYPICAL 0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in.
Figure 2.7.1.5.6(a). Typical tensile stress-strain curves at room and elevated temperatures for AISI 301 (full-hard) stainless steel sheet.
250
Long transverse 1/2-hr exposure 400 F RT
Stress, ksi
200
600 F
150
800 F 1000 F 100
Ramberg-Osgood n (RT) = 5.4 n (400 F) = 4.8 n (600 F) = 4.3 n (800 F) = 5.3 n (1000 F) = 4.6
50
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 2.7.1.5.6(b). Typical tensile stress-strain curves at room and elevated temperatures for AISI 301 (full-hard) stainless steel sheet.
2-280
MMPDS-06 1 April 2011 250
Longitudinal 1/2-hr exposure
Ramberg-Osgood n (RT) = 5.3 n (400 F) = 4.8 n (600 F) = 5.2 n (800 F) = 5.4 n (1000 F) = 5.7
200
Stress, ksi
150
RT
TYPICAL
RT 400 F 600 F 800 F 100 1000 F
400 F 600 F 800 F 1000 F
50
0 0
2
0
5
4
6 Strain, 0.001 in./in.
8
10 15 20 Compressive Tangent Modulus, 103 ksi
10
12
25
30
Figure 2.7.1.5.6(c). Typical compressive stress-strain and compressive tangentmodulus curves at room and elevated temperatures for AISI 301 (full-hard) stainless steel sheet.
250
600 F RT 400 F
200
Ramberg-Osgood
Long Transverse
n (RT) = 7.7 n (400 F) = 8.2 n (600 F) = 6.7 n (800 F) = 5.8 n (1000 F) = 6.7
1/2-hr exposure RT 400 F 600 F
Stress, ksi
800 F
800 F
150
1000 F
1000 F
100
50
TYPICAL 0 0
2
4
0
5
10
6 8 Strain, 0.001 in./in. 15
20
10
25 3 Compressive Tangent Modulus, 10 ksi
12
14
30
35
Figure 2.7.1.5.6(d). Typical compressive stress-strain and compressive tangentmodulus curves at room and elevated temperatures for AISI 301 (full-hard) stainless steel sheet.
2-281
MMPDS-06 1 April 2011
This page is intentionally blank.
2-282
MMPDS-06 1 April 2011 2.8
ELEMENT PROPERTIES 2.8.1 BEAMS
See Equation 1.3.2.3, Section 1.5.2.5, and References 1.7.1(a) and 1.7.1(b) for general information on stress-analysis of beams. 2.8.1.1 Simple Beams — Beams of solid, tubular, or similar cross sections, not subject to instability (buckling, crippling, column, lateral bending) can be assumed to fail through exceeding an allowable modulus of rupture in bending, Fb, the value of which will depend upon beam cross-section geometry and beam material stress-strain characteristics. The modulus of rupture in bending is further discussed in Section 1.5.2.5. See Reference 2.8.1.1. Round Tubes — For round tubes, the value of Fb will depend on the D/t ratio, as well as the ultimate tensile stress. Figures 2.8.1.1(a) and 2.8.1.1(b) give the bending modulus of rupture for round alloy-steel tubing. Unconventional Cross Sections — Sections other than solid or tubular should be tested to determine the allowable bending stress. 2.8.1.2 Built-Up Beams — Built-up beams usually fail because of local failures of the component parts. In welded steel tube beams, the allowable tensile stresses should be reduced properly for the effects of welding. 2.8.1.3 Thin-Web Beams — The allowable stresses for thin-web beams will depend on the nature of the failure and are determined from the allowable stresses of the web in tension and of the flanges and stiffeners in compression. 2.8.2 COLUMNS 2.8.2.1 General — The general formula for primary instability is given in Section 1.3.8. Both primary and local instability are discussed in Section 1.6. 2.8.2.2 Effects of Welding — The primary failure stress of a column having welded ends can be determined from column curves or the column formula with the restriction that the column stress shall not exceed a “cut-off” stress which accounts for the effect of welding on the local failure of the column.
2-283
MMPDS-06 1 April 2011
Figure 2.8.1.1(a). Bending modulus of rupture for round low-alloy steel tubing.
2-284
MMPDS-06 1 April 2011
Figure 2.8.1.1(b). Bending modulus of rupture for round high-alloy steel tubing.
2-285
MMPDS-06 1 April 2011 2.8.3 TORSION 2.8.3.1 General — The torsion failure of steel tubes may be due to material failure or to elastic or plastic buckling. Pure shear failure usually will not occur within the range of wall thickness commonly used for aircraft tubing. 2.8.3.2 Torsion Properties — The curves of Figures 2.8.3.2(a) through 2.8.3.2(j) are derived from the method outlined in Reference 2.8.3.2 and take into account the parameter L/D; the theoretical results set forth in Reference 2.8.3.2 have been found to be in good agreement with the experimental results.
45
F tu = 55 ksi 40 L/D = 0 35 Fst , ksi
L/D = 2
L/D = 1/4
L/D = 1/2
30
L/D = 1
L/D = 5 L/D = 10 L/D = 20
25
20
15 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(a). Torsional modulus of rupture - plain carbon steels, Ftu = 55 ksi.
2-286
MMPDS-06 1 April 2011
75 70
Ftu = 90 ksi
Fst, ksi
65 60
L/D
55
0 1/4
50 1/2 45
1 2
40
5 35
10 20
30 25 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(b). Torsional modulus of rupture - plain carbon steels, Ftu = 90 ksi.
75 70
F tu = 95 ksi
65 60
L/D 0
Fst, ksi
55
1/4 50
1/2
45
1
40
2 5 10
35
20 30 25 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(c). Torsional modulus of rupture - plain carbon steels, Ftu - 95 ksi.
2-287
MMPDS-06 1 April 2011
110
F tu = 125 ksi
100 90
L/D 0
80 Fst, ksi
1/4 70
1/2 1
60
2 50
5 10
40
20 30 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(d). Torsional modulus of rupture - plain carbon steels, Ftu = 125 ksi.
130 120
F tu = 150 ksi
110 L/D 100
0 1/4
Fst, ksi
90
1/2
80
1 70
2
60
5
50
10
40 20 30 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(e). Torsional modulus of rupture - plain carbon steels, Ftu = 150 ksi.
2-288
MMPDS-06 1 April 2011
150 140
F tu = 180 ksi
130 120
L/D
110
0 1/4
Fst, ksi
100
1/2
90
1
80
2
70 5 60 50
10
40
20
30 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(f). Torsional modulus of rupture - plain carbon steels, Ftu = 180 ksi.
160 150
F tu = 200 ksi
140 130
L/D 0 1/4
120 110 Fst, ksi
1/2 100 1
90
2
80 70
5
60 10
50 40
20
30 0
10
20
30
40
50
60
70
80
D/t
Figure 2,.8.3.2(g). Torsional modulus of rupture - plain carbon steels, Ftu = 200 ksi.
2-289
MMPDS-06 1 April 2011
170 160
F tu = 220 ksi
Fst, ksi
150 140
L/D
130
0
120
1/4
110
1/2
100
1
90
2
80 5
70 60 50
10
40
20
30 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(h). Torsional modulus of rupture - plain carbon steels, Ftu = 220 ksi.
190
F tu = 240 ksi 170 L/D
150
0 1/4
130 Fst, ksi
1/2 1
110
2 90 70
5
50
10 20
30 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(i). Torsional modulus of rupture - plain carbon steels, Ftu = 240 ksi.
2-290
MMPDS-06 1 April 2011
210
F tu = 260 ksi
190
L/D
170
0
Fst, ksi
150 1/2
130
1
110
2
90
5
70
10
50
20 30 0
10
20
30
40
50
60
70
80
D/t
Figure 2.8.3.2(j). Torsional modulus of rupture - plain carbon steels, Ftu - 260 ksi.
2-291
MMPDS-06 1 April 2011
This page is intentionally blank.
2-292
MMPDS-06 1 April 2011
REFERENCES 2.2.0.3(a)
“Low Temperature Properties of Ferrous Materials,” Society of Automotive Engineers, Special Publication SP-61 (1950).
2.2.0.3(b)
“The Selection of Steel for Notch Toughness,” ASM Metals Handbook, 8th Edition, Vol. I, pp. 225-243 (1961).
2.3.0.2.5
“Heat Treating,” ASM Handbook, Volume 4, 1991.
2.3.1.3.8(a) Brodrick, R.F. and Rich, E.L., “Evaluation of the Fatigue Properties of SAE 4340. Thermold J, and Tricent Steel Under Axial Loading Conditions,” Technical Report No. 588/c39, Lessells and Associates (July 30, 1958) (MCIC 109748). 2.3.1.3.8(b) Trapp, W.J., “Elevated Temperature Fatigue Properties of SAE 4340 Steel,” WADC TR 52-325, Part I (December 1952). 2.3.1.3.8(c) Oberg, T.T. and Ward, E.J., “Fatigue of Alloy Steels at High Stress Levels,” Wright Air Dev. Center TR 53-256 (October 1953) (MCIC 108310). 2.3.1.3.8(d) Thrash, C.V., “Evaluation of High Strength Steels for Heavy Section Applications,” Douglas Aircraft Engineering TR No. LB-32437 (November 29, 1965) (MCIC 70834). 2.3.1.4.8(a) Deel, O.L. and Mindlin, H., “Engineering Data on New and Emerging Structural Materials,” AFML-TR-70-252 (October 1970) (MCIC 79662). 2.3.1.4.8(b) Bateh, E. J., “300M Steel Fatigue Program Structural Requirements,” Lockheed-Georgia Report No. 72-26-591 (January 5, 1967) (MCIC 74342). 2.3.1.4.8(c) Harmsworth, C.L., “Low Cycle Fatigue Evaluation of Titanium 6Al-6V-2Sn and 300-M Steel for Landing Gear Applications,” AFML-TR-69-48 (June 1969) (MCIC 75621). 2.3.1.4.8(d) Thrash, C.V., “Evaluation of High Strength Steels for DC-10,” Douglas Aircraft Company Report No. ETR-DAC-67520 (May 27, 1969) (MCIC 110145). 2.3.1.4.8(e) Boswell, L.E., et al., “Fatigue Test for Landing Gear Material 300M Forgings,” Vought Corporation Report No. 70-59910-047 (May 22, 1970) (Battelle Source M-74). 2.3.1.4.9(a) Dill, D. H., “Evaluation of Steel Alloys 300M, HP-9Ni-4Co-0.20, HP-9Ni-4Co-0.30, and PH13-8Mo,” Report MDC-A2639, McDonnell Aircraft Co., McDonnell Douglas Corp. (December 21, 1973) (MCIC 88136). 2.3.1.4.9(b) “B-1 Program da/dN Data for Steel Alloys,” Rockwell International Corp., Memorandum to N. D. Moran from E. W. Cawthorne, Battelle, Columbus, Ohio (April 3, 1974) (MCIC 88579). 2.3.1.5.9
Feddersen, C.E., et al., “Crack Behavior in D6AC Steel,” Report MCIC 72-04, Battelle, Columbus, Ohio (January 1972).
2-293
MMPDS-06 1 April 2011 2.4.3.1.8
Bullock, D.E., et al., “Evaluation of Mechanical Properties of 9Ni-4Co Steel Forgings,” AFML-TR-68-57 (March 1968).
2.5.0.2
Kozol, J. and Neu, C.E., “Stress Corrosion Susceptibility of Ultra-High Strength Steels for Naval Aircraft Applications,” Report No. 92018-60 (January 10, 1992) (Battelle Source M805).
2.5.4.1.8
Unpublished data from Questek, January 2008, Battelle reference M-1216
2.5.4.1.9
Unpublished data from Questek, January 2008, Battelle reference M-1244
2.6.3.1.8
Technical Memorandum (Progress Report), “Evaluation of Custom 455 and Custom 450 for MIL-HDBK-5,” Carpenter Technology (November 14, 1974) (Battelle Source M-350).
2.6.5.0
NACE Standard TM0177-96. TM0177-96, Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments.
2.6.6.1.8(a) Deel, O.L. and Mindlin, H., “Engineering Data on New Aerospace Structural Materials,” AFML-TR-72-196, Vol. II (September, 1972) (MCIC 85292) (Battelle Source M-466). 2.6.6.1.8(b) Deel, O.L, and Mindlin, H., “Fatigue Evaluation of PH13-8Mo Stainless Steel,” Battelle Memorial Institute (July 31, 1970) (MCIC 79332) (Battelle Source M-34). 2.6.6.1.8(c) Unpublished data, Lockheed-Georgia Company, Report No. ER 9347 (October 2, 1968) (Battelle Source M-44). 2.6.6.1.8(d) Unpublished data, Letter report to Paul Ruff from ARMCO (March 29, 1972) (Battelle Source M-141). 2.6.6.2.8
Gallo, K., “Stress Control Uniaxial Fatigue Testing,” Report 6-38282, Westmoreland Mechanical Testing & Research Inc., (November 18, 2006) (Battelle Source M-1187-11).
2.6.6.2.9
Boice, G.W., “Fatigue Crack Growth Rate Testing,” Report 0-13686, Westmoreland Mechanical Testing & Research Inc., (November 8, 2000) (Battelle Source M-1187-10).
2.6.7.2.8(a) Unpublished data, Armco Research Lab, Armco Steel Corp., Baltimore, Maryland (April 11, 1977) (Battelle Source M-364). 2.6.7.2.8(b) Doepher, P.E., “Effect of Manufacturing Process on Structural Allowables,” AFWAL-TR-854049 (May 1985) (MIAC 126632). 2.6.8.1.8(a) Illg, W. and Castle, C.B., “Fatigue of Four Stainless Steels and Three Titanium Alloys Before and After Exposure to 550EF—Up to 8800 Hours,” Langley Research Center, NASA TN D-2899 (July 1965) (MCIC 61319) (Battelle Source M-579). 2.6.8.1.8(b) Illg, W., and Castle, C.B., “Axial-Load Fatigue Properties of PH15-7Mo Stainless Steel in Condition TH1050 at Ambient Temperature and 500EF,” Langley Research Center, NASA TN D-2358 (July 1964) (MCIC 56366).
2-294
MMPDS-06 1 April 2011 2.6.8.1.8(c) Roach, T. A., “Development of Fatigue Data for Several Alloys for Use in Aerospace Design,” Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, Technical Report AFML-TR-69-175 (June 1969) (MCIC 76622) (Battelle Source M-316). 2.6.9.1.8(a) Wolanski, Z.R., “Material Evaluation—17-4PH Cres, H-900 Condition Fatigue Characteristics,” General Dynamics—Fort Worth (June 12, 1964) (MCIC 66105). 2.6.9.1.8(b) Larsson, N., “Fatigue Testing of Precipitating Steel 17-4PH With Aging as the Final Process,” Aeronautical Research Institute of Sweden, Technical Note HU-1964 (August 1978) (MCIC 106285). 2.8.1.1
Ades, C.S., “Bending Strength of Tubing in the Plastic Range,” Journal of the Aeronautical Sciences, Vol. 24, pp. 605-610 (1957).
2.8.3.2
Lee, L.H.N., and Ades, C.S., “Plastic Torsional Buckling Strength of Cylinders Including the Effects of Imperfections,” Journal of the Aeronautical Sciences, Vol. 24, No. 4, pp. 241-248 (April 1957).
2-295
MMPDS-06 1 April 2011
This page is intentionally blank.
2-296
MMPDS-06 1 April 2011
CHAPTER 3 ALUMINUM 3.1 GENERAL This chapter contains the engineering properties and related characteristics of wrought and cast aluminum alloys used in aircraft and missile structural applications. General comments on engineering properties and the considerations relating to alloy selection are presented in this section. Mechanical and physical property data and characteristics pertinent to specific alloy groups or individual alloys are reported in Sections 3.2 through 3.9. Element properties are presented in Section 3.10. Aluminum is a lightweight, corrosion-resistant structural material that can be strengthened through alloying and, dependent upon composition, further strengthened by heat treatment and/or cold working [Reference 3.1(a)]. Among its advantages for specific applications are low density, high strength-to-weight ratio, good corrosion resistance, ease of fabrication, and diversity of form. Wrought and cast aluminum and aluminum alloys are identified by a four-digit numerical designation, the first digit indicates the alloy group, as shown in Table 3.1. For structural wrought aluminum alloys the last two digits identify the aluminum alloy. The second digit indicates modifications of the original alloy or impurity limits. For cast aluminum and aluminum alloys the second and third digits identify the aluminum alloy or indicate the minimum aluminum percentage. The last digit, which is to the right of the decimal point, indicates the product form: XXX.0 indicates castings, and XXX.1 and XXX.2 indicate ingot. 3.1.1 ALUMINUM ALLOY INDEX — The layout of this chapter is in accordance with this four-digit number system for both wrought and cast alloys [Reference 3.1(b)]. Table 3.1.1 is the aluminum alloy index that illustrates both the general section layout as well as details of those specific aluminum alloys presently contained in this chapter. The wrought alloys are in Sections 3.2 through 3.7; whereas the cast alloys are in Sections 3.8 and 3.9. Table 3.1. Basic Designation for Wrought and Cast Aluminum Alloys [Reference 3.1(b)]
Alloy Group
Major Alloying Elements
Alloy Group
Wrought Alloys 1XXX 2XXX 3XXX 4XXX 5XXX 6XXX 7XXX 8XXX 9XXX
99.00 percent minimum aluminum Copper Manganese Silicon Magnesium Magnesium and Silicon Zinc Other Elements Unused Series
Major Alloying Groups Cast Alloys
1XX.0 2XX.0 3XX.0 4XX.0 5XX.0 6XX.0 7XX.0 8XX.0 9XX.0
3-1
99.00 percent minimum aluminum Copper Silicon with added copper and/or magnesium Silicon Magnesium Unused Series Zinc Tin Other Elements
MMPDS-06 1 April 2011 Table 3.1.1. Aluminum Alloy Index Section 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.2.10 3.2.11 3.2.12 3.2.13 3.2.14 3.2.15 3.2.16 3.2.17 3.2.18 3.2.19 3.2.20 3.2.21 3.2.22 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.6 3.6.1
Alloy Designation 2000 series wrought alloys 2013 2014 2017 2024 2025 2026 2027 2050 2056 2090 2098 2099 2124 2196 2198 2219 2297 2397 2424 2519 2524 2618 3000 series wrought alloys 4000 series wrought alloys 5000 series wrought alloys 5052 5083 5086 5454 5456 6000 series wrought alloys 6013
Section 3.6.2. 3.6.3 3.6.4 3.7 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 3.7.8 3.7.9 3.7.10 3.7.11 3.7.12 3.7.13 3.7.14 3.7.15 3.7.16 3.7.17 3.8 3.8.1 3.9 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 3.9.8
Alloy Designation 6061 6151 6156 7000 series wrought alloys 7010 7040 7049/7149 7050 7055 7056 7068 7075 7085 7136 7140 7150 7175 7249 7349 7449 7475 200.0 series cast alloys A201.0 300.0 series cast alloys 354.0 355.0 C355.0 356.0 A356.0 A357.0/F357.0 D357.0/E357.0 359.0
3.1.2 MATERIAL PROPERTIES — The properties of the aluminum alloys are determined by the alloy content and method of fabrication. Some alloys are strengthened principally by cold work, while others are strengthened principally by solution heat treatment and precipitation hardening [Reference 3.1(a)]. The temper designations, shown in Table 3.1.2 (which is based on Reference 3.1.2), are indicative of the type of strengthening mechanism employed. Among the properties presented herein, some, such as the room temperature, tensile, compressive, shear and bearing properties, are either specified minimum properties or derived minimum properties related directly to the specified minimum properties. They may be directly useful in design. Data on the effect of temperature on properties are presented so that percentages may be applied directly to the room temperature minimum properties. Other properties, such as the stress-strain curve, fatigue and fracture toughness data, and modulus of elasticity values, are presented as average or typical values, which may be used in assessing the usefulness of the material for certain applications. Comments on the effect of temperature on properties are given in Sections 3.1.2.1.7 and 3.1.2.1.8; comments on corrosion resistance are given in Section 3.1.2.3; and comments on the effects of manufacturing practices on these properties are given in Section 3.1.3.
3-2
MMPDS-06 1 April 2011 Table 3.1.2. Temper Designation System for Aluminum Alloys
Temper Designation Systema,b
T
thermally treated to produce stable tempers other than F, O, or H. Applies to products which are thermally treated, with or without supplementary strain-hardening, to produce stable tempers. The T is always followed by one or more digits.
The temper designation system is used for all forms of wrought and cast aluminum and aluminum alloys except ingot. It is based on the sequences of basic treatments used to produce the various tempers. The temper designation follows the alloy designation, the Subdivisions of H Temper: Strain-hardened. two being separated by a hyphen. Basic temper designations consist of letters. Subdivisions of the The first digit following H indicates the specific basic tempers, where required, are indicated by one or more digits following the letter. These designate combination of basic operations, as follows: specific sequences of basic treatments, but only operations recognized as significantly influencing the H1 strain-hardened only. Applies to products which are strain-hardened to obtain the desired characteristics of the product are indicated. Should strength without supplementary thermal treatsome other variation of the same sequence of basic ment. The number following this designation operations be applied to the same alloy, resulting in indicates the degree of strain-hardening. different characteristics, then additional digits are added to the designation. H2 strain-hardened and partially annealed. Applies to products which are strain-hardened Basic Temper Designations more than the desired final amount and then reduced in strength to the desired level by parF as fabricated. Applies to the products of shaptial annealing. For alloys that age-soften at ing processes in which no special control over room temperature, the H2 tempers have the thermal conditions or strain-hardening is same minimum ultimate tensile strength as the employed. For wrought products, there are no corresponding H3 tempers. For other alloys, mechanical property limits. the H2 tempers have the same minimum ultimate tensile strength as the corresponding H1 O annealed. Applies to wrought products which tempers and slightly higher elongation. The are annealed to obtain the lowest strength temper, number following this designation indicates the and to cast products which are annealed to degree of strain-hardening remaining after the improve ductility and dimensional stability. The product has been partially annealed. O may be followed by a digit other than zero. H strain-hardened (wrought products only). H3 strain-hardened and stabilized. Applies to products which are strain-hardened and whose Applies to products which have their strength mechanical properties are stabilized either by a increased by strain-hardening, with or without low-temperature thermal treatment or as a supplementary thermal treatments, to produce result of heat introduced during fabrication. some reduction in strength. The H is always Stabilization usually improves ductility. This followed by two or more digits. designation is applicable only to those alloys which, unless stabilized, gradually age-soften W solution heat-treated. An unstable temper at room temperature. The number following applicable only to alloys which spontaneously this designation indicates the degree of strainage at room temperature after solution heathardening remaining after the stabilization treatment. This designation is specific only when treatment. the period of natural aging is indicated: for example, W ½ hr. a b
From reference 3.1.2. Temper designations conforming to this standard for wrought aluminum and wrought aluminum alloys, and aluminum alloy castings may be registered with the Aluminum Association provided: (1) the temper is used or is available for use by more than one user, (2) mechanical property limits are registered, (3) characteristics of the temper are significantly different from those of all other tempers which have the same sequence of basic treatments and for which designations already have been assigned for the same alloy and product, and (4) the following are also registered if characteristics other than mechanical properties are considered significant: (a) test methods and limits for the characteristics or (b) the specific practices used to produce the temper.
3-3
MMPDS-06 1 April 2011 Table 3.1.2. Temper Designation System for Aluminum Alloys (Continued)
The digit following the designations H1, H2, and H3 indicates the degree of strain hardening. Numeral 8 has been assigned to indicate tempers having an ultimate tensile strength equivalent to that achieved by a cold reduction (temperature during reduction not to exceed 120EF) of approximately 75 percent following a full anneal. Tempers between O (annealed) and 8 are designated by numerals 1 through 7. Material having an ultimate tensile strength about midway between that of the O temper and that of the 8 temper is designated by the numeral 4; about midway between the O and 4 tempers by the numeral 2; and about midway between 4 and 8 tempers by the numeral 6. Numeral 9 designates tempers whose minimum ultimate tensile strength exceeds that of the 8 temper by 2.0 ksi or more. For two-digit H tempers whose second digit is odd, the standard limits for ultimate tensile strength are exactly midway between those of the adjacent two digit H tempers whose second digits are even.
Three-digit H Tempers H_11 Applies to products which incur sufficient strain hardening after the final anneal that they fail to qualify as annealed but not so much or so consistent an amount of strain hardening that they qualify as H_1. H112 Applies to products which may acquire some temper from working at an elevated temperature and for which there are mechanical property limits. Subdivisions of T Temper: Thermally Treated Numerals 1 through 10 following the T indicate specific sequences of basic treatments, as follows.d T1 cooled from an elevated temperature shaping process and naturally aged to a substantially stable condition. Applies to products which are not cold worked after cooling from an elevated temperature shaping process, or in which the effect of cold work in flattening or straightening may not be recognized in mechanical property limits.
NOTE: For alloys which cannot be cold reduced an amount sufficient to establish an ultimate tensile strength applicable to the 8 temper (75 percent cold reduction after full anneal), the 6 temper tensile strength may be established by a cold reduction of approximately 55 percent following a full anneal, or the 4 temper tensile strength may be established by a cold reduction of approximately 35 percent after a full T2 cooled from an elevated temperature-shaping anneal. process, cold worked, and naturally aged to a substantially stable condition. Applies to The third digitc, when used, indicates a variation of products which are cold worked to improve strength after cooling from an elevated tempera two-digit temper. It is used when the degree of ature-shaping process, or in which the effect of control of temper or the mechanical properties or both cold work in flattening or straightening is differ from, but are close to, that (or those) for the recognized in mechanical property limits. two-digit H temper designation to which it is added, or when some other characteristic is significantly T3 solution heat-treatede, cold worked, and natuaffected. rally aged to a substantially stable condition. NOTE: The minimum ultimate tensile strength of a Applies to products which are cold-worked to three-digit H temper must be at least as close to that of improve strength after solution heat treatment or the corresponding two-digit H temper as it is to the in which the effect of cold work in flattening or adjacent two-digit H tempers. Products of the H straightening is recognized in mechanical temper whose mechanical properties are below H_1 property limits. shall be variations of H_1. c d e
Numerals 1 through 9 may be arbitrarily assigned as the third digit and registered with The Aluminum Association for an alloy and product to indicate a variation of a two-digit H temper (see footnote b). A period of natural aging at room temperature may occur between or after the operations listed for the T tempers. Control of this period is exercised when it is metallurgically important. Solution heat treatment is achieved by heating cast or wrought products to a suitable temperature, holding at that temperature long enough to allow constituents to enter into solid solution and cooling rapidly enough to hold the constituents in solution. Some 6000 series alloys attain the same specified mechanical properties whether furnace solution heat-treated or cooled from an elevated temperature shaping process at a rate rapid enough to hold constituents in solution. In such cases the temper designations T3, T4, T6, T7, T8, and T9 are used to apply to either process and are appropriate designations.
3-4
MMPDS-06 1 April 2011 Table 3.1.2. Temper Designation System for Aluminum Alloys (Continued)
T4 solution heat-treatedf and naturally aged to a T10 cooled from an elevated temperature shapsubstantially stable condition. Applies to ing process, cold worked, and artificially products which are not cold worked after solution aged. Applies to products which are cold heat-treatment, or in which the effect of cold worked to improve strength, or in which the work in flattening or straightening may not be effect of cold work in flattening or straightenrecognized in mechanical property limits. ing is recognized in mechanical property limits. T5 cooled from an elevated temperature shaping process and artificially aged. Applies to products which are not cold worked after cooling from an elevated temperature shaping process, or in which the effect of cold work in flattening or straightening may not be recognized in mechanical property limits. T6
T7
T8
T9
f
g
h
Additional digitsg, the first of which shall not be zero, may be added to designations T1 through T10 to indicate a variation in treatment which significantly alters the product characteristicsh that are or would be obtained using the basic treatment.
The following specific additional digits have been assigned for stress-relieved tempers of wrought solution heat-treatedf and artificially aged. products: Applies to products which are not cold worked Stress Relieved by Stretching after solution heat-treatment or in which the effect of cold work in flattening or straightening may not be recognized in mechanical property T_51 Applies to plate and rolled or cold-finished rod and bar when stretched the indicated limits. amounts after solution heat-treatment or after cooling from an elevated temperature solution heat-treatedf and overaged/stabilized. shaping process. The products receive no Applies to wrought products that are artificially further straightening after stretching. aged after solution heat-treatment to carry them beyond a point of maximum strength to provide Plate .... 1½ to 3% permanent set. control of some significant characteristic. Rolled or Cold-Finished Applies to cast products that are artificially aged Rod and Bar .... 1 to 3% permanent set. after solution heat-treatment to provide Die or Ring Forgings dimensional and strength stability. and Rolled Rings .... 1 to 5% permanent set. solution heat-treatedf, cold worked, and artificially aged. Applies to products which are T_510 Applies to extruded rod, bar, shapes and tube and to drawn tube when stretched the cold worked to improve strength, or in which the indicated amounts after solution heateffect of cold work in flattening or straightening treatment or after cooling from an elevated is recognized in mechanical property limits. temperature shaping process. These products receive no further straightening after solution heat-treatedf, artificially aged, and stretching. cold worked. Applies to products which are cold worked to improve strength. Extruded Rod, Bar, Shapes and Tube .... 1 to 3% permanent set. Drawn Tube .... ½ to 3% permanent set.
Solution heat treatment is achieved by heating cast or wrought products to a suitable temperature, holding at that temperature long enough to allow constituents to enter into solid solution and cooling rapidly enough to hold the constituents in solution. Some 6000 series alloys attain the same specified mechanical properties whether furnace solution heat-treated or cooled from an elevated temperature-shaping process at a rate rapid enough to hold constituents in solution. In such cases the temper designations T3, T4, T6, T7, T8, and T9 are used to apply to either process and are appropriate designations. Additional digits may be arbitrarily assigned and registered with the Aluminum Association for an alloy and product to indicate a variation of tempers T1 through T10 even though the temper representing the basic treatment has not been registered (see footnote b). Variations in treatment that do not alter the characteristics of the product are considered alternate treatments for which additional digits are not assigned. For this purpose, characteristic is something other than mechanical properties. The test method and limit used to evaluate material for this characteristic are specified at the time of the temper registration.
3-5
MMPDS-06 1 April 2011 Table 3.1.2. Temper Designation System for Aluminum Alloys (Continued)
T_511 Applies to extruded rod, bar, shapes and tube and to drawn tube when stretched the indicated amounts after solution heat-treatment or after cooling from an elevated temperature shaping process. These products may receive minor straightening after stretching to comply with standard tolerances. Stress Relieved by Compressing
Variations of O Temper: Annealed A digit following the O, when used, indicates a product in the annealed condition have special characteristics. NOTE: As the O temper is not part of the strain-hardened (H) series, variations of O temper shall not apply to products which are strainhardened after annealing and in which the effect of strain-hardening is recognized in the mechanical properties or other characteristics.
T_52 Assigned O Temper Variations Applies to products which are stress-relieved by compressing after solution heat-treatment or The following temper designation has been cooling from an elevated temperature shaping assigned for wrought products high temperature anprocess to produce a set of 1 to 3 percent. nealed to accentuate ultrasonic response and provide dimensional stability. Stress Relieved by Combined Stretching and Compressing O1 Thermally treated at approximately same time and temperature required for solution T_54 heat treatment and slow cooled to room temApplies to die forgings which are stress relieved perature. Applicable to products which are by restriking cold in the finish die. to be machined prior to solution heat treatment by the user. Mechanical Property NOTE: The same digits (51, 52, 54) may be added to limits are not applicable. the designation W to indicate unstable solution heattreated and stress-relieved treatment. Designation of Unregistered Tempers The following temper designations have been assigned for wrought product test material heatThe letter P has been assigned to denote H, T and treated from annealed (O, O1, etc.) or F temper.i O temper variations that are negotiated between manufacturer and purchaser. The letter P T42 Solution heat-treated from annealed or F immediately follows the temper designation that temper and naturally aged to a substantially most nearly pertains. Specific examples where such designation may be applied include the following: stable condition. The use of the temper is sufficiently limited so as T62 Solution heat-treated from annealed or F temper and artificially aged. to preclude its registration. (Negotiated H temper variations were formerly indicated by the third digit Temper designations T42 and T62 may also be ap- zero.) plied to wrought products heat-treated from any temper by the user when such heat-treatment results The test conditions (sampling location, number of in the mechanical properties applicable to these samples, test specimen configuration, etc.) are different from those required for registration with tempers. the Aluminum Association. The mechanical property limits are not established on the same basis as required for registration with the Aluminum Association. i
When the user requires capability demonstrations from T-temper, the seller shall note “capability compliance” adjacent to the specified ending tempers. Some examples are “-T4 to -T6 Capability Compliance as for aging” or “-T351 to -T4 Capability Compliance as for resolution heat treating.”
3-6
MMPDS-06 1 April 2011 It should be recognized not all combinations of stress and environment have been investigated, and it may be necessary to evaluate an alloy under the specific conditions involved for certain critical applications. 3.1.2.1 Mechanical Properties The design strength properties at room temperature are listed at the beginning of the section covering the properties of an alloy. The effect of temperature on these properties is indicated in figures that follow the tables 3.1.2.1.1 Edgewise Bearing — A reduction factor is used for edgewise bearing load in thick bare and clad plate of 2000 and 7000 series alloys. The results of bearing tests on longitudinal and long-transverse specimens taken edgewise from plate, die forging, and hand forging have shown that the edgewise bearing strengths are substantially lower than those of specimens taken parallel to the surface. Table 3.1.2.1.1. Reductions for Edgewise Orientation of 2000, Al-Li, and 7000 Series Alloys
Bearing Property Reduction, percent Alloy Family
Thickness, in.
1.0-2.0
2.0-4.0
4.0-6.0
6.0-8.0
2000 Series Al (excluding Al-Li)
Fbru (e/D = 1.5) Fbru (e/D = 2.0) Fbry (e/D = 1.5) Fbry (e.D = 2.0)
15 10 5 5
15 10 5 5
15 10 5 5
Al-Li Plates
Fbru (e/D = 1.5) Fbru (e/D = 2.0) Fbry (e/D = 1.5) Fbry (e.D = 2.0)
26 23 9 8
25 22 9 8
23 20 8 6
23 19 7 5
7000 Series Al
Fbru (e/D = 1.5) Fbru (e/D = 2.0) Fbry (e/D = 1.5) Fbry (e.D = 2.0)
15 10 5 5
15 10 5 5
20 15 6 2
19 15 6 2
8.0-10.0
16 12 6 2
Last Revised: Apr-2009, MMPDS-04CN1, Item 05-27
3.1.2.1.2 Clad Sheet and Plate - For clad sheet and plate (i.e., containing thin surface layers of material of a different composition for added corrosion protection), the strength values are representative of the composite (i.e., the cladding and the core). For sheet and thin plate (# 0.499 inch), the quality-control test specimens are of the full thickness so that the guaranteed tensile properties and the associated derived values for these products directly represent the composite. For plate $ 0.500 inch in thickness, the qualitycontrol test specimens are machined from the core so the guaranteed tensile properties in specifications reflect the core material only, not the composite. Therefore, the design tensile properties for the thicker material are obtained by adjustment of the specification tensile properties and the other related properties to represent the composite, using the nominal total cladding thickness and the typical tensile properties of the cladding material. For clad aluminum sheet and plate products, it is also important to distinguish between primary and secondary modulus values. The initial, or primary, modulus represents an average of the elastic moduli of the core and cladding; it applies only up to the proportional limit of the cladding. For example, the primary modulus of 2024-T3 clad sheet applies only up to about 6 ksi. Similarly, the primary modulus of 7075-T6 clad sheet applies only up to approximately 12 ksi. A typical use of primary moduli is for low-amplitude, 3-7
MMPDS-06 1 April 2011 high-frequency fatigue. 3.1.2.1.3 Fatigue — Fatigue S/N curves are presented for those alloys for which sufficient data are available. Data for both smooth and notched specimens are presented. The data from which the curves were developed were insufficient to establish scatter bands and do not have the statistical reliability of the room temperature mechanical properties; the values should be considered to be representative for the respective alloys. The fatigue strengths of aluminum alloys, with both notched and unnotched specimens, are at least as high or higher at subzero temperatures than at room temperature [References 3.1.2.1.5(a) through 3.1.2.1.5(c)]. At elevated temperatures, the fatigue strengths are somewhat lower than at room temperature, the difference increasing with increase in temperature. The data presented do not apply directly to the design of structures because they do not take into account the effect of stress raisers such as re-entrant corners, notches, holes, joints, rough surfaces, and other similar conditions that are present in fabricated parts. The localized high stresses induced in fabricated parts by such stress raisers are of much greater importance for repeated loading than they are for static loading and may reduce the fatigue life of fabricated parts far below that which would be predicted by comparing the smooth-specimen fatigue strength directly with the nominal calculated stresses for the parts in question. See References 3.1.2.1.5(d) through 3.1.2.1.5(q) for information on how to use high-strength aluminum alloys, Reference 3.1.2.1.5(r) for details on the static and fatigue strengths of high-strength aluminum alloy-bolted joints, Reference 3.1.2.1.5(s) for single-rivet fatigue test data, and Reference 1.4.9.3(b) for a general discussion of designing for fatigue. Fatigue crack growth data are presented in the various alloy sections. 3.1.2.1.4 Fracture Toughness — Typical values of plane-strain fracture toughness, KIc, [Reference 3.1.2.1.6(a)] for the high-strength aluminum alloy products are presented in Table 3.1.2.1.6. Minimum, average, and maximum values as well as coefficient of variation are presented for the alloys and tempers for which valid data are available [References 3.1.2.1.6(b) through 3.1.2.1.6(j)]. Although representative, these values do not have the statistical reliability of the room temperature mechanical properties. Graphic displays of the residual strength behavior of middle tension panels are presented in the various alloy sections. The points denote the experimental data from which the curve of fracture toughness was derived. 3.1.2.1.5 Cryogenic Temperatures — In general, the strengths (including fatigue strengths) of aluminum alloys increase with decrease in temperature below room temperature [References 3.1.2.1.7(a) and 3.1.2.1.7(b)]. The increase is greatest over the range from about -100E to -423EF (liquid hydrogen temperature); the strengths at -452EF (liquid helium temperature) are nearly the same as at -423EF [References 3.1.2.1.7(c) and 3.1.2.1.7(d)]. For most alloys, elongation and various indices of toughness remain nearly constant or increase with decrease in temperature, while for the 7000 series, modest reductions are observed [References 3.1.2.1.7(d) and 3.1.2.1.7(e)]. None of the alloys exhibit a marked transition in fracture resistance over a narrow range of temperature indicative of embrittlement. The tensile and shear moduli of aluminum alloys also increase with decreasing temperature so that at -100EF, -320EF, and -423EF, they are approximately 5, 10.5, and 11 percent, respectively, above the room temperature values [Reference 3.1.2.1.7(f)].
3-8
MMPDS-06 1 April 2011 3.1.2.1.6 Elevated Temperatures — In general, the strengths of aluminum alloys decrease and toughness increases with increase in temperature and with time at temperature above room temperature; the effect is generally greatest over the temperature range from 212E to 400EF. Exceptions to the general trends are tempers developed by solution heat treatment without subsequent aging, for which the initial elevated temperature exposure results in some age hardening and reduction in toughness; further time at temperature beyond that required to achieve peak hardness results in the aforementioned decrease in strength and increase in toughness [Reference 3.1.2.1.8].
3-9
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa Approved
Product Form
Orientationc
Product Thickness, inches
Number of Sources
Sample Size
Date of Data Generation
Date
Item
2014-T651 2014-T651 2014-T652 2014-T652 2024-T351 2024-T851 2024-T851 2024-T851 2024-T852 2024-T852 2024-T852 2027-T3511 2027-T3511 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2050-T84 2124-T851 2124-T851 2124-T851
Plate Plate Hand Forging Hand Forging Plate Plate Plate Plate Forging Hand Forging Hand Forging Extrusion Extrusion Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate
L-T T-L L-T T-L L-T L-S L-T T-L T-L L-T T-L L-T T-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L
$0.5 $0.5 $0.5 $0.8 $1.0 1.4-3.0 $0.5 0.4-4.0 2.0-7.0 ------0.75-1.50 0.75-1.50 0.5-1.5 0.5-1.5 0.5-1.5 1.5-2.0 1.5-2.0 1.5-2.0 2.0-3.0 2.0-3.0 2.0-3.0 3.0-4.0 3.0-4.0 3.0-4.0 4.0-5.0 4.0-5.0 4.0-5.0 1.5-2 1.5-2 1.5-2
1 2 2 2 2 4 11 9 3 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3
24 34 15 15 11 11 102 80 20 35 17 272 269 10 21 12 10 9 12 18 13 14 11 11 14 9 9 11 159 175 126
1980-1983 1980-1983 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 2006 2006 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2006-2008 2005 2005 2005
10/85 10/85 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 10/07 10/07 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/08 10/04 10/04 10/04
85-03 85-03 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 M07-11 M07-11 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M08-33 M04-15 M04-15 M04-15
Specimen Thickness, inches
0.5-1.0 0.5-1.0 0.8-2.0 0.8-2.0 0.8-2.0 0.5-0.8 0.4-1.4 0.4-1.4 0.7-2.0 0.8-2.0 0.7-2.0 0.8-1.4 0.8-1.4 1.0-1.5 1.0-1.5 2.0 2.0 2.0 2.0 0.75-1.0 2.0 2.0 1.0 2.0 2.0 1.0 1.5d 1.5d 0.75-1.0d
KIC, ksi %& in. Max.
Avg.
Min.
COV
25 23 48 30 43 32 32 25 25 38 22 60.9 62.6 45 42 37 45 42 32 41 34 30 36 29 30 34 29 29 42 39 31
22 21 31 21 31 25 23 20 19 28 18 52.4 48.0 40 37 35 39 34 30 37 30 27 32 28 27 31 27 27 36 30 25
19 18 24 18 27 20 15 18 15 19 14 40.6 37.8 37 32 32 34 30 28 31 26 24 28 26 24 27 25 24 27 22 19
8.4 6.5 21.8 14.4 16.5 17.8 10.1 8.8 15.5 18.4 14.4 9.1 7.3 6.0 7.5 4.5 9.1 10.7 3.5 9.0 9.4 6.5 7.0 3.7 6.9 9.8 5.6 5.8 7.9 7.4 9.4
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-43, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
Spec. Min.
40 38 33 29 25 31 27 23 28 25 23 26 23 21 25 21 21 24 20 18
MMPDS-06 1 April 2011
3-10
Alloy/ Temperb
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa Product Form
Orientationc
Product Thickness, inches
Number of Sources
Sample Size
Date of Data Generation
Date
2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2124-T851 2219-T851 2219-T851 2219-T851 2219-T851 2219-T8511 2219-T852 2219-T852 2219-T852 2219-T87 2219-T87 2297-T87 2297-T87 2297-T87 2297-T87 2297-T87 2297-T87 2297-T87 2297-T87 2297-T87
Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Forging Extrusion Forging Hand Forging Hand Forging Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate
L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L S-L T-L S-L L-T T-L L-T T-L L-T T-L S-L L-T T-L S-L L-T T-L S-L
2-3 2-3 2-3 3-4 3-4 3-4 4-5 4-5 4-5 5-6 5-6 5-6 ---$1.0 $0.8 ------------$1.5 $1.5 ---1.0-3.0 1.0-3.0 1.0-3.0 3-4 3-4 3-4 4-5 4-5 4-5
3 3 3 3 3 3 3 3 3 3 3 3 4 6 3 1 1 2 2 2 3 1 1 1 1 1 1 1 1 1 1
394 393 399 461 474 477 288 303 291 206 202 220 67 108 24 85 19 60 32 28 11 11 13 16 8 30 33 30 51 51 52
2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 2002-2006 2002-2006 2002-2006 2002-2006 2002-2006 2002-2006 2002-2006 2002-2006 202-2006
10/04 10/04 10/04 10/04 10/04 10/04 10/04 10/04 10/04 10/04 10/04 10/04 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06
Item
Specimen Thickness, inches
Max.
Avg.
Min.
COV
Spec. Min.
M04-15 M04-15 M04-15 M04-15 M04-15 M04-15 M04-15 M04-15 M04-15 M04-15 M04-15 M04-15 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 M05-19 M05-19 M05-19 M05-19 M05-19 M05-19 M05-19 M05-19 M05-19
0.98-1.53 0.98-1.53 0.75-1.53 1.47-2.04 1.47-2.04 1.0-2.04 1.50-2.55 1.50-2.55 1.00-2.55 1.50-2.94 1.50-2.94 1.50-2.94 1.0-2.5 0.8-2.5 0.5-1.5 1.0-1.5 1.8-2.0 0.8-2.0 1.5-2.5 1.5-2.5 0.8-2.0 1.0 1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.0
45 36 33 45 39 40 40 39 32 43 34 30 38 37 26 34 34 35 46 30 28 22 42 33 28 50 36 32 46 37 30
36 28 25 35 28 25 33 27 25 32 27 25 33 29 22 25 29 25 38 27 26 22 39 31 25 40 31 25 38 30 24
27 23 20 26 24 20 24 21 19 26 22 20 30 20 20 19 23 20 30 22 25 19 38 27 24 33 28 20 32 26 19
7.3 5.6 7.1 6.9 6.8 6.4 9.0 7.3 7.7 9.0 8.4 8.7 7.2 10.1 9.6 12.1 12.3 12.1 9.7 8.4 3.7 3.9 2.6 5.3 5.7 11.3 6.0 11.0 8.0 7.1 8.7
24 20 18 24 20 18 24 20 18 24 20 18
Approved
KIC, ksi %& in.
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-43, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
MMPDS-06 1 April 2011
3-11
Alloy/Temperb
32 27 20 31 27 20 30 26 18
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa (Continued) Product Form
Orientationc
Product Thickness, inches
Number of Sources
2297-T87 2297-T87 2297-T87 2397-T87 2397-T87 2397-T87 2397-T87 2397-T87 2397-T87 2397-T87 2397-T87 2397-T87 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451 7040-T7451
Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate
L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L
5-6 5-6 5-6 3-4 3-4 3-4 4-5 4-5 4-5 5-6 5-6 5-6 3-4 3-4 3-4 4-5 4-5 4-5 5-6 5-6 5-6 6-7 6-7 6-7 7-8 7-8 7-8 8-8.5 8-8.5 8-8.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Date of Data Size Generation
31 29 30 48 31 48 41 17 40 33 30 31 16 16 14 17 17 17 17 14 16 21 21 21 18 16 13 17 13 17
2002-2006 2002-2006 2002-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999 1999
Date
Item
Specimen Thickness, inches
4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00 3/00
M05-19 M05-19 M05-19 M05-23 M05-23 M05-23 M05-23 M05-23 M05-23 M05-23 M05-23 M05-23 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03 M00-03
1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.5 2.0 2.0 2.0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Approved
in. KIC, ksi%& Max.
Avg.
Min.
COV
Spec. Min.
49 30 27 40 35 38 40 34 32 38 43 37 39 31 33 34 27 28 34 28 28 37 29 30 33 29 31 34 26 27
37 27 23 36 33 29 36 32 26 35 34 27 37 30 31 32 26 26 32 25 27 34 27 29 32 28 29 31 24 26
31 25 18 34 28 23 34 28 19 29 29 19 34 28 29 31 26 26 30 25 26 30 25 27 30 26 26 28 23 25
10.1 5.2 7.9 3.4 3.8 13.5 3.1 4.6 11.7 7.1 10.5 17.9 5.2 2.8 4.2 2.0 1.5 2.2 2.7 3.5 2.7 5.9 2.8 4.0 3.2 2.7 4.6 4.6 5.0 2.1
29 25 18 31 27 20 32 26 18 29 25 18 26 24 30 25 24 29 23 24 27 22 23 26 22 23 26 22 22
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-43, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
MMPDS-06 1 April 2011
3-12
Alloy/Temperb
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa (Continued) Product Form
Orientationc
Product Thickness, inches
Number of Sources
Sample Size
Date of Data Generation
Date
7049-T73 7049-T73 7049-T73 7049-T73 7049-T73 7050-T7351 7050-T7351 7050-T7351 7050-T74 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7451 7050-T7452 7050-T7452 7050-T7452 7050-T76511
Die Forging Die Forging Hand Forging Hand Forging Hand Forging Plate Plate Plate Die Forging Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Hand Forging Hand Forging Hand Forging Extrusion
L-T S-L L-T T-L S-L L-T T-L S-L S-L L-T L-T L-T L-T L-T S-L S-L S-L S-L S-L T-L T-L T-L T-L T-L L-T T-L S-L L-T
1.4 $0.5 $0.5 2.0-7.1 1.0 1.0-6.0 2.0-6.0 2.0-6.0 0.6-7.1 1.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-6.00 2.25-2.99 3.00-3.99 4.00-4.99 5.00-6.00 2.17-3.00 0.63-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-6.00 3.5-5.5 3.5-7.5 3.5-7.5 ----
3 3 2 2 2 2 1 1 3 3 3 2 1 1 2 2 1 1 3 3 3 2 1 1 1 1 1 2
21 46 28 27 24 31 29 30 12 764 1186 659 236 209 335 432 233 213 728 836 1188 643 230 209 11 13 17 38
1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 2004-2006 1973-1975 1973-1975 1973-1975 1973-1975
5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 10/07 5/82 5/82 5/82 5/82
Item
Specimen Thickness, inches
Max.
Avg.
Min.
COV
78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 M07-46 78-09 78-09 78-09 78-09
0.5-1.0 0.5-1.0 0.5-1.0 1.0 0.8-1.0 1.0-2.0 1.5-2.0 0.8-1.5 0.6-2.0 ---------------------------------------------1.5 1.5 0.8-1.5 0.6-2.0
34 26 37 28 22 43 35 30 27 47 44 42 43 40 34 33 31 30 35 41 38 35 30 30 34 22 21 40
30 22 30 22 19 35 30 28 24 40 38 36 34 31 30 28 27 26 27 33 30 29 26 24 31 21 19 31
27 18 23 18 14 28 25 25 21 33 32 31 29 27 23 23 21 22 22 28 26 24 23 22 26 18 16 27
7.4 9.7 12.1 12.5 14.2 11.3 8.5 4.6 8.8 6.2 5.2 4.6 6.6 6.0 5.4 5.8 6.0 5.6 7.4 5.3 6.4 4.9 4.9 4.9 8.0 6.7 7.5 7.8
Approved
in. KIC, ksi%& Spec. Min.
e 29 27 26 25 24 21 21 21 21 -25 24 23 22 22 e e
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-42, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. fDetermined using quadratic regression from 4 to 10 inches..
MMPDS-06 1 April 2011
3-13
Alloy/Temperb
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa (Continued) Product Form
Orientationc
Product Thickness, inches
Number of Sources
Sample Size
Date of Data Generation
Date
7056-T7651 7056-T7651 7075-T651 7075-T651 7075-T651 7075-T6510 7075-T6510 7075-T6510 7075-T73 7075-T73 7075-T73 7075-T6510 7075-T7351 7075-T7351 7075-T7351 7075-T73511 7075-T73511 7075-T73511 7075-T73511 7075-T7352 7075-T7352 7075-T7651 7075-T7651 7075-T7651 7075-T7651 7075-T7651 7075-T76511 7075-T76511
Plate Plate Plate Plate Plate Extrusion Extrusion Forged Bar Die Forging Hand Forging Hand Forging Forged Bar Plate Plate Plate Extrusion Extrusion Extrusion Extrusion Hand Forging Hand Forging Plate Plate Plate Clad Plate Clad Plate Extrusion Extrusion
L-T T-L L-T T-L S-L L-T T-L L-T T-L L-T T-L T-L L-T T-L S-L T-L L-T T-L S-L L-T T-L L-T T-L S-L L-T T-L L-T T-L
0.5-1.5 0.5-1.5 $0.6 $0.5 ---0.7-3.5 0.7-3.5 0.7-5.0 $0.5 ---$1.0 0.7-5.0 $1.0 $0.5 $0.5 1.0-7.0 $0.9 $0.7 $0.5 ---$0.8 $0.8 $0.5 $0.5 0.5-0.6 0.5-0.6 1.3-7.0 1.2
1 1 7 5 2 1 1 1 1 2 2 1 8 6 3 1 3 3 3 2 3 6 7 5 2 2 4 3
36 35 99 135 37 26 25 13 22 10 14 13 65 56 20 19 28 35 15 27 20 82 96 28 30 56 11 42
2005 2005 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975
4/08 4/08 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82 4/82
Item
Specimen Thickness, inches
Max.
Avg.
Min.
COV
Spec. Min.
M07-20 M07-20 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09
0.8-1.6 0.8-1.6 0.5-2.0 0.4-2.0 0.5-1.5 0.5-1.2 0.5-1.2 0.6-2.0 0.5-0.8 1.0-1.5 1.0-1.5 0.5-2.5 0.5-2.0 0.5-2.0 0.5-1.5 0.9-1.0 0.7-2.0 0.5-1.8 0.4-1.0 0.8-2.0 0.8-2.0 0.5-2.0 0.5-2.0 0.4-0.8 0.5-0.6 0.5-0.6 1.2-2.0 0.6-2.0
39 31 30 27 22 32 28 35 25 39 27 24 36 47 38 22 43 35 22 39 33 43 28 20 30 28 41 36
33 28 26 22 18 27 24 29 21 31 23 21 30 27 22 20 35 23 20 33 26 29 23 18 25 24 35 23
30 26 20 18 14 23 21 24 18 29 20 17 25 21 17 19 31 12 17 30 23 22 20 15 22 21 31 20
6.0 5.3 7.6 8.9 10.4 7.8 8.0 11.6 9.9 8.8 9.0 8.2 8.2 20.1 32.5 3.7 9.4 20.3 9.0 9.2 9.9 17.8 7.6 7.7 7.1 7.7 11.0 15.5
27 23
Approved
KIC, ksi%& in.
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-42, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
MMPDS-06 1 April 2011
3-14
Alloy/Temperb
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa (Concluded) Alloy/Temperb
Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Hand Forging Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate
Orientationc
L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L
Product Thickness, inches
2.0-4.0 2.0-4.0 2.0-4.0 4.0-6.0 4.0-6.0 4.0-6.0 6.0-8.0 6.0-8.0 6.0-8.0 8.0-10.0 8.0-10.0 8.0-10.0 10.0-12.0 10.0-12.0 10.0-12.0 4.0-5.0 4.0-5.0 4.0-5.0 5.0-6.0 5.0-6.0 5.0-6.0 6.0-7.0 6.0-7.0 6.0-7.0 7.0-8.0 7.0-8.0 7.0-8.0
Number of Sources
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Size
8 12 10 7 10 10 14 15 14 22 22 21 22 23 23 44 81 80 17 44 44 132 132 132 17 17 17
Date of Data Generation
2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006 2005-2006
Approved Date
4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06
Item
M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16 M06-16
Specimen Thickness, inches
1.0-1.5 1.0-1.5 0.75-1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
KIC, ksi%& in. Max.
50 33 33 50 31 33 39 34 29 40 34 29 41 24 22 40 30 32 33 28 36 36 28 31 32 25 30
Avg. f
42 29f 27f 39f 27f 25f 36f 25f 23f 34f 23f 21f 31f 20f 20f 36 28 29 31 26 28 31 24 26 30 23 26
Min.
37 26 26 35 28 24 29 21 19 25 21 19 25 18 18 30 26 25 28 23 22 28 21 22 28 21 24
COV f
5.3 6.4f 5.5f 5.7f 6.9f 5.9f 6.2f 7.4f 6.4f 6.5f 8.1f 7.1f 7.2f 9.3f 7.4f 6.4 3.5 4.7 4.5 4.4 8.7 4.4 4.0 5.6 3.6 3.9 5.1
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-42, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
Spec. Min.
30 19 19 28 19 17 26 17 16 24 15 15 22 14 13 29 24 24 27 22 23 26 21 22
MMPDS-06 1 April 2011
3-15
7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7452 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651 7085-T7651
Product Form
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa Product Formb
Orientationc
Product Thickness, inches
Number of Sources
Sample Size
Date of Data Generation
Date
7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7451 7140-T7651 7140-T7651 7140-T7651 7140-T7651 7140-T7651 7140-T7651 7140-T7651 7140-T7651 7140-T7651
Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate
L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L S-L
4-5 4-5 4-5 5-6 5-6 5-6 6-7 6-7 6-7 7-8 7-8 7-8 8-9 8-9 8-9 9-10 9-10 9-10 4-5 4-5 4-5 5-6 5-6 5-6 6-7 6-7 6-7
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 6 80 80 2 3 3 3 21 24 20 2 2 2 18 19 16 107 109 109 210 210 210 106 106 106
2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2005 2006 2006 2006 2006 2006 2006 2006 2006 2006
4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/06 4/08 4/08 4/08 4/08 4/08 4/08 4/08 4/08 4/08
Item
Specimen Thickness, inches
Max.
Avg.
Min.
COV
Spec. Min.
M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M05-25 M07-43 M07-43 M07-43 M07-43 M07-43 M07-43 M07-43 M07-43 M07-43
2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1
32 30 42 34 32 26 27 30 24 26 45 30 32 37 31 30 36 31 29
36f 31f 28f 33f 28f 27f 31f 25f 26f 29f 21f 26f 28f 23f 25f 28f 23f 25f 34 26 27 32 26 26 31 27 26
28 26 29 25 28 22 24 27 21 22 28 23 22 26 22 22 26 22 23
7.84f 6.84f 4.52f 7.84f 6.84f 4.52f 7.84f 6.84f 4.52f 7.84f 6.84f 4.52f 7.84f 6.84f 4.52f 7.84f 6.84f 4.52f 8.3 5.2 6.4 7.1 6.3 1.5 6.3 7.1 1.3
29 24 23 26 23 22 24 21 22 22 19 22 22 19 20 22 19 20 27 22 22 25 21 22 24 20 22
Approved
KIC, ksi%& in.
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-43, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
MMPDS-06 1 April 2011
3-16
Alloy/Temper
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa Alloy/Temper
Product Formb
Product Thickness, inches
Number of Sources
Sample Size
Date of Data Generation
Date
L-T T-L S-L L-T T-L S-L L-T T-L S-L L-T T-L T-L L-T T-L L-T L-T T-L L-T T-L L-T T-L S-L T-L L-T T-L L-T T-L L-T T-L
7-8 7-8 7-8 8-9 8-9 8-9 9-10 9-10 9-10 0.76 0.76 ------------------$0.7 $0.5 $0.5 $0.5 $0.5 3.0-5.0 ------------1.4-3.8 $0.6
1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 2 2 5 5 3 2 4 2 1 1 1 1 2 4
18 18 18 3 3 3 2 2 2 52 52 25 17 10 14 30 32 43 43 14 13 41 10 53 50 12 11 48 49
2006 2006 2006 2006 2006 2006 2006 2006 2006 2005 2005 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975
4/08 4/08 4/08 4/08 4/08 4/08 4/08 4/08 4/08 4/03 4/03 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82
Item
Specimen Thickness, inches
Max.
Avg.
Min.
COV
Spec. Min.
M07-43 M07-43 M07-43 M07-43 M07-43 M07-43 M07-43 M07-43 M07-43 M02-14 M02-14 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09
2 2 1 2 2 1 2 2 1 0.5 0.5 0.8-1.0 0.7-0.8 0.7-0.8 0.8-1.0 0.7-1.6 0.7-1.6 0.5-1.5 0.5-1.5 0.5-1.0 0.5-1.0 0.5-0.8 1.0-1.5 1.5 0.6 1.5 1.5 0.6-2.0 0.6-1.8
33 26 27 ... ... ... ... ... ... 36 27 24 30 26 36 36 30 47 35 38 33 31 29 33 28 32 26 39 31
30 24 25 30f 24f 25f 32f 23f 25f 31 24 21 26 22 32 33 27 33 25 30 24 26 26 32 27 32 25 33 22
28 22 23 ... ... ... ... ... ... 26 21 18 24 20 24 32 25 23 20 22 21 20 24 30 25 31 24 27 20
4.7 3.9 3.7 3.2f 2.3f 1.2f 3.2f 1.2f 10.2f 7.7 5.1 7.9 9.2 9.8 13.8 3.3 4.5 16.0 10.9 15.0 15.7 8.6 4.8 4.3 3.1 1.7 3.3 10.7 9.8
22 19 22 20 18 20 18 17 20 24 20
Approved
KIC, ksi%& in.
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-43, and 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
30 22 27 21 21 25
MMPDS-06 1 April 2011
3-17
7140-T7651 Plate 7140-T7651 Plate 7140-T7651 Plate 7140-T7651 Plate 7140-T7651 Plate 7140-T7651 Plate 7140-T7651 Plate 7140-T7651 Plate 7140-T7651 Plate 7150-T77511 Extrusion 7150-T77511 Extrusion 7175-T6/T6511 Extrusion 7175-T651 Plate 7175-T651 Plate 7175-T6511 Extrusion 7175-T7351 Plate 7175-T7351 Plate 7175-T73511 Extrusion 7175-T73511 Extrusion 7175-T74 Die Forging 7175-T74 Die Forging 7175-T74 Die Forging 7175-T74 Hand Forging 7175-T7651 Clad Plate 7175-T7651 Clad Plate 7175-T7651 Plate 7175-T7651 Plate 7175-T76511 Extrusion 7175-T76511 Extrusion
Orientationc
Table 3.1.2.1.4. Values of Room Temperature Plane-Strain Fracture Toughness of Aluminum Alloysa Product Formb
Orientationc
Product Thickness, inches
Number of Sources
Sample Size
Date of Data Generation
Date
Item
7449-T7951 7449-T7951 7449-T7951 7449-T7951 7449-T7951 7449-T7951 7475-T651 7475-T651 7475-T651 7475-T7351 7475-T7351 7475-T7351 7475-T7651 7475-T7651
Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate Plate
L-T T-L L-T T-L L-T T-L L-T T-L S-L L-T T-L S-L L-T T-L
0.75-1 0.75-1 1-1.5 1-1.5 1.5-2.5 1.5-2.5 ---0.6-2.0 $0.6 1.3-4.0 $1.3 $0.7 1.0-2.0 $1.0
1 1 1 1 1 1 3 2 1 8 7 7 4 2
638 626 274 313 161 197 34 143 23 151 132 74 10 15
2004 2004 2004 2004 2004 2004 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975 1973-1975
10/06 10/06 10/06 10/06 10/06 10/06 5/82 5/82 5/82 5/82 5/82 5/82 5/82 5/82
M05-07 M05-07 M05-07 M05-07 M05-07 M05-07 78-09 78-09 78-09 78-09 78-09 78-09 78-09 78-09
Approved
Specimen Thickness, inches
Full d Full d Full d Full d d d
0.9-2.0 0.6-2.0 0.5-1.0 1.3-3.0 0.7-3.0 0.5-1.5 1.0-2.0 0.9-2.0
KIC, ksi%& in. Max.
Avg.
Min.
COV
Spec. Min.
30 27 34 25 37 26 49 43 36 60 50 36 46 50
24 22 24 22 26 23 38 34 28 47 37 30 41 36
21 19 21 19 23 21 33 27 20 34 29 25 36 29
7.0 6.2 6.9 5.4 5.8 4.5 9.2 9.8 14.9 10.4 10.4 8.7 6.2 14.5
21 19 21 19 20 18 30 28
3-18
Issued: Apr 1968, MIL-HDBK-5A, CN3, Item 64-16; Last Revised: Apr 2009, MMPDS-04CN1, Items 07-20, 07-43, 08-33 a These values are for information only.. b Products that do not receive a mechanical stress-relieving process (e.g., -T73 and -T74 tempers) have the potential for induced residual stresses. As a result, care must be taken to prevent fracture toughness properties from bias resulting from residual stresses. c Refer to Figures 1.4.12.3(a) and 1.4.12.3(b) for definition of symbols. d Specimen thickness range was provided from one source. e Varies with thickness. f Determined using quadratic regression from 4 to 10 inches.
e e 25 33 30
MMPDS-06 1 April 2011
Alloy/Temper
MMPDS-06 1 April 2011 3.1.2.2 Physical Properties — Where available from the literature, the average values of certain physical properties are included in the room temperature tables for each alloy. These properties include density, ω, in lb/in.3; the specific heat, C, in Btu/(lb)(EF); the thermal conductivity, K, in Btu/[(hr)(ft2)(EF)/ft]; and the mean coefficient of thermal expansion, α, in in./in./EF. Where more extensive data are available to show the effect of temperature on these physical properties, graphs of physical property as a function of temperature are presented for the applicable alloys. 3.1.2.3 Corrosion Resistance 3.1.2.3.1 Resistance to Stress-Corrosion Cracking — In-service stress-corrosion cracking failures can be caused by stresses produced from a wide variety of sources, including solution heat treatment, straightening, forming, fit-up, clamping, and sustained service loads. These stresses may be tensile or compressive, and the stresses due to Poisson effects should not be ignored because SCC failures can be caused by sustained shear stresses. Pin-hole flaws in some corrosion protection coatings may also be sufficient to allow SCC to occur. The high-strength, heat-treatable wrought aluminum alloys in certain tempers are susceptible to stress-corrosion cracking, depending upon product, section size, direction and magnitude of stress [see References 3.1.2.3.1(a) through 3.1.2.3.1(d)]. These alloys include 2014, 2025, 2618, 7075, 7150, 7175, and 7475 in the T6-type tempers and 2014, 2024, 2124, and 2219 in the T3- and T4-type tempers. Other alloy-temper combinations, notably 2024, 2124, 2219, and 2519 in the T6- or T8type tempers and 7010, 7049, 7050, 7075, 7149, 7175, and 7475 in the T73-type tempers, are decidedly more resistant and sustained tensile stresses of 50 to 75 percent of the minimum yield strength may be permitted without concern about stress corrosion cracking. The T74 and T76 tempers of 7010, 7075, 7475, 7049, 7149, and 7050 provide an intermediate degree of resistance to stress-corrosion cracking, i.e., superior to that of the T6 temper, but not as good as the T73 temper of 7075. To assist in the selection of materials, letter ratings indicating the relative resistance to stress corrosion cracking of various mill product forms of the wrought 2000, 6000, and 7000 series heat-treated aluminum alloys are presented in Table 3.1.2.3.1(a). This table is based upon ASTM G 64, which contains more detailed information regarding this rating system and the procedure for determining the ratings. In addition, more quantitative information in the form of the maximum specified tension stresses at which test specimens will not fail when subjected to the alternate immersion stress-corrosion test described in ASTM G 47 are shown in Tables 3.1.2.3.1(b) through 3.1.2.3.1(e) for various heat-treated aluminum product forms, alloys, and tempers. Where short times at elevated temperatures of 150E to 500EF may be encountered, the precipitation heat-treated tempers of 2024 and 2219 alloys are recommended over the naturally aged tempers. Alloys 5083, 5086, and 5456 should not be used under high constant applied stress for continuous service at temperatures exceeding 150EF, because of the hazard of developing susceptibility to stress corrosion cracking. In general, the H34 through H38 tempers of 5086, and the H32 through H38 tempers of 5083 and 5456 are not recommended, because these tempers can become susceptible to stress corrosion cracking. For the cold forming of 5083 sheet and plate in the H112, H321, H323, and H343 tempers and 5456 sheet and plate in the H112 and H321 tempers, a minimum bend radius of 5T should be used. Hot forming of the O temper for alloys 5083 and 5456 is recommended, and is preferred to the cold-worked tempers to avoid excessive cold work and high residual stress. Cold-worked tempers of heat-treatable alloys are heated for subsequent hot forming, a slight decrease in mechanical properties, particularly yield strength, may result.
3-19
MMPDS-06 1 April 2011
Table 3.1.2.3.1(a). Resistance to Stress Corrosion Ratingsa for High-Strength Aluminum Alloy Products Alloy and Temperb 2013-T6511 2014-T6
2024-T3, T4
2024-T6
2024-T8
2124-T8
2219-T351X, T37
2219-T6
2219-T85XX, T87
6061-T6
7040-T7451
7049-T73
7049-T76
7050-T74
7050-T76
7075-T6
7075-T73
Test Directionc
Rolled Plate
Rod and Bard
Extruded Shapes
LT L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST L LT ST
f
f
A Be D A Be D
A D D A D D A B B A A A
A A Be D A Be D
f f f
A A B A A B A B D A A A A A A A A A A A B A A A
f
B Be D f f f
A A B
A Ae D A A C
f
f
f
f
f
f
f
f
f
f
f
A A A
A B D A A A A A A A A A
A A A A A A A A A
f
f
f
f
f
f
f
f
f
f
A A B A A C A A B A A C A Be D A A A
A A A
f f
A A A f f f
f f
f
f
f
f
f
f
A A B A A C A Be D A A A
f
3-20
f
Forging
f f
A B B A D D A A A
f f
f f
f f f
A A B f f f
A Be D A A A
MMPDS-06 1 April 2011 Table 3.1.2.3.1(a). Resistance to Stress-Corrosion Ratingsa for High-Strength Aluminum Alloy Products (Continued) Alloy and Temperb 7075-T74
7075-T76
7085-T7651 7149-T73
7175-T74
7475-T6
7475-T73
7475-T76
a
b
c
d e f
Test Directionc
Rolled Plate
Rod and Bard
Extruded Shapes
L LT ST L LT ST ST L LT ST L LT ST L LT ST L LT ST L LT ST
f
f
f
f
f
f
f
f
f
A A C C
f
A A C
f
f
f
f
f
f
f
f
f
f
A A B
f
f
f
f
f
f
f
f
f
A A A A A B
A Be D A A A A A C
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f f
Forging A A B f f
Ratings were determined from stress corrosion tests performed on at least ten random lots for which test results showed 90% conformance with 95% confidence when tested at the following stresses: A - Equal to or greater than 75% of the specified minimum yield strength. A very high rating. SCC not anticipated in general applications if the total sustained tensile stress* is less than 75% of the minimum specified yield stress for the alloy, heat treatment, product form, and orientation. B - Equal to or greater than 50% of the specified minimum yield strength. A high rating. SCC not anticipated if the total sustained tensile stress* is less than 50% of the specified minimum yield stress. C - Equal to or greater than 25% of the specified minimum yield stress or 14.5 ksi, whichever is higher. An intermediate rating. SCC not anticipated if the total sustained tensile stress* is less than 25% of the specified minimum yield stress. This rating is designated for the short-transverse direction in improved products used primarily for high resistance to exfoliation corrosion in relatively thin structures where applicable short-transverse stresses are unlikely. D - Fails to meet the criterion for the rating C. A low rating. SCC failures have occurred in service or would be anticipated if there is any sustained tensile stress* in the designated test direction. This rating is currently designated only for the short-transverse direction in certain materials. NOTE The above stress levels are not to be interpreted as "threshold" stresses and are not recommended for design. Other documents, such as MIL-STD-1568, NAS SD-24, and MSFC-SPEC-522A should be consulted for design recommendations. * The sum of all stresses, including those from service loads (applied), heat treatment, straightening, forming, etc. The ratings apply to standard mill products in the types of tempers indicated, including stress-relieved tempers, and could be invalidated in some cases by application of nonstandard thermal treatments of mechanical deformation at room temperature by the user. Test direction refers to orientation of the stressing direction relative to the directional grain structure typical of wrought materials, which in the case of extrusions and forgings, may not be predictable from the geometrical cross section of the product. LCLongitudinal: parallel to the direction of principal metal extension during manufacture of the product. LTCLong Transverse: perpendicular to direction of principal metal extension. In products whose grain structure clearly shows directionality (width-to-thickness ratio greater than two), it is that perpendicular direction parallel to the major grain dimension. STCShort Transverse: perpendicular to direction of principal metal extension and parallel to minor dimension of grains in products with significant grain directionality. Sections with width-to-thickness ratio equal to or less than two for which there is no distinction between LT and ST. Rating is one class lower for thicker sections: extrusion, 1 inch and over; plate and forgings, 1.5 inches and over. Ratings not established because the product is not offered commercially. NOTE: This table is based upon ASTM G 64.
3-21
MMPDS-06 1 April 2011 Table 3.1.2.3.1(b). Maximum Specified Tension Stress at Which Test Specimens Will Not Fail in 3½% NaCl Alternate Immersion Testa for Various Stress Corrosion Resistant Aluminum Alloy Plate
Test Direction
Thickness, inches
Stress, ksi
2024-T851
ST
2090-T81c 2098-T82P 2124-T851
ST LT ST
2124-T8151c
ST
2219-T851
ST
2219-T87
ST
2519-T87 7010-T7351c
ST ST
7010-T7451
ST
7010-T7651 7049-T7351 7050-T7451 7050-T7651 7075-T7351
ST ST ST ST ST
7075-T7651 Clad 7075-T7651 7085-T7651 7150-T7751 7475-T7351 7475-T7651
ST ST ST ST ST ST
1.001-4.000 4.001-6.000 0.750-1.500 0.125 1.500-1.999 2.000-4.000 4.001-6.000 1.500-3.000 3.001-5.000 5.001-6.000 0.750-2.000 2.001-4.000 4.001-5.000 5.001-6.000 0.750-3.000 3.001-4.000 4.001-5.000 0.750-4.000 0.750-3.000 3.001-5.000 5.001-5.500 0.750-3.000 3.001-5.500 0.750-5.500 0.750-5.000 0.750-6.000 0.750-3.000 0.750-2.000 2.001-2.500 2.501-4.000 0.750-1.000 0.750-1.000 4.000-7.000 0.750-3.000 0.750-4.000 0.750-1.500
28b 27b 20 35 28b 28b 27b 30b 29b 28b 34d 33d 32d 31d 38d 37d 36d 43d 41d 40d 39d 31b 35 25 45 35 25 42d 39d 36d 25 25 26 25 40 25
Alloy and Temper
Referenced Specifications Company specification AMS 4303 AMS 4327 AMS 4101 AMS-QQ-A-250/29, ASTM B 209, AMS 4101 AMS 4221 AMS-QQ-A-250/30
AMS-QQ-A-250/30 MIL-DTL-46192 AMS 4203 AMS 4205 AMS 4204 AMS 4200 AMS 4050 AMS 4201 AMS-QQ-A-250/12, AMS 4078, ASTM B 209 AMS-QQ-A-250/24, ASTM B 209 AMS-QQ-A-250/25, ASTM B 209 AMS 4329 AMS 4252 AMS 4202 AMS 4089
a Most specifications reference ASTM G 47, which requires exposures of 10 days for 2XXX alloys and 20 days for 7XXX alloys in ST test direction. b 50% of specified minimum long transverse yield strength. c Design values are not included in MMPDS. d 75% of specified minimum long transverse yield strength.
DO NOT USE STRESS VALUES FOR DESIGN
3-22
Table 3.1.2.3.1(c). Maximum Specified Tension Stress at Which Test Specimens Will Not Fail in 3½% NaCl Alternate Immersion Testa for Various Stress Corrosion Resistant Aluminum Alloy Rolled Bars, Rods, and Extrusions Alloy and Temper 7075-T73, T7351
Product Form
Test Direction
Thickness, inches
Stress, ksi 42b
AMS-QQ-A-225/9, AMS 4124, ASTM B 211
42 30 41c 40c 20 45 35 17 45b 44b 42b 41b,e 25 41c 40c 25 44 25 45
AMS 4326 AMS 4162, AMS 4163 AMS 4157
LT ST ST
7049-T76511d 7050-T73511 7050-T74511 7050-T76511 7075-T73, T73510, T73511
Extrusion Extrusion Extrusion Extrusion Extrusion
ST ST ST ST ST
7075-T76, T76510, T76511 7149-T73511d
Extrusion Extrusion
ST ST
7150-T77511 7175-T73511 7249-T76511 7449-T79511
Extrusion Extrusion Extrusion Extrusion
ST ST ST LTf
< 0.200 0.750-3.000 0.750-2.999 3.000-5.000 0.750-5.000 0.750-5.000 0.750-5.000 0.750-5.000 0.750-1.499 1.500-2.999 3.000-4.999 3.000-4.999 0.750-1.000 0.750-2.999 3.000-5.000 0.750-2.000 0.750-2.000 0.760 0.500-1.750
a b c d e f
AMS 4159 AMS 4341 AMS 4342 AMS 4340 AMS-QQ-A-200/11, AMS 4166, AMS 4167, ASTM B 211
AMS-QQ-A-200/15, ASTM B 221 AMS 4543 AMS 4345 AMS 4344 AMS 4293 AMS 4305
Most specifications reference ASTM G 47, which requires exposures of 10 days for 2XXX alloys and 20 days for 7XXX alloys in ST test direction. 75% of specified minimum longitudinal yield strength. 65% of specified minimum longitudinal yield strength. Design values are not included in MMPDS-01. Over 20 square inches cross-sectional area. Test duration exceeded 40 days as specified in ASTM G47 for testing in the LT direction. DO NOT USE STRESS VALUES FOR DESIGN
MMPDS-06 1 April 2011
0.750-3.000
3-23
ST
2013-T6511 2219-T8511 7049-T73511
Rolled Bar and Rod Extrusion Extrusion Extrusion
Referenced Specifications
MMPDS-06 1 April 2011
Table 3.1.2.3.1(d). Maximum Specified Tension Stress at Which Test Specimens Will Not Fail in 3½% NaCl Alternate Immersion Testa for Various Stress CorrosionResistant Aluminum Die Forgings
Test Direction
Thickness, inches
Stress, ksi
7049-T73
ST
7050-T74 7050-T7452 7075-T73
ST ST ST
7075-T7352
ST
0.750-2.000 2.001-5.000 0.750-6.000 0.750-4.000 0.750-3.000 3.001-4.000 4.001-5.000 5.001-6.000 0.750-3.000
46b 45b 35 35 42b 41b 39b 38b 42b
3.001-4.000 0.750-3.000 0.750-3.000 3.001-4.000 4.001-5.000 5.001-6.000 0.750-2.000 2.001-5.000 0.750-3.000 3.001-4.000 4.001-5.000 5.001-6.000 0.750-3.000
39b 42 35 31d 30d 29d 46b 45b 35 31d 30d 29d 35
Alloy and Temper
7075-T7354 7075-T74c
c
ST ST
7149-T73
ST
7175-T74
ST
7175-T7452c
ST
a b c d
Referenced Specifications AMS-QQ-A-367, AMS 4111, ASTM B 247 AMS 4107 AMS 4333 AMS-A-22771, AMS-QQ-A-367 AMS 4241, ASTM B 247 AMS 4141 AMS-A-22771, AMS-QQ-A-367, AMS 4147, ASTM B 247 Company Specification AMS 4131
AMS 4320 AMS 4149, ASTM B 247 AMS 4149 AMS 4179
Most specifications Reference ASTM G 47, which requires 20 days of exposure for 7XXX alloys in ST test direction. 75% of specified minimum longitudinal yield strength. Design values are not included in MMPDS. 50% of specified minimum longitudinal yield strength.
DO NOT USE STRESS VALUES FOR DESIGN
3-24
MMPDS-06 1 April 2011 Table 3.1.2.3.1(e). Maximum Specified Tension Stress at Which Test Specimens Will Not Fail in 3½% NaCl Alternate Immersion Testa for Various Stress Corrosion-Resistant Aluminum Hand Forgings
Test Direction
Thickness, inches
Stress, ksi
7049-T73
ST
7049-T7352c
ST
7050-T7452 7075-T73
ST ST
7075-T7352
ST
7075-T74c
ST
7075-T7452c
ST
7149-T73
ST
7175-T74
ST
7175-T7452
ST
2.001-3.000 3.001-4.000 4.001-5.000 0.750-3.000 3.001-4.000 4.001-5.000 0.750-8.000 0.750-3.000 3.001-4.000 4.001-5.000 5.001-6.000 0.750-3.000 3.001-4.000 4.001-5.000 5.001-6.000 0.750-3.000 3.001-4.000 4.001-5.000 5.001-6.000 0.750-2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000 2.000-3.000 3.001-4.000 4.001-5.000 0.750-3.000 3.001-4.000 4.001-5.000 4.001-6.000 0.750-3.000 3.001-4.000 4.001-5.000 5.001-6.000
45b 44b 42b 44b 43b 40b 35 42b 41b 39b 38b 39d 37d 36d 34d 35 30e 28e 27e 35 29f 28f 26f 24f 44d 43d 42d 35 29f 28f 26f 35 27f 26f 24f
Alloy and Temper
a b c d e f
Referenced Specifications AMS-QQ-A-367, AMS 4111, ASTM B 247 AMS 4247 AMS 4108 AMS-A-22771, AMS-QQ-A-367, ASTM B 247 AMS 4147
AMS 4131
AMS 4323
AMS 4320 AMS 4149
AMS 4179
Most specifications Reference ASTM G 47, which requires 20 days of exposure for 7XXX alloys in ST test direction. 75% of specified minimum longitudinal yield strength. Design values are not included in MMPDS. 75% of specified minimum long-transverse yield strength. 50% of specified minimum longitudinal yield strength. 50% of specified minimum long-transverse yield strength.
DO NOT USE STRESS VALUES FOR DESIGN
3-25
MMPDS-06 1 April 2011 3.1.2.3.2 Resistance to Exfoliation — The high-strength wrought aluminum alloys in certain tempers are susceptible to exfoliation corrosion, dependent upon product and section size. Generally those alloys and tempers that have the lowest resistance to stress corrosion cracking also have the lowest resistance to exfoliation [Reference 3.1.2.3.2]. The tempers that provide improved resistance to stress corrosion cracking also provide improved resistance or immunity to exfoliation. For example, the T76 temper of 7075, 7049, 7050, and 7475 provides a very high resistance to exfoliation, i.e., decidedly superior to the T6 temper, and almost the immunity provided by the T73 temper of 7075 alloy [Reference 3.1.2.3.2]. 3.1.3 MANUFACTURING CONSIDERATIONS 3.1.3.1 Avoiding Stress Corrosion Cracking — In order to avoid stress corrosion cracking (see Section 3.1.2.3), practices, such as the use of press or shrink fits, taper pins, clevis joints in which tightening of the bolt imposes a bending load on female lugs; and straightening or assembly operations, which result in sustained surface tensile stresses (especially when acting in the short-transverse grain orientation) should be avoided in these high-strength alloys: 2014-T451, T4, T6, T651, T652; 2024-T3, T351, T4; 7075T6, T651, T652; 7150-T6151, T61511; and 7475-T6, T651.
Where straightening or forming is necessary, it should be performed when the material is in the freshly quenched condition or at an elevated temperature to minimize the residual stress induced. Where elevated temperature forming is performed on 2014-T4 T451 or 2024-T3 T351, a subsequent precipitation heat treatment to produce the T6 or T651, T81 or T851 temper is recommended. It is good engineering practice to control sustained short-transverse tensile stress at the surface of structural parts at the lowest practicable level. Thus, careful attention should be given in all stages of manufacturing, starting with the design of the part configuration, to choose practices in the heat treatment, fabrication, and assembly to avoid unfavorable combinations of end grain microstructure and sustained tensile stress. The greatest danger arises when residual, assembly, and service stress combine to produce highsustained tensile stress at the metal surface. Sources of residual and assembly stress have been the most contributory to stress corrosion cracking problems because their presence and magnitude were not recognized. In most cases, the design stresses (developed by functional loads) are not continuous and would not be involved in the summation of sustained tensile stress. It is imperative that, for materials with low resistance to stress corrosion cracking in the short-transverse grain orientation, every effort be taken to keep the level of sustained tensile stress close to zero. 3.1.3.2 Cold-Formed, Heat-Treatable Aluminum Alloys — Cold working such as stretch forming of aluminum alloy prior to solution heat treatment may result in recrystallization or grain growth during heat treatment. The resulting strength, particularly yield strength, may be significantly below the specified minimum values. For critical applications, the strength should be determined on the part after forming and heat treating, including straightening operations. To minimize recrystallization during heat treatment, it is recommended that forming be done after solution heat treatment in the as-quenched condition whenever possible, but this may result in compressive yield strength in the direction of stretching being lower than MMPDS design allowables for user heat treat tempers. 3.1.3.3 Dimensional Changes — The dimensional changes that occur in aluminum alloy during thermal treatment generally are negligible, but in a few instances these changes may have to be considered in manufacturing. Because of many variables involved, there are no tabulated values for these dimensional changes. In the artificial aging of alloy 2219 from the T42, T351, and T37 tempers to the T62, T851, and T87 tempers, respectively, a net dimensional growth of 0.00010 to 0.0015 in./in. may be anticipated. Additional growth of as much as 0.0010 in./in. may occur during subsequent service of a year or more at 300EF or equivalent shorter exposures at higher temperatures. The dimensional changes that occur during the artificial aging of other wrought heat-treatable alloys are less than one-half that for alloy 2219 under the same conditions. 3-26
MMPDS-06 1 April 2011 3.1.3.4 Welding — The ease with which aluminum alloys may be welded is dependent principally upon composition, but the ease is also influenced by the temper of the alloy, the welding process, and the filler metal used. Also, the weldability of wrought and cast alloys is generally considered separately. Several weldability rating systems are established and may be found in publications by the Aluminum Association, American Welding Society, Society for Automotive Engineers, and the American Society for Metals. Handbooks from these groups can be consulted for more detailed information. For example, Specification AWS D17.1, Specification for Fusion Welding for Aerospace Applications, and “Welding Aluminum: Theory and Practice” [Reference 3.1.3.4] contains useful information. This document follows most of these references in adopting a four-level rating system. An “A” level, or readily weldable, means that the alloy (and temper) is routinely welded by the indicated process using commercial procedures. A “B” level means that welding is accomplished for many applications, but special techniques are required, and the application may require preliminary trials to develop procedures and tests to demonstrate weld performance. A “C” level refers to limited weldability because crack sensitivity, loss of corrosion resistance, and/or loss of mechanical properties may occur. An “X” level indicates welding is not recommended. The weldability of aluminum alloys is rated by alloy, temper, and welding process (arc or resistance). Tables 3.1.3.4(a) and 3.1.3.4(b) list the ratings in the alloy section number order in which they appear in Chapter 3. When heat-treated or work-hardened materials of most systems are welded, a loss of mechanical properties generally occurs. The extent of the loss (if not reheat treated) over the table strength allowables will have to be established for each specific situation.
3-27
MMPDS-06 1 April 2011
Table 3.1.3.4(a). Fabrication Weldability of Wrought Aluminum Alloys
Weldabilitya,b MMPDS Section No.
Alloy
Tempers
Inert Gas Metal or Tungsten Arc
3.2.1 3.2.2
2013 2014
3.2.3 3.2.4
2017 2024
3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.2.10 3.2.11 3.2.12 3.2.13
2025 2026 2027 2056 2090 2098 2099 2124 2219
3.2.14 3.2.15 3.2.16 3.2.17 3.2.18 3.2.19 3.5.1
2297 2397 2424 2519 2524 2618 5052
3.5.2
5083
3.5.3
5086
3.5.4
5454
3.5.5
5456
3.6.1 3.6.2
6013 6061
3.6.3
6151
... O T6, T62, T651, T652, T6510, T6511 T4, T42, T451 O T3, T351, T361, T4, T42 T6, T62, T81, T851, T861 T8510, T8511, T3510, T3511 T6 ... ... ... T83 ... ... T851 O T62, T81, T851, T87, T8510, T8511 ... ... ... T87 ... T61 O H32, H34, H36, H38 O H321, H323, H343, H111, H112 O H32, H34, H36, H38, H111, H112 O H32, H34, H111, H112 O H111, H321, H112 T6 O T4, T42, T451, T4510, T4511, T6 T62, T651, T652, T6510, T6511 T6
... C B C D C C C C ... ... ... B ... ... C A A ... ... ... A ... C A A A A A A A A A A A A A A A
Continued
3-28
Resistance Spotc ... D B B D B B B B ... ... ... B ... ... B B-D A ... ... ... ... ... B B A B A B A B A B A A B A A A
MMPDS-06 1 April 2011
Table 3.1.3.4(a). Fabrication Weldability of Wrought Aluminum Alloys (Continued) Weldabilitya,b MMPDS Section No. 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 3.7.8 3.7.9 3.7.10 3.7.11 3.7.12 3.7.13 3.7.14 3.7.15
Alloy 7010 7040 7049/ 7149 7050 7055 7068 7075 7085 7140 7150 7175 7249 7349 7449 7475
Tempers All All All ... All ... ... All ... ... All All ... ... ... All
a
Inert Gas Metal or Tungsten Arc C C C ... C ... ... C ... ... C C ... ... ... C
Resistance Spotc B B B ... B ... ... B ... ... B B ... ... ... B
Ratings A, B, C and X are relative ratings defined as follows: A - Generally weldable by all commercial procedures and methods. B - Weldable with special techniques or for specific applications which justify preliminary trials or testing to develop welding procedures and weld performance. C - Limited weldability because of crack sensitivity or loss in resistance to corrosion and mechanical properties. X - Welding is not recommended b When using filler wire, the wire should contain less than 0.0008 percent beryllium to avoid toxic fumes. c See AMS-W-6858 for permissible combinations.
3-29
MMPDS-06 1 April 2011 Table 3.1.3.4(b). Fabrication Weldabilitya of Cast Aluminum Alloys
Weldabilityb,c MMPDS Section No.
Alloy
Inert Gas Metal or Tungsten Arc
Resistance Spot
3.8.1 3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7 3.9.8
A201.0 354.0 355.0 C355.0 356.0 A356.0 A357.0 D357.0 359.0
C B B B A A A A A
C B B B A A B A B
a Weldability related to joining a casting to another part of the same composition. The weldability ratings are not applicable to minor weld repairs. Such repairs shall be governed by the contractors procedure for in-process welding of castings, after approval by the procuring agency. b Ratings A, B, C and X are relative ratings defined as follows: A - Generally weldable by all commercial procedures and methods. B - Weldable with special techniques or for specific applications that justify preliminary trials or testing to develop welding procedure and weld performance. C - Limited weldability because of crack sensitivity or loss in resistance to corrosion and mechanical properties. X - Welding is not recommended. c When using filler wire, the wire should contain less than 0.0008 percent beryllium to avoid toxic fumes.
3-30
MMPDS-06 1 April 2011 3.1.4 Obsolete Alloys, Tempers, and Product Forms B Table 3.1.4 includes a summary of the aluminum alloys, tempers, and product forms that have been removed from the Handbook, along with information regarding why and when they were removed.
3-31
Table 3.1.4 Obsolete Aluminum Alloys, Tempers, and Product Forms
Alloy
Removal Approved
Last Shown
Product Form
Specification
Basis for Removal
Item No.
Meeting
Edition
Date
224
Overaged
Casting
AMS 4226
Obsolete alloy
81-31
62
MIL-HDBK-5C, CN3
June 81
295
T4
Casting
AMS 4283
Cancelled specification
81-31
62
MIL-HDBK-5C, CN3
June 81
2021
T81
Sheet and Plate
-
-
72-17
46
Dropped - not covered by AMS spec
355
T6
Permanent Mold Casting
QQ-A-596
Sand Casting
QQ-A-601
Spec. Properties based on separately cast test bars
87-15
74
MIL-HDBK-5E
June 87
AMS 4240
Cancelled specification
91-17
81
MIL-HDBK-5F
Dec 90
AMS 4238
Cancelled specification
356
T6
Investment Casting
AMS 4260 QQ-A-601
520
T4
Sand Casting
F 535
Casting T2
6061
T6
Pipe
AMS 4239
Cancelled specification
MIL-P-25995
Cancelled specification
June 81 81-31
62
MIL-HDBK-5C, CN3
02-21
02
MIL-HDBK-5J
Feb 03
MMPDS-06 1 April 2011
3-32
Heat Treatment(s)
Table 3.1.4 Obsolete Aluminum Alloys, Tempers, and Product Forms
Alloy
712
7001
T5
Product Form
Sand Casting
Specification
Basis for Removal
QQ-A-601
Spec. properties based on separately cast test bars Highly susceptible to SCC
T6 and T75
Plate
-
T6 and T62
One-side clad sheet
QQ-A-250/23
T6 and T62
Clad sheet and plate
MIL-A-8923
T6 and T652
Forging
MIL-A-22771
T6, T62, T651, T76, and T7651
Bare sheet and plate
QQ-A250/14, 21
T6, T62, T651, T76 and T7651
Clad sheet and plate
QQ-A250/15, 22
7178 T6, T62, T6510, and T6511
Extrusion
QQ-A250/13, 14
T6, T62, T651, T76, and T7651
7011 clad sheet and plate
QQ-A-250/28
Removal Approved
Last Shown
Item No.
Meeting
Edition
Date
87-15
74
MIL-HDBK5E
June 87
64-18
33
Dropped without inclusion
Obsolete alloy; highly susceptible to SCC
84-16
67
MIL-HDBK5D, CN1
Jan 84
Obsolete alloy; highly susceptible to SCC
86-32
72
MIL-HDBK5D, CN3
May 86
MMPDS-06 1 April 2011
3-33
7079
Heat Treatment(s)
MMPDS-06 1 April 2011
This page is intentionally blank.
3-34
MMPDS-06 1 April 2011
3.2 2000 SERIES WROUGHT ALLOYS Alloys of the 2000 series contain copper as the principal alloying element and are strengthened by solution heat treatment and aging. As a group, these alloys are noteworthy for their excellent strengths at elevated and cryogenic temperatures and creep resistance at elevated temperatures. 3.2.1 2013 ALLOY
3.2.1.0 Comments and Properties - 2013 alloy is a heat-treatable Al-Cu-Mg-Si alloy which can be used as an alternative for 2024 alloy. Its static strength is equal or higher than that of 2024 alloy. Bearing strength is 20% higher than 2024-T3511. The tensile strength is higher than that of 2024-T62 for temperatures up to 392°F (200°C), and it does not decrease after thermal exposure on 347°F (175°C). 2013 alloy also offers improved resistance to corrosion and fatigue crack growth compared to 2024 alloy. This alloy can be extruded to complex shapes, including hollow shapes, so this alloy can achieve integrated construction contributed to cost reduction. And also, it has better formability than 2024. Its density is 2% lower than that of 2024. Material specifications for 2013 are shown in Table 3.2.1.0(a). Mechanical and physical properties are presented in Table 3.2.1.0(b).
Table 3.2.1.0(a). Material Specifications for 2013 Alloy Specification AMS 4326
Form Extruded Bar, Rod, and Profiles
3.2.1.1 T6511Temper - Figures 3.2.1.1.1(a) through 3.2.1.1.1(d) present elevated temperature curves for tensile ultimate and yield properties. Figure 3.2.1.1.4 presents elevated temperature curves for tensile modulus. Figures 3.2.1.1.5(a) and 3.2.1.1.5(b) present elevated temperature curves for elongation. Figures 3.2.1.1.6(a) and 3.2.1.1.6(b) present tensile and compressive stress-strain and tangent-modulus curves. Figure 3.2.1.1.6(c) presents tensile full-range stress-strain curves at room temperatures. Figures 3.2.1.1.8(a) and 3.2.1.1.8(b) present strain-life curves. Figure 3.2.1.1.9 presents crack propagation. R-curve behavior is shown in Figures 3.2.1.1.10(a) and 3.2.1.1.10(b).
3-35
MMPDS-06 1 April 2011
Table 3.2.1.0(b). Design Mechanical and Physical Properties of 2013 Aluminum Alloy Extrusions
Specification . . . . . . . . . Form . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . Thickness, (in.) . . . . . . . . Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fbrua, ksi (e/D = 1.5): L ................. LT . . . . . . . . . . . . . . . Fbrua, ksi (e/D = 2.0): L ................ LT . . . . . . . . . . . . . . . Fbrya, ksi (e/D = 1.5): L ................ LT . . . . . . . . . . . . . . . . Fbrya, ksi (e/D = 2.0): L ................ LT . . . . . . . . . . . . . . . e, percent (S-Basis): L ................. LT . . . . . . . . . . . . . . . . E, 103 ksi: L ................. LT . . . . . . . . . . . . . . . . Ec, 103 ksi: L ................. LT . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ..................
AMS 4326 Extruded Bar, Rod, and Profiles T6511 # 0.200 A B 58 57
59 58
53 49
55 51
53 54
55 56
41 41
42 42
105 104
106 105
133 132
135 134
83 82
86 85
96 99
100 103
8 Y
... ... 9.9 10.1 10.0 10.4 3.7 0.34
Physical Properties: ω, lb./in.3 . . . . . . . . . . C, K, and α . . . . . . . . .
0.098 See Figure 3.2.1.0
Issued: Oct 2006, MMPDS-03, Item 04-29. Last Revised: Apr 2008, MMPDS-04, Item 07-06 a Bearing values are "dry pin" values per Section 1.4.7.1.
3-36
MMPDS-06 1 April 2011
130
15 α - Between 86 °F and indicated temperature K - At indicated temperature C - At indicated temperature
120
0.28
110
C, Btu/(lb)(°F)
0.26
0.24
0.22
2 K, Btu / [(hr)(ft )(°F)/(ft)]
0.30
α
K
100
C
90
14
13
α, 10-6 in./in./oF
0.32
12
11
80 0
200
400
600
800
10 1000
Temperature, °F
Figure 3.2.1.0. Effect of temperature on the physical properties of 2013-T6511 aluminum extruded bar.
3-37
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
100
2013-T6511 Extrusion 0.158 inch, TUS 80
60
0.5 hr 10 hr 100 hr 1,000 hr
40
20
Strength at Temperature Exposure up to 1,000 hrs.
0 100
200
300
400
500
600
700
o
Temperature, F
Figure 3.2.1.1.1(a) Effect of temperature on the tensile ultimate strength (Ftu) of 2013T6511 aluminum alloy extrusions.
Percent of RoomTemperature Strength
100
2013-T6511 Extrusion 0.158 inch, TYS 80
60
0.5 hr 10 hr 100 hr 1,000 hr
40
20
Strength at Temperature Exposure up to 1,000 hrs.
0 100
200
300
400
500
600
700
o
Temperature, F
Figure 3.2.1.1.1(b) Effect of temperature on the tensile yield strength (Fty) of 2013T6511 aluminum alloy extrusions.
3-38
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
100
2013-T6511 Extrusion 0.158 inch, TUS 90 80
0.5 hr 10 hr 100 hr 1,000 hr
70 60 50 40
Strength at Room Temperature Exposure up to 1,000 hrs.
30 100
200
300
400
500
600
700
o
Temperature, F
Figure 3.2.1.1.1(c) Effect of exposure at elevated temperature on the room temperature tensile ultimate strength (Ftu) of 2013-T6511 aluminum alloy extrusions.
Percent of RoomTemperature Strength
100
2013-T6511 Extrusion 0.158 inch, TYS 80
60
0.5 hr 10 hr 100 hr 1,000 hr
40
20
Strength at Room Temperature Exposure up to 1,000 hrs.
0 100
200
300
400
500
600
700
Temperature, oF
Figure 3.2.1.1.1(d) Effect of exposure at elevated temperature on the room temperature tensile yield strength (Fty) of 2013-T6511 aluminum alloy extrusions.
3-39
MMPDS-06 1 April 2011
Percent of RoomTemperature Modulus
100
2013-T6511 Extrusion 0.158 inch, Modulus TYPICAL
90
80
0.5 and 10 hr 100 hr 1,000 hr
70
60
Modulus at Temperature Exposure up to 1,000 hrs.
50 100
200
300
400
500
600
700
Temperature, oF
Figure 3.2.1.1.4. Effect of temperature on the tensile modulus (E) of 2013-T6511 aluminum alloy extrusions.
3-40
MMPDS-06 1 April 2011 80
2013-T6511 Extrusion 0.158 inch, Elongation TYPICAL Percent Elongation (e)
60
1,000 hr 100 hr 10 hr 0.5 hr
40
20
Elongation at Temperature Exposure up to 1,000 hrs.
0 100
200
300
400
500
600
700
Temperature, oF
Figure 3.2.1.1.5(a). Effect of temperature on the elongation (e) of 2013-T6511 aluminum alloy extrusions.
30
2013-T6511 Extrusion 0.158 inch, Elongation TYPICAL Percent Elongation (e)
25
1,000 hr 100 hr 10 hr 0.5 hr
20
15
Elongation at Room Temperature Exposure up to 1,000 hrs. 10 100
200
300
400
500
600
700
Temperature, oF
Figure 3.2.1.1.5(b). Effect of exposure on the elongation (e) of 2013-T6511 aluminum alloy extrusions at room temperature.
3-41
MMPDS-06 1 April 2011
. Figure 3.2.1.1.6(a1) Typical tensile stress-strain curves for 2013-T6511aluminum alloy extrusion at room temperature, longitudinal orientation
Figure 3.2.1.1.6(a2) Typical tensile stress-strain curves for 2013-T6511aluminum alloy extrusion at room temperature, long transverse orientation
3-42
MMPDS-06 1 April 2011
Figure 3.2.1.1.6(b) Typical compressive stress-strain and compressive tangentmodulus curves for 2013-T6511aluminum alloy extrusion at room temperature, longitudinal and long transverse orientation
3-43
MMPDS-06 1 April 2011
Figure 3.2.1.1.6(c). Typical tensile stress-strain curves (full range) for 2013-T6511 aluminum alloy extrusion at room temperature.
3-44
MMPDS-06 1 April 2011 70 R = 0.02 0.02 R = 0.30 0.30 R = 0.50 0.50 Runouts
65
Maximum Stress, ksi
60 55 50 45 40 35 30 25 20 10,000
100,000
1,000,000
10,000,000
100,000,000
Cycles to Failure
Figure 3.2.1.1.8(a). Best-fit S/N curve for unnotched, 2013-T6511 aluminum alloy extrusion, longitudinal direction.
Correlative Information for Figure 3.2.1.1.8(a) Product Form: Extrusions, 0.157-in. thick
Test Parameters: Loading – Axial Frequency – 20 ~ 30 Hertz Temperature – 75F Atmosphere - Air
Tensile Properties (at 75F): UTS = 60.3 ksi, TYS = 56.6 ksi, Elongation = 11.1 %, Specimen Details: Unnotched, flat specimen, 1.57in. wide by 9.84-in. long blanks, 7.09-in. radius of curvature hourglass test section with 0.47-in. min. gage width
No. of Heat/Lots = 6 casting lots, 10 heat treatment lots
Surface Condition: Layer of material 0.02-in. removed from each surface, leaving net thickness ~ 0.118-in.; hand polished to average 16 µin RMS
Equivalent Stress Equation: Log Nf = 11.362 - 4.241 log (Seq - 17.00) Seq = Smax (1 - R)0.663 Std. Error of Estimate, Log (Life) = 23.8 x 1/Seq Std. Deviation, Log (Life) = 0.832 R2 = 57.2%
Reference: 3.2.1.1.8
Sample Size = 49 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-45
MMPDS-06 1 April 2011 40 R = 0.02 0.02 R = 0.30 0.30 R = 0.50 0.50 Runouts
35
Maximum Stress, ksi
30
25
20
15
10
5 1,000
10,000
100,000
1,000,000
10,000,000
100,000,000
Cycles to Failure
Figure 3.2.1.1.8(b). Best-fit S/N curve for notched, Kt = 3.0, 2013-T6511 aluminum alloy extrusion, longitudinal direction.
Correlative Information for Figure 3.2.1.1.8(b) Product Form: Extrusions, 0.157-in. thick Tensile Properties (at 75F): UTS = 60.3 ksi, TYS = 56.6 ksi, Elongation = 11.1 %, Specimen Details: Double edge notched, flat specimen, 1.77-in. wide by 9.06-in. long blanks, 1,18-in. wide reduced section, 0.087 ± 0.004-in. notch root radius
Test Parameters: Loading – Axial Frequency – 20 ~ 30 Hertz Temperature – 75F Atmosphere - Air No. of Heat/Lots = 3 casting lots, 3 heat treatment lots
Surface Condition: As-extruded side surfaces, machined double edge notches, average as-machined surface roughness of 53 µin RMS
Equivalent Stress Equation: Log Nf = 7.501 - 2.763 log (Seq - 10.79) Seq = Smax (1 - R)0.784 Std. Error of Estimate, Log (Life) = 4.9 x 1/Seq Std. Deviation, Log (Life) = 0.827 R2 = 87.3%
Reference: 3.2.1.1.8
Sample Size = 57 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.
3-46
MMPDS-06 1 April 2011
1.E-03
Fatigue Crack Propagation Rate, da/dN, in./cycle
Stress Frequency, No. of No. of Ratio, R f, Hz Specimens Data Points 0.10
15
3
258
0.40
15 - 20
3
264
1.E-04
1.E-05
1.E-06
1.E-07 1
10
100
Stress Intensity Factor Range, ksi-in
0.50
Figure 3.2 .1.1 .9 Fatigue-c rac k-propagation data for 0 .15 7-inch-thick 20 13-T 651 1 aluminum alloy extrusio n [Reference 3 .2.1.1.8]. Specimen Thickness: Specimen Width: Specimen Type: Frequency:
0.157 inch 3.15 inches M(T) 15-20 Hz
Environment: Temperature: Orientation:
3-47
25-27% R.H. 24ºC L-T
MMPDS-06 1 April 2011
Table 3.2.1.1.9 Typical Fatigue Crack Growth Rate Data for 2013-T6511 Extrusions, as Shown Graphically in Figure 3.2.1.1.9 Stress Ratio ∆K, ksi-in0.50
0.10
Stress Ratio 0.40
∆K, ksi-in0.50
da/dN, in./cycle
0.10
0.40
da/dN, in./cycle
4.22
2.68E-07
11.89
1.87E-06
1.60E-05
4.47
3.38E-07
12.59
2.42E-06
2.00E-05
4.73
4.09E-07
13.34
3.25E-06
2.39E-05
5.01
4.95E-07
14.13
4.56E-06
2.77E-05
5.31
6.02E-07
14.96
6.74E-06
3.13E-05
5.62
7.30E-07
15.85
1.05E-05
3.54E-05
5.96
8.70E-07
16.79
1.56E-05
4.07E-05
6.31
1.01E-06
17.78
1.92E-05
4.88E-05
6.68
1.15E-06
18.84
2.19E-05
6.14E-05 8.08E-05
7.08
5.34E-07
1.28E-06
19.95
2.47E-05
7.50
5.80E-07
1.46E-06
21.14
2.85E-05
7.94
6.37E-07
1.72E-06
22.39
3.43E-05
8.41
7.05E-07
2.17E-06
23.71
4.26E-05
8.91
7.91E-07
2.98E-06
25.12
5.37E-05
9.44
9.01E-07
4.41E-06
26.61
6.75E-05
10.00
1.04E-06
6.50E-06
28.18
8.34E-05
10.59
1.23E-06
9.11E-06
29.85
1.01E-04
11.22
1.50E-06
1.23E-05
31.62
1.21E-04
3-48
MMPDS-06 1 April 2011 90 80
W = 1.968 in Fty = 57 ksi
70
KR, ksi-in0.50
60 50 Mean Curve 0.1563 0.1555 0.1567 0.1559 0.1559 0.1559 0.1559 0.1567 Plastic Zone Size
40 30 20 10 0 0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Delta a effective, in.
Figure 3.2.1.1.10(a) R-curve behavior of 0.156-inch thick, 1.97-inch wide 2013-T6511 aluminum alloy extrusion at room temperature. Crack orientation is L-T. [Reference 3.2.1.1.8.]
90 80
W = 3.868 in Fty = 57 ksi
70
KR, ksi-in0.50
60 50 40
Mean Curve Plastic Zone Size 0.1555 0.1559 0.1567 0.1567 0.1563 0.1559 0.1571 0.1571
30 20 10 0 0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Delta a effective, in.
Figure 3.2.1.1.10(b) R-curve behavior of 0.156-inch thick, 3.87-inch wide 2013-T6511 aluminum alloy extrusion at room temperature. Crack orientation is L-T. [Reference 3.2.1.1.8.]
3-49
MMPDS-06 1 April 2011 3.2.2 2014 ALLOY 3.2.2.0 Comments and Properties — 2014 aluminum alloy is an Al-Cu alloy available in a wide variety of product forms. As shown in Table 3.1.2.3.1(a), 2014-T6 rolled plate, rod and bar, extruded shapes, and forgings have a “D” SCC rating. This is the lowest rating and means that SCC failures have occurred in service or would be anticipated if there is any sustained stress. In-service failures are caused by stresses produced by any combination of sources, including solution heat treatment, straightening, forming, fit-up, clamping, sustained service loads, or high service compression stresses that produce residual tensile stresses. These stresses may be tension or compression as well as the stresses due to the Poisson effect, because the actual failures are caused by the resulting sustained shear stresses. Pin-hole flaws in corrosion protection are sufficient for SCC. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of the alloy. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 2014 aluminum alloy are presented in Table 3.2.2.0(a). Room temperature mechanical and physical properties are shown in Tables 3.2.2.0(b) through 3.2.2.0(g). Stress-strain shape parameters are given in Table 3.2.2.0(h). Figure 3.2.2.0 shows the effect of temperature on the physical properties of 2014 alloy.
Table 3.2.2.0(a). Material Specifications for 2014 Aluminum Alloy
Specification AMS 4028a AMS 4029 AMS-QQ-A-250/3 AMS-QQ-A-225/4 AMS 4121 AMS-QQ-A-200/2a AMS 4153 AMS-A-22771a AMS-QQ-A-367a AMS 4133
Form Bare sheet and plate Bare sheet and plate Clad sheet and plate Rolled or drawn bar, rod, and shapes Bar and rod, rolled or cold finished Extruded bar, rod, and shapes Extrusion Forging Forging Forging
a inactive for new design
3-50
MMPDS-06 1 April 2011 The temper index for 2014 is as follows: Section
Temper
3.2.1.1
T6, T62, T651, T652, T6510, and T6511
3.2.2.1 T6, T62, T651, T652, T6510, and T6511 Temper— Figures 3.2.2.1.1(a) through 3.2.2.1.5(b) present elevated-temperature curves for various mechanical properties. Figures 3.2.2.1.6(a) through 3.2.2.1.6(r) present tensile and compressive stress-strain and tangent-modulus curves for various tempers, product forms, and temperatures. Figures 3.2.1.1.6(s) through 3.2.2.1.6(v) are full-range tensile stress-strain curves for various products and tempers. Figures 3.2.2.1.8(a) through 3.2.2.1.8(e) contain S/N fatigue curves for various wrought products in the T6 temper.
3-51
Table 3.2.2.0(b1). Design Mechanical and Physical Properties of 2014 Aluminum Alloy Sheet and Plate Specification . . . . . . . .
AMS 4029
Form . . . . . . . . . . . . . .
Sheet
Plate
Temper . . . . . . . . . . . .
T6
T651a
Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . .
3
E, 10 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . a b
0.040-0.249
0.250-0.499
0.500-1.000
1.001-2.000
2.001-2.500
2.501-3.000
3.001-4.000
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
65 64 ...
67 66 ...
67 66 ...
68 67 ...
66 67 ...
68 69 ...
66 67 ...
67 68 ...
66 67 ...
67 68 ...
64 65 59b
65 66 60b
... 63 ...
... 64 ...
... 59 ...
... 60 ...
58 57 ...
60 59 ...
59 58 ...
60 59 ...
60 59 ...
62 61 ...
60 59 ...
61 60 ...
60 59 ...
62 61 ...
59 58 54b
61 60 56b
... 57 ...
... 59 ...
... 55 ...
... 57 ...
58 59 ... 39
60 61 ... 40
59 60 ... 40
60 61 ... 41
58 61 ... 40
60 63 ... 41
58 61 ... 40
59 62 ... 41
58 61 ... 40
60 63 ... 41
57 60 59 38
59 62 61 39
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
97 123
100 127
100 127
102 129
105 134
108 138
105 134
107 136
105 134
107 136
102 130
104 132
... ...
... ...
... ...
... ...
81 93
84 96
83 94
84 96
90 106
93 110
90 106
92 109
90 106
93 110
88 104
92 109
... ...
... ...
... ...
... ...
6
...
7
...
7
...
6
...
4
...
2
...
2
...
1
...
10.5 10.7 4.0 0.33
10.7 10.9 4.0 0.33 0.101 See Figure 3.2.1.0
Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. Caution: This specific alloy, temper, and product form exhibits poor stress-corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).
MMPDS-06 1 April 2011
3-52
Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . .
0.020-0.039
MMPDS-06 1 April 2011 Table 3.2.2.0(b2). Design Mechanical and Physical Properties of 2014 Aluminum Alloy Sheet and Plate (Continued)
AMS 4028a
Specification . . . . . Form . . . . . . . . . . .
Plateb
Sheet T62c
Temper . . . . . . . . . Thickness, in. . . . .
0.020-0.039
0.040-0.249
0.250-0.499
0.500-1.000
Basis . . . . . . . . . . .
A
B
A
B
A
B
A
B
65 64
67 66
67 66
68 67
65 67
67 69
65 67
67 69
58 57
60 59
59 58
60 59
57 59
59 61
57 59
59 61
58 59 39
60 61 40
59 60 40
60 61 41
59 60 37
61 62 39
59 60 37
61 62 39
97 123
100 127
100 127
102 129
100 127
103 131
100 127
103 131
81 93
84 96
83 95
84 96
84 99
87 103
84 99
87 103
6
...
7
...
7
...
6
...
Mechanical Properties: Ftu, ksi: L ........... LT . . . . . . . . . . Fty, ksi: L ........... LT . . . . . . . . . . Fcy, ksi: L ........... LT . . . . . . . . . . Fsu, ksi . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . (e/D = 2.0) . . . Fbry, ksi: (e/D = 1.5) . . . (e/D = 2.0) . . . e, percent (S-Basis): LT . . . . . . . . . . E, 103 ksi . . . . . . Ec, 103 ksi . . . . . G, 103 ksi . . . . . . µ ............
10.5 10.7 4.0 0.33
10.7 10.9 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . C, K, and α . . . . . a b c
0.101 See Figure 3.2.1.0
Inactive for new design. Bearing values are “dry pin” values per Section 1.4.7.1. Design allowables were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment.
3-53
Table 3.2.2.0(c1). Design Mechanical and Physical Properties of Clad 2014 Aluminum Alloy Sheet and Plate AMS-QQ-A-250/3a
Specification . . . . . . . . Form . . . . . . . . . . . . . . Temper . . . . . . . . . . . . Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . .
Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . a b c d
0.020-0.039 A B
Plate T651b
0.040-0.249 A B
0.250-0.499 A B
0.500-1.000c A B
1.001-2.000c A B
2.001-2.500c A B
2.501-3.000c A B
3.001-4.000c A B
62 61 ...
64 63 ...
65 64 ...
67 66 ...
63 64 ...
65 66 ...
63 64 ...
64 65 ...
63 64 ...
64 65 ...
61 62 59d
62 63 60d
... 60 ...
... 61 ...
... 56 ...
... 57 ...
54 53 ...
56 55 ...
57 56 ...
59 58 ...
58 57 ...
60 59 ...
57 56 ...
58 57 ...
57 56 ...
59 58 ...
56 55 54d
58 57 56d
... 54 ...
... 56 ...
... 52 ...
... 54 ...
54 55 ... 37
56 57 ... 38
57 58 ... 39
59 60 ... 40
56 59 ... 38
58 61 ... 39
55 58 ... 38
56 59 ... 38
55 58 ... 38
57 60 ... 38
54 57 59 37
56 59 61 37
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
93 117
96 121
97 123
100 127
101 128
104 132
101 128
102 130
101 128
102 130
97 124
99 126
... ...
... ...
... ...
... ...
76 86
78 89
80 91
83 94
87 102
90 106
85 100
87 102
85 100
88 104
84 98
87 102
... ...
... ...
... ...
... ...
7
...
8
...
8
...
6
...
4
...
...
2
...
1
...
10.5 10.7 4.0 0.33
2 10.7 10.9 4.0 0.33
0.101 ...
Mechanical properties established under MIL-QQ-A-250/3 Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. These values, except in the ST direction, have been adjusted to represent the average properties across the whole section, including the 2½ percent per side nominal cladding thickness. Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).
MMPDS-06 1 April 2011
3-54
Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ...............
Sheet T6
MMPDS-06 1 April 2011
Table 3.2.2.0(c2). Design Mechanical and Physical Properties of Clad 2014 Aluminum Alloy Sheet and Plate (Continued)
AMS-QQ-A-250/3a
Specification . . . . . . . Form . . . . . . . . . . . . .
Plateb
Sheet T62c
Temper . . . . . . . . . . . 0.0200.039
Thickness, in. . . . . . . Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............ LT . . . . . . . . . . . Fty, ksi: L ............ LT . . . . . . . . . . . Fcy, ksi: L ............ LT . . . . . . . . . . . Fsu, ksi . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . Fbry, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . e, percent (S-Basis): LT . . . . . . . . . . . E, 103 ksi . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . µ .............
0.250- 0.500- 1.001- 2.001- 2.501- 3.0010.499 1.000d 2.000d 2.500d 3.000d 4.000d
0.0400.249
A
B
A
B
S
S
S
S
S
S
62 61
64 63
65 64
67 66
62 64
62 64
62 64
60 62
... 60
... 56
54 53
56 55
57 56
59 58
55 57
54 56
54 56
53 55
... 54
... 52
54 55 37
56 57 38
57 58 39
59 60 40
57 58 36
56 57 36
56 56 36
55 55 35
... ... ...
... ... ...
93 117
96 121
97 123
100 127
96 121
96 121
96 121
93 118
... ...
... ...
76 86
78 89
80 91
83 94
81 96
79 94
79 94
78 92
... ...
... ...
7
...
8
...
8
6
4
2
2
1
10.5 10.7 4.0 0.33
10.7 10.9 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . . a b c
d
0.101 ...
Mechanical properties established under MIL-QQ-A-250/3 Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. Design allowables were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. These values have been adjusted to represent the average properties across the whole section, including the 2½ percent per side nominal cladding thickness.
3-55
MMPDS-06 1 April 2011
Table 3.2.2.0(d). Design Mechanical and Physical Properties of 2014 Aluminum Alloy Bar, Rod, and Shapes; Rolled, Drawn, or Cold-Finished
AMS 4121 and AMS-QQ-A-225/4a
Specification . . . . . . . Form . . . . . . . . . . . . .
Bar, rod, and shapes, rolled, drawn, or cold-finished
Temper . . . . . . . . . . . Thickness, in. . . . . . . Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............. LT . . . . . . . . . . . Fty, ksi: L ............. LT . . . . . . . . . . . Fcy, ksi: L ............. LT . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent: L .............
T62b
T6 and T651 Up to 1.0011.000 2.000
2.0013.000
3.0014.000
4.0015.000c
5.0016.000c
6.0018.000c
#8.000c
S
S
S
S
S
S
S
S
65 64d
65 63d
65 62d
65 61d
65 60d
65 59d
65 ...
65 ...
55 53d
55 52d
55 51d
55 50d
55 49d
55 48d
55 ...
55 ...
53 ... 38
53 ... 38
53 ... 38
53 ... 38
53 ... 38
53 ... 38
53 ... 38
... ... ...
98 124
... ...
... ...
... ...
... ...
... ...
... ...
... ...
77 88
... ...
... ...
... ...
... ...
... ...
... ...
... ...
8
8
8
8
8
8
8
8
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . . µ .............. Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . .
AMS-QQA-225/4a
10.5 10.7 4.0 0.33 0.101 See Figure 3.2.1.0
a Mechanical properties were established under MIL-QQ-A-225/4. b Design allowables were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. c For square, rectangular, hexagonal, or octagonal bar, maximum thickness is 4 in., and maximum cross-sectional area is 36 sq. in. d Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).
3-56
Table 3.2.2.0(e). Design Mechanical and Physical Properties of 2014 Aluminum Alloy Die Forging
a b c d e f g
AMS 4133, AMS-A-22771 a, and AMS-QQ-A-367b
AMS-A-22771a and AMS-QQ-A-367b Die forging
T6 # 1.000 A B
c
1.001-2.000 A B
2.001-3.000 A B
3.001-4.000 S
# 1.000 A B
T652 1.001-2.000 2.001-3.000 A B A B
3.001-4.000 S
65 64f
67 ...
65 64f
67 ...
65 63f
67 ...
63 63
65 64f
67 ...
65 64f
67 ...
65 63f
67 ...
63 63
56 55f
59 ...
56 55f
59 ...
55 54f
58 ...
55 54
56 55f
59 ...
56 55f
59 ...
55 54f
58 ...
55 54
59 56 40
62 59 41
59 56 40
62 59 41
58 55 39
61 58 40
58 55 39
56 59 40
59 62 41
56 59 40
59 62 41
55 58 39
58 61 40
55 58 39
91 123
94 127
91 123
94 127
91 123
94 127
88 120
91 123
94 127
91 123
94 127
91 123
94 127
88 120
73 90
77 94
73 90
77 94
71 88
75 93
71 88
73 90
77 94
73 90
77 94
71 88
75 93
71 88
6 3
... ...
6 2
... ...
6 2
... ...
6 2
6 3
... ...
6 2
... ...
6 2
... ...
6 2
10.5 10.8 4.0 0.33 0.101 See Figure 3.2.1.0
Mechanical properties were established under MIL-A-22771. Inactive for new design. Mechanical properties were established under MIL-QQ-A-367. Inactive for new design. When die forgings are machined before heat treatment, the mechanical properties are applicable, provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. Thickness at time of heat treatment. T indicates any grain direction not within ±15E of being parallel to the forging flow lines. Fcy(T) values are based upon short-transverse (ST) test data. Specification value. T tensile properties are presented on S-Basis only. Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-57
Specification . . . . . . Form . . . . . . . . . . . . Temper . . . . . . . . . . Thicknessd, in. . . . . Basis . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............ Te . . . . . . . . . . . Fty, ksi: L ............ Te . . . . . . . . . . . Fcy, ksi: L ............ ST . . . . . . . . . . Fsu, ksi . . . . . . . . . Fbrug, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . Fbryg, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . e, percent (S-Basis): L ............ Te . . . . . . . . . . . E, 103 ksi . . . . . . . Ec, 103 ksi . . . . . . G, 103 ksi . . . . . . . µ .............. Physical Properties: ω, lb/in.3 . . . . . . . C, K, and α . . . . . .
Table 3.2.2.0(f). Design Mechanical and Physical Properties of 2014 Aluminum Alloy Hand Forging AMS 4133, AMS-A-22771a, and AMS-QQ-A-367b
Specification . . . . . . . . . Form . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . Cross-Sectional Area, in.2 Thickness, in. . . . . . . . .
Hand forging T6c
T652d # 256 7.0018.000 #2.000 S S
#2.000 S
2.0013.000 S
3.0014.000 S
4.0015.000 S
5.0016.000 S
6.0017.000 S
2.0013.000 S
3.0014.000 S
4.0015.000 S
5.0016.000 S
6.0017.000 S
7.0018.000 S
65 65 ...
64 64 62e
63 63 61e
62 62 60e
61 61 59e
60 60 58e
59 59 57e
65 65 ...
64 64 62e
63 63 61e
62 62 60e
61 61 59e
60 60 58e
59 59 57e
56 56 ...
56 55 55e
55 55 54e
54 54 53e
53 53 53e
52 52 52e
51 51 51e
56 56 ...
56 55 52e
55 55 51e
54 54 50e
53 53 50e
52 52 49e
51 51 48e
56 56 ... 40
56 55 ... 39
55 55 ... 39
54 54 ... 38
53 53 ... 38
... ... ... ...
... ... ... ...
56 57 ... 38
56 56 57 37
55 56 56 37
54 55 55 36
53 54 55 36
... ... ... ...
... ... ... ...
91 117
90 115
88 113
87 112
85 110
... ...
... ...
88 115
87 113
85 111
84 110
83 108
... ...
... ...
78 90
78 90
77 88
76 87
74 85
... ...
... ...
77 91
76 89
76 89
74 87
73 86
... ...
... ...
8 3 ...
8 3 2
8 3 2
7 2 1
7 2 1
6 2 1
6 2 1
8 3 ...
8 3 2
8 3 2
7 2 1
7 2 1
6 2 1
6 2 1
10.5 10.8 4.0 0.33 0.101 See Figure 3.2.2.0
a Mechanical properties were established under MIL-A-22771. Inactive for new design. b Mechanical properties were established under MIL-QQ-A-367. Inactive for new design. c When hand forgings are machined before heat treatment, the section thickness at time of heat treatment shall determine the minimum mechanical properties as long as the original (as-forged) thickness does not exceed the maximum thickness for the alloy as shown in the table. d Bearing values are “dry pin” values per Section 1.4.7.1. e Caution: This specific alloy, temper, and product form exhibits poor stress-corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).
MMPDS-06 1 April 2011
3-58
Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, K, and α . . . . . . . . .
AMS-A-22771a and AMS-QQ-A-367b
Table 3.2.2.0(g). Design Mechanical and Physical Properties of 2014 Aluminum Alloy Extrusion
a b c d e f
0.125-0.499 A B
0.500-0.749 A B
AMS 4153 and AMS-QQ-A-200/2a AMS-QQ-A-200/2a Extruded bar, rod, and shapes T6, T6510, and T6511 T62b #25 >25-#32 All #25 >25-#32 0.750-1.499 1.500-1.750 1.751-2.999 3.000-4.499 $0.750 #0.749 $0.750 $0.750 A B A B S S S S S S
60 60d
62 ...
64 64d
68 ...
68 63d
70 ...
68 61d
71 ...
68 61
68 58
68 56
60 ...
60 ...
60 ...
53 53d
57 ...
58 55d
62 ...
60 54d
63 ...
60 52d
63 ...
60 52
60 49
58 47
53 ...
53 ...
53 ...
52 ... 35
56 ... 36
57 ... 37
61 ... 39
59 ... 39
62 ... 41
59 ... 39
62 ... 41
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
90 116
93 120
96 124
102 132
102 132
105 136
102 132
106 138
... ...
... ...
... ...
... ...
... ...
... ...
73 85
78 91
80 93
85 99
82 96
86 101
82 96
86 101
... ...
... ...
... ...
... ...
... ...
... ...
7 5f
... ...
7 5
... ...
7 2
... ...
7 2
... ...
7 2 10.8 11.0 4.1 0.33
7 1
6 1
7 ...
7 ...
6 ...
0.101 See Figure 3.2.2.0
Mechanical properties were established under MIL-QQ-A-200/2. Inactive for new design. Design allowables were based upon data obtained from testing samples of material, supplied in O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. The mechanical properties are to be based upon the thickness at the time of quench. S-Basis. Bearing values are “dry pin” values per Section 1.4.7.1. For 0.375-0.499 in.
MMPDS-06 1 April 2011
3-59
Specification . . . . . . . . . Form . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . Cross-Sectional Area, in.2 Thickness or Dia., in.c . Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............... LT (S-Basis) . . . . . . Fty, ksi: L ............... LT (S-Basis) . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbrue, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbrye, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent (S-Basis): L ............... LT . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................. Physical Properties: ω, lb/in.3 . . . . . . . . . . C, K, and α . . . . . . . . .
MMPDS-06 1 April 2011
Table 3.2.2.0(h). Typical Stress-Strain Parameters for 2014 Aluminum Alloy Temper/Product Form
Condition
Temperature, EF
0.02-0.039 in. thickness RT 0.04-0.249 in. thickness ½ hr. exposure 100 hr. exposure ½ and 2 hr. exposure T6 Clad Sheet
1000 hr. exposure
Tension, ksi
Grain Direction
n
TYS
L
32
LT
TUS
nc
CYS
57
17
57
17
57
13
60
L
27
62
15
62
LT
20
60
17
65
9.5
60
8
62
4
54
6.4
46
8.2
47
10
20
6
16
7
22
4.3
9
6
8
13
7
200EF
300EF
½ hr. exposure
100 hr. exposure
400EF
LT
1000 hr. exposure ½ hr. exposure
500EF
½ hr. exposure 10 hr. exposure
600 EF
100 hr. exposure T62 Clad Plate
0.250 - 2.000 in. thickness
RT
T651 Plate
0.250 - 2.000 in. thickness
RT
T6 Bar, Rod and Shapes
> 3 in. thickness
RT
T6 Forging
T652 Hand Forging
T6 Extrusion
RT
2.001 - 3.000 in. thickness 0.125 - 0.499 in. thickness
RT
RT
L
29
64
27
69
LT
29
64
27
70
L
30
66
15
68
LT
19
65
18
66
L
31
62
25
60
L
70
LT
68
L
18
62
67
17
63
LT
18
62
66
18
65
ST
13
60
22
67
23
62
15
64
26
68
14
72
L
29
64
17
68
LT
29
64
32
68
L
32
64
74
16
68
LT
18
64
70
18
68
L
> 0.500 in. thickness T62 Extrusion
< 0.499 in. thickness
RT
T651X Extrusion
0.500 - 0.749 in. thickness
RT
3-60
Compression, ksi
71
MMPDS-06 1 April 2011
200
0.60
180
0.55
160
0.50
140
0.45
α - Between 70 °F and indicated temperature K - At indicated temperature C - At indicated temperature
14
13
0.40 K (T6)
100
0.35
12
80
0.30
11
0.25
10
60
C 0.20
9
20
0.15
8
0
0.10
40
α, 10-6 in./in./°F
120
C, Btu/ (lb)(°F)
K, Btu/ [ (hr)(ft2)(°F)/ft]
α
-400
-200
0
200
400
600
800
1000
Temperature, °F Figure 3.2.2.0. Effect of temperature on the physical properties of 2014 aluminum alloy.
3-61
,., 2014- T6, Tf>51. T651X
'20 51'" ngth at l"mperatu",
,• •,•• ,•
Exposure up to 10,000 hi"
'00
~
•••
-, •••
80
...
,"".
0
•
..
'00 ..
50
•
,~
10,000 hr
., 20
o -600
-200
o
200
'00
800
'000
Figure 3.2.2.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2014-T6, T651, T6510 and T6511 aluminum alloy (bare and clad sheet and plate 0.040-1.500 in. thick; extruded bar, rod and shapes $ 0.750 in. thick with crosssectional area # 32 sq. in.).
3-62
MMPDS-06 1 April 2011
160
140
Percent F at Room Temperature tu
120 Strength at temperature Exposure up to 10,000 hr
100
80
60
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
40
20
0 -400
-200
0
200
400
600
800
Temperature, F
Figure 3.2.2.1.1(b). Effect of temperature on the ultimate strength (Ftu) of 2014-T6, T651, T6510 and T6511 aluminum alloy (bare and clad sheet 0.020-0.039 in. thick; bare and clad plate 1.501-4.000 in. thick; rolled bar, rod and shapes; hand and die forgings; extruded bar, rod and shapes 0.125-0.749 in. thick with crosssectional area # 25 sq. in.).
3-63
MMPDS-06 1 April 2011
160
140
Percent Fty at Room Temperature
120 Strength at temperature Exposure up to 10,000 hr
100
80
60
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
40
20
0 -400
-200
0
200
400
600
800
Temperature, F
Figure 3.2.2.1.1(c). Effect of temperature on the tensile yield strength (Fty) of 2014-T6, T651, T6510 and T6511 aluminum alloy (bare and clad plate 3.0014.000 in. thick; rolled bar, rod and shapes; hand and die forgings; extruded bar, rod and shapes 0.125-0.499 in. thick with cross-sectional area # 25 sq. in.).
3-64
MMPDS-06 1 April 2011
160
140
Percent Fty at Room Temperature
120 Strength at temperature Exposure up to 10,000 hr 100
80
60
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
40
20
0 -400
-200
0
200
400
600
800
Temperature, °F Figure 3.2.2.1.1(d). Effect of temperature on the tensile yield strength (Fty) of 2014T6, T651, T6510, and T6511 aluminum alloy (bare and clad sheet and plate 0.0203.000 in. thick; extruded bar, rod and shapes 0.500-0.749 in. thick with crosssectional area # 25 sq. in. and $ 0.750 in. thick with cross-sectional area # 32 sq. in.).
3-65
MMPDS-06 1 April 2011
Percentage of Room Temperature Ftu
100
80 1/2 10 100 1 000 10,000
60
hr hr hr hr hr
40
20 S trength at room tem perature E xposure up to 10,000 hr
N ot applicab le to extrusions w ith t > 0.75 inch
0 0
100
2 00
300
400
5 00
600
700
8 00
T em perature, °F
Figure 3.2.2.1.1(e). Effect of exposure at elevated temperatures on the room temperature tensile ultimate strength (Ftu) of 2014-T6, T651, T6510, and T6511 aluminum alloy (all products except thick extrusions).
Percentage of Room Temperature Fty
100
80 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40 Not applicable to exrtrusions with t > 0.75 inch 20 Strength at room temperature Exposure up to 10,000 hr 0 0
100
200
300
400
500
600
700
Temperature, F
Figure 3.2.2.1.1(f). Effect of exposure at elevated temperature on the room temperature tensile yield strength (Fty) of 2014-T6, T651, T6510, and T6511 aluminum alloy (all products except thick extrusions).
3-66
800
MMPDS-06 1 April 2011
Percentage of Room Temperature Fcy
100
80
1/2 hr 2 hr 10 hr 100 hr 1000 hr
60
40
Strength at temperature Exposure up to 10,000 hr 20
Not applicable to extrusions with t > 0.75 inch 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.2.1.2(a). Effect of temperature on the compressive yield strength (Fcy) of 2014T6, T651, T6510 and T6511 aluminum alloy (all products except thick extrusions).
Percentage of Room Temperature Fsu
100
80 1/2 hr 2 hr 10 hr 100 hr 1000 hr
60
40 Strength at temperature Exposure up to 1000 hr 20 Not applicable to extrusions with t > 0.75 inch 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.2.1.2(b). Effect of temperature on the shear ultimate strength (Fsu) of 2014-T6, T651, T6510 and T6511 aluminum alloy (all products except thick extrusions).
3-67
MMPDS-06 1 April 2011
Percentage of Room Temperature Fbru
100
80
½ hr 2 hr 10 hr 100 hr 1000 hr
60
40
Strength at temperature Exposure up to 1000 hr 20
Not applicable to extrusions with t > 0.75 inch 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.2.1.3(a). Effect of temperature on the bearing ultimate strength (Fbru) of 2014T6, T651, T6510 and T6511 aluminum alloy (all products except thick extrusions).
Percentage of Room Temperature Fbry
100
80
½ hr 2 hr 10 hr 100 hr 1000 hr
60
40 Strength at temperature Exposure up to 1000 hr 20 Not applicable to extrusions with t>0.75 inch 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.2.1.3(b). Effect of temperature on the bearing yield strength (Fbry) of 2014-T6, T651, T6510 and T6511 aluminum alloy (all products except thick extrusions).
3-68
MMPDS-06 1 April 2011
Figure 3.2.2.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 2014 aluminum alloy.
3-69
MMPDS-06 1 April 2011
100
Elongation at temperature Exposure up to 10,000 hr
Percent Elongation (e)
80
TYPICAL
60
10,000 hr 1000 hr 100 hr 10 hr 1/2 hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, F
Figure 3.2.2.1.5(a). Effect of temperature on the elongation of 2014-T6, T651, T6510 and T6511 aluminum alloy (all products except thick extrusions).
100
Elongation at room temperature Exposure up to 10,000 hr
Percent Elongation (e)
80
TYPICAL 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, F
Figure 3.2.2.1.5(b). Effect of exposure at elevated temperatures on the room temperature elongation of 2014-T6, T651, T6510 and T6511 aluminum alloy (all products except thick extrusions).
3-70
MMPDS-06 1 April 2011 100
80
Stress, ksi
Long Transverse 60
Longitudinal
40
Ramberg-Osgood n (L-tension) = 32 n (LT-tension) = 17
20
TYPICAL Thickness: 0.020 - 0.039 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.2.1.6(a). Typical tensile stress-strain curves for clad 2014-T6 aluminum alloy sheet at room temperature.
100
80
Stress, ksi
Longitudinal 60
Long transverse
40
Ramberg-Osgood n (L-tension) = 27 n (LT-tension) = 20
20
TYPICAL Thickness: 0.040 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.2.1.6(b). Typical tensile stress-strain curves for clad 2014-T6 aluminum alloy sheet at room temperature.
3-71
MMPDS-06 1 April 2011 100
80
Long transverse
Stress, ksi
Long transverse 60
Longitudinal Longitudinal 40
Ramberg-Osgood n (L-comp.) = 17 n (LT-comp.) = 13
20
TYPICAL Thickness: 0.020 - 0.039 in. 0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2014-T6 aluminum alloy sheet at room temperature.
100
80
Stress, ksi
Long transverse
Long transverse
60
Longitudinal
Longitudinal
40
Ramberg-Osgood n (L-comp.) = 17 n (LT-comp.) = 13
20
TYPICAL Thickness: 0.040 - 0.249 in. 0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2014-T6 aluminum alloy sheet at room temperature.
3-72
MMPDS-06 1 April 2011
100
Long Transverse
80
Stress, ksi
100-hr exposure 1/2-hr exposure 60
40
Ramberg-Osgood n (1/2-hr exp.) = 9.5 n (100-hr exp.) = 8.0
20
TYPICAL 0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Compressive Tangent Modulus, 103 ksi
Figure 3.2.2.1.6(e). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2014-T6 aluminum alloy sheet at 200E EF. 100
Long Transverse
Stress, ksi
80
60
1/2 & 2-hr exposure 1000-hr exposure
40
Ramberg-Osgood 20
n (1/2 & 2-hr exp.) = 4.0 n (1000-hr exp.) = 6.4 TYPICAL
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2014-T6 aluminum alloy sheet at 300E EF.
3-73
MMPDS-06 1 April 2011 60
Long Transverse 1/2-hr exposure
50
Ramberg-Osgood
Stress, ksi
40
n (1/2-hr exp.) = 8.2 n (100-hr exp.) = 10 n (1000-hr exp.) = 6.0 1000-hr exposure 100-hr exposure
30
TYPICAL
20
10
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Compressive Tangent Modulus, 103 ksi
Figure 3.2.2.1.6(g). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2014-T6 aluminum alloy sheet at 400E EF.
50
Long Transverse
Ramberg-Osgood n (1/2-hr exp.) = 7.0
40
Stress, ksi
TYPICAL 1/2-hr exposure
30
20
10
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Compressive Tangent Modulus, 103 ksi
Figure 3.2.2.1.6(h). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2014-T6 aluminum alloy sheet at 500E EF.
3-74
MMPDS-06 1 April 2011 25 Long Transverse
20
Stress, ksi
15 100-hr exposure 10-hr exposure 1/2-hr exposure 10
Ramberg - Osgood n (1/2-hr exp.) = 4.3 n (10-hr exp.) = 6.0 n (100-hr exp.) = 13
5
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(i). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2014-T6 aluminum alloy sheet at 600E EF. 100
LT - compression L - compression LT - tension L - tension
80 LT - compression L - compression
Stress, ksi
60
Ramberg - Osgood n(L-tension) = 29 n(LT-tension) = 29 n (L-comp.) = 27 n (LT-comp.) = 27
40
20
TYPICAL Thickness = 0.250 - 2.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(j). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for clad 2014-T62 aluminum alloy plate at room temperature.
3-75
MMPDS-06 1 April 2011 100
80
L - tension LT - tension
Stress, ksi
60
Ramberg - Osgood n ( L - tension) = 30 n (LT - tension) = 19
40
TYPICAL Thickness = 0.250 - 2.000 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.2.1.6(k). Typical tensile stress-strain curves for 2014-T651 aluminum alloy plate at room temperature.
100
LT - compression
80
L - compression LT - compression
60
Stress, ksi
L - compression
40 Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 18 20
TYPICAL Thickness = 0.250 - 2.000 in.
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.2.1.6(l). Typical compressive stress-strain and compressive tangentmodulus curves for 2014-T651 aluminum alloy plate at room temperature.
3-76
MMPDS-06 1 April 2011 100
80
L - tension L - compression 60
Stress, ksi
L - compression
40
Ramberg - Osgood n (tension) = 31 n (comp.) = 25 TYPICAL
20
Thickness ≤ 3.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(m). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2014-T6 aluminum alloy rolled bar, rod, and shapes at room temperature. 100
80
ST - compression LT - compression L - compression L and LT - tension ST - tension
ST - compression LT - compression L - compression
Stress, ksi
60
Ramberg - Osgood n(L-tension) = 18 n(LT-tension) = 18 n(ST-tension) = 13 n (L-comp.) = 17 n (LT-comp.) = 18 n(ST-comp.) = 22
40
20
TYPICAL Thickness = 2.001 - 3.000 in. 0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.2.1.6(n). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2014-T652 aluminum alloy hand forging at room temperature.
3-77
MMPDS-06 1 April 2011 100
80
L - compression
L - compression 60
Stress, ksi
L - tension
Ramberg - Osgood n (tension) = 23 n (comp.) = 15
40
TYPICAL Thickness = 0.125 - 0.499 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(o). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2014-T6 aluminum alloy extrusion at room temperature. 100
80
L - compression
L - compression
L - tension
Stress, ksi
60
Ramberg - Osgood n (tension) = 26 n (comp.) = 14
40
TYPICAL Thickness > 0.500 in. Area ≤ 25 in.2
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(p). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2014-T6 aluminum alloy extrusion at room temperature.
3-78
MMPDS-06 1 April 2011 100
LT-Compression
80
L-Compression LT-Compression
60
Stress, ksi
L-Compression L-Tension LT-Tension
40
Ramberg - Osgood n(L-tension) = 29 n(LT-tension) = 17 n (L-comp.) = 29 n (LT-comp.) = 32
20 TYPICAL Thickness ≤ 0.499 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(q). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2014-T62 aluminum alloy extrusion at room temperature.
100
80 L and LT - compression
Stress, ksi
60 LT - tension L - tension Ramberg - Osgood n(L-tension) = 32 n(LT-tension) = 16 n (L-comp.) = 18 n (LT-comp.) = 18
40
20
TYPICAL Thickness = 0.500 - 0.749 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.2.1.6(r). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2014-T651X aluminum alloy extrusion at room temperature.
3-79
MMPDS-06 1 April 2011
/RQJLWXGLQDO [ [
/RQJWUDQVYHUVH
6WUHVVNVL
7<3,&$/
6WUDLQLQLQ
Figure 3.2.2.1.6(s). Typical tensile stress-strain curves (full range) for 2014-T6 aluminum alloy forging at room temperature.
3-80
MMPDS-06 1 April 2011
/RQJLWXGLQDO
/RQJWUDQVYHUVH
6WUHVVNVL
[
[
7<3,&$/
6WUDLQLQLQ
Figure 3.2.2.1.6(t). Typical tensile stress-strain curves (full range) for 2014-T652 aluminum alloy forging at room temperature.
3-81
MMPDS-06 1 April 2011
/RQJLWXGLQDO
;
6WUHVVNVL
7KLFNQHVV
≤LQ
7<3,&$/
6WUDLQLQLQ
Figure 3.2.2.1.6(u). Typical tensile stress-strain curves (full range) for 2014-T62 aluminum alloy extrusion at room temperature.
3-82
MMPDS-06 1 April 2011
/RQJLWXGLQDO
[
[ /RQJWUDQVYHUVH
6WUHVVNVL
7KLFNQHVVLQ 7<3,&$/
6WUDLQLQLQ
Figure 3.2.2.1.6(v). Typical tensile stress-strain curves (full range) for 2014-T651X aluminum alloy extrusion at room temperature.
3-83
MMPDS-06 1 April 2011
Figure 3.2.2.1.8(a). Best-fit S/N curves for unnotched 2014-T6 aluminum alloy, various wrought products, longitudinal direction.
Correlative Information for Figure 3.2.2.1.8(a) Product Form: Drawn rod, 0.75-inch diameter Rolled bar, 1 x 7.5 inch and 1.125 inch diameter Rolled rod, 4.5-inch diameter Extruded rod, 1.25-inch diameter Extruded bar, 1.25 x 4 inch Hand forging, 3 x 6 inch Die forging, 4.5-inch diameter Forged slab, 0.875-inch Properties:
TUS, ksi 67-78
Specimen Details:
TYS, ksi 60-72
Temp.,EF RT
Unnotched
Gross Diameter, inches Net Diameter, inches 1.00 0.400 0.273 0.100 --0.200 --0.160 1.00 0.500
Test Parameters: Loading - Axial Frequency - 1100 to 3600 cpm Temperature - RT Environment - Air No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 21.49-9.44 log (Seq) Seq = Smax (1-R)0.67 Std. Error of Estimate, Log (Life) = 0.51 Standard Deviation, Log (Life) = 1.25 R2 = 83% Sample Size = 127 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Surface Condition: Mechanically polished and as-machined References:
3.2.2.1.8(a), 3.2.2.1.8(b), 3.2.2.1.8(d), and 3.2.2.1.8(e)
3-84
MMPDS-06 1 April 2011 . .
80 Alum. 2014-T6, Kt=1.6 Stress Ratio - 1.00 - 0.40 + 0.06 0.46 x
Maximum Stress, ksi
+
+
60
Runout
→
x x
+
x
x
+
40
+ +
x→
+ +
20
Note: Stresses are based on net section.
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.2.1.1.8(b). Best-fit S/N curves for notched, Kt = 1.6, 2014-T6 aluminum alloy rolled bar, longitudinal direction.
Correlative Information for Figure 3.2.2.1.8(b) Product Form: Rolled bar, 1.125-inch diameter Properties:
TUS, ksi 72
Specimen Details:
TYS, ksi 64
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - RT Environment - Air
Temp.,EF RT
Semicircular circumferential notch, Kt = 1.6 0.45-inch gross diameter 0.4-inch net diameter 0.01-inch root radius 60E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 10.65-4.02 log (Seq-20.2) Seq = Smax (1-R)0.55 Std. Error of Estimate, Log (Life) = 0.33 Standard Deviation, Log (Life) = 0.87 R2 = 86%
Surface Condition: Polished Reference:
3.2.2.1.8(b) Sample Size = 33 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-85
MMPDS-06 1 April 2011
Figure 3.2.2.1.8(c). Best-fit S/N curves for notched, Kt = 2.4, 2014-T6 aluminum alloy rolled bar, longitudinal direction.
Correlative Information for Figure 3.2.2.1.8(c) Product Form: Rolled bar, 1.125-inch diameter Properties:
TUS, ksi 72
Specimen Details:
TYS, ksi 64
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
Temp.,EF RT
Circumferential V-notch, Kt = 2.4 0.500-inch gross diameter 0.400-inch net diameter 0.032-inch notch radius 60E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 10.59-4.36 log (Seq-11.7) Seq = Smax (1-R)0.52 Std. Error of Estimate, Log (Life) = 0.38 Standard Deviation, Log (Life) = 1.18 R2 = 90%
Surface Condition: Polished Reference:
3.2.2.1.8(b) Sample Size = 39 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-86
MMPDS-06 1 April 2011
Figure 3.2.2.1.8(d). Best-fit S/N curves for notched, Kt = 3.4, 2014-T6 aluminum alloy rolled and extruded bar, longitudinal direction.
Correlative Information for Figure 3.2.2.1.8(d) Product Form: Extruded bar, 1.125-inch diameter Properties:
TUS, ksi 75
Specimen Details:
TYS, ksi 67
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - RT Environment - Air
Temp.,EF RT
Circumferential V-notch, Kt = 3.4 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch notch radius 60E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 8.35-3.10 log (Seq-10.6) Seq = Smax (1-R)0.52 Std. Error of Estimate, Log (Life) = 0.34 Standard Deviation, Log (Life) = 1.10 R2 = 90%
Surface Condition: Smooth machine finish References:
3.2.2.1.8(b) and 3.2.2.1.8(c) Sample Size = 45 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-87
MMPDS-06 1 April 2011 . .
60
Maximum Stress, ksi
Alum. 2014-T6 Kt=2.4 Stress Ratio - 1.000 Runout →
40
20
→→ Note: Stresses are based on net section.
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.2.2.1.8(e). Best-fit S/N curves for notched, Kt = 2.4, 2014-T6 aluminum alloy hand forging, longitudinal and short transverse directions.
Correlative Information for Figure 3.2.2.1.8(e) Product Form: Hand forging, 3 x 6 inch Properties:
TUS, ksi TYS, ksi Not specified
Specimen Details:
Test Parameters: Loading - Axial Frequency - Not specified Temperature - RT Environment - Air
Temp.,EF RT
Circumferential V-notch, Kt = 2.4 0.273-inch gross diameter 0.100-inch net diameter 0.010-inch notch radius 60E flank angle, ω
No. of Heats/Lots: Not specified
Surface Condition: Mechanically polished
Maximum Stress Equation: Log Nf = 12.4-5.95 log (Smax) Std. Error of Estimate, Log (Life) = 0.53 Standard Deviation, Log (Life) = 0.91 R2 = 66%
Reference:
Sample Size = 28
3.2.2.1.8(d)
3-88
MMPDS-06 1 April 2011 3.2.3 2017 ALLOY 3.2.3.0 Comments and Properties — 2017 is a heat-treatable Al-Cu alloy available in the form of rolled bar, rod, and wire, and is used principally for fasteners. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. A material specification for 2017 aluminum alloy is presented in Table 3.2.3.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.3.0(b). Figure 3.2.3.0 shows the effect of temperature on thermal expansion. Table 3.2.3.0(a). Material Specifications for 2017 Aluminum Alloy
Specification
Form
AMS-QQ-A-225/5 AMS 4118
Rolled bar and rod Bar and rod, rolled, drawn, or cold-finished
15
-6 α, 10 in./in./F
14
13
12
α − B e tw e e n 7 0 F a n d in d ic a te d t e m p e r a t u r e 11 -4 0 0
-2 0 0
0
200
400
600
800
T e m p e ra tu re , F
Figure 3.2.3.0. Effect of temperature on the thermal expansion of 2017 aluminum alloy.
The temper index for 2017 is as follows: Section 3.2.3.1
Temper T4, T451, and T42
3-89
1000
MMPDS-06 1 April 2011
Table 3.2.3.0(b). Design Mechanical and Physical Properties of 2017 Aluminum Alloy Bar and Rod; Rolled, Drawn, or Cold-Finished
Specification . . . . . . . . . . . . .
AMS 4118 and AMS-QQ-A-225/5a
Form . . . . . . . . . . . . . . . . . . .
Bar and rod; rolled, drawn, or cold-finished
Temper . . . . . . . . . . . . . . . . .
T4, T451, T42b
Cross-Sectional Area, in.2 . . .
#50
Thickness or Diameter, in. . .
#8.000
Basis . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): L ..................
55 ... 32 ... 32c ... 33 83 105 45 51 12
3
10.4 10.6 3.95 0.33
E, 10 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ...................
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . α, 10-6 in./in./EF . . . . . . . .
0.101 0.23 (at 212EF) 78 (at 77EF) See Figure 3.2.3.0
a Mechanical properties were established under MIL-QQ-A-225/5. b Design allowables were based upon data obtained from testing T4 material and from testing samples of bar and rod, supplied in the O or F temper, which were heat treated to T42 temper to demonstrate response to heat treatment by suppliers. c For the stress-relieved temper T451, the Fcy value may be somewhat lower.
3-90
MMPDS-06 1 April 2011 3.2.3.1 T4, T451, and T42 Temper — The effect of temperature on modulus of elasticity is presented in Figure 3.2.3.1.4.
120
Percentage of Room Temperature E & Ec
Modulus at temperature 100
TYPICAL
80
60
40
20 -600
-400
-200
0
200
400
600
800
1000
Temperature, °F Figure 3.2.3.1.4. Effect of temperature on the tensile and compression moduli (E and Ec) of 2017 aluminum alloy.
3-91
MMPDS-06 1 April 2011 3.2.4 2024 ALLOY 3.2.4.0 Comments and Properties — 2024 aluminum alloy is a heat-treatable Al-Cu alloy that is available in a wide variety of product forms and tempers. The properties vary markedly with temper; those in T3- and T4-type tempers are noteworthy for their high toughness, while T6- and T8-type tempers have very high strength. This alloy has excellent properties and creep resistance at elevated temperatures. The T6- and T8-type tempers have very high resistance to corrosion. However, as shown in Table 3.1.2.3.1(a), 2024-T3, -T4, and -T42 rolled plate, rod and bar, and extruded shapes and 2024-T6 and -T62 forgings have a ‘D’ SCC rating. This is the lowest rating and means that SCC failures have occurred in service or would be anticipated if there is any sustained stress. In-service failures are caused by stresses produced by any combination of sources, including solution heat treatment, straightening, forming, fit-up, clamping, sustained service loads, or high service compression stresses that produce residual tensile stresses. These stresses may be tension or compression as well as the stresses due to the Poisson effect, because the actual failures are caused by the resulting sustained shear stresses. Pin-hole flaws in corrosion protection are sufficient for SCC. The weldability of the alloy is discussed in Section 3.1.3.4. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 2024 are presented in Table 3.2.4.0(a). Room temperature mechanical properties are shown in Tables 3.2.4.0(b) through 3.2.4.0(j2). The effect of temperature on the physical properties of this alloy is shown in Figure 3.2.4.0.
Table 3.2.4.0(a). Material Specifications for 2024 Aluminum Alloy
Specification
a
AMS 4037 AMS 4035 AMS-QQ-A-250/4 AMS-QQ-A-250/5 AMS 4120 AMS-QQ-A-225/6 AMS 4086 AMS-WW-T-700/3a AMS 4152 AMS 4164 AMS 4165 AMS-QQ-A-200/3 Inactive for new design.
Form Bare sheet and plate Bare sheet and plate Bare sheet and plate Clad sheet and plate Bar and rod, rolled, or cold-finished Rolled or drawn bar, rod, and wire Tubing, hydraulic, seamless, drawn Tubing Extrusion Extrusion Extrusion Extruded bar, rod, and shapes
3-92
MMPDS-06 1 April 2011 .
- Between 70 F and indicated temperature K - At indicated temperature C - At indicated temperature 15
14
120
13
K (0)
12
0.30
11
60
0.25
10
-6
80
C, Btu/(lb)(F)
2
K, Btu/[(hr)(ft )(F)/ft]
K (T3XX, T4X)
, 10 in./in./F
100
C 0.20
9
20
0.15
8
0
0.10
40
-400
-200
0
200
400
600
800
7 1000
Temperature, F
Figure 3.2.4.0. Effect of temperature on the physical properties of 2024 aluminum alloy.
The following temper designations are more specifically described than in Table 3.1.2.: T81—The applicable designation for 2024-T3 sheet artificially aged to the required strength level. T361—Solution heat treated and naturally aged followed by cold rolling and natural aging treatment. T861—Solution heat treated and naturally aged followed by cold rolling and artificial aging treatment. T72—Solution heat treated and aged by user in accordance with AMS 2770 to provide high resistance to stress corrosion cracking, applicable only to sheet.
3-93
MMPDS-06 1 April 2011 The temper index for 2024 is as follows: Section 3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.4.5
Temper T3, T351, T3510, T3511, T4, and T42 T361 (supersedes T36) T62 and T72 T81, T851, T8510, and T8511 T861 (supersedes T86)
3.2.4.1 T3, T351, T3510, T3511, T4, and T42 Temper — Figures 3.2.4.1.1(a) through 3.2.4.1.5(b) present elevated temperature curves for various properties. Figures 3.2.4.1.6(a) through 3.2.4.1.6(q) present tensile and compressive stress-strain curves and tangent-modulus curves for various product forms and tempers at various temperatures. Figures 3.2.4.1.6(r) through 3.2.4.1.6(w) are full-range, stress-strain curves at room temperature for various product forms. Figures 3.2.4.1.8(a) through 3.2.4.1.8(i) provide S/N fatigue curves for unnotched and notched specimens for T3 and T4 tempers. 3.2.4.2 T361 (supersedes T36) Temper 3.2.4.3 T62 and T72 Temper — Figures 3.2.4.3.1(a) through 3.2.4.3.1(d) and 3.2.4.3.5(a) and 3.2.4.3.5(b) show the effect of temperature on the tensile properties of the T62 temper. Figure 3.2.4.1.4 can be used for the elevated temperature curve for elastic moduli for this temper. Tensile and compressive stressstrain and tangent-modulus curves at room temperature are shown in Figure 3.2.4.3.6. 3.2.4.4 T81, T851, T852, T8510, and T8511 Temper — Figures 3.2.4.4.1(a) through 3.2.4.4.1(d), 3.2.4.4.2(a) and 3.2.4.4.2(b), 3.2.4.4.3(a) and 3.2.4.4.3(b), and 3.2.4.4.5(a) and 3.2.4.4.5(b) present elevated temperature curves for various mechanical properties for the T8XXX temper. Figures 3.2.4.4.1(e) and 3.2.4.4.(f) contain graphs for determining tensile properties after complex thermal exposure. See Section 3.7.4.1 for a detailed discussion of their use. Figures 3.2.4.4.6(a) through 3.2.4.4.6(g) present tensile and compressive stress-strain and tangent-modulus curves for various products and tempers. Figures 3.2.4.4.6(h) through 3.2.4.4.6(j) are full-range stress-strain curves at room temperature for various product forms. 3.2.4.5 T861 (supersedes T86) Temper — Figures 3.2.4.5.1(a) through 3.2.4.5.1(d), 3.2.4.5.2(a) and 3.2.4.5.2(b), 3.2.4.5.3(a) through 3.2.4.5.3(c), and 3.2.4.5.5(a) and 3.2.4.5.5(b) present effect-of-temperature curves for various mechanical properties. Figures 3.2.4.5.6(a) through 3.2.4.5.6(d) present compressive stress-strain and tangent-modulus curves for sheet material at various temperatures. Graphical displays of the residual strength behavior of center-cracked tension panels are presented in Figures 3.2.4.5.10(a) and 3.2.4.5.10(b).
3-94
MMPDS-06 1 April 2011 Table 3.2.4.0(b1). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Sheet and Plate
Specification . . . . .
AMS 4037 and AMS-QQ-A-250/4a
Form . . . . . . . . . . . Temper . . . . . . . . .
Sheet T3
Thickness, in. . . . . Basis . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............ LT . . . . . . . . . . . ST . . . . . . . . . . . Fty, ksi: L ............ LT . . . . . . . . . . . ST . . . . . . . . . . . Fcy, ksi: L ............ LT . . . . . . . . . . . ST . . . . . . . . . . . Fsub, ksi . . . . . . . . Fbrub,c, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . Fbryb,c, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . e, percent: LT . . . . . . . . . . .
0.0080.009 S
0.010-0.128 A B
AMS-QQ-A-250/4a Sheet T361
0.129 - 0.249 A B
0.0200.062 S
Plate
0.063- 0.2500.249 0.500 S S
64 63 ...
64 63 ...
65 64 ...
64 63 ...
66 65 ...
68 67 ...
69 68 ...
67 66 ...
47 42 ...
47 42 ...
48 43 ...
47 42 ...
48 43 ...
56 50 ...
56 51 ...
54 49 ...
39 45 ... 39
39 45 ... 39
40 46 ... 40
39 45 ... 40
40 46 ... 41
47 53 ... 42
48 54 ... 42
46 52 ... 41
104 129
104 129
106 131
106 131
107 133
111 137
112 139
109 135
73 88
73 88
75 90
73 88
75 90
82 97
84 99
81 96
10
d
...
d
...
8
9
9e
E, 103 ksi . . . . . . Ec, 103 ksi . . . . . . G, 103 ksi . . . . . . µ .............
10.5 10.7 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . C, K, and α . . . . .
0.100 See Figure 3.2.4.0
Revised: Apr 2008, MMPDS-04, Item 05-14. a Mechanical properties were established under MIL-QQ-A-250/4. b Grain direction unknown. c Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. d See Table 3.2.4.0(c). e 10% for 0.500 inch.
3-95
10.7 10.9 4.0 0.33
Table 3.2.4.0(b2). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Sheet and Plate
0.250-0.499 A B
0.500-1.000 A B
AMS 4037 and AMS-QQ-A-250/4a Plate T351 1.001-1.500 1.501-2.000 A B A B
2.001-3.000 A B
3.001-4.000 A B
64 64 ...
66 66 ...
63 63 ...
65 65 ...
62 62 ...
64 64 ...
62 62 ...
64 64 ...
60 60d 52b
62 62d 54b
57 57d 49b
59 59d 51b
48 42 ...
50 44 ...
48 42 ...
50 44 ...
47 42 ...
50 44 ...
47 42 ...
49 44 ...
46 42 38b
48 44 40b
43 41 38b
46 43 39b
39 45 ... 38
41 47 ... 39
39 45 ... 37
41 47 ... 38
39 44 ... 37
40 46 ... 38
38 44 ... 37
40 46 ... 38
37 43 46 35
39 45 48 37
35 41 44 34
37 43 47 35
97 119
100 122
95 117
98 120
94 115
97 119
94 115
97 119
91 111
94 115
86 106
89 109
72 86
76 90
72 86
76 90
72 86
76 90
72 86
76 90
72 86
76 90
70 84
74 88
12
...
8
...
7
...
6
...
4
...
4
...
10.7 10.9 4.0 0.33 0.100 See Figure 3.2.4.0
Last Revised: Apr 2009, MMPDS-04CN1, Item 07-41. Design allowables were last confirmed in Item 07-41, MMPDS-04CN1. a Mechanical properties were established under MIL-QQ-a-250/4.. b Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). c Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. d The following rounded T99 and T90 values represent production capacity at the time the table was last confirmed; Ftu LT for 2-3 inches T99 = 63 ksi, T90 = 64 ksi; for 3-4 inches T99 = 60 ksi, T90 = 62 ksi.
MMPDS-06 1 April 2011
3-96
Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fsu, ksi (L & LT) . . . . . . . Fbruc, ksi: L & LT (e/D = 1.5) . . . L & LT (e/D = 2.0) . . . Fbryc, ksi: L & LT (e/D = 1.5) . . . L & LT (e/D = 2.0) . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ................... Physical Properties: ω, lb/in. . . . . . . . . . . . . . C, K, and α . . . . . . . . . . .
Table 3.2.4.0(b3). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Sheet and Plate (Continued) Specification . . . . . . . . . . . . . . . .
AMS-QQ-A250/4
Form . . . . . . . . . . . . . . . . . . . . . .
Coiled Sheet
Temper . . . . . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . .
3
E, 10 ksi . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . µ ........................ Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . a b
c d e
Flat Sheet and Plate
T4
T42
0.010-0.249
AMS-QQ-A-250/4a
0.0100.249 c
0.2500.499 c
b
0.5001.000
1.0012.000
c
S
A
B
S
S
62 62
64 64
62 62
62 62
61 61
40 40
42 42
38 38
38 38
40 40 37
42 42 38
42 41 37
93 118
96 122
56 64 e
S
T62b
c
2.0013.000
0.0100.249 c
0.2500.499 S
c
T72b
0.5002.000 S
2.0013.000
0.010-0.249
c
S
S
S
S
60 60
... 58
63 64
63 64
63 63
... 63
... 60
38 38
38 38
... 38
50 50
50 50
50 50
... 50
... 46
42 41 37
40 41 36
37 41 36
... ... ...
52 53 38
52 52 38
52 48 37
... ... ...
... ... ...
99 123
98 123
94 121
85d 119d
... ...
103 134
103 134
102d 132d
... ...
... ...
59 67
67 80
67 80
67 80
67d 80d
... ...
80 95
80 95
80d 95d
... ...
... ...
...
e
12
8
e
4
5
5
5
5
5
See Table 3.2.4.0(d) See Table 3.2.4.0(d) See Table 3.2.4.0(d) See Table 3.2.4.0(d) 0.100 See Figure 3.2.4.0 71 (at 77EF) for T4X and 87 (at 77EF) for T6X, T7X, See Figure 3.2.4.0 See Figure 3.2.4.0
Mechanical properties were established under MIL-QQ-A-250/4. Design allowables in some cases were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be different than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. See Table 3.2.4.0(c).
MMPDS-06 1 April 2011
3-97
Mechanical Properties: Ftu, ksi: L ...................... LT . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ...................... LT . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ...................... LT . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . . . . . .
AMS 4035 and AMS-QQ-A-250/4a
MMPDS-06 1 April 2011
Table 3.2.4.0(b4). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Sheet and Plate (Continued)
AMS-QQ-A-250/4a
Specification . . . . . . . Form . . . . . . . . . . . . .
Sheet
Plate
Temper . . . . . . . . . . .
T81
T851
Thickness, in. . . . . . .
0.0100.249
Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............. LT . . . . . . . . . . . . Fty, ksi: L ............. LT . . . . . . . . . . . . Fcy, ksi: L ............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent (S-Basis): LT . . . . . . . . . . . .
0.2500.499
Sheet T861
0.5001.000
1.0011.499
0.020- 0.063- 0.2500.062 0.249 0.500
A
B
A
B
S
S
S
S
S
67 67
68 68
67 67
68 68
66 66
66 66
71 70
72 71
70 70
59 58
61 60
58 58
60 60
58 58
57 57
63 62
67 66
64 64
59 58 40
61 60 41
58 59 38
60 61 39
58 58 37
56 57 37
63 65 40
67 69 40
64 67 40
100 127
102 129
102 131
103 133
100 129
100c 129c
108 140
110 142
108 140
83 94
86 97
86 101
89 105
86 101
85c 99c
90 105
96 112
93 109
5
...
5
...
5
5
3
4
4
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . . µ ..............
See Table 3.2.4.0(d) See Table 3.2.4.0(d) See Table 3.2.4.0(d) See Table 3.2.4.0(d)
Physical Properties: ω, lb/in.3 . . . . . . . . C, Btu/(lb)(EF) . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . .
0.100 See Figure 3.2.4.0 87 (at 77EF) See Figure 3.2.4.0
a b c
Plate
Mechanical properties were established under MIL-QQ-A-250/4. Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-98
MMPDS-06 1 April 2011
Table 3.2.4.0(c). Minimum Elongation Values for Bare 2024 Aluminum Alloy Sheet and Plate
Elongation (LT), percent Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thickness, in.: 0.010-0.020 0.021-0.249 0.250-0.499 0.500-1.000 1.001-1.500 1.501-2.000
T3, T4, and T42
.......................... .......................... .......................... .......................... .......................... ..........................
12 15 12 8 7 6
Table 3.2.4.0(d). Modulus Values and Poisson's Ratio for Bare 2024 Aluminum Alloy Sheet and Plate, All Tempers
Property Thickness, in.: 0.010-0.249 . . . . . . . . . . . . . . . . . . . . . . $0.250 . . . . . . . . . . . . . . . . . . . . . .
E
Ec
G
µ
10.5 10.7
10.7 10.9
4.0 4.0
0.33 0.33
3-99
MMPDS-06 1 April 2011 Table 3.2.4.0(e1). Design Mechanical and Physical Properties of Clad 2024 Aluminum Alloy Sheet and Plate
Specification . . . . . . .
AMS-QQ-A-250/5a
Form . . . . . . . . . . . . .
Flat sheet
Temper . . . . . . . . . . .
T3
Thickness, in. . . . . . . Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fsub, ksi . . . . . . . . . Fbrub, c, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbryb, c, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent: LT . . . . . . . . . . . .
0.008-0.009
0.010-0.062
0.063-0.128
0.129-0.249
A
B
A
B
A
B
A
B
59 58
60 59
60 59
61 60
62 61
63 62
63 62
64 63
44 39
45 40
44 39
45 40
45 40
47 42
45 40
47 42
36 42 ... 37
37 43 ... 37
36 42 ... 37
37 43 ... 38
37 43 ... 38
39 45 ... 39
37 43 ... 39
39 45 ... 40
96 119
97 121
97 121
99 123
101 125
102 127
102 127
104 129
68 82
70 84
68 82
70 84
70 84
73 88
70 84
73 88
10
...
d
...
15
...
15
...
E, 103 ksi: Primary . . . . . . . . . Secondary . . . . . . .
10.5 9.5
10.0
3
Ec, 10 ksi: Primary . . . . . . . . . Secondary . . . . . . .
10.7 9.7
10.2
3
G, 10 ksi . . . . . . . . µ ..............
... 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . . .
0.100 ...
Revised Apr 2008, MMPDS-04, Item 05-14 a Mechanical Properties were established under MIL-QQ-A-250/5. b Grain direction unknown. c Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. d See Table 3.2.4.0(f).
3-100
Table 3.2.4.0(e2). Design Mechanical and Physical Properties of Clad 2024 Aluminum Alloy Plate
0.250-0.499 A B
0.500-1.000b A B
AMS-QQ-A-250/5a Plate T351 1.0011.5011.500b 2.000b A B A B
62 62 ...
64 64 ...
61 61 ...
63 63 ...
60 60 ...
62 62 ...
60 60 ...
62 62 ...
58 58 52c
60 60 54c
55 55 49c
57 57 51c
46 40 ...
48 42 ...
45 40 ...
48 42 ...
45 40 ...
48 42 ...
45 40 ...
47 42 ...
44 40 38c
46 42 40c
39 39 38c
41 41 39c
37 43 ... 37
39 45 ... 38
37 42 ... 36
39 45 ... 37
37 42 ... 35
39 44 ... 37
36 42 ... 35
38 44 ... 37
35 41 46 34
37 43 48 35
33 39 44 32
35 41 47 34
94 115
97 119
92 113
95 117
91 111
94 115
91 111
94 115
88 107
91 111
83 102
86 106
69 82
72 86
69 82
72 86
69 82
72 86
69 82
72 86
69 82
72 86
67 80
70 84
12
...
8
...
7
...
6
...
4
...
4
...
Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . .
3.0014.000b
A
B
A
B
10.7 10.2 10.9 10.4 ... 0.33 0.100 ...
Revised Apr 2008, MMPDS-04, Item 05-14. a Mechanical properties were established under MIL-QQ-A-250/5. b These values, except in the ST direction, have been adjusted to represent the average properties across the whole section, including the 2½ percent nominal cladding thickness. c Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). d Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
MMPDS-06 1 April 2011
3-101
Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fsu, ksi, L & LT . . . . . . . Fbrud, ksi: L & LT (e/D = 1.5) . . . L & LT (e/D = 2.0) . . . Fbryd, ksi: L & LT (e/D = 1.5) . . . L & LT (e/D = 2.0) . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . E, 103 ksi: Primary . . . . . . . . . . . . Secondary . . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . . Secondary . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, K, and α . . . . . . . . . . .
2.0013.000b
MMPDS-06 1 April 2011
Table 3.2.4.0(e3). Design Mechanical and Physical Properties of Clad 2024 Aluminum Alloy Sheet and Plate (Continued)
AMS-QQ-A-250/5a
Specification . . . . . . . Form . . . . . . . . . . . . .
Flat sheet and plate
Coiled sheet
Temper . . . . . . . . . . .
T361
T4
Thickness, in. . . . . . .
0.0200.062
0.0630.249
0.2500.499
$0.500
Basis . . . . . . . . . . . . .
S
S
S
S
A
B
A
B
62 61
65 64
65 64
64 63
58 58
59 59
61 61
62 62
53 47
53 48
53 48
52 47
36 36
38 38
38 38
39 39
44 50 38
45 51 40
45 51 40
44 50 39
36 36 37
38 38 37
38 38 38
39 39 39
101 125
105 131
105 131
104 129
96 119
97 121
101 125
102 127
78 92
79 94
79 94
78 92
63 76
66 80
66 80
68 82
8
9
9
10
d
...
15
...
10.5 9.5
10.5 10.0
10.7 10.2
10.5 9.5
10.5 10.0
10.7 9.7
10.7 10.2
10.9 10.4
10.7 9.7
10.7 10.2
Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . E, 103 ksi: Primary . . . . . . . . Secondary . . . . . . Ec, 103 ksi: Primary . . . . . . . . Secondary . . . . . . G, 103 ksi . . . . . . . . µ ...............
... 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . .
0.100 ...
a b c d
0.0100.062
b
0.0630.128
Mechanical properties were established under MIL-QQ-A-250/5. These values have been adjusted to represent the average properties across the whole section, including the 2½ percent nominal cladding thickness. Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.2.4.0(f).
3-102
Table 3.2.4.0(e4). Design Mechanical and Physical Properties of Clad 2024 Aluminum Alloy Sheet and Plate (Continued) AMS-QQ-A-250/5a Flat sheet and plate
Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . .
0.250-0.499 S
0.5001.000c S
1.0012.000c Sd
2.0013.000c S
0.0100.062 S
T62b 0.0630.249 S
62 62
60 60
59 59
58 58
... 56
60 60
62 62
62 62
... 56
... 58
36 36
38 38
36 36
36 36
36 36
... 36
47 47
49 49
49 49
... 43
... 45
39 38 35
40 39 36
42 41 37
39 39 36
38 39 35
35 39 35
... ... ...
49 49 35
51 52 36
51 51 36
... ... ...
... ... ...
91 113
94 117
96 119
99 123
95 119
90 117
83 115
... ...
97 126
100 130
100 130
... ...
... ...
61 74
60 72
61 74
63 76
67 80
63 76
63 76
63 76
... ...
75 89
79 93
79 93
... ...
... ...
...
f
...
15
...
12
8
f
4
5
5
5
5
5
0.008-0.009 A B
0.010-0.062 A B
0.063-0.249 A B
55 55
57 57
57 57
59 59
60 60
34 34
35 35
34 34
35 35
38 37 33
39 38 34
38 37 34
88 109
91 113
60 72 10
T72b 0.2500.499 S
0.0100.062 S
0.0630.249 S
10.5 9.5
10.5 10.0
10.7 10.2
10.5 10.0
10.7 10.2
10.5 9.5
10.5 10.0
10.7 9.7
10.7 10.2
10.9 10.4
10.7 10.2
10.9 10.4
10.7 9.7
10.7 10.2
... 0.33 0.100 ...
a Mechanical properties were established under MIL-QQ-A-250/5. b Design allowables in some cases were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be different than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. c These values have been adjusted to represent the average properties across the whole section, including 2½ percent per side nominal cladding thickness. d See Table 3.1.2.1.1. e Bearing values are “dry pin” values per Section 1.4.7.1. f See Table 3.2.4.0(f).
MMPDS-06 1 April 2011
3-103
Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbru,e ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . Fbry,e ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . E, 103 ksi: Primary . . . . . . . . . . . . Secondary . . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . . Secondary . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . .
T42b
MMPDS-06 1 April 2011
Table 3.2.4.0(e5). Design Mechanical and Physical Properties of Clad 2024 Aluminum Alloy Sheet and Plate (Continued)
Specification . . . . .
AMS-QQ-A-250/5a
Form . . . . . . . . . . .
Flat sheet and plate T851b
Temper . . . . . . . . .
T81
Thickness, in. . . . .
0.010- 0.0630.062 0.249
Basis . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............ LT . . . . . . . . . . Fty, ksi: L ............ LT . . . . . . . . . . Fcy, ksi: L ............ LT . . . . . . . . . . Fsu, ksi . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . Fbry, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . e, percent (S-Basis): LT . . . . . . . . . . E, 103 ksi: Primary . . . . . . Secondary . . . . Ec, 103 ksi: Primary . . . . . . Secondary . . . .
0.2500.499
T861b 0.5001.000c
0.0200.062
0.0630.249
S
S
A
B
S
S
S
S
S
64 62
67 65
65 65
66 66
63 63
65 64
70 69
68 68
67 67
57 54
59 56
56 56
58 58
56 56
59 58
65 64
62 62
61 61
55 55 38
57 57 39
56 57 37
58 59 37
56 56 36
59 61 36
65 67 39
62 65 39
61 64 38
96 122
100 127
99 127
100 129
96 123
99 128
107 138
105 136
104 134
78 90
83 94
83 98
86 101
83 98
84 99
93 109
90 105
88 104
5
5
5
...
5
3
4
4
4
10.5 9.5
10.5 10.0
10.7 10.2
10.5 9.5
10.5 10.0
10.5 10.2
10.7 9.7
10.7 10.2
10.9 10.4
10.7 9.7
10.7 10.2
10.9 10.4
G, 103 ksi . . . . . . µ .............
... 0.33
Physical Properties: ω, lb/in.3 . . . . . . . C, K, and α . . . . .
0.100 ...
a b c
0.250- $0.500 c 0.499
Mechanical properties were established under MIL-QQ-A-250/5. Bearing values are “dry pin” values per Section 1.4.7.1. These values have been adjusted to represent the average properties across the whole section, including the 2½ percent nominal cladding thickness.
3-104
MMPDS-06 1 April 2011
Table 3.2.4.0(f). Minimum Elongation Values for Clad 2024 Aluminum Alloy Sheet and Plate
Elongation (LT), percent Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thickness, in.: 0.010-0.020 0.021-0.062 1.001-1.500 1.501-2.000
T3, T4, T42
........................ ........................ ........................ ........................
12 15 7 6
3-105
MMPDS-06 1 April 2011
Table 3.2.4.0(g). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Drawn Tubing
Specification . . . . . . . . . . . . . . . . . . . .
AMS 4086 and AMS-WW-T-700/3a
Form . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS-WW-T-700/3a
Drawn tubing
Temper . . . . . . . . . . . . . . . . . . . . . . . .
T3
T42b
T81
Wall Thickness, in. . . . . . . . . . . . . . . .
0.0180.500
0.0180.500
0.0100.249
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . e, percent (S-Basis): L .........................
A
B
S
S
64 ...
66 ...
62 ...
66 ...
42 ...
45 ...
38 ...
58 ...
42 ... 39
45 ... 40
38 ... 38
... ... ...
96 122
99 126
93 118
... ...
59 67
63 72
53 61
... ...
c
...
c
c
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . µ ...........................
10.5 10.7 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . a b
c
0.100 See Figure 3.2.4.0
Mechanical properties were established under MIL-WW-T-700/3. Inactive for new design. Design allowables were based upon data obtained from testing samples of material supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. See Table 3.2.4.0(h).
3-106
MMPDS-06 1 April 2011
Table 3.2.4.0(h). Minimum Elongation Values for 2024 Aluminum Alloy Drawn Tubing
Elongation (L), percenta Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T3, T42
Wall Thickness, in.: 0.018-0.024 . . . . . . . . . . . . . . . . . . . . . . . . 0.025-0.049 . . . . . . . . . . . . . . . . . . . . . . . . 0.050-0.259 . . . . . . . . . . . . . . . . . . . . . . . . 0.260-0.500 . . . . . . . . . . . . . . . . . . . . . . . .
10 12 14 16
Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T81
0.010-0.024 . . . . . . . . . . . . . . . . . . . . . . . . 0.025-0.049 . . . . . . . . . . . . . . . . . . . . . . . . 0.050-0.249 . . . . . . . . . . . . . . . . . . . . . . . . a
... 5 6
Full section specimen.
3-107
MMPDS-06 1 April 2011
Table 3.2.4.0(i1). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Bar and Rod; Rolled, Drawn, or Cold-Finished Specification . . . . . . . .
AMS-QQ-A225/6a
AMS 4120 and AMS-QQ-A-225/6a
Form . . . . . . . . . . . . . .
Bar and rod; rolled, drawn, or cold-finished
Temper . . . . . . . . . . . .
T351
T361
Thickness, in. . . . . . . .
0.5001.000
1.0012.000
2.0013.000
3.0014.000
4.0015.000b
5.0016.000b
6.0016.500b
#0.375
Basis . . . . . . . . . . . . . .
S
S
S
S
S
S
S
S
62 61c
62 59c
62 57c
62 55c
62 54c
62 52c
62 ...
69 ...
45 36c
45 36c
45 36c
45 36c
45 36c
45 36c
45 ...
52 ...
34 41 37
34 41 37
34 41 37
34 41 37
34 41 37
34 41 37
... ... ...
... ... ...
90 115
90 115
90 115
90 115
90 115
90 115
... ...
... ...
63 74
63 74
63 74
63 74
63 74
63 74
... ...
... ...
10
10
10
10
10
10
10
10
Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent: L .............. E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . µ ................
10.5 10.7 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . C, K, and α . . . . . . . . a b c
0.100 See Figure 3.2.4.0
Mechanical properties were established under MIL-QQ-A-225/6. For square, rectangular, hexagonal, or octagonal bar, maximum thickness is 4 inches, and maximum cross-sectional area is 36 square inches. Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).
3-108
Table 3.2.4.0(i2). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Bar and Rod; Rolled, Drawn, or Cold-Finished (Continued) AMS 4120 and AMS-QQ-A-225/6a
Specification . . . . . . . . . . . . . . . .
AMS-QQ-A-225/6a
Bar and rod; rolled, drawn, or cold-finished
Form . . . . . . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . . . . .
T4b
T42c
0.1250.499
0.5001.000
1.0012.000
2.0013.000
3.0014.000
4.0014.500d
4.5015.000d,e
5.0016.000d,e
6.0016.500d,e
6.5018.000d,e
#6.500d
Basis . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
S
S
S
S
S
S
62 61f
62 61f
62 59f
62 57f
62 55f
62 54f
62 54f
62 52f
62 ...
58 ...
62 ...
45 45f
42 42f
42 41f
42 40f
42 39f
42 39f
40 37f
40 36f
40 ...
38 ...
40 ...
36 ... 37
33 ... 37
33 ... 37
33 ... 37
33 ... 37
33 ... 37
32 ... 37
32 ... 37
... ... 37
... ... ...
... ... ...
93 118
93 118
93 118
93 118
93 118
93 118
93 118
93 118
... ...
... ...
... ...
63 72
59 67
59 67
59 67
59 67
59 67
56 64
56 64
... ...
... ...
... ...
10
10
10
10
10
10
10
10
10
10
10
Mechanical Properties: Ftu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . e, percent: L ..................... E, 103 ksi . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . µ ....................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . C and α . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . .
10.5 10.7 4.0 0.33 0.100 See Figure 3.2.4.0 71 (at 77EF) for T4X (See Figure 3.2.4.0)
a Mechanical properties were established under MIL-QQ-A-225/6. b The T4 temper is obsolete and should not be specified for new designs. c These properties apply when samples of material supplied in the O or F temper are heat treated to demonstrate response to heat treatment. Properties obtained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. d For square, rectangular, hexagonal, or octagonal bar, maximum thickness is 4 inches and maximum cross-sectional area is 36 square inches. e Applies to rod only. f Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).
MMPDS-06 1 April 2011
3-109
Thickness, in. . . . . . . . . . . . . . . .
MMPDS-06 1 April 2011
Table 3.2.4.0(i3). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Bar and Rod; Rolled, Drawn, or Cold-Finished (Continued)
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS-QQ-A-225/6a
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bar and rod; rolled or drawn
Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T6b
T62c
T851
Thickness,d in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#6.500
#6.500
0.500-6.500
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
62 ...
60 ...
66 ...
50 ...
46 ...
58 ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
5
5
5
Mechanical Properties: Ftu, ksi: L ......................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e, percent: L ......................................... E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ ..........................................
10.5 10.7 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C and α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . . . . . . . . . . . . .
0.100 See Figure 3.2.4.0 87 (at 77EF) for T6X and T8XX
a Mechanical properties were established under MIL-QQ-A-225/6. b The T6 temper is obsolete and should not be specified for new designs. c These properties apply when samples of material supplied in the O or F temper are heat treated to demonstrate response to heat treatment. Properties obtained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. d For square, rectangular, hexagonal, or octagonal bar, maximum thickness is 4 inches and maximum cross-sectional area is 36 square inches.
3-110
Table 3.2.4.0(j1). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Extrusion AMS 4152, AMS 4164, AMS 4165, and AMS-QQ-A-200/3a
Specification . . . . . . Form . . . . . . . . . . . .
Extruded bar, rod, and shapes
Temper . . . . . . . . . . Thickness,b in. . . . . .
T3, T3510, and T3511 #0.249
0.250-0.499
Cross-Section Area, in.2 Basis . . . . . . . . . . . .
0.500-0.749
0.750-1.499
T81, T8510, and T8511
1.500-2.999
#20
3.000-4.499 #25
1.5002.999
3.0004.499
0.0500.249
>25 - #32
0.2501.499
#20
1.5004.500 #32
A
B
A
B
A
B
A
B
A
B
A
B
S
S
S
S
S
57 54
61 58
60 56
62 57
60 54
62 56
65 56
70 60
70 55
74 58
70 54
74 57
68 53
68 52
64 64
66 64
66 61
42 37
47 41
44 38
47 40
44 37
47 39
46 37
54 43
52 39
54 41
52 39
54 41
48 36
48 36
56 55
58 57
58 57
34 41 29
38 45 31
37 41 31
39 44 32
38 40 30
40 43 31
41 40 33
48 47 35
49 42 34
50 44 36
49 41 33
51 43 35
45 39 33
45 38 32
57 57 35
59 59 36
59 59 36
84 108
90 114
78 98
81 101
78 97
80 101
84 105
90 113
88 111
93 118
86 109
91 115
86 108
84 106
94 123
96 123
92 117
61 71
68 79
55 67
59 71
55 67
59 71
57 69
67 81
63 77
66 80
62 75
65 78
59 71
57 69
79 93
82 96
82 96
12
...
12
...
12
...
10
...
10
...
10
...
8
8
4
5
5
3
E, 10 ksi . . . . . . . Ec, 103 ksi . . . . . . G, 103 ksi . . . . . . . µ ............. Physical Properties: ω, lb/in.3 . . . . . . . C, K, and α . . . . .
a Mechanical properties were established under MIL-QQ-A-200/3. b The mechanical properties are to be based upon the thickness at the time of quench. c Bearing values are “dry pin” values per Section 1.4.7.1.
10.8 11.0 4.1 0.33 0.100 See Figure 3.2.4.0
MMPDS-06 1 April 2011
3-111
Mechanical Properties: Ftu, ksi: L ........... LT . . . . . . . . . . Fty, ksi: L ........... LT . . . . . . . . . . Fcy, ksi: L ........... LT . . . . . . . . . . Fsu, ksi . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . Fbryc, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . e, percent (S-Basis): L ............
AMS-QQ-A-200/3a
Table 3.2.4.0(j2). Design Mechanical and Physical Properties of 2024 Aluminum Alloy Extrusion (Concluded)
a b c d
AMS-QQ-A-200/3a Extruded bar, rod, and shapes T42b # 25 1.0001.2501.249 1.499 S S
0.2500.499 S
0.5000.749 S
0.7500.999 S
1.5001.749 S
1.7501.999 S
2.0002.249 S
2.2502.499 S
57 54
57 52
57 51
57 49
57 47
57 45
57 43
57 41
57 39
38 35
38 34
38 33
38 32
38 31
38 30
38 29
38 28
38 27
38 38 29
38 37 29
38 36 29
38 35 29
38 34 29
38 33 28
38 31 27
38 30 26
38 29 24
80 98
79 97
77 95
75 93
74 91
71 89
69 86
67 83
64 81
55 67
53 65
51 63
49 61
47 59
44 56
41 53
39 50
36 47
12
12
10
10
10
10
10
10
10
10.8 11.0 4.1 0.33 0.100 See Figure 3.2.4.0
Mechanical properties were established under MIL-QQ-A-200/3. Design allowables were based upon data obtained from testing samples of material supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user, however, may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. The mechanical properties are to be based upon the thickness at the time of quench. Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-112
Specification . . . . . Form . . . . . . . . . . . Temper . . . . . . . . . Cross-Sectional Area, in.2 Thickness or Diameter,c in. # 0.249 Basis . . . . . . . . . . . S Mechanical Properties: Ftu, ksi: L ............ 57 LT . . . . . . . . . . . 55 Fty, ksi: L ............ 38 LT . . . . . . . . . . . 36 Fcy, ksi: L ............ 38 LT . . . . . . . . . . . 39 Fsu, ksi . . . . . . . . . 29 Fbrud, ksi: 81 (e/D = 1.5) . . . . (e/D = 2.0) . . . . 99 Fbryd, ksi: 56 (e/D = 1.5) . . . . (e/D = 2.0) . . . . 69 e, percent: 12 L ............ 3 E, 10 ksi . . . . . . . Ec, 103 ksi . . . . . . G, 103 ksi . . . . . . . µ ............. Physical Properties: ω, lb/in.3 . . . . . . . C, K, and α . . . . .
MMPDS-06 1 April 2011
140 2024-T3, T351, and T4 Strength at temperature Exposure up to 10,000 hr
130 120 Ftu
Percentage of Room Temperature Strength
110 100 90 80
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
70 60 50 40 30 20 10 0 -400 -300 -200 -100
0
100
200
300
400
500
600
700
800
Temperature, oF Figure 3.2.4.1.1(a). Effect of temperature on the ultimate tensile strength (Ftu) of 2024-T3, T351, and 2024-T4 aluminum alloy (all products except extrusions).
3-113
MMPDS-06 1 April 2011
140 2024-T3, T351, and T4 Strength at temperature Exposure up to 10,000 hr
130 120 Fty
Percentage of Room Temperature Strength
110 100 90 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
80 70 60 50 40 30 20 10 0 -400 -300 -200 -100
0
100
200
300
400
500
600
700
800
Temperature, oF Figure 3.2.4.1.1(b). Effect of temperature on the tensile yield strength (Fty) of 2024T3, T351, and 2024-T4 aluminum alloy (all products except extrusions).
3-114
MMPDS-06 1 April 2011
100
Percentage of Room Temperature Ftu
Strength at temperature Exposure up to 10,000 hr 80
60 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, F
Figure 3.2.4.1.1(c). Effect of temperature on the tensile ultimate strength (Ftu) of 2024-T3, T3510, T3511, and T42 aluminum alloy extrusion. 100
Percentage of Room Temperature Fty
Strength at temperature Exposure up to 10,000 hr 80
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.1.1.(d). Effect of temperature on the tensile yield strength (Fty) of 2024-T3, T3510, T3511, and T42 aluminum alloy extrusion.
3-115
MMPDS-06 1 April 2011
Percentage of Room Temperature Ftu
100
80 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40
20 Strength at room temperature Exposure up to 10,000 hr 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.1.1(e). Effect of exposure at elevated temperatures on the roomtemperature tensile ultimate strength (Ftu) of 2024-T3, T351, T3510, T3511, and T42 aluminum alloy (all products except thick extrusions).
Percentage of Room Temperature Fty
100
80
60
1/2 10 100 1000 10,000
40
hr hr hr hr hr
20 Strength at room temperature Exposure up to 10,000 hr 0 0
100
200
300
400
500
600
700
800
Temperature, F
Figure 3.2.4.1.1(f). Effect of exposure at elevated temperatures on the roomtemperature tensile yield strength (Fty) of 2024-T3, T351, T3510, T3511, T4, and T42 aluminum alloy (all products except thick extrusions).
3-116
MMPDS-06 1 April 2011 100
Percentage of Room Temperature Fcy
Strength at temperature Exposure up to 1000 hr 80
60
40 1/2 hr 2 hr 10 hr 20
100 hr 1000 hr
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.1.2(a). Effect of temperature on the compressive yield strength (Fcy) of flat clad 2024-T3, coiled clad 2024-T4 aluminum alloy sheet, and clad 2024-T351 aluminum alloy plate.
Figure 3.2.4.1.2(b). Effect of temperature on the shear ultimate strength (Fsu) of flat clad 2024-T3, coiled clad 2024-T4 aluminum alloy sheet, and clad 2024-T351 aluminum alloy plate.
3-117
MMPDS-06 1 April 2011 6WUHQJWKDWWHPSHUDWXUH
3HUFHQWDJHRI5RRP7HPSHUDWXUH) EUX
([SRVXUHXSWRKU
KU KU KU
KU KU
7HPSHUDWXUH)
Figure 3.2.4.1.3(a). Effect of temperature on the bearing ultimate strength (Fbru) of flat clad 2024-T3, coiled clad 2024-T4 aluminum alloy sheet, and clad 2024-T351 aluminum alloy plate. 6WUHQJWKDWWHPSHUDWXUH
3HUFHQWDJHRI5RRP7HPSHUDWXUH) EU\
([SRVXUHXSWRKU
KU KU KU KU KU
7HPSHUDWXUH)
Figure 3.2.4.1.3(b). Effect of temperature on the bearing yield strength (Fbry) of flat clad 2024-T3, coiled clad 2024-T4 aluminum alloy sheet, and clad 2024-T351 aluminum alloy plate.
3-118
MMPDS-06 1 April 2011
Figure 3.2.4.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 2024 aluminum alloy.
(ORQJDWLRQDWWHPSHUDWXUH ([SRVXUHXSWRKU
7<3,&$/
3HUFHQW(ORQJDWLRQH
KU KU KU
KU KU
7HPSHUDWXUH)
Figure 3.2.4.1.5(a). Effect of temperature on the elongation of 2024-T3, T351, T3510, T3511, T4, and T42 aluminum alloy (all products except thick extrusions).
3-119
MMPDS-06 1 April 2011
(ORQJDWLRQDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW(ORQJDWLRQH
7<3,&$/
KU KU
KU KU KU
7HPSHUDWXUH)
Figure 3.2.4.1.5(b). Effect of exposure at elevated temperature on the elongation (e) of 2024-T3, T351, T3510, T3511, T4, and T42 aluminum alloy (all products except thick extrusions).
3-120
MMPDS-06 1 April 2011 100
80 L - tension LT - compression LT - tension 60
L - compression
Stress, ksi
LT - compression
40
L - compression Ramberg - Osgood n(L-tension) = 50 n(LT-tension) = 12 n (L-comp.) = 15 n (LT-comp.) = 11
20
TYPICAL Thickness ≤ 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T3 aluminum alloy sheet at room temperature. 100
80
L - Tension LT - Compression LT - Tension
Stress, ksi
60
L - Compression
LT - Compression
40 L - Compression Ramberg - Osgood n (L-tension) = 50 n (LT-tension) = 15 n (L-comp.) = 13 n (LT-comp.) = 19
20
TYPICAL Thickness = 0.063 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(b). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for clad 2024-T3 aluminum alloy sheet at room temperature.
3-121
MMPDS-06 1 April 2011 100 Long Transverse
80
Stress, ksi
60 2-hr exposure
40
20 Ramberg - Osgood n (2-hr exp.) = 8.0 TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T3 aluminum alloy sheet at 212E EF. 100 Long Transverse
80
1000-hr exposure 100-hr exposure 10-hr exposure 1/2-hr exposure
Stress, ksi
60
40
Ramberg - Osgood n (1/2-hr exp.) = 9.6 n (10-hr exp.) = 9.3 n (100-hr exp.) = 8.0 n (1000-hr exp.) = 10
20
TYPICAL
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.4.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T3 aluminum alloy sheet at 300E EF.
3-122
MMPDS-06 1 April 2011 100
Ramberg - Osgood n (1/2-hr exp.) = 13 n (2-hr exp.) = 16 n (100-hr exp.) = 6.7
Long Transverse
80
TYPICAL
60
Stress, ksi
2-hr exposure 1/2-hr exposure
2-hr exposure
1/2-hr exposure 40 100-hr exposure 100-hr exposure 20
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.4.1.6(e). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T3 aluminum alloy sheet at 400E EF. 50 Long Transverse
1/2-hr exposure
40 1/2-hr exposure 2-hr exposure
2-hr exposure
Stress, ksi
30 10-hr exposure
10-hr exposure
20
Ramberg - Osgood n (1/2-hr exp.) = 8.6 n (2-hr exp.) = 10 n (10-hr exp.) = 8.4
10
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(f). Typical compressive stress-strain and compressive tangent-modulus curves for clad 2024-T3 aluminum alloy sheet at 500E EF.
3-123
MMPDS-06 1 April 2011 25 Long Transverse
1/2-hr exposure 2-hr exposure
20
Stress, ksi
15 10-hr exposure 100-hr exposure 10 Ramberg - Osgood n (1/2-hr exp.) = 13 n (2-hr exp.) = 13 n (10-hr exp.) = 19 n (100-hr exp.) = 8.5 n (1000-hr exp.) = 16
5 1000-hr exposure
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(g). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T3 aluminum alloy sheet at 600E EF. 25 Long Transverse
Ramberg - Osgood n (1/2-hr exp.) = 14 n (10-hr exp.) = 15 n (100-hr exp.) = 11
20
TYPICAL
Stress, ksi
15
1/2-hr exposure 10
5
10-hr exposure 100-hr exposure 0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.4.1.6(h). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T3 aluminum alloy sheet at 700E EF.
3-124
MMPDS-06 1 April 2011 60
L-tension
LT-compression 50
LT-tension L-compression
Stress, ksi
40
L-compression
30
Ramberg-Osgood TYS (ksi) n (L-comp.) = 9.0 45 n (LT-comp.) = 12 50 n (L-tension) = 42 53 n (LT-tension) = 9.0 47
20
10
TYPICAL Thickness: 0.500-2.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 10 3 ksi. Figure 3.2.4.1.6(i). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T351 aluminum alloy plate at room temperature.
60
L and LT - compression
50
L-tension
Stress, ksi
40
LT-tension
30
Ramberg-Osgood TYS (ksi) n (L-tension) = 17 43.0 n (LT-tension) = 16 42.0 n (L-comp.) = 19 44.5 n (LT-comp.) = 19 44.5
20
10
TYPICAL Thickness: 0.500-2.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.4.1.6(j). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T42 aluminum alloy plate at room temperature.
3-125
MMPDS-06 1 April 2011 60
LT - compression L - compression L - tension 50
LT - tension
Stress, ksi
40
LT - compression L - compression 30
20
Ramberg - Osgood n (L - tension) = 18 n (LT - tension) = 16 n (L - comp.) = 12 n (LT - comp.) = 14
10
TYS CYS 45 46 48 48
TYPICAL Thickness = 1.000 - 1.750 in. 0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.4.1.6(k) Typical tension and compression stress-strain and compression tangent modulus curves for 2024-T42 aluminum alloy plate at room temperature. Note: the data used to generate these curves may have been from clad product, however, they are shown here without secondary modulus since it could not be positively confirmed that the product was clad. 100
Ramberg - Osgood n (tension) = 50 n (comp.) = 10
80
TYPICAL Thickness ≤ 5.500 in.
Stress, ksi
60
L - compression L - tension L - compression
40
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(l). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T4 aluminum alloy rolled bar, rod, and shapes at room temperature.
3-126
MMPDS-06 1 April 2011
60 L - tension LT - tension
50
Stress, ksi
40
30
20
Ramberg - Osgood n(L-tension) = 50 n(LT-tension) = 14 TYPICAL
10
Thickness = 0.250 - 0.749 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.4.1.6(m). Typical tensile stress-strain curves for 2024-T351X aluminum alloy extrusion at room temperature. 60
LT - compression LT - compression 50
L - compression L - compression
Stress, ksi
40
30
Ramberg - Osgood n (L-comp.) = 16 n (LT-comp.) = 17
20
TYPICAL Thickness = 0.250 - 0.749 in. 10
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(n). Typical compressive stress-strain and compressive tangentmodulus curves for 2024-T351X aluminum alloy extrusion at room temperature.
3-127
MMPDS-06 1 April 2011 .
100
80
Stress, ksi
60
L - tension
L - compression
L - compression 40
Ramberg-Osgood n (tension) = 50 n (comp.) = 15
20
TYPICAL Thickness: <0.249 in. \ 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(o). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T3 aluminum alloy extrusion at room temperature. .
100
Stress, ksi
80
60
L - tension
L - compression
L - compression
40
Ramberg-Osgood n (tension) = 37 n (comp.) = 12
20
TYPICAL Thickness: 0.250-1.499 in. \ 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(p). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T3 aluminum alloy extrusion at room temperature.
3-128
MMPDS-06 1 April 2011
60
L - tension 50
LT - tension
Stress, ksi
40
30
20
Ramberg - Osgood n(L-tension) = 34 n(LT-tension) = 14
10
TYPICAL Thickness ≥ 1.500 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.4.1.6(q). Typical tensile stress-strain curves for 2024-T42 aluminum alloy extrusion at room temperature. 60 L - compression L - compression 50 LT - compression LT - compression
Stress, ksi
40
30
20 Ramberg - Osgood n (L-comp.) = 32 n (LT-comp.) = 19 10
TYPICAL Thickness ≥ 1.500 in.
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.4.1.6(r). Typical compressive stress-strain and compressive tangentmodulus curves for 2024-T42 aluminum alloy extrusion at room temperature.
3-129
MMPDS-06 1 April 2011
50
Longitudinal 40
Stress, ksi
Long Transverse 30
20
Ramberg-Osgood Longitudinal Long Transverse
10
TYS (ksi)
23 19
43 42
TYPICAL Thickness 0.072 -0.249 in. 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.4.1.6(s). Typical tensile stress-strain curves for clad 2024-T42 aluminum alloy sheet at room temperature. 60
50
Longitudinal
Stress, ksi
40
Long Transverse 30
20
Ramberg-Osgood TYS (ksi) Longitudinal Long Transverse
10
17 17
47 46
TYPICAL Thickness 0.072 - 0.249 in.
0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.1.6(t). Typical compressive stress-strain and compressive tangent-modulus curves for clad 2024-T42 aluminum alloy sheet at room temperature.
3-130
MMPDS-06 1 April 2011
70
X X
Longitudinal 60
Transverse
50
Stress, ksi
40
30
20
Thickness: 0.008-0.249 in.
Clad 2024-T3 Sheet
10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
Strain, in./in.
Figure 3.2.4.1.6(u). Typical tensile stress-strain curves (full range) for clad 2024-T3 aluminum alloy sheet at room temperature.
3-131
MMPDS-06 1 April 2011
;
6WUHVVNVL
/RQJLWXGLQDO
7<3,&$/
6WUDLQLQLQ
Figure 3.2.4.1.6(v). Typical tensile stress-strain curve (full range) for 2024-T351 aluminum alloy rolled rod at room temperature.
3-132
MMPDS-06 1 April 2011
/RQJLWXGLQDO [
[
/RQJWUDQVYHUVH
6WUHVVNVL
7KLFNQHVVLQ 7<3,&$/
6WUDLQLQLQ
Figure 3.2.4.1.6(w). Typical tensile stress-strain curve (full range) for 2024-T351X aluminum alloy extrusion at room temperature.
3-133
MMPDS-06 1 April 2011
70
X
60
50
Stress, ksi
40
30
Longitudinal
20
Thickness: < 0.75 in.
2024-T3 Extrusion
10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.2.4.1.6(x). Typical tensile stress-strain curves (full range) for 2024-T3 aluminum alloy extrusion at room temperature.
3-134
0.16
MMPDS-06 1 April 2011
80
Longitudinal
X
70
X Long Transverse 60
Stress, ksi
50
40
30
20
Thickness: 1.500-4.499 in.
2024-T3 Extrusion 10
0 0.00
TYPICAL
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.2.4.1.6(y). Typical tensile stress-strain curves (full range) for 2024-T3 aluminum alloy extrusion at room temperature.
3-135
0.16
MMPDS-06 1 April 2011
[ /RQJLWXGLQDO
[
6WUHVVNVL
/RQJWUDQVYHUVH
≥
7KLFNQHVV LQ
7<3,&$/
6WUDLQLQLQ
Figure 3.2.4.1.6(z). Typical tensile stress-strain curves (full range) for 2024-T42 aluminum alloy extrusion at room temperature.
3-136
MMPDS-06 1 April 2011
/RQJLWXGLQDO
/RQJWUDQVYHUVH
[
[
6WUHVVNVL
7<3,&$/
7KLFNQHVVLQ
6WUDLQLQLQ
Figure 3.2.4.1.6(aa). Typical stress-strain curves (full range) for clad 2024-T42 aluminum alloy sheet at room temperature.
3-137
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(a). Best-fit S/N curves for unnotched 2024-T4 aluminum alloy, various wrought products, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(a) Product Form: Rolled bar, 0.75- to 0.125-inch diameter Drawn rod, 0.75-inch diameter Extruded rod, 1.25-inches diameter Extruded bar, 1.25 x 4-inches
Test Parameters: Loading - Axial Frequency - 1800 to 3600 cpm Temperature - RT Environment - Air
Properties:
No. of Heats/Lots: Not specified
TUS, ksi 69
TYS, ksi 45
71
44
85
65
Temp.,EF RT (rolled) RT (drawn) RT (extruded)
Specimen Details: Unnotched 0.160- to 0.400-inch diameter Surface Condition: Longitudinally polished References:
Equivalent Stress Equation: Log Nf = 20.83-9.09 log (Seq) Seq = Smax (1-R)0.52 Std. Error of Estimate, Log (Life) = 0.566 Standard Deviation, Log (Life) = 1.324 R2 = 82% Sample Size = 134 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.2.1.8(a) through 3.2.2.1.8(c) and 3.2.4.1.8(i)
3-138
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(b). Best-fit S/N curves for notched, Kt = 1.6, 2024-T4 aluminum alloy bar, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(b) Product Form: Rolled bar, 1.125-inches diameter
Properties:
TUS, ksi 73
TYS, ksi 49
Test Parameters: Loading - Axial Frequency - 1800 to 3600 cpm Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not specified
Specimen Details: Semicircular V-Groove, Kt = 1.6 0.450-inch gross diameter 0.400-inch net diameter 0.100-inch root radius, r 60E flank angle, ω Surface Condition: As machined
Equivalent Stress Equation: Log Nf = 12.25-5.16 log (Seq-18.7) Seq = Smax (1-R)0.57 Std. Error of Estimate, Log (Life) = 0.414 Standard Deviation, Log (Life) = 0.989 R2 = 82%
Reference:
Sample Size = 38
3.2.2.1.8(a)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-139
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(c). Best-fit S/N curves for notched, Kt = 2.4, 2024-T4 aluminum alloy bar, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(c) Product Form: Rolled bar, 1.125-inches diameter
Properties:
TUS, ksi 73
TYS, ksi 49
Test Parameters: Loading - Axial Frequency - 1800 to 3600 cpm Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not specified
Specimen Details: Circumferential V-Groove, Kt = 2.4 0.500-inch gross diameter 0.400-inch net diameter 0.032-inch root radius, r 60E flank angle, ω Surface Condition: As machined
Equivalent Stress Equation: Log Nf = 14.33-6.35 log (Seq-3.2) Seq = Smax (1-R)0.48 Std. Error of Estimate, Log (Life) = 0.310 Standard Deviation, Log (Life) = 1.084 R2 = 92%
Reference:
Sample Size = 33
3.2.2.1.8(b)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-140
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(d). Best-fit S/N curves for notched, Kt = 3.4, 2024-T4 aluminum alloy, various wrought products, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(d) Product Form: Rolled bar, 1.125-inches diameter Extruded bar, 1.25-inches diameter Properties:
TUS, ksi 74.2 84.1
TYS, ksi — —
Temp.,EF RT (rolled) RT (extruded)
Test Parameters: Loading - Axial Frequency - 1800 to 3600 cpm Temperature - RT Environment - Air No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 8.18-2.76 log (Seq-11.6) Seq = Smax (1-R)0.52 Std. Error of Estimate, Log (Life) = 0.292 Standard Deviation, Log (Life) = 1.011 R2 = 92%
Specimen Details: Circumferential V-Groove, Kt = 3.4 0.450-inch gross diameter 0.400-inch net diameter 0.010-inch root radius, r 60E flank angle, ω
Sample Size = 51 Surface Condition: As machined References:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.2.1.8(b) and 3.2.2.1.8(c)
3-141
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(e). Best-fit S/N curves for unnotched, 2024-T3 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(e) Product Form: Bare sheet, 0.090-inch Properties:
TUS, ksi 72 - 73
TYS, ksi 52 - 54
Test Parameters: Loading - Axial Frequency - 1100 to 1800 cpm
Temp.,EF RT
No. of Heats/Lots: Not specified Specimen Details: Unnotched 0.8- to 1.0-inch width
Equivalent Stress Equation: Log Nf = 11.1-3.97 log (Seq-15.8) Seq = Smax (1-R)0.56 Std. Error of Estimate, Log (Life) = 0.38 Standard Deviation, Log (Life) = 0.90 R2 = 82%
Surface Condition: Electropolished References:
3.2.4.1.8(a) and 3.2.4.1.8(f)
Sample Size = 107 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-142
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(f). Best-fit S/N curves for notched, Kt = 1.5, 2024-T3 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(f) Product Form: Bare sheet, 0.090-inch Properties:
TUS, ksi 73
TYS, ksi 54
76
—
Test Parameters: Loading - Axial Frequency - 1100 to 1500 cpm Temperature - RT Environment - Air
Temp.,EF RT (unnotched) RT (notched K t = 1.5)
No. of Heats/Lots: Not specified
Specimen Details: Edge notched, Kt = 1.5 3.00-inches gross width 1.500-inches net width 0.760-inch notch radius 0E flank angle
Equivalent Stress Equation: Log Nf = 7.5-2.13 log (Seq-23.7) Seq = Smax (1-R)0.66 Std. Error of Estimate, Log (Life) = 0.30 Standard Deviation, Log (Life) = 0.95 R2 = 90%
Surface Condition: Electropolished
Sample Size = 26
Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.4.1.8(d)
3-143
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(g). Best-fit S/N curves for notched, Kt = 2.0, 2024-T3 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(g) Product Form: Bare sheet, 0.090-inch Properties:
TUS, ksi 73 73
Test Parameters: Loading - Axial Frequency - 1100 to 1800 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 54 RT (unnotched) — RT (notched Kt= 2.0)
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 9.2-3.33 log (Seq-12.3) Seq = Smax (1-R)0.68 Std. Error of Estimate, Log (Life) = 0.27 Standard Deviation, Log (Life) = 0.89 R2 = 91%
Specimen Details: Notched, Kt = 2.0 Notch Type Center Edge Fillet
Gross Width 4.50 2.25 2.25
Net Width 1.50 1.50 1.50
Notch Radius 1.50 0.3175 0.1736
Sample Size = 113
Surface Condition: Electropolished, machined and burrs removed with fine crocus cloth References:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.4.1.8(b) and 3.2.4.1.8(f)
3-144
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(h). Best-fit S/N curves for notched, Kt = 4.0 of 2024-T3 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(h) Product Form: Bare sheet, 0.090-inch Properties:
TUS, ksi 73 67
Test Parameters: Loading - Axial Frequency - 1100 to 1800 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 54 RT (unnotched) — RT (notched Kt = 4.0)
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 8.3-3.30 log (Seq-8.5) Seq = Smax (1-R)0.66 Std. Error of Estimate, Log (Life) = 0.39 Standard Deviation, Log (Life) = 1.24 R2 = 90%
Specimen Details: Notched, Kt = 4.0 Notch Type Center Edge Fillet
Gross Width 2.25 4.10 2.25
Net Width 1.50 1.50 1.50
Notch Radius 0.057 0.070 0.0195
Sample Size = 126
Surface Condition: Electropolished, machined, and burrs removed with fine crocus cloth References:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.4.1.8(b), 3.2.4.1.8(e), 3.2.4.1.8(f), 3.2.4.1.8(g), and 3.2.4.1.8(h)
3-145
MMPDS-06 1 April 2011
Figure 3.2.4.1.8(i). Best-fit S/N curves for notched, Kt = 5.0, 2024-T3 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.2.4.1.8(i)
Product Form: Bare sheet, 0.090 inch Properties:
TUS, ksi 73 62
Test Parameters: Loading - Axial Frequency - 1100 to 1800 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 54 RT (unnotched) — RT (notched Kt = 5.0)
No. of Heats/Lots: Not specified
Specimen Details: Edge notched, Kt = 5.0 2.25-inches gross width 1.500-inches net width 0.03125-inch notch radius 0E flank angle
Equivalent Stress Equation: Log Nf = 8.9-3.73 log (Seq-3.9) Seq = Smax (1-R)0.56 Std. Error of Estimate, Log (Life) = 0.39 Standard Deviation, Log (Life) = 1.24 R2 = 90%
Surface Condition: Electropolished
Sample Size = 35
Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.4.1.8(c)
3-146
MMPDS-06 1 April 2011
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
WX
KU KU KU KU KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.3.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2024T62 aluminum alloy (all products).
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
W\
KU KU KU KU
KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.3.1(b). Effect of temperature on the tensile yield strength (Fty) of 2024-T62 aluminum alloy (all products).
3-147
MMPDS-06 1 April 2011
Percentage of Room Temperature F tu
100
80
60
1/2 10 100 1000 10,000
40
hr hr hr hr hr
20
Strength at room temperature Exposure up to 10,000 hr 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.3.1(c). Effect of exposure at elevated temperatures on the roomtemperature tensile ultimate strength (Ftu) of 2024-T62 aluminum alloy (all products).
Percentage of Room Temperature F ty
100
80
60
1/2 10 100 1000 10,000
40
hr hr hr hr hr
20
Strength at room temperature Exposure up to 10,000 hr 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.3.1(d). Effect of exposure at elevated temperatures on the roomtemperature tensile yield strength (Fty) of 2024-T62 aluminum alloy (all products).
3-148
MMPDS-06 1 April 2011 100
2024-T62 Elongation at temperature Exposure up to 10,000 hr TYPICAL
Percent Elongation (e)
80
10,000 1000 100 10 1/2
60
hr hr hr hr hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.3.5(a). Effect of temperature on the elongation of 2024-T62 aluminum alloy (all products). 100
2024-T6 Elongation at room temperature Exposure up to 10,000 hr TYPICAL
Percent Elongation (e)
80
60
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F Figure 3.2.4.3.5(b). Effect of exposure at elevated temperature on the elongation of 2024-T62 aluminum alloy (all products).
3-149
MMPDS-06 1 April 2011
100
80
L and LT - compression
L-tension
Stress, ksi
LT-tension 60
40
Ramberg-Osgood n (L-tension) = 28 n (LT-tension) = 24 n (L-comp.) = 22 n (LT-comp.) = 22
20
TYS (ksi) 58 56 60 60
TYPICAL Thickness: 0.250-1.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi.
Figure 3.2.4.3.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T62 aluminum alloy plate at room temperature.
3-150
MMPDS-06 1 April 2011
100
80 L - compression LT - tension LT - compression
Stress, ksi
60
L - tension
40
Ramberg - Osgood n (L - tension) = 28 n (LT - tension) = 25 n (L - comp.) = 24 n (LT - comp.) = 20
20
TYS 55 55 -
CYS 59 54
TYPICAL Thickness = 1.000 - 1.750 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.3.6(b). Typical tension and compression stress-strain and compression tangent modulus curves for 2024-T62 aluminum alloy plate at room temperature. Note, the data to generate these curves may have been from clad product, however, they are shown here without secondary modulus since it could not be positively confirmed the product was clad.
3-151
MMPDS-06 1 April 2011 60
Longitudinal TYPICAL
50
Long Transverse
Stress, ksi
40
30
20
Ramberg-Osgood Longitudinal Long Transverse
TYS (ksi)
39 32
54 53
10
Thickness 0.072 -0.249 in. 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.4.3.6(c). Typical tensile stress-strain curves for clad 2024-T62 aluminum alloy sheet at room temperature.
60
Longitudinal
TYPICAL
50
Long Transverse
Stress, ksi
40
30
Ramberg-Osgood TYS (ksi)
20
Longitudinal Long Transverse
34 32
56 56
10
Thickness 0.072 - 0.249 in. 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.3.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T62 aluminum alloy sheet at room temperature.
3-152
MMPDS-06 1 April 2011
/RQJLWXGLQDO [
[
/RQJWUDQVYHUVH
6WUHVVNVL
7<3,&$/
7KLFNQHVVLQ
6WUDLQLQLQ
Figure 3.2.4.3.6(e). Typical stress-strain curves (full range) for clad 2024-T62 aluminum alloy sheet at room temperature.
3-153
MMPDS-06 1 April 2011
6WUHQJWKDWWHPSHUDWXUH
3HUFHQW) DW5RRP7HPSHUDWXUH WX
([SRVXUHXSWRKU
KU KU KU KU KU
7HPSHUDWXUH)
Figure 3.2.4.4.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2024-T81, T851, T8510, and T8511 aluminum alloy (all products). 6WUHQJWKDWWHPSHUDWXUH
3HUFHQW) DW5RRP7HPSHUDWXUH W\
([SRVXUHXSWRKU
KU KU KU KU KU
7HPSHUDWXUH)
Figure 3.2.4.4.1(b). Effect of temperature on the tensile yield strength (Fty) of 2024-T81, T851, T8510, and T8511 aluminum alloy (all products).
3-154
MMPDS-06 1 April 2011
Percentage Ftu at Room Temperature
100
80
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40
20
Strength at room temperature Exposure up to 10,000 hr 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.4.1(c). Effect of exposure at elevated temperatures on roomtemperature tensile ultimate strength (Ftu) of 2024-T81 aluminum alloy sheet. 100
Percent Fty at Room Temperature
80
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40
20
Strength at room temperature Exposure up to 10,000 hr 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.4.1(d). Effect of exposure at elevated temperatures on the room temperature tensile yield strength (Fty) of 2024-T81 aluminum alloy sheet.
3-155
MMPDS-06 1 April 2011
Figure 3.2.4.4.1(e). Effect of temperature on the tensile ultimate strength (Ftu) of 2024T81 aluminum alloy clad sheet. Note: Instructions for use of these curves are presented in Section 3.7.7.1.
Figure 3.2.4.4.1(f). Effect of temperature on the tensile yield strength (Fty) of 2024-T81 aluminum alloy clad sheet. Note: Instructions for use of these curves are presented in Section 3.7.7.1.
3-156
MMPDS-06 1 April 2011
3HUFHQWDJHRI5RRP7HPSHUDWXUH) F\
KU KU KU
KU KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.4.2(a). Effect of temperature on the compressive yield strength (Fcy) of 2024-T81, T851, T8510, and T8511 aluminum alloy (all products).
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
VX
KU KU KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.4.2(b). Effect of temperature on the shear ultimate strength (Fsu) of 2024T81, T851, T8510, and T8511 aluminum alloy (all products).
3-157
MMPDS-06 1 April 2011
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
EUX
KU
KU KU KU KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.4.3(a). Effect of temperature on the bearing ultimate strength (Fbru) of 2024-T81, T851, T8510, and T8511 aluminum alloy (all products).
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
EU\
KU
KU KU KU KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.4.3(b). Effect of temperature on the bearing yield strength (Fbry) of 2024T81, T851, T8510, and T8511 aluminum alloy (all products).
3-158
MMPDS-06 1 April 2011
(ORQJDWLRQDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQWDJH(ORQJDWLRQH
7<3,&$/
KU KU
KU KU
7HPSHUDWXUH)
Figure 3.2.4.4.5(a). Effect of temperature on the elongation of 2024-T81, T851, T8510, and T8511 aluminum alloy (all products). 100
Elongation at room temperature Exposure up to 10,000 hr 80
Percentage Elongation (e)
TYPICAL
60
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.4.5(b). Effect of exposure at elevated temperatures on the room temperature elongation of 2024-T81, T851, T8510, and T8511 aluminum alloy (all products).
3-159
MMPDS-06 1 April 2011 100
Longitudinal
80
Stress, ksi
60
40
Ramberg-Osgood 20
n (comp.) = 17
TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.4.6(a). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T81 aluminum alloy sheet at room temperature.
100
80 1/2 -hr exposure 1000 -hr exposure
Stress, ksi
60
40
Ramberg - Osgood n (1/2 -hr exp.) = 19 n (1000 -hr exp.) = 9.0
20
TYPICAL Thickness = 0.063 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.4.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T81 aluminum alloy sheet at 200E EF.
3-160
MMPDS-06 1 April 2011 100 Long Transverse
80 1000 -hr exposure 100 -hr exposure 2 -hr exposure 1/2 -hr exposure
Stress, ksi
60
40 Ramberg - Osgood n (1/2 -hr exp.) = 15 n (2 -hr exp.) = 22 n (100 -hr exp.) = 21 n (1000 -hr exp.) = 12
20
TYPICAL Thickness = 0.063 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.4.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T81 aluminum alloy sheet at 300E EF.
100 Long Transverse
Ramberg - Osgood n (1/2 - 2 -hr exp.) = 12 n (10 -hr exp.) = 11 n (100 -hr exp.) = 7.2 n (1000 -hr exp.) = 12
80
TYPICAL Thickness = 0.063 - 0.249 in. 1/2 - 2 -hr exposure 10 -hr exposure 100 -hr exposure 1000 -hr exposure
Stress, ksi
60
40
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.4.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T81 aluminum alloy sheet at 400E EF.
3-161
MMPDS-06 1 April 2011 100
80 L - tension
LT - tension
40
Ramberg - Osgood n(L-tension) = 22 n(LT-tension) = 18
Stress, ksi
60
TYPICAL 20 Thickness = 0.250 - 1.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.4.4.6(e). Typical tensile stress-strain curves for 2024-T851 aluminum alloy plate at room temperature. 100
80 L and LT Compression
Stress, ksi
60
40
Ramberg - Osgood n (L and LT - comp.) = 17
20
TYPICAL Thickness = 0.250 - 1.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.4.6(f). Typical compressive stress-strain and compressive tangent-modulus curves for 2024-T851 aluminum alloy plate at room temperature.
3-162
MMPDS-06 1 April 2011
100
L - Compression LT - Compression L - Tension LT - Tension
80 L - Compression
60
Stress, ksi
LT - Compression
40
Ramberg - Osgood n(L-tension) = 24 n(LT-tension) = 26 n (L-comp.) = 20 n (LT-comp.) = 24
20
TYPICAL Thickness = 0.250 - 1.499 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.4.6(g). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2024-T851X aluminum alloy extrusion at room temperature.
3-163
MMPDS-06 1 April 2011
80
Longitudinal 70
Long Transverse
XX
60
Stress, ksi
50
40
30
20
Thickness: 0.010-0.249 in.
2024-T81 Sheet 10
0 0.00
TYPICAL
0.02
0.04
0.06
0.08
Strain, in./in.
Figure 3.2.4.4.6(h). Typical tensile stress-strain curves (full range) for 2024-T81 aluminum alloy sheet at room temperature.
3-164
MMPDS-06 1 April 2011
80
70
Longitudinal
X Long Transverse
X
60
Stress, ksi
50
40
30
20
Thickness: 0.010-0.249 in.
Clad 2024-T81 Sheet 10
0 0.00
TYPICAL
0.02
0.04
0.06
0.08
Strain, in./in.
Figure 3.2.4.4.6(I). Typical tensile stress-strain curves (full range) for clad 2024-T81 aluminum alloy sheet at room temperature.
3-165
MMPDS-06 1 April 2011
80
Longitudinal
70
X
Long Transverse
X 60
Stress, ksi
50
40
30
20
Thickness: 0.250-1.499 in.
2024-T851 Plate 10
0 0.00
TYPICAL
0.02
0.04
0.06
0.08
0.10
Strain, in./in.
Figure 3.2.4.4.6(j). Typical tensile stress-strain curves (full range) for 2024-T851 aluminum alloy plate at room temperature.
3-166
MMPDS-06 1 April 2011 6WUHQJWKDWWHPSHUDWXUH
3HUFHQWDJH)
WX
DW5RRP7HPSHUDWXUH
([SRVXUHXSWRKU
KU KU KU
KU KU
7HPSHUDWXUH)
Figure 3.2.4.5.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2024T861 (T86) aluminum alloy sheet.
6WUHQJWKDWWHPSHUDWXUH
3HUFHQWDJH)
WX
DW5RRP7HPSHUDWXUH
([SRVXUHXSWRKU
KU KU KU
KU KU
7HPSHUDWXUH)
Figure 3.2.4.5.1(b). Effect of temperature on the tensile yield strength (Fty) of 2024T861 (T86) aluminum alloy sheet.
3-167
MMPDS-06 1 April 2011
3HUFHQW)
WXRI5RRP7HPSHUDWXUH
KU KU KU KU
6WUHQJWKDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.5.1(c). Effect of exposure at elevated temperatures on the roomtemperature tensile ultimate strength (Ftu) of 2024-T861 (T86) aluminum alloy sheet.
3HUFHQW) RI5RRP7HPSHUDWXUH W\
KU KU KU
KU
6WUHQJWKDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.5.1(d). Effect of exposure at elevated temperatures on the roomtemperature tensile yield strength (Fty) of 2024-T861 (T86) aluminum alloy sheet.
3-168
MMPDS-06 1 April 2011
3HUFHQW)
DW5RRP7HPSHUDWXUH F\
KU KU KU KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.5.2(a). Effect of temperature on the compressive yield strength (Fcy) of 2024-T861 (T86) aluminum alloy sheet.
Percent Fsu at Room Temperature
100
1/2 10 100 1000
80
hr hr hr hr
60
40
20
Strength at temperature Exposure up to 1000 hr 0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.2.4.5.2(b). Effect of temperature on the shear ultimate strength (Fsu) of 2024-T861 (T86) aluminum alloy sheet.
3-169
MMPDS-06 1 April 2011
3HUFHQW)
EUX
RI5RRP7HPSHUDWXUH
KU
KU KU KU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.5.3(a). Effect of temperature on the bearing ultimate strength (Fbru , e/D = 1.5) of 2024-T861 (T86) aluminum alloy sheet.
3HUFHQW)
EU\
RI5RRP7HPSHUDWXUH
KU KU
KU KU KU
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.4.5.3(b). Effect of temperature on the bearing yield strength (Fbry , e/D = 1.5) of 2024-T861 (T86) aluminum alloy sheet.
3-170
MMPDS-06 1 April 2011
3HUFHQWDJHRI
URRP7HPSHUDWXUH6WUHQJWK
H'
)
EU\
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU ) EUX
7HPSHUDWXUH)
Figure 3.2.4.5.3(c). Effect of temperature on the bearing ultimate strength (Fbru , e/D = 2.0) and the bearing yield strength (Fbry , e/D = 2.0) of 2024-T861 (T86) aluminum alloy sheet.
3-171
MMPDS-06 1 April 2011
Figure 3.2.4.5.5(a). Effect of temperature on the elongation (e) of 2024-T861 (T86) aluminum alloy sheet.
Figure 3.2.4.5.5(b). Effect of exposure at elevated temperatures on the room temperature elongation (e) of 2024-T861 (T86) aluminum alloy sheet.
3-172
MMPDS-06 1 April 2011 100 Long Transverse
80
Stress, ksi
60
40 Ramberg - Osgood n (LT-comp.) = 16 20
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.5.6(a). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T861 aluminum alloy sheet at room temperature. 100 Long Transverse
1000-hr exposure 1/2-hr exposure
80
Stress, ksi
60
40 Ramberg - Osgood n (1000-hr exp.) = 11 n (1/2-hr exp.) = 11 20
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.5.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T861 aluminum alloy sheet at 200E EF.
3-173
MMPDS-06 1 April 2011 100 Long Transverse 1/2-hr exposure 10-hr exposure 100-hr exposure 1000-hr exposure
80
Stress, ksi
60
40
Ramberg - Osgood n (1/2-hr exp.) = 16 n (10-hr exp.) = 18 n (100-hr exp.) = 16 n (1000-hr exp.) = 12
20
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.5.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T861 aluminum alloy sheet at 300E EF. 100 Long Transverse
80
10-hr exposure 100-hr exposure
Stress, ksi
60
40
Ramberg - Osgood n (10-hr exp.) = 15 n (100-hr exp.) = 11
20
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.4.5.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for clad 2024-T861 aluminum alloy sheet at 400E EF.
3-174
MMPDS-06 1 April 2011
Figure 3.2.4.5.10(a). Residual strength behavior of 0.063-inch-thick 2024-T861 aluminum alloy sheet at room temperature. Crack orientation is T-L [Reference 3.1.2.1.4(d)].
Figure 3.2.4.5.10(b). Residual strength behavior of 0.063-inch-thick 2024-T861 aluminum alloy sheet at room temperature. Crack orientation is L-T [Reference 3.1.2.1.4(d)].
3-175
MMPDS-06 1 April 2011 3.2.5 2025 ALLOY 3.2.5.0 Comments and Properties — 2025 aluminum alloy is a heat-treatable Al-Cu forging alloy for which applications have been limited primarily to propellers. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress corrosion cracking and to Section 3.1.2.4 for comments regarding the weldability of the alloy. A material specification for 2025 aluminum alloy is presented in Table 3.2.5.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.5.0(b). The effect of temperature on thermal expansion is shown in Figure 3.2.5.0.
Table 3.2.5.0(a). Material Specification for 2025 Aluminum Alloy
Specification
Form
AMS 4130a
Die forging
a Inactive for new design
16
-6 α, 10 in./in./F
15 14
13
12
11
10
9
8 α − Between 70F and indicated temperature
7
6 -400
-200
0
200
400
600
800
1000
Temperature, F
Figure 3.2.5.0. Effect of temperature on the thermal expansion of 2025 aluminum alloy.
3-176
MMPDS-06 1 April 2011
Table 3.2.5.0(b). Design Mechanical and Physical Properties of 2025 Aluminum Alloy Die Forging
Specification . . . . . . . . . .
AMS 4130b
Form . . . . . . . . . . . . . . . .
Die forging
Temper . . . . . . . . . . . . . .
T6
Thickness, in. . . . . . . . . .
# 4.000
Basis . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L .............. Ta . . . . . . . . . . . . . . Fty, ksi: L .............. Ta . . . . . . . . . . . . . . Fcy, ksi: L .............. Ta . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent: L .............. Ta . . . . . . . . . . . . . .
55 52 33 32 ... ... ... ... ... ... ... 11 8
E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................
10.3 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . .
0.101 0.23 (at 212EF) 90 (at 77EF) See Figure 3.2.5.0
a
T indicates any grain direction within ±15E of being perpendicular to the forging flow lines. b AMS 4130 Inactive for new design.
3-177
MMPDS-06 1 April 2011 3.2.6 2026 ALLOY 3.2.6.0 Comments and Properties —2026 is a 4.0Cu-1.3Mg-0.60Mn aluminum alloy used for extrusion of bars, rods, and profiles. These extrusions have been used typically for parts subject to cracking during forming operations and excessive warpage during machining processes and for parts requiring high strength and damage tolerance, where fabrication does not normally involve welding. Certain processing procedures may cause these extrusions to become susceptible to stress corrosion cracking; ARP823 recommends practices to minimize such conditions. Extruded, solution heat-treated, and stress-relieved by stretching to produce a nominal permanent set of 1.5%, but not less than 1% nor more than 3%, to the T3511 temper. Solution heat treatment shall be performed in accordance with AMS 2772. Material specifications are shown in Table 3.2.6.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.6.0(b).
Table 3.2.6.0(a). Material Specifications for 2026-T3511 Specification Form AMS 4338 Extruded bars, rods, and profiles
3-178
MMPDS-06 1 April 2011
Table 3.2.6.0(b). Design Mechanical and Physical Properties of 2026 Aluminum Alloy Bars, Rods, and Profiles Specification . . . . . . . . . .
AMS 4338
Form . . . . . . . . . . . . . . . .
Extrusions
Temper . . . . . . . . . . . . . .
T3511 #0.249
Thickness, in. . . . . . . . . . Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . . . Fty, ksi: L ................ LT . . . . . . . . . . . . . . . Fcy, ksi: L ................ LT . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . e, percent (S-Basis): L ................ LT . . . . . . . . . . . . . . .
0.250-0.499
0.500-1.499
1.500-2.249
2.250-3.250
A
B
A
B
A
B
A
B
S
66 58
69 61
70 62
72 64
72 66
75 67
73 64
76 67
73 61
48 41
51 44
52 45
53 46
53 46
56 48
54 44
57 49
54 42
43 42 37
45 45 39
46 46 37
47 46 38
47 46 32
47 49 33
49 45 32
52 47 33
50 43 32
90 112
94 117
92 113
95 117
87 109
90 114
85 108
89 112
85 105
62 76
66 81
66 81
67 83
61 76
64 81
61 76
64 80
61 76
11 ...
... ...
12 ...
... ...
11 8
... ...
11 8
... ...
10 8
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ ..................
10.7 10.9 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . .
0.100 ... ... ...
a See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-179
MMPDS-06 1 April 2011 3.2.7 2027 ALLOY 3.2.7.0 Comments and Properties B2027 is an Al-Cu-Mg-Mn-Zr alloy developed to provide a combination of high strength and high damage tolerance. Owning to higher purity, optimized Mg and Mn levels and Zr driven improved dispersoid content, 2027 alloy has both static and fracture toughness properties exceeding legacy 2XXX series alloys. The 2027 alloy is available in two forms: 2027-T351 plate and 2027-T3511 extrusions. 2027-T351 plate is typically used for lower wing structural components, but usage is not limited to such applications. 2027-T3511 extrusions have been used typically for machined parts requiring dimensional stability during machining processes, high strength and damage tolerance, but usage is not limited to such applications. Applicable material specification for 2027-T351 plate and 2027-T3511 extrusions are presented in Table 3.2.7.0(a). Room temperature mechanical properties for plate are shown in Table 3.2.7.0(b) and for extruded profiles are shown in Table 3.2.7.0(c). Table 3.2.7.0(a). Material Specification for 2027 Aluminum Alloy Specification Form AMS 4213 Plate AMS 4183 Extruded Profiles
3.2.7.1 T351 Temper B Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.7.1.6(a) and 3.2.7.1.6(b). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.2.7.1.6(c). 3.2.7.2 T3511 Temper B Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.7.2.6(a) and 3.2.7.2.6(b). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.2.7.2.6(c).
3-180
MMPDS-06 1 April 2011 Table 3.2.7.0(b). Design Mechanical and Physical Properties of 2027 Aluminum Alloy Plate Specification . . . . . . . . . . . . . . . . . . . AMS 4213 Form . . . . . . . . . . . . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . . . . . . . . . . . . T351 Thickness, in. . . . . . . . . . . . . . . . . . . 0.500-1.500 1.501-2.250 Basis . . . . . . . . . . . . . . . . . . . . . . . . . A B A B Mechanical Properties: Ftu, ksi: L ..................... 70 67 65 68a LT . . . . . . . . . . . . . . . . . . . . 67 68 67 65b ST . . . . . . . . . . . . . . . . . . . . Y Y 60b 63 Fty, ksi: L ..................... 49 51 52 54 LT . . . . . . . . . . . . . . . . . . . . 46 44 46 48 ST . . . . . . . . . . . . . . . . . . . . Y 40 42 Y Fcy, ksi: 40 42 44 42 L ..................... 45 47 47 49 LT . . . . . . . . . . . . . . . . . . . . Y Y Y Y ST . . . . . . . . . . . . . . . . . . . . Fsu, ksi: 46 44 46 46 L-T . . . . . . . . . . . . . . . . . . . 43 45 45 45 T-L . . . . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 1.5): 98 101 102 101 L ..................... 101 104 104 106 LT . . . . . . . . . . . . . . . . . . . . c Fbru , ksi (e/D = 2.0): 126 123 126 128 L ..................... 126 130 130 132 LT . . . . . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 1.5): 66 69 72 69 L ..................... 70 73 73 77 LT . . . . . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0): 82 79 82 86 L ..................... 82 86 86 90 LT . . . . . . . . . . . . . . . . . . . . e, percent (S-Basis): 14 14 Y Y L ..................... 14 14 Y Y LT . . . . . . . . . . . . . . . . . . . . 4 Y Y Y ST . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . 10.6 Ec, 103 ksi . . . . . . . . . . . . . . . . . 10.7 G, 103 ksi . . . . . . . . . . . . . . . . . 4.0 µ ...................... 0.33 Physical Properties: ώ, lb/in.3 . . . . . . . . . . . . . . . . . . 0.101 C, Btu/(lb)(°F) . . . . . . . . . . . . . Y K, Btu/[(hr)(ft3)(° F)/ft] . . . . . . . Y ά, 10-6 in./in./°F . . . . . . . . . . . . . 12.4 (68E to 248EF) Issued: Oct 2006, Item 06-07, MMPDS-03 a A-Basis value is specification minimum. The rounded T99 for Ftu(L) = 69 ksi. b A-Basis value is specification minimum. The rounded T99 for Ftu(LT) = 66 ksi, and for Ftu(ST) = 61 ksi. c Bearing values are "dry pin" values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-181
MMPDS-06 1 April 2011 Table 3.2.7.0(c). Design Mechanical and Physical Properties of 2027 Aluminum Alloy Extrusions Specification . . . . . . . . . . . . .
AMS 4183
Form . . . . . . . . . . . . . . . . . . .
Extruded Profiles
Temper . . . . . . . . . . . . . . . . .
T3511
Thickness, in. . . . . . . . . . . . .
0.750-1.500
Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fsu, ksi: L-S . . . . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . . . . Fbru b, ksi (e/D = 1.5) : L .................. LT . . . . . . . . . . . . . . . . . Fbru b, ksi (e/D = 2.0): L .................. LT . . . . . . . . . . . . . . . . . Fbry b, ksi (e/D = 1.5) : L .................. LT . . . . . . . . . . . . . . . . . Fbry b, ksi (e/D = 2.0): L .................. LT . . . . . . . . . . . . . . . . . e, percent (S-Basis): L .................. LT . . . . . . . . . . . . . . . . .
A
B
75a 67a
77 70
57 48a
58 50
48 51
49 52
38 36
39 37
... 100
... 103
... 126
... 130
... 71
... 73
... 86
... 87
14 9
... ...
E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi L . . . . . . . . . . . . Ec, 103 ksi LT . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ ....................
10.5 10.7 10.9 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . α, 10-6 in./in./EF . . . . . . . . .
0.100 ... ... 13 (68E to 220E F)
Issued: Apr 2008, MMPDS-04, Item 07-11 a b
A-Basis value is specification minimum. The rounded T99 for Ftu L = 76 ksi, for Ftu LT = 69 ksi, and for Fty LT = 50 ksi Bearing values are “dry pin” values per Section 1.4.7.1.
3-182
MMPDS-06 1 April 2011
Figure 3.2.7.0. Effect of temperature on coefficient of thermal expansion of 2027T351 aluminum alloy.
Figure 3.2.7.1.6(a1) Typical tensile stress-strain curves for 2027-T351 aluminum alloy plate at room temperature, longitudinal orientation
3-183
MMPDS-06 1 April 2011
Figure 3.2.7.1.6(a2) Typical tensile stress-strain curves for 2027-T351 aluminum alloy plate at room temperature, long transverse orientation
Figure 3.2.7.1.6(a3) Typical tensile stress-strain curves for 2027-T351 aluminum alloy plate at room temperature, short transverse orientation
3-184
MMPDS-06 1 April 2011
Figure 3.2.7.1.6(b1) Typical compressive stress-strain and compressive tangentmodulus curve for 2027-T351 aluminum alloy plate at room temperature, longitudinal orientation
Figure 3.2.7.1.6(b2) Typical compressive stress-strain and compressive tangentmodulus curve for 2027-T351 aluminum alloy plate at room temperature, long transverse orientation
3-185
MMPDS-06 1 April 2011
80
2027-T351 Plate
Longitudinal
70
Long Transverse
60
Short Transverse
Stress, ksi
50
40
30
20 TYPICAL
Thickness: 0.551 - 2.165 in.
10
0 0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200
Strain, in./in.
Figure 3.2.7.1.6(c). Typical tensile stress-strain (full range) curve for 2027-T351 aluminum alloy plate at room temperature
3-186
MMPDS-06 1 April 2011
70 2027-T3511 Extrusion
60
Longitudinal
50 Stress, ksi
Long Transverse 40 Ramberg-Osgood TYS, ksi n (L) = 68 61 n (LT) = 13 52
30 20
TYPICAL
10
Thickness: 0.750-1.500 0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in.
Figure 3.2.7.2.6(a). Typical tensile stress-strain curves for 2027-T3511 aluminum alloy extrusions at room temperature.
70 2027-T3511 Extrusion
Longitudinal 60
Stress, ksi
50
40
Long Transverse
30 Ramberg-Osgood CYS, ksi n (L) = 16 60 n (LT) = 17 52
20
TYPICAL
10
Thickness: 0.750-1.500 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 10^3 ksi
Figure 3.2.7.2.6(b). Typical compressive stress-strain and compressive tangent modulus curves for 2027-T3511 aluminum alloy extrusions at room temperature.
3-187
MMPDS-06 1 April 2011
90
80
Longitudinal
70
Stress, ksi
60
Long Transverse
50
40
30 2027-T3511 Extrusion
20
TYPICAL Thickness: 0.750-1.500 in.
10
0 0.000
0.050
0.100
0.150
0.200
0.250
Strain, in./in.
Figure 3.2.7.2.6(c). Typical tensile stress-strain (full range) curves for 2027-T3511 aluminum alloy extrusions at room temperature.
3-188
MMPDS-06 1 April 2011 3.2.8. 2050 ALLOY 3.2.8.0. Comments and Properties - Alloy 2050 is an Al-Cu-Li-Mg-Zr alloy. It is available in the form of plate in T84 temper in the 0.50-5.00" thickness range. Alloy 2050 was derived from alloy 2098 through the adjustments of Mn, Mg and Li. It is characterized by high tensile strength and fracture toughness and good stress corrosion cracking resistance. Likewise it exhibits higher modulus and lower density when compared with conventional 7XXX and 2XXX aerospace alloys. This alloy has not been evaluated for its sensitivity to cold-hole expansion, which is typically used for improved resistance of fastener holes. Care should be taken to ensure that all of the processing parameters have been evaluated prior to the application of cold expansion to prevent cracking in the material. Material specifications for 2050 aluminum alloy are presented in Table 3.2.8.0(a). temperature mechanical and physical properties are shown in Table 3.2.8.0(b).
Room
Table 3.2.8.0(a). Material Specifications for 2050 Aluminum Alloy Specification Form AMS 4413 Plate
The temper index for 2050 is as follows: Section 3.2.8.1
Temper T84
3.2.8.1. T84 Temper - Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.8.1.6(a) and 3.2.8.1.6(b). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.2.8.1.6(c).
3-189
MMPDS-06 1 April 2011 Table 3.2.8.0(b) Design Mechanical and Physical Properties of 2050 Aluminum Alloy
Specification Form
.....
AMS 4413
............
Plate
Temper . . . . . . . . . . . .
T84
Thickness, (in.) . . . . . Basis
............
Mechanical Properties: Ftu, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . 45Ed . . . . . . . . . Fty, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . 45Ed . . . . . . . . . Fcy, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fsuh, ksi: L-S . . . . . . . . . . T-S . . . . . . . . . . S-L . . . . . . . . . . Fbrui, ksi (e/D = 1.5) : L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fbrui, ksi (e/D = 2.0) : L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fbryi, ksi (e/D = 1.5): L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fbryi, ksi (e/D = 2.0): L ........... LT . . . . . . . . . . ST . . . . . . . . . . e, percent (S-Basis): L ........... LT . . . . . . . . . . ST . . . . . . . . . . Continued on next page.
0.500-1.500
1.501-2.000
2.001-3.000
3.001-4.000
4.001-5.000
A
B
A
B
A
B
A
B
A
B
73 73 73b 69
75 75 75b 70
72a 73 71c 70
75 75 74 71
72a 72a 71c 71
75 75 73 72
71a 72a 70c 72
75 75 73 73
71a 71a 69c 73
75 75 72 74
69 67f 65b 63
71 71 66b 64
67e 65f 61g 63
71 69 66 64
67e 65f 61g 64
71 68 64 65
67e 65f 60g 64
71 68 63 66
66e 64f 59g 65
71 68 62 66
70 69 ...
74 74 ...
67 68 69
72 73 73
67 69 69
71 72 72
67 69 69
71 72 72
66 68 68
71 72 72
41 41 ...
42 42 ...
42 42 36
44 43 37
43 41 36
45 43 37
44 42 36
46 44 37
37 42 35
40 45 37
101 109 ...
104 112 ...
108 114 ...
111 117 ...
108 113 ...
113 118 ...
112 114 ...
116 119 ...
112 109 ...
118 115 ...
135 146 ...
139 150 ...
140 148 ...
144 152 ...
140 148 ...
146 154 ...
144 149 ...
150 156 ...
145 148 ...
154 157 ...
86 90 ...
91 96 ...
87 90 ...
93 95 ...
89 91 ...
93 95 ...
92 93 ...
96 97 ...
93 92 ...
99 98 ...
101 104 ...
107 110 ...
102 105 ...
108 112 ...
104 107 ...
108 112 ...
107 110 ...
112 115 ...
109 111 ...
115 118 ...
9 7 ...
... ... ...
9 7 2
... ... ...
8 6 2
... ... ...
7 4 1.5
... ... ...
6 3 1.5
... ... ...
3-190
MMPDS-06 1 April 2011 Table 3.2.8.0(b) Design Mechanical and Physical Properties of 2050 Aluminum Alloy (Continued)
Specification Form
.....
AMS 4413
............
Plate
Temper . . . . . . . . . . . . E, 103 ksi L, LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Ec, 103 ksi L, LT, ST . . . . . . . . . . G, 103 ksi L, LT . . . . . . . . . . . ST . . . . . . . . . . . . . µ ................
T84 10.9 10.5 11.3 4.1 4.0 0.33
Physical Properties: ω, lb./in.3 K C and α
0.098 … See Figure 3.2.8.0
Issued: Apr, 2009, MMPDS-04CN1, Item 08-33 Last Revised: Apr 2010, MMPDS-05, Item 09-15.
a A-Basis is specification minimum. The rounded T99 values are as follows; Ftu(L) for 1.501-5.000 = 73 ksi, Ftu(LT) for 2.001-5.000 = 73 ksi. b Applicable for thickness range of 1.000-1.500 inches. c A-basis is specification minimum. The rounded T99 values for Ftu(ST) are as follows; for 1.501-2.000 = 73 ksi, 2.001-3.000 = 72 ksi, 3.001-5.000 = 71 ksi. e A-basis is specification minimum. The rounded T99 values for Fty(L) are as follows; for 1.501-5.000 = 69 ksi. f A-basis is specification minimum. The rounded T99 values for Fty(LT) are as follows; for 0.500-1.500 = 69 ksi, 1.501-2.000 = 68 ksi, 2.001-3.000 = 67 ksi, 3.001-5.000 = 66 ksi. g A-basis is specification minimum. The rounded T99 values for Fty(ST) are as follows; for 1.501-2.000 = 64 ksi, 2.0013.000 = 63 ksi, 3.001-4.000 = 62 ksi, 4.001-5.000 = 60 ksi. h Grain orientation and loading direction per ASTM B831 i Bearing values are “dry pin” values per Section 1.4.7.1.
3-191
MMPDS-06 1 April 2011
0.36
13.0 2050 Aluminum Alloy
α
0.32
12.6 12.4
0.28
12.2
α, 10-6 in./in./oF
12.8
12.0
C, Btu/(lb)(oF)
0.24
11.8
C
11.6 0.20
11.4 11.2
0.16
11.0 50
100
150
200
250
300
o
Temperature, F Figure 3.2.8.0. Effect of temperature on the physical properties of 2050 aluminum alloy.
3-192
MMPDS-06 1 April 2011
80 Longitudinal
2050-T84 Plate
Long transverse
60
Stress, ksi
S hort transverse
40
T hickness: L & LT 0.500 - 5.000 in. ST 1.501 - 5.000 in.
R am b erg-O sgo od 20 T YP IC A L
(L)
n 1 = 7.4
K 1 = 2.346
(L)
n 2 = 51.2
K 2 = 1.918
TY S 74.0
(LT ) n = 15.7
70.0
(S T ) n = 14.6
65.0
0 0
2
4
6
8
10
S train, 0.001 in./in.
Figure 3.2.8.1.6(a). Typical tensile stress-strain curves for 2050-T84 aluminum alloy plate at room temperature. 80
Short transverse
Long transverse
60
Stress, ksi
Longitudinal 2050-T84 Plate
40
20
Ramberg-Osgood
CYS
(L) n = 17
73.0
(LT) n = 16
74.0
(ST) n = 17
74.0
Thickness: L & LT 0.500 - 5.000 in. ST 1.501 - 5.000 in.
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.8.1.6(b). Typical compressive stress-strain and compression tangent modulus curves for 2050-T84 aluminum alloy at room temperature.
3-193
MMPDS-06 1 April 2011
100
90
Longitudinal 80
X
70
X
Long Transverse
ShortTransverse
X
Stress, ksi
60
50
40
30
Thickness: L & LT 0.500 - 5.000 in. ST 1.501 - 5.000 in.
20 2050-T84 Plate
TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.2.8.1.6(c). Typical tensile stress-strain (full range) curves for 2050-T84 aluminum alloy at room temperature.
3-194
0.14
MMPDS-06 1 April 2011 3.2.9 CLAD 2056 ALLOY 3.2.9.0 Comments and Properties - 2056 is a heat treatable Al-Cu-Mg-Zn alloy offering high tensile and fracture toughness with improved resistance to fatigue crack growth rate relative to other 2X24 sheet products. Product is available in the Alclad T3 sheet form. AMS 4298 provides the detail of the guaranteed fatigue crack growth characteristics. Static mechanical properties exceed those listed for Alclad 2024-T3. The Zn addition is adjusted to give an optimized electrical potential difference between the core alloy and a conventional AA1050-type cladding, leading to an improved cladding lifetime. Alclad 2056 has typically been used for formed structural fuselage components but usage is not limited to such applications. Material specifications for Alclad 2056 are presented in Table 3.2.9.0(a). Room temperature mechanical properties are shown in Table 3.2.9.0(b). The effect of temperature on the physical properties is shown in Figure 3.2.9.0 Table 3.2.9.0(a). Material Specifications for Alclad 2056 Aluminum Alloy Specification Form AMS 4298 Sheet
The temper index for Alclad 2056 is as follows: Section 3.2.9.1
Temper T3
3-195
MMPDS-06 1 April 2011
Table 3.2.9.0(b). Design Mechanical and Physical Properties of Alclad 2056 Aluminum Alloy Sheet Specification . . . . . . . . . . . . .
AMS 4298
Form . . . . . . . . . . . . . . . . . . . .
Sheet
Temper . . . . . . . . . . . . . . . . .
T3
Thickness, (in.) . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fty, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fsu b, ksi: L-T . . . . . . . . . . . . . . . . . . . T-L . . . . . . . . . . . . . . . . . . . Fbru c, ksi (e/D = 1.5) : L .................... LT . . . . . . . . . . . . . . . . . . . Fbru c, ksi (e/D = 2.0) : L .................... LT . . . . . . . . . . . . . . . . . . . Fbry c, ksi (e/D = 1.5): L .................... LT . . . . . . . . . . . . . . . . . . . Fbry c, ksi (e/D = 2.0): L .................... LT . . . . . . . . . . . . . . . . . . . e, percent (S-Basis): L .................... LT . . . . . . . . . . . . . . . . . . . E, 103 ksi Primary . . . . . . . . . . . . . . . Secondary . . . . . . . . . . . . . Ec 103 ksi Primary . . . . . . . . . . . . . . . Secondary . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . µ ..................... Physical Properties: ω, lb./in.3 . . . . . . . . . . . . . . C, and K . . . . . . . . . . . . . . . a, 10-6 in./in./oF . . . . . . . . .
0.127 B 0.236
0.063 -0.126 A
B
A
B
64 62
65 64
64 62
65 64
47 41a
50 44
47 40a
50 44
40 45
43 48
39 44
43 48
43 43
44 44
43 43
44 45
98 96
101 99
101 100
104 103
122 118
126 122
125 127
129 131
65 64
70 69
65 66
72 72
73 71
78 76
74 78
82 85
... 15
... ...
... 16
... ...
10.3 9.9 … 9.5 … … 0.1 Y See Figure 3.2.7.0
Issued: Oct 2006, MMPDS-03, Item 05-17, Revised: Apr 2008, MMPDS-04, Item 06-41. a A-Basis value is specification minimum. The rounded T99 = 42 ksi. b Grain orientation and loading direction per ASTM B 831 slotted shear test. c Bearing values are "dry pin" values per Section 1.4.7.1.
3-196
MMPDS-06 1 April 2011
16 o
α, Between 70 F and indicated temperature
α, 10-6in./in./oF
15
14
13
12
11
10 50
100
150
200
250
300
Temperature, oF
Figure 3.2.9.0. Effect of temperature on the thermal expansion of Alclad 2056 aluminum alloy.
3-197
MMPDS-06 1 April 2011
Figure 3.2.9.1.6(a1) Typical tensile stress-strain curves for Alclad 2056-T3 aluminum alloy sheet at room temperature, longitudinal orientation
Figure 3.2.9.1.6(a2) Typical tensile stress-strain curves for Alclad 2056-T3 aluminum alloy sheet at room temperature, long transverse orientation
3-198
MMPDS-06 1 April 2011
60 AlClad 2056-T3 Sheet
Long transverse Longitudinal
50
Stress, ksi
40
30
20
Ramberg-Osgood CYS (ksi) n (L) = 11 K = 1.951 51 n (LT) = 11 K = 1.908 46
10
TYPICAL Thickness: 0.063-0.236 in.
0 0
2
4
6
8
10
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.9.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for Alclad 2056-T3 aluminum alloy sheet at room temperature.
3-199
MMPDS-06 1 April 2011
70
Longitudinal
X 60
X
Long Transverse
50
Stress, ksi
40
30
20
AlClad 2056-T3 Sheet Thickness: 0.063-.236 inch 10
TYPICAL
0 0.00
0.05
0.10
0.15
0.20
0.25
Strain, in./in.
Figure 3.2.9.1.6(c). Typical tensile stress-strain curves (full range) for Alclad 2056-T3 aluminum alloy sheet at room temperature.
3-200
MMPDS-06 1 April 2011 3.2.10 2090 ALLOY 3.2.10.0 Comments and Properties — 2090 is an Al-Cu-Li alloy developed for applications requiring the high strength of 7075-T6 but with 8 percent lower density and 10 percent higher elastic modulus than 7075-T6. Sheet is available in the T83 temper. 2090 sheet has strength properties nearly equivalent to 7075-T6 sheet with improved exfoliation resistance. Refer to Section 3.1.3.4 for information on weldability of the alloy. A material specification for 2090 aluminum alloy is shown in Table 3.2.10.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.10.0(b). Table 3.2.10.0(a). Material Specification for 2090 Aluminum Alloy
Specification
Form
AMS 4251
Sheet
The temper index is as follows: Section
Temper
3.2.10.1
T83
3.2.10.1 T83 Temper — Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.10.1.6(a) and 3.2.10.1.6(b).
3-201
MMPDS-06 1 April 2011
Table 3.2.10.0(b). Design Mechanical and Physical Properties of 2090-T83 Aluminum Alloy Sheet
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Form
AMS 4251
.....................................
Sheet
Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T83
Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Basis
.....................................
Mechanical Properties: Ftu, ksi: L ....................................... 45E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ....................................... 45E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ....................................... 45E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e, percent: L ....................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi: L & LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi: L & LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ ......................................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a
Bearing values are “dry pin” values per Section 1.4.7.1.
3-202
0.040-0.125
0.126-0.249
S
S
77 64 73
75 65 73
70 56 66
70 57 66
67 58 71 37
63 60 71 37
100 126
100 126
84 98
88 104
3 5
4 5 11.5 11.0 11.8 11.4 4.3 0.34 0.094 ...
MMPDS-06 1 April 2011 100
L - tension 80
LT - tension
Stress, ksi
60
45o - tension 40
Ramberg-Osgood TYS (ksi) n (L-tension) = 14 75 n (LT-tension) = 12 72 n (45o-tension) = 18 62
20
TYPICAL Thickness: 0.040-0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.2.10.1.6(a). Typical tensile stress-strain curves for 2090-T83 aluminum alloy sheet at room temperature.
100
LT - Compression L - Compression
80
45° - Compression
Stress, ksi
60
40
Ramberg - Osgood n (L - comp.) = 20 n (LT - comp.) = 19 n (45° - comp.) = 30
20
TYPICAL Thickness = 0.040 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.10.1.6(b). Typical compressive stress-strain and compressive tangent-modulus curves for 2090-T83 aluminum alloy sheet at room temperature.
3-203
MMPDS-06 1 April 2011 3.2.11. 2098 ALLOY 3.2.11.0. Comments and Properties - Alloy 2098 is an Al-Cu-Li-Mg-Ag alloy developed primarily for aerospace applications requiring strength levels similar to alloy 7075-T6 with damage tolerance and FCG similar to alloy 7475-T7351. Alloy 2098 has 3% lower density and 5% higher modulus compared to alloy 7475. Product is typically produced as a light gauge plate in O-temper and as sheet product in the T8 temper. It is solution heat treated, stretch-formed and aged to thermally stable -T82P temper. Product has good corrosion resistance in final temper. AMS 4327 and AMS 4457 specifications provide relevant technical details. Material specifications for 2098 aluminum alloy are presented in Table 3.2.11.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.11.0(b).
Table 3.2.11.0(a). Material Specifications for 2098 Aluminum Alloy Specification Form AMS 4327 Plate AMS 4457 Sheet
The temper index for 2098 is as follows: Section 3.2.11.1 3.2.11.2
Temper T82P T8
3.2.11.1. T82P Temper - Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.11.1.6(a) and 3.2.11.1.6(b). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.2.11.1.6(c).
3-204
MMPDS-06 1 April 2011 Table 3.2.11.0(b) Design Mechanical and Physical Properties of 2098 Aluminum Alloy Specification . . . . . . . . . AMS 4457 AMS 4327 Form . . . . . . . . . . . . . . . . Sheet Plate Temper . . . . . . . . . . . . . . T8 T82P Thickness, (in.) . . . . . . . 0.125-0.249 0.250-0.300 Basis . . . . . . . . . . . . . . . . A B A B Mechanical Properties: Ftu, ksi: L................. 77 80 72 77a b c LT . . . . . . . . . . . . . . . 74 78 77 73 45° (S-basis) . . . . . . . 65 69 73 ... Fty, ksi: L................. 71a 68 73 76 LT . . . . . . . . . . . . . . . 67 72 69 72 45° (S-basis) . . . . . . . 61 66 62 ... Fcy, ksi: 67 72 L................. 70 73 69 75 LT . . . . . . . . . . . . . . . 71 74 65 70 45° . . . . . . . . . . . . . . . ... ... Fsud, ksi: 43 46 T-L . . . . . . . . . . . . . . . 42 44 46 49 45 47 L-T . . . . . . . . . . . . . . . 46 50 ... ... 45° . . . . . . . . . . . . . . . Fbrue, ksi (e/D = 1.5) : 106 113 103 107 L ................ 106 113 108 112 LT . . . . . . . . . . . . . . . 112 120 ... ... 45° . . . . . . . . . . . . . . e Fbru , ksi (e/D = 2.0) : 141 151 137 142 L ................ 141 151 142 148 LT . . . . . . . . . . . . . . . 147 158 ... ... 45° . . . . . . . . . . . . . . . e Fbry , ksi (e/D = 1.5) : 90 97 89 92 L ................ 90 97 90 94 LT . . . . . . . . . . . . . . . 92 99 ... ... 45° . . . . . . . . . . . . . . Fbrye, ksi (e/D = 2.0) : . . 109 117 107 112 L ................ 109 117 111 116 LT . . . . . . . . . . . . . . . 112 121 ... ... 45° . . . . . . . . . . . . . .
e, percent (S-Basis): L................. LT . . . . . . . . . . . . . . .
6 6
... ...
3-205
6 8
... ...
MMPDS-06 1 April 2011 Table 3.2.11.0(b) Design Mechanical and Physical Properties of 2098 Aluminum Alloy (Continued)
Specification . . . . . . . . . Form . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . Thickness, (in.) . . . . . . . E, 103 ksi L LT . . . . . . . . . . . . . . . Ec, 103 ksi L LT . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ................. Physical Properties: ω, lb./in.3
AMS 4457 Sheet T8 0.125-0.249
AMS 4327 Plate T82P 0.250-0.300
Y Y
10.9 10.8
... ... ... ...
11.6 11.3 ... ... 0.0971
Y
C, and K
See Figure 3.2.11.0
α
Issued: Oct 2006, MMPDS-03, Item 04-28 Last Revised: Apr, 2009, MMPDS-04CN1, Item 08-32
a b c d e
A-Basis value is specification minimum. The rounded T99 for Ftu (L) = 78 ksi, for Fty (L) = 73 ksi. A-Basis value is specification minimum. The rounded T99 for Ftu (LT) = 76 ks. A-Basis value is specification minimum. The rounded T99 = 74 ksi. Grain orientation and loading direction per ASTM B831 Bearing values are "dry pin" values per Section 1.4.7.1.
3-206
MMPDS-06 1 April 2011
16 o
α, Between 70 F and indicated temperature
α, 10-6in./in./oF
15
14
13
12
11
10 50
100
150
200
250
300
o
Temperature, F
Figure 3.2.11.0. Effect of temperature on the coefficient of thermal expansion of 2098 alloy.
3-207
MMPDS-06 1 April 2011
Figure 3.2.11.1.6(a1) Typical tensile stress-strain curves for 2098-T82P aluminum alloy plate at room temperature, longitudinal orientation
Figure 3.2.11.1.6(a2) Typical tensile stress-strain curves for 2098-T82P aluminum alloy plate at room temperature, long transverse orientation
3-208
MMPDS-06 1 April 2011
100
Long transverse
Stress, ksi
80
Longitudinal
60
Ramberg-Osgood TYS (ksi) n1 (L) = 18 K1 = 2.051 79.0 n2 (L) = N/A K1 = N/A n1 (LT) = 18 K1 = 2.066 80.0 n2 (LT) = 84 K1 = 1.941
40
20
Thickness: 0.250 - 0.300 in.
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.11.1.6(b). Typical compressive stress-strain and compressive tangent modulus curves for 2098-T82P aluminum alloy plate at room temperature.
3-209
MMPDS-06 1 April 2011
100
Longitudinal
90
80
XX Long Transverse
70
Stress, ksi
60
50
40
30
t = 0.250 - 0.300 in.
20
2098-T82P Plate TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.2.11.1.6(c). Typical tensile stress-strain curves (full range) for 2098-T82P aluminum alloy plate at room temperature.
3-210
MMPDS-06 1 April 2011 100
2098-T8 Sheet Longitudinal
Stress, ksi
80
Long transverse
60
Ramberg-Osgood 40
20
TYS
(L) n1 = 13.5 (L) n2 = 149
K1 = 2.141
(LT) n1 = 14.8
K1 = 2.074
(LT) n2 = 97.3
K2 = 1.900
77.0
K2 = 1.906 74.0
TYPICAL Thickness: 0.125-0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.11.2.6(a). Typical tensile stress-strain curves for 2098-T8 aluminum alloy sheet at room temperature. 100
2098-T8 Sheet
Long transverse
Stress, ksi
80
60
Longitudinal Ramberg-Osgood TYS (ksi) n1 (L) = 14.0 K1 = 2.098 77.0 n2 (L) = 44.9 K1 = 1.954 n1 (LT) = 14.9 K1 = 2.078 77.0 n2 (LT) = 74 K1 = 1.930
40
20
Thickness: 0.125 - 0.249 in.
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.11.2.6(b). Typical compressive stress-strain and compressive tangent modulus curves for 2098-T8 aluminum alloy sheet at room temperature
3-211
MMPDS-06 1 April 2011
100
Longitudinal
90
80
X X
Long Transverse
70
Stress, ksi
60
50
40
30
t = 0.1250 - 0.249 in.
20
2098-T8 Sheet TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.2.11.2.6(c). Typical tensile stress-strain curves (full range) for 2098-T8 aluminum alloy sheet at room temperature.
3-212
0.14
MMPDS-06 1 April 2011 3.2.12 2099 ALLOY 3.2.12.0 Comments and Properties – 2099 is an Al-2.7Cu-1.8Li-0.7Zn-0.3Mg aluminum alloy used for extrusion of bars, rod and profiles. These extrusions have been typically used in applications requiring high strength, high modulus, low density, moderate toughness and excellent corrosion resistance. The alloy has proven to have very good machining, finishing and forming characteristics. Certain processing procedures may cause these extrusions to become susceptible to stress-corrosion cracking: ARP823 (Reference 3.2.1.0) recommends practices to minimize such conditions. Extruded, solution heat treated and stress-relieved by stretching to produce a nominal permanent set of 2.5%, but not less than 1% nor more than 4% and then artificially aged to the T83 temper. Solution heat treatment and artificial aging shall be performed in accordance with AMS 2772. Applicable material specification for 2099-T83 extrusion is presented in Table 3.2.12.0(a). Room temperature mechanical properties are shown in Table 3.2.12.0(b). Table 3.2.12.0(a). Material Specification for 2099 Aluminum Alloy Specification Form AMS 4287 Extruded profiles
3.2.12.1 T83 Temper B Figures 3.2.12.1.1(a) through 3.2.12.1.1(d) present elevated temperature curves on tensile properties. Figures 3.2.12.1.5(a) and 3.2.12.1.5(b) present elevated temperature curves on elongation property. Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.12.1.6(a) and 3.2.12.1.6(b). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.2.12.1.6(c). .
3-213
MMPDS-06 1 April 2011 Table 3.2.12.0(b). Design Mechanical and Physical Properties of 2099 Extruded Profiles Specification . . . . . . . . . . AMS 4287 Form . . . . . . . . . . . . . . . . . . . Extruded Profiles Temper . . . . . . . . . . . . . . . . . T83 Thickness, in. . . . . . . . . . . . . 0.050-0.249 0.250-0.499 0.500-0.999 Basis . . . . . . . . . . . . . . . . . . . A B A B A B Mechanical Properties: Ftu, ksi: L .............. 75 76 78 79 79 80 LT . . . . . . . . . . . . . 73 73 74 75 72 72 45° . . . . . . . . . . . . . 63 63 64 65 63 64 Fty, ksi: L .............. 67 69 69 71 71 73 LT . . . . . . . . . . . . . 65 67 65 67 62 64 45° . . . . . . . . . . . . . 52 54 53 55 53 54 Fcy, ksi: L .............. 67 71 67 71 69 70 LT . . . . . . . . . . . . . 64 66 66 68 68 70 45° . . . . . . . . . . . . . 58 60 59 61 57 59 Fsu, ksi: L-S . . . . . . . . . . . . . 39 40 40 41 39 39 T-S . . . . . . . . . . . . . 40 40 40 40 37 38 Fbrub, ksi (e/D = 1.5): 99 100 103 104 104 106 L .............. LT . . . . . . . . . . . . . 99 100 102 103 99 101 Fbrub, ksi (e/D = 2.0): 128 130 133 134 133 135 L .............. LT . . . . . . . . . . . . . 131 132 135 137 131 133 Fbryb, ksi (e/D = 1.5): L .............. 82 84 83 86 83 85 LT . . . . . . . . . . . . . 79 82 81 84 80 83 Fbryb, ksi (e/D = 2.0): L .............. 97 100 100 103 103 106 LT . . . . . . . . . . . . . 98 101 101 104 99 102 e, percent (S-Basis): L .............. 6 Y 7 Y 7 Y LT . . . . . . . . . . . . . Y Y Y Y 7 Y 45° . . . . . . . . . . . . . . . . Y Y Y Y Y Y E, 103 ksi . . . . . . . . . . . . 11.4 Ec, 103 ksi . . . . . . . . . . . 11.9 3 4.4 G, 10 ksi . . . . . . . . . . . µ ................ 0.31 Physical Properties: 0.095 ω, lb/in.3 Y C, Btu/(lb)(°F) Y K, Btu/[(hr)(ft3)(° F)/ft] Y α, 10-6 in./in./°F Issued: Apr 2006, MMPDS-03, Item 06-10 Last Revised: Apr 2011, MMPDS-06, Item 09-28 a Specification minimum. The rounded T99 = 73 ksi. b Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-214
Aluminum Alloy
1.000-3.000 A B
80 69 62
83 71 65
72a 57 53
76 61 56
70 69 57
74 73 60
39 37
41 39
102 99
106 102
129 129
134 134
81 80
86 84
100 101
105 106
7 ... ...
... ... ...
MMPDS-06 1 April 2011
Percentage F tu of of Room Temperature
100 10 hr 100 hr 1000 hr 2,000 hr
90
80
70
60
50 Strength at temperature Exposure up to 2,000 hr 40 0
50
100
150
200 250 Temperature, F
300
350
400
450
Figure 3.2.12.1.1(a) Effect of temperature on the tensile ultimate strength (Ftu) of 2099-T83 aluminum alloy extrusion. 100 10 hr 100 hr 1000 hr 2,000 hr
Percentage F ty at Room Temperature
90
80
70
60
50 Strength at temperature Exposure up to 2,000 hr 40 0
50
100
150
200 250 Temperature, F
300
350
400
450
Figure 3.2.12.1.1(b) Effect of temperature on the tensile yield strength (Fty) of 2099-T83 aluminum alloy extrusion.
3-215
MMPDS-06 1 April 2011
Percent F tu of Room Temperature
100
0.50 hr 10 hr 100 hr 1000 hr 2,000 hr
90
80
70
60 Strength at room temperature Exposure up to 2,000 hr 50 0
50
100
150
200
250
300
350
400
450
500
Temperature, F
Figure 3.2.12.1.1(c) Effect of exposure at elevated temperatures on the room-temperature tensile ultimate strength (Ftu) of 2099-T83 aluminum alloy extrusion.
Percent Fty of Room Temperature
100
90
0.50 hr 10 hr 100 hr 1000 hr 2,000 hr
80
70
60 Strength at room temperature Exposu re up to 2,000 hr 50 0
50
100
150
200
250
300
350
400
450
Temperature, F
Figure 3.2.12.1.1(d) Effect of exposure at elevated temperatures on the room-temperature tensile yield strength (Fty) of 2099-T83 aluminum alloy extrusion.
3-216
500
MMPDS-06 1 April 2011 25
Elongation at temperature Exposure up to 2,000 hr TYPICAL
Percent Elongation (e)
20
15
10
5
0 0
50
100
150
200 250 Temperature, F
300
350
400
450
Figure 3.2.12.1.5(a) Effect of temperature on the elongation (e) of 2099-T83 aluminum alloy extrusion. 25
Elongation at room temperature Exposure up to 2,000 hr TYPICAL
Percentage Elongation (e)
20
15
10
5
0 0
50
100
150
200 250 Temperature, F
300
350
400
450
Figure 3.2.12.1.5(b) Effect of exposure at elevated temperature on the elongation (e) of 2099-T83 aluminum alloy extrusion.
3-217
MMPDS-06 1 April 2011
Figure 3.2.12.1.6(a1) Typical tensile stress-strain curves for 2099-T83 aluminum alloy extruded profiles at room temperature, longitudinal orientation
Figure 3.2.12.1.6(a2) Typical tensile stress-strain curves for 2099-T83 aluminum alloy extruded profiles at room temperature, long transverse orientation
3-218
MMPDS-06 1 April 2011
Figure 3.2.12.1.6(b1) Typical compressive stress-strain and compressive tangent modulus curves for 2099-T83 aluminum alloy extruded profiles at room temperature, longitudinal orientation
Figure 3.2.12.1.6(b2) Typical compressive stress-strain and compressive tangent modulus curves for 2099-T83 aluminum alloy extruded profiles at room temperature, long transverse orientation
3-219
MMPDS-06 1 April 2011
90
2099-T83 Extrusion 80
70
L ongitudinal
60
Long Transverse
Stress, ksi
50
40
30
20
TYPICAL
Thickness: 0.276 - 3.000 in. 10
0 0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
Strain, in./in.
Figure 3.2.12.1.6(c). Typical tensile stress-strain (full range) curve for 2099-T83 aluminum alloy extruded profiles at room temperature.
3-220
MMPDS-06 1 April 2011 3.2.13 2124 ALLOY 3.2.13.0 Comments and Properties — 2124 is an Al-Cu alloy available in the form of plate in thicknesses of 1 through 6 inches. This alloy is a high purity version of alloy 2024. The higher purity in conjunction with special production processing provides higher elongation in the short-transverse direction and improved fracture toughness over that exhibited by conventionally produced 2024 alloy. The alloy is currently only produced in the T851 temper. The alloy, like 2024, has excellent properties and creep resistance at elevated temperatures. The alloy in the T851 temper has good resistance to stress corrosion. Refer to Section 3.1.2.3.1 for information regarding resistance of the alloy to stress corrosion cracking. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. The physical properties are essentially the same as those for 2024-T851 plate. Applicable material specification for 2124-T851 plate is presented in Table 3.2.13.0(a). Room temperature mechanical properties are shown in Table 3.2.13.0(b). Table 3.2.13.0(a). Material Specification for 2124 Aluminum Alloy
Specification
Form
AMS 4101 AMS-QQ-A-250/29
Plate Plate
The temper index for 2124 is as follows: Section 3.2.13.1
Temper T851
3.2.13.1 T851 Temper — Elevated temperature data are presented in Figures 3.2.13.1.1(a) and 3.2.13.1.1(b). Typical tensile stress-strain, compressive stress-strain, and compressive tangent-modulus curves are presented in Figures 3.2.13.1.6(a) and 3.2.13.1.6 (b). Fatigue crack propagation data for plate are presented in Figures 3.2.13.1.9(a) through 3.2.13.1.9(e).
3-221
MMPDS-06 1 April 2011 Table 3.2.13.0(b). Design Mechanical and Physical Properties of 2124 Aluminum Alloy Plate Specification . . . . . . . . Form
AMS-QQA-250/29a
AMS 4101 and AMS-QQ-A-250/29a
............
Plate
Temper . . . . . . . . . . . .
T851
Thickness, in. . . . . . . . Basis Mechanical Properties: Ftub, ksi: L ............. LT . . . . . . . . . . . ST . . . . . . . . . . . Ftyb, ksi: L .............. LT . . . . . . . . . . . ST . . . . . . . . . . . Fcye, ksi (S-Basis): L ............. LT . . . . . . . . . . . ST . . . . . . . . . . . Fsue, ksi (S-Basis): L ............. LT . . . . . . . . . . . ST . . . . . . . . . . . Fbrue, f, ksi (S-Basis): L & LT (e/D = 1.5) L & LT (e/D = 2.0) Fbrye,f, ksi (S-Basis): L & LT (e/D = 1.5) L & LT (e/D = 2.0) e, percent (S-Basis): L ............. LT . . . . . . . . . . . ST . . . . . . . . . . .
1.000-1.500
1.501-2.000
2.0013.000
3.0014.000
4.0015.000
5.0016.000
A
B
A
B
A
B
A
B
A
B
A
B
66c 66c 64d
69 68 66
66 66 64
68 68 66
65 65 63
68 68 64
65 65 62
67 67 63
64 64 61
66 66 62
63 63 58
65 65 59
57c 57c 55c,d
63 62 60
57 57 55
61 61 59
57 57 55
61 61 59
56 56 54
60 60 57
55 55 53
58 58 55
54 54 51
56 56 53
57 57 ...
... ... ...
57 57 57
... ... ...
56 57 58
... ... ...
55 56 57
... ... ...
53 55 57
... ... ...
52 54 56
... ... ...
... ... ...
... ... ...
38 38 36
... ... ...
38 38 36
... ... ...
38 38 36
... ... ...
37 37 35
... ... ...
37 37 35
... ... ...
... ...
... ...
97 126
... ...
96 125
... ...
96 125
... ...
94 123
... ...
93 121
... ...
... ...
... ...
79 91
... ...
80 92
... ...
80 92
... ...
79 92
... ...
79 91
... ...
6 5 1.5d
... ... ...
6 5 1.5
... ... ...
6 4 1.5
... ... ...
5 4 1.5
... ... ...
5 4 1.5
... ... ...
5 4 1.5
... ... ...
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . . µ ..............
10.4 10.9 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . C, Btu/(lb)(EF) . . . K, Btu/[(hr)(ft3)(EF)/ft] α, 10-6 in./in./EF . . .
0.100 0.21 (at 212EF) 87 (at 77EF) 12.6 (68EF to 212EF)
Issued: Apr 1974, MIL-HDBK-5B, CN3, Item 70-9; Last Revised: Oct 2006, MMPDS-03, Item 04-05. a Mechanical properties were established under MIL-QQ-A-250/29. b Design allowables were reaffirmed in 2006 based on review of recent production data. c A-Basis value is specification minimum.. The Rounded T99 is as follows: Ftu(L) = 68 ksi, Ftu(LT) = 67 ksi, Fty(L) = 60 ksi Fty(LT) = 61 ksi, Fty(ST) = 58 ksi. d Applicable to 1.500-inch thickness only. e S-Basis. Values in table reflect historically accepted values but do not meet 2006 MMPDS guideline requirements. f Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-222
MMPDS-06 1 April 2011 100
Percent of RoomTemperature Ftu
2124-T851 Plate 90
Ftu 80
70
60
Strength at temperature Exposure up to 0.5 hrs.
50 0
100
200
300
400
Temperature, oF
Figure 3.2.13.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2124-T851 aluminum alloy plate.
100
Percent of RoomTemperature Fty
2124-T851 Plate 90
Fty 80
70
60
Strength at temperature Exposure up to 0.5 hrs.
50 0
100
200
300
400
o
Temperature, F
Figure 3.2.13.1.1(b). Effect of temperature on the tensile yield strength (Fty) of 2124T851 aluminum alloy plate.
3-223
MMPDS-06 1 April 2011
Figure 3.2.13.1.6(a). Typical tensile stress-strain curves for 2124-T851 aluminum alloy plate at room temperature.
Figure 3.2.13.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 2124-T851 aluminum alloy plate at room temperature.
3-224
MMPDS-06 1 April 2011
Figure 3.2.13.1.9(a). Fatigue crack propagation data for 2.00 to 5.50inch thick 2124-T851 aluminum alloy plate. [Reference 3.2.13.1.9(a)].
Specimen Thickness: Specimen Width: Specimen Type:
0.25-0.46 inch 11.75 inches M(T)
Environment: Temperature: Orientation:
3-225
95% R.H. RT L-T
MMPDS-06 1 April 2011
Table 3.2.13.1.9(a) Typical Fatigue Crack Growth Rate Data for 2124-T851 Plate, as Shown Graphically in Figure 3.2.13.1.9(a) Stress Ratio ∆K, ksi-in0.50
0.05 - 0.10
Stress Ratio 0.50
∆K, ksi-in0.50
da/dN, in./cycle
0.05 - 0.10
0.50
da/dN, in./cycle
7.50
3.90E-06
23.71
8.30E-05
4.65E-04
7.94
4.91E-06
25.12
1.03E-04
5.96E-04
8.41
6.02E-06
26.61
1.30E-04
7.69E-04
8.91
7.21E-06
28.18
1.64E-04
1.02E-03
9.44
8.52E-06
29.85
2.10E-04
1.44E-03
10.00
1.00E-05
31.62
2.71E-04
2.27E-03
10.59
1.18E-05
33.50
3.51E-04
4.24E-03
11.22
9.32E-06
1.40E-05
35.48
4.57E-04
11.89
1.09E-05
1.69E-05
37.58
5.98E-04
12.59
1.27E-05
2.09E-05
39.81
7.85E-04
13.34
1.49E-05
2.63E-05
42.17
1.04E-03
14.13
1.74E-05
3.40E-05
44.67
1.38E-03
14.96
2.03E-05
4.49E-05
47.32
1.87E-03
15.85
2.37E-05
6.03E-05
50.12
2.60E-03
16.79
2.78E-05
8.18E-05
53.09
3.72E-03
17.78
3.26E-05
1.12E-04
56.23
5.61E-03
18.84
3.86E-05
1.52E-04
59.57
9.04E-03
19.95
4.61E-05
2.06E-04
63.10
1.60E-02
21.14
5.54E-05
2.74E-04
66.83
3.20E-02
22.39
6.74E-05
3.59E-04
70.80
7.52E-02
3-226
MMPDS-06 1 April 2011
Figure 3.2.13.1.9(b). Fatigue crack propagation data for 2.00-inch thick 2124-T851 aluminum alloy plate. [Reference 3.2.13.1.9(a)].
Specimen Thickness: Specimen Width: Specimen Type:
0.25-0.45 inch 11.75 inches M(T)
Environment: Temperature: Orientation:
3-227
Lab Air 300E-400EF L-T
MMPDS-06 1 April 2011
Table 3.2.13.1.9(b) Typical Fatigue Crack Growth Rate Data for 2124-T851 Plate, as Shown Graphically in Figure 3.2.13.1.9(b) Stress Ratio ∆K, ksi-in0.50
0.05
Stress Ratio 0.50
∆K, ksi-in0.50
da/dN, in./cycle
0.05
0.50
da/dN, in./cycle
5.96
2.12E-06
22.39
7.17E-05
2.60E-04
6.31
2.60E-06
23.71
8.45E-05
3.28E-04
6.68
3.21E-06
25.12
1.00E-04
4.08E-04
7.08
3.96E-06
26.61
1.20E-04
5.03E-04
7.50
4.86E-06
28.18
1.44E-04
6.12E-04
7.94
5.92E-06
29.85
1.75E-04
7.39E-04
8.41
7.15E-06
31.62
2.14E-04
8.92E-04
8.91
8.57E-06
33.50
2.63E-04
1.08E-03
9.44
3.62E-06
1.02E-05
35.48
3.25E-04
1.34E-03
10.00
4.60E-06
1.22E-05
37.58
4.03E-04
1.73E-03
10.59
5.91E-06
1.45E-05
39.81
5.01E-04
2.37E-03
11.22
7.61E-06
1.73E-05
42.17
6.22E-04
3.54E-03
11.89
9.74E-06
2.08E-05
44.67
7.71E-04
12.59
1.23E-05
2.52E-05
47.32
9.55E-04
13.34
1.54E-05
3.08E-05
50.12
1.18E-03
14.13
1.89E-05
3.81E-05
53.09
1.46E-03
14.96
2.30E-05
4.75E-05
56.23
1.82E-03
15.85
2.75E-05
5.99E-05
59.57
2.28E-03
16.79
3.26E-05
7.62E-05
63.10
2.92E-03
17.78
3.84E-05
9.74E-05
66.83
3.84E-03
18.84
4.49E-05
1.25E-04
70.80
5.27E-03
19.95
5.24E-05
1.60E-04
74.99
7.68E-03
21.14
6.12E-05
2.05E-04
79.43
1.22E-02
3-228
MMPDS-06 1 April 2011
Figure 3.2.13.1.9(c1). Fatigue crack propagation data for 2.50-inch thick 2124-T851 aluminum alloy plate. [Reference 3.2.13.1.9(b)].
Specimen Thickness: Specimen Width: Specimen Type:
0.75 inch 1.75 inches C(T)
3-229
Environment: Temperature: Orientation:
Lab Air -100E-75EF L-T
MMPDS-06 1 April 2011
Table 3.2.13.1.9(c1) Typical Fatigue Crack Growth Rate Data for 2124-T851 Plate, as Shown Graphically in Figure 3.2.13.1.9(c1) Temperature, F ∆K, ksi-in0.50
-100 to 0
Temperature, F 75
∆K, ksi-in0.50
da/dN, in./cycle
-100 to 0
75
da/dN, in./cycle
4.73
1.01E-07
10.59
2.93E-06
8.71E-06
5.01
1.27E-07
11.22
3.78E-06
1.13E-05
5.31
1.59E-07
5.62E-07
11.89
4.88E-06
1.47E-05
5.62
2.01E-07
6.89E-07
12.59
6.32E-06
1.92E-05
5.96
2.54E-07
8.48E-07
13.34
8.20E-06
2.51E-05
6.31
3.22E-07
1.05E-06
14.13
1.06E-05
3.31E-05
6.68
4.08E-07
1.30E-06
14.96
1.39E-05
4.39E-05
7.08
5.19E-07
1.63E-06
15.85
1.81E-05
5.84E-05
7.50
6.61E-07
2.04E-06
16.79
2.36E-05
7.80E-05
7.94
8.43E-07
2.57E-06
17.78
3.09E-05
1.05E-04
8.41
1.08E-06
3.25E-06
18.84
4.05E-05
1.41E-04
8.91
1.38E-06
4.13E-06
19.95
5.33E-05
1.91E-04
9.44
1.77E-06
5.27E-06
21.14
7.01E-05
10.00
2.28E-06
6.76E-06
3-230
MMPDS-06 1 April 2011
Figure 3.2.13.1.9(c2). Fatigue crack propagation data for 2.50-inch thick 2124T851 aluminum alloy plate. [Reference 3.2.13.1.9(b)].
Specimen Thickness: Specimen Width: Specimen Type:
0.75 inch 1.75 inches C(T)
3-231
Environment: Temperature: Orientation:
Lab Air 400EF L-T
MMPDS-06 1 April 2011
Table 3.2.13.1.9(c2) Typical Fatigue Crack Growth Rate Data for 2124-T851 Plate, as Shown Graphically in Figure 3.2.13.1.9(c2) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.10 da/dN, in./cycle
0.10 da/dN, in./cycle
4.47
3.87E-07
8.91
6.84E-06
4.73
5.04E-07
9.44
8.44E-06
5.01
6.53E-07
10.00
1.04E-05
5.31
8.43E-07
10.59
1.27E-05
5.62
1.08E-06
11.22
1.54E-05
5.96
1.39E-06
11.89
1.87E-05
6.31
1.76E-06
12.59
2.25E-05
6.68
2.24E-06
13.34
2.70E-05
7.08
2.82E-06
14.13
3.23E-05
7.50
3.55E-06
14.96
3.84E-05
7.94
4.43E-06
15.85
4.55E-05
8.41
5.52E-06
16.79
5.37E-05
3-232
MMPDS-06 1 April 2011
Figure 3.2.13.1.9(d1). Fatigue crack propagation data for 2.00 to 5.5.0-inch thick 2124-T851 aluminum alloy plate. [References 3.2.13.1.9(a), 3.2.13.1.9(c), and 3.7.6.2.9(c)].
Specimen Thickness: Specimen Width: Specimen Type:
0.25-0.75 inch 4 - 11.75 inches M(T)
3-233
Environment: Temperature: Orientation:
90% - 95% R.H. RT T-L
MMPDS-06 1 April 2011 Table 3.2.13.1.9(d1) Typical Fatigue Crack Growth Rate Data for 2124-T851 Plate, as Shown Graphically in Figure 3.2.13.1.9(d1) Stress Ratio Stress Ratio ∆K, ksi-in0.50
0.05 - 0.10
0.50
∆K, ksi-in0.50
da/dN, in./cycle
0.05 - 0.10
0.50
da/dN, in./cycle
1.78 1.88
3.57E-08 4.91E-08
10.00 10.59
4.95E-06 5.93E-06
1.61E-05 2.03E-05
2.00 2.11
6.35E-08 7.86E-08
11.22 11.89
7.14E-06 8.64E-06
2.60E-05 3.38E-05
2.24 2.37
9.42E-08 1.11E-07
12.59 13.34
1.05E-05 1.29E-05
4.47E-05 6.04E-05
2.51 2.66 2.82 2.99
1.29E-07 1.49E-07 1.73E-07 2.02E-07
14.13 14.96 15.85 16.79
1.59E-05 1.98E-05 2.49E-05 3.16E-05
8.37E-05 1.19E-04 1.74E-04 2.63E-04
3.16 3.35
6.21E-08
2.37E-07 2.82E-07
17.78 18.84
4.03E-05 5.19E-05
4.10E-04 6.58E-04
3.55 3.76
7.96E-08 1.04E-07
3.38E-07 4.09E-07
19.95 21.14
6.75E-05 8.84E-05
1.09E-03 1.85E-03
3.98 4.22 4.47 4.73 5.01 5.31 5.62 5.96
1.37E-07 1.82E-07 2.42E-07 3.18E-07 4.16E-07 5.38E-07 6.88E-07 8.69E-07
5.00E-07 6.15E-07 7.61E-07 9.46E-07 1.18E-06 1.47E-06 1.84E-06 2.30E-06
22.39 23.71 25.12 26.61 28.18 29.85 31.62 33.50
1.17E-04 1.55E-04 2.08E-04 2.82E-04 3.86E-04 5.34E-04 7.50E-04 1.07E-03
3.21E-03 5.66E-03 1.01E-02 1.78E-02 3.10E-02
6.31 6.68 7.08
1.09E-06 1.34E-06 1.64E-06
2.86E-06 3.55E-06 4.40E-06
35.48 37.58 39.81
1.56E-03 2.34E-03 3.62E-03
7.50
1.99E-06
5.45E-06
42.17
5.82E-03
7.94 8.41 8.91
2.41E-06 2.89E-06 3.46E-06
6.74E-06 8.33E-06 1.03E-05
44.67 47.32 50.12
9.85E-03 1.77E-02 3.42E-02
9.44
4.13E-06
1.28E-05
53.09
7.22E-02
3-234
MMPDS-06 1 April 2011
Figure 3.2.13.1.9(d2). Fatigue crack propagation data for 2.0 to 5.50-inch thick 2124-T851 aluminum alloy plate. [References 3.2.13.1.9(a), 3.2.13.1.9(c), and 3.7.6.2.9(c)].
Specimen Thickness: Specimen Width: Specimen Type:
0.25-0.75 inch 4 - 11.75 inches M(T)
3-235
Environment: Temperature: Orientation:
90% - 95% R.H. RT T-L
MMPDS-06 1 April 2011
Table 3.2.13.1.9(d2) Typical Fatigue Crack Growth Rate Data for 2124-T851 Plate, as Shown Graphically in Figure 3.2.13.1.9(d2) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.25 - 0.33 da/dN, in./cycle
0.25 - 0.33 da/dN, in./cycle
2.11
4.24E-09
6.68
1.84E-06
2.24
9.15E-09
7.08
2.22E-06
2.37
1.70E-08
7.50
2.67E-06
2.51
2.82E-08
7.94
3.19E-06
2.66
4.28E-08
8.41
3.80E-06
2.82
6.08E-08
8.91
4.51E-06
2.99
8.23E-08
9.44
5.38E-06
3.16
1.08E-07
10.00
6.43E-06
3.35
1.38E-07
10.59
7.75E-06
3.55
1.75E-07
11.22
9.43E-06
3.76
2.19E-07
11.89
1.17E-05
3.98
2.74E-07
12.59
1.46E-05
4.22
3.41E-07
13.34
1.88E-05
4.47
4.25E-07
14.13
2.46E-05
4.73
5.29E-07
14.96
3.29E-05
5.01
6.57E-07
15.85
4.51E-05
5.31
8.15E-07
16.79
6.30E-05
5.62
1.01E-06
17.78
8.94E-05
5.96
1.24E-06
18.84
1.28E-04
6.31
1.51E-06
19.95
1.83E-04
3-236
MMPDS-06 1 April 2011
Figure 3.2.13.1.9(e). Fatigue crack propagation data for 2.00-inch thick 2124-T851 aluminum alloy plate. [Reference 3.2.13.1.9(a)].
Specimen Thickness: Specimen Width: Specimen Type:
0.25-0.45 inch 11.75 inches M(T)
3-237
Environment: Temperature: Orientation:
Lab Air 300E - 400EF T-L
MMPDS-06 1 April 2011
Table 3.2.13.1.9(e) Typical Fatigue Crack Growth Rate Data for 2124-T851 Plate, as Shown Graphically in Figure 3.2.13.1.9(e) Stress Ratio ∆K, ksi-in0.50
0.05
Stress Ratio 0.50
∆K, ksi-in0.50
da/dN, in./cycle
0.05
0.50
da/dN, in./cycle
5.62
1.82E-06
21.14
7.87E-05
4.10E-04
5.96
2.44E-06
22.39
1.01E-04
5.19E-04
6.31
3.19E-06
23.71
1.30E-04
6.54E-04
6.68
4.10E-06
25.12
1.68E-04
8.23E-04
7.08
5.18E-06
26.61
2.18E-04
1.03E-03
7.50
6.47E-06
28.18
2.83E-04
1.30E-03
7.94
8.03E-06
29.85
3.68E-04
1.65E-03
8.41
9.92E-06
31.62
4.76E-04
2.12E-03
8.91
1.22E-05
33.50
6.15E-04
2.76E-03
9.44
1.51E-05
35.48
7.90E-04
3.70E-03
10.00
4.97E-06
1.87E-05
37.58
1.01E-03
5.14E-03
10.59
6.50E-06
2.33E-05
39.81
1.28E-03
7.49E-03
11.22
8.21E-06
2.91E-05
42.17
1.62E-03
1.16E-02
11.89
1.01E-05
3.65E-05
44.67
2.04E-03
12.59
1.24E-05
4.61E-05
47.32
2.57E-03
13.34
1.49E-05
5.84E-05
50.12
3.24E-03
14.13
1.80E-05
7.44E-05
53.09
4.11E-03
14.96
2.17E-05
9.50E-05
56.23
5.27E-03
15.85
2.63E-05
1.21E-04
59.57
6.88E-03
16.79
3.21E-05
1.55E-04
63.10
9.22E-03
17.78
3.96E-05
1.99E-04
66.83
1.28E-02
18.84
4.93E-05
2.54E-04
70.80
1.87E-02
19.95
6.20E-05
3.23E-04
74.99
2.88E-02
3-238
MMPDS-06 1 April 2011 3.2.14 2196 ALLOY 3.2.14.0 Comments and Properties - 2196 is an Al-Cu-Li-Mg-Ag alloy developed mainly for aerospace applications requiring low density, high strength and stiffness combined with good dimensional stability during machining process. The product is currently available as extrusions, solution heat treated and artificially aged to T8511 temper. AMS 4416 provides relevant technical details. Material specifications for 2196 aluminum alloy are presented in Table 3.2.14.0(a). temperature mechanical and physical properties are shown in Table 3.2.14.0(b).
Room
Table 3.2.14.0(a). Material Specifications for 2196 Aluminum Alloy Specification Form AMS 4416 Extrusions
The temper index for 2196 is as follows: Section 3.2.14.1
Temper T8511
3.2.14.1 T8511 Temper - Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.14.1.6(a) and 3.2.14.1.6(b). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.2.14.1.6(c).
3-239
MMPDS-06 1 April 2011 Table 3.2.14.0(b) Design Mechanical and Physical Properties of 2196 Aluminum Alloy Specification . . . . . . . . . AMS 4416 Form . . . . . . . . . . . . . . . . Extrusions Temper . . . . . . . . . . . . . . T8511 Thickness, (in.) . . . . . . . 0.063-0.125 >0.125-0.249 Basis . . . . . . . . . . . . . . . . A B A B Mechanical Properties: Ftu, ksi: L . . . . . . . . . . . . 76 79 76 79 Fty, ksi: L . . . . . . . . . . . . 74 69 74 71 Fcy, ksi: L . . . . . . . . . . . . 64 68 68 71 Fsu, ksi: . . . . . . . . . . . . . ... ... ... ... a Fbru , ksi : (e/D = 1.5) L . . . . . . . 102 106 102 106 (e/D = 2.0) L . . . . . . . 136 131 136 131 a Fbry , ksi : 86 89 83 89 (e/D = 1.5) L . . . . . . . 102 96 102 98 (e/D = 2.0) L . . . . . . . e, percent (S-Basis): 7 ... ... L................. 6 E, 103 ksi . . . . . . . . . . . . 11.1 Ec, 103 ksi . . . . . . . . . . . . . 11.2 3 G, 10 ksi . . . . . . . . . . . . 4.3 µ ................ 0.30 Physical Properties: ω, lb./in.3 . . . . . . . . . . 0.095 C, and K . . . . . . . . . . . ... α, Fin/in/EF . . . . . . . . 12.2 (68°-159°F),
12.9 (68°-250°F), and 13.6 (159°-250°F) Issued: Apr 2010, MMPDS-05, Item 09-31 a
Bearing values are “dry pin” values per Section 1.4.7.1
3-240
MMPDS-06 1 April 2011 80
2196-T8511 Extrusion Longitudinal
Stress, ksi
60
Thickness: 0.063 - 0.249 in.
40
TYPICAL
20 Ramberg-Osgood (L) n1 = 8.2 (L) n2 = 49.5
TYS
K1 = 2.299
78.0
K2 = 1.962
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.14.1.6(a). Typical tensile stress-strain curves for 2196-T8511 aluminum alloy extrusion at room temperature.
80
Stress, ksi
60
2196-T8511 Extrusion Longitudinal
40
TYPICAL Ramberg-Osgood
20
CYS
(L) n = 16.6
76.0
Thickness: 0.063 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.14.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 2196-T8511 aluminum alloy extrusion at room temperature.
3-241
MMPDS-06 1 April 2011
100
90
X
80
70
Stress, ksi
60
50
40
30
t = 0.063 - 0.249 in. 20
2196-8511 Extrusions Longitudinal
10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
Strain, in./in.
Figure 3.2.14.1.6(c). Typical tensile stress-strain curves (full range) for 2196-T8511 aluminum alloy extrusion at room temperature.
3-242
MMPDS-06 1 April 2011 3.2.15 2198 ALLOY 3.2.15.0 Comments and Properties -2198 is an Al-Cu-Li-Mg-Ag alloy and a derivative of 2098 alloy. 2198 is developed mainly for aerospace applications where its higher purity and optimized chemical composition provide for improved damage tolerance combined with good strength level. The product is currently available in sheet form, solution heat treated and artificially aged to T8 temper. AMS 4412 provides relevant technical details. Material specifications for 2198 aluminum alloy are presented in Table 3.2.15.0(a). temperature mechanical and physical properties are shown in Table 3.2.15.0(b).
Room
Table 3.2.15.0(a). Material Specifications for 2198 Aluminum Alloy
Specification AMS 4412
Form Sheet
The temper index for 2198 is as follows: Section
Temper
3.2.15.1
T8
3.2.15.1 T8 Temper - Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.2.15.1.6(a) through 3.2.15.1.6(e). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.2.15.1.6(f) through 3.2.15.1.6(h). Rcurve behavior is shown in Figures 3.2.15.1.10(a) through 3.2.15.1.10(e).
3-243
MMPDS-06 1 April 2011 Table 3.2.15.0(b) Design Mechanical and Physical Properties of 2198 Aluminum Alloy
Specification . . . . . . . . . Form . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . Thickness, (in.) . . . . . . . Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L................. LT . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . . Fty, ksi: L................. LT . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . . Fcy, ksi: L................. LT . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . . Fsub, ksi: T-L . . . . . . . . . . . . . . . L-T . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . . Fbrud, ksi (e/D = 1.5) : L ................ LT . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . Fbrud, ksi (e/D = 2.0) : L ................ LT . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . . Fbryd, ksi (e/D = 1.5) : L ................ LT . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . Fbryd, ksi (e/D = 2.0) : . . L ................ LT . . . . . . . . . . . . . . . 45° . . . . . . . . . . . . . . e, percent (S-Basis): L................. LT . . . . . . . . . . . . . . .
AMS 4412 Sheet T8 0.063-0.124
0.125-0.249
A
B
A
B
68a 67 61
70 68 62
71 68 58
73 70 59
62a 59 54
65 60 54
64 62 54
66 64 56
60 60 ...
62 62 ...
56 56 ...
58 58 ...
41 43 ...
41 43 ...
37c 41c ...
37c 42c ...
99 102
...
100 103 ...
79 88 ...
81 90 ...
127 135 ...
129 137 ...
122 120 ...
126 123 ...
80 80 ...
81 81 ...
67 67 ...
70 70 ...
90 93 ...
92 94 ...
92 96 ...
95 99 ...
8 9
... ...
8 9
... ... 3-244
MMPDS-06 1 April 2011 Table 3.2.15.0(b) Design Mechanical and Physical Properties of 2198 Aluminum Alloy (Continued)
Specification . . . . . . . . . Form . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . E, 103 ksi: . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ : ................. Physical Properties: ω, lb./in.3 . . . . . . . . . .
AMS 4412 Sheet T8 10.9 11.6 4.2 0.31 0.097 Y
C, and K . . . . . . . . . . . α, F in./in.EF . . . . . . .
11.7 (68E-159 EF), 12.4 (68E-250 EF), and 13.1 (159E-250 EF)
Issued: Apr 2010, MMPDS-05, Item 09-35 a b c d
A-Basis value is specification minimum. The rounded T99 for Ftu (L) = 69 ksi and for Fty (L) = 63 ksi Grain orientation and loading direction per ASTM B831 Applies to thickness range 0.125-0.160 inches only. No properties for >0.160 inches. Bearing values are “dry pin” values per Section 1.4.7.1.
................
3-245
MMPDS-06 1 April 2011
80 2198-T8 Sheet
0.125-0.249 in.
60
Stress, ksi
0.063-0.124 in.
40
Longitudinal TYPICAL Ramberg-Osgood
20
(0.063-0.124 in.) n1 = 15.3 n2 = 107.7 (0.125-0.249 in.) n1 = 9.4
K1 = 2.027
TYS 67.0
K2 = 1.852 K1 = 2.205 70.0
n2 = 89.1
K2 = 1.878
0 0
2
4
6
8
10
Strain, 0.001 in./in.
Figure 3.2.15.1.6(a). Typical tensile stress-strain curves for 2198-T8 aluminum alloy sheet in the longitudinal direction at room temperature.
80 2198-T8 Sheet
0.125-0.249 in.
Stress, ksi
60
0.063-0.124 in. 40
Long-transverse TYPICAL
20
Ramberg-Osgood (0.063-0.124 in.) n = 14.9 (0.125-0.249 in.) n1 = 10.3 n2 = 67.3
TYS 62.0
K1 = 2.132
68.0
K2 = 1.876
0 0
2
4
6
8
10
Strain, 0.001 in./in.
Figure 3.2.15.1.6(b). Typical tensile stress-strain curves for 2198-T8 aluminum alloy sheet in the long-transverse direction at room temperature.
3-246
MMPDS-06 1 April 2011
80 2198-T8 Sheet
0.125-0.249 in.
Stress, ksi
60
0.063-0.124 in. 40 45 degree TYPICAL 20
Ramberg-Osgood (0.063-0.124 in.) n1 = 9.6 n2 = 44.4
TYS
K1 = 2.077
60.0
K2 = 1.850
(0.125-0.249 in.) n = 14.6
61.0
0 0
2
4
6
8
10
Strain, 0.001 in./in.
Figure 3.2.15.1.6(c). Typical tensile stress-strain curves for 2198-T8 aluminum alloy sheet in the 45 degree direction at room temperature.
80 2198-T8 Sheet
0.125-0.249 in.
Stress, ksi
60
0.063-0.124 in.
40
TYPICAL Longitudinal 20
Ramberg-Osgood
CYS
(0.063-0.124 in.) n = 10.3
66.0
(0.125-0.249 in.) n = 17.8
68.0
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.15.1.6(d). Typical compressive stress-strain and compressive tangent-modulus curves for 2198-T8 aluminum alloy sheet in the longitudinal direction at room temperature.
3-247
MMPDS-06 1 April 2011
80 2198-T8 Sheet
0.125-0.249 in.
Stress, ksi
60
0.063-0.124 in. 40
TYPICAL Long-transverse 20
Ramberg-Osgood
CYS
(0.063-0.124 in.) n = 16.9
67.0
(0.125-0.249 in.) n = 21.6
68.0
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.2.15.1.6(e). Typical compressive stress-strain and compressive tangentmodulus curves for 2198-T8 aluminum alloy sheet in the long-transverse direction at room temperature.
3-248
MMPDS-06 1 April 2011
80
0.125-0.249 in.
X
70
0.063-0.124 in.
X
60
Stress, ksi
50
40
30
20
Longitudinal 2198-T8 Sheet 10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
Strain, in./in.
Figure 3.2.15.1.6(f). Typical tensile stress-strain curves (full range) for 2198-T8 aluminum alloy sheet in the longitudinal direction at room temperature.
3-249
0.12
MMPDS-06 1 April 2011
80
0.125-0.249 in.
70
X
0.063-0.124 in.
X
60
Stress, ksi
50
40
30
20
Long-transverse 2198-T8 Sheet 10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.2.15.1.6(g). Typical tensile stress-strain curves (full range) for 2198-T8 aluminum alloy sheet in the long-transverse direction at room temperature.
3-250
MMPDS-06 1 April 2011 70
0.125-0.249 in.
0.063-0.124 in.
60
X
50
X
Stress, ksi
40
30
20
45 Degree 2198-T8 Sheet
10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 3.2.15.1.6(h). Typical tensile stress-strain curves (full range) for 2198-T8 aluminum alloy sheet in the 45 degree direction at room temperature.
3-251
MMPDS-06 1 April 2011
Figure 3.2.15.10(a) R-curve behavior of 0.064- to 0.102-inch thick, 29.9-inch wide 2198-T8 sheet at room temperature. Crack orientation is T-L. [Reference 3.2.15.1.10]
Figure 3.2.15.1.10(b) R-curve behavior of 0.121- to 0.154-inch thick, 29.9-inch wide 2198-T8 sheet at room temperature. Crack orientation is T-L. [Reference 3.2.15.1.10]
3-252
MMPDS-06 1 April 2011
Figure 3.2.15.1.10(c) R-curve behavior of 0.157- to 0.198-inch thick, 29.9-inch wide 2198-T8 sheet at room temperature. Crack orientation is T-L. [Reference 3.2.15.1.10]
Figure 3.2.15.1.10(d) R-curve behavior of 0.073- to 0.134-inch thick, 29.9-inch wide 2198-T8 sheet at room temperature. Crack orientation is L-T. [Reference 3.2.15.1.10]
3-253
MMPDS-06 1 April 2011
Figure 3.2.15.1.10(e) R-curve behavior of 0.157- to 0.200-inch thick, 29.9-inch wide 2198-T8 sheet at room temperature. Crack orientation is L-T. [Reference 3.2.15.1.10]
3-254
MMPDS-06 1 April 2011 3.2.16 2219 ALLOY 3.2.16.0 Comments and Properties — 2219 is an Al-Cu alloy available in a wide variety of product forms. As shown in Table 3.1.2.3.1(a), 2219-T351X and -T37 rolled plate and extruded shapes have a “D” SCC rating. This is the lowest rating and means that SCC failures have occurred in service or would be anticipated if there is any sustained stress. In-service failures are caused by stresses produced by any combination of sources, including solution heat treatment, straightening, forming, fit-up, clamping, sustained service loads, or high service compression stresses that produce residual tensile stresses. These stresses may be tension or compression as well as the stresses due to the Poisson effect, because the actual failures are caused by the resulting sustained shear stresses. Pin-hole flaws in corrosion protection are sufficient for SCC. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress-corrosion cracking, and to Section 3.1.3.4 for comments regarding the weldability of the alloy. It has been used in critical cryogenic applications as well as those applications in which high strength and creep resistance at relatively high temperatures (400E to 600EF) are required. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 2219 are presented in Table 3.2.16.0(a). Room temperature mechanical and physical properties are shown in Tables 3.2.16.0(b1) through 3.2.16.0(d). The effect of temperature on the physical properties is shown in Figure 3.2.16.0. Table 3.2.16.0(a). Material Specifications for 2219 Aluminum Alloy
Specification AMS 4031 AMS-QQ-A-250/30 AMS 4162 AMS 4163 AMS 4144
Form Sheet and plate Sheet and plate Extrusion Extrusion Hand forging
The temper index for 2219 is as follows: Section 3.2.16.1 3.2.16.2 3.2.16.3 3.2.16.4
Temper T62 T81, T851, T8510, and T8511 T852 T87
3-255
Table 3.2.16.0(b1). Design Mechanical and Physical Properties of 2219 Aluminum Alloy Sheet and Plate Specification . . . . . .
AMS 4031 & AMS-QQ-A250/30a
AMS-QQ-A-250/30a
Form . . . . . . . . . . . .
Sheet and plate b
T81
Temper . . . . . . . . . .
T62
Thickness, in. . . . . .
0.020-2.000
Basis . . . . . . . . . . . .
E, 103 ksi . . . . . . . Ec, 103 ksi . . . . . . G, 103 ksi . . . . . . µ ............. Physical Properties: ω, lb/in.3 . . . . . . . C, K, and α . . . . . a b c d
0.020-0.249
0.250-1.000
1.001-2.000
2.001-3.000
3.001-4.000
4.001-5.000
5.001-6.000
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
54 54
55 55
61 62
62 63
61 62
62 63
61 62
62 63
... 62
... 63
... 60
... 61
... 59
... 60
... 57
... 58
36 36
37 37
47 46
48 47
47 46
48 47
47 46
48 47
... 45
... 46
... 44
... 45
... 43
... 44
... 42
... 43
37 37 31
39 38 32
47 48 35
48 49 35
47 48 36
48 49 36
47 48 36
48 49 36
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
84 107
85 109
95 121
96 123
95 121
96 123
95 121
96 123
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
62 79
64 81
76 92
78 94
76 92
78 94
76 92
78 94
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
d
...
d
...
8
...
7
...
6
...
5
...
5
...
4
...
10.5 10.8 4.0 0.33 0.103 See Figure 3.2.16.0
Mechanical properties were established under MIL-QQ-A-250/30. Design allowables were based upon data obtained from testing samples of material, supplied in O and F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by user may be lower than those listed if the material has been formed or otherwise cold- or hot-worked, particularly in the annealed temper, prior to solution heat treatment. Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. T62 and T81: 0.020-0.039 in., 6 percent; 0.040-0.249 in., 7 percent; T62: 0.250-1.000 in., 8 percent; 1.001-2.000 in., 7 percent.
MMPDS-06 1 April 2011
3-256
Mechanical Properties: Ftu, ksi: L ............ LT . . . . . . . . . . . Fty, ksi: L ............ LT . . . . . . . . . . . Fcy, ksi: L ............ LT . . . . . . . . . . . Fsu, ksi . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent (S-Basis): LT . . . . . . . . . . .
T851
MMPDS-06 1 April 2011
Table 3.2.16.0(b2). Design Mechanical and Physical Properties of 2219 Aluminum Alloy Sheet (Continued)
Specification . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): . . . LT . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . .
AMS-QQ-A-250/30a Sheet T87 0.020-0.039
0.040-0.249
A
B
A
B
63 64
64 65
63 64
64 65
51 52
52 53
51 52
52 53
52 55 36
53 56 37
52 55 36
53 56 37
99 126
100 128
99 126
100 128
83 96
85 98
83 96
85 98
5
...
6
...
10.5 10.8 4.0 0.33 0.103 See Figure 3.2.16.0
a Mechanical properties were established under MIL-QQ-A-250/30. b See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-257
MMPDS-06 1 April 2011 Table 3.2.16.0(b3). Design Mechanical and Physical Properties of 2219 Aluminum Alloy Plate (Continued)
Specification . . . . . . . . . . . . .
AMS-QQ-A-250/30a
Form . . . . . . . . . . . . . . . . . . . .
Plate
Condition . . . . . . . . . . . . . . . .
T87
Thickness, in. . . . . . . . . . . . . .
0.2501.000
Basis . . . . . . . . . . . . . . . . . . . .
A
B
A
B
A
B
A
B
A
B
A
B
Mechanical Properties: Ftu, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . .
63 64 ...
64 65 ...
63 64 ...
64 65 ...
63 64 59
64 65 60
63 64 56
64 65 57
61 62 52
62 63 53
... 61 ...
... 62 ...
Fty, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . .
50 51 ...
51 52 ...
50 51 ...
51 52 ...
50 51 51
51 52 52
50 51 50
51 52 51
49 51 48
50 51 49
... 49 ...
... 50 ...
51 53 37
52 54 38
51 52 37
52 53 38
51 52 37
52 53 38
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
99 126
100 128
99 126
100 128
99 126
100 128
... ...
... ...
... ...
... ...
... ...
... ...
82 94
83 96
82 94
83 96
82 94
83 96
... ...
... ...
... ...
... ...
... ...
... ...
7
...
6
...
6
...
6
...
4
...
3
...
Fcy, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent (S-Basis): . . . . . . LT . . . . . . . . . . . . . . . . . . .
1.0011.500
1.5012.000
3
E, 10 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ .....................
10.5 10.8 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . a
2.0013.000
0.103 See Figure 3.2.16.0
Mechanical properties were established under MIL-QQ-A-250/30.
b See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-258
3.0014.000
4.0015.000
MMPDS-06 1 April 2011
Table 3.2.16.0(c). Design Mechanical and Physical Properties of 2219 Aluminum Alloy Hand Forging Specification ............... Form ............................ Temper ........................ Thickness, in. .............. Basis ............................
AMS 4144 Hand Forging T852 <2.000
2.0004.000
4.0016.000
6.0018.000
8.00110.000
10.00112.000
12.00114.000
14.00117.000
S
S
S
S
S
S
S
S
62 62 ...
62 62 60
58 56 56
57 55 55
56 54 54
54 53 53
53 52 52
51 50 50
50 49 ...
50 49 46
44 42 41
43 41 40
42 41 39
41 40 39
40 40 38
39 39 37
... ... ...
46 47 47
40 40 41
39 39 40
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
37 36 32
35 34 32
35 35 33
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... 104
... 100
80 102
... ...
... ...
... ...
... ...
... ...
76 89
65 76
64 75
... ...
... ...
... ...
... ...
6 4 ...
6 4 3
6 4 3
6 4 3
6 3 3
Mechanical Properties: Ftu, ksi: L ............................. LT .......................... ST ........................... Fty, ksi: L ............................. LT .......................... ST ........................... Fcy, ksi: L.............................. LT .......................... ST ........................... Fsu, ksi: L.............................. LT .......................... ST .......................... Fbrua, ksi: (e/D = 1.5) ............. (e/D = 2.0) ............. Fbrya, ksi: (e/D = 1.5) ............. (e/D = 2.0) ............. e, percent: L.............................. LT .......................... ST ........................... E, 1033ksi .................. Ec, 10 ksi ................. G, 103 ksi .................. µ ................................
10.2 10.4 3.9 0.33
Physical Properties: ω, lb/in.3 ................... C, K, and α .............. a
0.103 See Figure 3.2.16.0
Bearing values are “dry pin” values per Section 1.4.7.1.
3-259
6 3 2
6 3 2
6 3 2
MMPDS-06 1 April 2011
Table 3.2.16.0(d). Design Mechanical and Physical Properties of 2219 Aluminum Alloy Extruded Shapes
Specification . . . . . . . . . . . . . . . .
AMS 4162 and AMS 4163a
Form . . . . . . . . . . . . . . . . . . . . . .
Extruded shapes
Temper . . . . . . . . . . . . . . . . . . . .
T8511
2
#25
Cross-Sectional Area, in. . . . . . . b
Thickness or Diameter, in. . . . . .
#0.499
0.500-2.999
Basis . . . . . . . . . . . . . . . . . . . . . .
S
S
58 56
58 56
42 39
42 39
43 43 33
42 41 33
87 113
81 107
69 84
67 82
6 4
6 4
Mechanical Properties: Ftu, ksi: L ...................... LTc . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ...................... LTc . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ...................... LT . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . Fbrud, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . Fbryd, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . e, percent: L ...................... LTc . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . µ ........................
10.5 10.8 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . a b c d
0.103 See Figure 3.2.16.0
Design allowables for extrusions procured to AMS 4163 were based upon data obtained from testing samples of material, supplied in T3511 temper, which were precipitation heat treated by suppliers to demonstrate response to aging treatment. The mechanical properties are to be based upon the thickness at the time of quench. Applicable providing LT dimension is $2.500 inches. Bearing values are “dry pin” values per Section 1.4.7.1.
3-260
MMPDS-06 1 April 2011
- Between 70 F and indicated temperature K - At indicated temperature C - At indicated temperature 15
14
80
0.20
12
C
11
C, Btu/(lb)(F)
-6
0.25
13
, 10 in./in./F
100
2
K, Btu/[(hr)(ft )(F)/ft]
0.30
K (T8XX) 0.15
10
40
0.10
9
20
0.05
8
0
0.00
60
-400
-200
0
200
400
600
800
1000
Temperature, F
Figure 3.2.16.0. Effect of temperature on the physical properties of 2219 aluminum alloy.
3-261
MMPDS-06 1 April 2011 3.2.16.1 T62 Temper — Elevated temperature data for this temper are presented in Figures 3.2.16.1.1(a) and 3.2.16.1.1(b). Typical room temperature tensile and compressive stress-strain, compressive tangent-modulus, and full-range tensile stress-strain curves for 2219 aluminum alloy sheet and plate for this temper are shown in Figures 3.2.16.1.6(a) and 3.2.16.1.6(b).
160
140 Strength at temperature Exposure up to 10,000 hr
Percent Ftu of Room Temperature
120
100
80 10,000 hr 1000 hr 100 hr 10 hr 1/2 hr
`
60
40 10,000 hr 1000 hr 100 hr 10 hr 1/2 hr
20
0 -500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
800
Temperature, F
Figure 3.2.16.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2219-T62 aluminum alloy sheet, 0.040-0.249, and plate, 0.250-1.000 in. thick.
3-262
MMPDS-06 1 April 2011
160
140 Strength at temperature Exposure up to 10,000 hr
Percent Fty of Room Temperature
120
100
80 ½ hr 10 hr 100 hr 1000 hr 10,000 hr
60
40 ½ hr 10 hr 100 hr 1000 hr 10,000 hr
20
0 -500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
Temperature, F
Figure 3.2.16.1.1(b). Effect of temperature on the tensile yield strength (Fty) of 2219-T62 aluminum alloy sheet, 0.040-0.249 and plate, 0.250-1.000 in. thick.
3-263
800
MMPDS-06 1 April 2011
50 L and LT Compression L and LT Tension 40
Stress, ksi
30
20
Ramberg - Osgood n (L and LT - tension) = 13 n (L and LT - comp.) = 16
10
TYPICAL Thickness = 0.125 - 2.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.16.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2219-T62 aluminum alloy sheet and plate at room temperature.
3-264
MMPDS-06 1 April 2011
80
70
Longitudinal and Long transverse
60
X
Stress, ksi
50
40
30
20
10
TYPICAL Thickness: 0.125-2.00 in. 0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.2.16.1.6(b). Typical tensile stress-strain (full range) curve for 2219-T62 aluminum alloy sheet and plate at room temperature.
3-265
MMPDS-06 1 April 2011 3.2.16.2 T81 and T851X Tempers — Elevated temperature data for these tempers are presented in Figures 3.2.16.2.1(a) and 3.2.16.2.1(b). Typical tensile and compressive stress-strain curves and compressive tangent modulus curves are shown in Figure 3.2.16.2.6(a). Full range tensile stress-strain curves at room temperature are shown in Figure 3.2.16.2.6(b). S/N fatigue curves are shown in Figures 3.2.16.8(a) through 3.2.16.8(d).
160 2219-T81 and T851 Strength at temperature Exposure up to 10,000 hr
150 140
Ftu
130
Percentage of Room Temperature Strength
120 110 100 90 80 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
70 60 50 40 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
30 20 10 0 -500 -400 -300 -200 -100
0
100
200
300
400
500
600
700
800
Temperature, oF
Figure 3.2.16.2.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2219-T81 aluminum alloy sheet and 2219-T851 aluminum alloy plate.
3-266
MMPDS-06 1 April 2011
160 2219-T81 and T851 Strength at temperature Exposure up to 10,000 hr
150 140
Fty
130
Percentage of Room Temperature Strength
120 110 100 90 80 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
70 60 50 40 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
30 20 10 0 -500 -400 -300 -200 -100
0
100
200
300
400
500
600
700
800
Temperature, oF Figure 3.2.16.2.1(b). Effect of temperature on the tensile yield strength (Fty) of 2219T81 aluminum alloy sheet and 2219-T851 aluminum alloy plate.
3-267
MMPDS-06 1 April 2011
100
80
LT - compression L - compression
L and LT - tension
Stress, ksi
60
40 Ramberg - Osgood n (L and LT - tension) = 20 n (L - comp.) = 19 n (LT - comp.) = 21
20
TYPICAL Thickness = 0.040 - 2.500 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.16.2.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2219-T81 aluminum alloy sheet and 2219-T851 aluminum alloy plate at room temperature.
3-268
MMPDS-06 1 April 2011
/RQJWUDQVYHUVH
/RQJLWXGLQDO
6WUHVVNVL
7KLFNQHVVLQ 7<3,&$/
6WUDLQLQLQ
Figure 3.2.16.2.6(b). Typical tensile stress-strain curves (full range) for 2219-T81 aluminum alloy sheet and 2219-T851 aluminum alloy plate at room temperature.
3-269
MMPDS-06 1 April 2011
Figure 3.2.16.2.8(a). Best-fit S/N curves for notched, Kt = 2.0, 2219T851 aluminum alloy plate, longitudinal direction.
Correlative Information for Figure 3.2.16.2.8(a) Product Form: Plate, 2.00-inches thick Properties:
TUS, ksi 68
TYS, ksi 52
94
—
Test Parameters: Loading - Axial Frequency - 7000 to 8000 cpm Temperature - RT Environment - Air
Temp.,EF RT (unnotched) RT (notched)
No. of Heats/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 2.0 0.195-inch gross diameter 0.136-inch net diameter 0.020-inch root radius, r 60E flank angle, ε
Equivalent Stress Equation: Log Nf = 7.92-2.69 log (Seq-16.0) Seq = Smax (1-R)0.64 ksi Std. Error of Estimate, Log (Life) = 0.313 Standard Deviation, Log (Life) = 0.739 R2 = 82%
Surface Condition: As machined Sample Size = 34 Reference:
3.2.16.2.8 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-270
MMPDS-06 1 April 2011
Figure 3.2.16.2.8(b). Best-fit S/N curves for notched, Kt = 3.2, 2219T851 aluminum alloy plate, longitudinal direction.
Correlative Information for Figure 3.2.13.2.8(b) Product Form: Plate, 2.00-inches thick Properties:
TUS, ksi 68 92
TYS, ksi 52 —
Test Parameters: Loading - Axial Frequency - 7000 to 8000 cpm Temperature - RT Environment - Air
Temp.,EF RT (unnotched) RT (notched)
No. of Heats/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 3.2 0.195-inch gross diameter 0.136-inch net diameter 0.006-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 8.46-2.83 log (Seq-3.93) Seq = Smax (1-R)0.76 Std. Error of Estimate, Log (Life) = 0.292 Standard Deviation, Log (Life) = 0.64 R2 = 79% Sample Size = 39
Surface Condition: As machined Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.16.2.8
3-271
MMPDS-06 1 April 2011
Figure 3.2.16.2.8(c). Best-fit S/N curves for notched, Kt = 3.2, 2219T851 aluminum alloy plate, long-transverse direction.
Correlative Information for Figure 3.2.16.2.8(c) Product Form: Plate, 2.00-inches thick Properties:
TUS, ksi 68 89
TYS, ksi 51 —
Test Parameters: Loading - Axial Frequency - 7000 to 8000 cpm Temperature - RT Environment - Air
Temp.,EF RT (unnotched) RT (notched)
No. of Heats/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 3.2 0.195-inch gross diameter 0.136-inch net diameter 0.006-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 10.85-4.34 log (Seq) Seq = Smax (1-R)0.686 ksi Std. Error of Estimate, Log (Life) = 0.153 Standard Deviation, Log (Life) = 0.610 R2 = 94%
Surface Condition: As machined Sample Size = 25 Reference:
3.2.16.2.8 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-272
MMPDS-06 1 April 2011
Figure 3.2.16.2.8(d). Best-fit S/N curves for notched, Kt = 5.0, 2219-T851 aluminum alloy plate, longitudinal direction.
Correlative Information for Figure 3.2.16.2.8(d) Product Form: Plate, 2.00-inches thick Properties:
TUS, ksi 68 (L) 91 (L)
TYS, ksi 52 (L) —
Test Parameters: Loading - Axial Frequency - 7000 to 8000 cpm Temperature - RT Environment - Air
Temp.,EF RT (unnotched) RT (notched)
No. of Heats/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 5.0 0.300-inch gross diameter 0.210-inch net diameter 0.0035-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 8.76-3.05 log (Seq) Seq = Smax (1-R)0.722 ksi Std. Error of Estimate, Log (Life) = 0.194 Standard Deviation, Log (Life) = 0.660 R2 = 91% Sample Size = 38
Surface Condition: As machined Reference:
3.2.16.2.8
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-273
MMPDS-06 1 April 2011 3.2.16.3 T852 Temper — Typical room temperature tensile and compressive stress-strain, compressive tangent-modulus, and full-range tensile stress-strain curves for 2219 aluminum alloy for this temper are shown in Figures 3.2.16.3.6(a) through 3.2.16.3.6(e). 100
80
60
Stress, ksi
L LT ST 40 Ramberg - Osgood n (L) = 22 n (LT) = 17 n(ST) = 14 20
TYPICAL Thickness = 4.001 - 6.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.16.3.6(a). Typical tensile stress-strain curves for 2219-T852 aluminum alloy hand forging at room temperature. 100
80
Stress, ksi
60 L LT and ST 40
Ramberg - Osgood n(L-tension) = 16 n(LT-tension) = 15 n(ST-tension) = 15
20
TYPICAL Thickness = 6.001 - 8.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.16.3.6(b). Typical tensile stress-strain curves for 2219-T852 aluminum alloy hand forging at room temperature.
3-274
MMPDS-06 1 April 2011 100
80
Stress, ksi
60 L and LT
LT and ST L
40 ST Ramberg - Osgood n (L) = 20 n (LT) = 19 n(ST) = 17
20
TYPICAL Thickness = 4.001 - 6.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Comprsssive Tangent Modulus, 10 ksi
Figure 3.2.16.3.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for 2219-T852 aluminum alloy hand forging at room temperature. 100
Ramberg - Osgood n (L-comp.) = 12 n (LT-comp.) = 12 n(ST-comp.) = 14
80
TYPICAL Thickness = 6.001 - 8.000 in. 60
Stress, ksi
LT and ST
L 40
LT
ST
20
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.2.16.3.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 2219-T852 aluminum alloy hand forging at room temperature.
3-275
MMPDS-06 1 April 2011
80
70 Longitudinal Short transverse
X 60
X
X
Long transverse
Stress, ksi
50
40
30
20
10 Thickness: 6.001-8.000 in. TYPICAL 0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.2.16.3.6(e). Typical tensile stress-strain curves (full range) for 2219-T852 aluminum alloy hand forging at room temperature.
3-276
MMPDS-06 1 April 2011 3.2.16.4 T87 Temper — Elevated temperature data for this temper are presented in Figures 3.2.16.4.1(a) and 3.2.16.4.1(b). Typical room temperature tensile and compressive stress-strain, compressive tangent-modulus, and full-range tensile stress-strain curves for 2219 aluminum alloy sheet and plate for this temper are shown in Figures 3.2.16.4.6(a) through 3.2.16.4.6(e).
160
140
Strength at temperature Exposure up to 10,000 hr
Percent Ftu of Room Temperature
120
100
80 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40 1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
20
0 -500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
800
Temperature, F
Figure 3.2.16.4.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2219-T87 aluminum alloy sheet and plate.
3-277
MMPDS-06 1 April 2011
160
Strength at temperature Exposure up to 10,000 hr
140
Percent Fty of Room Temperature
120
100
80
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
60
40
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
20
0 -500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
Temperature, F
Figure 3.2.16.4.1(b). Effect of temperature on the tensile yield strength (Fty) of 2219-T87 aluminum alloy sheet and plate.
3-278
800
MMPDS-06 1 April 2011
100
80 LT - compression L - compression
L and LT - tension
Stress, ksi
60
40
Ramberg - Osgood n(L & LT-tension) = 14 n (L & LT-comp.) = 14
20
TYPICAL Thickness = 0.125 - 1.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.16.4.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2219-T87 aluminum alloy sheet and plate at room temperature.
3-279
MMPDS-06 1 April 2011
80
Long transverse
70
Longitudinal 60
X X
Stress, ksi
50
40
30
20
10 TYPICAL Thickness: 0.125-1.00 in. 0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.2.16.4.6(b). Typical tensile stress-strain curves (full range) for 2219-T87 aluminum alloy sheet and plate at room temperature.
3-280
MMPDS-06 1 April 2011 60
. Long transverse
50
Stress, ksi
40
30
20
Ramberg-Osgood n = 20.5 TYPICAL
10
Thickness: 3.000 - 4.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.16.4.6(c). Typical tensile stress-strain curve for 2219-T87 aluminum alloy plate at room temperature. 60
. Short transverse
50
Stress, ksi
40
30
20
Ramberg-Osgood n = 15.7 TYPICAL
10
Thickness: 1.600 - 4.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.16.4.6(d). Typical tensile stress-strain curve for 2219-T87 aluminum alloy plate at room temperature.
3-281
MMPDS-06 1 April 2011
80
Long Transverse
70
X
X
60
Short Transverse
Stress, ksi
50
40
30
20
Thickness: 1.600 - 4.000 in. TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
Strain, in./in.
Figure 3.2.16.4.6(e). Typical tensile stress-strain curve (full range) for 2219-T87 aluminum alloy plate at room temperature.
3-282
MMPDS-06 1 April 2011
3.2.17 2297 ALLOY 3.2.17.0 Comments and Properties — 2297 is an Al-Cu-Li-Mn-Zr plate alloy with moderately high strength and both high fatigue resistance and fracture toughness for durability and damage tolerant applications. The alloy shows excellent short-transverse mechanical properties and stress-corrosion cracking resistance in plate thicknesses to 6 inches. Tensile properties show good isotropy with only slightly lower strength in the in-plane 45° orientation, similar to the differences in inplane properties usually found in Li-free high strength aluminum alloys. The –T87 condition is obtained after solution heat treating, quenching, stress relief by stretching, and artificial aging to peak strength. Little or no reduction in fracture toughness is found after elevated temperature exposure. This alloy is not designed to be welded. Use of mechanical fasteners only is recommended. This alloy has shown a sensitivity to cold-hole expansion for improved fatigue resistance when fastener holes, whose axes were perpendicular to the short-transverse direction, were processed. Care should be taken to ensure that all of the processing parameters have been evaluated prior to the application of cold expansion to prevent cracking in the material. Material specifications for 2297 are shown in Table 3.2.17.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.17.0(b). Fracture toughness properties are shown in Table 3.1.2.1.3.
Table 3.2.17.0(a). Material Specifications for 2297-T87 Aluminum Alloy Specification Form AMS 4330 Plate
3.2.17.1
T87 Temper - Typical tensile and full range stress-strain curves are presented in
Figures 3.2.17.1.6(a) and 3.2.17.1.6(b). Cyclic stress-strain and strain-life curves are shown in Figure 3.2.17.1.8. Fatigue crack propagation is shown in Figure 3.2.17.1.9.
3-283
MMPDS-06 1 April 2011 Table 3.2.17.0(b). Design Mechanical and Physical Properties of 2297-T87 Aluminum Alloy Plate Specification . . . . .
AMS 4330
Form . . . . . . . . . . .
Plate
Temper . . . . . . . . .
T87
Thickness, in. . . . . Basis . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . 45° . . . . . . . . . . Fty, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . 45° . . . . . . . . . . Fcy, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fsu, ksi S-L d . . . . . . . . . T-S d . . . . . . . . Fbrue, ksi (e/D = 1.5): L ........... LT . . . . . . . . . . Fbrue, ksi (e/D =2.0): L .......... . LT . . . . . . . . . . Fbrye ksi (e/D = 1.5): L ........... LT . . . . . . . . . . Fbrye ksi (e/D = 2.0): L ........... LT . . . . . . . . . . e, percent (S-Basis): L ........... T .......... . ST . . . . . . . . . .
1.500-2.000
2.001-2.500
2.501-3.000
3.001-4.000
4.001-5.000
5.001-6.000
A
B
A
B
A
B
A
B
A
B
A
B
63 66 65 63
65 67 66 63
62 65 64 62
64 67 65 64
61 64 62 61
63 66 64 63
60 62 59c 60
62 64 62 61
61 61b 58b 59
62 64 61 63
60a 60 57a 59
62 64 61 63
58 60 57 57
60 61 58 58
57 59 56 56
59 60 57 57
57 58 55 55
58 59 56 56
55 56 53 54
57 57 54 55
56b 56 52 54
58 57 54 55
55a 55a 52 53
58 57 54 56
60 63 63
61 64 64
58 62 62
59 63 63
57 60 61
58 61 62
54 58 59
55 59 60
53 57 59
54 58 60
51 54 58
53 56 60
30 38
30 38
30 38
31 40
30 39
31 40
30 38
31 40
31 38
33 40
32 37
34 40
105 105
106 107
103 104
106 107
102 102
105 105
98 99
102 102
97 97
102 102
95 96
102 102
133 136
135 138
132 134
136 138
130 132
135 136
127 128
131 132
126 126
132 132
124 124
132 132
85 86
87 87
85 85
86 87
84 85
86 86
82 82
84 84
84 84
85 85
83 83
86 86
102 97
103 99
101 97
103 99
100 97
102 99
97 95
99 97
99 98
101 99
98 97
101 101
10 8 2
… … …
9 7 2
… … …
9 7 2
… … …
5 4 1.5
… … …
5 4 1.5
... ... ...
5 4 1.5
... ... ...
E, 103 ksi LT . . Ec, 103 ksi LT . . G, 103 ksi . . . . . µ ............
10.9 11.2 ... ...
3-284
MMPDS-06 1 April 2011 Table 3.2.17.0(b).Design Mechanical and Physical Properties of 2297-T87 Aluminum Alloy Plate (Continued) Specification . . . . .
AMS 4330
Form . . . . . . . . . . .
Plate
Temper . . . . . . . . .
T87
Physical Properties: ω, lb/in.3 . . . . . . . . C, Btu/(lb)(°F) . K, . . . . . . . . . . . Btu/[(hr)(ft2)(°F)/ft] α, 10-6 in./in./° . .
0.096 ... ... ...
Issue: Jan 2003, MMPDS-01, Item 00-06; Last Revised: Oct 2006, MMPDS-03, Item 04-04 a A-Basis value is specification minimum. The rounded T99 values for 5-6 inches are as follows: Ftu(L) = 61 ksi, Ftu (LT) = 62 ksi, Ftu (ST) = 59 ksi, Fty(L) = 57 ksi, and Fty (LT) = 56 ksi. b A-Basis value is specification minimum. The rounded T99 values for 4-5 inches are as follows: Ftu(LT) = 62 ksi, Ftu(ST) = 59 ksi, and Fty (L) = 57 ksi. c A-Basis value is specification minimum. The rounded T99 values for 3-4 inches are as follows: Ftu(ST) = 60 ksi. d Standard letter designations for shear properties per ASTM B769. The first letter designates the grain orientation normal to the shear plane. The second letter designates the direction of loading. e Bearing values are “dry pin” values per Section 1.4.7.1.
3-285
MMPDS-06 1 April 2011
70
45 degree Long transverse
60
Longitudinal
Stress, ksi
50
Short transverse
40
30
Ramberg-Osgood TYS (ksi) n (L-tension) = 45.0 60 n (LT-tension) = 22.0 59 n (45 degree) = 23.0 58 n (ST-tension) = 14.5 56
20
10
TYPICAL Thickness: 4.000 in.
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Figure 3.2.17.1.6(a). Typical tensile stress-strain curves for 2297-T87 aluminum alloy plate at room temperature.
3-286
MMPDS-06 1 April 2011
70
Longitudinal
X X
60
45 degree Long transverse
X
X
Short transverse
Stress, ksi
50
40
30
20
TYPICAL
10
Thickness: 4.00 inches 0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in. Figure 3.2.17.1.6(b). Typical tensile stress-strain curves (full range) for 2297-T87 aluminum alloy plate at room temperature.
3-287
MMPDS-06 1 April 2011 0.1
L Data ST Data L Average
Strain Range, %
ST Average
0.01
0.001 10
100
1,000
10,000
100,000
1,000,000
10,000,000
Fatigue Life, cycles
70
60
Stress, ksi
50
40
ST Data ST Average
30
L Data L Average
20
10
0 0
0.002
0.004
0.006
0.008
0.01
0.012
0.014
0.016
Strain, pe rce nt
Figure 3.2.17.1.8. Strain-life and cyclic stress-strain curves for 2297-T87 4-inch plate.
3-288
MMPDS-06 1 April 2011 Correlative Information for Figure 3.2.17.1.8 Product Form: Plate, 4.00 inches thick
Stress-Strain Equations: ST Direction (∆,)/2 = σ/E + ,p where E = 11.3 x103 ksi (reported), ,p = 6.243 x 10-10σ3.187 for σ < 50.86 ksi, and ,p = 1.606 x 10-34 σ17.598 for σ > 50.86 ksi.
Properties: TUS, ksi TYS, ksi Temp., EF ST 63.5 56.0 RT L 64.6 59.8 RT Specimen Details: Uniform gage test section 0.250-inch diameter
L Direction (∆,)/2 = σ/E + ,p where E = 11.3 x103 ksi (reported), ,p = 1.219 x 10-10σ3.566 for σ < 50.03 ksi, and ,p = 1.074 x 10-37 σ19.478 for σ > 50.03 ksi.
Surface Condition: Machined and polished along the length of the specimen using a commercial metal polishing paste called POL Metal Polish. The specimens had a mirror-like finish, estimated as an RMS of 4. Reference:
Equivalent Strain Equations: ST Direction Log Nf = -6.66-4.96 log (εt - 0.001) Standard Error of Estimate = 0.249 Standard Deviation in Life = 0.864 R2 = 96 % Sample Size = 21
3.2.17.1.8
Test Parameters: Frequency - 0.5 - 5 Hz. (Higher frequencies typically used for the longer tests at the lower strains.) Temperature - RT Environment - Lab Air (approx. 50% relative humidity)
L Direction Log Nf = -1.88-2.54 log (εt - 0.0037) Standard Error of Estimate = 0.141 Standard Deviation in Life = 0.722 R2 = 98 % Sample Size = 21
No. of Heats/Lots: 1 Strain Ratio = -1
3-289
MMPDS-06 1 April 2011
1.0E-04
Fatigue Crack Propagation Rate, da/dN, inches/cycle
Heat 1(L-T) Heat 2 (L-T) Heat 3 (L-T) Heat 4 (L-T)
1.0E-05
Heat 5 (L-T)
1.0E-06
1.0E-07 Stress Frequency, No. of No. of f, Hz Specimens Data Points Ratio, R 0.1 10 5 586 1.0E-08 1
10
100
Stress Intensity Factor Range, Delta K, ksi-in.0.5
Figure 3.2.17.1.9. Fatigue-crack propagation data for 4-inch thick 2297-T87 aluminum alloy plate [Reference 3.2.17.1.8]. Specimen Thickness: Specimen Width: Specimen Type:
0.5 inches 3 inches C(T)
Environment: Temperature: Orientation:
3-290
>90% Rel. Humidity RT L-T
MMPDS-06 1 April 2011
Table 3.2.17.1.9 Typical Fatigue Crack Growth Rate Data for 2297-T87 Plate, as Shown Graphically in Figure 3.2.17.1.9 Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.10 da/dN, in./cycle
0.10 da/dN, in./cycle
5.62
1.67E-07
11.89
7.12E-06
5.96
2.11E-07
12.59
8.44E-06
6.31
2.59E-07
13.34
1.00E-05
6.68
3.17E-07
14.13
1.20E-05
7.08
3.93E-07
14.96
1.44E-05
7.50
5.01E-07
15.85
1.73E-05
7.94
6.64E-07
16.79
2.07E-05
8.41
9.18E-07
17.78
2.46E-05
8.91
1.33E-06
18.84
2.92E-05
9.44
2.00E-06
19.95
3.49E-05
10.00
3.11E-06
21.14
4.20E-05
10.59
4.60E-06
22.39
5.09E-05
11.22
5.90E-06
3-291
MMPDS-06 1 April 2011 3.2.18 2397 ALLOY 3.2.18.0 Comments and Properties - 2397 is an Al-Cu-Li-Mn-Zn-Zr alloy with moderately high strength , high fatigue resistance, high fracture toughness and high stress corrosion cracking resistance for durability and damage tolerant applications. The alloy shows excellent short transverse mechanical properties and stress corrosion cracking resistance in plate thickness up to 6 inches. Tensile properties show good uniformity with slightly lower strength in the 45E orientation. This alloy is similar to 2297. The -T87 condition is obtained after solution heat treating, quenching, stress-relief by stretching, and artificial aging to peak strength. Little, or no, reduction in fracture toughness is found after moderate temperature exposure. Use of mechanical fasteners is the most common method used to join structure produced from 2397-T87. Thick 2xxx series products have shown a sensitivity to cold-hole expansion for improved fatigue resistance when fastener holes, whose axes were perpendicular to the short transverse direction, were processed. If cold work needs to be applied, care should be taken to ensure that all of the processing parameters and effect of different amounts of deformation have been evaluated prior to the application of cold expansion to prevent cracking in the material. Material specifications for 2397 are shown in Table 3.2.18.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.18.0(b). Fracture toughness properties are shown in Table 3.1.2.1.3.
Table 3.2.18.0(a). Material Specifications for 2397-T87 Aluminum Alloy
Specification AMS 4328
Form Plate
3-292
MMPDS-06 1 April 2011
Table 3.2.18.0(b). Design Mechanical Properties of 2397-T87 Aluminum Alloy Plate Specification . . . . . . . . . . . . AMS 4328 Form . . . . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . . . . T87 Thickness, in. . . . . . . . . . . . 3.001- 4.000 4.001-5.000 5.001-6.000 Basis . . . . . . . . . . . . . . . . . S A B A B Mechanical Properties: Ftu, ksi: 62 64 60a 64 62a L ................. a 62 62 60a 66 66 LT . . . . . . . . . . . . . . . 60 64 61 60a 57a ST . . . . . . . . . . . . . . . 61 61 65 60 66 45° . . . . . . . . . . . . . . . Fty, ksi: 57 56b 58 55b 58 L ................ b 57 59 59 56 55b LT . . . . . . . . . . . . . . . . 54 56 55 55 52b ST . . . . . . . . . . . . . . . 55 55 58 54 58 45° . . . . . . . . . . . . . . . Fcy, ksi: 56 55 58 54 58 L ................ 60 59 62 57 62 LT . . . . . . . . . . . . . . . 59 61 57 61 58 ST . . . . . . . . . . . . . . . 59 61 61 58 57 45° . . . . . . . . . . . . . . . Fsu, ksi: 37 39 39 37 36 L-S . . . . . . . . . . . . . . . 36 36 38 35 38 T-S . . . . . . . . . . . . . . . 30 31 29 31 30 S-L . . . . . . . . . . . . . . . c Fbru , ksi (e/D = 1.5): 96 102 93 102 96 L ................ 94 102 101 96 92 LT . . . . . . . . . . . . . . . … ... ... ... ... ST . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 2.0): . . . . 124 132 117 129 124 L ................ 121 132 129 117 124 LT . . . . . . . . . . . . . . . … ... ... ... ... ST . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 1.5): 80 80 84 81 86 L ................ 83 86 80 86 82 LT . . . . . . . . . . . . . . . … ... ... ... ... ST . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0): . . . . 91 97 100 92 93 L ................ 92 94 99 95 102 LT . . . . . . . . . . . . . . . … ... ... ... ... ST . . . . . . . . . . . . . . . e, percent (S-Basis): 5 ... ... 6 5 L ................ 4 4 ... 4 ... LT . . . . . . . . . . . . . . . 1.5 1.5 ... 1.5 ... ST . . . . . . . . . . . . . . . .
Continued next page.
3-293
MMPDS-06 1 April 2011 Table 3.2.18.0(b). Design Mechanical Properties of 2397-T87 Aluminum Alloy (Continued) Specification . . . . . . . . . . . . AMS 4328 Form . . . . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . . . . T87 Thickness, in. . . . . . . . . . . . 3.001- 4.000 4.001-5.000 5.001-6.000 Basis . . . . . . . . . . . . . . . . . S A B A B E, 103 ksi 11.0 11.3 Ec, 103 ksi 4.0 G, 103 ksi µ 0.38 Physical Properties: ω, lb/in.3 0.096 C, Btu/(lb)(°F) ... K, Btu/[(hr)(ft2)(°F)/ft] ... -6 α, 10 in./in./°F ... Issued: Apr 2005, MMPDS-02, Item 04-31 Revised: Oct 2006, MMPDS-03, Item 05-23. a A-Basis value is specification minimum. The rounded Ftu T99 minimums were as follows for 4-5 inches; L = 63 ksi, LT = 65 ksi, and ST = 62 ksi. For 5-6 inches; L = 63 ksi, LT = 65 ksi, and ST = 60 ksi. b A-Basis value is specification minimum. The rounded Fty T99 minimum were as follows for 4-5 inches; L = 57 ksi and LT = 58 ksi. For 5-6 inches; L = 57 ksi, LT = 58 ksi, and ST = 54 ksi. c Bearing values are “dry pin” values per Section 1.4.7.1.
3-294
MMPDS-06 1 April 2011
3.2.19 2424 ALLOY 3.2.19.0 Comments and Properties — 2424 is a heat-treatable Al-Cu alloy that provides better ductility than 2024. 2424 is available in the form of bare and clad sheet. Material specifications for 2424 are presented in Table 3.2.19.0(a). Room temperature mechanical properties are presented in Tables 3.2.19.0(b1) and 3.2.19.0(b2). Table 3.2.19.0(a). Material Specifications for 2424 Aluminum Alloy Specification Form AMS 4270 (Clad)* Sheet AMS 4273 (Bare) Sheet * Inactive for new design.
The temper index for 2424 is as follows: Section 3.2.19.1
Temper T3
3-295
MMPDS-06 1 April 2011
Table 3.2.19.0(b1). Design Mechanical and Physical Properties of Bare 2424T3 Aluminum Alloy Sheet
Specification . . . . . . . . . . . . . . . . . . .
AMS 4273
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Sheet
Temper . . . . . . . . . . . . . . . . . . . . . . .
T3
Thickness, in. . . . . . . . . . . . . . . . . . .
0.020 - 0.128
Basis . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu,b ksi . . . . . . . . . . . . . . . . . . . . . Fbru,c ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry,c ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . .
A
B
65 63
66 65
49 42a
51 45
42 46 41
45 49 43
97 129
100 133
62 78
66 83
... 15
... ...
E, 103 ksi L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ..........................
9.8 10.3 10.0 10.5 ... 0.34
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . . . . . . . . . . a b c
0.100 ... ... ...
A-Basis value is specification minimum. The rounded T99 value is 44 ksi. Determined in accordance with ASTM B 769. Bearing values are “dry pin” values per Section 1.4.7.1.
3-296
MMPDS-06 1 April 2011
Table 3.2.19.0(b2). Design Mechanical and Physical Properties of Clad 2424T3 Aluminum Alloy Sheet
Specification . . . . . . . . . . . . . . . . . . .
AMS 4270a
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Sheet
Temper . . . . . . . . . . . . . . . . . . . . . . .
T3
Thickness, in. . . . . . . . . . . . . . . . . . .
0.063 - 0.128
Basis . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu,c ksi . . . . . . . . . . . . . . . . . . . . . Fbru,d ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry,c ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . .
A
B
64 61
65 64
46 40b
49 44
40 43 41
44 47 43
94 121
98 126
60 70
66 77
... 15
... ...
E, 103 ksi L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ..........................
9.8 10.3 10 10.5 ... 0.34
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . a b c d
0.100 ... ... ...
Inactive for new design. A-Basis value is specification minimum. The rounded T99 value is 43 ksi. Determined in accordance with ASTM B 769. Bearing values are “dry pin” values per Section 1.4.7.1.
3-297
MMPDS-06 1 April 2011
3.2.20 2519 ALLOY 3.2.20.0 Comments and Properties — 2519 is an Al-Cu weldable alloy available in plate. This armor plate has equivalent ballistic protection characteristics compared to 7039 and superior stress-corrosion cracking resistance compared to 5083. See Section 3.1.2.3 for comments regarding resistance of the alloy to stress-corrosion cracking. The general corrosion characteristics of 2519 are similar to 2219. 2519 in the T87 temper has approximately 20 percent higher yield strength than 2219-T87 plate. 2519-T87 is easily welded with filler alloy 2319. Yield strengths of welded butt joints are higher than other commercially available alloys. 2519 can be post-weld aged or post-weld heat treated and aged to obtain improved mechanical properties compared to “as welded” condition. See Section 3.1.3.4 for further information regarding the weldability of the alloy. A material specification of 2519 is presented in Table 3.2.20.0(a). Room temperature mechanical and physical properties are shown in Table 3.2.20.0(b). Table 3.2.20.0(a). Material Specification for 2519 Aluminum Alloy
Specification MIL-DTL-46192
Form Plate
The temper index for 2519 is as follows: Section
Temper
3.2.20.1
T87
3.2.20.1 T87 Temper — Typical room temperature tensile and compressive stress-strain and compressive tangent-modulus curves are presented in Figures 3.2.20.1.6(a) and 3.2.20.1.6(b).
3-298
MMPDS-06 1 April 2011
Table 3.2.20.0(b). Design Mechanical and Physical Properties of 2519 Aluminum Alloy Plate Specification . . . . . . . . . . . . . . . . . . . . . . . . . . .
MIL-DTL-46192
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T87
Thickness or Diameter, in . . . . . . . . . . . . . . . . .
0.250-1.000
1.001-2.000
2.001-3.000
3.001-4.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
66 68 ...
66 68 ...
67 68 63
68 68 62
59 58 ...
59 58 ...
60 59 55
61 59 55
57 60 ... 42
57 60 ... 41
58 61 58 41
58 61 58 40
105 135
105 134
104 133
103 131
85 99
85 99
87 100
87 100
10 7
9 7
8 6
7 5
Mechanical Properties: Ftu, ksi: L................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi, L & LT . . . . . . . . . . . . . . . . . . . . . . . . Fbrua, ksi: L & LT (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . L & LT (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . Fbrya, ksi: L & LT (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . L & LT (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . e, percent: L.................................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ ....................................
10.5 10.8 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.102 ...
Revised: Apr 2008, MMPDS-04, Item 05-14 a See Table 3.1.2.1.1. Bearing values are “dry pin” per Section 1.4.7.1.
3-299
MMPDS-06 1 April 2011
100
Stress, ksi
80
L-tension
60
LT-tension
40
Ramberg-Osgood n (L-tension) = 11 n (LT-tension) = 10
20
TYPICAL Thickness: 1.000 - 2.00 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.20.1.6(a). Typical tensile stress-strain curves for 2519-T87 aluminum alloy plate at room temperature.
100
LT-compression L-compression
Stress, ksi
80
60
Ramberg-Osgood
40
n (L-comp.) = 14 n (LT-comp.) = 14 20
TYPICAL Thickness: 1.000 - 2.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.20.1.6(b). Typical compressive stress-strain and tangent-modulus curves for 2519-T87 plate at room temperature.
3-300
MMPDS-06 1 April 2011 3.2.21 2524 ALLOY 3.2.21.0 Comments and Properties — 2524 is a heat-treatable Al-Cu alloy offering high toughness and improved resistance to fatigue crack growth relative to other available 2XXX sheet and plate materials. Sheet and plate is available in the T3 temper. Fatigue-crack-growth improvements are guaranteed through the material specification for Alclad 2524-T3 sheet and plate products. The static mechanical properties and general corrosion performance of Alclad 2524-T3 are similar to those of Alclad 2024-T3. This product has typically been used for formed structural aircraft parts requiring improved resistance to fatigue crack growth and high toughness with strength similar to Alclad 2024-T3, but usage is not limited to such applications. A material specification for Alclad 2524-T3 sheet and plate is presented in Table 3.2.21.0(a). Room temperature mechanical properties are shown in Table 3.2.21.0(b).
Table 3.2.21.0(a). Material Specifications for Alclad 2524-T3
Specification AMS 4296
Form Clad sheet and plate
The temper index for 2524 is as follows: Section 3.2.21.1
Temper T3
3.2.21.1 T3 Temper - Typical tensile and compressive stress-strain curves and compressive tangent modulus curves at room temperature are shown in Figures 3.2.21.1.6(a) and 3.2.21.1.6(b). Typical tensile full-range curves are shown in Figure 3.2.21.1.6(c).
3-301
MMPDS-06 1 April 2011
Table 3.2.21.0(b). Design Mechanical and Physical Properties of Alclad 2524-T3 Aluminum Alloy Sheet and Plate
Specification . . . . . . . . . .
AMS 4296
Form . . . . . . . . . . . . . . . . .
Sheet and Plate
Condition . . . . . . . . . . . . .
T3
Thickness, in. . . . . . . . . . .
0.032-0.062
Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L.................. LT . . . . . . . . . . . . . . . . Fty, ksi: L.................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L.................. LT . . . . . . . . . . . . . . . . Fsu,c ksi: Fbru,d ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry,d ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . .
0.063-0.128
0.129-0.249
0.250-0.310
S
A
B
A
B
A
B
59 59
61 61a
62 62
62 62
62 62
62 62
63 63
44 39
45 40b
47 42
45 40
46 41
45 40
46 41
38 42 40
39 43 41
41 45 42
39 43 42
40 44 42
39 43 42
40 44 43
93 117
97 121
98 123
98 123
98 123
98 123
100 125
65 76
67 78
70 82
67 78
69 80
67 78
69 80
15
15
...
15
...
15
...
3
E, 10 ksi: Primary . . . . . . . . . . . . . Secondary . . . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . . . Secondary . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ....................
10.3 9.8 10.5 10.0 ... 0.35
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . a b c d
0.100 not available
A-Basis value is specification minimum. The rounded T99 value is 62 ksi. A-Basis value is specification minimum. The rounded T99 value is 41 ksi. Determined in accordance with ASTM B 831-93. Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-302
MMPDS-06 1 April 2011 60 L-tension 50
40 Stress, ksi
LT-tension 30
20
Ramberg-Osgood n (L-tension) = 87 n (LT-tension) = 8.7
10
Typical Thickness = 0.063 - 0.310 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.2.21.1.6(a). Typical tensile stress-strain curves for 2524-T3 clad aluminum alloy sheet and plate at room temperature. 60
LT-compression 50
Stress, ksi
40
L-compression 30
20
Ramberg - Osgood n (L-compression) = 9.8 n (LT-compression) = 10.8
10
Typical Thickness = 0.063 - 0.310 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, msi
Figure 3.2.21.1.6(b). Typical compressive stress-strain and tangent modulus curves for 2524-T3 clad aluminum alloy sheet and plate at room temperature.
3-303
MMPDS-06 1 April 2011
70
60
Longitudinal Long Transverse
Stress, ksi
50
40
30
20
TYPICAL
10
Thickness = 0.063 - 0.310 in.
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
Strain, in./in.
Figure 3.2.21.1.6(c). Typical tensile stress-strain curves (full range) for 2524-T3 clad aluminum alloy sheet and plate at room temperature.
3-304
MMPDS-06 1 April 2011 3.2.22 2618 ALLOY 3.2.22.0 Comments and Properties — 2618 is an Al-Cu alloy which is available as hand and die forgings. It has excellent properties over a range of temperatures from -452E to 600EF and is usually used in applications where high strength and creep resistance are important considerations. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. Refer to Section 3.1.2.3.1 for information regarding resistance of the alloy to stress-corrosion cracking. Material specifications for 2618 aluminum alloy are presented in Table 3.2.22.0(a). Room temperature mechanical and physical properties are shown in Tables 3.2.22.0(b) and 3.2.22.0(c). The effect of temperature on the thermal expansion is shown in Figure 3.2.22.0. Table 3.2.22.0(a). Material Specifications for 2618 Aluminum Alloy
Specification
Form
AMS 4132 AMS-QQ-A-367a AMS-A-22771a
Die and hand forgings Forgings Die forging
a Inactive for new design.
The temper index for 2618 is as follows: Section 3.2.22.1
Temper T61
16
α - Between 70 oF and indicated temperature
−6 o α, 10 in./in./ F
15
14
13
12
11 0
100
200
300
400
500
600
700
800
o
Temperature, F
Figure 3.2.22.0. Effect of temperature on the thermal expansion of 2618 aluminum alloy.
3-305
MMPDS-06 1 April 2011
Table 3.2.22.0(b). Design Mechanical and Physical Properties of 2618 Aluminum Alloy Die Forging
Specification . . . . . . . . . . . . . . . . . .
AMS-A-22771a and AMS-QQ-A-367b
Form . . . . . . . . . . . . . . . . . . . . . . . .
Die forging
Temper . . . . . . . . . . . . . . . . . . . . . .
T61
Thickness, in. . . . . . . . . . . . . . . . . .
# 4.000c
Basis . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L ........................ Td . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ........................ Td . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ........................ Td . . . . . . . . . . . . . . . . . . . . . . . Fsu, . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . e, percent: L ........................ Td . . . . . . . . . . . . . . . . . . . . . . .
58 55 45 42 ... ... ... ... ... ... ... 4 4
E, 103 ksi . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . µ .........................
10.7 10.9 4.1 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . K, Btu/[(hr)(ft3)(EF)/ft] . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . .
0.100 0.23 (at 212EF) 90 (at 77EF) See Figure 3.2.22.0
a AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. b AMS-QQ-A-367 inactive for new design. Mechanical properties were established under MIL-QQ-A-367. c Thickness at the time of heat treatment. When die forgings are machined before heat treatment, the mechanical properties are applicable provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. d T indicates any grain direction not within ±15E of being parallel to the forging flow lines.
3-306
MMPDS-06 1 April 2011
Table 3.2.22.0(c). Design Mechanical and Physical Properties of 2618 Aluminum Alloy Hand Forging Specification . . . . . . . . . . . . . . . . .
AMS 4132, AMS-A-22771a, and AMS-QQ-A-367b
Form . . . . . . . . . . . . . . . . . . . . . . .
Hand forging
Temper . . . . . . . . . . . . . . . . . . . . .
T61
Cross-Sectional Area, in.2 . . . . . . .
# 144
Thickness,c in . . . . . . . . . . . . . . . .
< 2.000
2.000-3.000
3.001-4.000
Basis . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ...................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D =1.5) . . . . . . . . . . . . . . (e/D =2.0) . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . e, percent: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . µ ....................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . .
S
S
S
58 55 ...
57 55 52
56 53 51
47 42 ...
46 42 42
45 40 39
... ... ... ...
... ... ... ...
44 42 40 33
... ...
... ...
... 106
... ...
... ...
... 71
7 5 ...
7 5 4 10.7 10.9 4.1 0.33
7 5 4
a b c
0.100 0.23 (at 212EF) 90 (at 77EF) See Figure 3.2.22.0
AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. AMS-QQ-A-367 inactive for new design. Mechanical properties were established under MIL-QQ-A-367. When hand forgings are machined before heat treatment, the section thickness at the time of heat treatment shall determine the minimum mechanical properties as long as the original (as-forged) thickness does not exceed the maximum thickness for the alloy as shown in the table.
3-307
MMPDS-06 1 April 2011 3.2.22.1 T61 Temper — Figures 3.2.22.1.1(a) through 3.2.22.1.5 present effect-of-temperature curves for various mechanical properties. Figure 3.2.22.1.6(a) presents tensile and compressive stress-strain and tangent-modulus curves at room temperature. Figure 3.2.22.1.6(b) is a full-range, tensile stress-strain curve at room temperature.
3HUFHQWRI5RRP7HPSHUDWXUH)
WX
KUKU KU KU
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.22.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 2618-T61 aluminum alloy hand forging.
KU
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
W\
KU KU
KU
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.22.1.1(b). Effect of temperature on the tensile yield strength (Fty) of 2618T61 aluminum alloy hand forging.
3-308
MMPDS-06 1 April 2011
100
Percent of RoomTemperature Ftu
2618-T61 Hand forging 95
10 hr 100 hr 1,000 hr
90
85
80
Strength at room temperature Exposure up to 1,000 hrs.
75 0
100
200
300
400
o
Temperature, F
Figure 3.2.22.1.1(c). Effect of exposure at elevated temperatures on room temperature tensile ultimate strength (Ftu) of 2618-T61 hand forging.
100
Percent of RoomTemperature Fty
2618-T61 Hand forging 95
10 hr 100 hr 1,000 hr
90
85
80
Strength at room temperature Exposure up to 1,000 hrs.
75 0
100
200
300
400
Temperature, oF
Figure 3.2.22.1.1(d). Effect of exposure at elevated temperatures on room temperature tensile yield strength (Fty) of 2618-T61 hand forging.
3-309
MMPDS-06 1 April 2011
3HUFHQWDJHRI5RRP7HPSHUDWXUH6WUHQJWK
)
F\
)
VX
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.22.1.2. Effect of temperature on the compressive yield strength (Fcy) and ultimate shear strength (Fsu) of 2618-T61 aluminum alloy hand forging.
3HUFHQWDJHRI5RRP7HPSHUDWXUH6WUHQJWK
)
EUXH'
)
EU\H'
6WUHQJWKDWWHPSHUDWXUH
([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.2.22.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and bearing yield strength (Fbry) of 2618-T61 aluminum alloy hand forging.
3-310
MMPDS-06 1 April 2011
( (
F
3HUFHQWDJHRI
5RRP7HPSHUDWXUH0RGXOXV
0RGXOXVDWWHPSHUDWXUH ([SRVXUHXSWR×KU
7<3,&$/
7HPSHUDWXUH)
Figure 3.2.22.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 2618-T61 aluminum alloy hand forging.
(ORQJDWLRQDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW(ORQJDWLRQH
7<3,&$/
KU
KU KU KU
7HPSHUDWXUH)
Figure 3.2.22.1.5. Effect of temperature on the elongation (e) of 2618-T61 aluminum alloy hand forging.
3-311
MMPDS-06 1 April 2011
100 Longitudinal
80 Tension & compression
Stress, ksi
60
40
Ramberg-Osgood n (tension) = 13 n (comp.) = 13
20
TYPICAL Thickness: 1.000
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.2.22.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 2618-T61 aluminum alloy forged bar at room temperature.
3-312
MMPDS-06 1 April 2011
80
Longitudinal
70
X 60
Stress, ksi
50
40
30
20
10
TYPICAL Thickness: 1.000 in. 0 0.00
0.02
0.04
0.06
0.08
0.10
Strain, in./in.
Figure 3.2.22.1.6(b). Typical tensile stress-strain curve (full range) at room temperature for 2618-T61 aluminum alloy forged bar.
3-313
0.12
MMPDS-06 1 April 2011
This page is intentionally blank.
3-314
MMPDS-06 1 April 2011
3.3 3000 SERIES WROUGHT ALLOYS 3.4 4000 SERIES WROUGHT ALLOYS 3.5 5000 SERIES WROUGHT ALLOYS Alloys of the 5000 series contain magnesium as the principal alloying element and are strengthened by cold work. Because of their high toughness at temperatures down to -452EF, they are widely used in cryogenic applications. Magnesium in excess of that in solid solution forms a constituent that is anodic to the aluminummagnesium matrix. This constituent may form a network of precipitates at grain boundaries or along slip planes. The formation of this continuous grain boundary precipitates, which is accelerated by prior cold work and by exposure to elevated temperatures, causes stress-corrosion cracking susceptibility. Therefore, it is recommended that the strain-hardened tempers of 5000 series alloys containing more than 3 percent magnesium not be used at temperatures above 150EF because susceptibility to SCC may result. 3.5.1 5052 ALLOY 3.5.1.0 Comments and Properties — 5052 is a low-strength Al-Mg alloy but extremely tough at low temperatures as well as at room temperature. It is highly resistant to corrosion; refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress-corrosion cracking. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for 5052 aluminum alloy are presented in Table 3.5.1.0(a). Room temperature mechanical and physical properties are shown in Tables 3.5.1.0(b1) and 3.5.1.0(b2). The effect of temperature on physical properties is shown in Figure 3.5.1.0. Table 3.5.1.0(a). Material Specifications for 5052 Aluminum Alloy
Specification
Form
AMS 4015 AMS 4016 AMS 4017 AMS-QQ-A-250/8a a Inactive for new design.
Sheet and plate Sheet and plate Sheet and plate Sheet and plate
The temper index for 5052 is as follows: Section 3.5.1.1 3.5.1.2 3.5.1.3 3.5.1.4 3.5.1.5
Temper O H32 H34 H35 H38
3-315
MMPDS-06 1 April 2011
Table 3.5.1.0(b1). Design Mechanical and Physical Properties of 5052 Aluminum Alloy Sheet and Plate
Specification . . . . . .
AMS 4015
Form . . . . . . . . . . . . Condition . . . . . . . . Thickness, in. . . . . . Basis . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............. LT . . . . . . . . . . . . Fty, ksi: L ............. LT . . . . . . . . . . . . Fcy, ksi: L ............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent: L .............
AMS 4016
AMS-QQ-A-250/8a
AMS 4017
Sheet and plate O
H32
Sheet H34
H36
H38
0.006-3.000
0.017-2.000
0.009-1.000
0.006-0.162
0.0060.128
S
S
S
S
S
25 ...
31 31
34 34
37 37
39 39
9.5 ...
23 22
26 25
29b 29
32b 32
... ... 16
22 23 19
25 26 20
... ... 22
... ... 23
... ...
50 65
54 71
59 78
62 82
... ...
32 37
37 41
41 46
44 51
c
c
c
c
c
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . µ ..............
10.1 10.2 3.85 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . C, Btu/(lb)(EF) . . . K and α . . . . . . . . .
0.097 0.23 (at 212EF) See Figure 3.5.1.0
a Mechanical properties were established under MIL-QQ-A-250/8. Inactive for new design. b From “Aluminum Standards and Data” dated 1982. c See Table 3.5.1.0(b2).
3-316
MMPDS-06 1 April 2011
Table 3.5.1.0(b2). Minimum Elongation Values for 5052 Aluminum Alloy Sheet and Plate
Temper
Thickness Range, inch
Elongation (L), percent
O .......................
0.006-0.007 0.008-0.012 0.013-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-0.249 0.250-3.000
... 14 15 16 18 19 20 18
H32 . . . . . . . . . . . . . . . . . . . . .
0.017-0.019 0.020-0.050 0.051-0.113 0.114-0.249 0.250-0.499 0.500-2.000
4 5 7 9 11 12
H34 . . . . . . . . . . . . . . . . . . . . .
0.009-0.019 0.020-0.050 0.051-0.113 0.114-0.249 0.250-1.000
3 4 6 7 10
H36 . . . . . . . . . . . . . . . . . . . . .
0.006-0.007 0.008-0.031 0.032-0.162
2 3 4
H38 . . . . . . . . . . . . . . . . . . . . .
0.006-0.007 0.008-0.031 0.032-0.128
2 3 4
3-317
MMPDS-06 1 April 2011
α
.2
α%HWZHHQ)DQGLQGLFDWHGWHPSHUDWXUH
αLQLQ)
.%WX>KU IW ) IW@
.$WLQGLFDWHGWHPSHUDWXUH
7HPSHUDWXUH)
Figure 3.5.1.0. Effect of temperature on the physical properties of 5052 aluminum alloy.
3-318
MMPDS-06 1 April 2011 3.5.1.1 O-Temper — Elevated temperature curves for this temper for various mechanical properties are presented in Figures 3.5.1.1.1, 3.5.1.1.4, and 3.5.1.1.5.
3HUFHQWDJHRI
5RRP7HPSHUDWXUH6WUHQJWK
)
W\
6WUHQJWKDWWHPSHUDWXUH
)
([SRVXUHXSWRKU
WX
7HPSHUDWXUH)
Figure 3.5.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of 5052-O aluminum alloy (all products).
3-319
MMPDS-06 1 April 2011
3HUFHQWRI
5RRP7HPSHUDWXUH0RGXOXV
0RGXOXVDWWHPSHUDWXUH
7<3,&$/
( (
F
7HPSHUDWXUH)
Figure 3.5.1.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 5052-O aluminum alloy (all products).
3HUFHQW(ORQJDWLRQH
(ORQJDWLRQDWWHPSHUDWXUH ([SRVXUHXSWRKU
7<3,&$/
7HPSHUDWXUH)
Figure 3.5.1.1.5. Effect of temperature on the elongation of 5052-O aluminum alloy (all products).
3-320
MMPDS-06 1 April 2011 3.5.1.2 H32 Temper — Figure 3.5.1.1.4 may be used for the elevated temperature curve for modulus of elasticity. 3.5.1.3 H34 Temper — Elevated temperature curves for various mechanical properties are presented in Figures 3.5.1.3.1(a) through 3.5.1.3.1(d), 3.5.1.3.5(a), and 3.5.1.3.5(b). Use Figure 3.5.1.1.4 for modulus values.
KU
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
WX
KU KU
×WRKU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.5.1.3.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 5052H34 aluminum alloy sheet and plate.
3-321
MMPDS-06 1 April 2011
KU
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
W\
KU
×WRKU
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.5.1.3.1(b). Effect of temperature on the tensile yield strength (Fty) of 5052-H34 aluminum alloy sheet and plate.
Percentage of Room Temperature F
tu
100
10 100 1000 1 0 ,0 0 0
80
hr hr hr hr hr
60
40
20
S tre n g th a t ro o m te m p e ra tu re E x p o s u re u p to 1 0 ,0 0 0 h r 0 0
100
200
300
400
500
600
700
800
T e m p e ra tu re , °F
Figure 3.5.1.3.1(c). Effect of exposure at elevated temperatures on the room temperature tensile ultimate strength (Ftu) of 5052-H34 aluminum alloy sheet and plate.
3-322
MMPDS-06 1 April 2011
Percentage of Room Temperature F
ty
100
80 10 100 1000 1 0 ,0 0 0
60
hr hr hr hr hr
40
20 S tr e n g th a t r o o m te m p e r a tu r e E x p o s u re u p to 1 0 ,0 0 0 h r 0 0
100
200
300
400
500
600
700
800
T e m p e ra tu r e , °F
Figure 3.5.1.3.1(d). Effect of exposure at elevated temperatures on the room temperature tensile yield strength (Fty) of 5052-H34 aluminum alloy sheet and plate.
(ORQJDWLRQDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW(ORQJDWLRQH
7<3,&$/ WRKU KU
KU
7HPSHUDWXUH)
Figure 3.5.1.3.5(a). Effect of temperature on the elongation (e) of 5052-H34 aluminum alloy sheet and plate.
3-323
MMPDS-06 1 April 2011
(ORQJDWLRQDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW(ORQJDWLRQH
7<3,&$/
WRKU KU KU
KU
7HPSHUDWXUH)
Figure 3.5.1.3.5(b). Effect of exposure at elevated temperatures on the room temperature elongation (e) of 5052-H34 aluminum alloy sheet and plate.
3-324
MMPDS-06 1 April 2011 3.5.1.4 H36 Temper — Figure 3.5.1.1.4 may be used for the elevated temperature curve for modulus of elasticity. 3.5.1.5 H38 Temper — Elevated temperature curves for this temper for various mechanical properties are presented in Figures 3.5.1.5.1(a) through 3.5.1.5.1(d), 3.5.1.5.5(a,) and 3.5.1.5.5(b). Use Figure 3.5.1.1.4 for modulus values.
3-325
MMPDS-06 1 April 2011
6WUHQJWKDWWHPSHUDWXUH
3HUFHQWDJHRI5RRP7HPSHUDWXUH) WX
([SRVXUHXSWRKU
KU
KU
7HPSHUDWXUH)
Figure 3.5.1.5.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 5052H38 aluminum alloy (all products).
6WUHQJWKDWWHPSHUDWXUH
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
W\
([SRVXUHXSWRKU
KU
KU
7HPSHUDWXUH)
Figure 3.5.1.5.1(b). Effect of temperature on the tensile yield strength (Fty) of 5052-H38 aluminum alloy (all products).
3-326
MMPDS-06 1 April 2011
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
WX
KU KU KU KU KU
6WUHQJWKDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.5.1.5.1(c). Effect of exposure at elevated temperatures on the room temperature tensile ultimate strength (Ftu) of 5052-H38 aluminum alloy (all products).
3HUFHQWDJHRI5RRP7HPSHUDWXUH)
WX
KU KU KU KU
KU
6WUHQJWKDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.5.1.5.1(d). Effect of exposure at elevated temperatures on the room temperature tensile yield strength (Fty) of 5052-H38 aluminum alloy (all products).
3-327
MMPDS-06 1 April 2011
(ORQJDWLRQDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW(ORQJDWLRQH
7<3,&$/ WRKU KU
KU
7HPSHUDWXUH)
Figure 3.5.1.5.5(a). Effect of temperature on the elongation of 5052-H38 aluminum alloy (all products).
(ORQJDWLRQDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW(ORQJDWLRQH
7<3,&$/
KU KU
KU KU KU
7HPSHUDWXUH)
Figure 3.5.1.5.5(b). Effect of exposure at elevated temperatures on the room temperature elongation of 5052-H38 aluminum alloy (all products).
3-328
MMPDS-06 1 April 2011 3.5.2 5083 ALLOY 3.5.2.0 Comments and Properties — 5083 is a high-strength Al-Mg alloy that has been widely used in cryogenic applications, because of its excellent combination of strength and toughness. It has high resistance to corrosion, but strain-hardened tempers should not be used at temperatures above 150EF because of possible sensitization to stress-corrosion cracking. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress-corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for 5083 aluminum alloy are presented in Table 3.5.2.0(a). Room temperature mechanical and physical properties are shown in Tables 3.5.2.0(b) and 3.5.2.0(c). The effect of temperature on thermal expansion is shown in Figure 3.5.2.0. Table 3.5.2.0(a). Material Specifications for 5083 Aluminum Alloy
Specification AMS 4056 AMS-QQ-A-250/6 AMS-QQ-A-200/4a ASTM B928 a Inactive for new design.
Form Bare sheet and plate Bare sheet and plate Extruded bar, rod, and shapes Bare sheet and plate
The temper index for 5083 is as follows: Section
Temper
3.5.2.1 3.5.2.2 3.5.2.3 3.5.2.4
O H111 H112 H321
3-329
Table 3.5.2.0(b). Design Mechanical and Physical Properties of 5083 Aluminum Alloy Sheet and Plate Specification . . . . . . . . . . AMS 4056 and AMS-QQ-A-250/6a AMS-QQ-A-250/6a ASTM B928a Form . . . . . . . . . . . . . . . . . Sheet and plate Temper . . . . . . . . . . . . . . . O H112 H321
Thickness, in. . . . . . . . . . .
0.051-1.500
1.5013.000
4.0015.000
5.0017.000
7.0018.000
0.2501.500
1.5013.000
S
S
S
S
S
S
A
B
S
38 ...
38 ...
37 ...
36 ...
40 ...
39 ...
44 44
46 46
41 ...
16 ...
16 ...
15 ...
14 ...
18 ...
17 ...
31 28
32 28
29 ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
16
14
14
12 10.2 10.4 3.85 0.33
12
12
12
...
12
a Mechanical properties were established under MIL-QQ-A-250/6.
0.096 0.23 (at 212EF) 68 (at 77EF) See Figure 3.5.2.0
0.188-1.500
1.5013.000
MMPDS-06 1 April 2011
3-330
Basis . . . . . . . . . . . . . . . . . A B S Mechanical Properties: Ftu, ksi: L . . . . . . . . . . . . . . . . . 40 41 39 LT . . . . . . . . . . . . . . . . 40 41 ... Fty, ksi: L . . . . . . . . . . . . . . . . . 18 19 17 LT . . . . . . . . . . . . . . . . 18 19 ... Fcy, ksi: L . . . . . . . . . . . . . . . . . 18 19 ... LT . . . . . . . . . . . . . . . . 18 19 ... Fsu, ksi . . . . . . . . . . . . . . 25 26 ... Fbru, ksi: (e/D = 1.5) . . . . . . . . . . 60 62 ... (e/D = 2.0) . . . . . . . . . . 76 78 ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . . 32 34 ... (e/D = 2.0) . . . . . . . . . . 38 40 ... e, percent (S basis): L . . . . . . . . . . . . . . . . . 16 ... 16 3 E, 10 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . . Last Revised: Apr 2008, MMPDS-04, Item 06-37
3.0014.000
MMPDS-06 1 April 2011
Table 3.5.2.0(c). Design Mechanical and Physical Properties of 5083 Aluminum Alloy Extrusion
Specification . . . . . . . . . . . . . . . . . . . .
AMS-QQ-A-200/4a
Form . . . . . . . . . . . . . . . . . . . . . . . . . .
Extrusion
Temper . . . . . . . . . . . . . . . . . . . . . . . .
O
H111
#5.000
<0.500
0.501-5.000
#5.000b
Basis . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
39 ...
40 40
40 32
39 ...
16 ...
24 24
24 19
16 ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
14
12
12
12
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . µ ............................
b
H112
Thickness, in. . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . e, percent: L ..........................
b
10.2 10.4 3.85 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . .
0.096 0.23 (at 212EF) 68 (at 77EF) See Figure 3.5.2.0
a Mechanical properties were established under MIL-QQ-A-200/4. Inactive for new design. b Cross-sectional area #32 in2.
3-331
b
MMPDS-06 1 April 2011
α%HWZHHQ)DQGLQGLFDWHGWHPSHUDWXUH
αLQLQ)
7HPSHUDWXUH)
Figure 3.5.2.0. Effect of temperature on the thermal expansion of 5083 aluminum alloy.
3-332
MMPDS-06 1 April 2011 3.5.2.1 O Temper — Tensile and compressive stress-strain and tangent-modulus curves at room temperature are presented in Figures 3.5.2.1.6(a) and 3.5.2.1.6(b). A full-range tensile stress-strain curve is shown in Figure 3.5.2.1.6(c) at room temperature. 25 Longitudinal and Long Transverse
Tension and Compression 20
Stress, ksi
15
10
Ramberg - Osgood n (L and LT tension) = 50 n (L and LT-comp.) = 50 TYPICAL
5
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.2.1.6(a). Typical tensile and compressive stress-strain, and compressive tangent-modulus curves for 5083-O aluminum alloy sheet at room temperature. 25 Longitudinal and Long Transverse
Tension and Compression 20
Stress, ksi
15
10
Ramberg - Osgood n (L and LT - tension) = 21 n (L and LT - comp.) = 21 TYPICAL
5
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.2.1.6(b). Typical tensile and compressive stress-strain, and compressive tangent-modulus curves for 5083-O aluminum alloy plate at room temperature.
3-333
MMPDS-06 1 April 2011
50 Longitudinal
40
X
Stress, ksi
30
20
10 TYPICAL
0 0.00
0.04
0.08
0.12
0.16
0.20
0.24
Strain, in./in.
Figure 3.5.2.1.6(c). Typical tensile stress-strain curve (full range) for 5083-O aluminum alloy plate at room temperature.
3-334
MMPDS-06 1 April 2011 3.5.3 5086 ALLOY 3.5.3.0 Comments and Properties — 5086 is a tough, medium-strength Al-Mg alloy suitable for application over the range of temperatures from -452E to 150EF. Refer to Section 3.1.2.3 for comments regarding resistance of the alloy to stress-corrosion cracking, and to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for 5086 aluminum alloy are presented in Table 3.5.3.0(a). temperature mechanical and physical properties are shown in Tables 3.5.3.0(b) and 3.5.3.0(c). Table 3.5.3.0(a). Material Specifications for 5086 Aluminum Alloy
Specification ASTM B209 AMS-QQ-A-200/5a
Form Sheet and plate Extruded bar, rod, and shapes
a Inactive for new design.
The temper index for 5086 is as follows: Temper O H32 H34 H36 H38 H111 H112
Section 3.5.3.1 3.5.3.2 3.5.3.3 3.5.3.4 3.5.3.5 3.5.3.6 3.5.3.7
3-335
Room
Table 3.5.3.0(b). Design Mechanical and Physical Properties of 5086 Aluminum Alloy Sheet, Plate and Extrusion Specification . . . . . . . . .
ASTM B209a
AMS-QQ-A-200/5b
Form . . . . . . . . . . . . . .
Sheet and plate
Extrusion
Condition . . . . . . . . . . .
O
H32
H34
H36
H38
Thickness, in . . . . . . . .
0.0202.000
0.0202.000
0.0091.000
0.0060.162
0.0060.020
0.1880.499
0.5001.00
1.0012.000
Basis . . . . . . . . . . . . . .
H111
H112
2.0013.000
#5.000c
#5.000c
#5.000c
A
B
A
B
S
S
S
S
S
S
S
S
S
S
35 35
36 36
40 40
41 41
44 44
47 47
50 ...
36 36
35 35
35 35
34 34
35 ...
36 ...
35 ...
14 14
15 15
28 26
30 28
34 33
38 37
41 ...
18 17
16 16
14 14
14 14
14 ...
21 ...
14 ...
14 14 21
15 15 22
26 28 24
28 30 25
32 34 26
35 38 27
... ... ...
17 18 22
15 16 21
14 14 21
14 14 20
... ... ...
... ... ...
... ... ...
52 70
53 72
58 80
61 82
64 88
68 94
... ...
54 72
52 70
52 70
51 68
... ...
... ...
... ...
24 28
26 30
39 48
42 51
48 58
53 65
... ...
25 31
24 28
24 28
24 28
... ...
... ...
... ...
d
d
3
8
10
14
14
14
12
12
d
...
d
...
3
E, 10 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . . F ................
10.2 10.4 3.85 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . C,Btu/(lb)(EF) . . . . . K, Btu/[(hr)(ft2)(EF)ft] α, 10-6in/in/EF . . . . .
0.096 0.23 (at 212EF) 72 (at 77EF) 13.2 (68E to 212EF)
a b c d
O
Mechanical properties were established under MIL-QQ-A-250/7. Mechanical properties were established under MIL-QQ-A-200/5. Inactive for new design. Cross-sectional area #32. See Table 3.5.3.0(c).
MMPDS-06 1 April 2011
3-336
Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbru, ksi: (e/D=1.5) . . . . . . . . (e/D=2.0) . . . . . . . . Fbry, ksi: (e/D=1.5) . . . . . . . . (e/D=2.0) . . . . . . . . e, percent (S basis): L ...............
H112
MMPDS-06 1 April 2011
Table 3.5.3.0(c). Minimum Elongation Values for 5086 Aluminum Alloy Sheet and Plate
Thickness Range, inch
Elongation (L), percent
O..............................
0.020-0.050 0.051-0.249 0.250-2.000
15 18 16
H32..........................
0.020-0.050 0.051-0.249 0.250-2.000
6 8 12
H34..........................
0.009-0.019 0.020-0.050 0.051-0.249 0.250-1.000
4 5 6 10
H36..........................
0.006-0.019 0.020-0.050 0.051-0.162
3 4 6
Temper
3-337
MMPDS-06 1 April 2011 3.5.3.1 O Temper — Tensile and compressive stress-strain, and tangent-modulus curves at room temperature are shown in Figures 3.5.3.1.6(a) and 3.5.3.1.6(b) for products with this temper. Figure 3.5.3.1.6(c) is a full-range tensile stress-strain curve. 25 Longitudinal and Long Transverse 20
Tension and Compression
Stress, ksi
15
10 Ramberg - Osgood n (L and LT - tension) = 27 n (L and LT - comp.) = 27 TYPICAL
5
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.3.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5086-O aluminum alloy sheet at room temperature.
25
Tension and Compression
Longitudinal and Long Transverse
20
Stress, ksi
15
10
Ramberg - Osgood n (L and LT - tension) = 5.0 n (L and LT - comp.) = 5.0
5
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.3.1.6(b). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5086-O aluminum alloy plate and extrusion at room temperature.
3-338
MMPDS-06 1 April 2011
50
40 Longitudinal
Stress, ksi
30
20
10 TYPICAL
0 0.00
0.04
0.08
0.12
0.16
0.20
Strain, in./in. Figure 3.5.3.1.6(c). Typical tensile stress-strain curve (full range) for 5086-O aluminum alloy sheet at room temperature.
3-339
0.24
MMPDS-06 1 April 2011 3.5.3.2 H32 Temper — Figures 3.5.3.2.6(a) and 3.5.3.2.6(b) show tensile and compressive stress-strain and tangent-modulus curves at room temperature. 40 Longitudinal
5086-H32 Sheet and Plate
30
Stress, ksi
Long transverse
20
Ramberg-Osgood n (L- tension) = 28
10
n (LT - tension) = 10 TYPICAL Thickness: 0.200-2.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.5.3.2.6(a). Typical tensile stress-strain curves for 5086-H32 aluminum alloy sheet and plate at room temperature.
40
Long transverse Longitudinal 5086-H32 Sheet and Plate
Stress, ksi
30
20
Ramberg-Osgood n (L - Comp.) = 8.0 n (LT - Comp.) = 10 10
TYPICAL Thickness: 0.020 - 2.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.5.3.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 5086-H32 aluminum alloy sheet and plate at room temperature.
3-340
MMPDS-06 1 April 2011
50
X
Longitudinal
X Long Transverse
40
Stress, ksi
30
20
TYPICAL 10
5086-H32 Sheet and Plate Thickness = 0.020 - 2.000 in.
Based on one lot.
0 0.00
0.04
0.08
0.12
0.16
0.20
0.24
Strain, in./in.
Figure 3.5.3.2.6(c). Typical tensile stress-strain curves (full range) for 5086-H32 aluminum alloy sheet and plate at room temperature.
3-341
MMPDS-06 1 April 2011 3.5.3.3 H34 Temper — Figures 3.5.3.3.6(a) and 3.5.3.3.6(b) show tensile and compressive stress-strain and tangent-modulus curves for this temper. A full-range tensile stress-strain curve is shown in Figure 3.5.3.3.6(c). 50
40 L-tension
LT-tension
Stress, ksi
30
20 Ramberg - Osgood n (L tension) = 24 n (LT tension) = 9.3 10
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.5.3.3.6(a). Typical tensile stress-strain curves for 5086-H34 aluminum alloy sheet at room temperature.
50
LT - compression L - compression
40
Stress, ksi
30
20
Ramberg - Osgood n (L - comp.) = 8.6 n (LT - comp.) = 12
10
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.3.3.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 5086-H34 aluminum alloy sheet at room temperature.
3-342
MMPDS-06 1 April 2011
50
X Longitudinal 40
Stress, ksi
30
20
10
TYPICAL 0 0.00
0.02
0.04
0.06
0.08
0.10
Strain, in./in. Figure 3.5.3.3.6(c). Typical tensile stress-strain curve (full range) for 5086-H34 aluminum alloy sheet at room temperature.
3-343
0.12
MMPDS-06 1 April 2011 3.5.3.4 H36 Temper — Figure 3.5.3.4.6 shows tensile and compressive stress-strain and tangent-modulus curves at room temperature. 50
LT-compression L-compression 40 LT-tension L-tension
Stress, ksi
30
Ramberg - Osgood n (L - tension) = 27 n (LT - tension) = 13 n (L - comp.) = 8.0 n (LT - comp.) = 15
20
10
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.3.4.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5086-H36 aluminum alloy sheet at room temperature.
3.5.3.5 H38 Temper 3.5.3.6 H111 Temper 3.5.3.7 H112 Temper — Figure 3.5.3.7.6 shows tensile and compressive stress-strain and tangent-modulus curves at room temperature.
25 LT - tension and compression L - tension 20
L - compression LT - compression
Stress, ksi
15
10 Ramberg - Osgood n (L - tension) = 18 n (LT - tension) = 10 n (L - comp.) = 9.3 n (LT - comp.) = 10
5
TYPICAL Thickness = 0.500 - 1.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.3.7.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5086-H112 aluminum alloy plate at room temperature.
3-344
MMPDS-06 1 April 2011 3.5.4 5454 ALLOY 3.5.4.0 Comments and Properties — 5454 is a tough, medium-strength Al-Mg alloy. It is the highest strength alloy of the 5000 series that may be used at elevated temperatures without concern about resensitization to stress-corrosion cracking. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress-corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of the alloy. Materials specifications for 5454 aluminum alloy are presented in Table 3.5.4.0(a). Room temperature physical properties are shown in Tables 3.5.4.0(b) and 3.5.4.0(c). Table 3.5.4.0(a). Material Specifications for 5454 Aluminum Alloy
Specification AMS-QQ-A-250/10a AMS-QQ-A-200/6a
Form Sheet and plate Extruded bar, rod, and shapes
a Inactive for new design.
The temper index for 5454 is as follows: Section 3.5.4.1 3.5.4.2 3.5.4.3
Temper O H32 H34
3-345
MMPDS-06 1 April 2011
Table 3.5.4.0(b). Design Mechanical and Physical Properties of 5454 Aluminum Alloy Sheet, Plate, and Extrusion
Specification . . . . . . . .
AMS-QQ-A-250/10a
AMS-QQ-A-200/6b
Form . . . . . . . . . . . . . .
Sheet and plate
Extrusion
Temper . . . . . . . . . . . .
O
H32
Thickness, in. . . . . . . .
0.0203.000
0.0202.000
Basis . . . . . . . . . . . . . .
A
B
A
B
S
S
S
S
S
S
31 31
32 32
36 36
37 37
39 39
32 32
31 31
31 ...
33 ...
31 31
12 12
13 13
26 24
27 25
29 28
18 18
12 12
12 ...
19 ...
12 12
12 12 19
13 13 20
24 26 21
25 27 22
27 29 23
17 18 20
12 12 19
12 ... ...
... ... ...
12 12 19
46 62
48 64
52 72
54 74
57 78
48 64
46 62
... ...
... ...
43 56
20 24
22 26
36 44
38 46
41 49
25 31
20 24
... ...
... ...
20 24
14
12
12
Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent (S-Basis): L ...............
d
...
d
H34
...
H112
O
H112
0.020- 0.250- 0.5001.000 0.499 3.000 #5.000c #5.000c #5.000c
d
8
d
E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ...............
10.2 10.4 3.85 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . C, Btu/(lb)(EF) . . . . K, Btu/[(hr)(ft3)(EF)/ft] α, 10-6 in./in./EF . . . .
0.097 0.23 (at 212EF) 78 (at 77EF) 13.1 (68 to 212EF)
a b c d
H111
Inactive for new design. Mechanical properties were established under MIL-QQ-A-250/10. Inactive for new design. Mechanical properties were established under MIL-QQ-A-200/6. Cross-sectional area #32 in2. See Table 3.5.4.0(c).
3-346
MMPDS-06 1 April 2011
Table 3.5.4.0(c). Minimum Elongation Values for 5454 Aluminum Alloy Sheet and Plate
Temper
Thickness Range, inch
O .......................
0.020-0.030 0.031-0.050 0.051-0.113 0.114-3.000
12 14 16 18
H32 . . . . . . . . . . . . . . . . . . . . .
0.020-0.050 0.051-0.249 0.250-2.000
5 8 12
H34 . . . . . . . . . . . . . . . . . . . . .
0.020-0.050 0.051-0.161 0.162-0.249 0.250-1.000
4 6 7 10
H112 . . . . . . . . . . . . . . . . . . . .
0.500-2.000 2.001-3.000
11 15
3-347
Elongation (L), percent
MMPDS-06 1 April 2011 3.5.4.1 O Temper — Figure 3.5.4.1.6 presents tensile and compressive stress-strain curves for this temper. 25 Longitudinal and Long Transverse 20 Tension
Compression
Stress, ksi
15
10 Ramberg - Osgood n (L and LT - tension) = 16 n (L and LT - comp.) = 9.6 TYPICAL
5
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.4.1.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5454-O aluminum alloy sheet, plate, extrusion at room temperature.
3.5.4.2 H32 Temper — Figure 3.5.4.2.6 presents room temperature tensile stress-strain curves for this temper.
50
40
Longitudinal 30
Stress, ksi
Long Transverse
20 Ramberg - Osgood n (L - tension) = 7.5 n (LT - tension) = 6.8 10 TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.5.4.2.6. Typical tensile stress-strain curves for 5454-H32 aluminum alloy plate at room temperature.
3-348
MMPDS-06 1 April 2011 3.5.4.3 H34 Temper — Figures 3.5.4.3.6(a) and 3.5.4.3.6(b) present room temperature tensile and compressive stress-strain and tangent-modulus curves for this temper. 50
LT - com pression L - com pression
Stress, ksi
40
L - tension
30
LT - tension
20
Ram berg-O sgood TYS (ksi) n (L - tension) = 50 35 n (LT - tension) = 11 35 n (L - com p.) = 8.1 34
10
n (LT - com p.) = 9.8
36
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Com pressive Tangent M odulus, 10 3 ksi. Figure 3.5.4.3.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5454-H34 aluminum alloy sheet at room temperature. 50
Longitudinal 40
Stress, ksi
30
20 Ramberg - Osgood n (L - tension) = 10 TYPICAL 10
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.5.4.3.6(b). Typical tensile stress-strain curve for 5454-H34 aluminum alloy plate at room temperature.
3-349
MMPDS-06 1 April 2011 3.5.5 5456 ALLOY 3.5.5.0 Comments and Properties — 5456 is the highest strength alloy of the Al-Mg group. It has high resistance to corrosion, but should not be used in strain-hardened tempers at temperatures above 150EF because of possible sensitization to stress-corrosion cracking. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress-corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of the alloy. Some material specifications for 5456 aluminum alloy are presented in Table 3.5.5.0(a). Room temperature mechanical and physical properties are shown in Tables 3.5.5.0(b) and 3.5.5.0(c). The effect of temperature on physical properties is shown in Figure 3.5.5.0. Table 3.5.5.0(a). Material Specifications for 5456 Aluminum Alloy
Specification AMS-QQ-A-250/9 AMS-QQ-A-200/7a ASTM B 928
Form Sheet and plate Extruded bar, rod, and shapes Sheet and plate
a Inactive for new design.
The temper index for 5456 is as follows: Temper O H111 H112 H321
Section 3.5.5.1 3.5.5.2 3.5.5.3 3.5.5.4
3-350
Table 3.5.5.0(b). Design Mechanical and Physical Properties of 5456 Aluminum Alloy Sheet and Plate Specification ................... ASTM B928a AMS-QQ-A-250/9a Form ...............................
Sheet and plate
Temper ............................ 0.0511.500
1.5013.000
Basis ...............................
S
S
S
S
S
S
S
S
S
S
S
42 42
41 ...
40 ...
39 ...
38 ...
42 ...
41 ...
46 46
46 45
44 43
41 ...
19 19
18 ...
17 ...
16 ...
15 ...
19 ...
18 ...
33 30
33 29
31 28
29 ...
19 19 26
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
27 33 27
26 31 27
24 29 25
... ... ...
63 84
... ...
... ...
... ...
... ...
... ...
... ...
67 84
67 84
64 80
... ...
32 38
... ...
... ...
... ...
... ...
... ...
... ...
46 53
46 53
43 50
... ...
16
16
14
14
12
12
12
12
12
12
Mechanical Properties: Ftu, ksi: L ............................... LT ............................. Fty, ksi: L ............................... LT ............................. Fcy, ksi: L ............................... LT ............................. Fsu, ksi ......................... Fbru, ksi: (e/D = 1.5) ............... (e/D = 2.0) ............... Fbry, ksi: (e/D = 1.5) ............... (e/D = 2.0) ............... e, percent: L ............................... E, 103 ksi ..................... Ec, 103 ksi ................... G, 103 ksi .................... µ ................................... Physical Properties: ω, lb/in.3 ...................... C, Btu/(lb)(EF) .............. K, Btu/[(hr)(ft2)(EF)/ft] .. α, 10-6 in./in./EF ............
H112 5.0017.000
7.0018.000
0.2501.500
1.5013.000
0.1880.624
Last Revised: Apr 2008, MMPDS-04, Item 06-37 a Mechanical properties were established under MIL-QQ-A-250/9.
12 10.2 10.4 3.85 0.33 0.096 0.23 (at 212EF) ... See Figure 3.5.5.0
H321 0.6251.2511.250 1.500
1.5013.000
MMPDS-06 1 April 2011
3-351
Thickness, in. ..................
O 3.0015.000
MMPDS-06 1 April 2011
Table 3.5.5.0(c). Design Mechanical and Physical Properties of 5456 Aluminum Alloy Extrusion
Specification . . . . . . . . . . . . . . . . . . . . . . . .
AMS-QQ-A-200/7a
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extruded bar, rod, and shapes
Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
2
H111
H112
#32
Cross-Sectional Area, in. . . . . . . . . . . . . . . Thickness or Diameter, in. . . . . . . . . . . . . .
#5.000
#5.000
#5.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
41 ...
42 ...
41 41
19 ...
26 ...
19 19
19 ... ...
... ... ...
19 19 23
... ...
... ...
57 74
... ...
... ...
34 38
14
12
12
Mechanical Properties: Ftu, ksi: L ............................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ............................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ............................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . e, percent: L ............................... 3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . µ ................................
10.2 10.4 3.85 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . . . .
0.096 0.23 (at 212EF) ... See Figure 3.5.5.0
a Mechanical properties were established under MIL-QQ-A-200/7. Inactive for new design.
3-352
MMPDS-06 1 April 2011
17 5456 Al
16 α
15
14
-6
o
α, 10 in./in./ F
13
12
11
10
9 α, Between 70 oF and indicated temperatue
8
7 -600
-400
-200
0
200
400
600
Temperature, °F Figure 3.5.5.0. Effect of temperature on the physical properties of 5456 aluminum alloy.
3-353
800
MMPDS-06 1 April 2011 3.5.5.1 O Temper — Room temperature tensile and compressive stress-strain and tangentmodulus curves for this temper are presented in Figures 3.5.5.1.6(a) and 3.5.5.1.6(b).
º
25 Tension and Compression
20
15
Stress, ksi
Longitudinal and Long Transverse
10 Ramberg - Osgood n (L and LT - tension) = 50 n (L and LT - comp.) = 50 5 TYPICAL
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.5.5.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5456-O aluminum alloy sheet and plate at room temperature.
25 Tension and Compression
20
Stress, ksi
15
Longitudinal and Long Transverse
10
Ramberg - Osgood n (L and LT - tension) = 13 n (L and LT - comp.) = 13
5
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.5.1.6(b). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5456-O aluminum alloy extrusion at room temperature.
3-354
MMPDS-06 1 April 2011 3.5.5.2 H111 Temper — Room temperature tensile and compressive stress-strain and tangentmodulus curves for this temper are presented in Figure 3.5.5.2.6.
50
40
L-tension LT-tension LT-compression L-compression
Stress, ksi
30
20 Ramberg - Osgood n (L - tension) = 32 n (LT - tension) = 16 n (L - comp.) = 9.5 n (LT - comp.) = 16
10
TYPICAL 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.5.2.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5456-H111 aluminum alloy extrusion at room temperature. 3.5.5.3 H112 Temper
3.5.5.4 H321 Temper — Room temperature tensile and compressive stress-strain and tangent modulus curves for this temper are presented in Figure 3.5.5.4.6. 50 L-tension LT-tension 40
LT-compression L-compression
Stress, ksi
30
20 Ramberg - Osgood n (L - tension) = 42 n (LT - tension) = 16 n (L - comp.) = 7.0 n (LT - comp.) = 11
10
TYPICAL Thickness = 0.625 - 1.250 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.5.5.4.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 5456-H321 aluminum alloy plate at room temperature.
3-355
MMPDS-06 1 April 2011
This page is intentionally blank.
3-356
MMPDS-06 1 April 2011
3.6 6000 SERIES WROUGHT ALLOYS Alloys of the 6000 series contain magnesium and silicon as their principal alloying elements. 3.6.1 6013 ALLOY 3.6.1.0 Comments and Properties — 6013 is a Mg-Si-Cu-Mn alloy that is weldable. This alloy has 25 percent higher strength in the T6 temper than 6061-T6. It has improved toughness, fatigue strength, and stretch-forming characteristics compared to 6061 with equivalent stress corrosion characteristics. Refer to 3.1.3.4 for comments regarding weldability of the alloy. Material specifications for 6013 are shown in Table 3.6.1.0(a). Room temperature mechanical and physical properties are presented in Table 3.6.1.0(b). Table 3.6.1.0(a). Material Specifications for 6013 Aluminum Alloy
Specification AMS 4347 AMS 4216
Form Sheet (T6 and T4) Sheet (T6)
The temper index is as follows: Section 3.6.1.1
Temper T6
3-357
MMPDS-06 1 April 2011 Table 3.6.1.0(b). Design Mechanical and Physical Properties of 6013 Aluminum Alloy Sheet
Specification . . . . . . . . . . . . . . . . . . . .
AMS 4347
AMS 4216 and AMS 4347
Form . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sheet
Sheet
Temper . . . . . . . . . . . . . . . . . . . . . . . . .
T4
T6
Thickness, in. . . . . . . . . . . . . . . . . . . . .
0.020-0.249
0.010-0.062
0.063-0.125
0.126-0.249
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
... 40
52 52
52 52
52 52
... 21
47 46
47 46
48 46
... ... ...
48 48 32
48 48 32
48 49 32
... ...
85 111
85 111
85 111
... ...
66 76
69 80
71 82
20
8
8
8
Mechanical Properties: Ftu, ksi: L ............................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ............................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ............................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D=1.5) . . . . . . . . . . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . . . . . . . . . . Fbrya, ksi: (e/D=1.5) . . . . . . . . . . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . . .
a
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . F ............................
9.9 10.1 3.8 0.33
Physical Properties: ω, lb/in3 . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . .
0.098 ...
Bearing values are “dry pin” values per Section 1.4.7.1.
3-358
MMPDS-06 1 April 2011 3.6.1.1 T6 Temper — Stress-strain and tangent-modulus curves are presented in Figures 3.6.1.1.6(a) and 3.6.1.1.6(b).
100
80
Stress, ksi
60 Longitudinal Long Transverse 40
Ramberg - Osgood n (L) = 21 n (LT) = 15
20
TYPICAL Thickness = 0.010 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.6.1.1.6(a). Typical tensile stress-strain curves for 6013-T6 aluminum alloy sheet at room temperature.
3-359
MMPDS-06 1 April 2011
100
80
Longitudinal and Long Transverse
Stress, ksi
60
Longitudinal 40
Long Transverse Ramberg - Osgood n (L) = 21 n (LT) = 23
20
TYPICAL Thickness = 0.010 - 0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.6.1.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 6013-T6 aluminum alloy sheet at room temperature.
3-360
MMPDS-06 1 April 2011 3.6.2 6061 ALLOY 3.6.2.0 Comments and Properties — 6061 has been used in a wide range of applications, including cryogenic applications requiring high toughness. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 6061 are presented in Table 3.6.2.0(a). Room temperature mechanical and physical properties are shown in Tables 3.6.2.0(b) through 3.6.2.0(g). The effect of temperature on the physical properties is shown in Figure 3.6.2.0. The temper index for 6061 is as follows: Section 3.6.2.1 3.6.2.2
Temper T4, T42, T451, T4510, and T4511 T6, T62, T651, T652, T6510, and T6511
3-361
MMPDS-06 1 April 2011
Table 3.6.2.0(a). Material Specifications for 6061 Aluminum Alloy
Specification AMS 4025 AMS 4026 AMS 4027 AMS 4115 AMS 4116 AMS 4117 AMS-QQ-A-225/8 AMS 4128 AMS 4150 AMS 4160 AMS 4161 AMS 4172 AMS 4173 AMS-QQ-A-200/8 AMS-A-22771a AMS 4080 AMS 4081 AMS 4082 AMS 4083 AMS-WW-T-700/6a AMS 4127 AMS 4248 AMS-QQ-A-367a
Form Sheet and plate Sheet and plate Sheet and plate Bar and rod, rolled or cold-finished Bar and rod, cold-finished Bar and rod, rolled or cold-finished Rolled bar, rod, and shapes Rolled bar, rod, and shapes Extruded rod, bar, and shapes Extrusion Extrusion Extrusion Extruded rod, bar, and shapes Extruded rod, bar, shapes, and tubing Forging Tubing, seamless drawn Tubing, seamless drawn Tubing, seamless drawn Tubing, seamless drawn Tubing, seamless drawn Forging Hand forging Forging
a Inactive for new design.
3-362
MMPDS-06 1 April 2011 Table 3.6.2.0(b1). Design Mechanical and Physical Properties of 6061 Aluminum Alloy Sheet
AMS 4026a
Specification . . . . . . .
AMS 4026a
Form . . . . . . . . . . . . .
AMS 4025a and AMS 4027a
Sheet
Temper . . . . . . . . . . .
T4
T42b
T6 and T62c
Thickness, in. . . . . . .
0.010-0.249
0.010-0.249
0.010-0.249
Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . .
A
B
S
A
B
... 30
... 32
... 30
42 42
43 43
... 16
... 18
... 14
36 35
38 37
... 16 20
... 18 21
... ... ...
35 36 27
37 38 28
48 63
51 67
... ...
67 88
69 90
22 26
25 29
... ...
50 58
53 61
d
d
d
...
E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . µ ...............
...
9.9 10.1 3.8 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . .
0.098 See Figure 3.6.2.0
Last Revised: Apr 2009, MMPDS-04CN1, Item 08-37 a Mechanical properties were established under QQ-A-250/11. b Design allowables were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold- or hot-worked, particularly in the annealed temper, prior to solution heat treatment. c Design allowables were based upon data obtained from testing T6 sheet and from testing samples of sheet, supplied in the O or F temper, which were heat treated to T62 temper to demonstrate response to heat treatment by suppliers. Properties obtained may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper, prior to solution heat treatment. d See Table 3.6.2.0(b3).
3-363
Table 3.6.2.0(b2). Design Mechanical and Physical Properties of 6061 Aluminum Alloy Plate Specification ................... AMS 4026a and AMS AMS 4026a 4025 AMS 4025a and AMS 4027a Form ............................... Plate Temper ............................ T451 T42b T651 and T62c Thickness, in. .................. 0.2500.2501.0013.0012.000 2.001-3.000 1.000 3.000 0.250-2.000 2.001-3.000 4.000 Basis ............................... A
B
A
B
S
S
A
B
A
B
S
S
... 30
... 32
... 30
... 32
... 30
... 30
42 42
43 43
... 42
... 43
... 42
... 40
... 16
... 18
... 16
... 18
... 14
... 14
36 35
38 37
... 35
... 37
... 35
... 35
... 16 20
... 18 21
... ... ...
... ... ...
... ... ...
... ... ...
35 36 27
37 38 28
... ... ...
... ... ...
... ... ...
... ... ...
48 63
52 67
... ...
... ...
... ...
... ...
67 88
69 90
... ...
... ...
... ...
... ...
22 26
25 29
... ...
... ...
... ...
... ...
50 58
53 61
... ...
... ...
... ...
... ...
e
...
16
...
18
16
e
...
6
...
6
6
9.9 10.1 3.8 0.33 0.098 See Figure 3.6.2.0
Last Revised: Apr 2009, MMPDS-04CN1, Item 08-37 a Mechanical properties were established under QQ-A-250/11. b Design allowables were based upon data obtained from testing samples of material, supplied in the O temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold- or hot-worked, particularly in the annealed temper, prior to solution heat treatment. c Design allowables were based upon data obtained from testing T651 plate and from testing samples of plate, supplied in the O temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper, prior to solution heat treatment. d Properties for this thickness apply only to T651 temper. e See Table 3.6.2.0(b3).
MMPDS-06 1 April 2011
3-364
Mechanical Properties: Ftu, ksi: L ............................... LT ............................. Fty, ksi: L ............................... LT ............................. Fcy, ksi: L ............................... LT ............................. Fsu, ksi ......................... Fbru, ksi: (e/D = 1.5) ............... (e/D = 2.0) ............... Fbry, ksi: (e/D = 1.5) ............... (e/D = 2.0) ............... e, percent: LT ............................... E, 103 ksi ..................... Ec, 103 ksi ................... G, 103 ksi .................... µ ................................... Physical Properties: ω, lb/in.3 ...................... C, K, and α,............
4.001-d 6.000
MMPDS-06 1 April 2011
Table 3.6.2.0(b3). Minimum Elongation Values for 6061 Aluminum Alloy Sheet and Plate
Temper and Product
Thickness, inch
Elongation (LT), percent
T4 or T42 sheet . . . . . . . . . . . . .
0.010-0.020 0.021-0.249
14 16
T451 plate . . . . . . . . . . . . . . . . .
0.250-1.000 1.001-2.000
18 16
T6 or T62 sheet . . . . . . . . . . . . .
0.010-0.020 0.021-0.249
8 10
T651 or T62 plate . . . . . . . . . . .
0.250-0.499 0.500-1.000 1.001-2.000
10 9 8
3-365
MMPDS-06 1 April 2011 Table 3.6.2.0(c1). Design Mechanical and Physical Properties of 6061 Aluminum Alloy Tube and Pipe
Specification . . . . . . .
AMS 4081, AMS-WW-T-700/6 a
AMS-WW-T700/6 a
Form . . . . . . . . . . . . .
Drawn tube
Temper . . . . . . . . . . . Wall Thickness, in. . .
Mechanical Properties: Ftu, ksi: L .............. Fty, ksi: L .............. Fcy, ksi: (S-Basis) L .............. Fsu, ksi (S-Basis) . . . Fbru, ksi: (S-Basis) (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbry, ksi: (S-Basis) (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent: (S-Basis) L ..............
0.025-0.100
>0.1000.500
T6c and T62
0.025-0.500
0.0250.500
... A
B
S
S
A
B
30d
34
30
30
42e
45
16d
19
16
14
35e
39
14 20
... ...
14 20
... ...
34 27
... ...
48 63
... ...
48 63
... ...
67 88
... ...
22 26
... ...
22 26
... ...
49 56
... ...
f
...
f
f
f
...
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . .
T42b
T4
Outside Diameter, in. Basis . . . . . . . . . . . . .
AMS 4080, AMS 4081, AMS 4082, AMS 4083, AMS-WW-T-700/6 a
9.9 10.1 3.8 0.33 0.098 See Figure 3.6.2.0
Last Revised: Apr 2010, Item 10-35 a Mechanical properties were established under WW-T-700/6. Inactive for new design. b Design allowables were based upon data obtained from testing samples of material, supplied in the O temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold- or hot-worked, particularly in the annealed temper, prior to solution heat treatment. c Design allowables were based upon data obtained from testing T6 temper tube and from testing samples of tube, supplied in the O temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper, prior to solution heat treatment. d A-Basis value is specification minimum. The rounded T99 for Ftu = 32 ksi, Fty = 17 ksi e A-Basis value is specification minimum. The rounded T99 for Ftu = 43 ksi, Fty = 37 ksi f See Table 3.6.2.0(c2).
3-366
MMPDS-06 1 April 2011
Table 3.6.2.0(c2). Minimum Elongation Values for 6061 Aluminum Alloy Tubing
Elongation (L), percent Wall Thickness, inch
Full-Section Specimen
Cut-Out Specimen
T4 or T42 . . . . . . . .
0.025-0.049 0.050-0.259 0.260-0.500
16 18 20
14 16 18
T6 or T62 . . . . . . . .
0.025-0.049 0.050-0.259 0.260-0.500
10 12 14
8 10 12
Temper
3-367
Table 3.6.2.0(d). Design Mechanical and Physical Properties of 6061 Aluminum Alloy Rolled, Drawn, or ColdFinished Bar, Rod, and Shapes AMS 4128 & AMS 4117 & AMS 4115, AMS 4116 & AMS-QQ-AAMS-QQ-AAMS-QQ-AAMS 4117 & AMS 4116, & AMS-QQ-ASpecification ................... 225/8a 225/8a AMS-QQ-A-225/8a 225/8a AMS-QQ-A-225/8a 225/8a Form ............................... Rolled, drawn, or cold-finished bar, rod and special shapes Temper ...........................
T4
T451
T42b
Cross-Sectional Area, in2
T6
T651
T62b
#50 #8.000
0.500-8.000
#8.000
#8.000
0.500-8.000
#8.000
Basis ...............................
S
S
S
S
S
S
30
30
30
42
42
42
16
16
14
35
35
35
14 20
14 20
... ...
34 27
34 27
... ...
48 63
48 63
... ...
67 88
67 88
... ...
22 26
22 26
... ...
49 56
49 56
... ...
18
18
18
10
10
10
Mechanical Properties: Ftu, ksi: L .............................. Fty, ksi: L .............................. Fcy, ksi: L .............................. Fsu, ksi ......................... Fbru, ksi: (e/D = 1.5) ............... (e/D = 2.0) ............... Fbry, ksi: (e/D = 1.5) ............... (e/D = 2.0) ............... e, percent: L .............................. E, 103 ksi ..................... Ec, 103 ksi ................... G, 103 ksi .................... µ .................................. Physical Properties: ω, lb/in.3 ...................... C, K, and α,............
9.9 10.1 3.8 0.33 0.098 See Figure 3.6.2.0
a Mechanical properties were established under QQ-A-225/8. b Design allowables were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers.
MMPDS-06 1 April 2011
3-368
Thickness, in. ..................
MMPDS-06 1 April 2011
Table 3.6.2.0(e). Design Mechanical and Physical Properties of 6061 Aluminum Alloy Die Forging
Specification . . . . . . . . . . . . . . . . . . . . .
AMS 4127, AMS-A-22771a, and AMS-QQ-A-367b
Form . . . . . . . . . . . . . . . . . . . . . . . . . . .
Die forging
Temper . . . . . . . . . . . . . . . . . . . . . . . . .
T6 and T652
Thickness, in. . . . . . . . . . . . . . . . . . . . .
# 4.000c
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . e, percent: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . .
38 38 35 35 36 36 25 61 76 54 61 7 5
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . µ .............................
9.9 10.1 3.8 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . .
0.098 See Figure 3.6.2.0
a Mechanical properties were established under MIL-A-22771. Inactive for new design. b Mechanical properties were established under QQ-A-367. Inactive for new design. c Thickness at the time of heat treatment. When die forgings are machined before heat treatment, the mechanical properties are applicable provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. d T indicates any grain direction not within ± 15E of being parallel to the forging flow lines. Fcy(T) values are based upon short transverse (ST) test data.
3-369
MMPDS-06 1 April 2011
Table 3.6.2.0(f). Design Mechanical and Physical Properties of 6061 Aluminum Alloy Hand Forging
Specification . . . . . . . . . . .
AMS 4127, AMS 4248, AMS-A-22771a, and AMS-QQ-A-367b
Form . . . . . . . . . . . . . . . . .
Hand forging
Temper . . . . . . . . . . . . . . .
T6c and T652
Cross-Sectional Area, in.2 .
#256
Thickness, in. . . . . . . . . . .
#2.000
2.001-4.000
4.001-8.000
Basis . . . . . . . . . . . . . . . . .
S
S
S
38 38 ...
38 38 37
37 37 35
35 35 ...
35 35 33
34 34 32
36 36 ... 25
36 36 34 25
35 35 33 24
61 76
61 76
59 74
54 61
54 61
53 59
10 8 ...
10 8 5
8 6 4
Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent: L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ...................
9.9 10.1 3.8 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . a b c
0.098 See Figure 3.6.2.0
Mechanical properties were established under MIL-A-22771. Inactive for new design. Mechanical properties were established under QQ-A-367. Inactive for new design. When hand forgings are machined before heat treatment, the section thickness at time of heat treatment shall determine the minimum mechanical properties as long as the original (as-forged) thickness does not exceed the maximum thickness for the alloy as shown in the table.
3-370
MMPDS-06 1 April 2011
Table 3.6.2.0(g). Design Mechanical and Physical Properties of 6061 Aluminum Alloy Extruded Rod, Bar, and Shapes AMS 4161, AMS 4172, & AMS 4160 AMS 4150, AMS Specification . . . . . . . . AMS-QQ-A& AMS-QQ4173 AMS-QQ200/8a A-200/8a A-200/8a & AMS-QQ-A-200/8a Form . . . . . . . . . . . . . . Extruded rod, bar, and shapes T4, T4510, T6, T6510, and Temper . . . . . . . . . . . . and T4511 T42b T62b T6511 2 Cross-sectional area, in. ... ... ... #32 1.001Thickness,c in. . . . . . . . #3.000 All All #1.000 6.500 Basis . . . . . . . . . . . . . . S S S A B A B Mechanical Properties: Ftu, ksi: L ............... 38 41 38 41 26 26 38 LT . . . . . . . . . . . . . . ... 37 40 33 35 ... ... Fty, ksi: L ............... 35 38 35 38 16 12 35 36 28 31 LT . . . . . . . . . . . . . . ... ... ... 33 Fcy, ksi: 37 34 37 L ............... 14 ... ... 34 38 30 33 LT . . . . . . . . . . . . . . ... ... ... 35 28 19 21 Fsu, ksi . . . . . . . . . . . . 16 ... ... 26 Fbrud, ksi: 69 52 57 (e/D = 1.5) . . . . . . . 42 ... ... 64 88 69 74 (e/D = 2.0) . . . . . . . 55 ... ... 82 Fbryd, ksi: 58 42 46 ... (e/D = 1.5) . . . . . . . 22 ... 54 65 50 55 26 ... ... 60 (e/D = 2.0) . . . . . . . e, percent (S-Basis): ... 10 ... L ............... 16 16 10e 10e 3 E, 10 ksi . . . . . . . . . . 9.9 10.1 Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . 3.8 µ ................ 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . 0.098 C, K, and α . . . . . . . . See Figure 3.6.2.0 a b
c d e
Mechanical properties were established under QQ-A-200/8. Design allowables were based upon data obtained from testing samples of material, supplied in the O to F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user, however, may be lower than those listed if the material has been formed or otherwise cold- or hot-worked, particularly in the annealed temper, prior to solution heat treatment. The mechanical properties are to be based upon the thickness at the time of quench. Bearing values are “dry pin” values per Section 1.4.7.1. For thicknesses #0.249 inch, e = 8%.
3-371
MMPDS-06 1 April 2011
α%HWZHHQ)DQGLQGLFDWHG WHPSHUDWXUH .$WLQGLFDWHGWHPSHUDWXUH &$WLQGLFDWHGWHPSHUDWXUH
.7
&
αLQLQ)
α
&%WXOE )
.%WX>KU IW ) IW@
7HPSHUDWXUH)
Figure 3.6.2.0. Effect of temperature on the physical properties of 6061 aluminum alloy.
3-372
MMPDS-06 1 April 2011 3.6.2.1 T4, T42, T451, T4510, and T4511 Tempers — For effect of temperature on modulus values, use Figure 3.6.2.2.4. 3.6.2.2 T6, T62, T651, T652, T6510, and T6511 Tempers — Figures 3.6.2.2.1(a) through 3.6.2.2.1(d), 3.6.2.2.4, and 3.6.2.2.5(a) and 3.6.2.2.5(b) present elevated temperature curves for various mechanical properties. Figures 3.6.2.2.6(a) through 3.6.2.2.6(k) contain tensile and compression stress-strain curves at room temperature and elevated temperatures, and tangent-modulus curves at room temperature for various products and tempers. Figures 3.6.2.2.6(l) through 3.6.2.2.6(o) present full-range tensile stress-strain curves at room temperature for various products and tempers. Figure 3.6.2.2.8 contains unnotched fatigue data for various wrought products at room temperature.
160 6 06 1 -T 6 A ll p rod u cts 140
Percent F
tu at Room Temperature
120
S tre ng th a t te m p e ra tu re E x p os u re u p to 1 0,0 0 0 h r
100
80
60 1 /2 10 1 00 1 00 0 1 0,0 0 0
40
hr hr hr hr hr
20
0 -4 0 0
-2 0 0
0
20 0
400
600
8 00
T e m p e ra tu re , °F
Figure 3.6.2.2.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 6061-T6 aluminum alloy (all products).
3-373
MMPDS-06 1 April 2011
160 6061-T6 All products
140
Percent Fty at Room Temperature
120 Strength at temperature Exposure up to 10,000 hr 100
80
60
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
40
20
0 -400
-200
0
200
400
600
800
Temperature, °F Figure 3.6.2.2.1(b). Effect of temperature on the tensile yield strength (Fty) of 6061T6 aluminum alloy (all products).
3-374
MMPDS-06 1 April 2011
DW5RRP7HPSHUDWXUH
KU KU KU
KU KU
3HUFHQW)
WX
6WUHQJWKDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.6.2.2.1(c). Effect of exposure at elevated temperatures on the room temperature tensile ultimate strength (Ftu) of 6061-T6 aluminum alloy (all products).
W\
3HUFHQW) DW5RRP7HPSHUDWXUH
×KU
KU KU KU KU
6WUHQJWKDWURRPWHPSHUDWXUH ([SRVXUHXSWRKU
7HPSHUDWXUH)
Figure 3.6.2.2.1(d). Effect of exposure at elevated temperatures on the room temperature tensile yield strength (Fty) of 6061-T6 aluminum alloy (all products).
3-375
MMPDS-06 1 April 2011
120
Percent of Room Temperature Modulus
Modulus at temperature Exposure up to 10,000 hr 100
TYPICAL E & Ec
80
60
40
20 -400
-200
0
200
400
600
800
1000
Temperature, F Figure 3.6.2.2.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 6061 aluminum alloy.
3-376
MMPDS-06 1 April 2011
(ORQJDWLRQDWWHPSHUDWXUH 7<3,&$/
([SRVXUHXSWRKU KU
3HUFHQW(ORQJDWLRQH
KU KU KU ×KU
7HPSHUDWXUH )
Figure 3.6.2.2.5(a). Effect of temperature on the elongation of 6061-T6 aluminum alloy (all products).
100
Elongation at room temperature Exposure up to 10,000 hr
TYPICAL
Percent Elongation (e)
80 10,000 hr 1000 hr 100 hr 10 hr hr
60
40
20
0 0
100
200
300
400
500
600
700
800
0
Temperature, F
Figure 3.6.2.2.5(b). Effect of exposure at elevated temperatures on the room temperature elongation of 6061-T6 aluminum alloy (all products).
3-377
MMPDS-06 1 April 2011
50
LT - tension 40
L - tension
Stress, ksi
30
20
Ramberg - Osgood n (L-tension) = 50 n (LT-tension) = 21
10
TYPICAL Thickness: ≤ 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.6.2.2.6(a). Typical tensile stress-strain curves for 6061-T6 aluminum alloy sheet at room temperature.
50 Longitudinal
2 - 100 hr exposure 40
Stress, ksi
30
20 Ramberg - Osgood n (2 - 100 hr exp.) = 32 TYPICAL 10 Thickness: ≤ 0.125 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.6.2.2.6(b). Typical tensile stress-strain curve for 6061-T6 aluminum alloy sheet at 200E EF.
3-378
MMPDS-06 1 April 2011 50 Longitudinal
40 2 - 10 -hr exposure
100 -hr exposure
Stress, ksi
30
20 Ramberg - Osgood n (2 - 10 -hr exp.) = 28 n (100 -hr exp.) = 28 10
TYPICAL Thickness ≤ 0.125 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.6.2.2.6(c). Typical tensile stress-strain curves for 6061-T6 aluminum alloy sheet at 300E EF.
50
Longitudinal
40
30
Stress, ksi
2 - 5 -hr exposure 10 -hr exposure 100 -hr exposure
20
Ramberg - Osgood n (2 - 5 -hr exp.) = 18 n (10 -hr exp.) = 18 n(100 -hr exp.) = 18
10
TYPICAL Thickness ≤ 0.125 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.6.2.2.6(d). Typical tensile stress-strain curves for 6061-T6 aluminum alloy sheet at 400E EF.
3-379
MMPDS-06 1 April 2011 25 Longitudinal
20
2 - 5 -hr exposure
10 -hr exposure
Stress, ksi
15
100 -hr exposure
10
Ramberg - Osgood n (2 - 5 -hr exp.) = 13 n (10 -hr exp.) = 13 n(100 -hr exp.) = 13
5
TYPICAL Thickness ≤ 0.125 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.6.2.2.6(e). Typical tensile stress-strain curves for 6061-T6 aluminum alloy sheet at 500E EF.
50
Longitudinal and Long Transverse 40
Long Transverse 30
Stress, ksi
Longitudinal
20 Ramberg - Osgood n (L-comp.) = 19 n (LT-comp.) = 21 10
TYPICAL Thickness: ≤ 0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.6.2.2.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for 6061-T6 aluminum alloy sheet at room temperature.
3-380
MMPDS-06 1 April 2011
50
L-compression L-tension
Stress, ksi
40
30
20
Ramberg-Osgood TYS (ksi) n (L-tension) = 50 40 n (L-comp.) = 18 40
10
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.6.2.2.6(g). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 6061-T6 aluminum alloy sheet at room temperature.
3-381
MMPDS-06 1 April 2011 50 L-tension
LT-tension
40
Stress, ksi
30
20
Ramberg - Osgood n(L-tension) = 34 n(LT-tension) = 29
10
TYPICAL All thicknesses 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.6.2.2.6(h). Typical tensile stress-strain curves for 6061-T6 aluminum alloy extrusion at room temperature.
50 LT-compression L-compression
40
Stress, ksi
30
20 Ramberg - Osgood n (L-comp.) = 38 n (LT-comp.) = 28 10
TYPICAL All thicknesses
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.6.2.2.6(i). Typical compressive stress-strain and compressive tangentmodulus curves for 6061-T6 aluminum alloy extrusion at room temperature.
3-382
MMPDS-06 1 April 2011 50 LT-compression L-compression 40 L-tension LT-tension
Stress, ksi
30
Ramberg - Osgood n (L-tension) = 40 n (LT-tension) = 19 n (L-comp.) = 15 n (LT-comp.) = 14
20
TYPICAL
10
Thickness: ≤ 0.499 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi
Figure 3.6.2.2.6(j). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 6061-T651X aluminum alloy extrusion at room temperature.
50 LT-compression L-compression 40
L-tension LT-tension
Stress, ksi
30
Ramberg - Osgood n (L-tension) = 45 n (LT-tension) = 24 n (L-comp.) = 40 n (LT-comp.) = 32
20
TYPICAL
10
Thickness ≥ 3.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.6.2.2.6(k). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 6061-T651X aluminum alloy extrusion at room temperature.
3-383
MMPDS-06 1 April 2011
50
Longitudinal
40
X
Stress, ksi
30
20
TYPICAL 10
6061-T6 Sheet All Thicknesses
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.6.2.2.6(l). Typical stress-strain (full range) for 6061-T6 aluminum alloy sheet at room temperature.
3-384
MMPDS-06 1 April 2011
50
Longitudinal
Long Transverse
40
X
X
Stress, ksi
30
20
TYPICAL 10
6061-T62 Extrusion All Thicknesses
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 3.6.2.2.6(m). Typical stress-strain (full range) for 6061-T62 aluminum alloy extrusion at room temperature.
3-385
MMPDS-06 1 April 2011
50
Longitudinal
Long Transverse 40
X X
Stress, ksi
30
20
TYPICAL 10
6061-T651X Extrusion Thicknesses: < 1.000
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 3.6.2.2.6(n). Typical stress-strain (full range) for 6061-T651X aluminum alloy extrusion at room temperature.
3-386
MMPDS-06 1 April 2011
50
Longitudinal
Long Transverse
40
X
X
Stress, ksi
30
20
TYPICAL 10
6061-T651X Extrusion Thicknesses: 1.001-6.500
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
Strain, in./in.
Figure 3.6.2.2.6(o). Typical stress-strain (full range) for 6061-T651X aluminum alloy extrusion at room temperature.
3-387
MMPDS-06 1 April 2011 .
80
ALUM. 6061-T6 KT=1.0 Stress Ratio -1.0 -0.50 0.0 0.50 Run-out
70
Maximum Stress, ksi
60
50
40
30
20
10
NOTE: Stresses are based on net section.
0 103
104
105
106
107
108
109
Fatigue Life, Cycles Figure 3.6.2.2.8. Best-fit S/N curves for unnotched 6061-T6 aluminum alloy, various wrought products, longitudinal direction.
Correlative Information for Figure 3.6.2.2.8 Product Form: Drawn rod, 0.7- inch diameter Rolled bar, 1 x 7.5 inch Properties:
TUS, ksi 45
Test Parameters: Loading - Axial Frequency - 2000 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 40 RT
Specimen Details: Unnotched 0.200-inch net diameter
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 20.68-9.84 log (Seq) Seq = Smax (1-R)0.63 Std. Error of Estimate, Log (Life) = 0.48 Standard Deviation, Log (Life) = 1.18 R2 = 83%
Surface Condition: Not specified Reference:
3.2.2.1.8(a)
Sample Size = 55 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-388
MMPDS-06 1 April 2011 3.6.3 6151 ALLOY 3.6.3.0 Comments and Properties — 6151 is an Al-Mg-Si alloy whose use has been restricted primarily to die forgings. It provides higher strengths than attainable with 6061, and has high resistance to corrosion. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for 6151 aluminum alloy are presented in Table 3.6.3.0(a). Room temperature mechanical and physical properties are shown in Table 3.6.3.0(b). The effect of temperature on thermal expansion is shown in Figure 3.6.3.0. Table 3.6.3.0(a). Material Specifications for 6151 Aluminum Alloy
Specification
Form
AMS 4125 a AMS-A-22771b a b
Die forging Forging
AMS 4125 Inactive for new design, AMS-A-2271 Inactive for new design.
The temper index for 6151 is as follows: Section 3.6.3.1
Temper T6
3.6.3.1 T6 Temper — Elevated temperature modulus data from Figure 3.6.2.2.4 may be used for this alloy.
3-389
MMPDS-06 1 April 2011
Table 3.6.3.0(b). Design Mechanical and Physical Properties of 6151 Aluminum Alloy Die Forging
Specification . . . . . . . . . . . . . . . . . . . . . .
AMS 4125a and AMS-A-22771b
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Die forging
Temper . . . . . . . . . . . . . . . . . . . . . . . . . .
T6
Thicknessc, in. . . . . . . . . . . . . . . . . . . . . .
#4.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . e, percent: L ............................ Td . . . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . µ .............................
10 6 10.1 10.3 3.85 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . .
0.098 0.23 (at 212EF) 100 (at 77EF) See Figure 3.6.3.0
44 44 37 37 39 35 28 ... ... ... ...
a AMS 4125 Inactive for new design, b Mechanical properties were established under MIL-A-22771. Inactive for new design. c Thickness at the time of heat treatment. When die forgings are machined before heat treatment, the mechanical properties are applicable provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. d T indicates any grain direction not within ± 15E of being parallel to the forging flow lines.
3-390
MMPDS-06 1 April 2011
17
16
-6
α, 10 in./in./F
15
14
13
12
11
10
9 α - Between 70F and indicated temperature 8
7 -400
-200
0
200
400
600
800
1000
Temperature, F Figure 3.6.3.0. Effect of temperature on the thermal expansion of 6151 aluminum alloy.
3-391
MMPDS-06 1 April 2011 3.6.4 6156 ALLOY 3.6.4.0 Comments and Properties — 6156 is a heat treatable Al-Cu-Mg-Mn alloy that is weldable. Product is available in the Clad T4 and T6 sheet form. It is highly formable in T4 temper. Upon aging to T6 temper this product offers 20% plus improvement in static properties combined with very good toughness and improved fatigue crack growth rate when compared to 6061-T6. AMS 4405 provides pertinent details of this product. Material specifications for 6156 aluminum alloy are presented in Table 3.6.4.0(a). temperature mechanical and physical properties for clad 6156 are shown in Table 3.6.4.0(b).
Room
Table 3.6.4.0(a). Material Specifications for 6156
Specification AMS 4405
Form Clad Sheet
The temper index is as follows: Section Temper 3.6.4.1 T62 3.6.4.1 T62 Temper — Typical room temperature stress-strain to yield, compressive stress-strain and compressive tangent-modulus curves are shown in Figures 3.6.4.1.6(a) and Figure 3.6.4.1.6(b). Typical full-range stress-strain curves at room temperature are shown in Figure 3.6.4.1.6(c).
3-392
MMPDS-06 1 April 2011 Table 3.6.4.0(b). Design Mechanical and Physical Properties of Alclad 6156 Aluminum Alloy Sheet
Specification . . . . . . . . . . . .
AMS 4405
Form . . . . . . . . . . . . . . . . . .
Clad Sheet
Temper . . . . . . . . . . . . . . . .
T4
Thickness, in. . . . . . . . . . . .
0.078 - 0.197
T62a 0.078-0.129
Basis . . . . . . . . . . . . . . . . . .
0.130-0.159
0.160-0.197
S
Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . .
... 40
52 52
52 52
51 52
Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . .
... 24
49 47
49 47
49 47
... ...
... 48
... 49
... 49
... ...
... ...
... ...
... ...
Fbrub, ksi: LT (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . .
... ...
83 111
85 114
88 116
Fbryb, ksi: LT (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . .
... ...
68 76
71 79
73 81
e, percent: (S-Basis) LT . .
15
8
8
8
Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . Fsu, ksi: L ................... LT . . . . . . . . . . . . . . . . .
3
E, 10 ksi: Primary . . . . . . . . . . . . . Secondary . . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . . . . Secondary . . . . . . . . . . . G, 103 ksi: . . . . . . . . . . . . . µ ....................
10.3 9.4 10.2 9.9 ... 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . α, 10-6 in./in./EF . . . . . . . .
0.098 ... ... 12.9 (68E F to 250E F)
Issued: Apr 2009, MMPDS-04CN1, Item 07-16 Last Revised: Apr 2011, MMPDS-06, Item 10-61 a Properties obtained by the user may be lower than those listed if the material has been formed or otherwise coldworked. b Bearing values are ""dry pin"" values per Section 1.4.7.1.
3-393
MMPDS-06 1 April 2011 60 Longitudinal
6156-T62 Clad Sheet TYPICAL
Long Transverse
Stress, ksi
40
Thickness: 0.078-0.197 in. Ramberg-Osgood
20
TYS
(L) n1 = 11
K1 = 2.041
n2 = 54
K2 = 1.767
(LT) n1 = 13
K1 = 1.917
n2 = 72
52 50
K2 = 1.746
0 0
2
4
6
8
10
Strain, 0.001 in./in.
Figure 3.6.4.1.6(a). Typical tensile stress-strain curves for clad 6156-T62 aluminum alloy sheet at room temperature.
60 6156-T62 Clad Sheet
50
Stress, ksi
40
30 Ramberg-Osgood n = 15
20
CYS (ksi) 52
Long Transverse TYPICAL
10
Thickness: 0.078 - 1.97 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi.
Figure 3.6.4.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for clad 6156-T62 aluminum alloy sheet at room temperature.
3-394
MMPDS-06 1 April 2011
60
Longitudinal
50
Long Transverse
Long Transverse
X X
Longitudinal Note: Constant strain rate of 0.5% in/minute to failure
Stress, ksi
40
30
20
6156-T62 Clad Sheet Thickness: 0.078-0.197 in. 10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 3.6.4.1.6(c). Typical tensile stress-strain (full range) curves for clad 6156-T62 aluminum alloy sheet at room temperature.
3-395
MMPDS-06 1 April 2011
This page is intentionally blank.
3-396
MMPDS-06 1 April 2011
3.7 7000 SERIES WROUGHT ALLOYS The 7000 series of wrought alloys contain zinc as the principal alloying element and magnesium and copper as other major elements. They are available in a wide variety of product forms. They are strengthened principally by solution heat treatment and precipitation hardening and are among the higheststrength aluminum alloys. The T6-type tempers of these alloys are susceptible to stress corrosion cracking under certain conditions while the T7-type tempers are more resistant; these alloys should be considered in light of the corrosion resistance discussed in Sections 3.1.2.3 and 3.1.3. 3.7.1 7010 ALLOY 3.7.1.0 Comments and Properties — 7010 is an Al-Zn-Mg-Cu-Zr alloy developed to have a combination of high strength, high resistance to stress corrosion cracking, and good fracture toughness, particularly in thick sections. Using zirconium in lieu of chromium provides a low sensitivity to quench, which results in high strength in thick sections. The alloy is available only in plate. Plate, greater than 2 inches in thickness in the T7451 temper, has static strength equal to or greater than 7075-T651 plate with greater toughness. Plate in the T7451 temper has a stress corrosion resistance higher than 7075-T7651. The T73-type temper provides the highest resistance to stress corrosion for this alloy. The T76-type temper provides for good exfoliation resistance and higher stress corrosion resistance than T6-type tempers of 7075 and 7178. The T74-type temper provides stress corrosion and strength characteristics intermediate to those of T76 and T73. Refer to Section 3.1.2.3 for information regarding the resistance of the alloy to stress corrosion cracking; and, refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for 7010 are shown in Table 3.7.1.0(a). Room temperature mechanical properties are shown in Tables 3.7.1.0(b1) and 3.7.1.0(b2).
Table 3.7.1.0(a). Material Specifications for 7010 Aluminum Alloy
Specification
Form
AMS 4205 AMS 4204
Plate Plate
The temper index for 7010 is as follows: Section 3.7.1.1 3.7.1.2
Temper T7451 T7651
3-397
MMPDS-06 1 April 2011 Table 3.7.1.0(b1). Design Mechanical and Physical Properties of 7010 Aluminum Alloy Plate Specification . . . . . . . . . . . . . . .
AMS 4205
Form . . . . . . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . . . . . . .
T7451
Thickness, in. . . . . . . . . . . . . . .
0.2501.000
1.0012.000
Basis . . . . . . . . . . . . . . . . . . . . .
S
S
A
B
A
B
A
B
A
B
71 72 ...
71 72 ...
70 71 66
72 72 68
70 70 66
71 72 68
68a 69a 65a
71 71 67
68 67a 63a
70 71 67
62 62 ...
62 62 ...
60 60 55
62 62 57
60 59 54
62 61 56
59 58 53
61 60 55
57a 57a 52
61 60 54
61 63 ... 41
61 63 ... 41
59 62 61 42
61 64 63 42
58 61 60 42
60 63 62 43
57 60 59 42
59 62 61 43
56 59 58 41
59 63 61 43
100 127
101 129
101 130
102 132
100 130
103 134
100 129
103 133
97 126
103 133
81 94
82 97
81 97
84 100
81 98
84 101
81 98
84 101
80 97
84 102
9 6 ...
9 6 ...
9 6 2.5
... ... ...
9 6 2
... ... ...
9 5 2
... ... ...
8 5 2
... ... ...
Mechanical Properties: Ftu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fsu, ksi, L & LT . . . . . . . . . . . Fbrub, ksi: L & LT (e/D = 1.5) . . . . . . . L & LT (e/D = 2.0) . . . . . . . Fbryb, ksi: L & LT (e/D = 1.5) . . . . . . . L & LT (e/D = 2.0) . . . . . . . e, percent (S-Basis): L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . .
2.0013.000
E, 103 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . µ .......................
3.0014.000
4.0015.000
5.0016.000
10.2 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . α, 10-6 in./in./EF . . . . . . . . . . .
0.102 0.21 (at 214EF) 95 (at 99EF) 13.0 (68E-212EF)
Revised: Apr 2008, MMPDS-04, Item 05-14 a A-Basis value is specification minimum. The rounded T99 values are as follows: for 4.001-5.000-inch thickness, Ftu(L) = 69, Ftu(LT) = 70, and Ftu(ST) = 66; for 5.001-6.000-inch thickness, Ftu(LT) = 69, Ftu(ST) = 65, Fty(L) = 59, and Fty(LT) = 58. b See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-398
MMPDS-06 1 April 2011 Table 3.7.1.0(b2). Design Mechanical Properties of 7010 Aluminum Alloy Plate(Continued)
Specification . . . . . . .
AMS 4204
Form . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . .
T7651
Thickness, in. . . . . . .
0.2501.000
1.0012.000
2.0012.500
2.5013.000
3.0014.000
4.0015.000
5.0015.500
Basis . . . . . . . . . . . . .
S
S
S
S
S
S
S
76 76 ...
76 76 ...
75 75 71
73 74 70
72 73 69
72 72 68
71 72 66
66 66 ...
66 66 ...
65 65 59
64 64 58
64 63 56
63 62 55
62 61 53
65 67 ... 42
65 68 ... 44
64 67 68 44
63 67 67 44
62 66 65 44
61 65 64 45
60 64 62 46
105 135
106 137
106 137
105 136
105 135
105 134
105 134
85 103
86 104
87 103
87 102
86 101
86 100
86 99
8 6 ...
8 6 ...
8 6 2.5
7 5 2.5
7 5 2
7 5 2
6 4 2
Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fsu, ksi, L & LT . . . Fbrua, ksi: L & LT (e/D = 1.5) L & LT (e/D = 2.0) Fbrya, ksi: L & LT (e/D = 1.5) L & LT (e/D = 2.0) e, percent: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . µ ...............
10.2 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . C, Btu/(lb)(EF) . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . .
0.102 0.21 (at 214EF) 95 (at 104EF) 12.9 (68E to 212EF)
Revised: Apr 2008, MMPDS-04, Item 05-14 a See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-399
MMPDS-06 1 April 2011 3.7.1.1 T7451 Temper — Elevated temperature curves for plate are presented in Figure 3.7.1.1.1. Figures 3.7.1.1.6(a) through 3.7.1.1.6 (d) present stress-strain and tangent-modulus curves for plate.
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWR×KU )
3HUFHQWDJHRI
5RRP7HPSHUDWXUH6WUHQJWK
W\
)
WX
7HPSHUDWXUH)
Figure 3.7.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of 7010-T7451 aluminum alloy plate.
3-400
MMPDS-06 1 April 2011 100
80
Longitudinal
Stress, ksi
60 Short Transverse Long Transverse 40 Ramberg - Osgood n (L-tension) = 13 n (LT-tension) = 8.8 n (ST-tension) = 8.7 20 TYPICAL Thickness = 2.001 - 5.500 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.1.1.6(a). Typical tensile stress-strain curves for 7010-T7451 plate at room temperature. 100
Long Transverse 80
Short Transverse Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 14 n (ST-comp.) = 14
20
TYPICAL Thickness = 2.001 - 5.500 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.1.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7010-T7451 plate at room temperature.
3-401
MMPDS-06 1 April 2011 100
80 Longitudinal Long Transverse
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 12 n (LT-tension) = 10
40
TYPICAL Thickness = 0.500 - 1.500 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.1.1.6(c). Typical tensile stress-strain curves for 7010-T7451 aluminum alloy plate at room temperature. 100
80 Long Transverse Longitudinal
Stress, ksi
60
40 Ramberg - Osgood n(L-comp.) = 14 n(LT-comp.) = 17 TYPICAL
20
Thickness = 0.500 - 1.500 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.1.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7010-T7451 aluminum alloy plate at room temperature.
3-402
MMPDS-06 1 April 2011 3.7.1.2 T7651 Temper — Figures 3.7.1.2.6(a) through 3.7.1.2.6(d) present stress-strain and tangentmodulus curves for plate. 100
80 Longitudinal Long Transverse Short Transverse
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 9.2 n (LT-tension) = 9.7 n (ST-tension) = 8.2
40
TYPICAL Thickness = 2.001 - 5.500 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.1.2.6(a). Typical tensile stress-strain curves for 7010-T7651 plate at room temperature. 100
Long Transverse Short Transverse Longitudinal
80
Stress, ksi
60
40 Ramberg - Osgood n(L-comp.) = 13 n(LT-comp.) = 13 n(ST-comp.) = 12 20 TYPICAL Thickness = 2.001 - 5.500 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.1.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7010-T7651 plate at room temperature.
3-403
MMPDS-06 1 April 2011 100
80 Longitudinal Long Transverse
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 14 n (LT-tension) = 9.9
40
TYPICAL Thickness = 0.500 - 1.500 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.1.2.6(c). Typical tensile stress-strain curves for 7010-T7651 aluminum alloy plate at room temperature.
100
80
Long Transverse Longitudinal
Stress, ksi
60
40 Ramberg - Osgood n(L-comp.) = 12 n(LT-comp.) = 20 TYPICAL 20
Thickness = 0.500 - 1.500 in.
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.7.1.2.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7010-T7651 aluminum alloy plate at room temperature.
3-404
MMPDS-06 1 April 2011
3.7.2 7040 ALLOY 3.7.2.0 Comments and Properties — 7040 alloy is an Al-Mg-Zn-Cu-Zr alloy developed to provide a higher strength and toughness compromise than the currently available 7010 and 7050 alloys, particularly in heavy gauge plates up to 8.5-inch thickness. The use of a desaturated chemical composition in Mg and Cu together with a very close control of the Zr content and impurities, provide 7040 with a much lower quench sensitivity than that of 7050, resulting in high strength and toughness properties in very thick sections. 7040-T7451 plates are particularly suited for structures in which high strength, high toughness, and good corrosion resistance are the major requirements. Parts such as integrally machined spars, ribs, and main fuselage frames can benefit from this outstanding property combination. 7040 is available in the form of plates, ranging in thicknesses from 3.0 to 8.5 inches. Manufacturing Considerations — Due to tight control of residual stress level, the 7040 plates exhibit a superior dimensional stability, thus offering a cost-efficient alternative to rolled or forged parts, which require distortion corrections after machining. Refer to Section 3.1.3.4 for comments regarding the weldability of this alloy. Specifications and Properties — Material specifications are shown in Table 3.7.2.0(a). Room temperature properties are shown in Table 3.7.2.0(b1). Figure 3.7.2.1.1 shows the effect of temperature on tensile properties. Table 3.7.2.0(a). Material Specifications for 7040-T7451 Alloy Plate Specification Form AMS 4211 Plate
3-405
MMPDS-06 1 April 2011 Table 3.7.2.0(b). Design Mechanical and Physical Properties of 7040-T7451 Aluminum Alloy Plate Specification . . . . . . . . . .
AMS 4211
Form . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . .
T7451
Thickness, in. . . . . . . . . . 3.001-4.000 Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fty, ksi: L ................ LT . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fcy, ksi: L ................ LT . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fsu, ksi: L-S . . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . . Fbrue, ksi (e/D = 1.5): L ................ LT . . . . . . . . . . . . . . . Fbrue, ksi (e/D = 2.0): L ................ LT . . . . . . . . . . . . . . . Fbrye, ksi (e/D = 1.5): L ................ LT . . . . . . . . . . . . . . . Fbrye, ksi (e/D = 2.0): L ................ LT . . . . . . . . . . . . . . . e, percent (S-Basis): L ................ LT . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . .
4.001-5.000
5.001-6.000
6.001 - 7.000
7.001 - 8.000
8.001 - 8.500
A
B
A
B
A
B
A
B
A
B
A
B
70 71c 69
72 74 70
70 71d 68d
72 73 70
70a 70a 68
71 72 69
69 69 66
70 70 67
68b 69 66
70 69 67
68b 68 66
70 69 67
62e 62e 59e
65 65 61
62d 62d 58d
64 65 61
62a 61a 58a
64 63 61
62 60 57
62 62 58
61 60 57
62 61 58
61 59 56
63 61 58
60 64 63
63 67 66
60 64 63
62 67 66
59 63 62
61 66 65
58 62 61
60 64 63
59 62 61
60 64 63
59 61 60
61 63 63
45 44
47 46
45 44
46 46
44 44
45 45
43 43
44 44
42 43
44 44
42 43
43 44
113 112
118 117
112 112
116 115
110 110
114 114
108 108
110 110
106 105
108 108
105 105
106 106
143 144
150 150
143 144
147 148
140 141
145 146
137 138
140 141
134 135
136 138
133 135
134 136
93 94
97 98
93 94
97 98
92 93
96 96
90 91
93 93
90 90
92 92
89 87
92 91
114 115
119 120
114 115
119 120
112 113
117 118
110 111
113 114
110 111
113 114
108 109
112 113
9 6 3
... ... ...
9 5 3
... ... ...
8 4 3
... ... ...
7 4 3
... ... ...
6 4 3
... ... ...
6 4 3
... ... ...
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ ..................
10.4 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . .
0.102 0.23 91 12.8
Issued: Mar 2000, MIL-HDBK-5J, Item 00-03; Last Revised: Apr 2008, MMPDS-04, Item 05-14 a A-Basis value is specification minimum. Rounded T99 values are as follows: Ftu(L) = 71 ksi; Ftu(LT) = 71 ksi; Fty(L) = 63 ksi; Fty(LT) = 62 ksi; and Fty(ST) = 59 ksi. b A-Basis value is specification minimum. Rounded T99 values are as follows: Ftu(L) = 69 ksi. c A-Basis value is specification minimum. Rounded T99 values are as follows: Ftu(LT) = 73 ksi; Fty(L) = 64 ksi; Fty(LT) = 64 ksi; and Fty(ST) = 60 ksi. d A-Basis value is specification minimum. Rounded T99 values are as follows: Ftu(LT) = 72 ksi; Ftu(ST) = 69 ksi; Fty(L) = 63 ksi; and Fty(LT) = 63 ksi, Fty(ST) = 59 ksi. e See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-406
MMPDS-06 1 April 2011
Percentage of Room Temperature Strength, %
120
100
F ty
80
F tu 60
40
20
0 -100
-50
0
50
100
150
200
250
300
350
o
Temperature, F Figure 3.7.2.1.1 Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of 7040-T7451aluminum alloy plate, T/4 location.
3-407
MMPDS-06 1 April 2011 3.7.3 7049/7149 ALLOY 3.7.3.0 Comments and Properties — Alloy 7049/7149 is available in the form of die forging, hand forging, plate, and extrusion. Alloy 7149 contains lower residual iron and silicon content than 7049. The T73XX temper provides good static strength with high resistance to stress corrosion cracking. The fatigue strength of the T73XX temper is about equal to that of 7075-T6, while the toughness is somewhat higher. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloys to stress corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of the alloys. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 7049/7149 aluminum alloy are presented in Table 3.7.3.0(a). Room temperature mechanical and physical properties are shown in Tables 3.7.3.0(b) through 3.7.3.0(e). Table 3.7.3.0(a). Material Specifications for 7049/7149 Aluminum Alloy
Specification AMS-QQ-A-367 (7049)a AMS 4111 (7049) AMS 4320 (7149) AMS 4157 (7049) AMS-A-22771a AMS 4200 (7049) AMS 4343 (7149)
Form Forging Forging Forging Extrusion Forging Plate Extrusion
a Inactive for new design
The temper index for 7049/7149 is as follows: Section 3.7.3.1
Temper T73 and T73511
3-408
MMPDS-06 1 April 2011
Table 3.7.3.0(b). Design Mechanical and Physical Properties of 7049 Aluminum Alloy Plate
Specification . . . . . . .
AMS 4200
Form . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . .
T7351
Thickness, in. . . . . . . Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . . Fsu, ksi: L & LT . . . Fbrua, ksi: L & LT (e/D = 1.5) L & LT (e/D = 2.0) Fbrya, ksi: L & LT (e/D = 1.5) L & LT (e/D = 2.0) e, percent: L .............. LT . . . . . . . . . . . . ST . . . . . . . . . . . .
0.750- 1.0011.000 1.500
1.5012.000
2.0012.500
2.5013.000
3.0014.000
4.0014.500
4.5015.000
S
S
S
S
S
S
S
S
... 74 ...
... 73 ...
72 73 69
72 73 69
71 72 68
70 70 65
68 68 63
68 68 63
... 65 ...
... 64 ...
64 64 59
63 63 58
62 62 57
60 60 56
58 58 54
58 58 54
... ... ... ...
... ... ... ...
64 69 69 41
63 68 68 41
62 67 67 41
60 64 64 39
58 62 62 38
... ... ... ...
... ...
... ...
... ...
114 146
112 144
109 140
106 136
... ...
... ...
... ...
... ...
91 106
89 104
86 101
83 97
... ...
... 8 ...
... 8 ...
... 7 ...
... 6 ...
... 6 ...
6 5 2
6 5 2
5 5 2
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . . µ ..............
10.1 10.4 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . C, Btu/(lb)(EF) . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . .
0.103 0.23 (at 212EF) 89 (at 77EF) 13.0 (RT to 212EF)
a Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-409
MMPDS-06 1 April 2011
Table 3.7.3.0(c). Design Mechanical and Physical Properties of 7049/7149 Aluminum Alloy Die Forging
Specification . . . . . . .
AMS-QQ-A-367a, AMS 4111, AMS 4320, and AMS-A-22771b
Form . . . . . . . . . . . . .
Die forging
Temper . . . . . . . . . . .
T73c
Thicknessd, in. . . . . . . Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............. Tc (S-Basis) . . . . . Fty, ksi: L ............. Te (S-Basis) . . . . . Fcy, ksi: L ............. Te . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbrug, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbryg, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent (S-Basis): L ............. Te . . . . . . . . . . . . .
#1.000
1.001-2.000
2.001-3.000
3.001-4.000
4.001-5.000
A
B
A
B
A
B
A
B
A
B
71 71f
74 ...
70 70f
73 ...
69 70f
72 ...
68 70f
71 ...
67 68f
70 ...
60 61f
64 ...
59 60f
63 ...
58 60f
61 ...
57 60f
60 ...
55 58f
59 ...
62 56 40
66 60 41
61 55 39
65 59 41
60 54 39
63 57 40
59 53 38
62 56 40
57 51 37
61 55 39
100 132
105 138
99 130
103 136
98 128
102 134
96 126
100 132
95 125
99 130
76 93
82 99
75 91
80 97
74 90
78 94
73 88
76 93
70 85
75 91
7 3
... ...
7 3
... ...
7 3
... ...
7 2
... ...
7 2
... ...
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . . µ ..............
10.2 10.7 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . C, Btu/(lb)(EF) . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . .
0.103 0.23 (at 212EF) 89 (at 77EF) 13.0 (RT to 212EF)
a AMS-QQ-A-367 inactive for new design. Mechanical properties were established under MIL-QQ-A-367. b AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. c Design values were based upon data obtained from testing T73 die forgings, heat treated by suppliers and supplied in T73 temper. d Thickness at the time of heat treatment. When die forgings are machined before heat treatment, the mechanical properties are applicable provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. e T indicates any grain direction not within ±15E of being parallel to the forging flow lines. Fcy(T) values are based upon short transverse (ST) test data. f Specification value. T tensile properties are presented on an S-Basis only. g Bearing values are “dry pin” values per Section 1.4.7.1.
3-410
MMPDS-06 1 April 2011 Table 3.7.3.0(d). Design Mechanical and Physical Properties of 7049/7149 Aluminum Alloy Hand Forging Specification . . . . . . . . . . . . . . . . . . AMS-QQ-A-367a, AMS 4111, AMS 4320, and AMS-A-22771b Form . . . . . . . . . . . . . . . . . . . . . . . . Hand forging Temper . . . . . . . . . . . . . . . . . . . . . . T73 c Thickness , in. . . . . . . . . . . . . . . . . . 2.001-3.000 3.001-4.000 4.001-5.000 Basis . . . . . . . . . . . . . . . . . . . . . . . . S S S Mechanical Properties: Ftu, ksi: L ........................ 71 69 67 LT . . . . . . . . . . . . . . . . . . . . . . . 71 69 67 ST . . . . . . . . . . . . . . . . . . . . . . . 69 67 66 Fty, ksi: L ........................ 61 59 56 LT . . . . . . . . . . . . . . . . . . . . . . . 59 57 56 ST . . . . . . . . . . . . . . . . . . . . . . . 58 56 55 Fcy, ksi: L ........................ 57 60 58 LT . . . . . . . . . . . . . . . . . . . . . . . 59 57 61 ST . . . . . . . . . . . . . . . . . . . . . . . 58 59 61 Fsu, ksi: L ........................ 41 39 42 LT . . . . . . . . . . . . . . . . . . . . . . . 39 38 41 ST . . . . . . . . . . . . . . . . . . . . . . . 41 40 39 Fbrud, ksi: 97 102 100 (e/D = 1.5) . . . . . . . . . . . . . . . . . 130 126 134 (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbryd, ksi: 79 77 (e/D = 1.5) . . . . . . . . . . . . . . . . . 81 91 96 92 (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent: 8 7 L ........................ 9 3 3 LT . . . . . . . . . . . . . . . . . . . . . . . 4 3 2 2 ST . . . . . . . . . . . . . . . . . . . . . . . 3 E, 10 ksi . . . . . . . . . . . . . . . . . . . 10.2 Ec, 103 ksi . . . . . . . . . . . . . . . . . . 10.6 G, 103 ksi . . . . . . . . . . . . . . . . . . . 3.9 µ ......................... 0.33 Physical Properties: ω, lb./in.3 . . . . . . . . . . . . . . . . . . . 0.103 C, Btu/(lb)(EF) . . . . . . . . . . . . . . . 0.23 (at 212EF) K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . 89 (at 77EF) α, 10-6 in./in./EF . . . . . . . . . . . . . . 13.0 (RT to 212EF) a AMS-QQ-A-367 inactive for new design. Mechanical properties were established under MIL-QQ-A-367. b AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. c When hand forgings are machined before heat treatment, section thickness at time of heat treatment shall determine minimum mechanical properties as long as original (as-forged) thickness does not exceed maximum thickness for the alloy as shown in the table. The maximum cross-section area of hand forgings is 256 sq. in. d Bearing values are “dry pin” values per Section 1.4.7.1.
3-411
MMPDS-06 1 April 2011
Table 3.7.3.0(e). Design Mechanical and Physical Properties of 7049/7149 Aluminum Alloy Extrusion Specification .................. AMS 4157 and AMS 4343 Form ............................... Extrusion Temper ........................... T73511 a Thickness, in. ................ # 2.499 2.500-2.999 3.000-5.000 Basis ............................... S S S Mechanical Properties: Ftu, ksi: L ................................. 72 74 74 LT .............................. 68 70 70 ST ............................... 68 ... 70 Fty, ksi: L ................................. 64 62 64 LT .............................. 58 60 60 ST ............................... 58 60 ... Fcy, ksi: L ................................. 63 65 65 LT .............................. ... ... ... ST ............................... ... ... ... Fsu, ksi ......................... 39 40 40 Fbrub, ksi: 107 110 110 (e/D = 1.5) ................. 140 144 144 (e/D = 2.0) ................. Fbryb, ksi: 83 85 85 (e/D = 1.5) ................. 101 105 105 (e/D = 2.0) ................. e, percent: 7 7 7 L ................................. 5 5 5 LT .............................. 5 5 ... ST ............................... 3 E, 10 ksi ..................... 10.5 Ec, 103 ksi .................... 11.0 G, 103 ksi ..................... 4.0 µ ................................... 0.33 Physical Properties: ω, lb/in.3 ....................... 0.103 C, Btu/(lb)(EF) ............... 0.23 (at 212EF) K, Btu/[(hr)(ft2)(EF)/ft] .. 89 (at 77EF) α, 10-6 in./in./EF ............ 13.0 (RT to 212EF) a b
The mechanical properties are to be based upon the thickness at the time of quench. Bearing values are “dry pin” values per Section 1.4.7.1.
3-412
MMPDS-06 1 April 2011 3.7.3.1 T73 and T73511 Tempers — Figure 3.7.3.1.1 presents elevated temperature curves for various products. Figures 3.7.3.1.6(a) through 3.7.3.1.6(g) present tensile and compressive stress-strain and tangent-modulus curves. Fatigue data for 7049-T73 die and hand forgings are shown in Figures 3.7.3.1.8(a) through 3.7.3.1.8(g).
6WUHQJWKDWWHPSHUDWXUH )
F\ )W\
([SRVXUHXSWR×KU
3HUFHQWDJHRI
5RRP7HPSHUDWXUH6WUHQJWK
)
WX
7HPSHUDWXUH)
Figure 3.7.3.1.1. Effect of temperature on the tensile ultimate strength (Ftu), the tensile yield strength (Fty), and the compressive yield strength (Fcy) of 7049-T7351 plate, 7049/7149-T73 hand forging, and 7049/7149-T7351 extrusion.
3-413
MMPDS-06 1 April 2011
100
80
Stress, ksi
Longitudinal
60
Short transverse 40
Ramberg-Osgood TYS (ksi) n (L-tension) = 54 66.5 n (ST-tension) = 29 65.0
20
TYPICAL Thickness: < 4.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.3.1.6(a). Typical tensile stress-strain curves for 7049/7149-T73 aluminum alloy die forging at room temperature.
100
Longitudinal
Stress, ksi
80
60
Short transverse 40
Ramberg-Osgood TYS (ksi) n (L) = 54 71.5 n (ST) = 29 69.0 TYPICAL
20
Thickness: < 4.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 10 3 ksi. Figure 3.7.3.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7049/7149-T73 aluminum alloy die forging at room temperature.
3-414
MMPDS-06 1 April 2011 100
80
Longitudinal
Stress, ksi
Long transverse 60
Short transverse Ramberg-Osgood TYS (ksi) n (L-tension) = 29 65.5 n (LT-tension) = 24 63.0 n (ST-tension) = 18 62.0
40
20
TYPICAL Thickness: 2.001 - 5.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.3.1.6(c). Typical tensile stress-strain curves for 7049/7149-T73 aluminum alloy hand forging at room temperature. 100
Longitudinal and Long Transverse
80
Stress, ksi
Short Transverse
60
40
Ramberg-Osgood n (L) = 26 n (LT) =24 n (ST) =20
20
TYS (ksi) 67.0 67.0 65.0
TYPICAL Thickness: 2.001 - 5.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.3.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7049/7149-T73 aluminum alloy hand forging at room temperature.
3-415
MMPDS-06 1 April 2011 100
80
Longitudinal Long transverse
Stress, ksi
60
Short transverse 40
Ramberg-Osgood TYS (ksi) n (L-tension) = 13 65.5 n (LT-tension) = 12 63.5 n (ST-tension) = 10 59.5
20
TYPICAL Thickness: 1.501 - 4.500 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.3.1.6(e). Typical tensile stress-strain curves for 7049-T7351 aluminum alloy plate at room temperature.
100
Long and short transverse
80
Stress, ksi
Longitudinal
60
40
Ramberg-Osgood TYS (ksi) n (L) = 13 65 n (LT) = 15 70 n (ST) = 14 70
20
TYPICAL Thickness: 1.501-4.500 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 10 3 ksi. Figure 3.7.3.1.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for 7049-T7351 aluminum alloy plate at room temperature.
3-416
MMPDS-06 1 April 2011
100
Longitudinal Compression
Compression
80
Stress, ksi
Tension 60
40
Ramberg-Osgood TYS (ksi) n (L-Tension) = 22 73.0 n (L - Compression) = 20 75.5 20
TYPICAL Thickness: < 5.00 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.3.1.6(g). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 7049/7149-T73511 extrusion at room temperature.
3-417
MMPDS-06 1 April 2011
Figure 3.7.3.1.8(a). Best-fit S/N curves for unnotched 7049-T73 die and hand forgings, at room temperature, longitudinal and longtransverse directions.
Correlative Information for Figure 3.7.3.1.8(a) Product Form: Die forging, 3- and 4.5- inches thick. Hand forging, 2, 3, 4, and 5 inches thick Properties: (L) (LT)
TUS, ksi 78 74
TYS, ksi 70 65
Temp.,EF RT RT
No. of Heats/Lots: 6
Specimen Details: Unnotched Uniform Gage, 0.200-inch net diameter Hourglass, 0.225-inch net diameter 3.00-inch test section radius Hourglass, 0.300-inch net diameter 9.875-inch test section radius
Stress Life Equation: Log Nf = 9.95-3.62 log (Seq-24.2) Seq = Smax (1-R)0.57 Std. Error of Estimate, Log (Life) = 0.346 Standard Deviation, Log (Life) = 0.736 R2 = 78% Sample Size = 50 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Surface Condition: Longitudinally polished to 4 RMS finish or better Unspecified References:
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Lab air
3.7.3.1.8(a), 3.7.3.1.8(b), and 3.2.7.1.9(d)
3-418
MMPDS-06 1 April 2011
Figure 3.7.3.1.8(b). Best-fit curves for unnotched 7049-T73 die forging at room temperature, short-transverse direction.
Correlative Information for Figure 3.7.3.1.8(b) Product Form: Die forging, 3 inches thick Properties:
TUS, ksi 73
TYS, ksi 64
Temp.,EF RT
Specimen Details: Unnotched 0.200-inch net diameter
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air No. of Heats/Lots: 1
Surface Condition: Longitudinally polished to 4µ-in. finish with no circumferential marks
Maximum Stress Equation: Log Nf = 16.55-6.92 log (Smax) Std. Error of Estimate, Log (Life) = 0.371 Standard Deviation, Log (Life) = 0.917 R2 = 84%
Reference: 3.7.3.1.8(a)
Sample Size = 23
3-419
MMPDS-06 1 April 2011
Figure 3.7.3.1.8(c). Best-fit S/N curves for notched, Kt = 2.4, 7049T73 die forging at room temperature, longitudinal, long- and short-transverse directions.
Correlative Information for Figure 3.7.3.1.8(c) Product Form: Die forging, 3- and 4.5-inches thick Properties: TUS, ksi (L) 77 95 (LT) 73 77 (ST) 75 87 Specimen Details:
TYS, ksi 68 — 64 — 66 —
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Lab air
Temp.,EF RT Unnotched RT Notched RT Unnotched RT Notched RT Unnotched RT Notched
No. of Heats/Lots: 2 Stress Life Equation: Log Nf = 10.6-4.18 log (Seq) Seq = Smax (1-R)0.80 Std. Error of Estimate, Log (Life) = 0.320 Standard Deviation, Log (Life) = 0.500 R2 = 59%
Circumferentially notched, Kt = 2.4 0.150- or 0.20-inch net diameter 0.350-inch net diameter 0.500-inch gross diameter 0.032-inch notch root radius, r 60E flank angle, ω
Sample Size = 69 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Surface Condition: Machined notch References: 3.7.3.1.8(a) and 3.7.3.1.8(c)
3-420
MMPDS-06 1 April 2011
Figure 3.7.3.1.8(d). Best-fit S/N curves for unnotched 7049-T73 hand forging, longitudinal direction.
Correlative Information for Figure 3.7.3.1.8(d) Product Form: Hand forging, 2.0- to 5.0-inches thick Properties:
TUS, ksi 70-80
TYS, ksi 60-73
Test Parameters: Loading - Axial Frequency - 800, 1500, or 1725 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.125- and 0.300-inch diameter
No. of Heats/Lots: 6
Surface Condition: Polished with increasingly finer grits of emery paper to surface roughness of 10 rms with polishing marks longitudinal, or not specified.
Equivalent Stress Equation: Log Nf = 10.6-4.31 log (Seq-30) Seq = Smax (1-R)0.31 Std. Error of Estimate, Log (Life) = 0.348 Standard Deviation, Log (Life) = 0.944 R2 = 86%
References: 3.2.7.1.9(d) and 3.7.3.1.8(e)
Sample Size = 28 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-421
MMPDS-06 1 April 2011
Figure 3.7.3.1.8(e). Best-fit S/N curves for unnotched 7149-T73 hand forging, long-transverse direction.
Correlative Information for Figure 3.7.3.1.8(e) Product Form: Hand forging, 4.00- to 4.75-inches thick Properties:
TUS, ksi 73
TYS, ksi 64
Temp.,EF RT
Specimen Details: Unnotched 0.250-inch diameter
Test Parameters: Loading - Axial Frequency - Not specified Temperature - RT Environment - Air No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 9.9-3.46 log (Seq-25) Seq = Smax (1-R)0.39 Std. Error of Estimate, Log (Life) = 0.689 Standard Deviation, Log (Life) = 0.845 R2 = 34%
Surface Condition: Not specified. Reference: 3.7.3.1.8(e)
Sample Size = 20 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-422
MMPDS-06 1 April 2011
Figure 3.7.3.1.8(f). Best-fit S/N curves for notched, Kt = 3.0, 7049-T73 hand forging, longitudinal, long-transverse, and short-transverse directions.
Correlative Information for Figure 3.7.3.1.8(f) Product Form: Hand forging, 2.0- to 5.0-inches thick Properties:
TUS, ksi 71-80
TYS, ksi 62-73
Temp.,EF RT
Specimen Details: Circumferentially notched, Kt=3.0 0.200-, 0.300-, and 0.306-inch gross diameter 0.175-, 0.200-, and 0.253-inch net diameter 0.006-, 0.010-, and 0.013-inch root radius, r 60E flank angle, ω
Test Parameters: Loading - Axial Frequency - 800, 1500, or 1725 cpm Temperature - RT Environment - Air No. of Heats/Lots: 8 Equivalent Stress Equation: Log Nf = 9.57-3.63 log (Seq) Seq = Smax (1-R)0.49 Std. Error of Estimate, Log (Life) = 0.344 Standard Deviation, Log (Life) = 0.562 R2 = 63% Sample Size = 151
Surface Condition: Polished with oil and alumdum grit applied to a rotating wire, or not specified. References: 3.2.7.1.9(d), 3.7.3.1.8(d) and 3.7.3.1.8(e)
3-423
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
MMPDS-06 1 April 2011
Figure 3.7.3.1.8(g). Best-fit S/N curves for notched, Kt = 3.0, 7149-T73 hand forging, long transverse direction.
Correlative Information for Figure 3.7.3.1.8(g) Product Form: Hand forging, 4.00- to 4.75-inches thick Properties:
TUS, ksi 73
TYS, ksi 64
Temp.,EF RT
Specimen Details: Circumferentially notched, Kt = 3.0 0.375-inch gross diameter 0.253-inch net diameter 0.013-inch root radius, r 60E flank angle, ω
Test Parameters: Loading - Axial Frequency - Not specified Temperature - RT Environment - Air No. of Heats/Lots: 3
Surface Condition: Not specified
Equivalent Stress Equation: Log Nf = 10.1-4.10 log (Seq-5) Seq = Smax (1-R)0.42 Std. Error of Estimate, Log (Life) = 0.450 Standard Deviation, Log (Life) = 0.797 R2 = 68%
Reference: 3.7.3.1.8(e)
Sample Size = 25 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-424
MMPDS-06 1 April 2011 3.7.4 7050 ALLOY 3.7.4.0 Comments and Properties — 7050 is an Al-Zn-Mg-Cu-Zr alloy developed to have a combination of high strength, high resistance to stress corrosion cracking, and good fracture toughness, particularly in thick sections. The use of zirconium in lieu of chromium provides a low sensitivity to quench, which results in high strengths in thick sections. Plate, hand, and die forgings in the T74 temper have static strengths about equivalent to those of corresponding products of 7079 in the T6 tempers and toughness levels equal to or higher than other conventional high-strength alloys. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Plate in the T7451 temper has stress corrosion resistance higher than 7075-T7651, and hand and die forgings in the T7452 and T74 tempers, respectively, have stress corrosion resistance similar to 7175-T74 forgings. The T73 temper provides the highest resistance to stress corrosion for this alloy. The T76 temper provides for good exfoliation resistance and higher stress corrosion resistance than T6 tempers of 7075 and 7178. The T74 temper provides stress corrosion and strength characteristics intermediate to those of T76 and T73. Refer to Section 3.1.2.3 for further comments regarding the resistance of the alloy to stress corrosion cracking. Refer to Section 3.1.3.4 for comments regarding the weldability of this alloy. Material specifications for 7050 are shown in Table 3.7.4.0(a). Room temperature properties are shown in Table 3.7.4.0(b1) through 3.7.4.0(e3). Table 3.7.4.0(a). Material Specifications for 7050 Aluminum Alloy
Specification AMS 4050 AMS 4108 AMS 4107 AMS 4333 AMS 4340 AMS 4341 AMS 4342 AMS 4201 AMS-A-22771a
Form Bare plate Hand forging Die forging Die forging Extruded shape Extruded shape Extruded shape Bare plate Forging
a Inactive for new design.
The temper index for 7050 is as follows: Section 3.7.4.1 3.7.4.2 3.7.4.3
Temper T73510 and T73511 T74, T7451, and T7452 (formerly T736, T73651, T73652) T76510 and T76511
3-425
Table 3.7.4.0(b1). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Plate Specification . . . . . . . . . AMS 4050 Form . . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . . T7451 Thickness, in. . . . . . . . . 0.250-1.500 1.501-2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000 Basis . . . . . . . . . . . . . . . A B A B A B A B A B A B
Continued next page.
7.001 - 8.000 A B
74a 74 ...
76 76 ...
74 74a ...
76 76 ...
73a 73a 68
75 75 72
72 72 68a
74 75 71
71a 71a 67
73 74 70
70a 70 66
72 73 69
69 69 66
72 72 68
68 68 65
71 71 67
64b 64 ...
67 66 ...
64b 64 ...
66 66 ...
63b 63b 59
66 66 61
62b 62 57
65 65 60
61b 61 57b
65 64 60
60 60 57
63 62 59
59 59 56
62 62 58
58b 58 55b
63 61 58
63 66 ...
64 68 ...
62 67 ...
64 69 ...
61 66 63
64 69 66
60 65 63
63 68 66
58 64 63
61 67 66
57 63 62
59 66 64
56 60 60
59 63 63
55 59 59
57 62 62
43 42 ...
44 43 ...
44 43 ...
45 44 ...
43 43 ...
45 44 ...
44 43 ...
45 45 ...
43 43 ...
45 45 ...
43 43 ...
45 45 ...
44 44 ...
46 46 ...
44 44 ...
46 46 ...
107 109 ...
110 112 ...
109 111 ...
112 114 ...
108 110 ...
111 113 ...
107 109 ...
111 113 ...
107 108 ...
111 113 ...
105 107 ...
110 112 ...
107 109 ...
112 114 ...
103 107 ...
108 112 ...
140 140 ...
145 144 ...
142 142 ...
146 146 ...
141 141 ...
144 145 ...
140 141 ...
144 145 ...
138 139 ...
144 145 ...
137 138 ...
142 144 ...
136 139 ...
143 146 ...
132 137 ...
138 143 ...
86 87 ...
89 89 ...
89 90 ...
92 92 ...
89 89 ...
93 94 ...
90 90 ...
94 95 ...
90 90 ...
95 95 ...
91 91 ...
94 94 ...
84 85 ...
89 90 ...
83 84 ...
87 88 ...
101 103 ...
104 106 ...
104 106 ...
107 110 ...
104 106 ...
109 111 ...
104 106 ...
109 111 ...
105 106 ...
110 111 ...
105 106 ...
108 110 ...
99 99 ...
105 105 ...
98 98 ...
102 103 ...
MMPDS-06 1 April 2011
3-426
Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . L-S . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . S-L . . . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . (e/D = 2.0) L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fbryc, ksi: (e/D = 1.5) L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . (e/D = 2.0) L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . .
6.001 -7.000 A B
Table 3.7.4.0(b1). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Plate (Continued) Specification . . . . . . . . . AMS 4050 Form . . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . . T7451 Thickness, in. . . . . . . . . 0.250-1.500 1.501-2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000 6.001 -7.000 Basis . . . . . . . . . . . . . . . A B A B A B A B A B A B A B e, percent (S-Basis): L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . .
10 9 ...
... ... ...
10 9 ...
... ... ...
9 8 3
... ... ...
9 6 3
... ... ...
9 5 3 10.3 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . C, Btu/(lb)(EF) . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . .
0.102 0.23 (at 212EF) 91 (at 77EF) 12.8 (68Eto 212EF)
8 4 3
... ... ...
7 4 3
... ... ...
6 4 3
... ... ...
Issued: Sep 1976, MIL-HDBK-5C, Item 71-08. Last Revised Jan 2005, MMPDS-02, Item 04-30. Design allowables were reaffirmed in Item 07-32, MMPDS-04 and Item 08-08, MMPDS-04CN1. a A-Basis value is specification minimum. Rounded T99 values for Ftu are as follows: for 0.250-1.500 (L) = 75 ksi, for 1.502-2.000 (LT) = 75 ksi, for 2.001-3.000 (L) and (LT) = 74 ksi,for 3.001-4.000 (ST) = 69 ksi, for 4.001-5.000 (L) and (LT) = 72 ksi, for 5.001-6.000 (L) = 71ksi. b A-Basis value is specification minimum. Rounded T99 values for Fty are as follows: for 0.250-1.500 (L) = 65 ksi, for 1.502-2.000 (L) = 65 ksi, for 2.001-3.000 (L) = 65 ksi, (LT) = 64 ksi, for 3.001-4.000 (L) = 63 ksi, for 4.001-5.000 (L) = 62 ksi, (ST) = 58 ksi, for 7.001-8.000 (L) = 59 ksi, (ST) = 56 ksi. c See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-427
E, 103 ksi. . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . µ.................
... ... ...
7.001 - 8.000 A B
MMPDS-06 1 April 2011
Table 3.7.4.0(b2). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Plate Specification . . . . . . . . . AMS 4201
Form . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . Thickness, in. . . . . . . . . Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fty, ksi: L ................ LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fcy, ksi: L ................ LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent (S-Basis): L ................ LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . .
Plate T7651 1.5012.000
0.2501.000 S
1.0011.500 A
B
A
B
A
B
2.5013.000 S
76 76 ...
77 76 ...
79 79 ...
76 75 72
78 78 75
75 75 70
78 78 73
76 76 70
66 66 ...
66 66 ...
71 70 ...
66 65 59
70 69 63
66 65 60
70 69 62
66 66 60
64 68 ... 43
64 68 ... 44
68 73 ... 46
64 68 67 44
67 72 71 46
64 68 67 45
67 72 71 47
64 69 68 46
110 142
112 144
117 150
112 144
117 150
114 146
118 151
116 149
87 102
90 105
96 111
91 105
96 112
93 107
98 114
96 110
9 8 ...
9 8 ...
... ... ...
9 8 ...
... ... ...
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . .
2.0012.500
10.3 10.8 4.0 0.33 0.102 0.23 (at 212EF) 89 (at 77EF) 12.8 (68E to 212EF)
a See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-428
8 7 1.5
... ... ...
8 7 1.5
MMPDS-06 1 April 2011
Table 3.7.4.0(c1). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Die Forging Specification . . . . . . . . . .
AMS 4107 and AMS-A-22771a
Form . . . . . . . . . . . . . . . .
Die forging
Temper . . . . . . . . . . . . . .
T74b
Thicknessc, in. . . . . . . . . .
#2.000
2.001-4.000
4.001-5.000
5.001-6.000
Basis . . . . . . . . . . . . . . . .
S
S
S
S
72 68
71 67
70 66
70 66
62 56
61 55
60 54
59 54
63 60 42
63 59 42
63 58 41
62 57 41
99 131
98 129
97 127
97 127
82 96
81 95
78 92
78 92
7 5
7 4
7 3
7 3
Mechanical Properties: Ftu, ksi: L ................ Td . . . . . . . . . . . . . . . . Fty, ksi: L ................ Td . . . . . . . . . . . . . . . . Fcy, ksi: L ................ ST . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbrue, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . Fbrye, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . e, percent: L ................ Td . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ ..................
10.2 10.7 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . α, 10-6 in./in./EF . . . . . .
0.102 0.23 (at 212EF) 91 (at 77EF) 12.8 (68E to 212EF)
Issued: Sep 1976, MIL-HDBK-5C, Item 71-08. a AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. b Design values were based upon data obtained from testing T74 die forgings, heat treated by suppliers and supplied in T74 temper. c Thickness at the time of heat treatment. When die forgings are machined before heat treatment, the mechanical properties are applicable provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. d T indicates any grain direction not within ±15E of being parallel to the forging flow lines. Fcy(T) values are based upon short transverse (ST) test data. e Bearing values are “dry pin” values per Section 1.4.7.1.
3-429
MMPDS-06 1 April 2011
Table 3.7.4.0(c2). Design Mechanical and Physical Properties of 7050-T7452 Aluminum Alloy Die Forging
Specification . . . . . . . . .
AMS 4333
Form . . . . . . . . . . . . . . .
Die forgings
Temper . . . . . . . . . . . . .
T7452
a
#2.000
Thickness , in. . . . . . . . . Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................ Tb . . . . . . . . . . . . . . . Fty, ksi: L ................ Tb . . . . . . . . . . . . . . . Fcy, ksi: L ................ ST . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbrue, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbrye, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent (S-Basis): L ................ Tb . . . . . . . . . . . . . . .
A
B
A
B
71 68c
73 73
71 67d
72 71
60 55c
63 61
59 53d
61 61
63 63 43
66 66 44
62 62 43
64 64 43
101 135
104 139
101 135
103 137
87 105
92 110
86 103
89 106
9 5
8 4
E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . µ .................
10.2 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . a b c d e
2.001-4.000
0.102 0.23 (at 212EF) 91 (at 77EF) 12.8 (68E to 212EF)
Thickness at the time of heat treatment. When die forgings are machined before heat treatment, the mechanical properties are applicable provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. T indicates any grain direction not within ±15E of being perpendicular to the forging flow lines. Fcy(T) values are based on short transverse (ST) test data. A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(T)=70 ksi, Fty(T)=57 ksi. A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(T)=69 ksi, Fty(T)=57 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
3-430
MMPDS-06 1 April 2011
Table 3.7.4.0(d). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Hand Forging Specification . . . . . . . . . . .
AMS 4108 and AMS-A-22771a
Form . . . . . . . . . . . . . . . . .
Hand Forging
Temper . . . . . . . . . . . . . . .
T7452
Thickness, in. . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): L ................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . .
#2.000
2.0013.000
3.0014.000
4.0015.000
5.0016.000
S
S
S
S
S
A
B
S
72 71 ...
72 70 67
71 70 67
70 69 66
69 68 66
68 67 65
71 70 69
67 66 64
63 61 ...
62 60 55
61 59 55
60 58 54
59 56 53
56 54b 51b
61 59 56
57 52 50
63 64 ... 42
62 63 63 41
61 62 61 41
60 61 60 41
58 59 58 40
56 57 56 40
61 62 61 41
54 55 54 39
98 131
97 129
97 129
96 127
94 125
93 123
97 129
91 121
86 101
84 100
83 98
82 96
79 93
76 90
83 98
73 86
9 5 ...
9 5 4
9 5 4
9 4 3
9 4 3
9 4 3
... ... ...
9 4 3
E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ...................
6.0017.000
10.2 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . α, 10-6 in./in./EF . . . . . . .
0.102 0.23 (at 212EF) 91 (at 77EF) 12.8 (68E to 212EF)
Issued: Sep 1976, MIL-HDBK-5C, Item 71-08. Last Revised: May 1989, MIL-HDBK-5E, CN2, Item 79-26. a AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. b A-Basis value is specification minimum. The rounded T99 values for Fty(LT) = 56 ksi and Fty(ST) = 52 ksi. c Bearing values are “dry pin” values per Section 1.4.7.1.
3-431
7.0018.000
MMPDS-06 1 April 2011
Table 3.7.4.0(e1). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Extrusion Specification . . . . . . . . . . . . . . . . . . . .
AMS 4341
Form . . . . . . . . . . . . . . . . . . . . . . . . . .
Extrusion
Temper . . . . . . . . . . . . . . . . . . . . . . . .
T73511
2
#32
Cross-Sectional Area, in . . . . . . . . . . . #1.000
1.0012.000
2.0013.000
3.0014.000
4.0015.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
Mechanical Properties: Ftu, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . .
70 68
70 66
70 65
70 63
70 62
Fty, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . .
60 57
60 56
60 55
60 53
60 52
Fcy, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . .
60 60 39
60 59 39
60 58 38
61 56 37
61 55 36
Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . .
103 133
100 129
96 124
91 120
87 115
Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . .
82 97
80 95
78 93
76 91
74 88
e, percent: L ..........................
8
8
8
8
8
Thickness or Diameter,a in. . . . . . . . . .
3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . µ ............................
10.3 10.7 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . .
0.102 0.23 (at 212EF) 93 (at 77EF) 12.8 (68E to 212EF)
a The mechanical properties are to be based upon the thickness at the time of quench. b Bearing values are “dry pin” values per Section 1.4.7.1.
3-432
MMPDS-06 1 April 2011
Table 3.7.4.0(e2). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Extrusion Specification . . . . . . . . AMS 4342 Form . . . . . . . . . . . . . . Extrusiona Temper . . . . . . . . . . . . T74511 2 #32 Cross-Sectional Area, in b Thickness or Diameter, 0.5011.0012.0013.0014.001in. . . . . . . . . . . . . . . . . #0.500 1.000 2.000 3.000 4.000 5.000 Basis . . . . . . . . . . . . . . A B A B A B A B A B A B Mechanical Properties: Ftu, ksi: L .............. 72 75 72 74 72 74 72 74 72 74 72 74 LT . . . . . . . . . . . . . 70 73 70 72 69 70 67 69 65 67 64 65 Fty, ksi: L .............. 61 65 61 63 61 63 61 63 61 63 61 63 LT . . . . . . . . . . . . . 59 63 59 60 57 59 56 58 54 56 53 55 Fcy, ksi: L .............. 61 65 61 63 61 63 62 64 62 64 62 64 LT . . . . . . . . . . . . . 62 66 62 64 60 62 59 61 57 59 56 58 Fsu, (L & LT) ksi . . . . 41 43 40 41 39 41 39 40 38 39 37 38 Fbruc, ksi (e/D = 1.5) : L ............... 107 112 106 109 104 107 102 104 99 102 96 98 LT . . . . . . . . . . . . . . 108 112 106 109 103 106 98 101 94 107 90 92 Fbruc, ksi (e/D = 2.0) : L ............... 138 144 137 141 135 139 133 136 130 133 127 130 LT . . . . . . . . . . . . . . 139 145 138 141 133 137 128 132 123 127 118 122 Fbryc, ksi (e/D = 1.5) : L ............... 84 89 83 86 82 84 80 82 78 80 75 78 LT . . . . . . . . . . . . . 84 90 84 86 82 85 80 82 78 80 75 78 Fbryc, ksi (e/D = 2.0) : L ............... 100 107 99 102 97 100 95 98 92 95 90 93 LT . . . . . . . . . . . . . 102 109 101 105 99 102 96 99 93 95 90 93 e, percent: L .............. 7 ... 7 ... 7 ... 7 ... 7 ... 7 ... 3 E, 10 ksi . . . . . . . . . 10.3 Ec, 103 ksi . . . . . . . . . 10.7 G, 103 ksi . . . . . . . . . 3.9 µ ................ 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . 0.102 C, Btu/(lb)(EF) . . . . . 0.23 (at 212EF) K, Btu/[(hr)(ft2)(EF)/ft] 93 (at 77EF) α, 10-6 in./in./EF . . . . 12.8 (68E to 212EF) Issued: Jun 1987, MIL-HDBK-5E, Item 85-25; Last Revised: Oct 2010, MMPDS-06, Item 10-34. a Excluding tubing. b The mechanical properties are to be based upon the thickness at the time of quench. c Bearing values are “dry pin” values per Section 1.4.7.1.
3-433
MMPDS-06 1 April 2011
Table 3.7.4.0(e3). Design Mechanical and Physical Properties of 7050 Aluminum Alloy Extrusion Specification . . . . . . . . . . . . . . . . . AMS 4340 Form . . . . . . . . . . . . . . . . . . . . . . . Extrusion Temper . . . . . . . . . . . . . . . . . . . . . T76511 0.5001.0012.0013.0014.001Thickness,a in. . . . . . . . . . . . . . . . . #0.499 1.000 2.000 3.000 4.000 5.000 Basis . . . . . . . . . . . . . . . . . . . . . . . A B S S S S S Mechanical Properties: Ftu, ksi: L ....................... 77 79 79 79 79 79 79 LT . . . . . . . . . . . . . . . . . . . . . . 76 78 77 75 73 71 68 Fty, ksi: L ....................... 68 71 69 69 69 69 69 LT . . . . . . . . . . . . . . . . . . . . . . 67 69 67 65 63 61 59 Fcy, ksi: L ....................... 68 71 69 69 69 69 69 LT . . . . . . . . . . . . . . . . . . . . . . 70 73 70 69 67 66 64 Fsu, ksi . . . . . . . . . . . . . . . . . . . . . 42 44 43 43 42 41 40 b Fbru , ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . 113 116 115 114 110 107 103 (e/D = 2.0) . . . . . . . . . . . . . . . . 147 151 150 148 144 140 136 b Fbry , ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . 94 98 94 92 89 86 82 (e/D = 2.0) . . . . . . . . . . . . . . . . 109 114 110 108 104 98 93 e, percent (S-Basis): L ....................... 7 ... 7 7 7 7 7 3 E, 10 ksi . . . . . . . . . . . . . . . . . . 10.3 Ec, 103 ksi . . . . . . . . . . . . . . . . . . 10.7 G, 103 ksi . . . . . . . . . . . . . . . . . . 3.9 µ ......................... 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . 0.102 C, Btu/(lb)(EF) . . . . . . . . . . . . . . 0.23 (at 212EF) K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . 89 (at 77EF) α, 10-6 in./in./EF . . . . . . . . . . . . . 12.8 (68E to 212EF) a The mechanical properties are to be based upon the thickness at the time of quench. b Bearing values are “dry pin” values per Section 1.4.7.1.
3-434
MMPDS-06 1 April 2011
3.7.4.1 T73510 and T73511 Tempers — Figures 3.7.4.1.6(a) through 3.7.4.1.6(d) present stress-strain and tangent-modulus curves for extrusions. Fatigue data are presented in Figures 3.7.4.1.8(a) and 3.7.4.1.8(b). 3.7.4.2 T74, T7451, and T7452 Tempers — Elevated temperature curves for T7451 plate are presented in Figure 3.7.4.2.1. Figures 3.7.4.2.6(a) through 3.7.4.2.6(j) present stress-strain and tangentmodulus curves for various products and tempers. Fatigue data are presented in Figures 3.7.4.2.8(a) through 3.7.4.2.8(l). Fatigue crack propagation data for T7451 plate are presented in Figures 3.7.4.2.9(a) through 3.7.4.2.9(c). 3.7.4.3 T76510 and T76511 Tempers — Figures 3.7.4.3.6(a) through 3.7.4.3.6(f) present stress-strain and tangent-modulus curves for extruded shapes. Fatigue data are presented in Figures 3.7.4.3.8(a) and 3.7.4.3.8(b).
3-435
MMPDS-06 1 April 2011 100
80 Long Transverse Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-tension) = 25 n (LT-tension) = 21 TYPICAL
20
≤ 1.999 in. Thickness: £ Cross-sectional area: area: ≤ £ 32 32 in. in22 Cross-sectional
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.4.1.6(a). Typical tensile stress-strain curves for 7050-T7351X aluminum alloy extrusion at room temperature.
100
80 Longitudinal Long Transverse
Stress, ksi
60
Short Transverse
Ramberg - Osgood n (L-tension) = 22 n (LT-tension) = 19 n (ST-tension) = 14
40
TYPICAL Thickness: = 2.000 - 5.000 in. Cross-sectional area: ≤ 43 in.2
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.4.1.6(b). Typical tensile stress-strain curves for 7050-T7351X aluminum alloy extrusion at room temperature.
3-436
MMPDS-06 1 April 2011 100
80
Long Transverse Longitudinal
Stress, ksi
60
Ramberg - Osgood n (L-comp.) = 39 n (LT-comp.) = 38
40
TYPICAL Thickness ≤ 1.999 in. Cross-sectional area: ≤ 32 in.2
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.1.6(c). Typical compressive stress-strain and tangent-modulus curves for 7050-T7351X aluminum alloy extrusion at room temperature.
100
Short Transverse Long Transverse
80
Longitudinal
Stress, ksi
60
Short Transverse 40
Ramberg - Osgood n (L-comp.) = 29 n (LT-comp.) = 33 n(ST-comp.) = 23 TYPICAL
20
Thickness = 2.000 - 5.000 in. Cross-sectional area: ≤ 43 in.2
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.1.6(d). Typical compressive stress-strain and tangent-modulus curves for 7050-T7351X aluminum alloy extrusion at room temperature.
3-437
MMPDS-06 1 April 2011
Figure 3.7.4.1.8(a). Best-fit S/N curves for unnotched 7050-T7351X extruded shape, longitudinal and long-transverse directions.
Correlative Information for Figure 3.7.4.1.8(a) Product Form: Extruded shape, 0.5- to 5.0-inch thick Properties:
TUS, ksi 72-79
TYS, ksi 62-69
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: Not specified
Specimen Details: Unnotched 0.300-inch diameter
Equivalent Stress Equation: Log Nf = 10.5-3.79 log (Seq-16) Seq = Smax (1-R)0.55 Std. Error of Estimate, Log (Life) = 0.516 Standard Deviation, Log (Life) = 1.10 R2 = 78%
Surface Condition: Not specified References: 3.7.4.2.9(b) and 3.7.15.2.8(b)
Sample Size = 128 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-438
MMPDS-06 1 April 2011
Figure 3.7.4.1.8(b). Best-fit S/N curves for notched, Kt = 3.0, 7050T7351X extruded shape, longitudinal and long-transverse directions.
Correlative Information for Figure 3.7.4.1.8(b)
Product Form: Extruded shape, 0.5- to 5.0-inches thick Properties:
TUS, ksi 72-79
TYS, ksi 62-69
Temp.,EF RT
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air No. of Heats/Lots: Not specified
Specimen Details: Circumferentially notched, Kt = 3.0 0.359-inch gross diameter 0.253-inch net diameter 0.013-inch root radius, r 60E flank angle, ω Surface Condition: Not specified
Equivalent Stress Equation: Log Nf = 7.73-2.58 log (Seq-5.0) Seq = Smax (1-R)0.56 Std. Error of Estimate, Log (Life) = 0.268 Standard Deviation, Log (Life) = 0.733 R2 = 87%
References: 3.7.4.2.9(b) and 3.7.15.2.8(b)
Sample Size = 103 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-439
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
100%
7050-T7451 Plate 1-2 inch, TUS 80%
60%
0.5 hr 10 hr 100 hr 1,000 hr 10,000 hr
40%
20%
Strength at Temperature Exposure up to 10,000 hrs. 0% 0
100
200
300
400
Temperature, F Figure 3.7.4.2.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 7050-T7451 aluminum alloy plate.
Percent of RoomTemperature Strength
10 0 %
70 50-T 745 1 P la te 1-2 inc h, T Y S 80%
60%
0 .5 10 100 1,000 1 0,000
40%
hr hr hr hr hr
20%
S treng th at T em pe ratu re E x p os ure up to 10,000 h rs . 0% 0
100
2 00
300
4 00
T e m p e ra tu re , F
Figure 3.7.4.2.1(b) Effect of temperature on the tensile yield strength (Fty) of 7050T7451 aluminum alloy plate.
3-440
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
130%
7050-T7452 Forging L Direction
120% 110% 100% 90% 80% 70% 60%
0.5 10 100 1,000 10,000
50% 40% 30% 20% 10% -400
hr hr hr hr hr
TUS Strength at Temperature Exposure up to 10,000 hrs. -200
0
200
400
Temperature, F Figure 3.7.4.2.1(c) Effect of temperature on the tensile ultimate strength (Ftu) of 7050T7452 aluminum alloy forging.
Percent of RoomTemperature Strength
130%
7050-T7452 Forging L Direction
120% 110% 100% 90% 80% 70% 60%
0.5 10 100 1,000 10,000
50% 40% 30% 20% 10% -400
hr hr hr hr hr
TYS Strength at Tem perature Exposure up to 10,000 hrs. -200
0
200
400
T em perature, F
Figure 3.7.4.2.1(d) Effect of temperature on the tensile yield strength (Fty) of 7050T7452 aluminum alloy forging.
3-441
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
100%
7 05 0-T 7 45 1 P la te 1 -2 inc h, T U S 90%
80%
0.5 10 1 00 1,0 00 1 0,0 00
70%
hr hr hr hr hr
60%
50%
S tren gth a t R oo m T em pe ra tu re E x po sure u p to 1 0,0 00 h rs. 40% 0
100
200
300
400
T em pe ra tu re, F
Figure 3.7.4.2.1(e) Effect of exposure at elevated temperatures on the room temperature tensile ultimate strength (Ftu) of 7050-T7451aluminum alloy plate.
Percent of RoomTemperature Strength
100%
7050-T7451 P late 1-2 inch, TYS
80%
0.5 10 100 1,000 10,000
60%
hr hr hr hr hr
40%
S trength at Room Tem perature E xposure up to 10,000 hrs. 20% 0
100
200
300
Tem perature, F
Figure 3.7.4.2.1(f) Effect of exposure at elevated temperatures on the room temperature tensile yield strength (Fty) of 7050-T7451aluminum alloy plate.
3-442
400
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
100%
7050-T7452 Forgings TUS, L Direction 90%
80%
0.5 10 100 1,000 10,000
70%
hr hr hr hr hr
60%
50%
Strength at Room Temperature Exposure up to 10,000 hrs. 40% 0
100
200
300
400
Temperature, F Figure 3.7.4.2.1(g) Effect of exposure at elevated temperatures on the room temperature tensile ultimate strength (Ftu) of 7050-T7452 aluminum alloy forgings.
Percent of RoomTemperature Strength
100%
7050-T7452 Forgings TYS, L Direction
80%
0.5 10 100 1,000 10,000
60%
hr hr hr hr hr
40%
Strength at Room Temperature Exposure up to 10,000 hrs. 20% 0
100
200
300
400
Temperature, F Figure 3.7.4.2.1(h) Effect of exposure at elevated temperatures on the room temperature tensile yield strength (Fty) of 7050-T7452 aluminum alloy forgings.
3-443
MMPDS-06 1 April 2011
60
7050-T7451 Plate 1-2 inch
Elongation, %
50
0.5 10 100 1,000 10,000
40
hr hr hr hr hr
30
20
10
Elongation at Temperature Exposure up to 10,000 hrs. 0 0
50
100
150
200
250
300
350
400
Temperature, F
Figure 3.7.4.2.5(a) Effect of temperature on the elongation of 7050-T7451 aluminum alloy plate. 60
7050-T7452 Forging L Direction
Elongation, %
50
40
0.5 10 100 1,000 10,000
30
20
10 -200
hr hr hr hr hr
Elongation at Temperature Exposure up to 10,000 hrs.
-150
-100
-50
0
50
100
150
200
250
300
350
400
Temperature, F
Figure 3.7.4.2.5(b) Effect of temperature on the elongation of 7050-T7452 aluminum alloy forgings.
3-444
MMPDS-06 1 April 2011
20
70 50 -T 74 51 P late 1-2 inch
Elongation, %
18
16
0 .5 10 1 00 1,0 00 1 0,0 00
14
hr hr hr hr hr
E long atio n a t R oom T em p erature E xp osure up to 10,00 0 hrs.
12
10 0
50
100
150
200
250
300
350
400
T em pe ratu re, F
Figure 3.7.4.2.5(c) Effect of exposure at elevated temperatures on the room temperature elongation of 7050-T7451 aluminum alloy plate.
22
7050-T7452 Forging L Direction
Elongation, %
20
10 100 1,000 10,000
hr hr hr hr
18
16
14
0.5 hr
Elongation at Room Temperature Exposure up to 10,000 hrs. 0
50
100
150
200
250
300
350
Temperature, F Figure 3.7.4.2.5(d) Effect of exposure at elevated temperatures on the room temperature elongation of 7050-T7452 aluminum alloy forgings.
3-445
400
MMPDS-06 1 April 2011 100
80
Longitudinal Long Transverse Short Transverse
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 19 n (LT-tension) = 13 n (ST-tension) = 10
40
TYPICAL Thickness = 0.500 - 4.000 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.4.2.6(a). Typical tensile stress-strain curves for 7050-T7451 aluminum alloy plate at room temperature.
100
Long Transverse Short Transverse Longitudinal
80
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 19 n (LT-comp.) = 22 n(ST-comp.) = 16
20
TYPICAL Thickness = 0.500 - 4.000 in. 0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.7.4.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7050-T7451 aluminum alloy plate at room temperature.
3-446
MMPDS-06 1 April 2011 100
80 Longitudinal Long Transverse Short Transverse
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 14 n (LT-tension) = 14 n (ST-tension) = 9.3
40
TYPICAL Thickness ≤ 7.000 in. 20
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Figure 3.7.4.2.6(c). Typical tensile stress-strain curves for 7050-T7452 aluminum alloy hand forging at room temperature.
100
80
Long Transverse Short Transverse Longitudinal Long Transverse
Stress, ksi
60
Short Transverse Longitudinal
40
Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 18 n(ST-comp.) = 20
20
TYPICAL Thickness ≤ 7.000 in. 0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.7.4.2.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7050-T7452 aluminum alloy hand forging at room temperature.
3-447
MMPDS-06 1 April 2011 100
80
Stress, ksi
Longitudinal 60 Short Transverse
40 Ramberg - Osgood n (L-tension) = 27 n (ST-tension) = 24 20
TYPICAL Thickness ≤ 3.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.4.2.6(e). Typical tensile stress-strain curves for 7050-T74 aluminum alloy die forging at room temperature.
100
80 Longitudinal Short Transverse
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 44 n (ST-comp.) = 32
20
TYPICAL Thickness ≤ 3.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.2.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for 7050-T74 aluminum alloy die forging at room temperature.
3-448
MMPDS-06 1 April 2011 100
80 Longitudinal
Long Transverse
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 19 n (LT-tension) = 26
40
TYPICAL Thickness ≤ 1.750 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.4.2.6(g). Typical tensile stress-strain curves for 7050-T74511 aluminum alloy extrusion at room temperature.
100
80
Long Transverse Longitudinal
Stress, ksi
60
Long Transverse Longitudinal 40 Ramberg - Osgood n (L-comp.) = 19 n (LT-comp.) = 23 20
TYPICAL Thickness ≤ 1.750 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.2.6(h). Typical compressive stress-strain and tangent-modulus curves for 7050-T74511 aluminum alloy extrusion at room temperature.
3-449
MMPDS-06 1 April 2011 100
80
Longitudinal 60
Stress, ksi
Short Transverse
Ramberg - Osgood n (L-tension) = 11 n (ST-tension) = 7.3
40
TYPICAL Thickness ≤ 6.000 in.
20
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Figure 3.7.4.2.6(i). Typical tensile stress-strain curves for 7050-T7452 aluminum alloy die forging at room temperature.
100
Short Transverse
80
Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 12 n (ST-comp.) = 18
20
TYPICAL Thickness ≤ 6.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.2.6(j). Typical compressive stress-strain and tangent-modulus curves for 7050-T7452 aluminum alloy die forging at room temperature.
3-450
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(a). Best-fit S/N curves for unnotched 7050T7451 plate, longitudinal direction and T/2 specimen location.
Correlative Information for Figure 3.7.4.2.8(a) Product Form: Plate, 1.0-inch thick Properties:
TUS, ksi 79
TYS, ksi 72
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.30-inch diameter
No. of Heats/Lots: 10
Surface Condition: Not specified
Equivalent Stress Equation: Log Nf = 9.73-3.24 log (Seq-15.5) Seq = Smax (1-R)0.63 Std. Error of Estimate, Log (Life) = 0.490 Standard Deviation, Log (Life) = 0.942 R2 = 73%
References: 3.7.4.2.9(b) and 3.7.15.2.8(b)
Sample Size = 35 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-451
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(b). Best-fit S/N curves for unnotched 7050-T7451 plate, long transverse direction, t/4 specimen location.
Correlative Information for Figure 3.7.4.2.8(b) Product Form: Plate, 4.25- to 8.50-inches thick Properties:
Test Parameters: Loading – Axial Frequency – 20 Hz Temperature – RT Environment – Air
TUS, ksi TYS, ksi Temp.,EF N/A 62-67 RT
Specimen Details: Unnotched 0.250-inch diameter
Equivalent Stress Equation: Log ( Nf ) = 16.410 – 6.624 log ( Seq – 5.0 ) Seq = Smax (1 – R)0.65 Std. Error of Estimate, Log (Life) = 0.183 Standard Deviation, Log (Life) = 0.814 R2 = 95.0%
Surface Condition: Polished, final surface finish unspecified References: 3.7.4.2.8(d) and 3.7.4.2.8(e)
Sample Size = 57 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-452
MMPDS-06 1 April 2011 70 R = -1.0, t = 8.00 in. R = -1.0, t = 6.50 in. R = -1.0, t = 4.25 in. R = 0.02, t = 8.00 in. R = 0.02, t = 6.50 in. R = 0.02, t = 4.25 in. Mean Curve, t = 8.00 in. Mean Curve, t = 6.50 in. Mean Curve, t = 4.25 in.
65
Maximum Stress, ksi
60 55 50 45 40 35 30 25 20 104
105
106
107
Fatigue Life, Cycles Figure 3.7.4.2.8(c). Best-fit S/N curves for unnotched 7050-T7451 plate, long transverse direction, t/2 specimen location.
Correlative Information for Figure 3.7.4.2.8(c) Product Form: Plate, 4.25 to 8.50 inches thick Properties:
Test Parameters: Loading – Axial Frequency – 20 Hz Temperature – RT Environment – Air
TUS, ksi TYS, ksi Temp.,EF N/A 62-67 RT
Specimen Details: Unnotched 0.250-inch diameter
Equivalent Stress Equation: Log ( Nf ) = 12.484 – 4.878 log ( Seq – 60 / t ) Seq = Smax (1 – R)0.42 t = plate thickness in inches. Std. Error of Estimate, Log (Life) = 0.204 Standard Deviation, Log (Life) = 0.594 R2 = 88.2%
Surface Condition: Polished, final surface finish unspecified References: 3.7.4.2.8(d) and 3.7.4.2.8(e)
Sample Size = 36 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios and plate thicknesses beyond those represented above.]
3-453
MMPDS-06 1 April 2011 . .
0.1
Strain Range, in./in.
R= - 1.00, t/4 R= 0.02, t/4 R= - 1.0 R= 0.02
0.01
0.001 101
102
103
104
105
106
107
Fatigue Life, Cycles
35
70
30
60
25 Stable Mean Stress, ksi
Stress Amplitude, ksi
80
50 40 30 Cyclic Stress-Strain Curve Monotonic Curve, 8 in. Plate Monotonic Curve, 5 in. Plate
20
20 15 10 5 0
10 0 0.000
Strain Ratio = -1.00 Strain Ratio = 0.02 Strain Ratio = 0.02 Strain Ratio = -1.00
0.005
0.010
0.015
0.020
0.025
-5 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 Elastic Strain Amplitude, in./in.
Strain Amplitude, in./in.
Figure 3.7.4.2.8(d). Best-fit strain-life curves, cyclic stress-strain curve, and mean stress relaxation curve for 7050-T7451 plate, long transverse direction, t/4 specimen location.
3-454
MMPDS-06 1 April 2011 Correlative Information for Figure 3.7.4.2.8(d) Product Form: Plate, 4.25 to 8.50 inches thick
References: 3.7.4.2.8(d) and (e)
Properties:
Test Parameters: Loading – Axial, Triangular Waveform Frequency – 0.50 Hz Temperature – RT Environment – Air
TUS, ksi TYS, ksi Temp.,EF N/A 62-67 RT
Stress-Strain Equations: Cyclic Stress Strain Curve ()F/2) = 88.185 (∆,p/2)0.0578 Mean Stress Relaxation Curve Minimal relaxation for (),/2) < 0.00261 σm = 46.0 – 7500 (),/2) for (),/2) < 0.00613 Nearly complete relaxation for (),/2) $0.00613
Equivalent Strain Equation: log (Nf ) = - 7.734 – 5.119 log (,eq – 0.0018) ,eq = (),)0.61 (Smax /E)0.39 Std. Error of Estimate, Log (Life) = 0.301 Standard Deviation, Log (Life) = 1.573 R2 = 96.3% Sample Size = 53
Specimen Details: Unnotched 0.250-inch diameter
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios beyond those represented above.]
Surface Condition: Polished, final surface finish unspecified
3-455
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(e). Best-fit S/N curves for unnotched 7050-T7451 plate, long transverse direction, t/4 specimen location.
Correlative Information for Figure 3.7.4.2.8(e) Product Form: Plate, 1.0 to 6.0 inches thick Properties:
TUS, ksi 73-81
TYS, ksi 62-72
Test Parameters: Loading - Axial Frequency - 800 cpm and unspecified Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.250- and 0.300-inch diameter
No. of Heats/Lots: 15 Equivalent Stress Equation: Log Nf = 10.7-3.81 log (Seq-10) Seq = Smax (1-R)0.59 Std. Error of Estimate, Log (Life) = 0.507 Standard Deviation, Log (Life) = 0.794 R2 = 59%
Surface Condition: Not specified References:
3.7.4.2.8(b), 3.7.4.2.8(c), and 3.7.4.2.9(b)
Sample Size = 85 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-456
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(f). Best-fit S/N curves for notched, Kt = 3.0, 7050T7451 plate, longitudinal and long transverse directions, t/4 specimen location.
Correlative Information for Figure 3.7.4.2.8(f) Product Form: Plate, 1.0 to 6.0 inches thick Properties:
TUS, ksi 75-81
TYS, ksi 65-72
Test Parameters: Loading - Axial Frequency - 800 cpm and unspecified Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Circumferentially notched, Kt = 3.0 0.306- and 0.373-inch gross diameter 0.253-inch net diameter 0.013-inch notch-tip radius, r 60E flank angle, ω
No. of Heats/Lots: 11
Surface Condition: Not specified
Equivalent Stress Equation: Log Nf = 10.0-3.96 log (Seq) Seq = Smax (1-R)0.64 Std. Error of Estimate, Log (Life) = 0.248 Standard Deviation, Log (Life) = 0.728 R2 = 88%
References:
Sample Size = 79
3.7.4.2.8(b), 3.7.4.2.8(c), and 3.7.4.2.9(b)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-457
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(g). Best-fit S/N curves for notched, Kt = 2.6, 7050T7451X extruded shape, longitudinal direction.
Correlative Information for Figure 3.7.4.2.8(g) Product Form: Extruded shape, 0.5 to 5.0 inch thick Properties:
TUS, ksi 76-77
TYS, ksi 67-68
Test Parameters: Loading - Axial Frequency - Not specified Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Notched, center hole, Kt = 2.6 0.150-inch diameter hole 0.250-inch thick 1.00-inch wide
No. of Heats/Lots: 6 Equivalent Stress Equation: Log Nf = 8.23-2.82 log (Seq-10) Seq = Smax (1-R)0.30 Std. Error of Estimate, Log (Life) = 0.243 Standard Deviation, Log (Life) = 0.724 R2 = 89%
Surface Condition: Not specified Reference: 3.7.4.2.8(a)
Sample Size = 34 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-458
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(h). Best-fit S/N curves for unnotched 7050-T7452 hand forgings, longitudinal direction.
Correlative Information for Figure 3.7.4.2.8(h) Product Form: Hand forgings, 2.0 to 8.0 inch thick Properties:
TUS, ksi 76-81
TYS, ksi 66-72
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.300-inch diameter
No. of Heats/Lots: 10 Equivalent Stress Equation: Log Nf = 7.06-1.89 log (Seq-30) Seq = Smax (1-R)0.60 Std. Error of Estimate, Log (Life) = 0.400 Standard Deviation, Log (Life) = 0.982 R2 = 83%
Surface Condition: Not specified References: 3.7.4.2.9(b) and 3.7.15.2.8(b)
Sample Size = 25 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-459
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(i). Best-fit S/N curves for unnotched 7050-T7452 hand forgings, long-transverse, and short-transverse directions.
Correlative Information for Figure 3.7.4.2.8(i) Product Form: Hand forgings, 2.0 to 8.0 inches thick Properties:
TUS, ksi 73-80
TYS, ksi 59-70
Test Parameters: Loading - Axial Frequency - 800 cpm and unspecified Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.300-inch diameter
No. of Heats/Lots: 10 Equivalent Stress Equation: Log Nf = 7.58-2.14 log (Seq-21) Seq = Smax (1-R)0.57 Std. Error of Estimate, Log (Life) = 0.400 Standard Deviation, Log (Life) = 0.803 R2 = 75%
Surface Condition: Not specified References: 3.7.4.2.8(b) and 3.7.4.2.9(b)
Sample Size = 55 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-460
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(j). Best-fit S/N curves for notched, Kt = 3.0, 7050T7452 hand forgings, longitudinal, long- and short-transverse directions.
Correlative Information for Figure 3.7.4.2.8(j) Product Form: Hand forgings, 2.0 to 8.0 inches thick Properties:
TUS, ksi 73-81
TYS, ksi 59-72
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air
Temp.,EF RT
No. of Heats/Lots: 10
Specimen Details: Circumferentially notched, Kt = 3.0 0.306-inch gross diameter 0.253-inch net diameter 0.013-inch root radius, r 60E flank angle, ω Surface Condition: Not specified
Equivalent Stress Equation: Log Nf = 8.21-2.96 log (Seq-5) Seq = Smax (1-R)0.68 Std. Error of Estimate, Log (Life) = 0.307 Standard Deviation, Log (Life) = 0.735 R2 = 83%
References: 3.7.4.2.8(b) and 3.7.4.2.9(b)
Sample Size = 80 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-461
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(k). Best-fit S/N curves for unnotched 7050-T74 die forging, longitudinal directions.
Correlative Information for Figure 3.7.4.2.8(k) Product Form: Die forging Properties:
TUS, ksi 74-81
TYS, ksi 68-71
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.300-inch diameter
No. of Heats/Lots: 4
Surface Condition: Not specified
Equivalent Stress Equation: Log Nf = 16.8-6.97 log (Smax) Std. Error of Estimate, Log (Life) = 0.381 Standard Deviation, Log (Life) = 0.820 R2 = 78%
References: 3.7.4.2.8(b) and 3.7.4.2.9(b)
Sample Size = 20 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-462
MMPDS-06 1 April 2011
Figure 3.7.4.2.8(l). Best-fit S/N curves for notched, Kt = 3.0, 7050T74 die forging, longitudinal direction.
Correlative Information for Figure 3.7.4.2.8(l) Product Form: Die forging Properties:
TUS, ksi 77-81
TYS, ksi 68-71
Test Parameters: Loading - Axial Frequency - 800, 1800 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Circumferentially notched, Kt = 3.0 0.306- and 0.305-inch gross diameter 0.253- or 0.222-inch net diameter 0.013- or 0.012-inch root radius, r 60E flank angle, ω
No. of Heats/Lots: 6 Equivalent Stress Equation: Log Nf = 10.5-4.14 log (Seq) Seq = Smax (1-R)0.629 Std. Error of Estimate, Log (Life) = 0.506 Standard Deviation, Log (Life) = 0.896 R2 = 68%
Surface Condition: Not specified
Sample Size = 73
References: 3.7.4.2.8(b), 3.7.4.2.9(b), and 3.7.15.2.8(b)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-463
MMPDS-06 1 April 2011
Figure 3.7.4.2.9(a). Fatigue crack propagation data for 3.15-inch thick 7050-T7451 aluminum alloy plate. [Reference 3.7.4.2.9(a)]. Specimen Thickness: Specimen Width: Specimen Type:
0.50 inch 2.99-3.01 inches C(T)
3-464
Environment: Temperature: Orientation:
Lab air, humid air RT L-T
MMPDS-06 1 April 2011
Table 3.7.4.2.9(a) Typical Fatigue Crack Growth Rate Data for 7050-T7451 Plate, as Shown Graphically in Figure 3.7.4.2.9(a) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.10 da/dN, in./cycle
0.10 da/dN, in./cycle
5.62
6.38E-07
14.13
1.27E-05
5.96
7.69E-07
14.96
1.53E-05
6.31
9.26E-07
15.85
1.83E-05
6.68
1.12E-06
16.79
2.20E-05
7.08
1.35E-06
17.78
2.64E-05
7.50
1.62E-06
18.84
3.18E-05
7.94
1.95E-06
19.95
3.87E-05
8.41
2.35E-06
21.14
4.77E-05
8.91
2.88E-06
22.39
6.00E-05
9.44
3.40E-06
23.71
7.75E-05
10.00
4.06E-06
25.12
1.03E-04
10.59
4.90E-06
26.61
1.44E-04
11.22
5.94E-06
28.18
2.11E-04
11.89
7.20E-06
29.85
3.28E-04
12.59
8.74E-06
31.62
5.48E-04
13.34
1.06E-05
3-465
MMPDS-06 1 April 2011
Figure 3.7.4.2.9(b). Fatigue crack propagation data for 1.00 and 6.00inch thick 7050-T7451 aluminum alloy plate. [Reference 3.7.4.2.9(b)]. Specimen Thickness: Specimen Width: Specimen Type:
1.00 inch 3.81 inches C(T)
3-466
Environment: Temperature: Orientation:
Dry air (<10% R.H.) RT L-T, T-L, and S-L
MMPDS-06 1 April 2011
Table 3.7.4.2.9(b) Typical Fatigue Crack Growth Rate Data for 7050-T7451 Plate, as Shown Graphically in Figure 3.7.4.2.9(b) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.33 da/dN, in./cycle
0.33 da/dN, in./cycle
3.76
2.29E-07
8.91
8.21E-06
3.98
2.69E-07
9.44
1.03E-05
4.22
3.20E-07
10.00
1.26E-05
4.47
3.81E-07
10.59
1.53E-05
4.73
4.69E-07
11.22
1.83E-05
5.01
5.91E-07
11.89
2.17E-05
5.31
7.60E-07
12.59
2.53E-05
5.62
9.91E-07
13.34
2.93E-05
5.96
1.30E-06
14.13
3.37E-05
6.31
1.72E-06
14.96
3.85E-05
6.68
2.27E-06
15.85
4.41E-05
7.08
2.99E-06
16.79
5.06E-05
7.50
3.91E-06
17.78
5.85E-05
7.94
5.06E-06
18.84
6.85E-05
8.41
6.49E-06
19.95
8.17E-05
3-467
MMPDS-06 1 April 2011
Figure 3.7.4.2.9(c). Fatigue crack propagation data for 1.00 and 6.00inch thick 7050-T7451 aluminum alloy plates. [Reference 3.7.4.2.9(b)]. Specimen Thickness: Specimen Width: Specimen Type:
1.00 inch 3.81 inches C(T)
3-468
Environment: Temperature: Orientation:
Humid air (>90% R.H.) RT T-L and S-L
MMPDS-06 1 April 2011
Table 3.7.4.2.9(c) Typical Fatigue Crack Growth Rate Data for 7050-T7451 Plate, as Shown Graphically in Figure 3.7.4.2.9(c) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.33 da/dN, in./cycle
0.33 da/dN, in./cycle
3.76
4.17E-07
9.44
1.34E-05
3.98
4.65E-07
10.00
1.54E-05
4.22
5.46E-07
10.59
1.76E-05
4.47
6.69E-07
11.22
2.00E-05
4.73
8.45E-07
11.89
2.27E-05
5.01
1.09E-06
12.59
2.61E-05
5.31
1.43E-06
13.34
3.05E-05
5.62
1.88E-06
14.13
3.65E-05
5.96
2.46E-06
14.96
4.53E-05
6.31
3.21E-06
15.85
5.90E-05
6.68
4.14E-06
16.79
8.16E-05
7.08
5.26E-06
17.78
1.21E-04
7.50
6.58E-06
18.84
1.97E-04
7.94
8.07E-06
19.95
3.54E-04
8.41
9.73E-06
21.14
7.16E-04
8.91
1.15E-05
3-469
MMPDS-06 1 April 2011 100
Longitudinal 80
Stress, ksi
Long transverse 60
Ramberg-Osgood n (L-tension) = 25 n (LT-tension) = 20
40
TYPICAL
20
Thickness: <1.999 in. Cross-sectional area: < 32 in.2 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.4.3.6(a). Typical tensile stress-strain curves for 7050-T7651X aluminum alloy extrusion at room temperature.
100
Longitudinal Long transverse
80
Stress, ksi
Short transverse
60
40
Ramberg-Osgood n (L-tension) = 28 n (LT-tension) = 13 n (ST-tension) = 13
20
TYPICAL Thickness: 2.000 - 5.000 in. 2 Cross-sectional area: < 43 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.4.3.6(b). Typical tensile stress-strain curves for 7050-T7651X aluminum alloy extrusion at room temperature.
3-470
MMPDS-06 1 April 2011 100
Long Transverse 80
Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 27 n (LT-comp.) = 33 TYPICAL
20
Thickness ≤ 1.999 in. Cross-sectional area: ≤ 32 in.2
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.3.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for 7050-T7651X aluminum alloy extrusion at room temperature.
100
Short Transverse Long Transverse Longitudinal
80
Stress, ksi
60
Ramberg - Osgood n (L-comp.) = 22 n (LT-comp.) = 27 n(ST-comp.) = 22
40
TYPICAL Thickness = 2.000 - 5.000 in. Cross-sectional area: ≤ 43 in.2
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.3.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7050-T7651X aluminum alloy extrusion at room temperature.
3-471
MMPDS-06 1 April 2011 100
80
Long Transverse
Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-tension) = 19 n (LT-tension) = 14 TYPICAL Thickness ≤ 2.000 in.
20
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Figure 3.7.4.3.6(e). Typical tensile stress-strain curves for 7050-T7651 aluminum alloy plate at room temperature.
100
Long Transverse Longitudinal
80
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 18 n (LT-comp.) = 21
20
TYPICAL Thickness ≤ 2.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.4.3.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for 7050-T7651 aluminum alloy plate at room temperature.
3-472
MMPDS-06 1 April 2011
Figure 3.7.4.3.8(a). Best-fit S/N curves for unnotched 7050-T7651X extruded shape, longitudinal and long-transverse directions.
Correlative Information for Figure 3.7.4.3.8(a) Product Form: Extruded shape, 0.5- to 5.0-inches thick Properties:
TUS, ksi 84-90
TYS, ksi 75-81
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.300-inch diameter
No. of Heats/Lots: 10 Equivalent Stress Equation: Log Nf = 11.8-4.38 log (Seq-12) Seq = Smax (1-R)0.61 Std. Error of Estimate, Log (Life) = 0.493 Standard Deviation, Log (Life) = 1.01 R2 = 76%
Surface Condition: Not specified References: 3.7.4.3.8(a), 3.7.4.2.9(b), and 3.7.15.2.8(b)
Sample Size = 161 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-473
MMPDS-06 1 April 2011
Figure 3.7.4.3.8(b). Best-fit S/N curves for notched, Kt = 3.0, 7050-T7651X extruded shape, longitudinal and long transverse directions.
Correlative Information for Figure 3.7.4.3.8(b) Product Form: Extruded shape, 0.5- to 5.0-inch thick Properties: TUS, ksi 78-90
TYS, ksi 68-81
Test Parameters: Loading - Axial Frequency - 800 cpm Temperature - RT Environment - Air
Temp.,° F RT
Specimen Details: Circumferentially notched, Kt = 3.0 0.359-inch gross diameter 0.253-inch net diameter 0.013-inch root radius, r 60° flank angle, ωù
No. of Heats/Lots: 10 Equivalent Stress Equation: Log Nf = 10.38-4.26 log (Seq) Seq = Smax (1-R)0.563 Std. Error of Estimate, Log (Life) = 0.398 Standard Deviation, Log (Life) = 0.778 R2 = 74%
Surface Condition: Not specified References: 3.7.4.2.9(b), 3.7.4.3.8(a), and 3.7.15.2.8(b)
Sample Size = 179 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-474
MMPDS-06 1 April 2011 3.7.5 7055 ALLOY 3.7.5.0 Comments and Properties — 7055 is an Al-Zn-Mg-Cu-Zr alloy and provides higher strength properties than 7150. 7055 is available in the form of sheet, plate and extrusions. The T77-type temper provides high tensile and compressive strength with guaranteed toughness (plate only) and exfoliation corrosion resistance. The T77-type temper has exfoliation corrosion resistance comparable to the T76-type temper of other 7XXX series aluminum alloys. The T762-type temper (sheet only) offers high tensile and compressive strength with improved corrosion resistance when compared to 7XXX-T6 products. The properties of extrusions should be based upon the thickness at the time of extrusion, solution heat treatment, and quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be overstated; therefore, the thickness at the time of extrusion, solution heat treatment, and quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Materials specifications for 7055 are shown in Table 3.7.5.0(a). Room temperature mechanical properties are presented in Tables 3.7.5.0(b) through 3.7.5.0(e). Table 3.7.5.0(a). Material Specifications for 7055 Aluminum Alloy
Specification AMS 4267 (T762) AMS 4206 (T7751) AMS 4324 (T74511) AMS 4336 (T76511) AMS 4337 (T77511)
Form Sheet Plate Extrusion Extrusion Extrusion
The temper index for 7055 is as follows: Section 3.7.5.1 3.7.5.2 3.7.5.3 3.7.5.4
Temper T74511 T76511 T7751 and T77511 T762
3.7.5.1 T74511 Temper — Figures 3.7.5.1.6(a) and 3.7.5.1.6(b) present typical stress-strain curves at room temperature. Figures 3.7.5.1.6(c) through 3.7.5.1.6(e) present compressive stress-strain and compressive tangent modulus curves at room temperature. Figures 3.7.5.1.6(f) and 3.7.5.1.6(g) present typical full-range stress-strain curves at room temperature. 3.7.5.2 T76511 Temper — Figures 3.7.5.2.6(a) and 3.7.5.2.6(b) present the stress-strain curves for extruded shapes in the L and LT orientation, respectively. Figure 3.7.5.2.6(c) presents full-range stressstrain curves in the L orientation. 3.7.5.3 T7751 and T77511 Tempers — Figures are not yet available. 3.7.5.4 T762 Temper — Figure 3.7.5.4.6(a) presents typical tensile stress-strain curves in the L and LT orientation at room temperature. Figure 3.7.5.4.6(b) presents compressive stress-strain and compressive tangent modulus curves in the L and LT orientation at room temperature. Figure 3.7.5.4.6(c) presents full range stress-strain curves in the L and LT orientation at room temperature.
3-475
MMPDS-06 1 April 2011
Table 3.7.5.0(b) Design Mechanical and Physical Properties of 7055-T74511 Aluminum Alloy Extrusions
Specification . . . . . . . . . .
AMS 4324
Form . . . . . . . . . . . . . . .
Extrusion
Temper . . . . . . . . . . . . .
T74511 # 0.249
Thickness, in. . . . . . . . . Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . Fsu,b ksi . . . . . . . . . . . Fbru,c ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbry,c ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent (S-basis): L ............... LT . . . . . . . . . . . . . .
0.250-0.499
A
B
A
B
A
B
83 78
84 79
84 79
85 80
85a 80
87 82
76 72
78 74
77 73
79 75
78a 74
80 76
76 77 43
78 79 44
77 78 44
79 80 45
78 79 45
80 81 46
115 151
116 152
116 152
117 154
117 154
120 158
96 114
99 117
97 116
100 119
99 117
101 120
8 ...
... ...
8 ...
... ...
8 ...
... ...
E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................
10.3 10.7 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . C, Btu/(lb)(EF) . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . .
0.103 ... ... ...
a b c
0.500-3.000
A-Basis value is specification minimum. Rounded T99 values for Ftu =86 ksi, for Fty = 79 ksi. Determined in accordance with ASTM B 769. Bearing values are “dry pin” values per Section 1.4.7.1.
3-476
MMPDS-06 1 April 2011
Table 3.7.5.0(c) Design Mechanical and Physical Properties of 7055-T76511 Aluminum Alloy Extrusions
Specification . . . . . . . . . .
AMS 4336
Form . . . . . . . . . . . . . . . .
Extrusion
Temper . . . . . . . . . . . . . .
T76511 # 0.249
Thickness, in. . . . . . . . . . Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . . . Fty, ksi: L ................ LT . . . . . . . . . . . . . . . Fcy, ksi: L ................ LT . . . . . . . . . . . . . . . Fsu,c ksi . . . . . . . . . . . . Fbru,d ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbry,d ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent (S-Basis): L ................ LT . . . . . . . . . . . . . . .
0.250-0.499
0.500-3.000
A
B
A
B
A
B
89a 83
91 85
90 84
94 87
91 85
94 87
85 79
87 81
85 79
91 85
86b 80
90 84
84 86 46
86 88 47
85 86 47
91 92 49
88 87 47
92 91 49
122 160
125 163
124 161
129 169
125 163
129 169
105 124
107 127
105 124
112 132
106 125
111 131
7 ...
9 ...
9 ...
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ .................
10.4 10.8 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . .
0.103 ... ... ...
a b c d
A-Basis value is specification minimum. Rounded T99 values for Ftu =90 ksi A-Basis value is specification minimum. Rounded T99 values for Fty =87 ksi Determined in accordance with ASTM B 769. Bearing values are “dry pin” values per Section 1.4.7.1.
3-477
MMPDS-06 1 April 2011
Table 3.7.5.0(d) Design Mechanical and Physical Properties of 7055-T7751 Aluminum Alloy Plate
Specification . . . . . . . . . . . . . . . . . . .
AMS 4206
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . . . . . . . . . . .
T7751
Thickness, in. . . . . . . . . . . . . . . . . . .
0.500 - 1.500
Basis . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu,a ksi . . . . . . . . . . . . . . . . . . . . . Fbru,b ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry,b ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . .
A
B
89 89
91 91
86 85
88 87
86 89 48
88 91 49
128 167
131 170
112 130
115 133
7 8
... ...
E, 103 ksi . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ..........................
10.4 10.7 3.9 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . . . . . . . . . .
0.103 ... ... ...
a b
Determined in accordance with ASTM B 769. Bearing values are “dry pin” values per Section 1.4.7.1.
3-478
MMPDS-06 1 April 2011
Table 3.7.5.0(e) Design Mechanical and Physical Properties of 7055-T77511 Aluminum Alloy Extrusion
Specification . . . . . . . . . . . . . . . . . . .
AMS 4337
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Extrusion
Cross-sectional area, in2 . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . . . . . . . .
T77511
Thickness, in. . . . . . . . . . . . . . . . . . .
0.500 - 1.500
Basis . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu,b ksi . . . . . . . . . . . . . . . . . . . . . Fbru,c ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry,c ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . .
A
B
94 88
95 90
90 84a
93 88
92 89 48
94 92 49
128 167
131 169
109 131
113 135
9 5
E, 103 ksi . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ..........................
10.4 11.0 ... 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . . . . . . . . . .
0.103 ... ... ...
a A-Basis value is specification minimum. The rounded T99 value = 86 ksi. b Determined in accordance with ASTM B 769. c Bearing values are “dry pin” values per Section 1.4.7.1.
3-479
MMPDS-06 1 April 2011 Table 3.7.5.0(f) Design Mechanical and Physical Properties of 7055-T762 Aluminum Alloy Sheet Specification . . . . . . . . . . . . . . . . . . . .
AMS 4267
Form . . . . . . . . . . . . . . . . . . . . . . . . . .
Sheet
Temper . . . . . . . . . . . . . . . . . . . . . . . .
T762 0.040 B 0.125
Thickness, in. . . . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . .
0.126 B 0.249
A
B
A
B
82 81b
84 84
88 83b
90 87
81 78b
83 81
86 80b
87 84
79 82
82 85
81 84
85 88
49 50
50 52
50 49
52 51
118 121
123 126
110 115
115 121
155 158
161 163
147 152
154 159
102 103
105 107
96 98
101 103
116 121
121 125
111 113
116 119
3 8
Y Y
5 9
Y Y
a
Mechanical Properties : Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi: . . . . . . . . . . . . . . . . . . . . . . L-S . . . . . . . . . . . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 1.5) : L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 2.0) : L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 1.5) : L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0) : L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . e, percent (S-Basis): L.......................... LT . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . µ ...........................
10.2 10.6 Y 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(°F) . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(°F)/ft] α, 10-6 in./in./°F . . . . . . . . . . . . . . . .
0.103 ... ... ...
Issued: Oct 2006, MMPDS-03, Item 05-28. Revised: Oct 2006, MMPDS-03, Item 06-02. a
b c
Design allowables were based upon data obtained from testing samples of material, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. A-Basis value is specification minimum. The rounded T99 values for 0.040-0.125 inches are Ftu (LT) = 82 ksi and Fty (LT) = 80 ksi; for 0.126-0.249 inches are Ftu (LT) = 86 ksi and Fty (LT) = 82 ksi Bearing values are "dry pin" values per Section 1.4.7.1.
3-480
MMPDS-06 1 April 2011
Figure 3.7.5.1.6(a1) Typical tensile stress-strain curves for thin 7055-T74511 aluminum alloy extrusions at room temperature, longitudinal orientation
Figure 3.7.5.1.6(a2) Typical tensile stress-strain curves for thin 7055-T74511 aluminum alloy extrusions at room temperature, long transverse orientation
3-481
MMPDS-06 1 April 2011
Figure 3.7.5.1.6(b1) Typical tensile stress-strain curves for thick 7055-T74511 aluminum alloy extrusions at room temperature, longitudinal orientation
Figure 3.7.5.1.6(b2) Typical tensile stress-strain curves for thick 7055-T74511 aluminum alloy extrusions at room temperature, long transverse orientation
3-482
MMPDS-06 1 April 2011
Figure 3.7.5.1.6(c) Typical compressive stress-strain and compressive tangent modulus curves for thin 7055-T74511 aluminum alloy extrusions at room temperature, longitudinal orientation
Figure 3.7.5.1.6(d1) Typical compressive stress-strain and compressive tangent modulus curves for intermediate thickness 7055-T74511 aluminum alloy extrusions at room temperature, longitudinal orientation
3-483
MMPDS-06 1 April 2011
Figure 3.7.5.1.6(d2) Typical compressive stress-strain and compressive tangent modulus curves for intermediate thickness 7055-T74511 aluminum alloy extrusions at room temperature, long transverse orientation
Figure 3.7.5.1.6(e1) Typical compressive stress-strain and compressive tangent modulus curves for thick 7055-T74511 aluminum alloy extrusions at room temperature, longitudinal orientation
3-484
MMPDS-06 1 April 2011
Figure 3.7.5.1.6(e2) Typical compressive stress-strain and compressive tangent modulus curves for thick 7055-T74511 aluminum alloy extrusions at room temperature, long transverse orientation
3-485
MMPDS-06 1 April 2011
Figure 3.7.5.1.6(f). Typical tensile stress-strain (full range) curve for longitudinal 7055-T74511 aluminum alloy extrusions at room temperature.
3-486
MMPDS-06 1 April 2011
Figure 3.7.5.1.6(g). Typical tensile stress-strain (full range) curve for long transverse 7055-T74511 aluminum alloy extrusions at room temperature.
3-487
MMPDS-06 1 April 2011
Figure 3.7.5.2.6(a1) Typical tensile stress-strain curves for thin 7055-T76511 aluminum alloy extrusions at room temperature, longitudinal orientation
Figure 3.7.5.2.6(a2) Typical tensile stress-strain curves for thick 7055-T76511 aluminum alloy extrusions at room temperature, longitudinal orientation
3-488
MMPDS-06 1 April 2011
Figure 3.7.5.2.6(b1) Typical tensile stress-strain curves for thin 7055-T76511 aluminum alloy extrusions at room temperature, long transverse orientation
Figure 3.7.5.2.6(b2) Typical tensile stress-strain curves for thick 7055-T76511 aluminum alloy extrusions at room temperature, long transverse orientation
3-489
MMPDS-06 1 April 2011
100
90
80 Longitudinal 0.050 inch thick
70
Stress, ksi
60
50
40
30
20 TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in. Figure 3.7.5.2.6(c). Typical tensile stress-strain curve (full range) for 7055T76511 aluminum alloy extrusion at room temperature in longitudinal orientation.
3-490
MMPDS-06 1 April 2011
Figure 3.7.5.4.6(a1) Typical tensile stress-strain curves for thick 7055-T762 aluminum alloy sheet at room temperature, longitudinal orientation
Figure 3.7.5.4.6(a2) Typical tensile stress-strain curves for thick 7055-T762 aluminum alloy sheet at room temperature, long transverse orientation
3-491
MMPDS-06 1 April 2011
7055-T762 Sheet
Long Transverse
100
Stress, ksi
80
Longitudinal
60
40
TYPICAL t = 0.040 - 0.200 in. 20
Ramberg-Osgood (L) n = 20 (LT) n = 28
CYS (ksi) 88.0 91.0
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.5.4.6(b). Typical compressive stress-strain and compressive tangent modulus curves for 7055-T762 aluminum alloy sheet at room temperature.
3-492
MMPDS-06 1 April 2011
100
Longitudinal 90
X Long transverse
80
X
70
Stress, ksi
60
50
40
30
t = 0.040 - 0.200 in. 7055-T762
20
Sheet
TYPICAL 10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.7.5.4.6(c). Typical tensile stress-strain curves (full range) for 7055-T762 aluminum alloy sheet at room temperature.
3-493
MMPDS-06 1 April 2011 3.7.6 7056 ALLOY 3.7.6.0 Comments and Properties —7056-T7651 is an Al-Zn-Cu-Mg-Zr alloy. It is available as light to moderate thickness plate ideally suited for upper wing applications although it is not limited to such applications. AMS 4407 provides deliverables of this product. Development of alloy 7056 is a result of optimization and extension of 7449 chemistry emphasizing improved fracture toughness with high tensile and compressive properties and moderate corrosion resistance. Stress Corrosion and EXCO capability is consistent with T7651 temper in this class of 7XXX alloys. Material specifications for 7056 aluminum alloy are presented in Table 3.7.6.0(a). temperature mechanical and physical properties are shown in Table 3.7.6.0(b).
Room
Table 3.7.6.0(a). Material Specifications for 7056
Specification AMS 4407
Form Plate
The temper index is as follows: Section 3.7.6.1
Temper T7651
3.7.6.1 T7651 Temper — Typical room temperature stress-strain to yield curves are shown in Figures 3.7.6.1.6(a) and Figure 3.7.6.1.6(b). Typical compressive stress-strain and compression tangent modulus curves are shown in Figure 3.7.6.1.6(c). Typical full-range stress-strain curves at room temperature are shown in Figure 3.7.6.1.6(d).
3-494
MMPDS-06 1 April 2011 Table 3.7.6.0(b). Design Mechanical and Physical Properties of 7056 Aluminum Alloy Plate Specification . . . . . . . . . .
AMS 4407
Form . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . .
T7651
Thickness, in. . . . . . . . . . Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. T ................. Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . L-S . . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 1.5) : L .................. LT . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 2.0) : L .................. LT . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0) : L .................. LT . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0) : L .................. LT . . . . . . . . . . . . . . . . e, percent (S-Basis): L ................. LT . . . . . . . . . . . . . . . .
0.500-1.000 A
B
A
B
83a 83
85 84
81b 81b
84 83
79 78
81 80
77b 77b
81 80
78 82
80 83
76 80
78 83
47 46
47 47
46 45
47 46
117 116
118 117
114 116
117 119
154 156
156 158
150 152
154 156
99 97
100 99
96 98
100 102
114 119
116 121
111 116
116 121
10 10
... ...
10 9
... ...
E, 103 ksi : L ................. LT . . . . . . . . . . . . . . . . Ec, 103 ksi: L ................. LT . . . . . . . . . . . . . . . . G, 103 ksi: . . . . . . . . . . . . F, . . . . . . . . . . . . . . . . .
10.4 10.7 10.5 10.8 3.9 0.35
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . a b c
1.001-1.500
... ... ... 20.4 (68E to 248E F)
Issued: Apr 2009, MMPDS-04CN1, Item 07-20. A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(L)=84 ksi. A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(L)=83 ksi, Ftu(LT)=82 ksi, Fty(L)=79 ksi, and Fty(LT)=78 ksi. Bearing values are Adry pin@ values per Section 1.4.7.1.
3-495
MMPDS-06 1 April 2011 100 7056-T7651 Plate 80
Stress, ksi
TYPICAL
60
Longitudinal 40 Thickness: 0.500-1.500 in. Ramberg-Osgood
20
TYS
(L) n1 = 6.9
K1 = 2.397
n2 = 54
K2 = 1.971
83
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in.
Figure 3.7.6.1.6(a). Typical tensile stress-strain curves for 7056-T7651 aluminum alloy plate in the longitudinal direction at room temperature. 100 7056-T7651 Plate
0.50-1.00 in.
80 TYPICAL
Stress, ksi
1.00-1.50 in. 60
Long Transverse
40
Ramberg-Osgood (0.5-1.0 in.) n1 = 13 20
TYS K1 = 2.152
n2 = 84
K2 = 1.955
(1.0-1.5 in.) n1 = 6.2
K1 = 2.441
n2 = 34
K2 = 1.997
83 82
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in.
Figure 3.7.6.1.6(b). Typical tensile stress-strain curves for 7056-T7651 aluminum alloy plate in the long transverse direction at room temperature.
3-496
MMPDS-06 1 April 2011
100 Long Transverse 0.5-1.0 in. Long Transverse 1.0-1.5 in. 80
Stress, ksi
7056-T7651 Plate 60 Longitudinal 40
Ramberg-Osgood L n = 16 LT (0.5 - 1.0 in.) n = 23 LT (1.0-1.5 in.) n = 24
20
CYS (ksi) 82 86 85
TYPICAL Thickness: 0.500 - 1.500 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.6.1.6(c). Typical compressive stress-strain and compression tangentmodulus curves for 7056-T7651 aluminum alloy plate at room temperature.
3-497
MMPDS-06 1 April 2011 100
Longitudinal
80
LT 0.5-1.0 in.
X
LT 1.0-1.5 in.
X X
Stress, ksi
60
40
7056-T7651 Plate 20
Thickness: 0.500-1.500 in. TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.7.6.1.6(d). Typical tensile stress-strain curves (full range) for 7056-T7651 aluminum alloy plate at room temperature.
3-498
MMPDS-06 1 April 2011 3.7.7 7068 ALLOY 3.7.7.0 Comments and Properties - Alloy 7068 was developed in the mid 1990's by Kaiser Aluminum engineers at the Research Center and Tennalum as a replacement for 7075 in ordnance applications. 7068-T6511 extrusions ranging in size from 2-in. thick to 6.25-in. diameter have been in commercial production since 1995, and are now also being used in automotive applications such as rocker arms and connecting rods, as well as recreational products. 7068-T6511 has a longitudinal yield strength about 15 ksi higher than 7075-T6511 in 1.0-2.0 in. sections, thereby allowing the use of lighter products with the same cross sectional strength. In the T6511 temper, extruded shapes have a "C" stress corrosion rating, i.e., possible failures with sustained tension stress acting in short transverse direction relative to grain structure. T6511 extruded shapes have a "C" machinability rating and a "B" anodize rating. Material specifications for 7068 are shown in Table 3.7.7.0(a). properties are presented in Table 3.7.7.0(b).
Mechanical and physical
Table 3.7.7.0(a). Material Specifications for 7068 Alloy Specification Form AMS 4331 Extrusions
The temper index for 7068 is as follows: Section 3.7.7.1
Temper T6511
3.7.7.1 T6511 Temper - Typical room temperature stress-strain to yield, compressive stress-strain, and compressive tangent modulus curves are shown in Figures 3.7.7.1.6(a) through 3.7.7.1.6(d). Typical full-range stress-strain curves at room temperature are shown in Figure 3.7.7.1.6(e).
3-499
MMPDS-06 1 April 2011 Table 3.7.7.0(b) Design Mechanical and Physical Properties of Specification . . . . . . . . . . . . . AMS 4331 Form . . . . . . . . . . . . . . . . . . . . Extrusions Temper . . . . . . . . . . . . . . . . . T6511 Thickness or Diameter, (in.) . . 0.250-0.749 Basis . . . . . . . . . . . . . . . . . . . . A B Mechanical Properties: Ftu, ksi: L .................... 102 99 LT . . . . . . . . . . . . . . . . . . . 88 91 ST . . . . . . . . . . . . . . . . . . . 89 87 Fty, ksi: L .................... 98 95 LT . . . . . . . . . . . . . . . . . . . 81 83 ST . . . . . . . . . . . . . . . . . . . 81 78 Fcy, ksi: L .................... Y Y LT . . . . . . . . . . . . . . . . . . . Y Y ST . . . . . . . . . . . . . . . . . . . Y Y Fsua, ksi: L-S . . . . . . . . . . . . . . . . . . . Y Y T-S . . . . . . . . . . . . . . . . . . . Y Y S-L . . . . . . . . . . . . . . . . . . . Y Y Fbrub, ksi: L, LT (e/D = 1.5) c . . . . . . . Y Y Y Y L, LT (e/D = 2.0) c . . . . . . . Y Y ST (e/D = 1.5) . . . . . . . . . . Y Y ST (e/D = 2.0) . . . . . . . . . . Fbryb, (e/D = 1.5) ksi: Y Y L, LT (e/D = 1.5) c . . . . . . . Y ... L, LT (e/D = 2.0) c . . . . . . . Y Y ST (e/D = 1.5) . . . . . . . . . . Y Y ST (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): ... 5 L .................... ... ... LT . . . . . . . . . . . . . . . . . . . ... Y ST . . . . . . . . . . . . . . . . . . . E, 103 ksi L .................... 10.6 LT . . . . . . . . . . . . . . . . . . . 10.5 ST . . . . . . . . . . . . . . . . . . . 10.1 Ec, 103 ksi L, LT, & ST . . . . . . . . . . . . 10.7 G, 103 ksi . . . . . . . . . . . . . . . . Y F ..................... Y Physical Properties: ω, lb./in.3 . . . . . . . . . . . . . . C, BTU/(lb)(°F) . . . . . . . . . K, and α . . . . . . . . . . . . . . .
7068 Aluminum Alloy
0.103 (at 68°F) 0.25 (at 212°F) ---
Issued: Oct 2006, MMPDS-03, Item 04-06. a Grain orientation and loading direction per ASTM B769. b Bearing values are "dry pin" values per Section 1.4.7.1. c Lowest reduced ratio of L and LT used to generate minima.
3-500
0.750-3.000 A
B
99 88 87
102 91 89
95 81 78
98 83 81
95 90 86
98 93 89
50 50 50
51 51 52
122 158 123 159
125 163 127 164
107 129 107 130
110 133 111 134
5 ... Y
... ... ...
MMPDS-06 1 April 2011
Figure 3.7.7.1.6(a1) Typical tensile stress-strain curves for 7068-T6511 aluminum alloy extruded bar at room temperature, longitudinal orientation
Figure 3.7.7.1.6(a2) Typical tensile stress-strain curves for 7068-T6511 aluminum alloy extruded bar at room temperature, long and short transverse orientations
3-501
MMPDS-06 1 April 2011
120
t = 0.75 - 3.00 in. 100
t = 0.25 in.
t = 0.25 in.
Stress, ksi
80
7068-T6511 Extruded Bar TYPICAL
60
Longitudinal 40
Ramberg-Osgood CYS (ksi) t = 0.25 in. n = 19 102.0 t = 0.75 - 3.00 in. n1 = 9.3 K1 = 2.339 102.0 n2 = 42 K2 = 2.074
20
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.7.1.6(b) Typical compressive stress-strain and compressive tangent modulus curves for 7068-T6511 aluminum alloy extruded bar in the longitudinal direction at room temperature.
3-502
MMPDS-06 1 April 2011 120
7068-T6511 Extruded Bar t = 0.25 - 3.00 in.
100
Stress, ksi
80
TYPICAL
60
Long Transverse 40
20
Ramberg-Osgood CYS (ksi) t = 0.25 - 3.00 in. n = 29 97.0
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.7.1.6(c). Typical compressive stress-strain and compressive tangent modulus curves for 7068-T6511 aluminum alloy extruded bar in the long transverse direction at room temperature. 120
7068-T6511 Extruded Bar t = 0.25 - 3.00 in.
100
Stress, ksi
80
TYPICAL
60
Short Transverse 40
20
Ramberg-Osgood CYS (ksi) t = 0.25 - 3.00 in. n = 26 92.0
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.7.1.6(d). Typical compressive stress-strain and compressive tangent modulus curves for 7068-T6511 aluminum alloy extruded bar in the short transverse direction at room temperature.
3-503
MMPDS-06 1 April 2011
110
100
Long transverse
X
X
90
X
Longitudinal
Short transverse 80
Stress, ksi
70
60
50
40
30
t = 1.70 - 2.00 in. 7068-T6511 Extruded bar
20
TYPICAL 10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.7.7.1.6(e). Typical tensile stress-strain curves (full range) for 7068-T6511 aluminum alloy extruded bar at room temperature.
3-504
MMPDS-06 1 April 2011 . .
80 7068 Extrusion Kt=1.6 Stress Ratio -1.00 0.00 0.50 Runout →
Maximum Stress, ksi
60
40 → → → →
20
→ Note: Stresses are based on net section.
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.7.1.8(a). Best-fit S/N curve for notched, Kt = 1.6, 7068-T6511 aluminum alloy extrusion, LT direction.
Correlative Information for Figure 3.7.7.1.8(a) Product Form: Extrusions, solution heat treated, stress relieved, and precipitation heat treated
Test Parameters: Loading – Axial Frequency – 60 Hertz Temperature – RT Atmosphere - Air
Properties: UTS = 93.0 ksi, TYS = 85.7 ksi, Elongation = 8.0 %, Gage length = 1.40 inches
No. of Heat/Lots = 1 Equivalent Stress Equation: Log Nf = 9.101-3.498 log (Seq-19.71) Seq = Smax x (1-R)0.424 Std. Error of Estimate, Log (Life) = 10.6 x 1/Seq Std. Deviation, Log (Life) = 0.970 R2 = 90.7%
Specimen Details: Notched, 2 in. x 4.5 in. rectangular bar Surface Condition: Polished Reference: 3.7.7.1.8
Sample Size = 18
3-505
MMPDS-06 1 April 2011 3.7.8 7075 ALLOY 3.7.8.0 Comments and Properties — 7075 is a high-strength Al-Zn-Mg-Cu alloy and is available in a wide variety of product forms. It is also available in several types of tempers, T6, T73, and T76 type. The T6 temper has the highest strength but lowest toughness and resistance to stress corrosion cracking. Since toughness decreases with a decrease in temperature, the T6 temper is not generally recommended for cryogenic applications. As shown in Table 3.1.2.3.1(a), 7075-T6 rolled plate, rod and bar, extruded shapes, and forgings have a “D” SCC rating. This is the lowest rating and means that SCC failures have occurred in service or would be anticipated if there is any sustained stress. In-service failures are caused by stress produced by any combination of sources, including solution heat treatment, straightening, forming, fit-up, clamping, sustained service loads, or high service compression stresses that produce residual tensile stresses. These stresses may be tension or compression, as well as the stresses due to the Poisson effect, because the actual failures are caused by the resulting sustained shear stresses. Pin-hole flaws in corrosion protection are sufficient for SCC. The T73 temper provides for much improved stress-corrosion resistance over T6 temper with a decrease in strength. The T76 temper provides for improved exfoliation resistance and limited stress corrosion resistance over T6 temper with some decrease in strength. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of this alloy. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 7075 aluminum alloy are presented in Table 3.7.8.0(a). Room temperature mechanical and physical properties are shown in Tables 3.7.8.0(b1) through 3.7.8.0(g4). The effect of temperature on the physical properties of this alloy is presented in Figure 3.7.8.0.
Table 3.7.8.0(a). Material Specifications for 7075 Aluminum Alloy Specification Form Bare sheet and plate AMS 4044 Bare sheet and plate AMS 4045 Bare sheet and plate AMS 4315 AMS 4316 Clad sheet and plate AMS 4078 Bare plate Bare sheet and plate AMS-QQ-A-250/12 Clad sheet and plate AMS-QQ-A-250/13 Clad sheet and plate AMS 4049 Bar and rod, rolled or cold finished AMS 4122 Bar and rod, rolled or cold finished AMS 4123 Bar and rod, rolled or cold finished AMS 4124 AMS 4186 Bar and rod, rolled or cold finished AMS-QQ-A-225/9 Rolled or drawn bar and rod Extruded bar, rod, and shapes AMS-QQ-A-200/11, 15 Forging AMS 4126 Extrusion AMS 4166 Extrusion AMS 4167
3-506
MMPDS-06 1 April 2011 Table 3.7.8.0(a). Material Specifications for 7075 Aluminum Alloy Continued
Specification AMS 4141 AMS 4147 AMS-A-22771a AMS-QQ-A-367 a
Form Die forging Forging Forging Forging
a Inactive for new design.
The temper index for 7075 is as follows: Temper
Section 3.7.8.1 3.7.8.2
T6, T651, T652, T6510, T6511 T73, T7351, T7352, T73510, T73511
3-507
MMPDS-06 1 April 2011
. Table 3.7.8.0(b1). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Sheet
Specification . . . . .
AMS 4045 and AMS-QQ-A-250/12a
Form . . . . . . . . . . .
Sheet
Temper . . . . . . . . .
T6 and T62b
Thickness, in. . . . .
0.0080.011
Basis . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L (S-basis) . . . . . LT . . . . . . . . . . . Fty, ksi: L (S-basis) . . . . . LT . . . . . . . . . . Fcy, ksi: L (S-basis) . . . . . LT (S-basis) . . . ST . . . . . . . . . . . Fsuc, ksi (S-basis): Fbruc, d, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . Fbryc, d, ksi: (e/D = 1.5) . . . . (e/D = 2.0) . . . . e, percent (S-basis): LT . . . . . . . . . . .
0.012-0.039
0.040-0.125
0.126-0.249e
S
A
B
A
B
A
B
... 74
... 76
... 78
78 78
... 80
... 78
... 80
... 63
... 67
... 70
69 68
... 70
... 69
... 71
... ... ... ...
... ... ... ...
... ... ... ...
68 73 ... 47
... ... ... ...
... ... ... ...
... ... ... ...
... ...
... ...
... ...
116 146
119 150
... ...
... ...
... ...
... ...
... ...
95 108
98 111
... ...
... ...
5
7e
...
8e
...
8e
...
3
E, 10 ksi . . . . . . . Ec, 103 ksi . . . . . . G, 103 ksi . . . . . . µ .............
10.3 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . C, K, and α . . . . .
0.101 See Figure 3.7.7.0
Last Revised: Apr 2010, MMPDS-05, Item 09-29 a Mechanical properties were established under QQ-A-250/12. b Design allowables were based upon data obtained from testing T6 temper sheet and from testing samples of sheet, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper, prior to solution heat treatment. c Grain direction unknown. d Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1. e AMS 4045 specification minimums are higher than QQ-A-250/12 for these thickness ranges.
3-508
Table 3.7.8.0(b2). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Sheet and Plate AMS 4045 and AMS-QQ-A-250/12a
Specification . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . . . .
T651
Thickness, in. . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . .
3
E, 10 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ....................
0.500-1.000
1.001-2.000
2.0012.500
2.5013.000
3.0013.500
3.5014.000
A
B
A
B
A
B
A
B
A
B
A
B
A
B
77 78 ...
79 80 ...
77 78 ...
79 80 ...
76 77 ...
78 79 ...
75 76 70b
77 78 71b
71 72 66b
73 74 68b
70 71 65b
72 73 67b
66 67 61b
68 69 63b
69 67 ...
71 69 ...
70 68 ...
72 70 ...
69 67 ...
71 69 ...
66 64 59b
68 66 61b
63 61 56b
65 63 58b
60 58 54b
62 60 55b
56 54 50b
58 56 52b
67 71 ... 43
69 73 ... 44
68 72 ... 44
70 74 ... 45
66 71 ... 44
68 73 ... 45
62 68 67 44
64 70 70 45
58 65 64 42
60 67 66 43
55 61 61 42
57 64 63 43
51 57 57 39
52 59 59 41
117 145
120 148
117 145
120 148
116 143
119 147
114 141
117 145
108 134
111 137
107 132
110 135
101 124
104 128
97 114
100 118
100 117
103 120
100 117
103 120
98 113
101 117
94 109
97 112
89 104
93 108
84 98
87 103
9
...
7
...
6
...
5
...
5
...
5
...
3
...
10.3 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . Revised: Apr 2008, MMPDS-04, Item 05-14 a Mechanical properties were established under MIL-QQ-A-250/12. b Caution: This specific alloy, temper, and product form exhibits poor stress-corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). c Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
MMPDS-06 1 April 2011
3-509
Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . Fsu, ksi: L & LT . . . . . . . . Fbruc ksi: L & LT (e/D = 1.5) . . . L & LT (e/D = 2.0) . . . Fbryc, ksi: L & LT (e/D = 1.5) . . . L & LT (e/D = 2.0) . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . .
0.250-0.499
Table 3.7.8.0(b3). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Plate (Continued) AMS 4044 and AMS-QQ-A-250/12a
Specification . . . . . . . .
AMS-QQ-A-250/12a
Form . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . .
T62b 0.250-0.499
0.500-1.000
1.001-2.000
2.001-2.500
2.501-3.000
3.001-3.500
Basis . . . . . . . . . . . . . .
A
B
A
B
A
B
A
B
A
B
A
B
A
B
74 78 ...
76 80 ...
74 78 ...
76 80 ...
73 77 ...
75 79 ...
72 76 70c
74 78 71c
69 72 66c
71 74 68c
68 71 65c
70 73 67c
64 67 61c
66 69 63c
65 67 ...
67 69 ...
66 68 ...
68 70 ...
64 67 ...
65 69 ...
60 64 59c
62 66 61c
56 61 56c
58 63 58c
52 58 54c
54 60 55c
48 54 50c
49 56 52c
70 70 ... 43
72 72 ... 44
70 71 ... 44
72 73 ... 45
68 68 ... 44
70 71 ... 45
63 65 63 44
65 67 65 45
59 61 60 42
61 63 62 43
55 57 57 42
57 59 59 43
50 52 53 39
52 54 55 41
117 145
120 148
117 145
120 148
116 143
119 147
114 141
117 145
108 134
111 137
107 132
110 135
101 124
104 128
97 114
100 118
100 117
103 120
100 117
103 120
98 113
101 117
94 109
97 112
89 104
93 108
84 98
87 103
9
...
7
...
6
...
5
...
5
...
5
...
3
...
Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbrud, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryd, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . µ ................ Physical Properties: ω, lb/in.3 . . . . . . . . . . C, K, and α . . . . . . . . a b c d
3.501-4.000
10.3 10.6 3.9 0.33 0.101 See Figure 3.7.8.0
Mechanical properties were established under MIL-QQ-A-250/12. Design allowables were based upon data obtained from testing samples of plate, supplied in O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper, prior to solution heat treatment. Caution: This specific alloy, temper, and product form exhibits poor stress-corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
MMPDS-06 1 April 2011
3-510
Thickness, in. . . . . . . .
Continued on next page
and Physical Properties of 7075 Aluminum Alloy Sheet and Plate (Continued) AMS 4078 and AMS-QQ-A-250/12a Plate T7351 0.250-0.499
0.500-1.000
1.001-1.500 1.501-2.000 2.001-2.500 2.501-3.000 3.001-3.500
3.501-4.000
A
B
A
B
A
B
A
B
71
66
69
72 68
66d 62
69 65
64 64d 60
67 67 63
63 63d 59
66 66 62
61 61d 58
64 64 60
57 57e 54
60 60 57
52 52f 50
57 57 54
49 49f 47
55 55 53
49 49f 47
54 54 52
48 48 46
51 51 49
60 63 ...
56 59 61
58 62 64
55 59 61
40 39
41 41
40 40
42 42
50 54 55 39
53 57 58 40
47 51 50 38
38
40
38
52 56 56 40 40
46 50 48 37
39
41 41
47 51 51 38
37
48 53 52 39 39
107 108
104 105
109 110
106 106
110 111
102 103
107 107
100 101
105 105
99 100
104 104
96 97
101 102
132 133
138 139
134 135
140 141
136 136
142 142
132 132
138 138
129 129
135 135
127 128
134 134
124 124
130 130
86 85
81 81
87 86
83 83
89 89
85 85
89 89
79 79
87 86
76 76
85 85
76 77
84 84
76 76
81 81
96 97
102 104
97 98
104 105
99 101
106 108
101 103
106 108
93 95
102 104
89 91
100 102
90 92
99 101
88 91
94 96
7
...
7
...
6
...
6
...
6
...
6
...
6
...
6
...
A
B
A
B
A
B
A
B
68 69 ...
71
69
72 ...
69c ...
71
69
72 ...
69c ...
71
69
72 ...
69c 65
57 57 ...
60
57 57e ...
61 61 ...
57 57e ...
61 61 ...
56 59 ... 39
59 62 ... 40
56 59 ...
60 63 ...
56 59 ...
38
40
39 38
41 40
102 103
107 107
103 103
131 132
137 138
80 80
60 ...
10.3 10.6 3.9 0.33
MMPDS-06 1 April 2011
3-511
Table 3.7.8.0(b4). Design Mechanical AMS-QQ-ASpecification ....................... 250/12a Form ................................... Sheet Temper ................................ T73 Thickness, in. ...................... 0.040-0.249 Basis ................................... A B Mechanical Properties: Ftu, ksi: L .................................... 67b ... LT .................................. 67 69 ST .................................. ... ... Fty, ksi: L .................................... 55b ... LT .................................. 55 57 ST .................................. ... ... Fcy, ksi: L .................................... 54 56 LT .................................. 57 59 ST .................................. ... ... Fsu, ksi L ........................... 38g 39g Fsu, ksi LT ........................ 38g 39g Fbruh, ksi (e/D = 1.5): L..................................... 105g 108g LT................................... 105g 108g h Fbru , ksi (e/D = 2.0): 134g 138g L..................................... LT................................... 134g 138g h Fbry , ksi (e/D = 1.5): L..................................... 83g 86g LT................................... 83g 86g h Fbry , ksi (e/D = 2.0): L..................................... 100g 104g g LT................................... 100 104g e, percent (S-Basis): LT .................................. 8 ... 3 E, 10 ksi ...................... 10.3 Ec, 103 ksi ..................... 10.5 G, 103 ksi ...................... 3.9 µ .................................... 0.33
Table 3.7.8.0(b4). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Sheet and Plate (Continued)
Physical Properties: ω, lb/in.3 ................. C, K, and α..............
0.101 See Figure 3.7.8.0
Issued: Sep 1971, MIL-HDBK-5B, Item 66-19; Last revised: Apr 2009, MMPDS-04CN1, Item 08-11. Properties for plate product were last confirmed and updated in Item 08-11 based on current production, and included in MMPDS-04CN1. a b c d
Mechanical properties were established under QQ-A-250/12. S-Basis. A-Basis value is specification minimum. The rounded Ftu(LT) T99 values are as follows: 0.500-2.000 in. = 70 ksi. A-Basis value is specification minimum. The rounded Ftu(LT) T99 values are as follows: 2.000-2.500 in. = 68 ksi, 2.501-3.000 in. = 66 ksi, 3.001-3.500 in. = 65 ksi, and 3.501-4.000 in. = 62 ksi. e A-Basis value is specification minimum. The rounded Fty(LT) T99 values are as follows: 0.500-1.500 in. = 60 ksi and 1.501-2.000 in. = 59 ksi. f A-Basis value is specification minimum. The rounded Fty(LT) T99 value is as follows: 2.001-2.500 in. = 56 ksi, 2.501-3.000 in. = 53 ksi, and 3.001-3.500 in. = 52 ksi. g Allowables are the lowest of the L and LT orientations. The original reduced ratios for the individual orientations are unknown for shear and bearing sheet properties. h Bearing values are "dry pin" values per Section 1.4.7.1. See Table 3.1.2.1.1.
MMPDS-06 1 April 2011
3-512
MMPDS-06 1 April 2011 Table 3.7.8.0(b5). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Sheet and Plate (Concluded)
Specification ...............
AMS 4315a
Form ...........................
Sheet and plate
Temper .......................
T76
Thickness, in. .............
0.063-0.249
0.250-0.499
0.500-1.000
1.001-1.500
1.501-2.000
Basis ...........................
S
S
S
S
S
72 73 ...
71 72 ...
70 71 ...
70 71 ...
70 71 65
62 62 ...
60 61 ...
59 60 ...
59 60 ...
59 60 56
61 65 ... 42
60 64 ... 40
59 63 ... 41
59 63 ... 42
59 63 63 43
112 145
109 141
108 140
108 140
108 140
88 102
86 99
86 99
86 99
87 100
8
8
6
5
5
Mechanical Properties: Ftu, ksi: L ........................... LT ........................ ST ......................... Fty, ksi: L ........................... LT ........................ ST ......................... Fcy, ksi: L ........................... LT ........................ ST ......................... Fsu, ksi ..................... Fbrub, ksi: (e/D = 1.5) ........... (e/D = 2.0) ........... Fbryb, ksi: (e/D = 1.5) ........... (e/D = 2.0) ........... e, percent: LT ........................ 3
E, 10 ksi ................. Ec, 103 ksi ............... G, 103 ksi ................ µ ...............................
T7651
10.3 10.5 3.9 0.33
10.3 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 .................. C, K, and α .............
0.101 See Figure 3.7.8.0
Last Revised: Apr 2011, MMPDS-06, Item 10-01. a Mechanical properties were established under QQ-A-250/24. b Bearing values are ""dry pin"" values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-513
MMPDS-06 1 April 2011
Table 3.7.8.0(c1). Design Mechanical and Physical Properties of Clad 7075 Aluminum Alloy Sheet
Specification . . . . . . .
AMS 4049
Form . . . . . . . . . . . . . .
Sheet
Temper . . . . . . . . . . . .
T6
Thickness, in. . . . . . .
0.0080.011
Basis . . . . . . . . . . . . . .
S
A
B
A
B
A
B
A
B
... 68
... 71
.. 74
71 71
... 75
74 74a
... 77
... 75
... 77
... 58
... 60
... 63
62 61
... 64
65 64
... 67
... 64
... 66
... ... ...
... ... ...
... ... ...
61 65 43
.. ... ...
64 68 45
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
105 133
111 140
110 139
114 144
... ...
... ...
... ...
... ...
... ...
85 96
90 101
90 101
94 106
... ...
... ...
5
8
...
9
...
9
...
9
...
Mechanical Properties: Ftu, ksi: L (S-Basis) . . . . . . LT . . . . . . . . . . . . . Fty, ksi: L (S-Basis) . . . . . . LT . . . . . . . . . . . . . Fcy, ksi: (S-Basis) L .............. LT . . . . . . . . . . . . . Fsu, ksi (S-Basis) . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . .
0.0120.039
0.0400.062
0.0630.187
0.1880.249
3
E, 10 ksi: Primary . . . . . . . . . Secondary . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . Secondary . . . . . . . G, 103 ksi . . . . . . . . . µ ...............
10.3 9.5
10.3 9.8
10.3 10.0
10.5 9.7 ... 0.33
10.5 10.0 ... 0.33
10.5 10.2 ... 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . .
0.101 ...
Last Revised: Apr 2011, MMPDS-06, Item 10-18 a A-Basis value is specification minimum. The rounded T99 value is 75 ksi. b Bearing values are "dry pin" values per Section 1.4.7.1.
3-514
MMPDS-06 1 April 2011
Table 3.7.8.0(c2). Design Mechanical and Physical Properties of Clad 7075 Aluminum Alloy Sheet (Continued) Specification . . . . . . . AMS-QQ-A-250/13a Form . . . . . . . . . . . . . . Sheet Temper . . . . . . . . . . . . T6 and T62b Thickness, in. . . . . . . . 0.0080.011 0.012-0.039 0.040-0.062 0.063-0.187 0.188-0.249 Basis . . . . . . . . . . . . . . S A B A B A B A B Mechanical Properties: Ftu, ksi: L (S-Basis) . . . . . . ... 71 ... 73 ... ... ... ... ... LT . . . . . . . . . . . . 74 71 75 73d 77 75 77 68 70c Fty, ksi: L (S-Basis) . . . . . . ... ... 62 ... 64 ... ... ... ... LT . . . . . . . . . . . . 60 63e 63 61 64 67 64 66 58 Fcy, ksi:(S-Basis) L ............. ... ... 61 ... 63 ... ... ... ... LT . . . . . . . . . . . . ... ... 65 ... 67 ... ... ... ... Fsu, ksi (S-Basis) . . . ... 43 ... ... ... ... ... 44 ... Fbruf, ksi: (e/D = 1.5) . . . . . ... ... 105 111 108 114 ... ... ... (e/D = 2.0) . . . . . ... ... 133 140 137 144 ... ... ... Fbryf, ksi: ... ... 85 90 88 94 ... ... (e/D = 1.5) . . . . . ... ... 100 ... 96 101 106 ... ... ... (e/D = 2.0) . . . . . e, percent (S-Basis): 7 ... 8 ... 8 ... 8 ... LT . . . . . . . . . . . . 5 3 E, 10 ksi: Primary . . . . . . . . 10.3 10.3 10.3 Secondary . . . . . . 9.5 9.8 10.0 Ec, 103 ksi: Primary . . . . . . . . 10.5 10.5 10.5 Secondary . . . . . . 9.7 10.0 10.2 G, 103 ksi . . . . . . . . ... ... ... µ ............... 0.33 0.33 0.33 Physical Properties: 0.101 ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . ... Last Revised: Apr 2011, MMPDS-06, Item 10-18 a Mechanical properties were established under QQ-A-250/13. b Design allowables were based upon data obtained from testing T6 temper sheet and from testing samples of sheet, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained may be lower than those listed if the material has been formed or otherwise cold worked, particularly in the annealed temper, prior to solution heat treatment. c A-Basis value is specification minimum. The rounded T99 value is 71 ksi. d A-Basis value is specification minimum. The rounded T99 value is 75 ksi. e A-Basis value is specification minimum. The rounded T99 value is 64 ksi. f Bearing values are "dry pin" values per Section 1.4.7.1.
3-515
and Physical Properties of Clad 7075 Aluminum Alloy Plate (Continued) AMS 4049 and AMS-QQ-A-250/13a Plate T651 1.001-2.000b 2.001-2.500b 2.501-3.000b 3.001-3.500b 0.500-1.000b A B A B A B A B A B
3.501-4.000b A
B
75 76 ...
77 78 ...
74 75 ...
76 77 ...
73 74 70c
75 76 71c
69 70 66c
71 72 68c
68 69 65c
70 71 67c
64 65 61c
66 67 63c
68 66 ...
70 68 ...
67 65 ...
69 67 ...
64 62 59c
66 64 61c
61 59 56c
63 61 58c
58 56 54c
60 58 55c
54 52 50c
56 54 52c
66 70 ... 42
68 72 ... 44
64 69 ... 42
66 71 ... 44
60 65 67 43
62 68 70 44
57 62 64 41
58 64 66 42
53 59 61 40
55 61 63 42
49 55 57 38
51 57 59 39
114 141
117 145
113 139
116 143
111 137
114 141
105 130
108 134
104 128
107 132
98 121
101 124
97 113
100 116
97 113
100 117
95 110
98 113
90 105
94 109
86 100
89 104
80 93
84 97
7
...
6
...
5
...
5
...
5
...
3
...
10.3 10.0 10.6 10.3 ... 0.33 0.101 ...
Revised: Apr 2008, MMPDS-04, Item 05-14 a Mechanical properties were established under QQ-A-250/13. b These values, except in the ST direction, have been adjusted to represent the average properties across the whole section, including the 1½ percent per side nominal cladding thickness. c Caution: This specific alloy, temper, and product form exhibits poor stress-corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). d Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1
MMPDS-06 1 April 2011
3-516
Table 3.7.8.0(c3). Design Mechanical Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . 0.250-0.499 Basis . . . . . . . . . . . . . . . . . A B Mechanical Properties: Ftu, ksi: L ................. 74 76 LT . . . . . . . . . . . . . . . 75 77 ST . . . . . . . . . . . . . . . . ... ... Fty, ksi: L ................. 67 69 LT . . . . . . . . . . . . . . . 65 67 ST . . . . . . . . . . . . . . . . ... ... Fcy, ksi: L ................. 65 67 LT . . . . . . . . . . . . . . . 69 71 ST . . . . . . . . . . . . . . . . ... ... Fsu, ksi L & LT . . . . . . . . 42 43 Fbrud, ksi: L & LT (e/D = 1.5) . . . 113 116 L & LT (e/D = 2.0) . . . 139 143 Fbryd, ksi: L & LT (e/D = 1.5) . . . 94 97 L & LT (e/D = 2.0) . . . 111 114 e, percent (S-Basis): LT . . . . . . . . . . . . . . . 9 ... 3 E, 10 ksi: Primary . . . . . . . . . . . Secondary . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . Secondary . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . .
and Physical Properties of Clad 7075 Aluminum Alloy Plate (Continued) AMS-QQ-A-250/13a Plate T62b 0.500-1.000c 1.001-2.000c 2.001-2.500c 2.501-3.000c 3.001-3.500c A B A B A B A B A B
3.501-4.000c A
B
72 76 ...
74 78 ...
72 75 ...
73 77 ...
71 74 70d
72 76 71d
67 70 66d
69 72 68d
66 69 65d
68 71 67d
62 65 61d
64 67 63d
64 66 ...
66 68 ...
62 65 ...
64 67 ...
58 62 59d
60 64 61d
54 59 56d
56 61 58d
50 56 54d
52 58 55d
46 52 50d
48 54 52d
68 69 ... 42
70 71 ... 44
66 66 ... 42
68 68 ... 44
62 62 63 43
63 65 65 44
57 59 60 41
59 61 62 42
53 55 57 40
55 57 59 42
48 50 53 38
50 52 55 39
114 141
117 145
113 139
116 143
111 137
114 141
105 130
108 134
104 128
107 132
98 121
101 124
97 113
100 116
97 113
100 117
95 110
98 113
90 105
94 109
86 100
89 104
80 93
84 97
7
...
6
...
5
...
5
...
5
...
3
...
10.3 10.0 10.6 10.3 3.9 0.33 0.101 ...
Revised: Apr 2008, MMPDS-04, Item 05-14 a Mechanical properties were established under QQ-A-250/13. b Design allowables were based upon data obtained from testing samples of plate, supplied in the O or F temper, which were heat treated to demonstrate response to heat treatment by suppliers. Properties obtained may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper, prior to solution heat treatment. c These values, except in the ST direction, have been adjusted to represent the average properties across the whole section. d Caution: This specific alloy, temper, and product form exhibits poor stress-corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). e Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
MMPDS-06 1 April 2011
3-517
Table 3.7.8.0(c4). Design Mechanical Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . 0.250-0.499 Basis . . . . . . . . . . . . . . . . . A B Mechanical Properties: Ftu, ksi: L ................. 72 73 LT . . . . . . . . . . . . . . . 75 77 ST . . . . . . . . . . . . . . . . ... ... Fty, ksi: L ................. 63 65 LT . . . . . . . . . . . . . . . 65 67 ST . . . . . . . . . . . . . . . . ... ... Fcy, ksi: L ................. 68 70 LT . . . . . . . . . . . . . . . 68 70 ST . . . . . . . . . . . . . . . . ... ... Fsu, ksi L & LT . . . . . . . . 42 43 Fbrue, ksi: L & LT (e/D = 1.5) . . . 113 116 L & LT (e/D = 2.0) . . . 139 143 Fbrye, ksi: L & LT (e/D = 1.5) . . . 94 97 L & LT (e/D = 2.0) . . . 111 114 e, percent (S-Basis): LT . . . . . . . . . . . . . . . 9 ... 3 E, 10 ksi: Primary . . . . . . . . . . . Secondary . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . Secondary . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . .
MMPDS-06 1 April 2011
Table 3.7.8.0(c5). Design Mechanical and Physical Properties of Clad 7075 Aluminum Alloy Sheet and Plate (Concluded)
Specification Form
AMS 4316a
..................
...........................
Temper
........................
Thickness, in,. . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .......................... LT . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi: Primary . . . . . . . . . . . . . . . . . . . Secondary . . . . . . . . . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . . . . . . . . . Secondary . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . µ .......................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . .
Sheet
Plate
T76
T7651
0.0400.062 S
0.0630.187 S
0.1880.249 S
0.2500.499 S
0.5001.000b S
66 67
67 68
69 70
68 69
68 68
56 56
57 57
59 59
58 58
57 57
55 59 41
56 60 40
58 62 40
57 60 40
56 59 40
103 133
104 135
107 139
105 133
103 131
80 92
81 94
84 97
87 104
87 103
8
8
8
8
6
10.3 9.8
10.3 10.0
10.3 10.0
10.5 10.0 ... 0.33
10.5 10.2 ... 0.33
10.6 10.3 ... 0.33
0.101 ...
Last Revised: Apr 2011, MMPDS-06, Item 10-01. a Mechanical properties were established under QQ-A-250/25. b These values have been adjusted to represent the average properties across the whole section, including the 1½½ percent per side nominal cladding thickness. c Bearing values are ""dry pin"" values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-518
MMPDS-06 1 April 2011
Table 3.7.8.0(d). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Bar, Rod, and Shapes: Rolled, Drawn, or Cold-Finished Specification . . . . . . .
AMS 4122, AMS 4123, AMS 4186, and AMS-QQ-A-225/9a
Form . . . . . . . . . . . . .
Bar, rod, and shapes: rolled, drawn, or cold-finished T6, T651, and T62b
Temper . . . . . . . . . . . Thicknessd, in. . . . . . Basis . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............. LT . . . . . . . . . . . . Fty, ksi: L ............. LT . . . . . . . . . . . . Fcy, ksi: L ............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbrug, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbryg, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent (S-Basis): L .............
1.0012.000
#1.000
a b c d e f g
T73c or T7351
2.0013.000
3.0014.000
0.375- 2.0012.000 3.000
A
B
A
B
A
B
A
B
S
S
77 77e
79 79e
77 75e
79 77e
77 72e
79 74e
77 69e
79 71e
68 ...
68 65f
66 66e
68 68e
66 66e
68 68e
66 63e
68 65e
66 60e
68 62e
56 ...
56 52f
64 ... 46
66 ... 47
64 ... 46
66 ... 47
64 ... 46
66 ... 47
64 ... 46
66 ... 47
54 ... 42
54 55f 40
100 123
103 126
100 123
103 126
100 123
103 126
100 123
103 126
101 131
101 131
86 92
88 95
86 92
88 95
86 92
88 95
86 92
88 95
81 100
81 100
7
...
7
...
7
...
7
...
10
10
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . . µ .............. Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . . .
AMS 4124 and AMS-QQ-A225/9a
10.3 10.5 3.9 0.33 0.101 See Figure 3.7.8.0
Mechanical properties were established under QQ-A-225/9. Design allowables were based upon data obtained from testing of T6 and T651 material and from samples of material, supplied in the O or F temper, which were heat treated to T62 temper to demonstrate response to heat treatment by suppliers. Design allowables were based upon data obtained from testing T73 and T7351 temper material and from testing samples of material, supplied in the O or F temper, which were heat treated to T73 temper to demonstrate response to heat treatment by suppliers. For rounds (rod) maximum diameter is 4 inches; for square bar, maximum size is 3½ inches; for rectangular bar, maximum thickness is 3 inches with corresponding width of 6 inches; for rectangular bar less than 3 inches in thickness, maximum width is 10 inches. Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). ST grain direction. Bearing values are “dry pin” values per Section 1.4.7.1.
3-519
Table 3.7.8.0(e1). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Die Forging
AMS 4126, AMS-A-22771a, and QQ-A-367b
Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . . Thicknessd, in.
.........
Die forging c
#1.000 A B
T6 1.0012.000 A B
T652 2.0013.000 A B
75 71f
78 ...
74 71f
77 ...
74 70f
76 ...
64 61f
67 ...
63 61f
66 ...
63 60f
67 64 43
70 68 45
66 64 43
69 67 44
105 135
109 140
104 133
83 96
87 100
7 3
... ...
3.0014.000 S
1.0012.000
2.0013.000
#1.000 A B
A
B
A
B
3.001-4.000 S
73 70
75 71f
78 ...
74 71f
77 ...
74 70f
76 ...
73 70
65 ...
62 60
64 60f
67 ...
63 60f
66 ...
63 59f
65 ...
62 59
66 63 42
68 66 43
65 63 42
64 65 43
67 69 45
63 65 43
66 68 44
63 64 42
65 67 43
62 64 42
108 138
104 133
106 136
102 131
105 135
109 140
104 133
108 138
104 133
106 136
102 131
82 94
86 99
82 94
84 97
81 93
83 96
87 100
82 94
86 99
82 94
84 97
81 93
7 3
... ...
7 3
... ...
7 2
7 3 10.0 10.4 3.8 0.33
... ...
7 3
... ...
7 3
... ...
7 2
0.101 See Figure 3.7.8.0
a AMS-A-22771inactive for new design. Mechanical properties were established under MIL-A-22771. b AMS-QQ-A-367 inactive for new design. Mechanical properties were established under QQ-A-367. c When die forgings are machined before heat treatment, the mechanical properties are applicable, provided the as-forged thickness is not greater than twice the thickness at time of heat treatment d Thickness at the time of heat treatment. e T indicates any grain direction not within ±15E of being parallel to the forging flow lines. Fcy(T) values are based upon short transverse (ST) test data. f S-Basis specification value. T tensile properties are presented on an S-Basis only. g Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-520
Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................... Te . . . . . . . . . . . . . . . . . . . . Fty, ksi: L .................... Te . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .................... ST . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbrug, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbryg, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): L .................... Te . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ...................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
AMS-A-22771a and QQ-A-367b
MMPDS-06 1 April 2011 Table 3.7.8.0(e2). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Die Forging (Continued) AMS 4147, AMS-A-22771 a, Specification . . . . . . . . . . AMS 4141, AMS-A-22771a, and AMS-QQ-Aand AMS-QQ-A367 b 367 b AMS 4141 Form . . . . . . . . . . . . . . . . . . . Die forging T7352 Temper . . . . . . . . . . . . . . . . T73c,d 1.0012.0013.0014.001- 5.0013.001Thicknesse, in. . . . . . . . . . #1.000 2.000 3.000 4.000 5.000 6.000 #3.000 4.000 Basis . . . . . . . . . . . . . . . . . . . A B A B A B A B S S A B S Mechanical Properties: Ftu, ksi: L . . . . . . . . . . . . . . . . . . . 66f 71 66 f 71 66 69 64f 69 62 64 61 66g 69 h i i i i T . . . . . . . . . . . . . . . . . . 62 ... 62 ... 62 ... 61 ... 62i ... 59 58 61 Fty, ksi: L . . . . . . . . . . . . . . . . . . . 56f 61 56 59 56 59 55 f 59 53 56 59 53 51 Th . . . . . . . . . . . . . . . . . . 53i 53i ... 53i ... 52i ... 51i ... ... 51 50 49 Fcy, ksi: L . . . . . . . . . . . . . . . . . . . 58 56 63 58 61 58 61 57 61 59 ... ... 53 Th . . . . . . . . . . . . . . . . . . 55 55 60 55 59 55 59 54 58 ... 60 53 ... Fsu, ksi . . . . . . . . . . . . . . . 39 42 39 42 39 41 38 41 39 41 ... 38 ... Fbruj, ksi: (e/D = 1.5) . . . . . . . . . 96 103 96 103 96 100 93 100 96 100 ... 93 ... (e/D = 2.0) . . . . . . . . . 125 135 125 135 125 131 122 131 125 131 122 ... ... Fbryj, ksi: 85 78 83 78 83 77 83 83 ... 74 ... (e/D = 1.5) . . . . . . . . . 78 78 98 90 94 90 94 88 94 ... ... 94 85 90 (e/D = 2.0) . . . . . . . . . 90 e, percent (S-Basis): ... ... ... ... ... 7 6 7 L ................... 7 7 7 7 7 ... ... ... ... 2 ... 2 2 Th . . . . . . . . . . . . . . . . . . 3 3 3 2 3 3 E, 10 ksi . . . . . . . . . . . . 10.0 Ec, 103 ksi . . . . . . . . . . . . 10.4 G, 103 ksi . . . . . . . . . . . . 3.8 0.33 µ ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . 0.101 C, K, and α . . . . . . . . . . See Figure 3.7.8.0 a AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. b AMS-QQ-A-367 inactive for new design. Mechanical properties were established under QQ-A-367. c When die forgings are machined before heat treatment, the mechanical properties are applicable, provided the as-forged thickness is not greater than twice the thickness at the time of heat treatment. d Design allowables were based upon data obtained from testing die forgings, heat treated by suppliers, and supplied in T73 temper. e Thickness at the time of heat treatment. f A-Basis value is specification minimum. Rounded T99 values for T73 temper #1.000 in., Ftu = 68 ksi, for Fty = 57 ksi; 1.001-2.000 in.,Ftu = 68 ksi; 3.001-4.000 in., Ftu = 66 ksi, for Fty = 56 ksi. g A-Basis value is specification minimum. Rounded T99 values for T7352 temper, Ftu #1.000 inch = 67 ksi. h When AMS-A-22771 or AMS-QQ-A-367 apply, T indicates any grain direction not within ±15E of being parallel to the forging flow lines. Fcy (T) values are based upon short transverse (ST) test data. When AMS 4141 applies, T indicates any grain direction within ±15E of being perpendicular to the forging flow lines. i Specification value. T tensile properties are presented on an S-Basis only. j Bearing values are “dry pin” values per Section 1.4.7.1.
3-521
a AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. b AMS-QQ-A-367 inactive for new design. Mechanical properties were established under QQ-A-367. c When hand forgings are machined before heat treatment, the section thickness at time of heat treatment shall determine the minimum mechanical properties as long as the original (as-forged) thickness does not exceed the maximum thickness of the alloy, as shown in the table. The maximum cross-sectional area of hand forgings is 256 sq in. d Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a).
MMPDS-06 1 April 2011
3-522
Table 3.7.8.0(f1). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Hand Forging Specification . . . . . . . . . . AMS 4126, AMS-A-22771a, and AMS-QQ-A-367b AMS-A-22771a and AMS-QQ-A-367b Form . . . . . . . . . . . . . . . . Hand forging c Temper . . . . . . . . . . . . . . T6 T652 Thickness, in. . . . . . . . . . #2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000 #2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000 Basis . . . . . . . . . . . . . . . . S S S S S S S S S S Mechanical Properties: Ftu, ksi: L ................. 71 69 68 74 71 69 68 73 74 73 LT . . . . . . . . . . . . . . . 70 68 66 73 70 68 66 71 73 71 ST . . . . . . . . . . . . . . . . 68d 66d 65d ... 68d 66d 65d 69d ... 69d Fty, ksi: L ................. 61 60 58 56 61 60 58 56 63 63 LT . . . . . . . . . . . . . . . 59 58 56 55 61 59 58 56 55 61 ST . . . . . . . . . . . . . . . . 58d 57d 56d 55d ... 57d 56d 55d 54d ... Fcy, ksi: L ................. 61 ... ... ... 63 61 ... ... ... 63 59 ... ... ... 59 ... ... ... LT . . . . . . . . . . . . . . . 61 61 Fsu, ksi . . . . . . . . . . . . . . 44 43 41 41 44 44 43 41 41 44 Fbru, ksi: ... ... ... ... ... ... ... ... ... (e/D = 1.5) . . . . . . . . . ... ... ... ... ... ... ... ... ... ... (e/D = 2.0) . . . . . . . . . ... Fbry, ksi: ... ... ... ... ... ... ... ... ... (e/D = 1.5) . . . . . . . . . ... ... ... ... ... ... ... ... ... ... (e/D = 2.0) . . . . . . . . . ... e, percent: 9 8 7 6 9 8 7 6 9 L ................. 9 4 3 3 3 4 4 3 3 3 LT . . . . . . . . . . . . . . . 4 3 2 2 2 ... 2 1 1 1 ST . . . . . . . . . . . . . . . . ... 3 E, 10 ksi . . . . . . . . . . . . 10.0 Ec, 103 ksi . . . . . . . . . . . 10.4 G, 103 ksi . . . . . . . . . . . . 3.8 µ .................. 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . 0.101 C, K, and α . . . . . . . . . . See Figure 3.7.8.0
a AMS-A-22771 inactive for new design. Mechanical properties were established under MIL-A-22771. b AMS-QQ-A-367 inactive for new design. Mechanical properties were established under. c When hand forgings are machined before heat treatment, the section thickness at time of heat treatment shall determine the minimum mechanical properties as long as the original (as-forged) thickness does not exceed the maximum thickness for the alloy, as shown in the table. The maximum cross-sectional area of hand forgings is 256 sq. in. d Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-523
Table 3.7.8.0(f2). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Hand Forging (Continued) Specification . . . . . . . . . . AMS-A-22771a and AMS-QQ-A-367b AMS 4147, AMS-A-22771a, and AMS-QQ-A-367b Form . . . . . . . . . . . . . . . . Hand forging T7352 Temper . . . . . . . . . . . . . . T73c Thickness, in. . . . . . . . . . #2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000 #2.000 2.001-3.000 3.001-4.000 4.001-5.000 5.001-6.000 Basis . . . . . . . . . . . . . . . . S S S S S S S A B S S Mechanical Properties: Ftu, ksi: L ................. 61 62 67 64 66 66 61 62 64 66 66 LT . . . . . . . . . . . . . . . 59 61 66 63 64 64 59 61 63 64 64 ST . . . . . . . . . . . . . . . . 57 58 63 60 61 ... 57 58 60 61 ... Fty, ksi: L ................. 49 51 55 53 54 54 51 53 55 56 56 LT . . . . . . . . . . . . . . . 46 48 53 50 52 52 50 51 53 54 54 ST . . . . . . . . . . . . . . . . 44 46 51 48 50 ... 49 50 51 52 ... Fcy, ksi: L ................. 46 49 55 52 55 55 ... ... ... 56 56 LT . . . . . . . . . . . . . . . 46 49 55 52 55 55 ... ... ... 52 52 ST . . . . . . . . . . . . . . . . 49 51 56 53 55 55 ... ... ... ... ... Fsu, ksi: L ................. 36 37 40 38 39 39 ... ... ... 39 39 LT . . . . . . . . . . . . . . . 35 36 38 37 36 36 ... ... ... ... ... ST . . . . . . . . . . . . . . . . 35 36 39 37 38 38 ... ... ... ... ... Fbrud, ksi: 84 86 93 89 88 86 ... ... ... ... ... (e/D = 1.5) . . . . . . . . . 110 114 123 118 120 120 ... ... ... ... ... (e/D = 2.0) . . . . . . . . . Fbryd, ksi: 68 71 77 73 73 71 ... ... ... ... ... (e/D = 1.5) . . . . . . . . . 80 83 92 87 90 90 ... ... ... ... ... (e/D = 2.0) . . . . . . . . . e, percent (S-Basis): 6 7 ... 7 7 7 6 7 7 7 7 L ................. 3 3 ... 3 4 4 3 3 3 4 4 LT . . . . . . . . . . . . . . . 2 2 ... 2 3 ... 2 2 2 3 ... ST . . . . . . . . . . . . . . . . 3 E, 10 ksi . . . . . . . . . . . . 10.2 Ec, 103 ksi . . . . . . . . . . . 10.4 3.8 G, 103 ksi . . . . . . . . . . . . µ .................. 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . 0.101 C, K, and α . . . . . . . . . . See Figure 3.7.8.0
Table 3.7.8.0(g1). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Extrusion
A
B
0.250-0.499 A B
AMS-QQ-A-200/11a Extrusion (rod, bar, and shapes) T6, T6510, T6511, and T62b #20 0.500-0.749 0.750-1.499 1.500-2.999 A B A B A B
78 75 ...
82 79 ...
81 78 ...
85 82 ...
81 77 ...
85 81 ...
81 75 ...
85 79 ...
81 71 67d
85 75 71d
81 67 67d
84 69 69d
78 64 64d
78 63 63d
81 65 65d
70 66 ...
74 70 ...
73 69 ...
77 72 ...
72 67 ...
76 71 ...
72 65 ...
76 69 ...
72 61 56d
76 65 59d
71 56 55d
74 59 58d
70 55 55d
68 52 52d
71 55 55d
70 72 ... 41
74 76 ... 44
73 74 ... 43
77 78 ... 45
72 73 ... 43
76 77 ... 45
72 71 ... 43
76 75 ... 45
72 67 62 42
76 71 66 44
71 62 62 40
74 64 64 42
70 61 61 39
68 57 57 38
71 60 60 40
111 140
117 148
115 146
121 153
115 145
120 152
113 144
119 151
110 141
115 148
106 137
110 142
102 132
101 131
105 136
92 108
97 114
96 113
101 119
94 111
99 117
93 110
98 116
89 106
94 112
84 101
88 105
83 100
79 95
83 100
7
...
7
...
7
...
7
7
...
7
...
6
6
...
#0.249
... 10.4 10.7 4.0 0.33
A
>20, #32 3.000-4.499 B S
#32 4.500-5.000 A B
0.101 See Figure 3.7.8.0
a Mechanical properties were established under QQ-A-200/11. b Design allowables were based upon data obtained from testing T6, T6510, and T6511 temper extrusions and from testing samples of extrusion, supplied in the O or F temper, which were heat treated to T62 temper to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper, prior to solution heat treatment. c The mechanical properties are to be based upon the as-extruded thickness at the time of quenching, prior to machining. d Caution: This specific alloy, temper, and product form exhibits poor stress corrosion cracking resistance in this grain direction. It corresponds to an SCC resistance rating of D, as indicated in Table 3.1.2.3.1(a). e Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-524
Specification . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . Cross-Sectional Area, in.2 . . Thickness, in.c . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbrue, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . Fbrye, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . e, percent (S-Basis): L ................... E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
>20, #32 3.000-4.499 A B 65f 56
70 61
54 42
57 44
54 46
57 49
37 35
40 38
95 119
102 128
74 83
78 87
7
...
Issued: Nov 1963, MIL-HDBK-5, CN2, Item 62-18 Last Revised: Apr 2010, MMPDS-05, Item 07-35. Design allowables were last confirmed and revised, Apr 2010. a Mechanical properties were established under QQ-A-200/11. b Design allowables were based upon data obtained from testing T7351X temper extrusions and from testing samples of extrusions, supplied in the O or F temper, which were heat treated to T73 temper to demonstrate response to treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper. c The mechanical properties are to be based upon the as-extruded thickness at the time of quenching, prior to machining. d A-Basis value is specification minimum. Rounded T99 values for cross sectional area #20 are as follows: for 0.062-0.249 Ftu(L) = 70 ksi and Fty(L) = 59 ksi , 3.000-4.499 Ftu(L) = 70 ksi, and Fty(L) = 58 ksi. e A-Basis value is specification minimum. Rounded T99 values for cross sectional area #25 are as follows: 0.250-1.499 Ftu(L)= 72 ksi 0.500-0.749 Ftu(L)= 71 ksi, 0.750-1.499 Ftu(L)= 72 ksi, 1.500-2.999 Ftu(L)= 70 ksi. f A-Basis value is specification minimum. Rounded T99 values for cross sectional area >20 and #32 are as follows: Ftu(L) = 67 ksi. g Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-525
Table 3.7.8.0(g2). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Extrusion (Continued) Specification . . . . . . . . . . . AMS-QQ-A-200/11a Form . . . . . . . . . . . . . . . . . Extrusion (rod, bars, and shapes) Temper . . . . . . . . . . . . . . . T73b, T73510, T73511 2 Cross-Sectional Area, in. . #20 #25 #20 Thickness, in.c . . . . . . . . . . 0.062-0.249 0.250-0.499 0.500-0.749 0.750-1.499 1.500-2.999 3.000-4.499 Basis . . . . . . . . . . . . . . . . . A B A B A B A B A B A B Mechanical Properties: Ftu, ksi: 70e 70e 70e 69e 68d L .................. 74 74 74 73 72 72 68d LT . . . . . . . . . . . . . . . . . 70 72 72 69 66 63 66 68 68 67 63 59 Fty, ksi: 63 63 63 63 61 60 L .................. 58d 61 61 61 59 57d 59 61 60 58 53 46 LT . . . . . . . . . . . . . . . . . 56 59 58 57 51 44 Fcy, ksi: 61 63 63 63 61 60 L .................. 58 61 61 61 59 57 62 64 63 62 56 52 LT . . . . . . . . . . . . . . . . . 59 62 61 60 54 49 Fsu, ksi: 41 42 42 42 41 41 L ................. 40 40 40 40 39 39 39 40 40 40 39 39 LT . . . . . . . . . . . . . . . . . 37 38 38 38 38 37 Fbrug, ksi (L & LT): 105 108 108 107 105 105 99 102 102 102 101 99 (e/D = 1.5) . . . . . . . . . . . 137 141 140 138 136 132 133 (e/D = 2.0) . . . . . . . . . . . 129 133 133 130 126 Fbryg, ksi (L & LT): 84 86 86 86 84 82 84 (e/D = 1.5) . . . . . . . . . . . 79 84 84 81 78 102 106 105 104 97 92 (e/D = 2.0) . . . . . . . . . . . 98 102 102 100 94 87 e, percent (S-Basis): ... ... ... ... ... ... L .................. 7 8 8 8 8 7 3 E, 10 ksi . . . . . . . . . . . . . 10.4 Ec, 103 ksi . . . . . . . . . . . . 10.7 3 G, 10 ksi . . . . . . . . . . . . . 4.0 0.33 µ ................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . 0.101 C, K, and α . . . . . . . . . . . See Figure 3.7.7.0
Table 3.7.8.0(g3). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Extrusion (Continued) Specification . . . . . . . . . . . . .
AMS-4167 a,
Form . . . . . . . . . . . . . . . . . . .
Extrusion (rod, bars, and shapes)
Temper . . . . . . . . . . . . . . . . .
T73511 #20
Cross-Sectional Area, in.2 . . . . b
#25
#20
>20, #32
0.062-0.249
0.250-0.499
0.500-0.749
0.750-1.499
1.500-2.999
3.000-4.499
3.000-4.499
A
B
A
B
A
B
A
B
A
B
A
B
A
B
68c 63c ...
74 70 ...
70d 66c ...
74 72 ...
70d 66c ...
74 72 ...
70d 66c ...
73 69 ...
69d 63 60
72 66 ...
68c 59 57
72 63 ...
65e 56 54
70 61 ...
58c 55c ...
63 59 ...
61 58c ...
63 61 ...
61 57c ...
63 60 ...
61 56c ...
63 58 ...
59 51 48
61 53 ...
57c 44 44
60 46 ...
54 42 41
57 44 ...
58 59
61 62
61 62
63 64
61 61
63 63
61 60
63 62
59 54
61 56
57 49
60 52
54 46
57 49
39 37
41 39
40 38
42 40
40 38
42 40
40 38
42 40
40 38
41 39
39 37
41 39
37 35
40 38
99 129
105 137
102 133
108 141
102 133
108 140
102 133
107 138
101 130
105 136
99 126
105 132
95 119
102 128
79 98
84 102
84 102
86 106
84 102
86 105
84 100
86 104
81 94
84 97
78 87
82 92
74 83
78 87
7 3 ...
... ... ....
8 4 ...
... ... ...
8 4 ...
... ... ...
8 4 ...
... ... ...
8 4 2
... ... ...
7 3 2
... ... ...
7 3 2
... ... ...
Mechanical Properties: Ftu, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST (S-basis) . . . . . . . . . . . . Fty, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST (S-basis) . . . . . . . . . . . . Fcy, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fsu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . . Fbruf, ksi (L & LT): (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbryf, ksi (L & LT): (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent (S-Basis): L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . .
E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . .
10.4 10.7 4.0 0.33 0.101 See Figure 3.7.7.0
Issued: Oct 2006, MMPDS-03 Last Revised: Apr 2011, MMPDS-06, Item 10-38. a Mechanical properties were established under QQ-A-200/11. b The mechanical properties are to be based upon the as-extruded thickness at the time of quenching, prior to machining. c A-Basis value is specification minimum. Rounded T99 values for cross sectional area #20 are as follows: for 0.062-0.249 Ftu(L) = 70 ksi, Ftu(LT) = 66 ksi and Fty(L) = 59 ksi and Fty(LT) = 56, 0.250-0.499 in Ftu(LT) = 68 ksi, Fty(LT) = 59, 0.500-0.749 in. Ftu(LT) = 68 ksi, Fty(LT) = 58 ksi, 0.750-1.499 in. Ftu(LT) = 67 ksi, Fty(LT) = 57 ksi, 3.000-4.499 Ftu(L) = 70 ksi, and Fty(L) = 58 ksi. d A-Basis value is specification minimum. Rounded T99 values for cross sectional area #25 are as follows: 0.250-1.499 Ftu(L)= 72 ksi 0.500-0.749 Ftu(L)= 71 ksi, 0.7501.499 Ftu(L) = 72 ksi, 1.500-2.999 Ftu(L)= 70 ksi. e A-Basis value is specification minimum. Rounded T99 values for cross sectional area >20 and #32 are as follows: Ftu(L) = 67 ksi. f Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-526
Thickness, in. . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . .
a Mechanical properties were established under QQ-A-200/15. b The mechanical properties are to be based upon the as-extruded thickness at the time of quenching, prior to machining. c Bearing values are “dry pin” values per Section 1.4.7.1.
3.0014.000 S
74 63 ... ... ... ... ... ... ... ... 7
MMPDS-06 1 April 2011
3-527
Table 3.7.8.0(g4). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Extrusion—Continued Specification . . . . . . . . . . . AMS-QQ-A-200/15a Form . . . . . . . . . . . . . . . . . Extrusion (rod, bars, and shapes) Temper . . . . . . . . . . . . . . . T76, T76510, T76511 2 #20 Cross-Sectional Area, in. . 0.2501.0012.001Thickness, in.b . . . . . . . . . . <0.062 0.062-0.249 0.499 0.500-0.749 0.750-1.000 2.000 3.000 Basis . . . . . . . . . . . . . . . . . A B A B S A B A B S S Mechanical Properties: Ftu, ksi: L .................. 74 75 76 75 76 75 75 74 71 74 71 LT . . . . . . . . . . . . . . . . . 72 73 72 73 72 72 71 68 71 68 Fty, ksi: L .................. 65 64 63 67 65 67 67 65 65 64 62 LT . . . . . . . . . . . . . . . . . ... 62 64 62 64 62 61 64 62 62 59 Fcy, ksi: L .................. ... 67 65 67 65 65 65 64 67 62 65 LT . . . . . . . . . . . . . . . . . ... 68 66 68 66 66 66 65 68 63 66 Fsu, ksi . . . . . . . . . . . . . . . 42 ... 42 42 42 42 42 41 39 41 39 Fbruc, ksi: 106 ... 106 108 106 108 105 106 105 101 (e/D = 1.5) . . . . . . . . . . . 101 138 ... 138 139 138 139 136 138 136 130 (e/D = 2.0) . . . . . . . . . . . 130 Fbryc, ksi: ... 86 83 86 83 83 83 82 86 79 83 (e/D = 1.5) . . . . . . . . . . . ... 101 98 101 98 98 98 97 101 94 98 (e/D = 2.0) . . . . . . . . . . . e, percent (S-Basis): 7 7 ... 7 ... ... 7 7 7 L .................. 7 ... E, 103 ksi . . . . . . . . . . . . . 10.4 Ec, 103 ksi . . . . . . . . . . . . 10.7 4.0 G, 103 ksi . . . . . . . . . . . . . µ ................... 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . 0.101 C, K, and α . . . . . . . . . . . See Figure 3.7.7.0
Table 3.7.8.0(g5). Design Mechanical and Physical Properties of 7075 Aluminum Alloy Extrusion (Continued)
E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . .
#20 0.062-0.249 A B
AMS-4166a Extrusion (rod, bars, and shapes) T73b #25 0.500-0.749 0.750-1.499 1.500-2.999 A B A B A B
#20 3.000-4.499 A B
>20, #32 3.000-4.499 A B
74 72 ...
70e 66d ...
74 72 ...
70e 66d ...
73 69 ...
69e 63 60
72 66 ...
68d 59 57
72 63 ...
65f 56 54
70 61 ...
0.250-0.499 A B
68d 65d ...
74 70 ...
70e 67d
58d 55d ...
63 59 ...
61 58d ...
63 61 ...
61 57d ...
63 60 ...
61 56d ...
63 58 ...
59 51 48
61 53 ...
57d 44 44
60 46 ...
54 42 41
57 44 ...
58 59
61 62
61 62
63 64
61 61
63 63
61 60
63 62
59 54
61 56
57 49
60 52
54 46
57 49
39 37
41 39
40 38
42 40
40 38
42 40
40 38
42 40
40 38
41 39
39 37
41 39
37 35
40 38
99 129
105 137
102 133
108 141
102 133
108 140
102 133
107 138
101 130
105 136
99 126
105 132
95 119
102 128
79 98
84 102
84 102
86 106
84 102
86 105
84 100
86 104
81 94
84 97
78 87
82 92
74 83
78 87
7 3 ...
... ... ...
8 4 ...
... ... ...
8 4 ...
... ... ...
8 4 ...
... ... ...
8 4 2
... ... ...
7 3 2
... ... ...
7 3 2
... ... ...
...
10.4 10.7 4.0 0.33 0.101 See Figure 3.7.7.0
Issued: Nov 1963, MIL-HDBK-5, CN2, Item 62-18 Last Revised: Apr 2011, MMPDS-06, Item 10-38. a Mechanical properties were established under QQ-A-200/11. b Design allowables were based upon data obtained from testing T7351X temper extrusions and from testing samples of extrusions, supplied in the O or F temper, which were heattreated to T73 temper to demonstrate response to treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold-worked, particularly in the annealed temper. c The mechanical properties are to be based upon the as-extruded thickness at the time of quenching, prior to machining. d A-Basis value is specification minimum. Rounded T99 values for cross sectional area #20 are as follows: for 0.062-0.249 Ftu(L) = 70 ksi and Fty(L) = 59 ksi , Ftu(LT) = 66 ksi and Fty(LT) = 56 ksi, for 0.250-0.499 in. Ftu(LT) = 68 ksi and Fty(LT) = 59 ksi, for 0.500-0.749 in. Ftu(LT) = 68 ksi and Fty(LT) = 58 ksi, for 0.750-1.499 in. Ftu(LT) = 67 ksi and Fty(LT) = 57 ksi, 3.0004.499 Ftu(L) = 70 ksi, and Fty(L) = 58 ksi. e A-Basis value is specification minimum. Rounded T99 values for cross sectional area #25 are as follows: 0.250-1.499 Ftu(L)= 72 ksi 0.500-0.749 Ftu(L)= 71 ksi, 0.750-1.499 Ftu(L)= 72 ksi, 1.500-2.999 Ftu(L)= 70 ksi. f A-Basis value is specification minimum. Rounded T99 values for cross sectional area >20 and #32 are as follows: Ftu(L) = 67 ksi. g Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-528
Specification . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . . Cross-Sectional Area, in.2 . . . Thickness, in.c . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST (S-basis) . . . . . . . . . . . . Fty, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST (S-basis) . . . . . . . . . . . . Fcy, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fsu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . . Fbrug, ksi (L & LT): (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbryg, ksi (L & LT): (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent (S-Basis): L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . .
MMPDS-06 1 April 2011
110
0.5
100
0.4
15 α - Between 70 F and indicated temperature K - At indicated temperature C - At indicated temperature α
14
13 K (T73XXX)
90
80
70
K (T76XXX)
0.3
C
K (T6XXX) 0.2
α, 10-6 in./in./F
0.6
C, Btu/(lb)(F)
2
K, Btu/[(hr)(ft )(F)/ft]
120
12
11
0.1 0
100
200
300
400
500
600
700
10 800
Temperature, F
Figure 3.7.8.0. Effect of temperature on the physical properties of 7075 aluminum alloy.
3-529
MMPDS-06 1 April 2011
3.7.8.1 T6, T651, T652, T6510, T6511 Temper — Figures 3.7.8.1.1(a) and 3.7.8.1.1(b) permit calculation of residual tensile strengths for complex thermal exposure conditions. They are based upon the rate parameter T(C + log t), in which T is exposure temperature in degrees Rankine, t is exposure time in hours, and C is a constant evaluated for each material. These curves have been verified for use only within the ranges of temperatures and exposure times covered in the figures. The following example illustrates their use. Sample problem: Find Ftu at 250EF following a complex exposure of 300EF, 8 hours plus 350EF, 1 hour. 1. Reduce given complex exposure by converting 350EF exposure to equivalent exposure time at 300EF.* a. On the 350EF single-exposure temperature line find 350EF, 1 hour. b. From this point move vertically to the 300EF exposure temperature line and then read right, 12 hours exposure. c. Total equivalent exposure time at 300EF is therefore 8 hours + 12 hours or 20 hours. 2. Find Ftu at 250EF following 300EF, 20 hours exposure: a. On the 300EF exposure temperature line find 300EF, 20 hours. b. From this point move vertically to the 250EF test temperature curve and then read left, 76 percent Ftu. Solution: Ftu is 76 percent of the original room temperature Ftu. Fty is determined in like manner. Fcy can be closely estimated by using the percent reduction factor determined for Fty. For specific data, see Reference 3.7.8.1.
Stressed Thermal Exposure — Stress applied during sample and complex thermal exposure of 7075T6 can have additional effect in reducing material strength. However, the effect becomes significant only when exposure strains exceed 0.2 percent. For specific data, see Reference 3.7.8.1. Figures 3.7.8.1.1(c) through 3.7.8.1.5(b) present elevated temperature curves for various mechanical properties. Figures 3.7.8.1.6(a) through 3.7.8.1.6(m) present tensile and compressive stress-strain and tangentmodulus curves at several temperatures. Figures 3.7.8.1.6(n) through 3.7.8.1.6(q) are full-range stress-strain curves for various products. Figures 3.7.8.1.8(a) through 3.7.8.1.8(h) provide room-temperature fatigue curves for T6 temper products. Fatigue-crack propagation data for sheet are presented in Figure 3.7.8.1.9. Graphical displays of the residual strength behavior of middle tension panels are presented in Figures 3.7.8.1.10(a) through 3.7.8.1.10(h).
_______________________ * Choice of reference temperature is optional as long as it permits computation within the bounds of the figures. 3-530
MMPDS-06 1 April 2011
Figure 3.7.8.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products). Note: Instructions for use of these curves are presented in Section 3.7.8.1.
Figure 3.7.8.1.1(b). Effect of temperature on the tensile yield strength (Fty) of 7075T6, T651, T6510, and T6511 aluminum alloy (all products). Note: Instructions for use of these curves are presented in Section 3.7.8.1.
3-531
MMPDS-06 1 April 2011
6WUHQJWKDWWHPSHUDWXUH
3HUFHQWDJHRI5RRP7HPSHUDWXUH) WX
([SRVXUHXSWRKU
×KU
KU KU KU KU
7HPSHUDWXUH)
Figure 3.7.8.1.1(c). Effect of temperature on the tensile ultimate strength (Ftu) of 7075T6, T651, T6510, and T6511 aluminum alloy (all products).
3-532
MMPDS-06 1 April 2011
6WUHQJWKDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQWDJHRI5RRP7HPSHUDWXUH) W\
×KU KU KU KU
KU
7HPSHUDWXUH)
Figure 3.7.8.1.1(d). Effect of temperature on the tensile yield strength (Fty) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products).
3-533
MMPDS-06 1 April 2011
100
Percentage of Room Temperature Fcy
Strength at temperature Exposure up to 1000 hr 80
2 hr
60
10 hr 100 hr 1000 hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.7.8.1.2(a). Effect of temperature on the compressive yield strength (Fcy) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products).
100
Percentage of Room Temperature Fsu
Strength at temperature Exposure up to 1000 hr 80
2 hr
60
10 hr 100 hr 1000 hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.7.8.1.2(b). Effect of temperature on the shear ultimate strength (Fsu) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products).
3-534
MMPDS-06 1 April 2011
100
Percentage of Room Temperature Fbru
Strength at temperature Exposure up to 1000 hr 80
½ hr 10 hr 100 hr 1000 hr
60
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.7.8.1.3(a). Effect of temperature on the bearing ultimate strength (Fbru) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products).
100
Percentage of Room Temperature Fbry
Strength at temperature Exposure up to 1000 hr 80
60
2 hr 10 hr 100 hr 1000 hr
40
20
0 0
100
200
300
400
500
600
700
800
Temperature, °F
Figure 3.7.8.1.3(b). Effect of temperature on the bearing yield strength (Fbry) of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products).
3-535
MMPDS-06 1 April 2011
0RGXOXVDWWHPSHUDWXUH
7<3,&$/
3HUFHQWRI
5RRP7HPSHUDWXUH0RGXOXV
( (
F
7HPSHUDWXUH)
Figure 3.7.8.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of 7075 aluminum alloy.
(ORQJDWLRQDWWHPSHUDWXUH ([SRVXUHXSWRKU
3HUFHQW(ORJDWLRQH
KU
×KU
7<3,&$/
7HPSHUDWXUH)
Figure 3.7.8.1.5(a). Effect of temperature on the elongation of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products except thick extrusions).
3-536
MMPDS-06 1 April 2011 18 Elongation at room temperature Exposure up to 10,000 hr
Percentage Elongation, e
17
TYPICAL
1/2 hr 10 hr 100 hr 1000 hr 10,000 hr
16 15 14 13 12 11 10 0
100
200
300
400
500
600
700
800
Temperature, oF
Figure 3.7.8.1.5(b). Effect of exposure at elevated temperature on the elongation of 7075-T6, T651, T6510, and T6511 aluminum alloy (all products except thick extrusions).
100
LT - compression 80
L - compression LT - tension L - tension
Stress, ksi
60
40
Ramberg - Osgood n(L-tension) = 17 n(LT-tension) = 15 n (L-comp.) = 13 n (LT-comp.) = 12
20 TYPICAL Thickness = 0.188 - 0.249 in.
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.7.8.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for clad 7075-T6 aluminum alloy sheet at room temperature.
3-537
MMPDS-06 1 April 2011 100
Long Transverse 80 Up to 100 -hr exposure (1000 -hr exposure)
Stress, ksi
60
40 Ramberg - Osgood n (Up to 100 -hr exp.) = 15 n (1000 -hr exp.) = 11 20
TYPICAL Thickness = 0.188 - 0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7075-T6 aluminum alloy sheet at 200E EF.
100 Long Transverse
Ramberg - Osgood n (1/2 -hr exp.) = 18 n (100 -hr exp.) = 12 n (1000 -hr exp.) = 9.2
80
TYPICAL Thickness = 0.188 - 0.249 in.
1/2 -hr exposure 100 -hr exposure
Stress, ksi
60
40
20 1000 -hr exposure
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(c). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7075-T6 aluminum alloy sheet at 300E EF.
3-538
MMPDS-06 1 April 2011 50
Long transverse
Ramberg-Osgood
1/2-hr exposure
n (1/2-hr exp.) = 6.3 n (2-hr exp.) = 14 n (10-hr exp.) = 7.5 n (100 to 1000-hr exp.) = 10
40 2-hr exposure
Stress, ksi
TYPICAL 30
Thickness: 0.188-0.249 in. 10-hr exposure
20
10 100 to 1000-hr exposure 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.8.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7075-T6 aluminum alloy sheet at 400E EF. 25
Long Transverse 1/2 - hr exposure 20
2 - hr exposure
Stress, ksi
15
10
Ramberg - Osgood n (1/2 -hr exp.) = 9.0 n (2 -hr exp.) = 12 n (10 -hr exp.) = 8.5
10 - hr exposure
TYPICAL Thickness = 0.188 - 0.249 in.
5
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(e). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7075-T6 aluminum alloy sheet at 500E EF.
3-539
MMPDS-06 1 April 2011 25
Long Transverse 20 Ramberg - Osgood n (1/2 -hr exp.) = 8.5 n (10 -hr exp.) = 12 n (100 -hr exp.) = 10 n(1000 -hr exp.) = 17
Stress, ksi
15 1/2 - hr exposure 10 - hr exposure
TYPICAL
100 - hr exposure
Thickness = 0.188 - 0.249 in.
1/2 - hr exposure
10
10 - hr exposure 100 - hr exposure
5 1000 - hr exposure
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7075-T6 aluminum alloy sheet at 600E EF.
100
L - tension
80
LT - tension
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 32 n (LT-tension) = 17
40
TYPICAL Thickness = 0.250 - 2.000 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.8.1.6(g). Typical tensile stress-strain curves for 7075-T651 aluminum alloy plate at room temperature.
3-540
MMPDS-06 1 April 2011 100
LT - compression L - compression
80
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 16 n (LT-comp.) = 19 TYPICAL
20
Thickness = 0.250 - 2.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(h). Typical compressive stress-strain and compressive tangentmodulus curves for 7075-T651 aluminum alloy plate at room temperature.
100
L and LT - compression L and LT - tension 80
60
Stress, ksi
L - compression LT - compression
40 Ramberg - Osgood n(L-tension) = 22 n(LT-tension) = 22 n (L-comp.) = 25 n (LT-comp.) = 22
20
TYPICAL Thickness = 0.250 - 2.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(i). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 7075-T62 aluminum alloy plate at room temperature.
3-541
MMPDS-06 1 April 2011
100 7075-T6, T651 Rolled bar, rod, shapes L - tension
80
i s k , s s e tr S
L - compression
60
40
Ramberg - Osgood n (L-tension) = 50 n (L-comp.) = 13 TYPICAL
20
Thickness ≤ 3.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi
Figure 3.7.8.1.6(j). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 7075-T6 and T651 aluminum alloy rolled-bar, rod, and shape at room temperature. 100
L - tension LT - tension 80
Stress, ksi
60 Ramberg - Osgood n (L-tension) = 50 n (LT-tension) = 22 TYPICAL
40
Thickness = 0.500 - 0.749 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.8.1.6(k). Typical tensile stress-strain curves for 7075-T651X aluminum alloy extrusion at room temperature. 3-542
MMPDS-06 1 April 2011 100 LT - compression L - compression
LT - compression L - compression
80
Stress, ksi
60
Ramberg - Osgood n (L-comp.) = 26 n (LT-comp.) = 27
40
TYPICAL Thickness = 0.500 - 0.749 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(l). Typical compressive stress-strain and compressive tangentmodulus curve for 7075-T651X aluminum alloy extrusion at room temperature.
100 LT - compression L - compression
L - tension
80 LT - compression LT - tension
Stress, ksi
60
Ramberg - Osgood n(L-tension) = 33 n(LT-tension) = 22 n (L-comp.) = 27 n (LT-comp.) = 23
40
TYPICAL Thickness = 0.250 - 1.499 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.1.6(m). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 7075-T62 aluminum alloy extrusion at room temperature.
3-543
MMPDS-06 1 April 2011
80 X 70 Longitudinal Long transverse 60
Stress, ksi
50
40
30
20
10
0 0.00
TYPICAL
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in. Figure 3.7.8.1.6(n). Typical tensile stress-strain curve (full range) for clad 7075-T6 aluminum alloy sheet at room temperature
3-544
MMPDS-06 1 April 2011
90 Longitudinal
80
X 70
Stress, ksi
60
50
40
30
20
10 TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 3.7.8.1.6(o). Typical tensile stress-strain curve (full range) for 7075-T6 and T651 aluminum alloy rolled or cold-finished bar at room temperature.
3-545
MMPDS-06 1 April 2011
Figure 3.7.8.1.6(p). Typical tensile stress-strain curves (full range) for 7075-T651X aluminum alloy extrusion at room temperature.
3-546
MMPDS-06 1 April 2011
;
/RQJLWXGLQDO
; /RQJWUDQVYHUVH
6WUHVVNVL
7KLFNQHVVLQ 7<3,&$/
6WUDLQLQLQ
Figure 3.7.8.1.6(q). Typical tensile stress-strain curves (full range) for 7075-T62 aluminum alloy extrusion at room temperature.
3-547
MMPDS-06 1 April 2011
Figure 3.7.8.1.8(a). Best-fit S/N curves for unnotched 7075-T6 aluminum alloy, various product forms, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(a) Product Form: 0.75-inch-diam. drawn rod, 1.25-inch-diam. rolled rod, and 1- x 7.5- inch bar, extruded 1.25-inch bar and 1.25-inch rod
Test Parameters: Loading - Axial Frequency - 30 Hz Temperature - RT Environment - Air
Properties:
No. of Heats/Lots: 8
TUS, ksi 82
TYS, ksi 72
Temp.,EF RT
Specimen Details: Unnotched Minimum diameter 0.200 inch Surface Condition: Unspecified
Equivalent Stress Equation: Log Nf = 18.22-7.77 log (Seq-10.15) Seq = Smax (1-R)0.62 Std. Error of Estimate, Log (Life) = 0.626 Standard Deviation, Log (Life) = 1.435 R2 = 81%
Reference: 3.7.8.1.8 Sample Size = 130 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-548
MMPDS-06 1 April 2011
Figure 3.7.8.1.8(b). Best-fit S/N curve for notched, Kt = 1.6, 7075-T6 aluminum alloy rolled bar, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(b) Product Form: 1.125-inch-diam. rolled bar Properties:
TUS, ksi 99.2
TYS, ksi —
Test Parameters: Loading - Axial Frequency - 60 Hz Temperature - RT Atmosphere - Air
Temp.,EF RT
Specimen Details: Notched, Kt = 1.6 Notch-root-radius = 0.100 0.400-inch Test section diameter (Net) 0.450-inch gross diameter 60E groove
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 8.26-2.62 log (Seq-15.3) Seq = Smax (1-R)0.525 Std. Error of Estimate, Log (Life) = 0.418 Standard Deviation, Log (Life) = 0.985 R2 = 82%
Surface Condition: Polished to 10 microinches Reference: 3.2.2.1.8(b)
Sample Size = 34 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-549
MMPDS-06 1 April 2011
Figure 3.7.8.1.8(c). Best-fit S/N curves for notched, Kt = 3.4, 7075-T6 aluminum alloy rolled bar, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(c) Product Form: 1.125-inch diam. rolled bar Properties:
TUS, ksi 96.5
TYS, ksi —
Test Parameters: Loading - Axial Frequency - 60 Hz Temperature - RT Atmosphere - Air
Temp.,EF RT
Specimen Details: Notched, Kt = 3.4 Notch-root-radius = 0.010 0.400-inch est section diameter (Net) 0.450-inch gross diameter 60E groove
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 9.19-3.646 log (Seq-5.36) Seq = Smax (1-R)0.386 Std. Error of Estimate, Log (Life) = 0.282 Standard Deviation, Log (Life) = 0.782 R2 = 87%
Surface Condition: Polished to 10 microinches Reference: 3.2.2.1.8(b)
Sample Size = 48 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-550
MMPDS-06 1 April 2011 . .
80 7075-T6 ALUM, Kt=1 Stress Ratio - 1.000 - 0.800 + - 0.600 - 0.500 x 0.000 0.400 Runout →
Maximum Stress, ksi
+ xx x x
60
++ +
xxxxx+
→
xxx
→
+
40
++
→ → → → → +→→ →
+
x
xx x
x x
x
xx → → →→
20
→ → Note: Stresses are based on net section.
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.8.1.8(d). Best-fit S/N curves for unnotched 7075-T6 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(d) Product Form: Bare sheet, 0.090 inch Properties:
TUS, ksi 82
TYS, ksi 76
Test Parameters: Loading - Axial Frequency - 300 to 1800 cpm Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.5- to 1.0-inch width
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 14.86-5.80 log (Seq) Seq = Smax (1-R)0.49 Std. Error of Estimate, Log (Life) = 0.41 Standard Deviation, Log (Life) = 0.92 R2 = 80%
Surface Condition: Electropolished 150 grit emery paper References: 3.2.4.1.8(a) and 3.2.4.1.8(f)
Sample Size = 176 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-551
MMPDS-06 1 April 2011
Figure 3.7.8.1.8(e). Best-fit S/N curves for notched, Kt = 1.5, 7075-T6 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(e) Product Form: Bare sheet, 0.090-inch Properties:
TUS, ksi 82 87
Test Parameters: Loading - Axial Frequency - 1100 to 1500 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 76 RT (unnotched) — RT (notched)
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 9.54-3.52 log (Seq-18.7) Seq = Smax (1-R)0.49 Std. Error of Estimate, Log (Life) = 0.41 Standard Deviation, Log (Life) = 1.00 R2 = 83%
Specimen Details: Edge Notched 3.000-inches gross width 1.500-inches net width 0.760-inch notch radius 60E flank angle Surface Condition: Electropolished
Sample Size = 30 Reference: 3.2.4.1.8(d) [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-552
MMPDS-06 1 April 2011
Figure 3.7.8.1.8(f). Best-fit S/N curves for notched, Kt = 2.0, 7075-T6 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(f) Product Form: Bare sheet, 0.090-inch Properties:
TUS, ksi 82 88
Test Parameters: Loading - Axial Frequency - 1100 to 1500 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 76 RT (unnotched) — RT (notched)
No. of Heats/Lots: Not specified
Specimen Details: Notched Notch Type Center Edge Fillet
Gross Width 4.50 2.25 2.25
Net Width 1.50 1.50 1.50
Equivalent Stress Equation: Log Nf = 7.50-2.46 log (Seq-18.6) Seq = Smax (1-R)0.54 Std. Error of Estimate, Log (Life) = 0.31 Standard Deviation, Log (Life) = 0.85 R2 = 87%
Notch Radius 1.50 0.3175 0.1736
Sample Size = 112 Surface Condition: Electropolished [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
References: 3.2.4.1.8(b) and 3.2.4.1.8(f)
3-553
MMPDS-06 1 April 2011
Figure 3.7.8.1.8(g). Best-fit S/N curves for notched, Kt = 4.0, 7075-T6 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(g) Product Form: Bare sheet, 0.090 inch Properties:
TUS, ksi 82 82
Test Parameters: Loading - Axial Frequency - 1100 to 1800 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 76 RT (unnotched) — RT (notched)
No. of Heats/Lots: Not specified
Specimen Details: Notched Notch Type Edge Edge Fillet
Gross Width 2.25 4.10 2.25
Net Width 1.500 1.500 1.500
Equivalent Stress Equation: Log Nf = 10.2-4.63 log (Seq-5.3) Seq = Smax (1-R)0.51 Std. Error of Estimate, Log (Life) = 0.51 Standard Deviation, Log (Life) = 1.08 R2 = 78%
Notch Radius 0.057 0.070 0.0195
Sample Size = 126 Surface Condition: Electropolished References:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3.2.4.1.8(b), 3.2.4.1.8(f), 3.2.4.1.8(g), and 3.2.4.1.8(h)
3-554
MMPDS-06 1 April 2011 . .
70 7075-T6 ALUM KT=5.00 Mean Stress 0.0 10.0 + 20.0 30.0 x
Maximum Stress, ksi
60
50
Runout
→ x x
40
x x x
+
x
+
30
x→ x→
+ + +
+
+
+→
20
→
10 →
Note: Stresses are based on net section.
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.8.1.8(h). Best-fit S/N curves for notched, Kt = 5.0, 7075-T6 aluminum alloy sheet, longitudinal direction.
Correlative Information for Figure 3.7.8.1.8(h) Product Form: Bare sheet, 0.090 inch Properties:
TUS, ksi 82 77
Test Parameters: Loading - Axial Frequency - 1100 to 1500 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 76 RT (unnotched) — RT (notched)
No. of Heats/Lots: Not specified
Specimen Details: Edge Notched 2.25-inch gross width 1.500-inch net width 0.03125-inch notch radius Surface Condition: Electropolished
Equivalent Stress Equation: Log Nf = 7.51-2.92 log (Seq-6.7) Seq = Smax (1-R)0.58 Std. Error of Estimate, Log (Life) = 0.23 Standard Deviation, Log (Life) = 1.08 R2 = 95%
Reference: 3.2.4.1.8(c)
Sample Size = 37 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-555
MMPDS-06 1 April 2011
Figure 3.7.8.1.9. Fatigue crack propagation data for 0.090-inch thick 7075-T6 aluminum alloy sheet with buckling restraint. [References 3.7.8.1.9(a) through 3.7.8.1.9(e)].
Specimen Thickness: Specimen Width: Specimen Type:
0.090 inch 1.5 - 12.0 inches M(T)
3-556
Environment: Temperature: Orientation:
Lab Air RT L-T
MMPDS-06 1 April 2011 Table 3.7.8.1.9 Typical Fatigue Crack Growth Rate Data for 7075-T6 Sheet, as Shown Graphically in Figure 3.7.8.1.9
∆K, ksi-in0.50
-1.00
Stress Ratio 0.00 da/dN, in./cycle
-0.70
0.30
0.70
3.76
2.12E-07
3.98
3.01E-07
1.20E-06
4.22
4.26E-07
1.54E-06
4.47
6.03E-07
1.95E-06
4.73
8.54E-07
2.44E-06
5.01
1.20E-06
3.01E-06
5.31
1.65E-06
3.68E-06
5.62
2.19E-06
4.46E-06
5.96
2.79E-06
5.40E-06
6.31
3.43E-06
6.51E-06
6.68
4.07E-06
7.85E-06
7.08
4.70E-06
9.48E-06
7.50
5.32E-06
1.15E-05
7.94
5.94E-06
1.40E-05
8.41
6.62E-06
1.73E-05
8.91
7.42E-06
2.15E-05
9.44
3.32E-07
7.86E-06
8.43E-06
2.71E-05
10.00
5.04E-07
8.47E-06
9.77E-06
3.47E-05
10.59
7.34E-07
9.26E-06
1.16E-05
4.52E-05
11.22
1.03E-06
1.03E-05
1.42E-05
6.01E-05
11.89
1.40E-06
1.15E-05
1.79E-05
8.15E-05
12.59
1.85E-06
1.31E-05
2.32E-05
1.13E-04
13.34
2.38E-06
1.51E-05
3.09E-05
1.62E-04
14.13
3.00E-06
1.75E-05
4.23E-05
2.37E-04
14.96
3.69E-06
2.05E-05
5.89E-05
3.59E-04
15.85
4.47E-06
2.43E-05
8.31E-05
5.62E-04
16.79
5.33E-06
2.91E-05
1.18E-04
17.78
6.29E-06
3.51E-05
1.67E-04
18.84
7.35E-06
1.32E-05
4.29E-05
2.36E-04
19.95
8.53E-06
1.61E-05
5.28E-05
3.28E-04
21.14
9.85E-06
1.91E-05
6.58E-05
4.50E-04
22.39
1.13E-05
2.23E-05
8.29E-05
6.07E-04
23.71
1.31E-05
2.56E-05
1.06E-04
8.09E-04
3-557
MMPDS-06 1 April 2011 Table 3.7.8.1.9 Typical Fatigue Crack Growth Rate Data for 7075-T6 Sheet, as Shown Graphically in Figure 3.7.7.1.9 (Cont.)
2.93E-05
Stress Ratio 0.00 da/dN, in./cycle 1.37E-04
1.07E-03
1.75E-05
3.37E-05
1.80E-04
1.44E-03
28.18
2.03E-05
3.92E-05
2.40E-04
1.98E-03
29.85
2.38E-05
4.61E-05
3.26E-04
2.91E-03
31.62
2.81E-05
5.52E-05
4.52E-04
33.50
3.35E-05
6.74E-05
6.39E-04
35.48
4.04E-05
8.41E-05
9.27E-04
37.58
4.92E-05
1.07E-04
1.38E-03
39.81
6.08E-05
1.39E-04
2.11E-03
42.17
7.60E-05
1.84E-04
3.32E-03
44.67
9.66E-05
2.46E-04
5.42E-03
47.32
1.24E-04
3.33E-04
50.12
1.63E-04
4.52E-04
53.09
2.17E-04
6.11E-04
56.23
2.93E-04
8.16E-04
59.57
4.02E-04
1.07E-03
63.10
5.62E-04
1.36E-03
66.83
7.97E-04
70.80
1.15E-03
74.99
1.68E-03
79.43
2.50E-03
84.14
3.78E-03
89.13
5.78E-03
94.41
8.95E-03
∆K, ksi-in0.50
-1.00
-0.70
25.12
1.51E-05
26.61
3-558
0.30
0.70
MMPDS-06 1 April 2011
Figure 3.7.8.1.10(a). Residual strength behavior of 0.063-inch thick 7075-T6 aluminum alloy sheet at room temperature. Crack orientation is T-L [Reference 3.1.2.1.3(f)].
Figure 3.7.8.1.10(b). Residual strength behavior of 0.063-inch-thick 7075-T6 aluminum alloy sheet at room temperature. Crack orientation is T-L [References 3.1.2.1.3(d) and 3.1.2.1.3(f)].
3-559
MMPDS-06 1 April 2011
Figure 3.7.8.1.10(c). Residual strength behavior of 0.090- and 0.100-inch-thick 7075T6 aluminum alloy sheet at room temperature. Crack orientation is L-T [References 3.1.2.1.3(e), 3.1.2.1.3(g), and 3.7.8.1.9(e)].
Figure 3.7.8.1.10(d). Residual strength behavior of 0.100-inch-thick 7075-T6 aluminum alloy sheet at room temperature. Crack orientation is L-T [Reference 3.1.2.1.3(g)].
3-560
MMPDS-06 1 April 2011
Figure 3.7.8.1.10(e). Residual strength behavior of 0.313-inch-thick 7075-T6 aluminum alloy plate at room temperature. Crack orientation is L-T [Reference 3.1.2.1.3(g)].
Figure 3.7.8.1.10(f). Residual strength behavior of 0.040-inch-thick 7075-T6 clad aluminum alloy sheet at room temperature. Crack orientation is L-T [References 3.1.2.1.3(f) and 3.7.8.1.9(f)].
3-561
MMPDS-06 1 April 2011
Figure 3.7.8.1.10(g). Residual strength behavior of 0.080-inch-thick 7075-T6 clad aluminum alloy sheet at room temperature. Crack orientation is L-T [References 3.1.2.1.3(h) and 3.1.2.1.3(i)].
Figure 3.7.8.1.10(h). Residual strength behavior of 0.090-inch-thick 7075-T6 clad aluminum alloy sheet at room temperature. Crack orientation is L-T [Reference 3.7.8.1.9(f)].
3-562
MMPDS-06 1 April 2011
3.7.8.2 T73, T7351, T7352, T73510, T73511 Tempers — Figures 3.7..2.6(a) through 3.7.8.2.6(d) present stress-strain and tangent-modulus curves for various products and tempers. Figures 3.7.8.2.6(e) and 3.7.8.2.6(f) are full-range stress-strain curves at room temperature for extrusion. Fatiguecrack-propagation data for plate are presented in Figures 3.7.8.2.9(a) through 3.7.8.2.9(c). Graphical displays of the residual strength behavior of middle tension panels are presented in Figures 3.7.8.2.10(a) and 3.7.8.2.10(b). 100 L - compression LT - compression L - tension LT - tension
80 L - compression
LT - compression
Stress, ksi
60
Ramberg - Osgood n(L-tension) = 48 n(LT-tension) = 30 n (L-comp.) = 27 n (LT-comp.) = 26
40
TYPICAL
20
Thickness = 0.250 - 1.499 in.
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.7.8.2.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 7075-T73 aluminum alloy extrusion at room temperature. 100
L and LT - compression LT - tension L - tension
80 L and LT - compression
Stress, ksi
60
Ramberg - Osgood n(L-tension) = 34 n(LT-tension) = 25 n (L-comp.) = 28 n (LT-comp.) = 28
40
TYPICAL
20
Thickness = 0.500 - 0.749 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.2.6(b). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for 7075-T7351X aluminum alloy extrusion at room temperature. 3-563
MMPDS-06 1 April 2011 100
80
L - tension LT - tension
Stress, ksi
60
ST - tension 40
Ramberg - Osgood n (L-tension) = 15 n (LT-tension) = 17 n (ST-tension) = 12
20
TYPICAL Thickness = 3.001 - 5.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.8.2.6(c). Typical tensile stress-strain curves for 7075-T7352 aluminum alloy hand forging at room temperature.
100
80 ST - compression LT - compression L - compression
ST - compression LT - compression L - compression
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 13 n (ST-comp.) = 15
20
TYPICAL Thickness = 3.001 - 5.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.8.2.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7075-T7352 aluminum alloy hand forging at room temperature.
3-564
MMPDS-06 1 April 2011
90
80 Longitudinal
70
X
x
Long transverse
Stress, ksi
60
50
40
30
20
Thickness: 0.500 - 0.749 in.
10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in. Figure 3.7.8.2.6(e). Typical tensile stress-strain curves (full range) for 7075-T7351X aluminum alloy extrusion at room temperature.
3-565
MMPDS-06 1 April 2011
/RQJLWXGLQDO
[
/RQJWUDQVYHUVH
[
6WUHVVNVL
7<3,&$/ 7KLFNQHVVLQ
6WUDLQLQLQ
Figure 3.7.8.2.6(f). Typical tensile stress-strain curves (full range) for 7075-T73 aluminum alloy extrusion at room temperature.
3-566
MMPDS-06 1 April 2011
Figure 3.7.8.2.9(a1). Fatigue crack propagation data for 0.250-inch thick 7075-T7351 aluminum alloy plate with buckling restraint. [References 3.2.7.1.9(d) and 3.7.8.2.9(a)].
Specimen Thickness: Specimen Width: Specimen Type:
0.25 inch 8, 16, 36 inches M(T)
3-567
Environment: Temperature: Orientation:
50% R.H. RT L-T
MMPDS-06 1 April 2011
Table 3.7.8.2.9(a1) Typical Fatigue Crack Growth Rate Data for 7075-T7351 Plate, as Shown Graphically in Figure 3.7.8.2.9(a1) Stress Ratio Stress Ratio ∆K, ksi-in0.50
0.10 - 0.11
0.44 - 0.51
∆K, ksi-in0.50
da/dN, in./cycle
0.10 - 0.11
0.44 -0.51
da/dN, in./cycle
5.62
1.73E-06
18.84
4.00E-05
1.47E-04
5.96
2.27E-06
19.95
4.87E-05
1.93E-04
6.31
2.90E-06
21.14
5.99E-05
2.55E-04
6.68
3.62E-06
22.39
7.44E-05
3.40E-04
7.08
4.46E-06
23.71
9.30E-05
4.56E-04
7.50
5.42E-06
25.12
1.17E-04
6.16E-04
7.94
6.53E-06
26.61
1.48E-04
8.37E-04
8.41
7.82E-06
28.18
1.87E-04
1.14E-03
8.91
9.34E-06
29.85
2.36E-04
1.56E-03
9.44
1.11E-05
31.62
2.98E-04
2.15E-03 2.96E-03
10.00
6.95E-06
1.33E-05
33.50
3.76E-04
10.59
8.54E-06
1.60E-05
35.48
4.73E-04
11.22
1.01E-05
1.92E-05
37.58
5.96E-04
11.89
1.18E-05
2.33E-05
39.81
7.52E-04
12.59
1.36E-05
2.84E-05
42.17
9.52E-04
13.34
1.55E-05
3.50E-05
44.67
1.22E-03
14.13
1.78E-05
4.35E-05
47.32
1.58E-03
14.96
2.05E-05
5.44E-05
50.12
2.10E-03
15.85
2.38E-05
6.88E-05
53.09
2.87E-03
16.79
2.80E-05
8.79E-05
56.23
4.08E-03
17.78
3.33E-05
1.13E-04
59.57
6.14E-03
3-568
MMPDS-06 1 April 2011
Figure 3.7.8.2.9(a2). Fatigue crack propagation data for 0.250-inch thick 7075-T7351 aluminum alloy plate with buckling restraint. [References 3.2.7.1.9(d) and 3.7.8.2.9(a)].
Specimen Thickness: Specimen Width: Specimen Type:
0.25 inch 8, 16, 36 inches M(T)
3-569
Environment: Temperature: Orientation:
50% R.H. RT L-T
MMPDS-06 1 April 2011
Table 3.7.8.2.9(a2) Typical Fatigue Crack Growth Rate Data for 7075-T7351 Plate, as Shown Graphically in Figure 3.7.8.2.9(a2) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.29 - 0.31 da/dN, in./cycle
0.29 - 0.31 da/dN, in./cycle
7.50
5.52E-06
19.95
9.77E-05
7.94
6.30E-06
21.14
1.23E-04
8.41
7.20E-06
22.39
1.55E-04
8.91
8.26E-06
23.71
1.98E-04
9.44
9.50E-06
25.12
2.54E-04
10.00
1.10E-05
26.61
3.28E-04
10.59
1.27E-05
28.18
4.26E-04
11.22
1.48E-05
29.85
5.57E-04
11.89
1.74E-05
31.62
7.31E-04
12.59
2.05E-05
33.50
9.65E-04
13.34
2.43E-05
35.48
1.28E-03
14.13
2.90E-05
37.58
1.70E-03
14.96
3.49E-05
39.81
2.26E-03
15.85
4.22E-05
42.17
3.02E-03
16.79
5.15E-05
44.67
4.04E-03
17.78
6.33E-05
47.32
5.40E-03
18.84
7.84E-05
3-570
MMPDS-06 1 April 2011
Figure 3.7.8.2.9(b1). Fatigue crack propagation data for 0.500-inch thick 7075-T7351 aluminum alloy plate with buckling restraint. [Reference 3.1.2.1.3(j) and 3.7.8.2.9(c)].
Specimen Thickness: Specimen Width: Specimen Type:
0.475-0.500 inchEnvironment: 50%-95% R.H. 6, 8, 16, 36 inches Temperature: RT M(T) Orientation: L-T
3-571
MMPDS-06 1 April 2011 Table 3.7.8.2.9(b1) Typical Fatigue Crack Growth Rate Data for 7075-T7351 Plate, as Shown Graphically in Figure 3.7.8.2.9(b1) Stress Ratio Stress Ratio ∆K, ksi-in0.50
0.10 - 0.11
0.44 - 0.51
∆K, ksi-in0.50
da/dN, in./cycle
0.10 - 0.11
0.44 -0.51
da/dN, in./cycle
2.11
7.11E-08
12.59
1.33E-05
9.29E-07
2.24
8.86E-08
13.34
1.55E-05
8.31E-07
2.37
1.10E-07
14.13
1.81E-05
7.32E-07
2.51
1.35E-07
14.96
2.12E-05
6.36E-07
2.66
1.66E-07
15.85
2.49E-05
5.45E-07
2.82
2.01E-07
16.79
2.96E-05
4.60E-07
2.99
2.43E-07
17.78
3.53E-05
3.83E-07
3.16
2.91E-07
18.84
4.23E-05
3.14E-07
3.35
3.46E-07
19.95
5.12E-05
2.54E-07
3.55
4.08E-07
21.14
6.25E-05
2.03E-07
3.76
1.06E-07
4.77E-07
22.39
7.68E-05
1.59E-07
3.98
1.63E-07
5.53E-07
23.71
9.51E-05
1.24E-07
4.22
2.42E-07
6.34E-07
25.12
1.19E-04
9.40E-08
4.47
3.49E-07
7.20E-07
26.61
1.50E-04
7.10E-08
4.73
4.88E-07
8.09E-07
28.18
1.90E-04
5.30E-08
5.01
6.65E-07
9.00E-07
29.85
2.44E-04
3.90E-08
5.31
8.84E-07
9.89E-07
31.62
3.14E-04
5.62
1.15E-06
1.08E-06
33.50
4.09E-04
5.96
1.46E-06
1.16E-06
35.48
5.36E-04
6.31
1.83E-06
1.23E-06
37.58
7.07E-04
6.68
2.26E-06
1.29E-06
39.81
9.38E-04
7.08
2.75E-06
1.34E-06
42.17
1.25E-03
7.50
3.30E-06
1.37E-06
44.67
1.68E-03
7.94
3.93E-06
1.38E-06
47.32
2.26E-03
8.41
4.64E-06
1.38E-06
50.12
3.04E-03
8.91
5.44E-06
1.36E-06
53.09
4.12E-03
9.44
6.34E-06
1.32E-06
56.23
5.57E-03
10.00
7.37E-06
1.27E-06
59.57
7.53E-03
10.59
8.54E-06
1.20E-06
63.10
1.02E-02
11.22
9.90E-06
1.12E-06
66.83
1.37E-02
11.89
1.15E-05
1.03E-06
3-572
MMPDS-06 1 April 2011
Figure 3.7.8.2.9(b2). Fatigue crack propagation data for 0.500-inch thick 7075-T7351 aluminum alloy plate with buckling restraint. [References 3.1.2.1.3(j) and 3.7.8.29(a) - 3.7.8.2.9(c)].
Specimen Thickness: Specimen Width: Specimen Type:
0.475-0.500 inch 6, 8, 16, 36 inches M(T)
3-573
Environment: Temperature: Orientation:
50%-95% R.H. RT L-T
MMPDS-06 1 April 2011 Table 3.7.8.2.9(b2) Typical Fatigue Crack Growth Rate Data for 7075-T7351 Plate, as Shown Graphically in Figure 3.7.8.2.9(b2) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.25 - 0.31 da/dN, in./cycle
0.25 - 0.31 da/dN, in./cycle
2.00
2.45E-08
10.59
1.05E-05
2.11
3.23E-08
11.22
1.26E-05
2.24
4.24E-08
11.89
1.52E-05
2.37
5.51E-08
12.59
1.83E-05
2.51
7.13E-08
13.34
2.21E-05
2.66
9.15E-08
14.13
2.67E-05
2.82
1.17E-07
14.96
3.25E-05
2.99
1.48E-07
15.85
3.97E-05
3.16
1.86E-07
16.79
4.87E-05
3.35
2.34E-07
17.78
6.00E-05
3.55
2.91E-07
18.84
7.44E-05
3.76
3.61E-07
19.95
9.27E-05
3.98
4.46E-07
21.14
1.16E-04
4.22
5.48E-07
22.39
1.47E-04
4.47
6.70E-07
23.71
1.87E-04
4.73
8.17E-07
25.12
2.40E-04
5.01
9.93E-07
26.61
3.11E-04
5.31
1.20E-06
28.18
4.06E-04
5.62
1.45E-06
29.85
5.35E-04
5.96
1.75E-06
31.62
7.11E-04
6.31
2.10E-06
33.50
9.57E-04
6.68
2.52E-06
35.48
1.30E-03
7.08
3.02E-06
37.58
1.79E-03
7.50
3.61E-06
39.81
2.49E-03
7.94
4.31E-06
42.17
3.51E-03
8.41
5.15E-06
44.67
5.02E-03
8.91
6.15E-06
47.32
7.27E-03
9.44
7.35E-06
50.12
1.07E-02
10.00
8.79E-06
3-574
MMPDS-06 1 April 2011
Figure 3.7.8.2.9(c1). Fatigue crack propagation data for 1.000-inch thick 7075-T7351 aluminum alloy plate without buckling restraint. [References 3.2.12.1.9(c), 3.7.8.2.9(a), and 3.7.8.2.9(b)].
Specimen Thickness: Specimen Width: Specimen Type:
1.00 inch 6, 8, 16, 36 inches M(T)
3-575
Environment: Temperature: Orientation:
50% R.H. RT L-T
MMPDS-06 1 April 2011
Table 3.7.8.2.9(c1) Typical Fatigue Crack Growth Rate Data for 7075-T7351 Plate, as Shown Graphically in Figure 3.7.8.2.9(c1) Stress Ratio Stress Ratio ∆K, ksi-in0.50
0.11
0.51
∆K, ksi-in0.50
da/dN, in./cycle
0.11
0.51
da/dN, in./cycle
7.08
2.74E-06
16.79
3.18E-05
1.11E-04
7.50
4.18E-06
17.78
3.55E-05
1.57E-04
7.94
5.86E-06
18.84
3.96E-05
2.28E-04
8.41
7.69E-06
19.95
4.48E-05
3.33E-04
8.91
9.63E-06
21.14
5.14E-05
4.88E-04
9.44
1.17E-05
22.39
6.02E-05
7.09E-04
10.00
3.69E-06
1.38E-05
23.71
7.20E-05
1.01E-03
10.59
5.92E-06
1.63E-05
25.12
8.84E-05
1.39E-03
11.22
8.70E-06
1.93E-05
26.61
1.11E-04
1.82E-03
11.89
1.19E-05
2.31E-05
28.18
1.44E-04
12.59
1.53E-05
2.81E-05
29.85
1.92E-04
13.34
1.87E-05
3.50E-05
31.62
2.62E-04
14.13
2.21E-05
4.48E-05
33.50
3.66E-04
14.96
2.53E-05
5.89E-05
35.48
5.23E-04
15.85
2.85E-05
7.97E-05
37.58
7.59E-04
3-576
MMPDS-06 1 April 2011
Figure 3.7.8.2.9(c2). Fatigue crack propagation data for 1.00-inch thick 7075T7351aluminum alloy plate without buckling restraint. [References 3.2.12.1.9(c), 3.7.8.2.9(a), and 3.7.8.2.9(b)].
Specimen Thickness: Specimen Width: Specimen Type:
1.00 inch 6, 8, 16, 36 inches M(T)
3-577
Environment: Temperature: Orientation:
50% R.H. RT L-T
MMPDS-06 1 April 2011
Table 3.7.8.2.9(c2) Typical Fatigue Crack Growth Rate Data for 7075-T7351 Plate, as Shown Graphically in Figure 3.7.8.2.9(c2) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.31 da/dN, in./cycle
0.31 da/dN, in./cycle
8.41
3.21E-06
17.78
5.89E-05
8.91
4.89E-06
18.84
7.28E-05
9.44
6.97E-06
19.95
9.19E-05
10.00
9.38E-06
21.14
1.19E-04
10.59
1.21E-05
22.39
1.57E-04
11.22
1.50E-05
23.71
2.13E-04
11.89
1.81E-05
25.12
2.95E-04
12.59
2.15E-05
26.61
4.19E-04
13.34
2.52E-05
28.18
6.06E-04
14.13
2.95E-05
29.85
8.92E-04
14.96
3.45E-05
31.62
1.33E-03
15.85
4.07E-05
33.50
2.01E-03
16.79
4.86E-05
35.48
3.03E-03
3-578
MMPDS-06 1 April 2011
Figure 3.7.8.2.10(a). Residual strength behavior of 0.600-inch-thick 7075-T7351 aluminum alloy plate at room temperature. Crack orientation is L-T [Reference 3.1.2.1.3(g)].
Figure 3.7.8.2.10(b). Residual strength behavior of 1.00-inch-thick 7075-T7351 aluminum alloy plate at room temperature. Crack orientation is L-T [Reference 3.1.2.1.3(j)].
3-579
MMPDS-06 1 April 2011 3.7.9 7085 ALLOY 3.7.9.0 Comments and Properties - 7085 is an Al-Zn-Mg-Cu-Zr alloy developed to provide combinations of higher strength and toughness properties than incumbent commercial thick section alloys, including 7050 and 7010. This alloy is based on a unique 7xxx composition field optimized to provide significantly lower quench sensitivity than 7050. The resultant improvement over 7050-T7451 is demonstrated for the 6-inch plate in having higher longitudinal yield strength at equivalent L-T fracture toughness or vice versa. The corrosion resistance (alternate immersion SCC) of 7085-T7651 plate is comparable to 7050-T7651 plate. The combination of static strength and fracture toughness properties make 7085 suitable for critical thick section applications. These include, but are not limited to, spar, rib, as well as integrally machined structural parts for new, derivative, or retrofit aircraft. For referencing mechanical properties corresponding to the different thickness in these parts, it is important that the properties referred to are based upon the thickness (of the part) at the time of quenching prior to machining. Materials specifications for 7085 are shown in Table 3.7.9.0(a). Room temperature mechanical properties are presented in Tables 3.7.9.0(b), 3.7.9.0(c), and 3.7.9.0(d).
Table 3.7.9.0(a). Material Specifications for 7085 Aluminum Alloy
Specification
Form
AMS 4329 (T7651)
Plate
AMS 4403 (T7452)
Die Forgings
AMS 4414 (T7452)
Hand Forgings
The temper index for 7085 is as follows: Section 3.7.9.1 3.7.9.2
Temper T7651 T7452
3.7.9.1 T7651 Temper – Figures 3.7.9.1.8(a) and 3.7.9.1.8(b) present room temperature fatigue curves. 3.7.9.2 T7452 Temper – Figures 3.7.9.2.6(a) through 3.7.9.2.6(h) present stress-strain and tangent-modulus curves for die forgings in the longitudinal, long transverse and short transverse directions. Figures 3.7.9.2.6(i) through 3.7.9.2.6(m) present full range stress-strain curves for die forgings in the longitudinal, long transverse and short transverse directions.
3-580
MMPDS-06 1 April 2011 Table 3.7.9.0(b). Design Mechanical and Physical Properties of 7085 Plate Specification . . . . . . . . . . AMS 4329 Form . . . . . . . . . . . . . . . . . Plate Temper T7651 Thickness, (in.) . . . . . . . . 4.001-5.000 5.001-6.000 6.001-7.000 Basis . . . . . . . . . . . . . . . . . A B A B A B Mechanical Properties: Ftu, ksi: L.................. 75 74 76 75 76 75 LT . . . . . . . . . . . . . . . . 76 75 77 76 77 76 ST . . . . . . . . . . . . . . . . 73 72 74 73 75 74 Fty, ksi: L.................. 72 71 74 72 74 72 LT . . . . . . . . . . . . . . . . 69 67 71 69 71 69 ST . . . . . . . . . . . . . . . . 65 64 66 65 67 65 Fcy, ksi: L.................. 72 70 72 71 72 71 LT . . . . . . . . . . . . . . . . 73 71 75 73 75 73 Fsu, ksi: L-S . . . . . . . . . . . . . . . 47 46 47 47 47 47 T-S . . . . . . . . . . . . . . . . 46 45 47 46 47 46 S-L . . . . . . . . . . . . . . . . … … … … … … a Fbru , ksi(e/D = 1.5): L ................. 113 111 116 114 117 116 LT . . . . . . . . . . . . . . . . 117 115 118 117 118 117 ST . . . . . . . . . . . . . . . . … … … … … … a Fbru , ksi(e/D = 2.0): L ................. 146 144 149 147 151 149 LT . . . . . . . . . . . . . . . . 150 148 152 150 152 150 ST . . . . . . . . . . . . . . . . … … … … … … Fbrya, ksi(e/D = 1.5): 96 99 94 99 96 96 L ................. 97 100 94 100 97 97 LT . . . . . . . . . . . . . . . . … … … … … … ST . . . . . . . . . . . . . . . . Fbrya, ksi(e/D = 2.0): 109 105 112 109 112 109 L ................. 110 106 113 110 113 110 LT . . . . . . . . . . . . . . . . … … … … … … ST . . . . . . . . . . . . . . . . e, percent (S-Basis): … 8 … 8 … 9 L.................. … 5 … 7 … 7 LT . . . . . . . . . . . . . . . . … 3 … 3 … 3 ST . . . . . . . . . . . . . . . . Continued on next page
3-581
MMPDS-06 1 April 2011 Table 3.7.9.0(b). Design Mechanical and Physical Properties of 7085 Plate (continued) Specification . . . . . . . . . . AMS 4329 Form . . . . . . . . . . . . . . . . . Plate Temper T7651 Thickness, (in.) . . . . . . . . 4.001-5.000 5.001-6.000 6.001-7.000 E, 103 ksi . . . . . . . . . . . . . 10.1 Ec, 103 ksi . . . . . . . . . . . . 10.5 G, 103 ksi . . . . . . . . . . . . . 3.9 F ................... 0.33 Physical Properties: ω, lb./in.3 . . . . . . . . . . . 0.103 C, K, and α . . . . . . . . . . --Issued: Apr 2005, MMPDS-02, Item 04-12 Last Revised: Oct 2006, MMPDS-03, Items 06-04 & 06-17 a Bearing values are “dry pin” values per Section 1.4.7.1.
3-582
MMPDS-06 1 April 2011 Table 3.7.9.0(c). Design Allowables for 7085-T7452 Aluminum Alloy Specification...................... AMS 4403 Form.................................. Die Forging Temper.............................. T7452 Thickness, (in.).......…….. 1.000-2.000 2.001-4.000 4.001-6.000 6.001-8.000 Basis........................…...... A B A B A B A B Mechanical Properties: Ftu, ksi: L ............................… 72 73 72 73 72 73 72 73 LT ............................... 70 72 70 72 70 72 70 72 ST ........................…... 70a 71 a 70 71 70 71 70 71 Fty, ksi: L ................................. 65 67 65 67 65 67 65 67 LT .........................….. 62 65 62 65 62 65 62 65 ST ............................... 59 a 61 a 59 61 59 61 59 61 Fcy, ksi: L ................................. 66 68 66 68 66 68 66 68 LT .............................. 66 68 66 68 66 68 66 68 69 a 67 69 67 69 67 69 ST ............................... 67 a Fsu, ksi: .........………... L-S............................... 41 41 41 41 41 41 41 41 T-S .............................. 40 40 40 40 40 40 40 40 S-L............................... 40 a 41 a 40 40 39 40 38 38 Fbrub (e/D = 1.5), ksi: L ................................. 105 105 103 105 101 102 99 100 LT .............................. 103 103 101 103 99 100 96 97 ST ............................... 98 a 99 a 97 99 96 97 94 95 Fbrub (e/D = 2.0), ksi: L ................................. 136 137 134 136 132 134 130 132 LT .............................. 135 137 133 135 130 132 127 129 ST ............................... 129 a 130 a 127 129 125 127 123 124 Fbryb (e/D = 1.5), ksi: L ................................. 88 91 88 91 88 91 88 91 LT .............................. 88 90 87 89 85 88 83 86 ST ............................... 84 a 86 a 84 86 84 86 84 86 Fbryb (e/D = 2.0), ksi: L ................................. 101 104 101 104 101 104 101 104 LT .............................. 102 105 100 104 99 102 97 100 ST ............................... 100 a 103 a 100 103 100 103 100 103 e, percent (S-Basis): L .................……….. 10 ... 9 ... 9 ... 8 ... LT ........………........ 8 ... 7 ... 7 ... 6 ... ST .........………........ 5 ... 5 ... 4 ... 4 ... Continued on Next Page.
3-583
Die Forgings
8.001-10.000 A B
10.001-12.000 A B
72 70 70
73 72 71
72 70 70
73 72 71
65 62 59
67 65 61
65 62 59
67 65 61
66 66 67
68 68 69
66 66 67
68 68 69
41 40 36
41 40 37
41 40 35
41 40 35
96 92 91
97 94 92
93 89 88
94 90 89
127 123 119
129 125 121
124 120 115
126 121 117
88 81 84
91 84 86
88 79 84
91 82 86
101 94 100
104 97 103
101 91 100
104 94 103
7 5 3
... ... ...
7 4 3
... ... ...
MMPDS-06 1 April 2011 Table 3.7.9.0(c). Design Allowables for 7085-T7452 Aluminum Alloy Die Forgings (continued) E, 103 ksi . . . . . . . . . . . . . . .
10.1
3
10.5
3
G, 10 ksi . . . . . . . . . . . . . . . F .....................
3.9 0.33
Physical Properties: w, lb./in.3. . . . . . . . . . . . . . . C,K, and a . . . . . . . . . . . . .
0.103 ---
Ec, 10 ksi . . . . . . . . . . . . . .
Issued: Oct 2006, MMPDS-03, Item 04-27. a For thickness range 1.500-2.000 inches. b Bearing values are "dry pin" values per Section 1.4.7.1.
3-584
MMPDS-06 1 April 2011 Table 3.7.9.0(d). Design Allowables Specification...................... Form.................................. Temper.............................. Thickness, (in.).......…….. 2.001-4.000 Basis........................…...... A B Mechanical Properties: Ftu, ksi: L ............................… 74 75 LT ............................... 73 74 ST ........................…... 71 72 Fty, ksi: L ................................. 67 68 LT .........................….. 66 68 ST ............................... 62 63 Fcy, ksi: L ................................. 69 71 LT .............................. 70 72 ST ............................... ... ... Fsu, ksi: .........………... L-S............................... 40 40 T-S .............................. 40 40 S-L............................... ... ... Fbrua (e/D = 1.5), ksi: L ................................. 100 102 LT .............................. 102 103 ST ............................... ... ... Fbrua (e/D = 2.0), ksi: L ................................. 133 135 LT .............................. 135 137 ST ............................... ... ... Fbrya (e/D = 1.5), ksi: L ................................. 85 87 LT .............................. 83 85 ST ............................... ... ... Fbrya (e/D = 2.0), ksi: L ................................. 102 105 LT .............................. 99 102 ST ............................... ... ... e, percent (S-Basis): L .................……….. 10 ... LT ........………........ 6 ... ST .........………........ 3 ...
for 7085-T7452 Aluminum Alloy Hand Forgings AMS 4414 Hand Forging T7452 4.001-6.000 6.001-8.000 8.001-10.000 10.001-12.000 A B A B A B A B
72 72 70
74 73 72
71 70 69
73 72 71
69 69 68
71 70 70
68 67 67
69 69 69
65 65 60
67 66 62
64 63 59
66 65 60
62 61 57
64 63 59
61 59 56
62 61 58
68 69 68
69 70 69
66 67 68
68 69 70
64 65 67
66 67 69
62 63 66
64 65 68
41 41 40
42 42 41
41 42 39
43 43 40
42 42 38
43 43 39
42 42 37
43 43 38
99 101 97
100 102 98
96 98 94
99 101 97
95 96 93
96 98 94
92 94 90
95 96 93
131 133 128
133 135 130
128 130 125
131 133 128
126 128 123
128 130 125
122 124 119
126 128 123
86 84 85
87 85 86
85 84 85
88 86 87
84 83 84
87 86 87
83 81 83
85 84 85
102 100 100
104 102 101
101 99 100
104 102 103
100 98 100
103 101 103
97 96 99
101 99 102
10 6 3
... ... ...
10 6 3
... ... ...
10 6 3
... ... ...
9 5 2
... ... ...
Continued on Next Page.
3-585
MMPDS-06 1 April 2011 Table 3.7.9.0(d). Design Allowables for 7085-T7452 Aluminum Alloy Hand Forgings (continued) E, 103 ksi . . . . . . . . . . . . . . .
10.1
3
10.5
3
3.9 0.33
Ec, 10 ksi . . . . . . . . . . . . . . G, 10 ksi . . . . . . . . . . . . . . . F ..................... Physical Properties: w, lb./in.3. . . . . . . . . . . . . . . C,K, and a . . . . . . . . . . . . .
0.103 ---
Issued: Apr 2008, MMPDS-04, Item 05-24. a Bearing values are "dry pin" values per Section 1.4.7.1.
3-586
MMPDS-06 1 April 2011
50 t = 4.00 in. t = 6.00 in.
45
t = 8.00 in. Runout
Maximum Stress, ksi
40
35
30
25
20
15 1,000
10,000
100,000
1,000,000
10,000,000
Cycles to Failure, Nf
Figure 3.7.9.1.8(a). Best-fit S/N curve for notched, Kt = 2.3, 7085-T7651 aluminum alloy plate, L-S direction.
Correlative Information for Figure 3.7.9.1.8(a) Product Form: Plate, 4.00 – 8.00 inches thick
No. of Heat/Lots = 12
Properties: UTS = 77 ksi, TYS = 74 ksi, Elongation = 10 %,
Maximum Stress Equation: Log Nf = A1 - 3.992 log (Smax – A4) where A1 = 9.941 (t = 4 in.) 10.063 (t = 6 in.) 10.041 (t = 8 in.) A4 = – 1.75 * t + 23.4
Specimen Details: Open-hole fatigue specimen Surface Condition: Polished Reference: 3.7.9.1.8 Test Parameters: Loading – Axial Frequency – 30 Hertz Temperature – RT Atmosphere - > 90% RH Stress Ratio = 0.10
Std. Error of Estimate, Log (Life) = 9.0 x 1/Smax Std. Deviation, Log (Life) = 0.691 R2 = 88.1% Sample Size = 137
3-587
MMPDS-06 1 April 2011
50
t = 4.00 in. t = 6.00 in.
45
t = 8.00 in. Runout
Maximum Stress, ksi
40
35
30
25
20
15 1000
10000
100000
1000000
10000000
Cycles to Failure, Nf
Figure 3.7.9.1.8(b). Best-fit S/N curve for notched, Kt = 2.3, 7085T7651 aluminum alloy plate, L-T direction.
Correlative Information for Figure 3.7.9.1.8(b) Product Form: Plate, 4.00 – 8.00 inches thick
No. of Heat/Lots = 12
Properties: UTS = 77 ksi, TYS = 74 ksi, Elongation = 10 %,
Maximum Stress Equation: Log Nf = A1 - 3.962 log (Smax – A4) where A1 = 9.916 (t = 4 in.) 9.881 (t = 6 in.) 9.885 (t = 8 in.) A4 = 0.075 * t^2 - 1.65 * t + 22.1
Specimen Details: Open-hole fatigue specimen Surface Condition: Polished Reference:
3.7.9.1.8
Test Parameters: Loading – Axial Frequency – 30 Hertz Temperature – RT Atmosphere - > 90% RH Stress Ratio = 0.10
Std. Error of Estimate, Log (Life) = 7.4 x 1/Smax Std. Deviation, Log (Life) = 0.704 R2 = 89.9% Sample Size = 140
3-588
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(a1) Typical tensile stress-strain curves for 7085-T7452 aluminum alloy die forgings at room temperature, longitudinal orientation
Figure 3.7.9.2.6(a2) Typical tensile stress-strain curves for 7085-T7452 aluminum alloy die forgings at room temperature, long transverse orientation
3-589
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(a3) Typical tensile stress-strain curves for 7085-T7452 aluminum alloy die forgings at room temperature, short transverse orientation
80 708 5-T74 52 D ie F orgings
t = 2.0 00-5.0 00 in.
60
Stress, ksi
t = 12 .000 in. 40 R am b erg-O sgood C Y S (ksi) t = 2-5 in. n = 14 K = 2 .046 72 t = 12 in . n = 8 .5 K = 2.1 46 72 20 TY P IC A L Lon gitudinal 0 0
4
8
12
S train, 0.001 in./in. C om press ive T angent M odulus , 10 3 k s i.
Figure 3.7.9.2.6(b) Typical compression stress-strain and compression tangent modulus curves in the longitudinal direction for 7085-T7452 aluminum die forgings at room temperature.
3-590
MMPDS-06 1 April 2011
80 70 85-T7 452 D ie F orgin gs
t = 2.000-5 .00 0 in .
Stress, ksi
60
t = 12.000 in. 40 R am berg-O sgood C YS (ksi) t = 2-5 in. n = 14 K = 2.0 50 71 t = 12 in. n = 7.8 K = 2.1 98 71 20 TYP IC A L L ong Tran sve rse 0 0
4
8
12
S train, 0.001 in./in.
Figure 3.7.9.2.6(c). Typical compression stress-strain and compression tangent modulus curves in the long transverse direction for 7085-T7452 aluminum die forgings at room temperature.
Figure 3.7.9.2.6(d1). Typical compressive stress-strain and compressive tangent modulus curves for thin 7085-T7452 aluminum alloy die forgings at room temperature, short transverse orientation
3-591
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(d2). Typical compressive stress-strain and compressive tangent modulus curves for thick 7085-T7452 aluminum alloy die forgings at room temperature, short transverse orientation
Figure 3.7.9.2.6(e1). Typical tensile stress-strain curves for thin 7085-T7452 aluminum alloy hand forgings at room temperature, longitudinal and long transverse orientations 3-592
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(e2). Typical tensile stress-strain curves for intermediate thickness 7085-T7452 aluminum alloy hand forgings at room temperature, longitudinal and long transverse orientations.
Figure 3.7.9.2.6(e3). Typical tensile stress-strain curves for thick 7085-T7452 aluminum alloy hand forgings at room temperature, longitudinal and long transverse orientations.
3-593
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(f1). Typical tensile stress-strain curves for thin 7085-T7452 aluminum alloy hand forgings at room temperature, short transverse orientation.
Figure 3.7.9.2.6(f2). Typical tensile stress-strain curves for intermediate thickness 7085-T7452 aluminum alloy hand forgings at room temperature, short transverse orientation.
3-594
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(f3) Typical tensile stress-strain curves for thick 7085-T7452 aluminum alloy hand forgings at room temperature, short transverse orientation.
Figure 3.7.9.2.6(g1) Typical compressive stress-strain and compressive tangent modulus curves for thin 7085-T7452 aluminum alloy hand forgings at room temperature, longitudinal and long transverse orientations.
3-595
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(g2). Typical compressive stress-strain and compressive tangent modulus curves for intermediate thickness 7085-T7452 aluminum alloy hand forgings at room temperature, longitudinal and long transverse orientations.
Figure 3.7.9.2.6(g3). Typical compressive stress-strain and compressive tangent modulus curves for thick 7085-T7452 aluminum alloy hand forgings at room temperature, longitudinal and long transverse orientations.
3-596
MMPDS-06 1 April 2011
Figure 3.7.9.2.6(h1). Typical compressive stress-strain and compressive tangent modulus curves for thin and intermediate thickness 7085-T7452 aluminum alloy hand forgings at room temperature, short transverse orientation.
Figure 3.7.9.2.6(h2). Typical compressive stress-strain and compressive tangent modulus curves for thick 7085-T7452 aluminum alloy hand forgings at room temperature, short transverse orientation.
3-597
MMPDS-06 1 April 2011
80
2.00 - 5.00 inches
70
12 inches
X X
60
Stress, ksi
50
40
30
20
Longitudinal 7085-T7452 Die Forging 10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.7.9.2.6(i). Typical stress-strain curves (full range) for 7085-T7452 aluminum alloy die forgings in the longitudinal direction at room temperature.
3-598
MMPDS-06 1 April 2011
80
12 inches
2.00 - 5.00 inches
70
X 60
X
Stress, ksi
50
40
30
20
Long Transverse 7085-T7452 Die Forging 10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
Strain, in./in.
Figure 3.7.9.2.6(j). Typical stress-strain curves (full range) for 7085-T7452 aluminum alloy die forgings in the long transverse direction at room temperature.
3-599
0.10
MMPDS-06 1 April 2011
80
12 inches
2.00 - 5.00 inches
X
70
X
60
Stress, ksi
50
40
30
20
Short Transverse 7085-T7452 Die Forging 10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
Strain, in./in.
Figure 3.7.9.2.6(k). Typical stress-strain curves (full range) for 7085-T7452 aluminum alloy die forgings in the short transverse direction at room temperature.
3-600
MMPDS-06 1 April 2011
80
70
X
X
10 - 12 inches
X 2 - 6 inches
6 - 10 inches 60
Stress, ksi
50
40
30
20
Longitudinal and Long Transverse 7085-T7452 Hand Forging 10
TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in.
Figure 3.7.9.2.6(l). Typical stress-strain (full-range) for 7085-T7452 aluminum alloy hand forging in the longitudinal and long transverse directions at room temperature.
3-601
MMPDS-06 1 April 2011
80
2 - 6 inches
X
70
X
X
10 - 12 inches 6 - 10 inches
60
Stress, ksi
50
40
30
20
Short Transverse 7085-T7452 Hand Forging 10
TYPICAL
Based on single curves for each thickness 0 0.00
0.02
0.04
Strain, in./in.
Figure 3.7.9.2.6(m). Typical stress-strain curves (full range) for 7085-T7452 aluminum alloy hand forgings in the short transverse direction at room temperature.
3-602
0.06
MMPDS-06 1 April 2011 3.7.10. 7136 ALLOY 3.7.10.0. Comments and Properties - 7136 is an Al-Zn-Mg-Cu-Zr alloy providing a good combination of high strength and corrosion resistance. Its exfoliation corrosion and stress corrosion cracking performance are comparable to other 7xxx -T76 alloys. The properties of extrusions should be based upon the thickness at the time of extrusion, solution heat treatment, and quenching prior to machining. Selection of mechanical properties based upon its final machined thickness may be overstated; therefore, the thickness at the time of extrusion, solution heat treatment, and quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 7136 aluminum alloy are presented in Table 3.7.10.0(a). temperature mechanical and physical properties are shown in Table 3.7.10.0(b).
Room
Table 3.7.10.0(a). Material Specifications for 7136 Aluminum Alloy Specification Form AMS 4415 Extrusions
The temper index for 7136 is as follows: Section 3.7.10.1
Temper T76511
3.7.10.1. T76511 Temper - Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.7.10.1.6(a) and 3.7.10.1.6(b). Typical room temperature full range tensile stress-strain curves are shown in Figure 3.7.10.1.6(c).
3-603
MMPDS-06 1 April 2011
Table 3.7.10.0(b) Design Mechanical and Physical Properties of Specification . . . . . . . . . AMS 4415 Form . . . . . . . . . . . . . . . . Extrusions Temper . . . . . . . . . . . . . . T76511 Thickness, (in.) . . . . . . . 0.040-0.249 0.250-0.499 0.500-1.999 Basis . . . . . . . . . . . . . . . . A B A B A B Mechanical Properties: Ftu, ksi: L . . . . . . . . . . . . 90 92 91a 93 92a 95 a Fty, ksi: L . . . . . . . . . . . . 86 88 87 89 88 91 Fcy, ksi: L . . . . . . . . . . . . 90 95 90 95 86 91 b Fsu , ksi:L-S, L-T . . . . . . 53 54 54 55 54 56 c Fbru , ksi : (e/D = 1.5) L . . . . . . . 114 116 115 118 116 120 (e/D = 2.0) L . . . . . . . 156 160 158 162 160 165 c Fbry , ksi : (e/D = 1.5) L . . . . . . . 98 100 99 101 100 104 (e/D = 2.0) L . . . . . . . 117 120 119 122 120 124 e, percent (S-Basis): L................. 7 ... 7 ... 7 ... 3 10.5 E, 10 ksi . . . . . . . . . . 10.6 Ec, 103 ksi . . . . . . . . . . . . . 3 3.9 G, 10 ksi . . . . . . . . . . . . . 0.339 µ ................. Physical Properties: 0.103 ω, lb./in.3 . . . . . . . . . . . ... C, and K . . . . . . . . . . . ... α, Fin/in/EF . . . . . . . .
7136 Aluminum Alloy
2.000-3.000 A B
3.001-4.000 A B
91a 87 84 54
94 90 88 55
90a 85 84 53
92 88 88 54
115 158
119 163
114 156
116 160
99 119
102 123
97 116
100 120
8
...
8
...
Issued: Apr 2010, MMPDS-05, Item 0-36 a A-Basis value is specification minimum. The rounded T99 for Ftu (L) 0.250-0.499 =92 ksi, Ftu (L) 0.500-1.999 = 93ksi, Ftu (L) 2.000-3.000 =92 ksi, and Ftu (L) 3.001-4.000 = 91ksi. The rounded T99 for Fty (L) 0.500-1.999 =89 ksi. b Grain orientation and loading direction per ASTM B769 c Bearing values are “dry pin” values per Section 1.4.7.1.
3-604
MMPDS-06 1 April 2011 100 0.040-1.999 in.
7136-T76511 Extrusions
Stress, ksi
80
2.000-4.000 in.
60 Longitudinal 40
TYPICAL Ramberg-Osgood (0.040-1.999 in.) n1 = 5.0
20
n2 = 67.7 (2.000-4.000 in.) n1 = 4.9 n2 = 39.8
TYS
K1 = 2.625
94.0
K2 = 2.016 K1 = 2.640 92.0 K2 = 2.037
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in.
Figure 3.7.10.1.6(a). Typical tensile stress-strain curves for 7136-T76511 aluminum alloy extrusion at room temperature.
100
2.000 -3.000 in. 7136-T76511 Extrusions
0.040-1.999 in.
Stress, ksi
80
0.040-1.999 in.
60
TYPICAL Longitudinal
40 Ramberg-Osgood (0.040-1.999 in.) n1 = 5.0 n2 = 50.0
20
(2.000-3.000 in.) n1 = 5.2 n2 = 70.4
CYS
K1 = 2.638 94.0 K2 = 2.030 K1 = 2.607 95.0 K2 = 2.018
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.10.1.6(b). Typical compressive stress-strain and compressive tangent-modulus curves for 7136-T76511 aluminum alloy extrusion at room temperature.
3-605
MMPDS-06 1 April 2011
100
90
0.040-1.999 in.
2.000-4.000 in.
X X
80
70
Stress, ksi
60
50
40
30
Longitudinal 20
7136-T74511 Extrusions TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.7.10.1.6(c). Typical tensile stress-strain curves (full range) for 7136T76511 aluminum alloy extrusion at room temperature.
3-606
0.14
MMPDS-06 1 April 2011 3.7.11 7140 ALLOY 3.7.11.0 Comments and Properties –7140 is an Al-Zn-Cu-Mg-Zr alloy. It is available as heavy gauge plate product.. Alloy 7140 is a derivative of alloy 7040. It is characterized by a higher tensile strength when compared to 7040 and moderate fracture toughness. It is produced in two tempers;T7451 and T7651 reflecting two discrete balances of tensile strength, fracture toughness and corrosion resistance. Stress Corrosion and EXCO capability is consistent with T7451 and T7651 tempers in this class of 7XXX alloys. Applicable material specification for 7140 plate is presented in Table 3.7.11.0(a). Room temperature mechanical properties are shown in Tables 3.7.11.0(b1) and 3.7.11.0(b2). The effect of temperature on the physical properties is shown in Figure 3.7.11.0. Table 3.7.11.0(a). Material Specification for 7140 Aluminum Alloy Specification Form AMS 4401 Plate AMS 4408 Plate The temper index for 7140 is as follows: Section Temper 3.7.11.1 T7451 3.7.11.2 T7651 3.7.11.1 T7451 Temper – Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.7.11.1.6(a) and 3.7.11.1.6(b). 3.7.11.2 T7651 Temper – Typical tensile stress-strain, compressive stress-strain, and compressive tangent modulus curves are presented in Figures 3.7.11.2.6(a) through 3.7.11.2.6(d). A typical full range curve at room temperature is presented in Figure 3.7.11.2.6(e). Fatigue crack propagation curves are presented in Figure 3.7.11.2.9 and Table 3.7.11.2.9.
3-607
MMPDS-06 1 April 2011 Table 3.7.11.0(b1). Design Mechanical and Physical Properties of Plate Specification . . . . . AMS 4401 Form . . . . . . . . . . . . Plate Temper . . . . . . . . . . T7451 Thickness, in. . . . . . 4.0015.001-6.000 6.001-7.000 7.001-8.000 5.000 Basis . . . . . . . . . . . . A B A B A B A B Mechanical Properties: Ftu, ksi: L ........... 71 71 70a 72 72 72 72 71 71a LT . . . . . . . . . . 72d 72e 73 74 74 74 73 69 68e 68a ST . . . . . . . . . . 70 71 71 70 69f Fty, ksi: 66 L ........... 67 66 67 68 65e 68 65 LT . . . . . . . . . . 65 66 65 67 67 64e 67 63 60d ST . . . . . . . . . . 61 60f 62 62 59e 62 58 Fcy, ksi: 65 L ........... 66 66 66 62 64 64 63 LT . . . . . . . . . . 70 71 71 71 67 69 69 68 ST . . . . . . . . . . 67 68 68 68 64 66 66 65 Fsu, ksi: 46 L-S . . . . . . . . . 46 46 46 45 46 45 45 45 T-S . . . . . . . . . 46 46 46 44 46 45 45 39 S-L . . . . . . . . . 38 40 40 40 39 39 39 Fbrug, ksi (e/D = 1.5): 109 106 L ........... 113 112 113 115 110 109 114 111 LT . . . . . . . . . . 116 116 114 116 113 113 Fbrug, ksi (e/D = 2.0): 141 147 145 137 147 149 143 141 L ........... 143 145 145 140 143 145 141 141 LT . . . . . . . . . . Fbryg, ksi (e/D = 1.5): 95 91 95 96 96 92 92 92 L ........... 95 90 96 96 96 93 93 92 LT . . . . . . . . . . Fbryg, ksi (e/D = 2.0): 112 107 114 114 111 114 111 109 L ........... 110 105 112 112 109 112 109 107 LT . . . . . . . . . . e, percent (S-Basis): … 6 … … … 9 8 7 L ........... … 4 … … … 5 4 4 LT . . . . . . . . . . … 3 … … … 3 3 3 ST . . . . . . . . . . E, 103 ksi . . . . . . . 10.2 Ec, 103 ksi . . . . . . 10.5 G, 103 ksi . . . . . . … µ ............ 0.33 Physical Properties: 0.102 ω, lb/in.3 . . . . . . . C, K, . . . . . . . . . … α, 10-6 in./in./°F . . …
7140 Aluminum Alloy
8.001-9.000 A
B
9.00110.000 A B
70b 71b 67b
72 73 69
70c 70c 67c
72 72 69
65b 63b 58b
67 65 61
65 63 58
67 64 60
62 67 64
64 69 66
62 67 64
63 68 65
45 44 38
46 45 39
44 43 38
45 44 39
104 111
107 114
101 110
104 113
135 140
139 143
131 138
135 141
91 90
94 93
92 90
93 92
107 105
111 109
107 105
109 107
6 3 3
… … …
5 2 2
… … …
Issued: Oct 2006, MMPDS-03, Item 05-25 a A-Basis value is specification minimum. The rounded T99 for 7-8 inches are as follows: Ftu (L) = 71 ksi, Ftu (LT) = 72 ksi, Ftu (ST) = 69 ksi. b A-Basis value is specification minimum. The rounded T99 for 8-9 inches are as follows: Ftu (L) = 71 ksi, Ftu (LT) = 72 ksi, Ftu (ST) = 68 ksi, Fty (L) = 66 ksi, Fty (LT) = 64 ksi, Fty (ST) = 59 ksi. c A-Basis value is specification minimum. The rounded T99 for 9-10 inches are as follows: Ftu (L) = 71 ksi, Ftu (LT) = 71 ksi, Ftu (ST) = 68 ksi. d A-Basis value is specification minimum. The rounded T99 for 5-6 inches are as follows: Ftu (LT) = 73 ksi, Fty (ST) = 61 ksi e A-Basis value is specification minimum. The rounded T99 for 6-7 inches are as follows: Ftu (LT) = 73 ksi, Ftu (ST) = 69 ksi, Fty (L) = 66 ksi, Fty (LT) = 65 ksi, Fty (ST) = 61 ksi. f A-Basis value is specification minimum. The rounded T99 for 4-5 inches are as follows: Ftu (ST) = 70 ksi, Fty (ST) = 61 ksi. g Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-608
MMPDS-06 1 April 2011
Table 3.7.11.0(b2). Design Mechanical and Physical Properties of 7140 Aluminum Alloy Plate
Specification . . . . . . .
AMS 4408
Form . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . .
T7651
Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fsu, ksi: L-S . . . . . . . . . . . . . T-S . . . . . . . . . . . . . S-L . . . . . . . . . . . . . Fbruc, ksi (e/D = 1.5): L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fbruc, ksi (e/D = 2.0) L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fbryc, ksi (e/D = 1.5): L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0) L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . e, percent (S-Basis): L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . .
4.000-5.000
5.001-6.000
6.001-7.000
7.001- 8.001- 9.0018.000 9.000 10.000
A
B
A
B
A
B
S
S
S
74 76 73
76 77 74
74 75a 72
75 77 73
73 75 71
74 76 72
72 74 71
72 73 69
71 71 68
70 69 63
71 70 65
70 68 62b
71 70 64
69 68 62
70 69 63
68 67 61
68 65 60
67 64 59
68 72 70
69 73 71
67 71 69
69 73 71
67 72 69
68 73 70
66 71 68
64 69 66
63 68 65
48 47 38
49 48 38
48 46 38
49 48 39
48 46 39
48 47 40
47 46 39
46 45 39
45 44 39
120 122 ...
122 123 ...
119 120 ...
122 123 ...
119 120 ...
120 122 ...
117 119 ...
116 117 ...
112 114 ...
156 158 ...
158 160 ...
154 156 ...
158 160 ...
154 156 ...
156 158 ...
152 154 ...
150 152 ...
146 146 ...
101 101 ...
103 103 ...
100 100 ...
103 103 ...
100 100 ...
101 101 ...
98 98 ...
95 95 ...
94 94 ...
119 112 ...
121 122 ...
118 118 ...
121 122 ...
118 118 ...
119 120 ...
116 117 ...
112 113 ...
111 111 ...
7 6 3
... ... ...
7 4 3
... ... ...
7 3 3
... ... ...
6 3 3
5 3 3
5 2 3
E, 103 ksi . . . . . . . . . Ec, 1033 ksi . . . . . . . . . G, 10 ksi . . . . . . . . . µ ................ Continued on next page.
10.3 10.4 3.9 0.33
3-609
MMPDS-06 1 April 2011 Table 3.7.11.0(b2). Design Mechanical and Physical Properties of 7140 Aluminum Alloy Plate (Continued)
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . .
0.102 See Figure 3.7.11.0
Issued: Apr, 2009, MMPDS-04CN1, Item 07-43 a Specification minimum. The rounded T99 for Ftu LT = 76 ksi. b Specification minimum. The rounded T99 for Fty ST = 63 ksi. c Bearing values are “dry pin” values per Section 1.4.7.1.
3-610
MMPDS-06 1 April 2011
0.36
14 7140 Aluminum Alloy
0.34
13.8
0.32
13.6
0.3
13.4
) 0.28 F ) lb (/ 0.26 u t B , C 0.24
F . n /i. n i 13 , -6 0 1 12.8 x a
a
13.2
o(
C 0.22
12.6
0.2
12.4
0.18
12.2
0.16 0
50
100
150
200
250
12 300
Temperature, oF
Figure 3.7.11.0. Effect of temperature on the physical properties of 7140 aluminum alloy.
3-611
o/
MMPDS-06 1 April 2011
Figure 3.7.11.1.6(a1). Typical tensile stress-strain curve for 7140-T7451 aluminum alloy plate at room temperature, longitudinal orientation.
Figure 3.7.11.1.6(a2). Typical tensile stress-strain curve for 7140-T7451 aluminum alloy plate at room temperature, long transverse orientation.
3-612
MMPDS-06 1 April 2011
Figure 3.7.11.1.6(a3). Typical tensile stress-strain curve for 7140-T7451 aluminum alloy plate at room temperature, short transverse orientation.
Figure 3.7.11.1.6(b1). Typical compressive stress-strain and compressive tangent modulus curves for 7140-T7451 aluminum alloy plate at room temperature, longitudinal orientation.
3-613
MMPDS-06 1 April 2011
Figure 3.7.11.1.6(b2). Typical compressive stress-strain and compressive tangent modulus curves for 7140-T7451 aluminum alloy plate at room temperature, long transverse orientation.
Figure 3.7.11.1.6(b3). Typical compressive stress-strain and compressive tangent modulus curves for 7140-T7451 aluminum alloy plate at room temperature, short transverse orientation.
3-614
MMPDS-06 1 April 2011 80
7140-T7651 Plate
Longitudinal
60
Long Transverse
Stress, ksi
Short Transverse
40
t = 4.000-7.000 in.
20
Ramberg-Osgood TYS (ksi) L n1 = 16 K 1 = 2.076 73 L n2 = 101 K2 = 1.890 LT n = 14 71 ST n = 14 66 TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.11.2.6(a). Typical tensile stress-strain curves for 7140-T7651 aluminum alloy plate at room temperature. 80 t = 4.000-7.000 in. 7140-T7651 Plate
Stress, ksi
60
t = 7.000-8.000 in. 40 Ramberg-Osgood CYS (ksi) t = 4-7 in. n = 16 K = 2.018 71 t = 7-8 in. n = 13 K = 2.051 70 20 TYPICAL Longitudinal 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.11.2.6(b). Typical compressive stress-strain and compressive tangent modulus curves for longitudinal 7140-T7651 aluminum alloy plate at room temperature.
3-615
MMPDS-06 1 April 2011 80 t = 4.000-7.000 in. 7140-T7651 Plate
Stress, ksi
60 t = 7.000-8.000 in. 40 Ramberg-Osgood CYS (ksi) t = 4-7 in. n = 14 K = 2.073 76 t = 7-8 in. n = 12 K = 2.108 75 20 TYPICAL Long Transverse 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi.
Figure 3.7.11.2.6(c). Typical compressive stress-strain and compressive tangent modulus curves for long transverse 7140-T7651 aluminum alloy plate at room temperature. 80 t = 4.000-7.000 in. 7140-T7651 Plate
Stress, ksi
60 t = 7.000-8.000 in. 40 Ramberg-Osgood CYS (ksi) t = 4-7 in. n = 16 K = 2.032 72 t = 7-8 in. n = 14 K = 2.057 71 20 TYPICAL Short Transverse 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 3.7.11.2.6(d). Typical compressive stress-strain and compressive tangent modulus curves for short transverse 7140-T7651 aluminum alloy plate at room temperature.
3-616
MMPDS-06 1 April 2011
80
X X Longitudinal
70
Short Transverse
Long Transverse
X
60
Stress, ksi
50
40
30
20
t = 4.000-7.000 in. TYPICAL 7140-T7651 Plate
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in. Figure 3.7.11.2.6(e). Typical stress-strain curves (full-range) for 7140-T7651 aluminum alloy plate at room temperature.
3-617
MMPDS-06 1 April 2011
Figure 3.7.11.2.9. Fatigue crack propagation data for 4.000-7.000 inch thick 7140-T7651 aluminum alloy plate without buckling restraint. [Reference 3.7.9.2.9.]
3-618
MMPDS-06 1 April 2011 Table 3.7.11.2.9 Fatigue crack propagation rate look-up table for best-fit mean curve shown in Figure 3.7.11.2.9
Stress Ratio ∆K, ksi-in0.50
Stress Ratio
0.10
∆K, ksi-in0.50
da/dN, in./cycle
0.10 da/dN, in./cycle
7.76
1.93E-06
17.78
2.79E-05
7.94
2.12E-06
18.84
3.31E-05
8.41
2.66E-06
19.95
3.93E-05
8.91
3.30E-06
21.13
4.70E-05
9.44
4.06E-06
22.39
5.65E–05
10.00
4.95E-06
23.71
6.84E-05
10.59
5.98E-06
25.12
8.34E-05
11.22
7.19E-06
26.61
1.03E-04
11.89
8.59E-06
28.18
1.27E-04
12.59
1.02E-05
29.85
1.60E-04
13.34
1.21E-05
31.62
2.03E-04
14.13
1.43E-05
33.50
2.61E-04
14.96
1.69E-05
35.48
3.41E-04
15.85
2.00E-05
37.58
4.51E-04
16.79
2.36E-065
39.81
6.06E-04
3-619
MMPDS-06 1 April 2011 3.7.12 7150 ALLOY 3.7.12.0 Comments and Properties — 7150, a second-generation version of 7050, is an Al-Zn-Mg-Cu-Zr alloy developed to provide higher strength properties than 7050 in thicknesses through 3 inches. 7150 is available in the form of plate and extrusion. The T61-type temper provides high strength with guaranteed levels of fracture toughness for plate. The T77-type temper provides high strength with guaranteed toughness and corrosion resistance. The T77-type temper has exfoliation and stress corrosion resistance comparable to the T76-type temper of the other 7000 series aluminum alloys. Refer to Section 3.1.2.3 for further comments regarding resistance of the alloy to stress corrosion cracking. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for 7150 are shown in Table 3.7.12.0(a). Room temperature mechanical properties are presented in Tables 3.7.12.0(b1) through 3.7.12.0(c2). Table 3.7.12.0(a). Material Specifications for 7150 Aluminum Alloy
Specification AMS 4306 AMS 4252 AMS 4307 AMS 4345 AMS 4325
Form Bare plate Bare plate Extrusion Extrusion Wide Extrusion
The temper index for 7150 is as follows: Section 3.7.12.1 3.7.12.2
Temper T6151 and T61511 T7751 and T77511
3-620
MMPDS-06 1 April 2011
Table 3.7.12.0(b1). Design Mechanical and Physical Properties of 7150 Plate
Specification . . . . . . . . .
AMS 4306
Form . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . .
T6151
Thickness, in. . . . . . . . .
0.750-1.000
1.001-1.500
Basis . . . . . . . . . . . . . . .
A
B
A
B
Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . .
85 84
87 87
86 85
87 86
Fty, ksi: L ................ LT . . . . . . . . . . . . . .
79 77
81 79
80 76
81 78
Fcy, ksi: L ................ LT . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . .
77 81 45
80 83 47
75 80 46
77 82 46
Fbrua, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . .
121 155
125 160
123 156
124 158
Fbrya, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . .
102 119
105 122
101 118
104 121
e, percent (S-Basis): L ................ LT . . . . . . . . . . . . . .
9 9
... ...
9 9
... ...
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . µ .................
10.2 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . .
0.102 ...
a
Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-621
MMPDS-06 1 April 2011
Table 3.7.12.0(b2). Design Mechanical and Physical Properties of 7150 Plate Specification . . . . . . . . .
AMS 4252
Form . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . .
T7751
Thickness, in. . . . . . . . .
0.250-0.499
0.500-0.749
0.750-1.500
Basis . . . . . . . . . . . . . . .
S
S
S
A
B
80 80 ...
83 83 ...
84 84 ...
82 82a 77a
84 84 81
74 74 ...
77 76 ...
78 77 ...
76 75a 67a
78 77 71
74 77 46
76 79 47
77 81 48
75 79 47
77 81 48
119 154
124 160
125 162
122 158
125 162
102 117
105 120
106 121
104 118
106 121
8 8 ...
8 8 ...
8 8 ...
7 6 1
... ... ...
Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent: (S-Basis) L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................
10.3 10.7 3.9 0.33
Physical Properties: ω, lb./in.3 . . . . . . . . . . C, K, and α . . . . . . . .
0.102 ...
1.501-3.000
Issued: Feb 1989, MIL-HDBK-5E, CN2, Item 87-25; Revised: Apr 2005, MMPDS-02, Item 04-32 a A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(LT)=83 ksi, Ftu(ST)=78 ksi, Fty(LT)=76 ksi, Fty(ST)=68 ksi. b Bearing values are "dry pin" values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-622
MMPDS-06 1 April 2011
Table 3.7.12.0(c1). Design Mechanical and Physical Properties of 7150 Aluminum Alloy Extrusion
Specification Form
Extrusion
..........................
Temper
T61511
.......................
Thickness or Diameter,a in Basis
AMS 4307
.................
...
.........................
Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . e, percent (S-Basis): L .........................
0.2500.499
0.5000.749
0.7500.999
S
S
S
A
B
S
87 80
88 79
89 79
89 85
94 86
89 74
82 73
83 73
84 73
83 77
88 78
84 68
80 80 44
81 80 45
82 80 45
82 77 44
87 81 46
84 75 42
119 152
120 153
120 154
118 152
125 161
116 150
100 118
100 120
100 120
96 117
102 124
94 117
8
9
8
8
...
8
3
1.0001.499
E, 10 ksi . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . µ ............................
10.4 11.0 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . .
0.102 ...
a b
The mechanical properties are to be based upon the thickness at the time of quench. Bearing values are “dry pin” values per Section 1.4.7.1.
3-623
1.5002.000
MMPDS-06 1 April 2011
Table 3.7.12.0(c2). Design Mechanical and Extrusion Specification . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . Cross-Sectional Area, in2 . #0.249 Thickness or Diameter,a (in.) Basis . . . . . . . . . . . . . . . . . A B Mechanical Properties: Ftu, ksi: L.................. 85b 88 LT . . . . . . . . . . . . . . . . 81 84 Fty, ksi: L.................. 78b 83 LT . . . . . . . . . . . . . . . . 74 79 Fcy, ksi: L.................. 78b 82 LT . . . . . . . . . . . . . . . . 76 81 Fsu, ksi: . . . . . . . . . . . . . . 44 46 f Fbru , ksi: (e/D = 1.5) . . . . . . . . . . 122 126 (e/D = 2.0) . . . . . . . . . . 158 163 f Fbry , ksi: (e/D = 1.5) . . . . . . . . . . 100 106 (e/D = 2.0) . . . . . . . . . . 118 125 e, percent (S-Basis): L.................. 7 ... E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . F ................... Physical Properties: ω, lb./in.3 . . . . . . . . . . . C, K, and α . . . . . . . . . . a b c d e f
Physical Properties of 7150 Aluminum Alloy
AMS 4345 Extrusion T77511 #20 0.250-0.499 0.500-0.749 A B A B
0.750-2.000 A B
87c 82c
89 86
88d 83d
91 86
89 83
90 85
82 76c
84 79
83 79
85 81
84 78
85 81
82 80 45
85 82 46
83 81 46
86 84 48
84 82 46
87 84 47
124 161
127 165
125 162
130 168
123 159
125 161
105 124
108 127
106 125
109 129
108 127
109 129
8
...
9
...
8
...
10.4 10.9 4 0.33 0.102 ...
The mechanical properties are to be based upon the thickness at the time of quench. A-Basis value is specification minimum. The rounded T99 values for Ftu(L )= 87 ksi, for Fty(L) = 81 ksi, and for Fcy(L) = 79ksi. A-Basis value is specification minimum. The rounded T99 values for Ftu(L) = 88 ksi, for Ftu(LT) = 84 ksi and for Fty(LT) = 77 ksi. A-Basis value is specification minimum. The rounded T99 values for Ftu(L )= 89 ksi and for Ftu(LT) = 84 ksi. A-Basis value is specification minimum. The rounded T99 values for Ftu(LT )= 84 ksi and for Fty(LT) = 79 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
3-624
MMPDS-06 1 April 2011
Table 3.7.12.0(c3). Design Mechanical and Physical Properties of 7150 Aluminum Alloy Extrusion
Specification Form
Wide Extrusion
................................
Temper
T77511
............................. 2
Cross-Sectional Area, in
14-30a
...........
Thickness or Diameter,b in. Basis
AMS 4325
.......................
0.500 - 1.000
........
...............................
Mechanical Properties: Ftu, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbrud, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . Fbryd, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ................................
A
B
86 84c
87 86
80 79
82 80
79 80 46
81 82 47
122 158
123 160
103 123
105 126
8
...
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . µ ..................................
10.4 10.9 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . . . .
0.102 ...
a b c d
Product size is within a circumscribing circle diameter range of 14-22 inches. The mechanical properties are to be based upon the thickness at the time of quench. A-Basis value is specification minimum. The rounded T99 values for Ftu,(LT )= 85 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
3-625
MMPDS-06 1 April 2011 3.7.12.1 T6151 and T61511 Tempers — Figures 3.7.12.1.6(a) and 3.7.12.1.6(b) present stress-strain and tangent-modulus curves for bare plate. Figures 3.7.12.1.6(c) and 3.7.12.1.6(d) depict stressstrain and tangent-modulus curves for extrusion.
100
Longitudinal 80 Long Transverse
Stress, ksi
60
Ramberg - Osgood n (L) = 30 n (LT) = 11
40
TYPICAL Thickness = 0.750 - 1.000 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.12.1.6(a). Typical tensile stress-strain curves for 7150-T6151 aluminum alloy plate at room temperature. 100 Long Transverse Longitudinal 80
Stress, ksi
60
Ramberg - Osgood n (L) = 15 n (LT) = 20
40
TYPICAL Thickness = 0.750 - 1.000 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.12.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7150-T6151 aluminum alloy plate at room temperature.
3-626
MMPDS-06 1 April 2011 100
L - tension LT - tension 80
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 9.5 n (LT-tension) = 9.5
40
TYPICAL Thickness = 0.800 - 2.750 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.12.1.6(c). Typical tensile stress-strain curves for 7150-T61511 aluminum alloy extrusion at room temperature.
100 L - compression LT - compression
80
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 16 n (LT-comp.) = 27 20 TYPICAL Thickness = 0.800 - 2.750 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.12.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7150-T61511 aluminum alloy extrusion at room temperature.
3-627
MMPDS-06 1 April 2011 3.7.12.2 T7751 and T77511 Tempers — Figures 3.7.12.2.6(a) and 3.7.12.2.6(b) present stress-strain and tangent-modulus curves for bare plate. Figures 3.7.12.2.6(c) and 3.7.12.2.6(d) depict stressstrain and tangent-modulus curves for extrusion.
100
80 L - tension LT - tension
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 12 n (LT-tension) = 11
40
TYPICAL Thickness = 0.340 - 1.875 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.12.2.6(a). Typical tensile stress-strain curves for 7150-T7751 aluminum alloy plate at room temperature. 100 LT - compression L - compression 80
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 17 n (LT-comp.) = 22 TYPICAL
20
Thickness = 0.340 - 1.875 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.12.2.6(b). Typical compressive stress-strain and tangent-modulus curves for 7150-T7751 aluminum alloy plate at room temperature.
3-628
MMPDS-06 1 April 2011 100
L - tension LT - tension
80
Stress, ksi
60 Ramberg - Osgood n (L-tension) = 8.8 n (LT-tension) = 8.2 TYPICAL
40
Thickness = 0.700 - 1.145 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.12.2.6(c). Typical tensile stress-strain curves for 7150-T77511 aluminum alloy extrusion at room temperature.
100
LT - compression L - compression
80
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 22 n (LT-comp.) = 30
20
TYPICAL Thickness = 0.700 - 1.145 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.12.2.6(d). Typical compressive stress-strain and tangent-modulus curves for 7150-T77511 aluminum alloy extrusion.
3-629
MMPDS-06 1 April 2011 . .
80 7150 EXT Kt=1.0 Stress Ratio 0.10 Runout →
Maximum Stress, ksi
70
60
50
40
→ →
30 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.12.2.8(a). Best-fit S/N curves for unnotched 7150-T77511 aluminum alloy extrusion, longitudinal orientation.
Correlative Information for Figure 3.7.12.2.8(a). Product Forms: Extruded shape, 1.125 inch, 1.45 inch Properties:
TUS, ksi 89
Specimen Details:
Test Parameters: Loading - Axial Frequency - 25 Hz Temperature - RT Environment - Air
TYS, ksi Temp.,EF 84 RT
No. of Heats/Lots: 2
Unnotched Round, 0.3-inch diameter, removed from center of section
Surface Condition: Polished to 10 micro-inch or better
Fatigue Life Equation: Log Nf = 21.89 - 9.32 log (Smax) Std. Error of Estimate, Log (Life) = 0.321 Standard Deviation, Log (Life) = 0.753 R2 = 81.8%
Reference:
Sample Size: 16
3.7.12.2.8
3-630
MMPDS-06 1 April 2011 . .
80 7150 EXT Kt=1.0 Stress Ratio 0.10
Maximum Stress, ksi
70
60
50
40
30 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.12.2.8(b). Best-fit S/N curves for unnotched 7150-T77511 aluminum alloy extrusion, long transverse orientation.
Correlative Information for Figure 3.7.12.2.8(b). Product Forms:
Extruded shape, 1.125 inch, 1.45 inch
Properties:
TUS, ksi TYS, ksi Temp.,EF 83 78 RT
Specimen Details:
Test Parameters: Loading - Axial Frequency - 25 Hz Temperature - RT Environment - Air No. of Heats/Lots: 2
Unnotched Round, 0.3 inch-diameter, removed from center of section
Surface Condition: Polished to 10 microinch or better
Fatigue Life Equation: Log Nf = 17.98 - 7.57 log (Smax) Std. Error of Estimate, Log (Life) = 22.53(1/S max) Standard Deviation, Log (Life) = 0.977 R2 = 74.4 %
Reference:
Sample Size: 10
3.7.12.2.8
3-631
MMPDS-06 1 April 2011 . .
40
Maximum Stress, ksi
7150 EXT Kt=3.0 Stress Ratio 0.10 Runout →
30
20 → →→
10 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.12.2.8(c). Best-fit S/N curves for notched, Kt = 3.0, 7150-T77511 aluminum alloy extrusion, longitudinal and long transverse orientations.
Correlative Information for Figure 3.7.12.2.8(c). Product Forms:
Extruded shape, 1.125 inch, 1.45 inch
Test Parameters: Loading - Axial Frequency - 25 Hz Temperature - RT Environment - Air
Properties: TUS, ksi TYS, ksi Temp.,EF Longitudinal 89 84 RT Long Transverse 83 78 RT
No. of Heats/Lots: 2 Specimen Details:Circumferentially notched, Kt = 3.0 round, 0.253-inch net diameter, 0.013-inch root radius, removed from center of section
Fatigue Life Equation: Log Nf = 5.71 - 1.31 log (Smax - 16.92) Std. Error of Estimate, Log (Life) = 4.51 (1/S max) Standard Deviation, Log (Life) = 0.750 R2 = 92.4%
Surface Condition: Notch
Sample Size: 25
Reference:
3.7.12.2.8
3-632
MMPDS-06 1 April 2011 3.7.13 7175 ALLOY 3.7.13.0 Comments and Properties — 7175 is a high-purity, high-strength Al-Zn-Mg-Cu alloy. In the form of die forgings, the alloy is available in the T66, T74, and T7452 tempers. Die forgings of 7175-T66 develop higher static strength than 7075-T6 forgings with fatigue, fracture, and stress corrosion properties about equivalent to those of 7075-T6 forgings. 7175-T74-type die and hand forgings develop static strengths about equivalent to those of 7075-T6 forgings, with toughness and fatigue properties equal or superior to those of 7075-T73 forgings. The T74-type temper provides stress-corrosion resistance and strength characteristics intermediate to those of T76 and T73 in 7075. Refer to Section 3.1.2.3 for comments regarding the resistance of the alloy to stress corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of the alloy. The properties of extrusions should be based upon the thickness at the time of quenching prior to machining. Selection of the mechanical properties based upon its final machined thickness may be nonconservative; therefore, the thickness at the time of quenching to achieve properties is an important factor in the selection of the proper thickness column. For extrusions having sections with various thicknesses, consideration should be given to the properties as a function of thickness. Material specifications for 7175 are presented in Table 3.7.13.0(a). Room temperature mechanical and physical properties are shown in Tables 3.7.13.0(b) through 3.7.13.0(d). Table 3.7.13.0(a). Material Specifications for 7175 Aluminum Alloy
Specification a
AMS 4148 AMS 4149 AMS 4179 AMS-A-22771a AMS 4344
Form Die forging Die and hand forging Hand forging Forging Extrusion
a Inactive for new design.
The temper index for 7175 is as follows: Section 3.7.13.1 3.7.13.2
Temper T73511 T74 and T7452 (formerly T736 and T73652)
3.7.13.1 T73511 Temper — Figures 3.7.13.1.6(a) and 3.7.13.1.6(b) show tensile and compressive stress-strain and tangent-modulus curves for extrusion. Figures 3.7.13.1.8(a) through 3.7.13.1.8(d) present fatigue curves for extrusion. 3.7.13.2 T74 and T7452 Tempers — Figures 3.7.13.2.6(a) through 3.7.13.2.6(f) present tensile and compressive stress-strain and tangent-modulus curves for die and hand forging. Figures 3.7.13.2.8(a) and 3.7.13.2.8(b) present fatigue curves for die and hand forging.
3-633
MMPDS-06 1 April 2011 Table 3.7.13.0(b). Design Mechanical and Physical Properties of 7175 Aluminum Alloy Die Forging
Specification . . . . . . . . . AMS 4148f
AMS 4149
Form . . . . . . . . . . . . . . .
Die forging T74a,b
Temper . . . . . . . . . . . . .
T66
Thickness, in. . . . . . . . .
#3.000
#1.000
Basis . . . . . . . . . . . . . . .
S
S
A
86 77
76 71
76 66
Mechanical Properties: Ftu, ksi: L ................ Tc . . . . . . . . . . . . . . . . Fty, ksi: L ................ Tc . . . . . . . . . . . . . . . . Fcy, ksi: L ................ ST . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbrue, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . Fbrye, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . e, percent (S-Basis): L ................ Tc . . . . . . . . . . . . . . . .
1.0012.000
2.0013.000
3.0014.000
4.0015.000
5.0016.000
B
S
S
S
S
74 71d
77 ...
76 71
73 70
70 68
68 65
66 62
64 62d
67 ...
66 62
63 60
61 58
58 55
... ... ...
67 63 43
65 61 42
68 64 44
67 63 43
... ... ...
... ... ...
... ... ...
... ...
106 140
105 137
109 142
106 140
... ...
... ...
... ...
... ...
86 102
84 99
88 103
86 102
... ...
... ...
... ...
7 4
7 4
7 4
... ...
7 4
7 4
7 4
7 4
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ .................
10.2 10.7 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . .
0.101 0.23 (at 212EF) 76 (at 77EF for T66); 90 (at 77EF for T736) 12.9 (68E to 212EF)
a When die forgings are machined before heat treatment, section thickness at time of heat treatment shall determine minimum mechanical properties as long as original (as-forged) thickness does not exceed maximum thickness for the alloy as shown in the table. b Design allowables were based upon data obtained from testing die forgings, heat treated by suppliers, and supplied in T74 temper. c T indicates any grain direction not within ±15E of being parallel to the forging flow lines. Fcy(T) values are based upon short transverse (ST) test data. d S-Basis, specification value. T tensile properties are presented on an S-Basis only. e Bearing values are “dry pin” values per Section 1.4.7.1. f Inactive for new design.
3-634
MMPDS-06 1 April 2011 Table 3.7.13.0(c1). Design Mechanical and Physical Properties of 7175 Aluminum Alloy Hand Forging Specification . . . . . . . . . . . . . . . .
AMS 4149 and AMS-A-22771a
Form . . . . . . . . . . . . . . . . . . . . . .
Hand forging
Temper . . . . . . . . . . . . . . . . . . . .
T74
b,c
Thickness or Diameter , in. . . . .
1.001-2.000
2.001-3.000
3.001-4.000
4.001-5.000
5.001-6.000
Basis . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
73 71 ...
73 71 69
71 70 68
68 67 66
65 64 63
63 60 ...
63 60 60
61 58 57
57 56 55
54 52 52
63 62 61
63 63 62
61 61 60
59 60 59
55 56 55
43 42 42
43 42 42
43 41 41
41 39 39
39 38 38
106 138
106 138
104 136
100 131
95 125
73 89
78 94
80 95
81 95
76 90
9 5 ...
9 5 4
9 5 4
8 5 4
8 5 4
Mechanical Properties: Ftu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fsu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fbrud, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . Fbryd, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . e, percent: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . µ .......................
10.2 10.6 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . α 10-6 in./in./EF . . . . . . . . . . . .
0.101 0.23 (at 212EF) 90 (at 77EF) 12.9 (68E to 212EF)
a AMS-A-22771 is inactive for new design. Mechanical properties were established under MIL-A-22771. b When hand forgings are machined before heat treatment, the section thickness at time of heat treatment shall determine the minimum mechanical properties as long as the original (as-forged) thickness does not exceed the maximum thickness for the alloy as shown in the table. c The maximum cross-sectional area of hand forgings in 256 sq. in. d Bearing values are “dry pin” values per Section 1.4.7.1.
3-635
MMPDS-06 1 April 2011 Table 3.7.13.0(c2). Design Mechanical and Physical Properties of 7175 Aluminum Alloy Hand Forging
Specification . . . . . . . . . . . . . .
AMS 4179 and AMS-A-22771a
Form . . . . . . . . . . . . . . . . . . . .
Hand forging
Temper . . . . . . . . . . . . . . . . . .
T7452
Thickness or Diameterb, in. . . .
1.0012.000
2.0013.000
3.0014.000
4.0015.000
5.0016.000
Basis . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
71 69 ...
71 69 67
68 67 65
65 64 63
63 61 60
61 58 ...
61 58 54
57 55 51
54 52 49
51 49 46
58 61 60
58 61 60
55 57 57
52 54 54
49 50 51
38 38 40
39 39 41
39 38 40
38 38 39
37 36 38
102 133
102 133
99 130
95 124
90 118
80 95
82 98
80 95
76 92
72 87
9 5 ...
9 5 4
9 5 4
8 5 4
8 5 4
Mechanical Properties: Ftu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fsu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent: L ..................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ......................
10.2 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . α, 10-6 in./in./EF . . . . . . . . . .
0.101 0.23 (at 212EF) 90 (at 77EF) 12.9 (68E to 212EF)
a AMS-A-22771 is inactive for new design. Mechanical properties were established under MIL-A-22771. b The maximum cross-sectional area of hand forgings is 256 sq.in. c Bearing values are “dry pin” values per Section 1.4.7.1.
3-636
MMPDS-06 1 April 2011
Table 3.7.13.0(d). Design Mechanical and Physical Properties of 7175 Aluminum Alloy Extrusion
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 4344
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extrusion
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T73511
2
32-65
Cross-Sectional Area, in
...................
a
Thickness or Diameter, in. . . . . . . . . . . . . . . . . . .
0.250-0.999
1.000-2.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
Mechanical Properties: Ftu, ksi: L .................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69 63
69 63
Fty, ksi: L .................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59 52
59 52
Fcy, ksi: L .................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... ... ...
59 59 40
Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... ...
97 125
Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... ...
79 95
e, percent: L .................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
... ...
8 4
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ ..................................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . . . . . . . . . a b
10.1 10.5 3.9 0.33 0.101 0.23 (at 212EF) ... 12.9 (68E to 212EF)
The mechanical properties are to be based upon the thickness at the time of quench. Bearing values are “dry pin” values per Section 1.4.7.1.
3-637
MMPDS-06 1 April 2011 100
80 Longitudinal
60
Stress, ksi
Long Transverse
Ramberg - Osgood n (L-tension) = 41 n (LT-tension) = 58
40
TYPICAL Thickness = 1.000 - 2.000 in. Cross-sectional area: 32 - 65 in.2
20
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Figure 3.7.13.1.6(a). Typical tensile stress-strain curves for aluminum alloy 7175T73511 extrusion at room temperature.
100
Longitudinal and Long Transverse
80
Stress, ksi
60
40 Ramberg - Osgood n (L and LT - comp. = 13 TYPICAL 20
Thickness = 1.000 - 2.000 in. Cross-sectional area: 32 - 65 in.2
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 3.7.13.1.6(b). Typical compressive stress-strain and tangent-modulus curves for aluminum alloy 7175-T73511 extrusion at room temperature.
3-638
MMPDS-06 1 April 2011 . .
80
7175 Extrusion Kt=1.0
Maximum Stress, ksi
70
Stress Ratio 0.10 0.50 + - 1.00 0.00 x
x
60
50
x x
Runout
→ → → →
+
x
+ +
40
x x
+
→ → → →
→ xx→
++
x
→ x→ →
+ + + + +
30
+
+ + ++ +
20
+→ +→
Note: Stresses are based on net section.
10 103
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.13.1.8(a). Best-fit S/N curves for unnotched 7175-T73511 alloy extrusion, longitudinal direction.
Correlative Information for Figure 3.7.13.1.8(a) Product Form: Extrusion 1.8-inches thick, extruded round, 3.75-inches diameter, extruded rectangle, 2.5 x 5-inches thick, extrusion, unspecified size
Test Parameters: Loading - Axial Frequency - Not specified Temperature - 70EF Environment - Air
Properties:
No. of Heats/Lots: 11
TUS, ksi 76
TYS, ksi 67
Temp.,EF 70
Surface Condition: 32 RMS gage section specified
Equivalent Stress Equation: Log Nf = 12.01-5.26 log (Seq) Seq = Sa + 0.32Sm - 15.04 Std. Error of Estimate, Log (Life) = 18.44(1/Seq) Standard Deviation, Log (Life) = 1.35 R2 = 58%
References: 3.7.13.1.8(a) through 3.7.13.1.8(c)
Sample Size = 96
Specimen Details: 0.25-inch minimum diameter hourglass gage section
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-639
MMPDS-06 1 April 2011 . .
Maximum Stress, ksi
70
7175 Extrusion Kt=3.0
60
Stress Ratio 0.10 0.50 + - 1.00 0.00 x
50
→
40
Runout
x +
30
+ +
x
+ + +
+ +
20
+
x
x → x
+
x
→
x
+
x
+ +
10
0 103
xx
++
xx → →→ → → x→
x
+ +
+
+ →
Note: Stresses are based on net section.
104
105
106
107
108
Fatigue Life, Cycles Figure 3.7.13.1.8(b). Best-fit S/N curves for notched, Kt = 3.0, 7175-T73511 alloy extrusion, longitudinal direction.
Correlative Information for Figure 3.7.13.1.8(b) Product Form: Extrusion 1.8-inches thick, extruded round, 3.75-inches diameter, extruded rectangle, 2.5 x 5 inches thick, extrusion, unspecified size
Test Parameters: Loading - Axial Frequency - Not specified Temperature - 70EF Environment - Air
Properties: TUS, ksi 76
No. of Heats/Lots: 11
TYS, ksi 67
Temp.,EF 70
Equivalent Stress Equation: Log Nf = 6.50-2.25 log (Seq) Seq = Sa + 0.20Sm - 7.21 Std. Error of Estimate, Log (Life) = 3.92(1/Seq) Standard Deviation, Log (Life) = 1.51 R2 = 91%
Specimen Details: Circumferential notch, Kt = 3 0.50-inch gross diameter 0.36-inch net diameter 0.005-inch notch radius Circumferential 60E V notch
Sample Size = 86 References: 3.7.13.1.8(a) through 3.7.13.1.8(c) [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-640
MMPDS-06 1 April 2011 . .
60
7175 Extrusion Kt=5.0 Stress Ratio 0.10 0.50 + - 1.00 Runout →
Maximum Stress, ksi
50
40
Note: Stresses are based on net section.
30 +
20
+ + +
+
10
0 103
→ →
+
+
104
+ + +
+
+
+
105
→ → + + + +
106
+
+
+ →
107
108
Fatigue Life, Cycles Figure 3.7.13.1.8(c). Best-fit S/N curves for notched, Kt = 5.0, 7175-T73511 alloy extrusion, longitudinal direction.
Correlative Information for Figure 3.7.13.1.8(c) Product Form: Extrusion 1.8 inches thick Properties: TUS, ksi 76
TYS, ksi 67
Test Parameters: Loading - Axial Frequency - Not specified Temperature - 70EF Environment - Air
Temp.,EF 70
Specimen Details: Circumferential notch, Kt = 5 0.50-inch gross diameter 0.36-inch net diameter 0.001-inch notch radius
No. of Heats/Lots: 10 Equivalent Stress Equation: Log Nf = 7.63-2.78 log (Seq-7.3) Seq = Smax(1-R)0.56 Std. Error of Estimate, Log (Life) = 3.71(1/Seq) Standard Deviation, Log (Life) = 1.45 R2 = 90%
References: 3.7.13.1.8(a) and 3.7.13.1.8(b)
Sample Size = 136 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-641
MMPDS-06 1 April 2011 . .
60
7175 Extrusion Kt=7.0 Stress Ratio 0.10 0.50 + - 1.00 Runout →
Maximum Stress, ksi
50
40
Note: Stresses are based on net section.
30
+ + +
20
+ + +
+ +
+ +
10
+
+ +
0 103
104
+ + + +
105
→→ +
106
+
+ →
107
108
Fatigue Life, Cycles Figure 3.7.13.1.8(d). Best-fit S/N curves for notched, Kt = 7.0, 7175-T73511 alloy extrusion, longitudinal direction.
Correlative Information for Figure 3.7.13.1.8(d) Product Form: Extrusion 1.8-inches thick Properties:
TUS, ksi 76
TYS, ksi 67
Test Parameters: Loading - Axial Frequency - Not specified Temperature - 70EF Environment - Air
Temp.,EF 70
Specimen Details: Circumferential notch, Kt = 7 0.50-inch gross diameter 0.36-inch net diameter 0.0005-inch notch radius
No. of Heats/Lots: 9 Equivalent Stress Equation: Log Nf = 7.15-2.78 log (Seq) Seq = Sa + 0.27Sm - 2.88 Std. Error of Estimate, Log (Life) = 0.11 + 1.60 (1/Seq) Standard Deviation, Log (Life) = 1.55 R2 = 92%
References: 3.7.13.1.8(a) and 3.7.13.1.8(b)
Sample Size = 63 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-642
MMPDS-06 1 April 2011 100
Longitudinal
Stress, ksi
80
Transverse
60
40
Ramberg-Osgood n (Longitudinal) = 50 n (Transverse) = 25
20
TYPICAL Thickness:< 3.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.13.2.6(a). Typical tensile stress-strain curves for 7175-T74 aluminum alloy die forging at room temperature. 100
Longitudinal Transverse
Stress, ksi
80
60
40
Ramberg-Osgood n (Longitudinal) = 39 n (Transverse) = 25 20
TYPICAL Thickness:< 3.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 10 3 ksi. Figure 3.7.13.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7175-T74 aluminum alloy die forging at room temperature.
3-643
MMPDS-06 1 April 2011 100
80
Longitudinal Long Transverse Short Transverse
Stress, ksi
60
Ramberg - Osgood n (Longitudinal) = 34 n (Long Transverse) = 26 n (Short Transverse) = 13
40
TYPICAL Thickness ≤ 4.000 in. 20
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Figure 3.7.13.2.6(c). Typical tensile stress-strain curves for 7175-T74 aluminum alloy hand forging at room temperature. 100
Long Transverse 80
Short Transverse Long Transverse
Longitudinal
Longitudinal
Longitudinal
Stress, ksi
60
Short Transverse
40 Ramberg - Osgood n (Longitudinal) = 27 n (Long Transverse) = 17 n (Short Transverse) = 19 20
TYPICAL Thickness ≤ 4.000 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.13.2.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7175-T74 aluminum alloy hand forging at room temperature.
3-644
MMPDS-06 1 April 2011
100
80 Longitudinal Long Transverse Short Transverse
Stress, ksi
60
40 Ramberg - Osgood n (L-tension) = 12 n (LT-tension) = 13 n (ST-tension) = 10 TYPICAL
20
Thickness = 4.001 - 5.000 in.
0 0
2
4
6 Strain, 0.001 in./in.
8
10
12
Figure 3.7.13.2.6(e). Typical tensile stress-strain curves for aluminum alloy 7175T7452 hand forging at room temperature. 100
80
Longitudinal and Long Transverse Short Transverse
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 13 n (LT-comp.) = 15 n(ST-comp.) = 17
20
TYPICAL Thickness = 4.001 - 5.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.13.2.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for aluminum alloy 7175-T7452 hand forging at room temperature.
3-645
MMPDS-06 1 April 2011
Figure 3.7.13.2.8(a). Best-fit S/N curves for notched, Kt=3.0, 7175T74 alloy die forging, longitudinal direction.
Correlative Information for Figure 3.7.13.2.8(a) Product Form: Die forging, 2.0- to 3.0-inches thick, unspecified thickness Properties:
TUS, ksi 77-82
Test Parameters: Loading - Axial Frequency - 1200 cpm unspecified Temperature - 70EF Environment - Air
TYS, ksi 69-75
Specimen Details: Circumferential notch, Kt = 3 0.30-inch gross diameter 0.25-inch net diameter Rectangular notched 0.10 x 0.20 inch
No. of Heats/Lots: 13 Equivalent Stress Equation: Log Nf = 7.88-3.09 log (Seq-7.15) Seq = Sa + 0.37Sm Std. Error of Estimate, Log (Life) = 7.38 (1/Seq) Standard Deviation, Log (Life) = 1.95 R2 = 83%
Surface Condition: Not specified References:
3.2.13.1.9(d), 3.7.3.1.8(d), 3.7.13.2.8(a), 3.7.13.1.8(b), and 3.7.13.1.8(c)
Sample Size = 137 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-646
MMPDS-06 1 April 2011
Figure 3.7.13.2.8(b). Best-fit S/N curves for unnotched 7175-T74 alloy hand forging, longitudinal and transverse directions.
Correlative Information for Figure 3.7.13.2.8(b) Product Form: Hand forging, 2.0 to 6.25 inches thick Properties:
TUS, ksi 71-77
TYS, ksi 60-68
Test Parameters: Loading - Axial Frequency - 1200 cpm Temperature - 20EF Environment - Air
Temp.,EF 70
Specimen Details: Uniform gage length 0.30-inches diameter Hourglass gage section 0.25-inch minimum diameter References:
No. of Heats/Lots: Not Specified Equivalent Stress Equation: Log Nf = 21.15-9.49 log (Seq) Seq = Smax (1-R) Std. Error of Estimate, Log (Life) = 23.33(1/Seq) Standard Deviation, Log (Life) = 1.55 R2 = 76%
3.2.13.1.9(d) 3.7.3.1.8(c) and 3.7.3.1.8(d)
Sample Size: 50 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-647
MMPDS-06 1 April 2011 3.7.14 7249 ALLOY 3.7.14.0 Comments and Properties — 7249 is an Al-Zn-Mg-Cu-Cr alloy developed as a derivative from alloy 7149. Alloy 7249 has tighter compositional tolerances on its major constituents and lowered maximums on the interstitials such as Si, Fe, Mn, and Ti than alloy 7149. 7249-T7452 was developed as a replacement material for 7075-T6 forgings, which are susceptible to stress-corrosion cracking and exfoliation. 7249 also has higher strength at the higher thickness ranges and higher ductility than 7075-T6. 7249-T76511 has been optimized to maintain a high level of strength and high toughness, while providing improved corrosion resistance over 7075-T6511 extrusions. The alloy has been utilized in airframes generally as narrow extrusions for stringer, rib and spar caps, longerons, etc.; however, intended applications also include wide extrusions for wing panels, horizontal stabilizers, and struts. Relative to 7075T6511, this alloy has comparable mechanical properties with improved corrosion resistance and fracture toughness. Exfoliation corrosion indicates a ASTM G 34 rating of EB. Material specifications for 7249 are shown in Table 3.7.14.0(a). Room temperature mechanical properties are shown in Table 3.7.14.0(b) and 3.7.14.0(c).
Table 3.7.14.0(a). Material Specification for 7249 Alloy
Specification AMS 4334a AMS 4293
Form Hand forging Extrusions
a Inactive for new design
The temper index for 7249 is as follows: Section 3.7.14.1 3.7.14.2
Temper T7452 T76511
3-648
MMPDS-06 1 April 2011 Table 3.7.14.0(b). Design Mechanical and Physical Properties of 7249 Aluminum Alloy Hand Forging Specification . . . . . . . . .
AMS 4334a
Form . . . . . . . . . . . . . . .
Hand forging
Temper . . . . . . . . . . . . .
T7452
Thickness, in. . . . . . . . .
#1.500
1.5012.000
2.0012.500
Basis . . . . . . . . . . . . . . .
S
S
S
S
S
S
S
S
S
S
76 76 ...
75 75 ...
74 74 ...
73 73 ...
72 72 72
71 71 71
69 69 69
68 68 68
67 67 67
66 66 66
68 68 ...
67 67 ...
66 66 ...
64 64 ...
63 63 59
61 61 58
59 59 57
58 58 56
56 56 54
55 55 53
66 70 73
65 69 72
64 68 71
62 66 68
61 65 67
59 63 65
57 61 63
56 60 62
54 58 60
53 57 59
49 47
48 46
47 46
47 45
46 45
46 44
44 43
44 42
43 41
42 41
107 137
106 135
104 134
103 132
101 130
100 128
97 125
96 123
94 121
93 119
94 109
93 107
91 106
88 102
87 101
84 98
82 94
80 93
77 90
76 88
Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fsu, ksi: L-S . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . Fbru, ksib: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbry, ksib: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . .
2.501- 3.001- 3.501- 3.901- 4.501- 5.001- 5.5013.000 3.500 3.900 4.500 5.000 5.500 6.000
12 10 ...
12 10 5
E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................
10.1 10.4 3.8 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . C, K, and α . . . . . . . . .
... ...
a Inactive for new design. b Bearing values are “dry pin” values per Section 1.4.7.1.
3-649
MMPDS-06 1 April 2011 Table 3.7.14.0(c). Design Mechanical and Physical Properties of 7249 Aluminum Alloy Extrusions Specification . . . . . . . . . . . . . . . . . . . . . . .
AMS 4293
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Extrusion
Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T76511
Nominal Diameter or Least Thickness, in. .
#1.499
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . µ ...............................
b
B
83a 78a
86 83
76a 72a
79 76
79 79 48
82 83 50
115 151
119 157
97 116
101 121
7 7
... ... 10.1 10.5 10.7 ... ...
Physical Properties: ω, lb./in.3 . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . . . a
A
0.102 See Figure 3.7.14.0 85 (at 77EF) 12.3 (70E- 212EF)
A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(L)=84ksi, Ftu(LT)=79ksi, Fty(L)=77ksi, and Fty(LT)=73ksi. Bearing values are “dry pin” values per Section 1.4.7.1. See Table 3.1.2.1.1.
3-650
MMPDS-06 1 April 2011
0.25
o
Specific Heat, Btu/lb. F
0.20
0.15
0.10
0.05
0.00 -500
-400
-300
-200
-100 o
0
100
200
Temperature, F Figure 3.7.14.0. Effect of temperature on the specific heat of 7249-T76511aluminum alloy extrusions.
3-651
MMPDS-06 1 April 2011 3.7.14.1 T7452 Temper — Figures 3.7.14.1.6(a) and 3.7.14.1.6(b) present the typical tensile and compressive stress-strain curves and compressive tangent-modulus curves at room temperature. Figure 3.7.14.1.6(c) presents the full range stress-strain curves for hand forged material at room temperature. 80
TYPICAL Longitudinal 70
60
Long Transverse Short Transverse
Stress, ksi
50
40
30
Ramberg-Osgood
TYS (ksi)
26.0 24.0 14.0
Longitudinal Long Transverse Short Transverse
20
67.0 66.0 61.0
10
Thickness 1.500 -6.000 in. 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.14.1.6(a). Typical tensile stress-strain curves for 7249-T7452 aluminum alloy hand forging at room temperature.
80
TYPICAL
Short Transverse 70
Long Transverse 60
Stress, ksi
50
Longitudinal 40
30
Ramberg-Osgood CYS (ksi) 20.0 20.0 23.0
Longitudinal Long Transverse Short Transverse
20
61.0 69.0 72.0
10
Thickness 1.500 - 6.000 in. 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.14.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7249-T7452 aluminum alloy hand forging at room temperature.
3-652
MMPDS-06 1 April 2011
Figure 3.7.14.1.6(c). Typical tensile stress-strain curves (full range) for 7249-T7452 aluminum alloy hand forging at room temperature.
3-653
MMPDS-06 1 April 2011
3.7.14.2 T76511 Temper — Figure 3.7.12.2.6(a) presents the typical tensile stress-strain curve at room temperature. Figure 3.7.12.2.6(b) presents the full range stress-strain curves for extrusions at room temperature.
100
7249-T76511 Extrusion
Longitudinal
80
Stress, ksi
Long transverse 60
40
Ramberg-Osgood TYS (ksi) n (L-tension) = 26 83 n (LT-tension) = 25 78
20
TYPICAL Thickness:<1.500 in. 0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Figure 3.7.14.2.6(a). Typical tensile stress-strain curves for 7249-T76511 aluminum alloy extrusion at room temperature.
3-654
MMPDS-06 1 April 2011
100
7249-T76511 Extrusions 90
X
80
70
Stress, ksi
60
50
40
30
20
TYPIC AL Longitudinal
10
0 0.00
Thickness: <1.500 inches
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in. Figure 3.7.14.2.6(b). Typical tensile stress-strain curve (full range) for 7249-T76511 aluminum alloy extrusion at room temperature.
3-655
MMPDS-06 1 April 2011 3.7.15. 7349 ALLOY 3.7.15.0. Comments and Properties –7349 is an Al-Zn-Cu-Mg-Zr alloy and provides strength level comparable to alloy 7150. Alloy 7349 is available as a small to mid size extruded product. T76511 temper provides high tensile properties and exfoliation resistance commensurate with the level of overage. Material specifications for 7349 are presented in Table 3.7.15.0(a). Room temperature mechanical and physical properties are shown in Table 3.7.15.0(b). Table 3.7.15.0(a). Material Specifications for 7349 Aluminum Alloy Specification Form AMS 4332 Extruded Profiles
The temper index for 7349 is as follows: Section 2.7.15.1
Temper T76511
3.7.15.1. T76511 Temper – A typical tensile stress strain curve at room temperature is presented in Figure 3.7.15.1.6(a). Typical compressive stress strain and compressive tangent modulus curves at room temperature are shown in Figure 3.7.15.1.6(b). A typical full-range curve at room temperature is presented in Figure 3.7.15.1.6(c).
3-656
MMPDS-06 1 April 2011
Table 3.7.15.0(b). Design Mechanical and Physical Properties of 7349 Aluminum Alloy Extrusions Specification . . . . . . . . . . AMS 4332 Form . . . . . . . . . . . . . . . . . Extruded Profiles Temper . . . . . . . . . . . . . . . T76511
Cross-Sectional area, in2 . Thickness, (in.) . . . . . . . . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L.................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fty, ksi: L.................. LT . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . Fcy, ksi: L.................. LT . . . . . . . . . . . . . . . . Fsu, ksi: L . . . . . . . . . . . . . Fbru a, ksi: (e/D = 1.5) L . . . . . . . . (e/D = 2.0) L . . . . . . . . Fbry a, ksi: (e/D = 1.5) L . . . . . . . . (e/D = 2.0) L . . . . . . . . e, percent (S-Basis): L.................. LT . . . . . . . . . . . . . . . . ST
...............
A
B
<0.750 0.250 – 0.500 A B
91 … …
92 … …
92 … …
93 … …
94 … …
95 … …
84 … …
85 … …
84 … …
87 … …
87 … …
88 … …
81 … 50
82 … 50
81 … 50
84 … 51
84 … 51
85 … 52
129 168
130 170
130 170
132 171
133 173
134 175
107 127
108 129
107 127
111 132
111 132
112 133
8 … …
… … …
7 … …
… … …
6 … …
… … …
<0.250
3
E, 10 ksi . . . . . . . . . . . . .
10.3
Ec, 103 ksi . . . . . . . . . . . .
10.6 … …
G, 103 ksi . . . . . . . . . . . . . F ................... Physical Properties: ω, lb./in.3 . . . . . . . . . . . C, K, and α . . . . . . . . . . α, 10-6 in./in./EF
0.103 … 13.3 (68E-248EF)
Issued: Oct 2006, MMPDS-03, Item 05-04 a Bearing values are “dry pin” values per Section 1.4.7.1.
3-657
0.501-0.750 A B
MMPDS-06 1 April 2011
Figure 3.7.15.1.6(a) Typical tensile stress-strain curve for 7349-T76511 aluminum alloy extrusion at room temperature, longitudinal orientation 100
7349-T76511 Extrusions
Stress, ksi
80
60
TYPICAL Longitudinal
40
t = 0.079 - 0.295 in. 20
Ramberg-Osgood n = 14 K = 2.121
CYS (ksi) 87.0
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Compressive Tangent Modulus, 10 3 ksi. Figure 3.7.15.1.6(b). Typical compressive stress-strain and compressive tangent modulus curves for 0.08-0.30 inch thickness 7349-T76511 extrusions at room temperature.
3-658
MMPDS-06 1 April 2011
100
90
X 80
70
Stress, ksi
60
50
40
30
Longitudinal
20
7349-T76511 Extrusions TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.7.15.1.6(c). Typical stress-strain curve (full range) for 7349-T76511 aluminum alloy extrusion at room temperature.
3-659
0.14
MMPDS-06 1 April 2011 3.7.16 7449 ALLOY 3.7.16.0 Comments and Properties - 7449 is an Al-Zn-Cu-Mg-Zr alloy and provides higher strength than legacy 7XXX series alloy. Alloy 7449 is available in the form of plates (two tempers) and extrusions (one temper). T7951 temper provides high tensile and compressive strength, moderate fracture toughness and quantifiable level of SCC resistance commensurate with the level of overage typical for this temper. T7651 temper provides lower level of tensile properties, moderate fracture toughness and higher level of SCC resistance comparable to other 7XXX series alloys in T76 temper. Material specifications are shown in Table 3.7.14.0(a). Room temperature mechanical and physical properties are shown in Tables 3.7.16.0(b), 3.7.16.0(c), and 3.7.16.0(d). Table 3.7.16.0(a). Material Specifications for 7449 Aluminum Alloy Specification Form AMS 4250 Plate AMS 4299 Plate AMS 4305 Extruded Profile
The temper index for 7449 is as follows: Temper T7651 T7951 T79511
Section 3.7.16.1 3.7.16.2 3.7.16.3
3-660
MMPDS-06 1 April 2011
Table 3.7.16.0(b). Design Mechanical and Physical Properties of 7449 Aluminum Alloy Plate Specification . . . . . . . . AMS 4250 Form . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . T7651 2.501Thickness, in. . . . . . . . 0.250-1.500 1.501-2.500 3.000 3.001-3.500 3.501-4.000 Basis . . . . . . . . . . . . . . A B A B A B A B A B Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . Fsu, ksi L-S . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . Fbrue, ksi (e/D = 1.5): L ............... LT . . . . . . . . . . . . . . Fbrue, ksi (e/D = 2.0): L ............... LT . . . . . . . . . . . . . . Fbrye, ksi (e/D = 1.5): L ............... LT . . . . . . . . . . . . . . Fbrye, ksi (e/D = 2.0): L ............... LT . . . . . . . . . . . . . . e, percent (S-Basis): L ............... LT . . . . . . . . . . . . . . ST . . . . . . . . . . . . . .
84 83 …
85 84 …
81 82 77d
83 85 82
81 81c 77c
81 83 80
80a 81a 77a
81 83 80
79b 80b 77b
81 83 80
78 77 …
80 79 …
76 75 67d
78 79 74
75 74c 67c
77 76 72
75 74a 67a
77 76 72
74b 73b 67b
77 76 72
77 80 …
79 82 …
75 78 79
79 82 83
74 77 78
76 79 80
74 77 78
76 79 80
73 76 76
76 79 80
51 51
52 51
51 50
52 52
50 50
51 51
50 50
51 51
49 49
51 51
116 116
118 117
119 118
124 123
121 119
124 122
122 121
125 124
122 120
126 124
153 152
154 154
156 154
161 160
157 155
161 159
159 156
163 160
158 155
164 161
95 93
98 95
98 94
103 100
99 96
102 99
100 97
103 100
100 97
104 101
110 108
113 111
113 110
119 116
115 112
118 115
116 113
119 116
115 112
120 117
8 8 …
... ... ...
7 6 3
... ... ...
7 5 1.5
... ... ...
7 5 1.5
... ... ...
6 4 1
... ... ...
10.3 10.6 ... ...
E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................ Continued on next page.
3-661
MMPDS-06 1 April 2011 Table 3.7.16.0(b). Design Mechanical and Physical Properties of 7449 Aluminum Alloy Plate (continued) Specification . . . . . . . . AMS 4250 Form . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . T7651 Physical Properties: ω, lb/in.3 . . . . . . . . . . C, Btu/(lb)(EF) . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . .
0.103 … … …
Issued: Oct 2006, MMPDS-03, Item 04-16 a A-Basis value is specification minimum. The rounded T99 for 3.0-3.5 inch Ftu (L) = 81 ksi, Ftu (LT) = 82 ksi, Ftu (ST) = 79 ksi, for Fty (LT) = 75 ksi, and for for Fty (ST) = 70 ksi. b A-Basis value is specification minimum. The rounded T99 for 3.5-4.0 inch Ftu (L) = 81 ksi, Ftu (LT) = 82 ksi, Ftu (ST) = 79 ksi, for Fty (L) = 75 ksi, Fty (LT) = 75, and for Fty (ST) = 70 ksi. c A-Basis value is specification minimum. The rounded T99 for 2.5-3.0 inch Ftu (LT) = 82 ksi, Ftu (ST) = 79 ksi, for Fty (LT) = 75 ksi, and forFty(ST) = 70 ksi. d A-Basis value is specification minimum. The rounded T99 for 1.5-2.5 inch Ftu (ST) = 80 ksi, for Fty (ST) = 70 ksi. e See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-662
MMPDS-06 1 April 2011 Table 3.7.16.0(c) Design Mechanical and Physical Properties of 7449 Aluminum Alloy Plate
Specification . . . . . . . . .
AMS 4299
Form . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . .
T7951
Thickness, in. . . . . . . . . .
0.500-1.000
1.001-1.500
1.501-2.000
2.001-2.500
Basis . . . . . . . . . . . . . . . .
A
B
A
B
A
B
A
B
88 88 …
89 89 …
87 87 85
88 88 86
84a 86 84
87 88 86
81b 84 84
84 87 86
84 84 …
86 85 …
84 82 79
85 83 80
82 81 74
84 83 77
80 80 73
82 82 76
85 88
86 89
83 86
84 87
82 85
84 87
81 84
83 86
46 45
46 46
48 47
48 48
49 49
51 50
50 50
52 52
116 122
117 124
122 124
123 125
127 125
130 128
129 125
133 129
156 163
157 164
159 167
161 169
162 171
165 175
162 171
167 177
92 103
93 104
105 104
106 105
111 106
114 108
113 107
116 110
117 129
118 131
118 129a
120 131a
121 129
124 132
123 129
126 132
8 7 …
… … …
8 7 …
… … …
6 6 2
… … …
6 6 2
… … …
Mechanical Properties: Ftu, ksi: L................. LT . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fty, ksi: L................. LT . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . Fcy, ksi: L................. LT . . . . . . . . . . . . . . . Fsu, ksi: L-T . . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) L................. LT . . . . . . . . . . . . . . . Fbru, ksi:(e/D = 2.0) L................. LT . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) L................. LT . . . . . . . . . . . . . . . Fbry, ksi:(e/D = 2.0) L................. LT . . . . . . . . . . . . . . . e, percent (S-Basis): L................. LT . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . .
3-663
MMPDS-06 1 April 2011 Table 3.7.16.0(c) Design Mechanical and Physical Properties of 7449 Aluminum Alloy Plate (Continued).
Specification . . . . . . . . .
AMS 4299
Form . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . .
T7951
E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi: L................. LT . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ...................
10.4 10.5 10.8 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . α, 10-6 in./in./EF . . . . . . .
0.103 ... ... 13.4 (68EF-212EF)
Issued: Oct 2006 for MMPDS-04, Item 05-07 a A-Basis value is specification minimum. The rounded T99for Fty L 1.501-2.000 inches = 85 ksi. b A-Basis value is specification minimum. The rounded T99 for Fty L 2.001-2.500 inches = 82 ksi
3-664
MMPDS-06 1 April 2011 Table 3.7.16.0(d). Design Mechanical and Physical Properties of 7449 Aluminum Alloy Extrusion
Specification Form
AMS 4305
.......................
Extruded Profile
................................
Temper
T79511
............................. 2
#20
.......................
0.500 - 1.750
Cross Sectional Area, in Thickness, in. Basis
...............................
Mechanical Properties: Ftu, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi L-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 1.5): L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 2.0): L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 1.5): L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0): L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A
B
91 86
93 87
87a 82b
89 84
90 88
91 90
51 49
52 50
132 131
135 134
171 172
174 176
110 110
112 113
124 127
127 130
9 6
... ...
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . L ................................ LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ ..................................
10.3 10.5 10.4 10.8 3.9 3.9 0.33
3-665
MMPDS-06 1 April 2011 Table 3.7.16.0(d). Design Mechanical and Physical Properties of 7449 Aluminum Alloy Extrusion (Continued)
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . .
0.104 ... ... 13.4 (68EF - 212EF)
Issued: Apr 2008, Item 06-11, MMPDS-04 a b c
A-Basis value is specification minimum. The rounded T99 values for Ftu, (L)= 88 ksi. A-Basis value is specification minimum. The rounded T99 values for Ftu, (LT )= 83 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
3-666
MMPDS-06 1 April 2011 3.7.16.1 T7651 Temper – Figures 3.7.16.1.6(a) and 3.7.16.1.6(b) present tensile and compressive stress-strain and tangent-modulus curves for T7651 plate. Figure 3.7.16.1.6(c) contains fullrange tensile curves for T7651 plate.
Figure 3.7.16.1.6(a1) Typical tensile stress-strain curve for 7449T7651 aluminum alloy plate at room temperature, longitudinal orientation
Figure 3.7.16.1.6(a2) Typical tensile stress-strain curve for 7449T7651 aluminum alloy plate at room temperature, long transverse orientation
3-667
MMPDS-06 1 April 2011
100 Longitudinal Long transverse
Stress, ksi
80
7449-T7651 Plate
60
Short transverse
40
Ramberg-Osgood (L) n = 21 (LT) n = 13 (ST) n = 15
20
CYS (ksi) 83.0 82.0 82.0
TYPICAL Thickness: (L) = 0.3-1.6 in. (LT) and (ST) = 2-4 in.
0 0
4
8
12
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi.
Figure 3.7.16.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7449-T7651 aluminum alloy plate at room temperature.
3-668
MMPDS-06 1 April 2011
Figure 3.7.16.1.6(c). Typical tensile stress-strain curves (full range) for 7449-T7651 aluminum alloy plate at room temperature.
3-669
MMPDS-06 1 April 2011
3.7.16.2 T7951 Temper – Figures 3.7.16.2.6(a1), 3.7.16.2.6(a2), 3.7.16.2.6(a3),and 3.7.16.2.6(b), present tensile and compressive stress-strain and compressive tangent-modulus curves for T7951 plate. Figure 3.7.16.2.6(c) contains full-range tensile curves for T7951 plate.
Figure 3.7.16.2.6(a1). Typical tensile stress-strain curve for 7449T7951 aluminum alloy plate at room temperature, longitudinal orientation .
Figure 3.7.16.2.6(a2). Typical tensile stress-strain curve for 7449T7951 aluminum alloy plate at room temperature, long transverse orientation.
3-670
MMPDS-06 1 April 2011
Figure 3.7.16.2.6(a3). Typical tensile stress-strain curve for 7449-T7951 aluminum alloy plate at room temperature, short transverse orientation.
100 90 80
7449-T7951 Plate
70 Long Transverse Stress, ksi
60 50 40 Ram berg-Osgood n = 21.7
30 20
CYS, ksi 90
TYPICAL
10
Thickness: 0.500 - 2.000 inches
0 0
2
4
6 8 Strain, 0.001 in/in. Compressive Tangent Modulus, 10^3 ksi
10
12
Figure 3.7.16.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curve for 7449-T7951 aluminum alloy plate at room temperature.
3-671
MMPDS-06 1 April 2011
100 7449-T7951 Plate
Long Transverse 90 Longitudinal 80 Short Transverse 70
Stress, ksi
60
50
40
30
TYPICAL
20
Thickness: 0.500-2.00 in. 10
0 0.000
0.020
0.040
0.060 0.080 Strain, in./in.
0.100
0.120
Figure 3.7.16.2.6(c). Typical tensile stress-strain curve (full-range) for 7449T7951 aluminum alloy plate at room temperature.
3-672
MMPDS-06 1 April 2011 3.7.16.3 T79511 Temper - Figures 3.7.16.3.6(a1), 3.7.16.3.6(a2), and 3.7.16.3.6(b) present tensile and compressive stress-strain and compressive tangent-modulus curves for T79511 extruded profiles. Figure 3.7.16.3.6(c) contains full-range tensile curves for T79511 extruded profiles.
Figure 3.7.16.3.6(a1). Typical tensile stress-strain curve for 7449T79511 aluminum alloy extrusions at room temperature, longitudinal orientation.
Figure 3.7.16.3.6(a2). Typical tensile stress-strain curve for 7449T79511 aluminum alloy extrusions at room temperature, long transverse orientation.
3-673
MMPDS-06 1 April 2011
.
Figure 3.7.16.3.6(b). Typical compressive stress-strain and compressive tangent modulus curves for 7449-T79511 aluminum alloy extrusions at room temperature, longitudinal orientation.
3-674
MMPDS-06 1 April 2011
100
Longitudinal
7449-T79511 Extrusion
90
X
80
Long Transverse
X 70
Stress, ksi
60
50
40
30
Thickness: 0.500-1.750 in.
20
TYPICAL 10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
Strain, in./in. Figure 3.7.16.3.6(c). Typical tensile stress-strain curves (full range) for 7449-T79511 aluminum alloy extrusion at room temperature.
3-675
MMPDS-06 1 April 2011 3.7.17 7475 ALLOY 3.7.17.0 Comments and Properties — 7475 is an Al-Zn-Mg-Cu alloy developed for applications requiring the high strength of 7075 but having fracture toughness superior to that of 7075. Sheet is available in the T61 and T761 tempers and plate in the T651 and T7651 tempers. Sheet has strength approximately the same as that of 7075 combined with toughness about the same as 2024-T3 at room temperature. Plate has strengths similar to those of corresponding tempers of 7075; the toughness of 7475-T651 equals or exceeds that of 7075-T7351. Resistance to stress corrosion cracking and exfoliation are comparable to that of 7075. The T73type temper provides for much improved stress corrosion resistance over T6-type temper with a decrease in strength. The T76-type temper provides for improved exfoliation resistance and stress corrosion resistance over T6-type temper with some decrease in strength. Refer to Section 3.1.2.3.1 for information regarding resistance to stress corrosion cracking and to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications are shown in Table 3.7.17.0(a). Room temperature mechanical and physical properties are shown in Tables 3.7.17.0(b) through 3.7.17.0(d). Table 3.7.17.0(a). Material Specifications for 7475 Aluminum Alloy
Specification
Form Bare sheet Bare sheet Bare plate Bare plate Bare plate Clad sheet Clad sheet
AMS 4084 AMS 4085 AMS 4090 AMS 4089 AMS 4202 AMS 4207 AMS 4100 The temper index for 7475 is as follows: Section 3.7.17.1 3.7.17.2 3.7.17.3
Temper T61 and T651 T7351 T761 and T7651
3-676
Table 3.7.17.0(b). Design Mechanical and Physical Properties of 7475 Aluminum Alloy Sheet and Plate Specification . . . . . . . . . . AMS 4084
AMS 4090
AMS 4085
AMS 4089
Form . . . . . . . . . . . . . . . .
Sheet
Plate
Sheet
Plate
Temper . . . . . . . . . . . . . .
T61
T651
T761
T7651
Thickness, in. . . . . . . . . . 0.040-0.249 0.250-0.499 0.500-1.000 1.001-1.500 0.040-0.062 0.063-0.187 0.188-0.249 0.250-0.499 0.500-1.000 1.001-1.500 Basis . . . . . . . . . . . . . . . .
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . a
S
S
S
S
S
S
S
S
S
75 75
77 78
77 78
77 78
71 71
71 71
71 71
70 71
69 70
69 70
66 64
69 67
70 68
70 68
61 60
61 60
61 60
60 60
59 59
59 59
64 68 45
67 70 44
68 71 43
67 71 41
60 61 43
59 63 42
58 63 41
60 63 41
59 62 39
59 59 37
120 154
113 144
113 144
113 144
112 143
112 143
111 142
104 136
103 134
103 134
97 110
91 106
93 107
93 107
90 104
90 104
90 104
82 97
81 95
81 95
9 9
10 10
9 9
9 9
9 9
9 9
9 9
9 9
8 8
6 6
10.0 10.5 3.8 0.33
10.2 10.6 3.9 0.33
10.0 10.5 3.8 0.33
0.101 0.23 (at 212EF) 80 (at 77EF) for T61 and T651; 90 (at 77EF) for T761 and T7651 12.9 (68E to 212EF)
See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
10.2 10.6 3.9 0.33
MMPDS-06 1 April 2011
3-677
Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . . . Fty, ksi: L ................ LT . . . . . . . . . . . . . . . Fcy, ksi: L ................ LT . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent: L ................ LT . . . . . . . . . . . . . . .
S
MMPDS-06 1 April 2011
Table 3.7.17.0(c). Design Mechanical and Physical Properties of 7475 Aluminum Alloy Plate Specification . . . . . . . . . . . AMS 4202 Form . . . . . . . . . . . . . . . . . Plate Temper . . . . . . . . . . . . . . . T7351 1.5012.0012.501Thickness, in. . . . . . . . . . . 0.250-1.500 2.000 2.500 3.000 3.001-3.500 3.501-4.000 Basis . . . . . . . . . . . . . . . . . A B A B A B A B A B A B Mechanical Properties: Ftu, ksi: L ................. 70 72 70 71 68 70 68 69 64 67 64 66 LT . . . . . . . . . . . . . . . . 71 73 70 72 68 70 68 69 64 68 64 67 ST . . . . . . . . . . . . . . . . 66a 70a 65 69 65 69 65 68 63 67 63 66 Fty, ksi: 60 56 59 56 58 52 56 52 54 59 62 58 L ................. 61 56 59 56 58 52 56 52 54 LT . . . . . . . . . . . . . . . . 60 62 58b 56 53 56 53 55 50 53 50 52 ST . . . . . . . . . . . . . . . . 54a 57a 53 Fcy, ksi: L ................. 58 60 56 59 54 57 53 55 49 53 49 51 LT . . . . . . . . . . . . . . . . 61 63 60 63 58 61 58 60 54 58 54 56 ST . . . . . . . . . . . . . . . . 62a 64a 60 63 58 61 58 60 54 58 54 56 Fsu, ksi L & LT . . . . . . . . 41 42 42 43 41 42 41 42 39 42 39 41 c Fbru , ksi: L & LT (e/D = 1.5) . . . 102 105 103 106 101 104 101 103 97 102 97 101 L & LT (e/D = 2.0) . . . 132 136 134 138 131 135 131 134 125 133 125 131 Fbryc, ksi: L & LT (e/D = 1.5) . . . 81 84 82 86 81 84 81 84 77 82 77 80 L & LT (e/D = 2.0) . . . 97 101 97 102 95 100 95 99 89 96 89 93 e, percent (S-Basis): L ................. 10 ... 10 ... 10 ... 10 ... 10 ... 9 ... LT . . . . . . . . . . . . . . . . 9 ... 8 ... 8 ... 8 ... 8 ... 7 ... ST . . . . . . . . . . . . . . . . 4a ... 4 ... 4 ... 3 ... 3 ... 3 ... 3 E, 10 ksi . . . . . . . . . . . . 10.3 Ec, 103 ksi . . . . . . . . . . . . 10.6 G, 103 ksi . . . . . . . . . . . . 3.9 µ ................... 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . 0.101 C, Btu/(lb)(EF) . . . . . . . . 0.21 (at 212EF) K, Btu/[(hr)(ft2)(EF)/ft] . . 94 (at 77EF) α, 10-6 in./in./EF . . . . . . . 13.0 (68E to 212EF) Revised: Apr 2008, MMPDS-04, Item 05-14
a Values applicable to 1.500-inch thickness only. b A-Basis value is specification minimum. The rounded T99 value for Fty(LT) = 59 ksi. c See Table 3.1.2.1.1. Bearing values are “dry pin” values per Section 1.4.7.1.
3-678
MMPDS-06 1 April 2011
Table 3.7.17.0(d). Design Mechanical and Physical Properties of Clad 7475 Aluminum Alloy Sheet
Specification . . . . . . . . . .
AMS 4207
AMS 4100
Form . . . . . . . . . . . . . . . .
Sheet
Temper . . . . . . . . . . . . . .
T61
Thickness, in. . . . . . . . . .
0.0400.062
Basis . . . . . . . . . . . . . . . .
S
A
Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . .
69 69
Fty, ksi: L ................. LT . . . . . . . . . . . . . . .
T761
0.0630.187
0.1880.249
0.0400.062
0.0630.187
0.1880.249
B
S
S
A
B
A
B
69 70
73 73
72 72
66 66
67 68
70 70
68 70
71 72
61 59
64 60a
67 64
63 61
56 55
58 57
61 60
59 60
63 62
Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . .
60 63 42
61 64 40
65 68 41
62 65 39
55 58 41
56 59 40
59 62 41
58 61 40
60 63 41
Fbrub, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . .
110 140
111 142
116 148
115 146
104 133
107 136
110 140
108 138
111 142
Fbryb, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . .
89 102
90 104
96 111
92 106
83 97
86 101
90 106
90 106
93 110
e, percent (S-Basis): LT . . . . . . . . . . . . . . .
9
9
...
9
9
9
...
9
...
3
E, 10 ksi: Primary . . . . . . . . . . . . . Secondary . . . . . . . . . . . Ec, 103 ksi: Primary . . . . . . . . . . . . . Secondary . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ...................
10.0 9.2
10.0 9.4
10.0 9.7
10.0 9.2
10.0 9.4
10.0 9.7
10.5 9.4 3.8 0.33
10.5 9.7 3.8 0.33
10.5 10.0 3.8 0.33
10.5 9.4 3.8 0.33
10.5 9.7 3.8 0.33
10.5 10.0 3.8 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, α . . . . . . . . . . . . . .
0.101 ...
a A-Basis value is specification minimum. The rounded T99 value is 61 ksi. b Bearing values are “dry pin” values per Section 1.4.7.1.
3-679
MMPDS-06 1 April 2011 3.7.17.1 T61 and T651 Tempers — Figures 3.7.17.1.6(a) through 3.7.17.1.6(f) present tensile and compressive stress-strain and tangent-modulus curves for T61 sheet and T651 plate. Figure 3.7.17.1.6(g) contains full-range tensile curves for T61 sheet. Fatigue data for sheets are shown in Figures 3.7.17.1.8(a) through 3.7.17.1.8(c). Graphical displays of the residual behavior strength of middle-tension panels are presented in Figures 3.7.17.1.10(a) through 3.7.17.1.10(d). 100
80 L LT
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 33 n (LT-tension) = 16
40
TYPICAL Thickness = 0.040 - 0.249 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.17.1.6(a). Typical tensile stress-strain curves for 7475-T61 aluminum alloy sheet at room temperature.
100
80
LT
LT
L L
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 19 TYPICAL
20
Thickness = 0.040 - 0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 7475-T61 aluminum alloy sheet at room temperature.
3-680
MMPDS-06 1 April 2011 100
80
Longitudinal
60
Stress, ksi
Long Transverse
40 Ramberg - Osgood n (L-tension) = 26 n (LT-tension) = 14 20 TYPICAL Thickness = 0.063 - 0.187 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.17.1.6(c). Typical tensile stress-strain curves for clad 7475-T61 aluminum alloy sheet at room temperature.
100
80
Long Transverse Longitudinal
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 16 20 TYPICAL Thickness = 0.063 - 0.187 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7475-T61 aluminum alloy sheet at room temperature.
3-681
MMPDS-06 1 April 2011 100
80 Longitudinal Long Transverse
Stress, ksi
60
Ramberg - Osgood n (L-tension) = 50 n (LT-tension) = 15
40
TYPICAL Thickness = 0.250 - 1.500 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.17.1.6(e). Typical tensile stress-strain curves for 7475-T651 aluminum alloy plate at room temperature. 100
Long Transverse Longitudinal
80
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 18
20
TYPICAL Thickness = 0.250 - 1.500 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.1.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for 7475-T651 aluminum alloy plate at room temperature.
3-682
MMPDS-06 1 April 2011
/RQJ7UDQVYHUVH /RQJLWXGLQDO
;;
6WUHVVNVL
7<3,&$/ 7KLFNQHVVLQ
6WUDLQLQLQ
Figure 3.7.17.1.6(g). Typical tensile stress-strain curves (full range) for 7475-T61 aluminum alloy sheet at room temperature.
3-683
MMPDS-06 1 April 2011
Figure 3.7.17.1.8(a). Best-fit S/N curve for unnotched 7475-T61 and T761 sheet, thickness #0.125 inch, longitudinal and long transverse directions.
Correlative Information for Figure 3.7.17.1.8(a) Product Form: Sheet, 0.032 to 0.125 inch thick Properties: T61 T761
TUS, ksi TYS, ksi 81 73-75 77 68-70
Test Parameters: Loading - Axial Frequency - 798, 1500, or 1728 cpm Temperature - RT Environment - Air
Temp.,EF RT RT
Specimen Details: Unnotched, hourglass, 0.500-inch diameter 4.00-inch test section radius, r Surface Condition: As machined Reference: 3.2.17.1.9(d)
No. of Heats/Lots: 2 Maximum Stress Equation: Log Nf = 16.9-7.03 log (Smax) Std. Error of Estimate, Log (Life) = 0.545 Standard Deviation, Log (Life) = 0.988 R2=70% Sample Size = 67
3-684
MMPDS-06 1 April 2011 . .
100
7475 Sheet Kt=1.0 Stress Ratio 0.000 Runout →
90
Maximum Stress, ksi
80 70 60 50 40
→ → → → →→ →→
30 20 Note: Stresses are based on net section.
10 0 103
104
105
106
107
108
109
Fatigue Life, Cycles Figure 3.7.17.1.8(b). Best-fit S/N Curve for unnotched 7475-T61 and T761 sheet thickness >0.125 inch, longitudinal and long transverse directions.
Correlative Information for Figure 3.7.17.1.8(b) Product Form: Sheet, > 0.125 inch through 0.249 inch thick Properties: T61 T761
TUS, ksi 80-81 75
TYS, ksi 73-76 66-67
Test Parameters: Loading - Axial Frequency - 798, 1500, or 1728 cpm Temperature - RT Environment - Air
Temp.,EF RT RT
No. of Heats/Lots: 2 Specimen Details: Unnotched, hourglass, 0.500 inch diameter 4.000 inch test section radius, R Surface Condition: As machined
Maximum Stress Equation: Log Nf = 22.7-10.1 log (Smax) Std. Error of Estimate, Log (Life) = 0.657 Standard Deviation, Log (Life) = 1.380 R2=77%
Reference: 3.2.17.1.9(d)
Sample Size = 24
3-685
MMPDS-06 1 April 2011
Figure 3.7.17.1.8(c). Best-fit S/N curve for notched, Kt = 3.0, 7475-T61 and T761 sheet, longitudinal and long transverse directions.
Correlative Information for Figure 3.7.17.1.8(c) Product Form: Sheet, 0.032- to 0.249-inch thick Properties: TUS, ksi T61 81-82 T761 75-77
TYS, ksi 73-76 67-70
Test Parameters: Loading - Axial Frequency - 798, 1500, or 1728 cpm Temperature - RT Environment - Air
Temp.,EF RT RT
Specimen Details: Notched, edge notched Kt = 3.0 1.000-inch gross width 0.700-inch net width 0.050-inch root radius, r 60E flank angle, ω
No. of Heats/Lots: 2 Maximum Stress Equation: Log Nf = 13.4-6.29 log (Smax) Std. Error of Estimate, Log (Life) = 0.441 Standard Deviation, Log (Life) = 0.931 R2=78%
Surface Condition: As machined Sample Size = 99 Reference: 3.2.17.1.9(d)
3-686
MMPDS-06 1 April 2011
Figure 3.7.17.1.10(a). Residual strength behavior of 0.063-inch-thick 7475-T61 aluminum alloy sheet at room temperature. Crack orientation is L-T. [References 3.1.2.1.3(d) and 3.2.17.1.9(d).]
Figure 3.7.17.1.10(b). Residual strength behavior of 0.063-inch-thick 7475-T61 aluminum alloy sheet at room temperature. Crack orientation is T-L. [References 3.1.2.1.3(d) and 3.2.17.1.9(d).]
3-687
MMPDS-06 1 April 2011
Figure 3.7.17.1.10(c). Residual strength behavior of 0.063-inch-thick 7475T61 clad aluminum alloy sheet at room temperature. Crack orientation is L-T. [Reference 3.2.17.1.9(d).]
Figure 3.7.17.1.10(d). Residual strength behavior of 0.063-inch-thick 7475T61 clad aluminum alloy sheet at room temperature. Crack orientation is TL. [Reference 3.2.17.1.9(d).]
3-688
MMPDS-06 1 April 2011 3.7.17.2 T7351 Temper — Figures 3.7.17.2.6(a) and 3.7.17.2.6(b) present tensile and compressive stress-strain and tangent-modulus curves for T7351 plate. Fatigue data for 7475-T7351 plate are presented in Figures 3.7.17.2.8(a) and 3.7.17.2.8(b). Figures 3.7.17.2.9(a) and 3.7.17.2.9(b) present fatigue crack propagation data for T7351 plate.
100
80
Longitudinal and Long Transverse
Stress, ksi
60 Short Transverse
40 Ramberg - Osgood n (Longitudinal) = 15 n (Long Transverse) = 13 n (Short Transverse) = 13
20
TYPICAL Thickness = 0.500 - 4.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.17.2.6(a). Typical tensile stress-strain curves for 7475-T7351 aluminum alloy plate at room temperature. 100
80 Long Transverse Short Transverse Longitudinal
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 20 n (LT-comp.) = 20 n (ST-comp.) = 19
20
TYPICAL Thickness = 0.500 - 4.000 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.2.6(b). Typical compressive stress-strain and compressive tangent-modulus curves for 7475-T7351 aluminum alloy plate at room temperature.
3-689
MMPDS-06 1 April 2011 Correlative Information for Figure 3.7.17.2.8(a)
Figure 3.7.17.2.8(a). Best-fit S/N curves for unnotched 7475-T7351 plate, longitudinal and long transverse orientation.
Product Form: Plate, 0.5, 1.0, 2.0, 3.0, and 4.0-inches thick Properties: L LT
TUS, ksi 70 71
TYS, ksi 60 60
Test Parameters: Loading — Axial Frequency — Not specified Temperature — RT Environment — Air
Temp..,EF RT RT
No. of Heats/Lots: 5 Specimen Details: Unnotched Hourglass, 0.300-inch net diameter 9.875-inch test section radius Surface Condition: As machined
Equivalent Stress Equation: Log Nf = 17.42-7.56 log (Seq) Seq = Smax(1-R)0.40 Std. Error of Estimate, Log (Life) = 0.433 Standard Deviation, Log (Life) = 0.857 R2 = 74%
References: 3.7.17.2.8(a) and 3.7.17.2.8(b)
Sample Size = 52 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
3-690
MMPDS-06 1 April 2011
Figure 3.7.17.2.8(b). Best-fit S/N curves for notched, Kt = 3.0, 7475-T7351 and T7651 plate, longitudinal and long transverse direction.
(See following page for correlative information.)
3-691
MMPDS-06 1 April 2011
Correlative Information for Figure 3.7.17.2.8(b) Product Form: Plate, 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0 inches thick Properties: L (T7351) LT (T7351) L (T7351) (T7651) L (T7351) LT (T7351)
Surface Condition: Not specified [Ref. (a) and (b)] As machined and deburred [Ref. (c)] 32 RMS [Ref. (d)] 10 RMS [Ref. (e)]
TUS, ksi TYS, ksi Temp.,EF 70 60 RT 71 61 RT 72 62 RT Not specified 72 63 RT 73 62 RT
Test Parameters: Loading — Axial Frequency — Not specified [Ref. (a) and (b)] — 1800 cpm [Ref. (c) and (d)] — 1500 cpm [Ref. (e)] Temperature — RT Environment — Air
Specimen Details: Notched, Kt = 3.0 Circumferentially notched 0.253-inch gross width 0.147-inch net width 0.013-inch root radius, r 60E flank angle, ω Edge notched 1.00-inch gross width 0.70-inch net width root radius not specified 60E flank angle, ω Edge notched 2.25-inch gross width 1.50-inch net width 0.113-inch root radius, r 60E flank angle, ω Circumferentially notched 0.375-inch gross width 0.25-inch net width 0.13-inch root radius, r 60E flank angle, ω
No. of Heats/Lots: 8 Equivalent Strain Equation: Log Nf = 8.46-3.21 log (Seq-7.5) Seq = Smax(1-R)0.72 Std. Error of Estimate, Log (Life) = 0.422 Standard Deviation, Log (Life) = 0.923 R2 = 79% Sample Size = 97 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
References: 3.7.17.2.8(a) through 3.7.17.2.8(e)
3-692
MMPDS-06 1 April 2011
Figure 3.7.17.2.9(a). Fatigue crack propagation data for 1.50-inch thick 7475-T7351 aluminum alloy plate. [References 3.7.13.2.9.(a) and 3.7.13.2.9(b)]. Specimen Thickness: Specimen Width: Specimen Type:
0.65 inch 1.50 inches C(T)
Environment: Temperature: Orientation:
3-693
Lab air, 3.5% NaCl RT L-T
MMPDS-06 1 April 2011
Table 3.7.17.2.9(a) Typical Fatigue Crack Growth Rate Data for 7475-T7351 Plate, as Shown Graphically in Figure 3.7.17.2.9(a) Environment Environment ∆K, ksi-in0.50
Lab Air
Salt Water
∆K, ksi-in0.50
da/dN, in./cycle
Lab Air
Salt Water
da/dN, in./cycle
4.22
4.54E-07
10.59
5.22E-06
1.57E-05
4.47
5.43E-07
11.22
6.70E-06
1.96E-05
4.73
6.51E-07
11.89
8.30E-06
2.42E-05
5.01
7.83E-07
12.59
1.00E-05
2.91E-05
5.31
9.47E-07
13.34
1.19E-05
3.39E-05
5.62
1.15E-06
14.13
1.43E-05
3.82E-05
5.96
3.13E-07
1.42E-06
14.96
1.74E-05
4.12E-05
6.31
4.46E-07
1.76E-06
15.85
2.07E-05
4.22E-05
6.68
5.53E-07
2.20E-06
16.79
2.48E-05
7.08
6.65E-07
2.78E-06
17.78
2.97E-05
7.50
8.22E-07
3.53E-06
18.84
3.56E-05
7.94
1.07E-06
4.52E-06
19.95
4.26E-05
8.41
1.45E-06
5.81E-06
21.14
5.11E-05
8.91
2.02E-06
7.49E-06
22.39
6.13E-05
9.44
2.83E-06
9.63E-06
23.71
7.34E-05
10.00
3.90E-06
1.23E-05
3-694
MMPDS-06 1 April 2011
Figure 3.7.17.2.9(b). Fatigue crack propagation data for 0.50-inch thick 7475T7351 aluminum alloy plate. [Reference 3.7.13.2.9(c)]. Specimen Thickness: Specimen Width: Specimen Type:
0.53 inch 4.6 inches M(T)
Environment: Temperature: Orientation:
3-695
95% R.H. RT L-T
MMPDS-06 1 April 2011
Table 3.7.17.2.9(b) Typical Fatigue Crack Growth Rate Data for 7475-T7351 Plate, as Shown Graphically in Figure 3.7.17.2.9(b). Stress Ratio ∆K, ksiin0.50
0.10
Stress Ratio
0.25
∆K, ksiin0.50
0.50
da/dN, in./cycle
0.10
0.25
0.50
da/dN, in./cycle
1.68
2.46E-08
6.68
1.20E-06
1.84E-06
6.65E-06
1.78
2.97E-08
7.08
1.57E-06
2.20E-06
8.27E-06
1.88
3.60E-08
7.50
2.06E-06
1.00E-05
2.00
4.39E-08
7.94
2.69E-06
1.18E-05
2.11
5.36E-08
8.41
3.52E-06
1.38E-05
2.24
2.20E-08
6.58E-08
8.91
4.61E-06
1.59E-05
2.37
2.70E-08
8.11E-08
9.44
6.03E-06
1.82E-05
2.51
3.50E-08
1.00E-07
10.00
7.89E-06
2.08E-05
2.66
4.50E-08
1.25E-07
10.59
1.03E-05
2.40E-05
2.82
5.90E-08
1.55E-07
11.22
1.34E-05
2.79E-05
2.99
7.70E-08
1.94E-07
11.89
1.70E-05
3.29E-05
3.16
1.01E-07
2.44E-07
12.59
2.14E-05
3.97E-05
3.35
1.33E-07
3.08E-07
13.34
2.66E-05
4.92E-05
3.55
1.73E-07
3.90E-07
14.13
3.28E-05
6.28E-05
3.76
2.25E-07
4.96E-07
14.96
3.99E-05
8.34E-05
3.98
2.90E-07
6.32E-07
15.85
4.81E-05
4.22
3.69E-07
8.10E-07
16.79
5.75E-05
4.47
1.83E-07
4.66E-07
1.04E-06
17.78
6.83E-05
4.73
2.40E-07
5.82E-07
1.34E-06
18.84
8.06E-05
5.01
3.14E-07
7.18E-07
1.74E-06
19.95
9.48E-05
5.31
4.10E-07
8.78E-07
2.27E-06
21.14
1.11E-04
5.62
5.37E-07
1.07E-06
2.96E-06
22.39
1.31E-04
5.96
7.02E-07
1.28E-06
3.88E-06
23.71
1.55E-04
6.31
9.19E-07
1.54E-06
5.17E-06
25.12
1.85E-04
3-696
MMPDS-06 1 April 2011
3.7.17.3 T761 and T7651 Tempers — Figures 3.7.17.3.6(a) through 3.7.17.3.6(j) present tensile and compressive stress-strain and tangent-modulus curves for T761 bare and clad sheet and T7651 plate. Figures 3.7.17.3.6(k) and 3.7.17.3.6(1) contain full-range tensile stress-strain curves for T761 bare and clad sheet, respectively. Fatigue data for 7475-T761 sheet are presented in Figures 3.7.17.1.8(a) through 3.7.17.1.8(c). Fatigue data for 7475-T7651 plate are shown in Figure 3.7.17.2.8(b). Graphical displays of the residual strength behavior of middle-tension panels are presented in Figures 3.7.17.3.10(a) and 3.7.17.3.10(b). 100
80 Longitudinal
Long Transverse
Stress, ksi
60
40
Ramberg - Osgood n (L-tension) = 26 n (LT-tension) = 16 TYPICAL
20 Thickness = 0.040 - 0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.17.3.6(a). Typical tensile stress-strain curves for 7475-T761 aluminum alloy sheet at room temperature. 100
80
Long Transverse Longitudinal
Stress, ksi
60
40 Ramberg - Osgood n (L-comp.) = 15 n (LT-comp.) = 19 20
TYPICAL Thickness = 0.040 - 0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.3.6(b). Typical compressive stress-strain and compressive tangent-modulus curves for 7475-T761 aluminum alloy sheet at room temperature.
3-697
MMPDS-06 1 April 2011
100
80
Stress, ksi
Longitudinal
60
Long transverse
40
Ramberg-Osgood TYS (ksi) n (L-tension) = 9.0 63 n (LT-tension) = 9.1 62
20
TYPICAL Thickness: 0.040-0.062 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.17.3.6(c). Typical tensile stress-strain curves for clad 7475-T761 aluminum alloy sheet at room temperature. 100
80
Stress, ksi
Longitudinal
60
Long transverse
40
Ramberg-Osgood TYS (ksi) n (L-tension) = 9.0 64 n (LT-tension) = 9.1 63
20
TYPICAL Thickness: 0.063-0.187 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. Figure 3.7.17.3.6(d). Typical tensile stress-strain curves for clad 7475-T761 aluminum alloy sheet at room temperature.
3-698
MMPDS-06 1 April 2011 100
80 Longitudinal
60
Stress, ksi
Long Transverse
40
Ramberg - Osgood n (L-tension) = 9.0 n (LT-tension) = 9.1
20
TYPICAL Thickness = 0.188 - 0.249 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.17.3.6(e). Typical tensile stress-strain curves for clad 7475-T761 aluminum alloy sheet at room temperature.
100
80 Long Transverse Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 12 n (LT-comp.) = 16
20
TYPICAL Thickness = 0.040 - 0.062 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.3.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7475-T761 aluminum alloy sheet at room temperature.
3-699
MMPDS-06 1 April 2011 100
80 Long Transverse Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 12 n (LT-comp.) = 16
20
TYPICAL Thickness = 0.063 - 0.187 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.3.6(g). Typical compressive stress-strain and compressive tangentmodulus curves for clad 7475-T761 aluminum alloy sheet at room temperature.
100
80 Long Transverse Longitudinal
Stress, ksi
60
40
Ramberg - Osgood n (L-comp.) = 12 n (LT-comp.) = 16
20
TYPICAL Thickness = 0.188 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.3.6(h). Typical compressive stress-strain and compressive tangent-modulus curves for clad 7475-T761 aluminum alloy sheet at room temperature.
3-700
MMPDS-06 1 April 2011 100
80
Longitudinal 60
Stress, ksi
Long Transverse Ramberg - Osgood n (L-tension) = 33 n (LT-tension) = 19
40
TYPICAL Thickness = 0.250 - 1.500 in.
20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.7.17.3.6(i). Typical tensile stress-strain curves for 7475-T7651 aluminum alloy plate at room temperature.
100
80
Long Transverse Longitudinal
Stress, ksi
60
Ramberg - Osgood n(L-comp.) = 20 n(LT-comp.) = 20
40
TYPICAL Thickness = 0.250 - 1.500 in. 20
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.7.17.3.6(j). Typical compressive stress-strain and compressive tangentmodulus curves for 7475-T7651 aluminum alloy plate at room temperature.
3-701
MMPDS-06 1 April 2011
/RQJ7UDQVYHUVH
/RQJLWXGLQDO /
; ;
/7
6WUHVVNVL
7<3,&$/
7KLFNQHVVLQ
6WUDLQLQLQ
Figure 3.7.17.3.6(k). Typical tensile stress-strain (full range) curves for 7475-T761 aluminum alloy sheet at room temperature.
3-702
MMPDS-06 1 April 2011
/RQJ7UDQVYHUVH
6WUHVVNVL
;
7KLFNQHVVLQ 7<3,&$/
%$6('217:2/276
6WUDLQLQLQ
Figure 3.7.17.3.6(l). Typical tensile stress-strain (full range) curves for clad 7475T761 aluminum alloy sheet at room temperature.
3-703
MMPDS-06 1 April 2011
Figure 3.7.17.3.10(a). Residual strength behavior of 0.063-inch-thick 7475T761 aluminum alloy sheet at room temperature. Crack orientation is L-T. [References 3.1.2.1.3(d) and 3.2.17.1.9(d).]
Figure 3.7.17.3.10(b). Residual strength behavior of 0.063-inch-thick 7475T761 aluminum alloy sheet at room temperature. Crack orientation is T-L. [References 3.1.2.1.3(d) and 3.2.17.1.9(d).]
3-704
MMPDS-06 1 April 2011
3.8 200.0 SERIES CAST ALLOYS Alloys of the 200 series contain copper as the principal alloying element and are particularly useful for elevated temperature applications. 3.8.1 A201.0 ALLOY 3.8.1.0 Comments and Properties — A201.0 is a high-strength, heat-treatable Al-Cu-Ag casting alloy. In the T7 (overaged) temper, it possesses high strength, moderate ductility, and optimum resistance to stress-corrosion cracking. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. A material specification covering this alloy is presented in Table 3.8.1.0(a). Room temperature mechanical and physical properties are presented in Table 3.8.1.0(b). The effect of temperature on thermal expansion is shown in Figure 3.8.1.0. Table 3.8.1.0(a). Material Specification for A201.0 Aluminum Alloy Specification Form a AMS-A-21180 Casting (T7 temper) AMS 4229 Casting (T7 temper) a Inactive for new design.
The temper index for A201.0 is as follows: Section 3.8.1.1
Temper T7
3.8.1.1 T7 Temper — Figure 3.8.1.1.6 presents a typical tensile stress-strain curve. Strain control fatigue data are shown in Figures 3.8.1.1.8(a) through 3.8.1.1.8(c).
3-705
MMPDS-06 1 April 2011
Table 3.8.1.0(b). Design Mechanical and Physical Properties of A201.0 Aluminum Alloy Casting
AMS-A-21180a
Specification . . . . . . . . . . . . . .
AMS 4229c
Form . . . . . . . . . . . . . . . . . . . .
Casting
Temper . . . . . . . . . . . . . . . . . .
T7
Location Within Casting . . . . .
Designated area
Nondesignated area
Designated area
Nondesignated area
Strength Class Numberb . . . . .
1
2
10
11
Basis . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
S
Mechanical Properties : Ftu, ksi: . . . . . . . . . . . . . . . . .
60
60
60
56
60
56
Fty, ksi: . . . . . . . . . . . . . . . . .
50
50
50
48
50
48
Fcy, ksi: . . . . . . . . . . . . . . . . .
51
51
51
49
51
49
Fsu, ksi . . . . . . . . . . . . . . . . . .
36
36
36
34
36
34
Fbru , ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . .
95 122
95 122
95 122
88 114
95 122
88 114
Fbryf, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . .
74 87
74 87
74 87
71 83
74 87
71 83
e, percent . . . . . . . . . . . . . . .
3
5
3
1.5
3
1.5
d,e
f
3
E, 10 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ......................
10.3 10.7 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . α, 10-6 in./in./EF . . . . . . . . . .
0.101 0.22 (at 212EF) 70 (at 77EF) See Figure 3.8.1.0
Last Revised: Apr 2006, MMPDS-03, Item 06-18 a Inactive for new design. Mechanical properties were established under MIL-A-21180. b The attainable strength class number is dependent on the casting configuration, complexity, and size (both weight and wall thickness). Favorable experience with a particular configuration may allow some foundries to produce a higher strength class number than others. In case of doubt regarding the strength class number, the designer should consult or negotiate with the foundry to determine the proper strength class number to assign for a specific casting. c Mechanical properties also meet MIL-A-21180. d For any casting process; i.e., special mold, permanent mold, or sand mold (including chilling). e The mechanical properties shown are reliably obtainable in castings of this alloy and heat-treat condition when produced under the quality assurance provisions of AMS-A-21180. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. f Bearing values are “dry pin” values per Section 1.4.7.1.
3-706
MMPDS-06 1 April 2011
%HWZHHQ)DQGLQGLFDWHGWHPSHUDWXUH
α
LQLQ)
7HPSHUDWXUH)
Figure 3.8.1.0. Effect of temperature on the thermal expansion of A201.0 aluminum alloy casting.
3-707
MMPDS-06 1 April 2011
100
80
Stress, ksi
60
40
Ramberg - Osgood n (tension) = 14
20
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.8.1.1.6. Typical tensile stress-strain curve for A201.0-T7 aluminum alloy casting, designated area, at room temperature.
3-708
MMPDS-06 1 April 2011
Figure 3.8.1.1.8(a). Best-fit ε/N curves, cyclic stress-strain curve, and mean stress relaxation curve for A201.0-T7 casting at 75E EF.
3-709
MMPDS-06 1 April 2011
Correlative Information for Figure 3.8.1.1.8(a)
Product Form/Thickness: Casting
Test Parameters: Strain Rate/Frequency - 20 cpm Wave Form - Triangular Temperature - 75EF Atmosphere - Air
Thermal Mechanical Processing History: T7, HIP Properties: TUS, ksi 57-66
TYS, ksi 45-57
E, ksi Temp.,EF 10,800 75
No. of Heats/Lots: 3
Stress-Strain Equations: Cyclic (Companion Specimen) Proportional Limit = 42 ksi (∆σ/2) = 80.7(∆εp/2)0.058 Mean Stress Relaxation, ksi σm = 33.3 - 4755(∆ε/2)
Equivalent Strain Equation: Log Nf = -6.54-4.60 log (εeq) εeq = (∆ε)0.37 (Smax/E)0.63 Std. Error of Estimate, Log (Life) = 0.242 Standard Deviation, Log (Life) = 0.587 Adjusted R2 Statistic: 83%
Specimen Details: Uniform gage test section 0.25-inch diameter
Sample Size: 26 [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
References: 3.8.1.1.8(a) and 3.8.1.1.8(b)
3-710
MMPDS-06 1 April 2011
Figure 3.8.1.1.8(b). Best-fit ε/N curves, cyclic stress-strain curve, and mean stress reduction curve for A201.0-T7 casting at 200E EF.
3-711
MMPDS-06 1 April 2011
Correlative Information for Figure 3.8.1.1.8(b)
Product Form/Thickness: Casting
Test Parameters: Strain Rate/Frequency - 20 cpm Wave Form - Triangular Temperature - 200EF Atmosphere - Air
Thermal Mechanical Processing History: T7, HIP Properties: TUS, ksi 53-59
TYS, ksi 47-55
E, ksi Temp.,EF 10,339 200
No. of Heats/Lots: 3
Stress-Strain Equations: Cyclic (Companion Specimen) Proportional Limit = 39 ksi (∆σ/2) = 60(∆εp/2)0.041 Mean Stress Relaxation, ksi σm = 39.7 - 7049(∆ε/2)
Equivalent Strain Equation: Log Nf = -6.68-4.66 log (εeq) εeq = (∆ε)0.50 (Smax/E)0.50 Std. Error of Estimate, Log (Life) = 0.359 Standard Deviation in Log (Life) = 0.561 Adjusted R2 Statistic: 59%
Specimen Details: Uniform gage test section 0.250-inch diameter
Sample Size: 18 [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
Reference: 3.8.1.1.8(a)
3-712
MMPDS-06 1 April 2011
Figure 3.8.1.1.8(c). Best-fit 0/N curves, cyclic stress-strain curve, and mean stress relaxation curve for A201.0-T7 casting at 350E EF.
3-713
MMPDS-06 1 April 2011 Correlative Information for Figure 3.8.1.1.8(c)
Product Form/Thickness: Casting
Test Parameters: Strain Rate/Frequency - 20 cpm Wave Form - Triangular Temperature - 350EF Atmosphere - Air
Thermal Mechanical Processing History: T7, HIP Properties: TUS, ksi 48-53
TYS, ksi 40-48
E, ksi 9,783
Temp.,EF 350
No. of Heats/Lots: 3
Stress-Strain Equations: Cyclic (Companion Specimen) Proportional Limit = 36 ksi (∆σ/2) = 53(∆εp/2)0.036 Mean Stress Relaxation, ksi σm = 30.0 - 5664(∆ε/2)
Equivalent Strain Equation: Log Nf = -12.44-7.07 log (εeq) εeq = (∆ε)0.52 (Smax/E)0.48 Std. Error of Estimate, Log (Life) = 0.000817 (1/εeq) Standard Deviation, Log (Life) = 0.545
Specimen Details: Uniform gage test section 0.250-inch diameter
Adjusted R2 Statistic: 93% Sample Size: 18
Reference: 3.8.1.1.8(a) [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
3-714
MMPDS-06 1 April 2011
3.9 300.0 SERIES CAST ALLOYS Casting alloys of the 300.0 series contain silicon with added copper and/or magnesium as the principal alloying elements. They are heat treatable. Because of the high silicon content, they are among the easiest to cast by a variety of techniques. They have high resistance to corrosion. 3.9.1 354.0 ALLOY 3.9.1.0 Comments and Properties — 354.0 is a heat-treatable Al-Si-Mg alloy being among the highest strength of commercial casting alloys. It has good casting characteristics; however, its use is generally restricted to permanent mold castings. Refer to Section 3.1.3.4 for comments regarding the weldability. A material specification for 354.0 aluminum alloy is presented in Table 3.9.1.0(a). Room temperature mechanical and physical properties are shown in Table 3.9.1.0(b). Table 3.9.1.0(a). Material Specifications for 354.0 Aluminum Alloy Specification Form a AMS-A-21180 Casting a Inactive for new design.
3-715
MMPDS-06 1 April 2011
Table 3.9.1.0(b). Design Mechanical and Physical Properties of 354.0 Aluminum Alloy Casting
Specification . . . . . . . . . . . . . .
AMS-A-21180a
Form . . . . . . . . . . . . . . . . . . . .
Casting
Temper . . . . . . . . . . . . . . . . . .
T6
Location Within Casting . . . . .
Designated area
Nondesignated area
Strength Class Numberb . . . . .
1
2
10
11
Basis . . . . . . . . . . . . . . . . . . . .
S
S
S
S
Mechanical Properties : Ftu, ksi . . . . . . . . . . . . . . . . . .
47
50
47
43
Fty, ksi . . . . . . . . . . . . . . . . . .
36
42
36
33
Fcy, ksi . . . . . . . . . . . . . . . . . .
36
42
36
33
Fsu, ksi . . . . . . . . . . . . . . . . . .
29
31
29
27
Fbru , ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . .
81 101
86 107
81 101
74 92
Fbrye, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . .
57 67
66 78
57 67
52 62
e, percent . . . . . . . . . . . . . . .
3
2
3
2
c,d
e
3
E, 10 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ......................
10.6 10.8 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . α, 10-6 in./in./EF . . . . . . . . . .
0.098 0.23 (at 212EF) ... 11.6 (68EF to 212EF)
Last Revised: Oct 2006, MMPDS-03, Item 06-18 a Inactive for new design. Mechanical properties were established under MIL-A-21180. b The attainable strength class number is dependent on the casting configuration, complexity, and size (both weight and wall thickness). Favorable experience with a particular configuration may allow some foundries to produce a higher strength class number than others. In case of doubt regarding the strength class number, the designer should consult or negotiate with the foundry to determine the proper strength class number to assign for a specific casting. c For any casting process; i.e., special mold, permanent mold, or sand mold (including chilling). d The mechanical properties shown are reliably obtainable in castings of this alloy and heat-treat condition when produced under the quality assurance provisions of AMS-A-21180. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. e Bearing values are “dry pin” values per Section 1.4.7.1.
3-716
MMPDS-06 1 April 2011 3.9.2 355.0 ALLOY 3.9.2.0 Comments and Properties — 355.0 is a heat-treatable Al-Si-Mg alloy that is readily cast and has good pressure tightness. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. A material specification for 355.0 aluminum alloy is presented in Table 3.9.2.0(a). Room temperature mechanical and physical properties are shown in Table 3.9.2.0(b). The effect of temperature on thermal expansion is shown in Figure 3.9.2.0.
Table 3.9.2.0(a). Material Specification for 355.0 Aluminum Alloy
Specification AMS 4281
Form Permanent mold casting
3-717
MMPDS-06 1 April 2011
Table 3.9.2.0(b). Design Mechanical and Physical Properties of 355.0 Aluminum Alloy Specification . . . . . . . . . . . . . . . . . . . . .
AMS 4281
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Permanent mold casting
Temper . . . . . . . . . . . . . . . . . . . . . . . . . .
T6
Location Within Casting . . . . . . . . . . . .
As specified
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . µ ..............................
27 32 0.4a 10.3 10.3 3.8 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . .
0.098 0.23 (at 212EF) 88 (at 77EF) See Figure 3.9.2.0
27a 17a 17 17 46 58
a
Conformance to tensile property requirements is determined by testing specimens cut from casting only when specified on drawing. b Bearing values are “dry pin” values per Section 1.4.7.1.
3-718
MMPDS-06 1 April 2011
14
α, 10-6 in./in./F
13
12
11
α - Between 70F and indicated temperature
-400
-200
0
200
400
600
800
1000
Temperature, F Figure 3.9.2.0. Effect of temperature on the thermal expansion of 355.0 aluminum alloy casting.
3-719
MMPDS-06 1 April 2011 3.9.3 C355.0 ALLOY 3.9.3.0 Comments and Properties — C355.0 is an Al-Si-Mg alloy similar to 355.0 but has impurities controlled to lower limits resulting in higher strengths. It has good casting characteristics. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. A material specification for C355.0 aluminum alloy is presented in Table 3.9.3.0(a). Room temperature mechanical and physical properties are shown in Table 3.9.3.0(b).
Table 3.9.3.0(a). Material Specification for C355.0 Aluminum Alloy
Specification
Form
AMS-A-21180a
Casting
AMS 4215
Casting
a Inactive for new design.
3-720
MMPDS-06 1 April 2011
Table 3.9.3.0(b). Design Mechanical and Physical Properties of C355.0 Aluminum Alloy Casting
Specification . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . . . Strength Class Numberc . . . . . Basis . . . . . . . . . . . . . . . . . . . . Mechanical Propertiesd,e,f: Ftu, ksi . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . Fbrug, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbryg, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ...................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . α, 10-6 in./in./EF . . . . . . . . . .
AMS 4215b
a
AMS-A-21180 Casting T6 3 10 S S
1 S
2 S
11 S
12 S
S
41 31 31 26
44 33 33 28
50 40 40 31
41 31 31 26
37 30 30 23
35 28 28 22
35 28 28 22
70 88
75 94
86 107
70 88
63 79
60 75
60 75
49 58 3
52 62 3
63 75 2
49 58 3 10.1 10.3 3.85 0.33
47 59 1
44 52 1
44 52 2
0.098 0.23 (at 212EF) 88 (at 77EF) 12.4 (68EF to 212EF)
Last Revised: Oct 2006, MMPDS-03, Item 06-18 a Inactive for new design. b Mechanical properties also met MIL-A-21180 c The attainable strength class number is dependent on the casting configuration, complexity, and size (both weight and wall thickness). Favorable experience with a particular configuration may allow some foundries to produce a higher strength class number than others. In case of doubt regarding the strength class number, the designer should consult or negotiate with the foundry to determine the proper strength class number to assign for a specific casting. d Mechanical properties were based on MIL-A-21180. e For any casting process; i.e., special mold, permanent mold, or sand mold (including chilling). f The mechanical properties shown are reliably obtainable in castings of this alloy and heat-treat condition when produced under the quality assurance provisions of AMS-A-21180. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. g Bearing values are “dry pin” values per Section 1.4.7.1.
3-721
MMPDS-06 1 April 2011 3.9.4 356.0 ALLOY 3.9.4.0 Comments and Properties — 356.0 is among the easiest of alloys to cast by a variety of techniques. It is heat treatable, has intermediate strengths, and has high resistance to corrosion. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for 356.0 aluminum alloy are presented in Table 3.9.4.0(a). Roomtemperature mechanical and physical properties are shown in Table 3.9.4.0(b). The effect of temperature on thermal expansion is given in Figure 3.9.4.0. Table 3.9.4.0(a). Material Specifications for 356.0 Aluminum Alloy Specification Form
AMS 4284 AMS 4217 AMS 4260
Permanent mold casting Sand casting Investment casting
3-722
MMPDS-06 1 April 2011
Table 3.9.4.0(b). Design Mechanical and Physical Properties of 356.0 Aluminum Alloy Specification . . . . . . . . . . . . AMS 4217 AMS 4260 AMS 4284 Form . . . . . . . . . . . . . . . . . . . Sand casting Investment casting Permanent mold casting Temper . . . . . . . . . . . . . . . . . T6 T6 T6 Location Within Casting . . . Thick and thin areas As specified As specified Basis . . . . . . . . . . . . . . . . . . . S S S Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . 25a 25a 22a,b a,b a Fty, ksi . . . . . . . . . . . . . . . . 15 16 16a Fcy, ksi . . . . . . . . . . . . . . . . 15 16 16 Fsu, ksi . . . . . . . . . . . . . . . . 14 16 16 Fbruc, ksi: (e/D = 1.5) . . . . . . . . . . . . 38 43 43 47 53 53 (e/D = 2.0) . . . . . . . . . . . . Fbryc, ksi: 24 25 25 (e/D = 1.5) . . . . . . . . . . . . 28 30 30 (e/D = 2.0) . . . . . . . . . . . . 0.7a,b 1a 0.7a e, percent . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . 10.3 Ec, 103 ksi . . . . . . . . . . . . . 10.3 3 G, 10 ksi . . . . . . . . . . . . . . 3.85 µ .................... 0.33 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . 0.097 C, Btu/(lb)(EF) . . . . . . . . . 0.23 (at 212EF) K, Btu/[(hr)(ft2)(EF)/ft] . . . 88 (at 77EF) See Figure 3.9.4.0 α, 10-6 in./in./EF . . . . . . . . . a
Conformance to tensile property requirements is determined by testing specimens cut from casting only when specified on drawing. b Not minimum values, but based upon average of not less than four specimens. c Bearing values are "dry pin" values per Section 1.4.7.1.
3-723
MMPDS-06 1 April 2011
αBetween 70F and indicated temperature
α, 10-6 in./in./F
13
12
11
10
9
8
7 -400
-200
0
200
400
600
800
1000
Temperature, F Figure 3.9.4.0. Effect of temperature on the thermal expansion of 356.0 aluminum alloy casting.
3-724
MMPDS-06 1 April 2011 3.9.5 A356.0 ALLOY 3.9.5.0 Comments and Properties — A356.0 is an Al-Si-Mg alloy similar to 356.0, but with impurities controlled to lower limits resulting in higher strengths and ductility. It has good casting characteristics and high resistance to corrosion. Refer to 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for A356.0 aluminum alloy are presented in Table 3.9.5.0(a). Room temperature mechanical and physical properties are shown in Tables 3.9.5.0(b) and 3.9.5.0(c). Table 3.9.5.0(a). Material Specifications for A356.0 Aluminum Alloy Specification Form a AMS-A-21180 Casting AMS 4218 Casting a Inactive for new design.
The temper index for A356.0 is as follows: Section 3.9.5.1
Temper T6
3.9.5.1 T6 Temper — Tensile stress-strain and full-range stress-strain curves at room temperature are presented in Figures 3.9.5.1.6(a) and 3.9.5.1.6(b), respectively.
3-725
MMPDS-06 1 April 2011
Table 3.9.5.0(b). Design Mechanical and Physical Properties of A356.0 Aluminum Alloy Casting
Specification . . . . . . . . . . .
AMS-A-21180a
Form . . . . . . . . . . . . . . . . .
Casting
Temper . . . . . . . . . . . . . . .
T6
Location Within Casting . .
Designated area
Nondesignated area
Strength Class Numberb . .
1
2
3
10
11
12
Basis . . . . . . . . . . . . . . . . .
S
S
S
S
S
S
38 28 28 24
40 30 30 25
45 34 34 28
38 28 28 24
33 27 27 21
32 22 22 20
65 81
69 86
77 96
65 81
57 71
55 68
44 52 5
47 56 3
54 63 3
44 52 5
43 50 3
35 41 2
c,d
Mechanical Properties : Ftu, ksi . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbrue, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . Fbrye, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . e, percent . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ...................
10.4 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . α, 10-6 in./in./EF . . . . . . . .
0.097 0.23 (at 212EF) 88 (at 77EF) See Figure 3.9.4.0
Last Revised: Oct 2006, MMPDS-03, Item 06-18 a Inactive for new design. Mechanical properties based on MIL-A-21180. b The attainable strength class number is dependent on the casting configuration, complexity, and size (both weight and wall thickness). Favorable experience with a particular configuration may allow some foundries to produce a higher strength class number than others. In case of doubt regarding the strength class number, the designer should consult or negotiate with the foundry to determine the proper strength class number to assign for a specific casting. c For any casting process; i.e., special mold, permanent mold, or sand mold (including chilling). d The mechanical properties shown are reliably obtainable in castings of this alloy and heat-treat condition when produced under the quality assurance provisions of AMS-A-21180. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. e Bearing values are “dry pin” values per Section 1.4.7.1.
3-726
MMPDS-06 1 April 2011
Table 3.9.5.0(c). Design and Physical Properties of A356.0 Aluminum Alloy Casting
Specification . . . . . . . . . . . . . . . . . .
AMS 4218a
Form . . . . . . . . . . . . . . . . . . . . . . . .
Sand, investment, permanent mold, and composite castings
Temper . . . . . . . . . . . . . . . . . . . . . .
T6
Location Within Casting . . . . . . . . .
Any
Basis . . . . . . . . . . . . . . . . . . . . . . . .
S
b,c
Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . µ ..........................
35 41 2 10.4 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . .
0.097 0.23 (at 212EF) 88 (at 77EF) See Figure 3.9.4.0
32 22 22 20 55 68
Last Revised, Apr 2011, MMPDS-05, Item 10-29 a Mechanical properties also met MIL-A-21180 class 12. b The mechanical properties shown are reliably obtainable when produced under the quality assurance provisions of AMS 4218. These procedures require radiographic control and specific destructive testing for acceptance of each production lot. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. c Properties were based on a minimum aging time of 3 hours.
3-727
MMPDS-06 1 April 2011 50
40
Compression Tension
Stress, ksi
30
20
Ramberg-Osgood n (tension) = 10 n (comp.) = 9.2
10
TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 3.9.5.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for A356.0-T6 aluminum alloy casting at room temperature.
50
Stress, ksi
40
30
20
10
TYPICAL 0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 3.9.5.1.6(b). Typical tensile stress-strain (full-range) curve for A356.0-T6 aluminum alloy casting at room temperature.
3-728
MMPDS-06 1 April 2011 3.9.6 A357.0/F357.0 ALLOY 3.9.6.0 Comments and Properties — A357.0 is a heat-treatable Al-Si-Mg alloy generally used for permanent mold and premium quality castings in which special properties are developed by careful control of casting and chilling techniques. F357.0 is a low beryllium version of A357.0. A357.0/F357.0 have excellent casting characteristics, are heat treatable, and provide high strength, together with good toughness. These alloys also have excellent corrosion resistance. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloys. Material specifications for A357.0/F357.0 aluminum are presented in Table 3.9.6.0(a). Room temperature mechanical and physical properties are shown in Table 3.9.6.0(b) for A357.0 and Table 3.9.6.0(c) for F357.0. Table 3.9.6.0(a). Material Specifications for A357.0/F357.0 Aluminum Alloy Specification Form
AMS-A-21180a (A357.0) AMS 4219 (A357.0) AMS 4289 (F357.0)
Casting Casting Casting
a Inactive for new design.
The temper index for A357.0/F357.0 is as follows: Section 3.9.6.1
Temper T6
3.9.6.1 T6 Temper — Figure 3.9.6.1.6 presents a typical tensile stress-strain curve.
3-729
MMPDS-06 1 April 2011
Table 3.9.6.0(b). Design Mechanical and Physical Properties of A357.0 Aluminum Alloy Casting
Specification . . . . . . . . . . . . . . . . . .
AMS-A-21180a
Form . . . . . . . . . . . . . . . . . . . . . . . .
Castingb
Temper . . . . . . . . . . . . . . . . . . . . . .
T6
Location Within Casting . . . . . . . . . c
Designated area
Nondesignated area
Strength Class Number . . . . . . . . . .
1
2
10
11
12
Basis . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . . . . . . .
45
50
38
41
45
Fty, ksi . . . . . . . . . . . . . . . . . . . . . .
35
40
28
31
35
Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . .
35 28
40 31
28 24
31 26
35 28
Fbrue, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . .
77 96
86 107
65 81
70 88
77 96
Fbrye, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . .
55 65
63 75
44 52
49 58
55 65
e, percent . . . . . . . . . . . . . . . . . . .
3
5
5
3
3
d
3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . µ ..........................
10.4 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . .
0.097 0.23 (at 212EF) 88 (at 77EF) 12.0 (68EF to 212EF)
Last Revised: Oct 2006, MMPDS-03, Item 06-18 a Inactive for new design. Mechanical properties based on MIL-A-21180. b For any casting process; i.e., special mold, permanent mold, or sand mold (including chilling). c The attainable strength class number is dependent on the casting configuration, complexity, and size (both weight and wall thickness). Favorable experience with a particular configuration may allow some foundries to produce a higher strength class number than others. In case of doubt regarding the strength class number, the designer should consult or negotiate with the foundry to determine the proper strength class number to assign for a specific casting. d The mechanical properties shown are reliably obtainable in castings of this alloy and heat-treat condition when produced under the quality assurance provisions of AMS-A-21180. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. e Bearing values are “dry pin” values per Section 1.4.7.1.
3-730
MMPDS-06 1 April 2011
Table 3.9.6.0(c). Design Mechanical and Physical Properties of A357.0/F357.0 Aluminum Alloy Casting
Specification . . . . . . . . . . . . . . . . . . . . . .
AMS 4219 (A357.0), AMS 4289 (F357.0)
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Casting
Temper . . . . . . . . . . . . . . . . . . . . . . . . . .
T6
Thickness, in. . . . . . . . . . . . . . . . . . . . . .
...
Location Within Casting . . . . . . . . . . . . .
Any Area
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
a, b
Mechanical Properties : Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . .
38
Fty, ksi . . . . . . . . . . . . . . . . . . . . . . . . . .
30
Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . .
30 24
Fbruc, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . .
65 81
Fbryc, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . .
47 56
e, percent (S-Basis) . . . . . . . . . . . . . . .
2
3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . µ ..............................
10.4 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . . . .
0.097 0.23 (at 212EF) 88 (at 77EF) 12.0 (68EF to 212EF)
Issued: Apr 2005, MMPDS-02, Item 02-03. Revised: Apr 2011, MMPDS-05, Item 10-29. a The mechanical properties shown are reliably obtainable when castings are produced under the quality assurance provisions of AMS 4289. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. b Properties were based on a minimum aging time of 3 hours. c Bearing values are “dry pin” values per Section 1.4.7.1.
3-731
MMPDS-06 1 April 2011
50
40
Stress, ksi
30
20
Ramberg - Osgood n (tension) = 16 10 TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.9.6.1.6. Typical tensile stress-strain curve for A357.0-T6 aluminum alloy casting, Class 2, designated area, at room temperature.
3-732
MMPDS-06 1 April 2011 3.9.7 D357.0/E357.0 ALLOY 3.9.7.0 Comments and Properties — D357.0 is a modification of A357.0 with narrower compositional limits and more stringent inspection requirements. These modifications were necessary to reduce variability in mechanical properties to a degree compatible with the determination of A- and B-Basis values. E357.0 is a low beryllium version of D357.0 D357.0/E357.0 is a heat-treatable Al-Si-Mg alloy generally used for premium quality castings in which special properties are developed by careful control of casting and chilling techniques. It has excellent casting characteristics and provides high strength together with good toughness. The alloy also has excellent corrosion resistance. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. Material specifications for D357.0/E357.0 aluminum is presented in Table 3.9.7.0(a). Room temperature mechanical and physical properties are shown in Table 3.9.7.0(b). Table 3.9.7.0(a). Material Specification for D357.0/E357.0 Aluminum Alloy Specification Form AMS 4241 (D357.0) Casting AMS 4288 (E357.0) Casting
The temper index for D357.0/E357.0 is as follows: Section 3.9.7.1
Temper T6
3.9.7.1 T6 Temper — Figure 3.9.7.1.6 presents a typical tensile stress-strain curve.
3-733
MMPDS-06 1 April 2011
Table 3.9.7.0(b). Design Mechanical and Physical Properties of D357.0 Aluminum Alloy Casting
Specification . . . . . . . . . . . . . . . . . . .
AMS 4241
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Casting
Temper . . . . . . . . . . . . . . . . . . . . . . .
T6
Thickness, in. . . . . . . . . . . . . . . . . . .
#2.500
...
Location Within Casting . . . . . . . . . .
Designated area
Nondesignated area
Basis . . . . . . . . . . . . . . . . . . . . . . . . .
A
B
S
Mechanical Properties : Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . .
46
49
45
Fty, ksi . . . . . . . . . . . . . . . . . . . . . . .
39
41
36
Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . .
39 29
41 31
36 28
Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . .
79 99
84 105
77 96
Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . .
62 73
65 77
57 67
e, percent (S-Basis) . . . . . . . . . . . .
3
...
2
a
3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ...........................
10.4 10.5 3.9 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . .
0.097 0.23 (at 212EF) 88 (at 77EF) 12.0 (68E to 212EF)
a The mechanical properties shown are reliably obtainable when castings are produced under the quality assurance provisions of AMS 4241. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. b Bearing values are “dry pin” values per Section 1.4.7.1.
3-734
Table 3.9.7.0(c). Design Mechanical and Physical Properties of E357.0 Aluminum Alloy Casting Specification . . . . . . . . . . . . AMS 4288 Form . . . . . . . . . . . . . . . . . . Castinga Temper . . . . . . . . . . . . . . . .
T6
Thickness, in. . . . . . . . . . . .
#0.500
0.501-1.000
Location Within Casting . .
E, 103 ksi: Ec, 103 ksi: G, 103 ksi . . . . . . . . . . . . . µ ................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, Btu/(lb)(NF) . . . . . . . . . K, Btu/[(hr)(ft2)(NF)/ft] . . α, 10-6 in./in/NF . . . . . . . . .
1.501-2.000
2.001-2.500 Non-designated Area
Designated Area A
B
A
B
A
B
A
B
A
B
S
49 40c 41 32
50 43 44 33
48 40c 41 32
49 42 43 32
47 40 41 31
48 42 43 32
46 39 40 30
47 41 42 31
45 38 39 30
46 40 41 30
45 36 36 28
73 96
75 98
72 94
73 96
70 92
72 94
69 90
70 92
67 88
69 90
77 96
59 69 3
64 74 ...
59 69 3
62 72 ...
59 69 3
62 72 ...
58 67 3
61 71 ...
56 65 3
59 69 ...
57 69 2
10.4 10.5 3.9 0.33 0.097 0.23 (at 212NF) 88 (at 77NF) 12.0 (68-212NF)
Issued: Apr 2005, MMPDS-02, Item 02-02. a Design minimum properties were determined from investment cast plates. b The mechanical properties shown are reliably obtainable when castings are produced under the quality assurance provisions of AMS 4288. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. c The rounded T99 for #0.500 inches Fty = 42 ksi, for 0.501-1.000 inches Fty = 41 ksi. d Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
3-735
Basis . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: . . . . . . . . . . . . . . Fty, ksi: . . . . . . . . . . . . . . . Fcy, ksi: . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbru,d ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry,d ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): . . . .
1.001-1.500
MMPDS-06 1 April 2011
50
40
Stress, ksi
30
20
Ramberg - Osgood n (tension) = 16
10
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 3.9.7.1.6. Typical tensile stress-strain curve for D357.0-T6 aluminum alloy casting, designated area, at room temperature.
3-736
MMPDS-06 1 April 2011 3.9.8 359.0 ALLOY 3.9.8.0 Comments and Properties — 359.0 is a relatively high-strength permanent-mold casting alloy. It is heat treatable and has good corrosion resistance. Refer to Section 3.1.3.4 for comments regarding the weldability of the alloy. A material specification for 359.0 aluminum alloy is presented in Table 3.9.8.0(a). Room temperature mechanical and physical properties are shown in Table 3.9.8.0(b). Table 3.9.8.0(a). Material Specification for 359.0 Aluminum Alloy Specification Form a Casting AMS-A-21180 a Inactive for new design.
3-737
MMPDS-06 1 April 2011
Table 3.9.8.0(b). Design Mechanical and Physical Properties of 359.0 Aluminum Alloy Casting
Specification . . . . . . . . . . . . . .
AMS-A-21180a
Form . . . . . . . . . . . . . . . . . . . .
Casting
Temper . . . . . . . . . . . . . . . . . .
T6
Location Within Casting . . . . .
Designated area
Nondesignated area
Strength Class Numberb . . . . .
1
2
10
11
Basis . . . . . . . . . . . . . . . . . . . .
S
S
S
S
Mechanical Propertiesc,d: Ftu, ksi: . . . . . . . . . . . . . . . . .
45
47
45
40
Fty, ksi: . . . . . . . . . . . . . . . . .
35
38
34
30
Fcy, ksi: . . . . . . . . . . . . . . . . .
35
38
34
30
Fsu, ksi . . . . . . . . . . . . . . . . . .
28
29
28
25
Fbrue, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . .
77 96
81 101
77 96
69 86
Fbrye, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . .
55 65
60 71
54 63
47 56
e, percent . . . . . . . . . . . . . . .
4
3
4
3
3
E, 10 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ......................
10.5 10.7 4.0 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . α, 10-6 in./in./EF . . . . . . . . . . a b
c d
e
0.097 0.23 (at 212EF) 88 (at 77EF) 11.0 (68E to 212EF)
Inactive for new design. Mechanical properties were established under MIL-A-21180. The attainable strength class number is dependent on the casting configuration, complexity, and size (both weight and wall thickness). Favorable experience with a particular configuration may allow some foundries to produce a higher strength class number than others. In case of doubt regarding the strength class number, the designer should consult or negotiate with the foundry to determine the proper strength class number to assign for a specific casting. For any casting process; i.e., special mold, permanent mold, or sand mold (including chilling). The mechanical properties shown are reliably obtainable in castings of this alloy and heat-treat condition when produced under the quality assurance provisions of AMS-A-21180. These provisions require preproduction approval, documentation of foundry procedures, and specific destructive and nondestructive testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. Bearing values are “dry pin” values per Section 1.4.7.1.
3-738
MMPDS-06 1 April 2011
3.10 ELEMENT PROPERTIES 3.10.1 BEAMS — See Chapter 1 and Reference 1.7.1 for general information on stress analysis of beams. 3.10.1.1 Simple Beams — Beams of solid, tubular, or similar cross sections can be assumed to fail through exceeding an allowable modulus of rupture in bending (Fb). In the absence of specific data, the ratio Fb/Ftu can be assumed to be 1.25 for solid sections. 3.10.1.1.1 Round Tubes — For round tubes, the value of Fb will depend on the D/t ratio as well as the ultimate tensile stress. The bending moduli of rupture of round tubes of various aluminum alloys are given in Figure 3.10.1.1.1. It should be noted that these values apply only when the tubes are restrained against local buckling at the loading points. 3.10.1.1.2 Unconventional Cross Section — Sections other than solid or tubular should be tested to determine the allowable bending stress.
7DQG7
)
E
)
WX
7
77
'W
Figure 3.10.1.1.1. Bending modulus of rupture for aluminum alloy round tubing.
3.10.1.2 Built-Up Beams — Built-up beams will usually fail because of local failures of the component parts. In aluminum-alloy construction, the strength of fittings and joints is an important feature (see Reference 3.10.1.2). 3.10.1.3 Thin-Web Beams — The allowable stress for thin-web beams will depend on the nature of the failure and is determined from the allowable stresses of the web in tension and of the flanges or stiffeners in compression.
3-739
MMPDS-06 1 April 2011 3.10.2 COLUMNS 3.10.2.1 Primary Failure — The general formula for primary instability is given in Section 1.3.8. 3.10.2.2 Local Failure — The local stability of aluminum alloy column sections may be determined using the methods outlined in References 3.10.2.2(a) through 3.10.2.2(e). 3.10.2.3 Column Properties — Curves of the allowable column stresses for round and stream-line tubing are given in Figure 3.10.2.3. The allowable stress is plotted against the effective slenderness ratio, defined by the formula: LN L ' ρ ρ c
3-740
(3.10.2.3)
MMPDS-06 1 April 2011
(a) Round 2024 and 6061 Tubing
(b) Streamline 2024-T3 Tubing Figure 3.10.2.3. Allowable column and crushing stresses for 2024 and 6061 aluminum alloy tubing.
3-741
MMPDS-06 1 April 2011 3.10.3 TORSION 3.10.3.1 General — The torsional failure of aluminum-alloy tubes may be due to plastic failure of metal, elastic instability of the walls, or an intermediate condition. Pure shear failure will not usually occur within the range of wall thicknesses commonly used for aircraft tubing. 3.10.3.2 Torsion Properties — The curves of Figures 3.10.3.2(a) through 3.10.3.2(g) are derived from the method outlined in Reference 2.8.1.1 and take into account the parameter L/D. The theoretical results set forth in Reference 2.8.3.2 have been found to be in good agreement with the experimental results.
Figure 3.10.3.2(a). Torsional modulus of rupture—2014-T6 aluminum alloy rolled rod.
3-742
MMPDS-06 1 April 2011
7IRUJLQJ )
WX
NVL
/'
)
VWNVL
1RWH7KHFXUYHUHSUHVHQWLQJPDWHULDO IDLOXUH/' )
VX
LVFRPSXWHGIRU
DQGGRHVQRWDOORZIRU
WKHSRVVLELOLW\RIUHGXFHGVWUHQJWK DORQJWKHSDUWLQJSODQH
'W
Figure 3.10.3.2(b). Torsional modulus of rupture—2014-T6 aluminum alloy forging.
60 2 0 2 4 -T 3 F tu = 6 2 k s i
F , ksi st
50
40
L /D 0 1 /4
30
1 /2
20
1 2 5 10 20
10
0 0
10
20
30
40
50
60
70
80
D /t
Figure 3.10.3.2(c). Torsional modulus of rupture - 2024-T3 aluminum alloy tubing.
3-743
MMPDS-06 1 April 2011
Figure 3.10.3.2(d). Torsional modulus of rupture—2024-T4 aluminum alloy tubing.
7WXELQJ )
WX
NVL
/'
)
VW
NVL
'W
Figure 3.10.3.2(e). Torsional modulus of rupture—6061-T6 aluminum alloy tubing.
3-744
MMPDS-06 1 April 2011
60
7075 - T6 rolled rod Ftu = 77 ksi 50
L/D
40
0 1/4 1/2
Fst, ksi
1
2 30
5 20
10 20
10
0 0
10
20
30
40
50
60
70
80
D/t
Figure 3.10.3.2(f). Torsional modulus of rupture—7075-T6 aluminum alloy rolled rod. 7)25*,1* ) WX
NVL
/'
)
VW
127(7+(&859(5(35(6(17,1*0$7(5,$/ )$,/85(/' )
VX
,6&20387(')25
$1''2(6127$//2:)25
7+(3266,%,/,7<2)5('8&('675(1*7+ $/21*7+(3$57,1*3/$1(
'W
Figure 3.10.3.2(g). Torsional modulus of rupture—7075-T6 aluminum alloy forging.
3-745
MMPDS-06 1 April 2011
This page is intentionally blank.
3-746
MMPDS-06 1 April 2011
REFERENCES 3.1(a)
Aluminum, Vol. I, “Properties, Physical Metallurgy and Phase Diagrams,” Vol. II, “Design and Application,” Vol. III, “Fabrication and Finishing,” American Society for Metals (1967).
3.1(b)
Aluminum Standards and Data, The Aluminum Association.
3.1.2
ANSI/ASC H35.1—1988, “American National Standard Alloy and Temper Designation Systems for Aluminum.”
3.1.2.1.1
Stickley, G.W. and Moore, A.A., “Effects of Lubrication and Pin Surface on Bearing Strengths of Aluminum and Magnesium Alloys,” Material Research & Standards, Vol. 2, No. 9, pp. 747 (September 1962).
3.1.2.1.3(a) Gideon, D. N., Favor, R. J., Grover, H. J., and McClure, G.M., “The Fatigue Behavior of Certain Alloys in the Temperature Range from Room Temperature to -423EF,” Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York, pp. 503-508 (1962). 3.1.2.1.3(b) Keys, R.D., Keifer, T.F., and Schwartzberg, F.R., “Fatigue Behavior of Aluminum and Titanium Sheet Materials Down to -423EF,” Advances in Cryogenic Engineering, Vol. 10, Plenum Press, New York, pp. 1-13 (1965). 3.1.2.1.3(c) DeMoney, F.W. and Wolfer, G.C., “The Fatigue Properties of Aluminum Alloy 5083-H113 and Butt Weldments at 70 and -300EF,” Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York, pp. 590-603 (1961). 3.1.2.1.3(d) “Fatigue Design Handbook,” Vol. 4, Society of Automotive Engineers (1968). 3.1.2.1.3(e) Heywood, R.B., “Designing Against Fatigue of Metals,” Reinhold Publishing Corp. (1962). 3.1.2.1.3(f)
Grover, H. J., “Fatigue of Aircraft Structures,” Naval Air Systems Command, NAVAIR 01-1A-13 (1966).
3.1.2.1.3(g) Harris, W.J., “Metallic Fatigue,” International Series of Monographs in Aeronautics and Astronautics, Vol. I (1961). 3.1.2.1.3(h) “Effect of Environment and Complex Load History of Fatigue Life,” ASTM STP 463 (1970). 3.1.2.1.3(i)
“Fatigue Crack Propagation,” ASTM STP 415 (1967).
3.1.2.1.3(j)
Pope, J.A., “Metal Fatigue,” London, Chapman and Hall (1959).
3.1.2.1.3(k) Rassweiler, G.M. and Grube, W.L., “Internal Stress and Fatigue in Metals,” Elsevier Publishing Company (1959). 3.1.2.1.3(l)
“Symposium on Fatigue of Aircraft Structures,” WADC TR 59-507 (1959).
3.1.2.1.3(m) “Symposium on Fatigue of Aircraft Structures: Low-Cycle, Full-Scale, and Helicopter,” ASTM STP 338 (1962). 3.1.2.1.3(n) Sines, G. and Waisman, J.L., “Metal Fatigue,” McGraw-Hill (1959). 3-747
MMPDS-06 1 April 2011 3.1.2.1.3(o) “Symposium on the Basic Mechanisms of Fatigue,” ASTM STP 237 (1959). 3.1.2.1.3(p) Manson, S.S., “Fatigue: A Complex Subject—Some Simple Approximations,” Experimental Mechanics, Vol. 5, No. 7, pp. 193-226 (July 1965). 3.1.2.1.3(q) Morrow, J.D., “Cyclic Plastic Strain Energy and the Fatigue of Metals,” Symposium on Internal Friction, Damping and Cyclic Plasticity, ASTM STP 378 (1964). 3.1.2.1.3(r)
Hartman, E.C., Holt, M., and Eaton, I.D., “Static and Fatigue Strength of High-Strength Aluminum-Alloy Bolted Joints,” National Advisory Committee for Aeronautics, Technical Note 2276, p. 61 (February 1952).
3.1.2.1.3(s) Holt, M., “Results of Shear Fatigue Tests of Joints with 3/16-Inch-Diameter 24-S T31 Rivets in 0.064-Inch-Thick Al Clad Sheet,” U.S. National Advisory Committee for Aeronautics, Technical Note No. 2012, p. 51 (February 1950). 3.1.2.1.4(a) “Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials,” ASTM Designation E399 (Annual). 3.1.2.1.4(b) Kaufman, J.G., Shilling, P.E., and Nelson, F.G., “Fracture Toughness of Aluminum Alloys,” Metals Engineering Quarterly, pp. 39-47 (August 1969). 3.1.2.1.4(c) Kaufman, J.G., Moore, R.L., and Schilling, P.E., “Fracture Toughness of Structural Aluminum Alloys,” presented at 1969 ASM Materials Engineering Congress, Philadelphia, Pennsylvania (October 14, 1969). 3.1.2.1.4(d) Anon., “Fracture Mechanics Data on Aluminum,” from Aluminum Company of America (June 12, 1973) (MCIC 86213). 3.1.2.1.4(e) Eichenberger, T.W., “Fracture Resistance Data Summary,” Report D2-20947, The Boeing Company (June 1962) (MCIC 62306). 3.1.2.1.4(f)
Smith, S.H. and Liu, A.F., “Fracture Mechanics Application to Materials Evaluation and Selection for Aircraft Structure and Fracture Analysis,” D6-17756.
3.1.2.1.4(g) Allen, F.C., “Effects of Thickness on the Fracture Toughness of 7075 Aluminum in the T6 and T73 Conditions,” Damage Tolerance in Aircraft Structures, ASTM STP 486, pp. 16-38 (1971). 3.1.2.1.4(h) Broek, D., “The Residual Strength of Aluminum Alloy Sheet Specimens Containing Fatigue Cracks or Saw Cuts,” NLR-TR M. 2143, National Aerospace Laboratory, Amsterdam (1966). 3.1.2.1.4(i)
Broek, D., “The Effect of Finite Specimen Width on the Residual Strength of Light Alloy Sheet,” TR M. 2152, National Aero- and Astronautical Research Institute, Amsterdam (1965) (MCIC 70485).
3.1.2.1.4(j)
Feddersen, C.E. and Hyler, W.S., “Fracture and Fatigue-Crack-Propagation Characteristics of 7075-T7351 Aluminum Alloy Sheet and Plate,” Report No. G-8902, Battelle Memorial Institute, Columbus, Ohio (March 1970) (MCIC 79089).
3.1.2.1.5(a) Campbell, J.E., “Aluminum Alloys for Cryogenic Service,” Materials Research & Standards, Vol. 4, No. 10, pp. 540-548 (October 1964). 3-748
MMPDS-06 1 April 2011 3.1.2.1.5(b) Bogardus, K.O., Stickley, G.W., and Howell, F. M., “A Review of Information on the Mechanical Properties of Aluminum Alloys at Low Temperatures,” National Advisory Committee on Aeronautics, Technical Note 2082, 64 pp. (May 1950). 3.1.2.1.5(c) Kaufman, J.G., Bogardus, K.O., and Wanderer, E.T., “Tensile Properties and Notch Toughness of Aluminum Alloys at -452EF in Liquid Helium,” Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York, pp. 294-308 (1968). 3.1.2.1.5(d) Kaufman, J.G. and Wanderer, E.T., “Tensile Properties and Notch Toughness of 7000 Series Aluminum Alloys, Notably 7005, at -452EF,” Advances in Cryogenic Engineering, Vol. 15, Plenum Press, New York (to be published). 3.1.2.1.5(e) Kaufman, J.G. and Holt, M., “Evaluation of Fracture Characteristics of Aluminum Alloys at Cryogenic Temperatures,” Advances in Cryogenic Engineering, Vol. 10, Plenum Press, New York, pp. 77-85 (1965). 3.1.2.1.5(f)
Kaufman, J.G. and Johnson, E.W., “New Data from Alcoa Research Laboratories on Aluminum in Cryogenic Applications,” Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York, pp. 637-649 (1960).
3.1.2.1.6
Holt, M. and Bogardus, K.O., “The ‘Hot’ Aluminum Alloys,” Product Engineering (August 16, 1965).
3.1.2.3.1(a) Sprowls, D.O. and Brown, R.H., “Resistance of Wrought High-Strength Aluminum Alloys to Stress Corrosion,” Metal Progress, Part I (April 1962), and Part II (May 1962). 3.1.2.3.1(b) Rutemiller, H.C. and Sprowls, D.O., “Susceptibility of Aluminum Alloys to Stress Corrosion,” Materials Protection (June 1963). 3.1.2.3.1(c) Spuhler, E.H. and Burton, C.L., “Avoiding Stress-Corrosion Cracking in High Strength Aluminum Alloy Structures,” Alcoa Green Letter Booklet No. 188 (April 1970). 3.1.2.3.1(d) Jackson, J.D. and Boyd, W.K., “Preventing Stress-Corrosion Cracking of High Strength Alloy Parts,” Materials in Design Engineering (May 1966). 3.1.2.3.2
Lifka, B.W., Sprowls, D.O., and Kaufman, J.G., “Exfoliation and Stress-Corrosion Characteristics of High Strength, Heat Treatable Aluminum Alloy Plate,” Corrosion, Vol. 23, No. 11, pp. 335-342 (November 1967).
3.1.3.4
Welding Aluminum: Theory and Practice, Aluminum Association, 3rd Edition, November 1997, ISBN 89-080539, AA code WATP-23-516146.
3.2.1.1.8
Unpublished data, H. Sano, Sumitomo Light Alloys, (March 7, 2005) Battelle Source M-1037).
3.2.2.1.8(a) Howell, F.M. and Miller, J.L., “Axial Stress, Fatigue Strength of Structural Aluminum Alloys,” American Society for Testing Materials, Vol. 55 (1955) (MMPDS Item 62-17). 3.2.2.1.8(b) Lazan, B.J. and Blatherwick, A.A., “Fatigue Properties of Aluminum Alloys at Various Direct Stress Ratios, Part 1—Rolled Alloys,” WADC Technical Report 52307 (December 1952) (MCIC 107775).
3-749
MMPDS-06 1 April 2011 3.2.2.1.8(c) Lazan, B.J. and Blatherwick, A.A., “Fatigue Properties of Aluminum Alloys at Various Direct Stress Ratios, Part 2—Extruded Alloys,” WADC Technical Report 52-307 (December 1952) (MCIC 107776) (Battelle Source M-535). 3.2.2.1.8(d) Wang, D.Y., “Axial Loading Fatigue Properties of 7079-T6, 7075-T6, and 2014-T6 Aluminum Alloy Hand Forgings,” WADC Technical Report 58-59 (July 1958) (MCIC 108811). 3.2.2.1.8(e) Nordmark, G.E., Lifka, B.W., et al., “Stress-Corrosion and Corrosion-Fatigue Susceptibility of High-Strength Aluminum Alloys,” Alcoa Technical Report 70-259 (November 1970) (MCIC 79945). 3.2.4.1.8(a) Grover, H.J., Bishop, S.M., and Jackson, L.R., “Fatigue Strengths of Aircraft Materials: AxialLoad Fatigue Tests on Unnotched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel,” National Advisory Committee for Aeronautics, Technical Note 2324 (March 1951) (Battelle Source M-506). 3.2.4.1.8(b) Grover, H.J., Bishop, S.M., and Jackson, L.R., “Fatigue Strengths of Aircraft Materials: AxialLoad Fatigue Tests on Notched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel with Stress-Concentration Factors of 2.0 and 4.0,” National Advisory Committee for Aeronautics, Technical Note 2389 (June 1951) (Battelle Source M-507). 3.2.4.1.8(c) Grover, H.J., Bishop, S.M., and Jackson, L.R., “Fatigue Strengths of Aircraft Materials; AxialLoad Fatigue Tests on Notched Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel with Stress-Concentration Factor of 5.0,” National Advisory Committee for Aeronautics, Technical Note 2390 (June 1951) (Battelle Source M-508). 3.2.4.1.8(d) Grover, H.J., Hyler, W.S., and Jackson, L.R., “Fatigue Strengths of Aircraft Materials; Axial-Load Fatigue Tests on Notched Sheet Specimens of 24S-T3 and 75S-T6 Aluminum Alloys and of SAE 4130 Steel with Stress-Concentration Factor of 1.5,” National Advisory Committee for Aeronautics, Technical Note 2639 (February 1952) (Battelle Source M-509). 3.2.4.1.8(e) Hardrath, H.F. and Ilig, W., “Fatigue Tests at Stresses Producing Failure in 2 to 10,000 Cycles 24S-T3 and 75S-T6 Aluminum Alloy Sheet Specimens with a Theoretical StressConcentration Factor of 4.0 Subjected to Completely Reversed Axial Load,” National Advisory Committee of Aeronautics, Technical Note 3132 (January 1954) (Battelle Source M-510). 3.2.4.1.8(f)
Ilig, W., “Fatigue Tests on Notched and Unnotched Sheet Specimens of 2024-T3 and 7075-T6 Aluminum Alloys and of SAE 4130 Steel with Special Consideration of the Life Range from 2 to 10,000 Cycles,” National Advisory Committee for Aeronautics, Technical Note 3866 (December 1956) (Battelle Source M-512).
3-750
MMPDS-06 1 April 2011 3.2.4.1.8(g) Grover, H.J., Hyler, W.S., and Jackson, L.R., “Fatigue Strengths of Aircraft Materials; Axial-Load Fatigue Tests on Edge-Notched Sheet Specimens of 2024-T3 and 7075-T6 Aluminum Alloys and of SAE 4130 Steel with Notch Radii of 0.004 and 0.070 Inch,” National Aeronautics and Space Administration, Technical Note D-111 (September 1959) (Battelle Source M-513). 3.2.4.1.8(h) Naumann, E.C., Hardrath, H.F., and Guthrie, D.E., “Axial-Load Fatigue Tests of 2024-T3 and 7075-T6 Aluminum-Alloy Sheet Specimens Under Constant and Variable Amplitude Loads,” National Aeronautics and Space Administration, Technical Note D-212 (December 1959) (Battelle Source M-514). 3.2.4.1.8(i)
Topper, T.H. and Morrow, J., “Simulation of the Fatigue Behavior at the Notch Root in Spectrum Loaded Notch Member (u),” Naval Air Development Center, Final Report (January 1970).
3.2.13.1.9(a) Pionke, L.J. and Linback, R.K., “Fracture Mechanics Data for 2024-T861 and 2124-T851 Aluminum,” NASA CR, MDDC E1153, McDonnell Douglas Astronautics Company (October 25, 1974). 3.2.13.1.9(b) Cervay, R.R., “Temperature Effect on the Mechanical Properties of Aluminum Alloy 2124-T851,” AFML-TR-75-208 (December 1975). 3.2.13.1.9(c) Thompson, D.S. and Zinkham, R.E., “Program to Improve the Fracture Toughness and Fatigue Resistance of Aluminum Sheet and Plate for Airframe Applications,” AFML-TR-73-247, Vol. II (September 1974). 3.2.13.1.9(d) Babilion, C.F., Wygonik, R.H., Nordmark, G.E., and Lifka, B.W., “Mechanical Properties, Fracture Toughness, Fatigue, Environmental Fatigue Crack Growth Rates, and Corrosion Characteristics of High-Toughness Aluminum Alloy Forgings, Sheet, and Plate,” AFML-TR-7383 (April 1973) (MCIC 86842) (Battelle Source M-118). 3.2.16.2.8
Ferguson, R.F., “Axial Stress Fatigue Strength of 2219-T851 Aluminum Alloy Plate,” Report No. TFD-71-960, North American Rockwell, Los Angeles Division (July 29, 1971) (Battelle Source M-216).
3.2.17.1.8
Cho, A, Unpublished data, McCook Metals, May 3, 2000.
3.7.3.1.8(a) Rothweiler, C.E. and Maynard, P.S., “Evaluation of 7049-T73 Aluminum Alloy for RA-5C Wing Inner Panel Fold Rib,” CMES Contract N00256-71-C-0064, Task No. NAR-18 (P046-10), Report No. NR72H-278, North American Rockwell, Columbus, Ohio (July 14, 1972) (Battelle Source M-170). 3.7.3.1.8(b) Anon., “Boeing Test Data on X7049-T73,” Submitted to Battelle to provide input data for Item 68-24 (1969) (MCIC 78639). 3.7.3.1.8(c) Mixon, W. and Turley, R.V., “Evaluation of Aluminum Alloys 7049-T73 and 7175-T736 Die Forging,” Engineering Technical Report No. ETR-MDC-J0692, McDonnell Douglas (April 7, 1970) (MCIC 110111). 3.7.3.1.8(d) VanOrden, J.M., “Evaluation of 7049-T73 Aluminum Alloy Hand-Forged Billet,” Lockheed California Company, Report No. LR 23447 (February 1970) (Battelle Source M-43). 3.7.3.1.8(e) “Effect of Manufacturing Processes on Structural Allowables—Phase I,” Battelle, Columbus, Ohio, AFWAL-TR-85-4128 (January 1986). 3-751
MMPDS-06 1 April 2011 3.7.4.2.8(a) Guthorn, P.S., “Design Properties and Processing Limits for Improved Aluminum Alloys,” McDonnell Douglas Corporation, MDC-J1912 (December 1983) (Battelle Source M-629). 3.7.4.2.8(b) Garland, K., “Evaluation of X7050-T736 Die Forgings,” McDonnell Aircraft Company, McDonnell Douglas Corporation, Report No. 514-131.10 (February 1973) (MCIC 85880). 3.7.4.2.8(c) Deel, O.L., Ruff, P.E., and Mindlin, H., “Engineering Data on New Aerospace Structural Materials,” AFML-TR-114 (June 1973) (Battelle Source M-467). 3.7.4.2.8(d) Gallo, K.L., "Load Control Fatigue Data Reports," Westmoreland Mechanical Testing and Research, Inc., March 1997. 3.7.4.2.8(e) Deschapelles, J.B., "Improved Fatigue Resistance of 7050 Thick Plate Aluminum Through Minimization of Microporosity," Effects of Product Quality and Design Criteria on Structural Integrity, ASTM STP 1337, R. C. Rice and D. E. Tritsch, Eds., American Society for Testing and Materials, 1998. 3.7.4.2.9(a) Northrop, attachments to letter from V.C. Frost to D.J. Jones (March 4, 1981) (Battelle Source M482). 3.7.4.2.9(b) Davies, R.E., Nordmark, G.E., and Walsh, J.D., “Design Mechanical Properties, Fracture Toughness, Fatigue Properties, Exfoliation, and Stress-Corrosion Resistance of 7050 Sheet, Plate, Hand Forgings, Die Forgings, and Extrusions,” Report N00019-72-C-0512, Aluminum Company of America (July 1975) (Battelle Source M-322). 3.7.4.3.8(a) Staley, J.T., Jacoby, J.E., Davies, R.E., Nordmark, G.E., Walsh, J.D., and Rudolph, F.R., “Aluminum Alloy 7050 Extrusions,” AFML-TR-76-129 (March 1977) (MCIC 99225) (Battelle Source M-374). 3.7.7.1.8
Unpublished data from J. Merzlak, Kaiser-Tennalum sent to J. Jackson, Battelle (October 30, 2003) (Battelle Source M-991).
3.7.8.1
Brownfield, C.D. and Badger, D.M., “Effects of Temperature-Time-Stress Histories on the Mechanical Properties of Aircraft Structural Metallic Materials,” WADC TR 56-585, Part II (September 1960).
3.7.8.1.8
Howell, F. M. and Miller, J.L., “Axial Fatigue Strengths of Several Structural Aluminum Alloys,” Proceedings of the American Society for Testing Materials, Philadelphia, PA (1956).
3.7.8.1.9(a) Hudson, C.M. and Hardrath, H.F., “Effects of Changing Stress Amplitude on the Rate of FatigueCrack-Propagation in Two Aluminum Alloys,” National Aeronautics and Space Administration, Technical Note D-960 (1961). 3.7.8.1.9(b) McEvily, A.J. and Ilig, W., “The Rate of Fatigue-Crack Propagation in Two Aluminum Alloys,” National Aeronautics and Space Administration, Technical Note 4394 (1958). 3.7.8.1.9(c) Broek, D. and Schijve, J., “The Influence of Mean Stress on the Propagation of Fatigue Cracks in Aluminum Alloy Sheet,” NLR-TR, M. 2111, Reports and Transactions, National Aero- and Astronautical Research Institute, pp. 41-61 (1965). 3.7.8.1.9(d) Dubensky, R.G., “Fatigue-Crack Propagation in 2024-T3 and 7075-T6 Aluminum Alloys at High Stresses,” NASA CR-1732 (1971). 3-752
MMPDS-06 1 April 2011 3.7.8.1.9(e) Hudson, C.M., “Effect of Stress Ratios on Fatigue-Crack Growth in 7075-T6 and 2024-T3 Aluminum Alloy Specimens,” National Advisory Committee for Aeronautics, Technical Note D-5390 (August 1969) (MCIC 75599). 3.7.8.1.9(f)
Gurin, P.J., “Crack Propagation Tests for Some Aluminum Alloy Materials,” LR 10498, Lockheed Aircraft Corporation (1955).
3.7.8.2.9(a) Unpublished Battelle, Columbus, Ohio data by C. F. Fedderson. 3.7.8.2.9(b) “B-1 Program Data for Aluminum Alloys,” Rockwell International Corporation, Memorandum to H. D. Moran from E. W. Cawthorne, Battelle, Columbus, Ohio (April 3, 1974) (MCIC 88579). 3.7.8.2.9(c) Ruff, P.E. and Smith, S.H., “Development of MIL-HDBK-5 Design Allowable Properties and Fatigue-Crack-Propagation Data for Several Aerospace Materials,” AFML-TR-77-162 (October 1977). 3.7.11.2.9
Unpublished data from Alcan, 2007 (Battelle Source M-1209).
3.7.12.2.8
Unpublished Letter to D. Lahrman, Battelle, from Alcoa, “Fatigue Properties of 7150-T77511 Extruded Shapes.” (December 9, 1993) (Battelle Source M-798).
3.7.13.1.8(a) Unpublished Letter to P. Ruff, Battelle Memorial Institute, from Lockheed-Georgia, “Fatigue Data on 7175-T7351 Extrusions,” January 1982. 3.7.13.1.8(b) Carter, F.J., Bateh, E.J., and White, D.L., “C-5A Wing Modification Program, Material Characterization Program, 7175-T7511 Extrusions,” Lockheed-Georgia Company, Report No. LG75ER0186-2, September 1977 (MCIC 122032). 3.7.13.1.8(c) Unpublished Letter to P. Ruff, Battelle Memorial Institute, from Aluminum Company of America, “Fatigue Data on 7175-T73511 Extrusions and 7175-T74 Forgings,” January 24, 1990 (Battelle Source M-748). 3.7.13.2.8(a) Schimmelbusch, H.W., “Metallurgical Evaluation of 7175-T736 and 7175-T66 Die Forgings,” Boeing Company Document No. D6-24480, May 1970 (MCIC 78656). 3.7.13.2.8(b) Newcomer, R., “Evaluation of Aluminum Forging Alloy 7175-T736,” McDonnell Aircraft Company Report No. MDC 70-024, 1970 (MCIC 85881). 3.7.13.2.8(c) Deel, O.L. and Mindlin, H., “Engineering Data on New and Emerging Structural Materials,” AFML Report No. AFML-TR-70-252, October 1970 (Battelle Source M-464). 3.7.14.2.8(d) Doepker, P., “Effect of Manufacturing Process on Structural Allowables,” AFWAL Report No. AFWAL-TR-85-4049 (Battelle Source M-626). 3.7.17.2.8(a) Brownhill, D.J., Davies, R.E., Nordmark, G.E., and Ponchel, B.M., “Exploratory Development for Design Data on Structural Aluminum Alloys in Representative Aircraft Environments,” AFMLTR-77-102 (July 1977) (MCIC 103463) (Battelle Source M-397).
3-753
MMPDS-06 1 April 2011 3.7.17.2.8(b) Unpublished letter to P. Vieth, Battelle, Columbus, Ohio from ALCOA, “Fatigue Data for 7050 and 7475 Products” (July 17, 1985) (Battelle Source M-630). 3.7.17.2.8(c) Jones, R.L. and Coyle, T.E., “The Mechanical Stress Corrosion, Fracture Mechanics, and Fatigue Properties of 7050, 7475, and Ti-8Mo-8V-2Fe-3Al Plate and Sheet Alloys,” General Dynamics, Report No. FGT-5791 (July 24, 1973) (MCIC 100670). 3.7.17.2.8(d) Figge, F.A., “Advanced Metallic Structure: Air Superiority Fighter Wind Design for Improved Cost, Weight, and Integrity,” AFFDL-TR-73-52, Vol. III (June 1973) (MCIC 86574) (Battelle Source M-278). 3.7.17.2.8(e) Deel, O.L., Ruff, P.E., and Mindlin, H., “Engineering Data on New Aerospace Structural Materials,” AFML-TR-75-97 (June 1975) (MCIC 95044) (Battelle Source M-468). 3.7.17.2.9(a) Cervay, R.R., “Engineering Design Data for Aluminum Alloy 7475 in the T761 and T61 Conditions,” AFML-TR-72-173 (September 1972) (MCIC 85363). 3.7.17.2.9(b) Cervay, R.R., “Static and Dynamic Fracture Properties for Aluminum Alloy 7475-T651 and T7351,” AFML-TR-75-20 (April 1975). 3.8.1.1.8(a) Unpublished data from Garrett Turbine Engine Company, 1986 (Battelle Source M-690). 3.8.1.1.8(b) Unpublished data from Northrop Corporation, 1988 (Battelle Source M-701). 3.10.1.2
Eato, I.D. and Holt, M., “Flexural Fatigue Strengths of Riveted Box Beams—Alclad 14S-T6, Alclad 75S-T6, and Various Tempers of Alclad 24S,” National Advisory Committee for Aeronautics, Technical Note 2452, 25 pp. (November 1951).
3.10.2.2(a)
Gerard, G. and Becker, H., Handbook of Structural Stability, “Part I—Buckling of Flat Plates,” National Advisory Committee for Aeronautics, Technical Note 3781 (July 1957).
3.10.2.2(b)
Becker, H. Handbook of Structural Stability, “Part II—Buckling of Composite Elements,” National Advisory Committee for Aeronautics, Technical Note 3782 (July 1957).
3.10.2.2(c)
Gerard, G. and Becker, H., Handbook of Structural Stability, “Part III—Buckling of Curved Plates and Shells,” National Advisory Committee for Aeronautics, Technical Note 3783 (1957).
3.10.2.2(d)
Gerard, G., Handbook of Structural Stability, “Part IV—Failure of Plates and Composite Elements,” National Advisory Committee for Aeronautics, Technical Note 3784 (1957).
3.10.2.2(e)
Gerard, G., Handbook of Structural Stability, “Part V—Compressive Strengths of Flat Stiffened Panels,” National Advisory Committee for Aeronautics, Technical Note 3785 (August 1957).
3-754
MMPDS-06 1 April 2011
CHAPTER 4 MAGNESIUM ALLOYS 4.1 GENERAL This chapter contains the engineering properties and characteristics of wrought and cast magnesium alloys used in aircraft and missile applications. Magnesium is a lightweight structural metal that can be strengthened greatly by alloying, and in some cases by heat treatment or cold work or by both. 4.1.1 ALLOY INDEX — The magnesium alloys in this chapter are listed in alphanumeric sequence in each of two parts, the first one being wrought forms of magnesium and the second cast forms. These sections and the alloys covered under each are shown in Table 4.1.
Table 4.1. Magnesium Alloys Index
Section 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7
Designation Magnesium-Wrought Alloys AZ31B AZ61A ZK60A Magnesium-Cast Alloys AM100A AZ91C/AZ91E AZ92A EV31A EZ33A QE22A ZE41A
4.1.2 MATERIAL PROPERTIES 4.1.2.1 Mechanical Properties — The mechanical properties are given either as design values or for information purposes. The tensile strength (Ftu), tensile yield strength (Fty), elongation (e), and sometimes the compressive yield strength (Fcy) are guaranteed by procurement specifications. The properties obtained reflect the location of sample, type of test specimen and method of testing required by the product specification. The remaining design values are “derived” values; that is, sufficient tests have been made to ascertain that if a given material meets the requirements of the product specification, the material will have the compression (Fcy), shear (Fsu) and bearing (Fbru and Fbry) strengths listed. 4.1.2.1.1 Tension Testing — Room temperature tension tests are made according to ASTM E 8. The yield strength (Fty) is obtained by the “offset method” using an offset of 0.2 percent. The speed of testing for room temperature tests has a small effect on the strength and elongation values obtained on most magnesium alloys. The rate of stressing generally specified to the yield strength is less than 100,000 psi per minute and the rate of straining from the yield strength to fracture is less than 0.5 in./in./min. It can be expected that the speed of testing used for room temperature tension tests will approach the maximum permitted. 4-1
MMPDS-06 1 April 2011 Elevated-temperature tension tests are made according to ASTM E 21. The speed of testing has a considerable effect on the results obtained and no one standard rate of straining is given in ASTM E 21. The strain rates most commonly used on magnesium are 0.005 in./in./min. to the yield and 0.10 in./in./min. from yield to fracture [see References 4.1.2.1.1(a) to (d)]. 4.1.2.1.2 Compression Testing — Compression test methods used for magnesium are specified in ASTM E 9. The values given for the compressive yield strength (Fcy), are taken at an offset of 0.2 percent. References 4.1.2.1.2(a) and (b) provide information on test techniques. 4.1.2.1.3 Bearing Testing — Bearing tests of magnesium alloys are made according to ASTM E 238. The size of pin used has a significant effect on the values obtained, especially the bearing ultimate strength (Fbru). On tests made to obtain the data on magnesium alloys shown in this document, pin diameters of 0.187 and 0.250 inch were used. For pin diameters significantly larger than 0.250 inch lower values may be obtained. Additional information on bearing testing is given in References 4.1.2.1.3(a) and (b). Bearing values in the property tables are considered to be “dry pin” values in accordance with the discussion in Section 1.4.7.1. 4.1.2.1.4 Shear Testing — The shear strength values used in this document were obtained by the “double shear” method using a pin-type specimen, the “punch shear” method and the “tension shear” method as applicable. Just as tensile ultimate strength (Ftu) values vary with location and direction of sample in relation to the method of fabrication, the shear strength (Fsu) may be expected to reflect the effect of orientation, either as a function of the sampling or the maximum stresses imposed by the method of test. Information on shear testing is given in Reference 4.1.2.1.4. 4.1.2.1.5 Stress Raisers — The effect of notches, holes, and stress raisers on the static properties of magnesium alloys is described in References 4.1.2.1.5(a) through 4.1.2.1.5(c). Additional data on the strength properties of magnesium alloys are presented in References 4.1.2.1.5(d) through 4.1.2.1.5(h). 4.1.2.1.6 Creep — Some creep data on magnesium alloys are summarized in Reference 4.1.2.1.6. 4.1.2.1.7 Fatigue — Room temperature axial load fatigue data for several magnesium alloys are presented in appropriate alloy sections. References 4.1.2.1.7(a) and 4.1.2.1.7(b) provide additional data on fatigue of magnesium alloys. 4.1.3 PHYSICAL PROPERTIES — Selected experimental data from the literature were used in determining values for physical properties. In other cases, enough information was available to calculate the constants. Estimated values of some of the remaining constants were also included. Estimated values are noted. 4.1.4 ENVIRONMENTAL CONSIDERATIONS — Corrosion protection must be considered for all magnesium applications. Protection can be provided by anodic films, chemical conversion coatings, paint systems, platings, or a combination of these methods. Proper drainage must be provided to prevent entrapment of water or other fluids. Dissimilar metal joints must be properly and completely insulated, including barrier strips and sealants. Strain-hardened or age-hardened alloys may be annealed or overaged by prolonged exposure to elevated temperatures, with a resulting decrease in strength. Maximum recommended temperatures for prolonged service are reported, where available, for specific alloys. 4.1.5 ALLOY AND TEMPER DESIGNATIONS — Standard ASTM nomenclature is used for the alloys listed. Temper designations are given in ASTM B 296. A summary of the temper designations is given in Table 4.1.5. 4-2
MMPDS-06 1 April 2011
Table 4.1.5. Temper Designation System for Magnesium Alloysa
Basis of Codification The designations for temper are used for all forms of magnesium and magnesium alloy products except ingots and are based on the sequence of basic treatments used to produce the various tempers. The temper designation follows the alloy designation, the two being separated by a dash. Basic temper designations consist of letters. Subdivisions of the basic tempers, where required, are indicated by a digit or digits following the letter. These designate specific sequences of basic treatments, but only operations recognized as significantly influencing the characteristics of the product are indicated. Should some other variation of the same sequence of basic operations be applied to the same alloy, resulting in different characteristics, then additional digits are added to the designation. NOTE—In material specifications containing reference to two or more tempers of the same alloy which result in identical mechanical properties, the distinction between the tempers should be covered in suitable explanatory notes. Basic Temper Designations F As Fabricated. Applies to the products that acquire some temper from shaping processes not having special control over the amount of strain-hardening or thermal treatment. O
Annealed Recrystallized (wrought products only). Applies to the softest temper of wrought products.
H
Strain-Hardened (wrought products only). Applies to products that have their strength increased by strain-hardening with or without supplementary thermal treatments to produce partial softening. The H is always followed by two or more digits. H1
Strain-Hardened Only. Applies to products that are strain-hardened to obtain the desired mechanical properties without supplementary thermal treatment. The number following this designation indicates the degree of strain-hardening.
H2
Strain-Hardened and Then Partially Annealed. Applies to products which are strain-hardened more than the desired final amount and then reduced in strength to the desired final amount by partial annealing. The number following this designation indicates the degree of strain-hardening remaining after the product has been partially annealed.
H3
Strain-Hardened and Stabilized. Applies to products that are strain-hardened and then stabilized by a low temperature heating to slightly lower their strength and increase ductility. This designation applies only to alloys which, unless stabilized, gradually age soften at room temperature. The number following this designation indicates the degree of strain-hardening remaining after the product has been strain-hardened a specific amount and then stabilized.
Subdivisions of the “H1", “H2" and “H3" Tempers: The digit following the designations “H1", “H2", and “H3" indicates the final degree of strain hardening. Tempers between 0 (annealed) and 8 (full hard) are designated by numerals 1 through 7. Material having a strength about midway between that of the 0 temper and that of the 8 temper is designated by the numeral 4 (half hard); between 0 and 4 by the numeral 2 (quarter hard); between 4 and 8 by the numeral 6 (three-quarter
a From ASTM B 296-96.
4-3
MMPDS-06 1 April 2011 Table 4.1.5. Temper Designation System for Magnesium Alloys (Continued)a
hard), etc. The third digit, when used, indicates a variation of a two-digit H temper. It is used when the degree of control of temper or the mechanical properties are different from but close to those for the two-digit H temper to which it is added. Numerals 1 through 9 may be arbitrarily assigned as the third digit for an alloy and product to indicate a specific degree of control of temper or special mechanical property limits. W
Solution Heat-Treated. An unstable temper applicable only to alloys which spontaneously age at room temperature after solution heat-treatment. This designation is specific only when the period of natural aging is indicated: for example, W ½ hr.
T
Thermally Treated to Product Stable Tempers Other Than F, O, or H. Applies to products which are thermally treated, with or without supplementary strain-hardening, to product stable tempers. The T is always followed by one or more digits. Numerals 1 through 10 have been assigned to indicate specific sequences of basic treatments, as follows. T1
Cooled from an Elevated Temperature Shaping Process and Naturally Aged to a Substantially Stable Condition. Applies to products for which the rate of cooling from an elevated temperature shaping process, such as casting or extrusion, is such that their strength is increased by room temperature aging.
T3
Solution Heat-treated and Then Cold Worked. Applies to products that are cold worked to improve strength, or in which the effect of cold work in flattening and straightening is recognized in applicable mechanical properties.
T4
Solution Heat-treated and Naturally Aged to a Substantially Stable Condition. Applies to products that are not cold worked after solution heat-treatment, or in which the effect of cold work in flattening or straightening may not be recognized in applicable mechanical properties.
T5
Cooled from an Elevated-Temperature Shaping Process and Then Artificially Aged. Applies to products which are cooled from an elevated-temperature shaping process, such as casting or extrusion, and then artificially aged to improve mechanical properties or dimensional stability or both.
T6
Solution Heat-treated and Then Artificially Aged. Applies to products that are not cold worked after solution heat-treatment, or in which the effect of cold work is flattening or straightening may not be recognized in applicable mechanical properties.
T7
Solution Heat-treated and Then Stabilized. Applies to products that are stabilized to carry them beyond the point of maximum strength to provide control of some special characteristics.
T8
Solution Heat-treated, Cold Worked, and Then Artificially Aged. Applies to products which are cold worked to improve strength, or in which the effect of cold work in flattening or straightening is recognized in applicable mechanical properties.
T9
Solution Heat-treated, Artificially Aged, and Then Cold Worked. Applies to products that are cold worked to improve strength.
a From ASTM B 296-96.
4-4
MMPDS-06 1 April 2011
T10
Cooled from an Elevated Temperature Shaping Process, Artificially Aged, and Then Cold Worked. Applies to products which are artificially aged after cooling from an elevated temperature shaping process, such as extrusion, and then cold worked to further improve strength.
A period of natural aging at room temperature may occur between or after the operations listed for tempers T3 through T10. Control of this period is exercised when it is metallurgically important. Additional digits, may be added to designations T1 through T10 to indicate a variation in treatment that significantly alters the characteristics of the product.
a From ASTM B 296-96.
4.1.6 JOINING METHODS — Most magnesium alloys may be welded; refer to “Comments and Properties” in individual alloy sections. Adhesive bonding and brazing may be used to join magnesium to itself or other alloys. All types of mechanical fasteners may be used to join magnesium. Refer to Section 4.1.4 when using mechanical fasteners or joining of dissimilar materials with magnesium alloys. 4.1.7 OBSOLETE ALLOYS, TEMPERS, AND PRODUCT FORMS – Table 4.1.7 includes a summary of the magnesium alloys, tempers, and product forms that have been removed from the Handbook, along with information regarding why and when they were removed.
4-5
MMPDS-06 1 April 2011
Table 4.1.7 Obsolete Magnesium Alloys, Tempers, and Product Forms
Alloy
AM100A
Heat Treatment(s)
Product Form
T6
Permanent Mold and Investment Castings AZ63A F, T4, T5, Permanent T6 Mold Casting Sand Casting AZ80A
Casting
T5
Permanent Mold Casting Sand Casting
T6
Permanent Mold and Investment Castings Permanent Mold and Investment Castings Permanent Mold Castings Sand Castings
AZ91C
AZ91E
T6
AZ92A
T5
T6
Permanent Mold and Investment Castings
Specification
MIL-M46062
Basis for Removal
Cancelled specification
Removal Approved Item Mtg No. 02-21 02
Last Shown Edition
Date
MIL- Feb 03 HDBK5J
QQ-M-55 Spec. Properties 87-15 based on separately cast test bars QQ-M-56
74
MIL- June 87 HDBK5E
AMS 4360 Obsolete alloy
81-23
62
QQ-M-55 Spec. Properties 87-15 based on separately cast test bars QQ-M-56
74
MIL- June 81 HDBK5C, CN3 MIL- June 87 HDBK5E
MIL-M46062
Cancelled specification
02-21
02
MIL- Feb 03 HDBK5J
MIL-M46062
Cancelled specification
02-21
02
MIL- Feb 03 HDBK5J
QQ-M-55 Spec. Properties 87-15 based on separately cast test bars QQ-M-56
74
MIL- June 87 HDBK5E
02
MIL- Feb 03 HDBK5J
MIL-M46062
Cancelled specification
4-6
02-21
MMPDS-06 1 April 2011
Table 4.1.7 Obsolete Magnesium Alloys, Tempers, and Product Forms (cont.)
Alloy
Heat Treatment(s)
Product Form
EZ33A
T5
Permanent Mold Casting Sand Casting
HK31A
T6
Permanent Mold Casting Sand Casting
QQ-M-55 Spec. Properties 87-15 based on separately cast test bars QQ-M-56
74
MIL- June 87 HDBK5E
HZ32A
T5
Permanent Mold Casting Sand Casting
QQ-M-55 Spec. Properties 87-15 based on separately cast test bars QQ-M-56
74
MIL- June 87 HDBK5E
QE22A
T6
Permanent Mold Casting Sand Casting
QQ-M-55 Spec. Properties 87-15 based on separately cast test bars QQ-M-56
74
MIL- June 87 HDBK5E
T6
Permanent Mold and Investment Castings Sand Casting
02-21
02
MIL- Feb 03 HDBK5J
QQ-M-56 Spec. Properties 87-15 based on separately cast test bars QQ-M-55 Spec. Properties 87-15 based on separately cast test bars QQ-M-56
74
MIL- June 87 HDBK5E
74
MIL- June 87 HDBK5E
ZH62A
T5
ZK51A
T6
Permanent Mold Casting Sand Casting
Specification
Removal Approved Item Mtg No. QQ-M-55 Spec. Properties 87-15 74 based on separately cast test bars QQ-M-56
MIL-M46062
Basis for Removal
Cancelled specification
4-7
Last Shown Edition
Date
MIL- June 87 HDBK5E
MMPDS-06 1 April 2011
This page is intentionally blank.
4-8
MMPDS-06 1 April 2011
4.2 MAGNESIUM-WROUGHT ALLOYS 4.2.1 AZ31B 4.2.1.0 Comments and Properties — AZ31B is a wrought magnesium-base alloy containing aluminum and zinc. It is available in the form of sheet, plate, extruded sections, forgings, and tubes. AZ31B has good room temperature strength and ductility and is used primarily for applications where the temperature does not exceed 300EF. Increased strength is obtained in the sheet and plate form by strainhardening with a subsequent partial anneal (H24 and H26 temper). No treatments are available for increasing the strength of this alloy after fabrication. Forming of AZ31B must be done at elevated temperatures if small radii or deep draws are required. If the temperatures used are too high or the times too great, H24 and H26 temper material will be softened. This alloy is readily welded but must be stress-relieved after welding to prevent stress corrosion cracking. Material specifications covering AZ31B wrought products are given in Table 4.2.1.0(a). Room temperature mechanical and physical properties are shown in Tables 4.2.1.0(b) through 4.2.1.0(d). The effect of temperature on physical properties is shown in Figure 4.2.1.0. Table 4.2.1.0(a). Material Specifications for AZ31B Magnesium Alloy
Specification AMS 4375 AMS 4376 AMS 4377 ASTM B 107 ASTM B 91
Form Sheet and plate Plate Sheet and plate Extrusion Forging
The temper index for AZ31B is as follows: Section 4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4
Temper O H24 H26 F
4.2.1.1 AZ31B-O Temper — Effect of temperature on the tensile modulus of sheet and plate is presented in Figure 4.2.1.1.4. Typical room temperature stress-strain and tangent-modulus curves are presented in Figure 4.2.1.1.6. 4.2.1.2 AZ31B-H24 Temper — Effect of temperature on the mechanical properties of sheet and plate is shown in Figures 4.2.1.2.1 through 4.2.1.2.4, and 4.2.1.2.6. Typical room temperature tension and compression stress-strain and tangent-modulus curves for sheet are shown in Figure 4.2.1.2.6. 4.2.1.3 AZ31B-H26 Temper 4.2.1.4 AZ31B-F Temper — Figures 4.2.1.4.8(a) and 4.2.1.4.8(b) contain fatigue data for forged disk at room temperature.
4-9
MMPDS-06 1 April 2011
Table 4.2.1.0(b1). Design Mechanical and Physical Properties of AZ31B-O Magnesium Alloy Sheet and Plate
Specification . . . . . . . Form . . . . . . . . . . . . . . Temper . . . . . . . . . . . . Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . Fcy, ksi: L .............. LTa . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent . . . . . . . . . L .............. E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . a b
AMS 4375 Sheet
Plate O
0.016-0.060
0.061-0.249
0.250-0.500
0.501-2.000
2.001-3.000
S
S
S
S
S
32 ...
32 ...
32 ...
32 ...
32 ...
18 ...
15 ...
15 ...
15 ...
15 ...
... ... 17
12 ... 17
10 ... 17
10 ... ...
8 ... ...
50 60
50 60
50 60
... ...
... ...
29 29
29 29
27 27
... ...
... ...
12
12
12
10
9
6.5 6.5 2.4 0.35 0.0639 See Figure 4.2.1.0
Fcy(LT) allowables are equal to or greater than Fcy(L) allowables. Bearing values are “dry pin” values per Section 1.4.7.1.
4-10
MMPDS-06 1 April 2011
Table 4.2.1.0(b2). Design Mechanical and Physical Properties of AZ31B-H24 Magnesium Alloy Sheet and Plate
Specification . . . . . . . Form . . . . . . . . . . . . . . Temper . . . . . . . . . . . . Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT (S-Basis) . . . . . Fty, ksi: L .............. LT (S-Basis) . . . . . Fcy, ksi: L (S-Basis) . . . . . . LTb (S-Basis) . . . . . Fsu, ksi (S-Basis) . . . Fbruc, ksi (S-Basis): (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryc, ksi (S-Basis): (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent . . . . . . . . . L (S-Basis) . . . . . .
AMS 4377 Sheet
Plate H24
0.016-0.062 0.063-0.249 0.250-0.374 0.375-0.500 0.501-1.000 1.001-2.000 2.001-3.000
A
B
A
B
A
B
A
B
A
B
A
B
A
B
39 40
40 ...
39 40
40 ...
38 39
39 ...
37 38
38 ...
36 37
37 ...
34a 35
37 ...
34 ...
36 ...
29 32
30 ...
27 32
29 ...
25 29
26 ...
24 27
25 ...
22 25
23 ...
20 23
22 ...
18 ...
21 ...
... ... 18
... ... ...
24 ... 18
... ... ...
20 ... 18
... ... ...
16 ... 18
... ... ...
13 ... ...
... ... ...
10 ... ...
... ... ...
9 ... ...
... ... ...
58 68
... ...
58 68
... ...
56 65
... ...
54 63
... ...
... ...
... ...
... ...
... ...
... ...
... ...
43 43
... ...
43 43
... ...
38 38
... ...
34 34
... ...
... ...
... ...
... ...
... ...
... ...
... ...
6
...
6
...
8
...
8
...
8
...
8
...
8
...
3
E, 10 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . .
6.5 6.5 2.4 0.35 0.0639 See Figure 4.2.1.0
Issued: 1957, ANC-5, Item 57-11. Last revised: Oct 2006 - MMPDS-03, Item 06-06. a A-Basis value is specification minimum. The rounded T99 = 35 ksi. b Fcy(LT) allowables are equal to or greater than Fcy(L) allowables. c Bearing values are “dry pin” values per Section 1.4.7.1.
4-11
MMPDS-06 1 April 2011
Table 4.2.1.0(c). Design Mechanical and Physical Properties of AZ31B Magnesium Alloy Plate Specification . . . . . . . . . . . . . .
AMS 4376
Form . . . . . . . . . . . . . . . . . . . .
Plate
Temper . . . . . . . . . . . . . . . . . .
H26
Thickness, in. . . . . . . . . . . . . .
0.2500.375
0.3760.438
0.4390.500
0.5010.750
0.7511.000
1.0011.500
1.5012.000
Basis . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
S
S
39 40
38 39
38 39
37 38
37 38
35 36
35 36
27 30
26 29
26 29
25 28
23 26
22 25
21 24
22 ... 18
21 ... 18
18 .... 18
17 ... ...
16 ... ...
15 ... ...
14 ... ...
58 68
56 65
56 65
... ...
... ...
... ...
... ...
40 40
39 39
36 36
... ...
... ...
... ...
... ...
6
6
6
6
6
6
6
Mechanical Properties: Ftu, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fty, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .................... LTa . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent: L .................... E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ .....................
6.5 6.5 2.4 0.35
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . a b
0.0639 See Figure 4.2.1.0
Fcy(LT) allowables are equal to or greater than cyF(L) values. Bearing values are "dry pin" values per Section 1.4.7.1.
4-12
MMPDS-06 1 April 2011
Table 4.2.1.0(d). Design Mechanical and Physical Properties of AZ31B Magnesium Alloy Extrusion and Forging Specification . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . .
ASTM B 107 Extruded bar, rod, and solid shapes
ASTM B 91
Extruded hollow shapes
Temper . . . . . . . . . . . . . . . . . .
Extruded tube
Forging
F
Thickness, in. . . . . . . . . . . . . .
#0.249
0.2501.499
1.5002.499
2.5004.999
All
0.0280.250a
0.2510.750a
...
Basis . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
S
S
S
L ....................
35
35
34
32
32
32
32
34
LT . . . . . . . . . . . . . . . . . . .
...
...
...
...
...
...
...
...
L ....................
21
22
22
20
16
16
16
19
LT . . . . . . . . . . . . . . . . . . .
...
...
...
...
...
...
...
...
L ....................
...
12
12
10
10
10
10
...
LT . . . . . . . . . . . . . . . . . . .
...
...
...
...
...
...
...
...
Fsu, ksi . . . . . . . . . . . . . . . . .
17
17
17
...
...
...
...
...
Mechanical Properties: Ftu, ksi:
Fty, ksi:
Fcy, ksi:
b
Fbru , ksi: (e/D = 1.5) . . . . . . . . . . . . .
36
36
36
...
...
...
...
...
(e/D = 2.0) . . . . . . . . . . . . .
45
45
45
...
...
...
...
...
(e/D = 1.5) . . . . . . . . . . . . .
23
23
23
...
...
...
...
...
(e/D = 2.0) . . . . . . . . . . . . .
23
23
23
...
...
...
...
...
7
7
7
7
8
8
4
6
F
b bry
, ksi:
e, percent: L .................... 3
E, 10 ksi . . . . . . . . . . . . . . .
6.5
3
6.5
3
G, 10 ksi . . . . . . . . . . . . . . .
2.4
µ .....................
0.35
Ec, 10 ksi . . . . . . . . . . . . . .
Physical Properties:
a b
ω, lb/in.3 . . . . . . . . . . . . . . .
0.0639
C, K, and α . . . . . . . . . . . . .
See Figure 4.2.1.0
Wall thickness for tube; for outside diameter # 6.000 inches. Bearing values are “dry pin” values per Section 1.4.7.1.
4-13
MMPDS-06 1 April 2011
0.45
180
0.40
160
0.35
120
C, Btu/ (lb)(°F)
200
140
K, Btu/ [ (hr)(ft2)(°F)/ft]
0.50 α - Between 70 °F and indicated temperature K - At indicated temperature C - At indicated temperature
18 16
α
14 12
0.30 C
0.25
100
0.20
80
0.15 K, O & H24
60
0.10
40
0.05
20
0.00 -400
-200
0
200
400
600
800
1000
Temperature, °F Figure 4.2.1.0. Effect of temperature on the physical properties of AZ31B.
4-14
α, 10-6 in./in./°F
220
MMPDS-06 1 April 2011
Figure 4.2.1.1.4. Effect of temperature on the tensile modulus (E) of AZ31B-O sheet and plate.
25 Tension
20
Compression
Stress, ksi
15
10
Ramberg - Osgood n (L-tension) = 12 n (L-comp.) = 30
5
TYPICAL
0 0
2
4
6 8 Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
10
12
Figure 4.2.1.1.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for AZ31B-O sheet and plate at room temperature.
4-15
MMPDS-06 1 April 2011
Figure 4.2.1.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of AZ31B-H24 sheet and plate.
4-16
MMPDS-06 1 April 2011
Figure 4.2.1.2.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of AZ31B-H24 sheet and plate.
Figure 4.2.1.2.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of AZ31B-H24 sheet and plate.
4-17
MMPDS-06 1 April 2011
Figure 4.2.1.2.4. Effect of temperature on the tensile modulus (E) of AZ31B-H24 sheet and plate.
50
40
Tension
Stress, ksi
30 Compression
20
Ramberg - Osgood n (tension) = 4.3 n (comp.) = 15
10
TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 4.2.1.2.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for AZ31B-H24 sheet at room temperature.
4-18
MMPDS-06 1 April 2011
Figure 4.2.1.4.8(a). Best-fit S/N curves for unnotched AZ31B-F magnesium alloy forged disk, transverse direction.
Correlative Information for Figure 4.2.1.4.8(a) Product Form: Forged disk, 1-inch thick
No. of Heats/Lots: 1
Properties:
Equivalent Stress Equation:
TUS, ksi 38
TYS, ksi 26
Temp.,EF RT
Specimen Details: Unnotched 0.75-inch gross diameter 0.30-inch net diameter Surface Condition: Polished sequentially with No. 320 aluminum oxide cloth, No. 0, 00, and 000 emery paper and finally No. 600 aluminum oxide powder in water Reference:
For R values between -1.0 and -0.50 Log Nf = 7.13-2.20 log (Seq-12.9) Seq = Smax(1-R)0.56 Std. Error of Estimate, Log (Life) = 0.613 Standard Deviation, Log (Life) = 0.916 R2 = 55.2% For R values between 0.0 and 0.50 Log Nf = 8.87-3.26 log (Seq-15.0) Seq = Smax(1-R)0.33 Std. Error of Estimate, Log (Life) = 0.829 Standard Deviation, Log (Life )= 1.014 R2 = 33.2%
4.1.2.1.7(b) Sample Size = 194
Test Parameters: Loading - Axial Frequency - 1500 cpm Temperature - RT Environment - Air
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
4-19
MMPDS-06 1 April 2011
Figure 4.2.1.4.8(b). Best-fit S/N curves for notched, Kt = 3.3, AZ31B-F magnesium alloy forged disk, transverse direction.
Correlative Information for Figure 4.2.1.4.8(b) Product Form: Forged disk, 1-inch thick Properties:
TUS, ksi 38
TYS, ksi 26
Test Parameters: Loading - Axial Frequency - 1500 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Notched, Kt = 3.3 0.350-inch gross diameter 0.280-inch net diameter 0.010-inch root radius, r 60E flank angle, ω Reference:
No. of Heats/Lots: 1 Maximum Stress Equation: Log Nf = 8.28-4.34 log (Smax) Std. Error of Estimate, Log (Life) = 0.534 Standard Deviation, Log (Life) = 0.707 R2 = 43%
4.1.2.1.7(b)
Sample Size = 34
4-20
MMPDS-06 1 April 2011
4.2.2 AZ61A 4.2.2.0 Comments and Properties — AZ61A is a wrought magnesium-base alloy containing aluminum and zinc. It is available in the form of extruded sections, tubes, and forgings in the as-fabricated (F) temper. AZ61A is much like AZ31B in general characteristics. The increased aluminum content increases the strength and decreases the ductility slightly. Severe forming must be done at elevated temperatures. This alloy is readily welded but must be stress relieved after welding to prevent stress corrosion cracking. Material specifications covering AZ61A are given in Table 4.2.2.0(a). mechanical and physical properties are shown in Table 4.2.2.0(b).
Table 4.2.2.0(a). Material Specifications for AZ61A Magnesium Alloy
Specification
Form
AMS 4350 ASTM B 91
Extrusion Forging
4-21
Room temperature
MMPDS-06 1 April 2011
Table 4.2.2.0(b). Design Mechanical and Physical Properties of AZ61A Magnesium Alloy Extrusion and Forging
Specification . . . . . . . . Form . . . . . . . . . . . . . . .
AMS 4350 Extruded bar, rod, and solid shapes
Temper . . . . . . . . . . . . .
S
0.2502.499 S
2.5004.499a S
38 ...
40 ...
21 ...
Extruded hollow shapes F
Extruded tube
Forging
S
0.0280.750b S
40 ...
36 ...
36 ...
38 ...
24 ...
22 ...
16 ...
16 ...
22 ...
14 ... 19
14 ... 19
14 ... ...
11 ... ...
11 ... ...
14 ... 19
45 55
45 55
... ...
... ...
... ...
50 60
28 32
28 32
... ...
... ...
... ...
28 32
8
9
7
7
7
6
Thickness, in. . . . . . . . .
#0.249
Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent: L ............... E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................ Physical Properties: ω, lb/in.3 . . . . . . . . . . C, Btu/(lb)(EF) . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . a b c d
ASTM B 91
All
6.3 6.3 2.4 0.31 0.0647 0.25 (at 78EF)d 46 (212E to 572EF) 14 (65E to 212EF)
For cross-sectional area #25 square inches. Wall thickness for outside diameters #6.000 inches. Bearing values are “dry pin” values per Section 1.4.7.1. Estimated.
4-22
... S
MMPDS-06 1 April 2011
4.2.3 ZK60A 4.2.3.0 Comments and Properties — ZK60A is a wrought magnesium-base alloy containing zinc and zirconium. It is available as extruded sections, tubes, and forgings. Increased strength is obtained by artificial aging (T5) from the as-fabricated (F) temper. ZK60A has the best combination of high room temperature strength and ductility of the wrought magnesium-base alloys. It is used primarily at temperatures below 300EF. ZK60A has good ductility as compared with other high-strength magnesium alloys and can be formed or bent cold into shapes not possible with those alloys having less ductility. It is not considered a weldable alloy. Material specifications for ZK60A are given in Table 4.2.3.0(a). Room temperature mechanical and physical properties are shown in Tables 4.2.3.0(b) and 4.2.3.0(c). Elevated temperature curves for physical properties are shown in Figures 4.2.3.0. Table 4.2.3.0(a). Material Specifications for ZK60A Magnesium Alloy Specification Form ASTM B 107 Extrusion AMS 4352 Extrusion AMS 4362 Die and hand forgings
The temper index for ZK60A is as follows: Section 4.2.3.1 4.2.3.2
Temper F T5
4.2.3.1 ZK60A-F Temper 4.2.3.2 ZK60A-T5 Temper — Typical room temperature tension and compression stressstrain curves for extrusions are shown in Figures 4.2.3.2.6(a) and 4.2.3.2.6(b). Fatigue curves are presented in Figure 4.2.3.2.8(a) through 4.2.3.2.8(c).
4-23
MMPDS-06 1 April 2011
Table 4.2.3.0(b). Design Mechanical and Physical Properties of ZK60A Magnesium Alloy Extrusion
Specification . . . . . . . . . . . .
ASTM B 107
Form . . . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . . Cross-sectional area, in.2 . . . . . . . . . . . . . . . . . . . .
Extruded rod, bar, and solid shapes
Extruded Extruded hollow shapes tube
<2.000
2.0002.999
3.0004.999
F 5.00039.999
Thickness, in. . . . . . . . . . . . .
All
All
All
All
All
Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent: L ................... E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
S
S
S
S
S
<3.000 in. O.D. 0.0280.750 wall S
43 ...
43 ...
43 ...
43 ...
40 ...
40 ...
31 ...
31 ...
31 ...
31 ...
28 ...
28 ...
27 ... 22
26 ... 22
25 ... 22
20 ... ...
20 ... ...
20 ... ...
... 70
... 70
... 70
... ...
... ...
... ...
... 45
... 45
... 45
... ...
... ...
... ...
5
5
5
4
5
5
a
6.5 6.5 2.4 0.35 0.0659 See Figure 4.2.3.0
Bearing values are “dry pin” values per Section 1.4.7.1.
4-24
All
MMPDS-06 1 April 2011
Table 4.2.3.0(c). Design Mechanical and Physical Properties of ZK60A Magnesium Alloy Extrusion and Forging Specification . . . . . . . . . . . .
AMS 4352
Form . . . . . . . . . . . . . . . . . .
AMS 4362 Extruded hollow shapes
Extruded rod, bar, and solid shapes
Temper . . . . . . . . . . . . . . . .
Extruded tube
Die Hand forging forging
T5
Cross-sectional area, in.2 . . <2.000
2.000- 3.000- 5.000- 10.000- 25.0002.999 4.999 9.999 24.999 39.999
All
<3.000 in. O.D.
3.0008.500 in. O.D.
...
...
Thickness, in. . . . . . . . . . . .
All
All
All
All
All
All
All
0.0280.250 wall
0.0941.188 <3.000 <6.000 wall
Basis . . . . . . . . . . . . . . . . . .
S
S
S
S
S
S
S
S
S
S
S
L .................. LT . . . . . . . . . . . . . . . . .
45 ...
45 ...
45 ...
45 ...
45 ...
43 ...
46 ...
46 ...
44 ...
42 ...
38 ...
Fty, ksi: L ..................
36
36
36
34
34
31
38
38
33
26
20
LT . . . . . . . . . . . . . . . . . Fcy, ksi:
...
...
...
...
...
...
...
...
...
...
...
L .................. LT . . . . . . . . . . . . . . . . .
30 ...
28 ...
25 ...
23 ...
22 ...
20 ...
26 ...
26 ...
21 ...
... ...
... ...
Fsu, ksi . . . . . . . . . . . . . . . Fbrua, ksi:
22
22
22
...
...
...
...
...
...
...
...
(e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . .
... 71
... 71
... 71
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
Mechanical Properties: Ftu, ksi:
Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . .
...
...
...
...
...
...
...
...
...
...
...
(e/D = 2.0) . . . . . . . . . . . e, percent:
47
47
47
...
...
...
...
...
...
...
...
L ..................
4
4
4
6
6
6
4
4
4
7
7
3
E, 10 ksi . . . . . . . . . . . . .
6.5
3
Ec, 10 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . .
6.5 2.4
µ ...................
0.35
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . a
0.0659 See Figure 4.2.3.0
Bearing values are “dry pin” values per Section 1.4.7.1.
4-25
.
MMPDS-06 1 April 2011
- Between 70 F and indicated temperature K - At indicated temperature C - At indicated temperature
-6
, 10
14
in./in./F
16
C, Btu/(lb)(F)
0.35
12
C 0.30
2
K, Btu/[(hr)(ft )(F)/ft]
0.25
80
K 60
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 4.2.3.0. Effect of temperature on the physical properties of ZK60A magnesium alloy.
4-26
MMPDS-06 1 April 2011 50
40
Stress, ksi
30
Ramberg - Osgood n (RT) = 7.0
20
TYPICAL
10
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 4.2.3.2.6(a). Typical tensile stress-strain curve for ZK60A-T5 extrusion at room temperature.
Figure 4.2.3.2.6(b). Typical compressive stress-strain curve for ZK60A-T5 extrusion at room temperature.
4-27
MMPDS-06 1 April 2011
. .
100 ZK60A-T5 RT Kt=1.0 Stress Ratio - 1.000 0.166 + 0.250 0.600 x
Maximum Stress, ksi
80
Runout
→
60 x
+ +
x
x x
+
40
x
+
+
x→
+
→ → →
20
0 103
→ →
Note: Stresses are based on net section.
104
105
106
107
108
Fatigue Life, Cycles Figure 4.2.3.2.8(a). Best-fit S/N curves for unnotched ZK60A-T5 extruded bar, longitudinal direction.
Correlative Information for Figure 4.2.3.2.8(a) Product Form: Extruded bar, 0.50-inch diameter Properties:
TUS, ksi 47.5
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - RT Environment - Air
TYS, ksi Temp.,EF 40.9 RT (unnotched)
No. of Heats/Lots: Not specified Specimen Details: Unnotched 0.500-inch gross diameter 0.400-inch net diameter 0.750-inch root radius 7.500-inches long
Equivalent Stress Equation: Log Nf = 7.56-2.73 log (Seq-23.7) Seq = Smax(1-R)0.40 Std. Error of Estimate, Log (Life) = 0.60 Standard Deviation, Log (Life) = 0.85 R2 = 51%
Surface Condition: Polished with No. 240 grit aluminum oxide belt and then a No. 400 grit; polished with kerosene to better than 10 micro-inches Reference:
Sample Size = 21 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
4.2.3.2.8
4-28
MMPDS-06 1 April 2011
. .
100 ZK60A-T5 RT Kt=2.4 Stress Ratio - 1.000 0.166 + 0.250 0.600 x 0.900 Runout →
Maximum Stress, ksi
80
60
Note: Stresses are based on net section.
x x x
40
+
→ x
+ +
+ +
20
x
x
→ x→ xx→
++
x→ + → + → +→
+
→ →
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 4.2.3.2.8(b). Best-fit S/N curves for notched, Kt = 2.4, ZK60A-T5 extruded bar, longitudinal direction.
Correlative Information for Figure 4.2.3.2.8(b) Product Form: Extruded bar, 0.50-inch diameter Properties:
TUS, ksi 63.7
TYS, ksi 40.9
Temp.,EF RT (notched)
No. of Heats/Lots: Not specified
Specimen Details: Circumferential notched, Kt = 2.4 0.500-inch gross diameter 0.400-inch net diameter 0.032-inch notch radius 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 5.51-1.36 log (Seq-13.2) Seq = Smax(1-R)0.42 Std. Error of Estimate, Log (Life) = 0.46 Standard Deviation, Log (Life) = 0.82 R2 = 69%
Surface Condition: Ground with aluminum oxide wheel lubricated with sulfur cutting oil; lapped with a copper rod and No. 600 grit Alundum lapping compound Reference:
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - RT Environment - Air
Sample Size = 30 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
4.2.3.2.8
4-29
MMPDS-06 1 April 2011 . .
100 ZK60A-T5 RT Kt=3.4 Stress Ratio - 1.000 0.166 + 0.250 0.600 x 0.900 Runout →
Maximum Stress, ksi
80
Note: Stresses are based on net section.
60
x
40
+
x xx
+
+
20
→
x x + +
+
→
x xx
+
+
x→ → →
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 4.2.3.2.8(c). Best-fit S/N curves for notched, Kt = 3.4, ZK60A-T5 extruded bar, longitudinal direction.
Correlative Information for Figure 4.2.3.2.8(c) Product Form: Extruded bar, 0.50-inch diameter Properties:
TUS, ksi 58.2
TYS, ksi 40.9
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - RT Environment - Air
Temp.,EF RT (notched)
Specimen Details: Circumferential notched, Kt = 3.4 0.500-inch gross diameter 0.400-inch net diameter 0.010-inch notch radius 60E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 9.27-4.13 log (Seq-5.63) Seq = Smax(1-R)0.46 Std. Error of Estimate, Log (Life) = 0.55 Standard Deviation, Log (Life) = 0.99 R2 = 70%
Surface Condition: Ground with aluminum oxide wheel lubricated with sulfur cutting oil; lapped with a copper rod and No. 600 grit Alundum lapping compound Reference:
Sample Size = 36 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
4.2.3.2.8
4-30
MMPDS-06 1 April 2011
4.3 MAGNESIUM CAST ALLOYS 4.3.1 AM100A 4.3.1.0 Comments and Properties — AM100A is a magnesium-base casting alloy containing aluminum and a small amount of manganese. It is primarily used as permanent mold castings. AM100A has about the same characteristics as AZ92A. AM100A has less tendency to microshrinkage and hot shortness than the Mg-Al-Zn alloys. It has good weldability and fair pressure tightness. Material specifications for AM100A are given in Table 4.3.1.0(a). Room temperature mechanical and physical properties are shown in Table 4.3.1.0(b). Table 4.3.1.0(a). Material Specifications for AM100A Magnesium Alloy
Specification AMS 4455 AMS 4483
Form Investment casting Permanent mold casting
4-31
MMPDS-06 1 April 2011
Table 4.3.1.0(b). Design Mechanical and Physical Properties of AM100A Magnesium Alloy Casting
Specification . . . . . . . . . . . . .
AMS 4455
AMS 4483
Form . . . . . . . . . . . . . . . . . . . .
Investment casting
Permanent mold casting
Temper . . . . . . . . . . . . . . . . . .
T6
T6
Location within casting . . . . . Basis . . . . . . . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . .
Any area S
S
17b 9.5b 9.5 ...
17b 10b 10 ...
... ...
... ...
... ... 1b
... ... ...
E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ......................
6.5 6.5 2.4 0.35
Physical Properties: ω, lb./in.3 . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . .
0.0651 ...
a b
Reference should be made to the specific requirements of the procuring or certificating agency with regard to the use of the above values in the design of castings. When specified on drawing, conformance to tensile property requirements is determined by testing specimens cut from castings.
4-32
MMPDS-06 1 April 2011
4.3.2 AZ91C/AZ91E 4.3.2.0 Comments and Properties — AZ91C is a magnesium-base casting alloy containing aluminum and zinc. AZ91E is a version which contains a significantly lower level of impurities resulting in improved corrosion resistance. These alloys have good castability with a good combination of ductility and strength. AZ91C and AZ91E are the most commonly used sand castings for temperatures under 300EF. AZ91C is available as sand and investment castings, while AZ91E is available as a sand casting. AZ91C and AZ91E have fair weldability and pressure tightness. Some material specifications covering AZ91C/AZ91E are presented in Table 4.3.2.0(a). Room temperature mechanical and physical properties are shown in Tables 4.3.2.0(b) and 4.3.2.0(c). Table 4.3.2.0(a). Material Specifications for AZ91C/AZ91E Magnesium Alloy
Specification
Form
AMS 4437 AMS 4452 AMS 4446
Sand casting Investment casting Sand casting
The temper index for AZ91C/AZ91E is as follows: Section 4.3.2.1
Temper T6
4.3.2.1 T6 Temper — Figure 4.3.2.1.4 contains an elevated temperature curve for tension and compression moduli. Typical tensile stress-strain curves at room temperature and several elevated temperatures are presented in Figure 4.3.2.1.6.
4-33
MMPDS-06 1 April 2011
Table 4.3.2.0(b). Design Mechanical and Physical Properties of AZ91C Magnesium Alloy Casting
Specification . . . . . . . . . .
AMS 4437
AMS 4452
Form . . . . . . . . . . . . . . . .
Sand casting
Investment casting
Temper . . . . . . . . . . . . . .
T6
T6
Location within casting . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent . . . . . . . . . . .
Any area S
S
17b 12b 12 ...
17b 12b 12 ...
... ...
... ...
... ... 0.75b
... ... 1b
E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ...................
6.5 6.5 2.4 0.35
Physical Properties: ω, lb./in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . .
0.0652 0.25c 41 (212EF to 572EF) 14 (65EF to 212EF)
a b c
Reference should be made to the specific requirements of the procuring or certificating agency with regard to the use of the above values in the design of castings. When specified on drawing, conformance to tensile property requirements is determined by testing specimens cut from castings. Estimated.
4-34
MMPDS-06 1 April 2011
Table 4.3.2.0(c). Design Mechanical and Physical Properties of AZ91E Magnesium Alloy Casting
Specification . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 4446
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sand casting
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T6
Location within casting . . . . . . . . . . . . . . . . . .
Any area
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
a
Mechanical Properties : Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17b
Fty, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12b
Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . .
...
(e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . .
...
Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . .
...
(e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . .
...
e, percent . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...
3
E, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5
Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5
3
G, 10 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4
µ ..................................
0.35
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.0652
C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . . .
0.25c
K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . . . . . . . . .
41 (212EF to 572EF)
-6
α, 10 in./in./F . . . . . . . . . . . . . . . . . . . . . . . .
14 (65EF to 212EF)
a
Reference should be made to the specific requirements of the procuring or certificating agency with regard to the use of the above values in the design of castings. b When specified on drawing, conformance to tensile property requirements is determined by testing specimens cut from castings. c Estimated.
4-35
.
MMPDS-06 1 April 2011
Percentage of Room Temperature Modulus
100
80
E & Ec 60
40
Modulus at temperature Exposure up to 1/2 hr 20
TYPICAL
0
0
100
200
300
400
500
600
700
800
Temperature, F
Figure 4.3.2.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of cast AZ91C-T6/AZ91E-T6.
25 RT 1/2 -hr exposure
300 F
20
400 F
Stress, ksi
15 Ramberg - Osgood n (RT) = 4.5 n (300 F) = 3.9 n (400 F) = 5.3
10
TYPICAL
5
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 4.3.2.1.6. Typical tensile stress-strain curves for cast AZ91C-T6/AZ91E-T6 at room and elevated temperatures.
4-36
MMPDS-06 1 April 2011
4.3.3 AZ92A 4.3.3.0 Comments and Properties — AZ92A is a magnesium-base casting alloy containing aluminum and zinc. It is slightly stronger and less ductile than AZ91C but is much like it in other characteristics. It is available as sand and permanent-mold casting. AZ92A has fair weldability and pressure tightness. Material specifications for AZ92A are presented in Table 4.3.3.0(a). Room temperature mechanical and physical properties are shown in Table 4.3.3.0(b). Elevated temperature curves for physical properties are shown in Figure 4.3.3.0. Table 4.3.3.0(a). Material Specifications for AZ92A Magnesium Alloy
Specification AMS 4434 AMS 4484 AMS 4453
Form Sand casting Permanent-mold casting Investment casting
The temper index for AZ92A is as follows: Section 4.3.3.1
Temper T6
4.3.3.1 AZ92A-T6 Temper — Elevated temperature curves for various mechanical properties are presented in Figures 4.3.3.1.1(a) through 4.3.3.1.1(c), and 4.3.3.1.4. Typical stress-strain and tangentmodulus curves at room temperature and several elevated temperatures are shown in Figures 4.3.3.1.6(a) and 4.3.3.1.6(b).
4-37
MMPDS-06 1 April 2011
Table 4.3.3.0(b). Design Mechanical and Physical Properties of AZ92A Magnesium Alloy Casting
Specification . . . . . . . . .
AMS 4484
AMS 4434
AMS 4453
Form . . . . . . . . . . . . . . . .
Permanent mold casting
Sand casting
Investment Casting
Temper . . . . . . . . . . . . . .
T6
T6
T6
Location within casting . Basis . . . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . e, percent . . . . . . . . . . .
Any area S
S
S
17b 13.5b 13.5 ...
17b 13.5b 13.5 ...
19 15 ... ...
... ...
... ...
... ...
... ... ...
... ... ...
... ... 0.7
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ ..................
6.5 6.5 2.4 0.35
Physical Properties: ω, lb./in.3 . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K and α . . . . . . . . . . . . .
0.0659 0.25c See Figure 4.3.3.0
a Reference should be made to the specific requirements of the procuring or certificating agency with regard to the use of the above values in the design of castings. b When specified on drawing, conformance to tensile property requirements is determined by testing specimens cut from castings. c Estimated.
4-38
MMPDS-06 1 April 2011
.
60
2
K, Btu/[(hr)(ft )(F)/ft]
- Between 70 F and indicated temperature K - At indicated temperature
40
K
20
18
-6
, 10
14
in./in./F
16
12
10
-400
-200
0
200
400
600
800
1000
Temperature, F Figure 4.3.3.0. Effects of temperature on the physical properties of cast AZ92A-T6.
4-39
MMPDS-06 1 April 2011
100
Strength at temperature Exposure up to 1000 hr
Percent Ftu at Room Temperature
80
60
1000 hr
1/2 hr
40
20
0
0
100
200
300
400
500
600
700
800
Temperature, F
Figure 4.3.3.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of cast AZ92A-T6.
100
Strength at temperature Exposure up to 1000 hr
Percent Fty at Room Temperature
80
60
1000 hr
1/2 hr
40
20
0
0
100
200
300
400
500
600
700
800
Temperature, F
Figure 4.3.3.1.1(b). Effect of temperature on the tensile yield strength (Fty) of cast AZ92A-T6.
4-40
.
MMPDS-06 1 April 2011
100
Ftu
Percentage of Room Temperature Strength
Fty 80
60
40
Strength at room temperature Exposure up to 1000 hr
20
0
0
100
200
300
400
500
600
700
800
Temperature, F
.
Figure 4.3.3.1.1(c). Effect of exposure at elevated temperature on the room temperature tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of cast AZ92A-T6.
Percentage of Room Temperature Modulus
100
80
E & Ec 60
40
Modulus at temperature Exposure up to 1/2 hr 20
TYPICAL
0
0
100
200
300
400
500
600
700
800
Temperature, F
Figure 4.3.3.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of cast AZ92A-T6.
4-41
MMPDS-06 1 April 2011
25
Compression
Compression
Stress, ksi
20
15
10
5
TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 4.3.3.1.6(a). Typical compressive stress-strain and compressive tangentmodulus curves for cast AZ92A-T6 at room temperature.
25
RT
20
Stress, ksi
300 F
15
400 F
10
5
1/2-hr exposure TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 4.3.3.1.6(b). Typical tensile stress-strain curves for cast AZ92A-T6 at room and elevated temperatures.
4-42
MMPDS-06 1 April 2011
4.3.4 EV31A (ELEKTRON 21) ALLOY 4.3.4.0 Comments and Properties —EV31A (Elektron 21), is a magnesium-base casting alloy containing rare earths in the form of neodymium and gadolinium, plus zinc and zirconium. It is available as sand castings in the solution heat-treated and artificially aged temper (T6). EV31A has better mechanical properties than ZE41 or the Mg-Al-Zn alloys, good corrosion resistance (less than 0.090 inch per year salt fog corrosion rate per AMS 4429), and better castability than the Y-Nd-Zr alloys. The alloy may be used at temperatures up to approximately 400°F. Material specifications for EV31A are given in Table 4.3.4.0(a). Room temperature mechanical and physical properties are shown in Table 4.3.4.0(b). Table 4.3.4.0(a). Material Specifications for EV31A (Elektron 21) Magnesium Alloy Specification Form AMS 4429 Sand casting
The temper index for EV31A (Elektron 21) is as follows: Section 4.3.4.1
Temper T6
4.3.4.1. T6 Temper B Elevated temperature curves for tensile properties are presented in Figures 4.3.4.1.1(a) and 4.3.4.1.1(b). Effect of temperature on the tensile modulus and compressive modulus is presented in Figure 4.3.4.1.4. Effect of temperature on the elongation at room temperature and at exposed temperature are presented in Figures 4.3.4.1.5(a) and 4.3.4.1.5(b). Typical stress-strain curves at room temperature are presented in Figures 4.3.4.1.6(a). A full range curve is presented in Figure 4.3.4.1.6(b).
4-43
MMPDS-06 1 April 2011
Table 4.3.4.0(b). Design Mechanical and Physical Properties of EV31A (Elektron 21) Magnesium Alloy Casting
AMS 4429 Sand casting T6 Any area
Specification . . . . . . . . . . Form
..............
Temper . . . . . . . . . . . . . . Location within casting . . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: . . . . . . . . . . . . . . Fty, ksi: . . . . . . . . . . . . . . . Fcy, ksi: . . . . . . . . . . . . . . Fsu, ksi: . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): . . . . E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . F ................... Physical Properties: ω, lb./in.3 . . . . . . . . . . . C, BTU/(lb)(°F) . . . . . . K, BTU/[(hr)(ft2)(°F)/ft] α, 10-6 in./in./°F . . . . . .
A
B
36 21 21 20
38 23 23 21
51 60
53 64
42 48 2
46 53 Y 6.5 6.5 2.4 b 0.266 0.0659 0.259 (86°F to 248°F) 67 (79°F to 138°F) 14 (-58°F to 428°F)
Issued: Oct 2006, MMPDS-03, Item 04-24 a Bearing values are "dry pin" values per Section 1.4.7.1. b Estimated.
4-44
MMPDS-06 1 April 2011
100
EV31A Sand C astings
F ty and F tu , 0.5 & 10 Hr F tu , 1000 H r
90
80
F ty , 1000 H r 70
Percent of RoomTemperature Strength
S trength at room tem perature 60 100
200
300 400 o T em perature, F
500
600
Figure 4.3.4.1.1(a). Effect of exposure on tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of EV31A sand cast magnesium alloy.
100
F ty , 0.5 & 10 H r
90
80
F tu , 0.5 & 10 Hr
70
F ty , 1000 H r 60
EV31A Sand Castings
F tu , 1000 Hr
50
Percent of RoomTemperature Strength
S trength at tem perature 40 100
200
300
400
500
600
o
Tem perature, F
Figure 4.3.4.1.1(b). Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of EV31A sand cast magnesium alloy.
4-45
MMPDS-06 1 April 2011
100
EV31A Sand Castings 95
E Ec
90
85
80
75
Percent of RoomTemperature Modulus
Modulus at tem perature Exposure up to 10 hr
70
100
200
300
400
500
o
Tem perature, F
Figure 4.3.4.1.4. Effect of temperature on the tensile modulus (E) and compressive modulus (Ec) of EV31A sand cast magnesium alloy.
12 EV31A S a n d C a s tin g 10
1000 Hr
8
0 .5 a n d 1 0 H r 6
Elongation, %
4
2 T Y P IC A L E lo n g a t io n a t r o o m te m p e r a tu re 0 100
200
300
400
500
T e m p e r a tu r e o F
Figure 4.3.4.1.5(a). Effect of exposure on the elongation of EV31A sand cast magnesium alloy.
4-46
600
MMPDS-06 1 April 2011
25 EV31A Sand Casting
Elongation, %
20
1000 Hr
15
0.5 and 10 Hr 10
TYPICAL
5
Elongation at temperature 0 100
200
300
400
500
600
Temperature o F
Figure 4.3.4.1.5(b). Effect of temperature on the elongation of EV31A sand cast magnesium alloy.
30
E xposure up to 0.5 hr o E xposure for 149-392 F up to 10 hr 25
R oom T em perature o
o
149 F - 347 F
20
392 o F o
482 F
15
Stress, ksi
T YP IC A L R am b erg -O sg o o d
10 R m tem p o
n 1 = 8 .5 o
14 9 F - 30 2 F 5
K 1 =1 .7 14
TY S 25
n 1 = 5 .9
K 1 = 1.8 52
25
o
n 1 = 5.7
K 1 = 1.85 4
24
o
n 1 = 4.3
K 1 = 1.98 3
23
39 2 F 48 2 F
0 0
2
4
6
8
S train, 0.001 in./in. Figure 4.3.4.1.6(a). Typical tensile stress-strain curves for EV31A sand castings at room temperature and after exposure at elevated temperature.
4-47
MMPDS-06 1 April 2011
X 40
30
Stress, ksi
20
10
EV31A Sand Castings TYPICAL
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 4.3.4.1.6(b). Typical tensile stress-strain curve (full range) for EV31A sand casting at room temperature.
4-48
MMPDS-06 1 April 2011
4.3.5 EZ33A 4.3.5.0 Comments and Properties — EZ33A is a magnesium-base casting alloy containing rare earths, zinc, and zirconium. It is available as sand castings in the artificially aged (T5) temper. EZ33A has lower strength than the Mg-Al-Zn alloys at room temperature but is less affected by increasing temperature. It is generally used for applications at temperatures of 300E to 500EF. EZ33A castings are very sound and are sometimes used for pressure tightness. It has good stability in the T5 temper and excellent weldability. It is sometimes used for applications requiring good damping ability. A material specification for EZ33A is presented in Table 4.3.5.0(a). Room temperature mechanical and physical properties are shown in Table 4.3.5.0(b). The effect of temperature on physical properties is shown in Figure 4.3.5.0. Table 4.3.5.0(a). Material Specification for EZ33A Magnesium Alloy
Specification AMS 4442
Form Sand casting
The temper index for EZ33A is as follows: Section 4.3.5.1
Temper T5
4.3.5.1 EZ33A-T5 Temper — Elevated temperature curves for tensile properties are presented in Figures 4.3.5.1.1(a) through 4.3.5.1.1(c). A typical tensile stress-strain curve at room temperature is presented in Figure 4.3.5.1.6.
4-49
MMPDS-06 1 April 2011
Table 4.3.5.0(b). Design Mechanical and Physical Properties of EZ33A Magnesium Alloy Casting
Specification . . . . . . . . . . . . . . . . . . . . . . . .
AMS 4442
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sand casting
Temper . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
T5
Location within casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Any area
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Propertiesa: Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . . . . . . . . . . . .
... ... 1.5
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . µ .................................
6.5 6.5 2.4 0.35
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . . . . . . . . K and α . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.0659 0.25 See Figure 4.3.5.0
a b
13b 11b 11 ... ... ...
Reference should be made to the specific requirements of the procuring or certificating agency with regard to the use of the above values in the design of castings. When specified on drawing, conformance to tensile property requirements is determined by testing specimens cut from castings.
4-50
MMPDS-06 1 April 2011
.
80
K, T5
2
K, Btu/[(hr)(ft )(F)/ft]
- Between 70 F and indicated temperature K - At indicated temperature
60
40
-6
, 10
14
in./in./F
16
0
100
200
300
400
500
600
700
Temperature, F Figure 4.3.5.0. Effect of temperature on the physical properties of cast EZ33A.
4-51
12 800
MMPDS-06 1 April 2011
Figure 4.3.5.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of cast EZ33A-T5.
Figure 4.3.5.1.1(b). Effect of temperature on the tensile yield strength (Fty) of cast EZ33A-T5.
4-52
MMPDS-06 1 April 2011
Figure 4.3.5.1.1(c). Effect of exposure at elevated temperatures on the room temperature tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of cast EZ33A-T5.
25
20
Stress, ksi
15
10 Ramberg - Osgood n (RT) = 15 TYPICAL 5
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 4.3.5.1.6. Typical tensile stress-strain curve for cast EZ33A-T5 at room temperature.
4-53
MMPDS-06 1 April 2011
4.3.6 QE22A 4.3.6.0 Comments and Properties — QE22A is a magnesium-base alloy containing silver, rare earths in the form of didymium, and zirconium. It is available as sand and permanent-mold castings. It is used in the solution heat-treated and artificially aged (T6) condition where a high yield strength is needed at temperatures up to 600EF. QE22A has good weldability and fair pressure tightness. Material specifications for QE22A are presented in Table 4.3.6.0(a). Room temperature mechanical and physical properties are shown in Table 4.3.6.0(b). Table 4.3.6.0(a). Material Specifications for QE22A Magnesium Alloy
Specification AMS 4418
Form Sand casting
The temper index for QE22A is as follows: Section 4.3.6.1
Temper T6
4.3.6.1 QE22A-T6 Temper — Elevated temperature curves for various tensile properties and modulus of elasticity are presented in Figures 4.3.6.1.1 and 4.3.6.1.4. Typical tensile stress-strain curves at various temperatures from room temperature through 700EF are shown in Figure 4.3.6.1.6.
4-54
MMPDS-06 1 April 2011
Table 4.3.6.0(b). Design Mechanical and Physical Properties of QE22A Magnesium Alloy Casting
Specification . . . . . . . . . . . . . .
AMS 4418
Form . . . . . . . . . . . . . . . . . . . . .
Sand casting
Temper . . . . . . . . . . . . . . . . . .
T6
Location within casting . . . . . .
Any area
Basis . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Propertiesa: Ftu, ksi . . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . .
32b 23b 23 ... ... ... ... ... 2b
E, 103 ksi . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . µ .......................
6.5 6.5 2.4 0.35
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . α, 10-6 in./in./EF . . . . . . . . . . .
0.0653 0.25c 59 14 (68EF to 392EF)
a b c
Reference should be made to the specific requirements of the procuring or certificating agency with regard to the use of the above values in the design of castings. When specified on drawing, conformance to tensile property requirements is determined by testing specimens cut from castings. Estimated.
4-55
MMPDS-06 1 April 2011
Figure 4.3.6.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of cast QE22A-T6.
Figure 4.3.6.1.4. Effect of temperature on the tensile modulus (E) of cast QE22A-T6.
4-56
MMPDS-06 1 April 2011
50 .5 -hr exposure
Ramberg - Osgood n (RT) = 6.5 n (300 F) = 7.9 n (400 F) = 9.0 n (500 F) = 6.3 n (600 F) = 4.8 n (700 F) = 3.9
40
30
RT
300 F
Stress, ksi
TYPICAL
400 F 500 F 20
600 F 10 700 F
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 4.3.6.1.6. Typical tensile stress-strain curves for cast QE22A-T6 at room and elevated temperatures.
4-57
MMPDS-06 1 April 2011
4.3.7 ZE41A 4.3.7.0 Comments and Properties — ZE41A is a magnesium-base casting alloy containing zinc, zirconium, and rare earth elements. It is available as sand or permanent-mold castings in the artificially aged temper (T5). ZE41A has a higher yield strength than the Mg-Al-Zn alloys at room temperature and is more stable at elevated temperatures. It is useful for applications at temperatures up to 320EF. ZE41A castings possess good weldability and are pressure tight. A material specification for ZE41A is presented in Table 4.3.7.0(a). Room temperature mechanical and physical properties are shown in Table 4.3.7.0(b). The effect of temperature on thermal conductivity is shown in Figure 4.3.7.0.
Table 4.3.7.0(a). Material Specification for ZE41A Magnesium Alloy
Specification
Form
AMS 4439
Sand casting
The temper index for ZE41A is as follows: Temper T5
Section 4.3.7.1
4.3.7.1 T5 Temper — Elevated temperature curves for tensile yield and ultimate strengths are presented in Figure 4.3.7.1.1. The effect of temperature on the tensile modulus of elasticity is shown in Figure 4.3.7.1.4. Figures 4.3.7.1.6(a) and 4.3.7.1.6(b) contain tensile and compressive stress-strain curves as well as a compressive tangent-modulus curve.
4-58
MMPDS-06 1 April 2011
Table 4.3.7.0(b). Design Mechanical and Physical Properties of ZE41A Magnesium Alloy Casting
Specification . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . Temper . . . . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . µ ...................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . α, 10-6 in./in./EF . . . . . . . . . . . a
b c
AMS 4439 Sand casting T5 Any area S 26b 17.5b 15 17 38 49 31 35 2b 6.5 6.5 2.4 0.35 0.0656 0.234 (at 68EF) See Figure 4.3.7.0 15.5 (68E to 212EF)
The mechanical properties shown are reliably obtainable when castings are produced under the quality assurance provisions of AMS 4439. These provisions require preproduction approval, documentation of foundry procedures, and specific testing procedures for the acceptance of each production lot of castings. Strict adherence to these requirements is mandatory if these properties are to be reliably assured in each casting. Conformance to tensile property requirements is determined by testing specimens cut from casting only when specified on drawing. Bearing values are “dry pin” values per Section 1.4.7.1.
4-59
MMPDS-06 1 April 2011
Figure 4.3.7.0. Effect of temperature on the thermal conductivity (K) of ZE41A-T5 sand casting.
4-60
MMPDS-06 1 April 2011
Figure 4.3.7.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and tensile yield strength (Fty) of ZE41A-T5 sand casting.
Figure 4.3.7.1.4. Effect of temperature on the tensile modulus (E) of ZE41A-T5 sand casting.
4-61
MMPDS-06 1 April 2011
Figure 4.3.7.1.6(a). Typical tensile stress-strain curves for ZE41A-T5 sand casting at room and elevated temperatures.
25
20
Stress, ksi
15
10
5
Ramberg - Osgood n (compression) = 3.7 TYPICAL
0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 4.3.7.1.6(b). Typical compressive stress-strain and tangent-modulus curves for ZE41A-T5 sand casting at room temperature.
4-62
MMPDS-06 1 April 2011
4.4 ELEMENT PROPERTIES 4.4.1 BEAMS — Refer to Chapter 1 for general information on stress analysis of beams. 4.4.1.1 Simple Beams — Beams of solid tubular, or similar cross sections can be assumed to fail through exceeding an allowable modulus of rupture in bending (Fb). In the absence of specific data, the ratio Fb/Ftu can be assumed to be 1.25 for solid sections. 4.4.1.1.1 Round Tubes — For round tubes, the value of Fb will depend on the D/t ratio as well as the compressive yield stress. 4.4.1.1.2 Unconventional Cross Sections — Sections other than solid or tubular should be tested to determine allowable bending stress. 4.4.1.2 Built-Up Beams — Built-up beams will usually fail because of local failure of component parts. 4.4.1.3 Thin-Web Beams — The allowable stress for thin-web beams will depend on the nature of the failure and are determined from the allowable stress of the web in tension and of the flanges or stiffeners in compression. 4.4.2 COLUMNS 4.4.2.1 Primary Failure — The general formula for primary instability is given in Section 1.3.8. Formulas applicable to magnesium-alloy columns are given in Tables 4.4.2.1(a) and 4.4.2.1(b). See References 4.4.2(a) and 4.4.2(b). Table 4.4.2.1(a). Column Formula for Magnesium-Alloy Extruded Open Shapes
General Formulaa
K( Fcy)n P ' A ( LN/ρ)m (Stress values are in ksi) Alloy AZ31B, AZ61A ZK60A-T5
K
n
m
Max. P/A
2900 3300
¼ ¼
1.5 1.5
Fcy 0.96 Fcy
a Formula is for members that do not fail by local buckling. See Figure 4.4.2.3(a).
4-63
MMPDS-06 1 April 2011
Table 4.4.2.1(b). Column Formula for AZ31B-H24 Magnesium-Alloy Sheet
1.05 Fcy 2 LN/ρ 2 P ' 1.05 Fcy & A 4 π2 E
MAX
P ' Fcy A
See Figure 4.4.2.3(b).
4.4.2.2 Local Failure 4.4.2.3 Column Properties — Curves of the allowable column stresses for various magnesium alloy columns are given in Figures 4.4.2.3(a) and 4.4.2.3(b). The allowable stress is plotted against the effective slenderness ratio defined by Equation 3.10.2.3.
4-64
MMPDS-06 1 April 2011
Figure 4.4.2.3(a). Allowable column stresses for magnesium-alloy columns.
Figure 4.4.2.3(b). Allowable column stresses for AZ31B-H24 magnesium-alloy sheet.
4-65
MMPDS-06 1 April 2011
4.4.3 TORSION 4.4.3.1 General — The general statements relating to aluminum-alloy tubing in 3.10.3 are applicable to magnesium tubing. 4.4.3.2 Torsion Properties — An empirical curve of the allowable torsional modulus of rupture for AZ62A-F magnesium-alloy round tubing (specification WW-T-825) is given in Figure 4.4.3.2.
Figure 4.4.3.2. Torsional modulus of rupture for AZ61A-F magnesium-alloy round tubing.
4-66
MMPDS-06 1 April 2011
REFERENCES 4.1.2.1.1(a)
Eastman, E.J., McDonald, J.C., and Moore, A.A., “The Relation of Stress to Strain in Magnesium Alloys”, Journal of the Aeronautical Sciences, pp. 273-280 (July 1945).
4.1.2.1.1(b)
Moore, A.A., “The Effect of Speed of Testing of Magnesium-Base Alloys”, American Society for Testing and Materials, Proceedings 48, pp. 1133-1138 (1948).
4.1.2.1.1(c)
Fenn, R.W., Jr. and Gusack, J.C., “Effect of Strain Rate and Temperature on the Strength of Magnesium Alloys”, American Society of Testing and Materials, Proceedings 58, pp. 685-696 (1958).
4.1.2.1.1(d)
Fenn, R.W., Jr. and Lockwood, L.F., “Low-Temperature, Properties of Welded Magnesium Alloys”, The Welding Journal Research Supplement (August 1960).
4.1.2.1.2(a)
Moore, A.A. and McDonald, J.C., “Compression Testing of Magnesium Alloy Sheet”, American Society for Testing and Materials, Bulletin No. 135, pp. 27-30 (August 1945).
4.1.2.1.2(b)
Fenn, R.W., Jr., “Compression Testing of Sheet Magnesium Utilizing Rapid Heating”, American Society for Testing and Materials, Proceedings 60, pp. 940-956 (1960).
4.1.2.1.3(a)
Gusack, J.A. and Moore, A.A., “An Autographic Bearing-Strength Test Method, and Typical Test Values on Some Magnesium Alloys at Room and Elevated Temperatures”, American Society for Testing and Materials, Proceedings 56, pp. 834-841 (1956).
4.1.2.1.3(b)
Stickley, G.W. and Moore, A.A., “Effects of Lubrication and Pin Surface on Bearing Strengths of Aluminum and Magnesium Alloys”, American Society for Testing and Materials, Materials, Research and Standards, Vol. 2, No. 2, pp. 747-751 (September 1962).
4.1.2.1.4
Fenn, R.W., Jr. and Clapper, R.B., “Evaluation of Test Variables in the Determination of Shear Strength”, American Society for Testing and Materials, Proceedings 56, pp. 842858 (1956).
4.1.2.1.5(a)
Dorn, J.E. and Meriam, J.L., “Properties and Heat Treatment of Magnesium Alloys, Part II, Notch Sensitivity of Magnesium Alloys”, OSRD No. 1819, Report M-104, pp. 68 (September 1943).
4.1.2.1.5(b)
Dorn, J.E. and others, “Properties and Heat Treatment of Magnesium Alloys, Part V, Section I, The Sensitivity of Magnesium Alloy Sheet to Drilled, Reamed, and Punched Holes. Part V, Section II, The Notch Sensitivity of Magnesium Alloy Extrusions and the Influence of Various Factors”, OSRD No. 3043 (NRC Research Project NRC-21), Final Report M-177, pp. 202 (December 1943).
4.1.2.1.5(c)
Doan, J. P. and McDonald, J.C., “The Notch Sensitivity in Static and Impact Loading of Some Magnesium-Base and Aluminum-Base Alloys”, American Society for Testing and Materials, Proceedings 46, pp. 1097-1118 (1946).
4-67
MMPDS-06 1 April 2011 4.1.2.1.5(d)
Moore, A.A. and McDonald, J.C., “Tensile and Creep Strengths of Some MagnesiumBase Alloys at Elevated Temperatures”, American Society for Testing and Materials, Proceedings 46, pp. 970-989 (1946).
4.1.2.1.5(e)
McDonald, J.C., “Tensile, Creep and Fatigue Properties of Some Magnesium-Base Alloys”, American Society for Testing and Materials, Proceedings 48, pp. 737-754 (1948).
4.1.2.1.5(f)
Wyman, L.L., “High-Temperature Properties of Light Alloys (NA-137). Part II, Magnesium”, U.S. Office of Scientific Research and Development Report No. 4150, M-292, pp. 101 (1944).
4.1.2.1.5(g)
Craighead, C.M., Grube, K.P., Eastwood, L.W., and Lorig, C.H., “The Effects of Temperature on the Mechanical Properties of Magnesium Alloy”, Rand Corporation Report R146, pp. 210 (October 1949).
4.1.2.1.5(h)
Wyman, L.L., “High-Temperature Properties of Light Alloys (NA-137). Part II, Magnesium”, U.S. Office of Scientific Research and Development Report No. 4150, M-292, pp. 101 (1944).
4.1.2.1.6
Clapper, R.W., “Isochronous Stress-Strain Curves for Some Magnesium Alloys Showing the Effects of Varying Exposure Time on Their Creep Resistance”, American Society for Testing and Materials, Proceedings 58, pp. 812-825 (1958).
4.1.2.1.7(a)
Found, G. H., “The Notch Sensitivity in Fatigue Loading of Some Magnesium-Base and Aluminum-Base Alloys”, American Society for Testing and Materials, Proceedings 46, pp. 715-740 (1946).
4.1.2.1.7(b)
Schuette, E.H., “Fatigue Properties of Magnesium Alloy Forgings”, Wright-Patterson Air Force Base Technical Report No. 60-854, pp. 112 (December 1960) (MCIC 43549).
4.2.3.2.8
Blatherwick, A.A. and Lazan, B.J., “Fatigue Properties of Extruded Magnesium Alloy ZK60A Under Various Combinations of Alternating and Mean Axial Stresses”, WADC Tech Report 53-181, pp. 27 (August 1953) (MCIC 108173).
4.4.2(a)
Schuette, E.H., “Hyperbolic Column Formulas for Magnesium Alloy Extrusions”, Journal of the Aeronautical Sciences, 15, pp. 523-529 (1948).
4.4.2(b)
Schuette, E.H., “Column Curves for Magnesium Alloy Sheet”, Journal of the Aeronautical Sciences, 16, pp. 301-305 (1949).
4-68
MMPDS-06 1 April 2011
CHAPTER 5 TITANIUM 5.1 GENERAL This chapter contains the engineering properties and related characteristics of titanium and titanium alloys used in aircraft and missile structural applications. General comments on engineering properties and the considerations relating to alloy selection are presented in Section 5.1. Mechanical- and physical-property data and characteristics pertinent to specific alloy groups or individual alloys are reported in Sections 5.2 through 5.5. Titanium is a relatively lightweight, corrosion-resistant structural material that can be strengthened greatly through alloying and, in some of its alloys, by heat treatment. Among its advantages for specific applications are: good strength-to-weight ratio, low density, low coefficient of thermal expansion, good corrosion resistance, good oxidation resistance at intermediate temperatures, good toughness, and low heattreating temperature during hardening, and others. 5.1.1 TITANIUM INDEX — The coverage of titanium and its alloys in this chapter has been divided into four sections for systematic presentation. The system takes into account unalloyed titanium and three groups of alloys based on metallurgical differences which in turn result in differences in fabrication and property characteristics. The sections and the individual alloys covered under each are shown in Table 5.1. Table 5.1. Titanium Alloys Index Section Alloy Designation 5.2 Unalloyed Titanium 5.2.1 Commercially Pure Titanium 5.3 Alpha and Near-Alpha Titanium Alloys 5.3.1 Ti-5A1-2.5Sn (Alpha) 5.3.2 Ti-8A1-1Mo-1V (Near-Alpha) 5.3.3 Ti-6A1-2Sn-4Zr-2Mo (Near-Alpha) 5.4 Alpha-Beta Titanium Alloys 5.4.1 Ti-6A1-4V 5.4.2 Ti-6A1-6V-2Sn 5.4.3 Ti-4.5Al-3V-2Fe-2Mo 5.4.4 Ti-4Al-2.5V-1.5Fe 5.5 Beta, Near-Beta, and Metastable Titanium Alloys 5.5.1 Ti-13V-11Cr-3A1 5.5.2 Ti-15V-3Cr-3Sn-3A1
5.1.2 MATERIAL PROPERTIES — The material properties of titanium and its alloys are determined mainly by their alloy content and heat treatment, both of which are influential in determining the allotropic forms in which this material will be bound. Under equilibrium conditions, pure titanium has an “alpha” structure up to 1620EF, above which it transforms to a “beta” structure. The inherent properties of these two structures are quite different. Through alloying and heat treatment, one or the other or a combination of these two structures can be made to exist at service temperatures, and the properties of the material vary 5-1
MMPDS-06 1 April 2011 accordingly. References 5.1.2(a) and 5.1.2(b) provide general discussion of titanium microstructures and associated metallography. Titanium and titanium alloys of the alpha and alpha-beta type exhibit crystallographic textures in sheet form in which certain crystallographic planes or directions are closely aligned with the direction of prior working. The presence of textures in these materials lead to anisotropy with respect to many mechanical and physical properties. Poisson’s ratio and Young’s modulus are among those properties strongly affected by texture. Wide variations experienced in these properties both within and between sheets of titanium alloys have been qualitatively related to variations of texture. In general, the degree of texturing, and hence the variation of Young’s modulus and Poisson’s ratio, that is developed for alpha-beta alloys tends to be less than that developed in all alpha titanium alloys. Rolling temperature has a pronounced effect on the texturing of titanium alloys which may not in general be affected by subsequent thermal treatments. The degree of applicability of the effect of textural variations discussed above on the mechanical properties of products other than sheet is unknown at present. The values of Young’s modulus and Poisson’s ratio listed in this document represent the usual values obtained on products resulting from standard mill practices. References 5.1.2(c) and (d) provide further information on texturing in titanium alloys. 5.1.2.1 Mechanical Properties 5.1.2.1.1 Fracture Toughness — The fracture toughness of titanium alloys is greatly influenced by such factors as chemistry variations, heat treatment, microstructure, and product thickness, as well as yield strength. For fracture critical applications, these factors should be closely controlled. Typical values of plane-strain fracture toughness for titanium alloys are presented in Table 5.1.2.1.1. Minimum, average, and maximum values, as well as coefficient of variation, are presented for various products for which valid data are available, but these values do not have the statistical reliability of the room temperature mechanical properties.
5-2
Table 5.1.2.1.1. Values of Room Temperature Plane-Strain Fracture Toughness of Titanium Alloysa Alloy
Approved
Date
KIc, ksi % && in.
Specimen Thick-ness Range, inches
Item Max. Avg. Min. COV
Ti-6Al-4V
Mill Forged Annealed Bar
L-T
121-143
<3.5
2
43
19731975
5/82 78-09
0.6-1.1
77
60
38
10.5
Ti-6Al-4V
Mill Forged Annealed Bar
T-L
124-145
<3.5
2
64
19731975
5/82 78-09
0.5-1.3
81
57
33
11.7
a b
These values are for information only. Refer to Figure 1.4.12.3 for definition of symbols.
MMPDS-06 1 April 2011
5-3
Yield Product Date of Heat Treat Product Orien- Strength Thick- Number Sample Data Condition Form tationb Range, ness of Size Generaksi Range, Sources tion inches
MMPDS-06 1 April 2011 5.1.2.1.2 Bearing Strength — A reduction factor is used for edgewise bearing load in thick plate. The results of bearing tests on longitudinal and long-transverse specimens taken edgewise from plate, die forging, and hand forging have shown that the edgewise bearing strengths are substantially lower than those of specimens taken parallel to the surface. See section 1.4.7.2 for bearing specimen orientations. In cases where the stress condition approximates that of the longitudinal or long-transverse edgewise orientations, the reductions in design values shown in Table 5.1.2.1.2 should be made. Table 5.1.2.1.2. Bearing Strength Reductions for Edgewise Orientation of Plate
Bearing Property Reduction, percent Alloy Family
Fbru & Fbry e/D
2.0 in. - 4.0 in.a
Ti-6Al-4V
All
16
Last Revised: Apr-2011, MMPDS-06, Item 10-32, Item 10-72 a Additional data is needed to determine what edgewise reduction is needed for plates outside this thickness range. It is recommended that plates less than 2 inches thick use the 16% reduction factor. Plates greater than 4 inches thick should be handled as point design since that is the maximum thickness of the specification.
5-4
MMPDS-06 1 April 2011 5.1.3 MANUFACTURING CONSIDERATIONS — Comments relating to formability, weldability, and final heat treatment are presented under individual alloys. These comments are necessarily brief and are intended only to aid the designer in the selection of an alloy for a specific application. In practice, departures from recommended practices are very common and are based largely on in-plant experience. Springback is nearly always a factor in hot or cold forming. Final heat treatments that are indicated as “specified” heat treatments do not necessarily coincide with the producers’ recommended heat treatments. Rather, these treatments, along with the specified room temperature minimum tensile properties, are contained in the heat-treating capability requirements of applicable specifications, for example, MIL-H-81200. Departures from the specified aging cycles are often necessary to account for aging that may take place during hot working or hot sizing or to obtain more desirable mechanical properties, for example, improved fracture toughness. More detailed recommendations for specific applications are generally available from the material producers. 5.1.4 ENVIRONMENTAL CONSIDERATIONS — Comments relating to temperature limitations in the application of titanium and titanium alloys are presented under the individual alloys. Below about 300EF, as well as above about 700EF, creep deformation of titanium alloys can be expected at stresses below the yield strength. Available data indicate that room temperature creep of unalloyed titanium may be significant (exceed 0.2 percent creep-strain in 1,000 hours) at stresses that exceed approximately 50 percent Fty, room temperature creep of Ti-5A1-1.5Sn ELI may be significant at stresses above approximately 60 percent Fty, and room temperature creep of the standard grades of titanium alloys may be significant at stresses above approximately 75 percent Fty. References 5.1.4(a) through 5.1.4(c) provide some limited data regarding room temperature creep of titanium alloys. The use of titanium and its alloys in contact with either liquid oxygen or gaseous oxygen at cryogenic temperatures should be avoided, since either the presentation of a fresh surface (such as produced by tensile rupture) or impact may initiate a violent reaction [Reference 5.1.4(d)]. Impact of the surface in contact with liquid oxygen will result in a reaction at energy levels as low as 10 ft-lb. In gaseous oxygen, a partial pressure of about 50 psi is sufficient to ignite a fresh titanium surface over the temperature range from -250EF to room temperature or higher. Titanium is susceptible to stress-corrosion cracking in certain anhydrous chemicals including methyl alcohol and nitrogen tetroxide. Traces of water tend to inhibit the reaction in either environment. However, in N2O4, NO is preferred and inhibited N2O4 contains 0.4 to 0.8 percent NO. Red fuming nitric acid with less than 1.5 percent water and 10 to 20 percent NO2 can crack the metal and result in a pyrophoric reaction. Titanium alloys are also susceptible to stress corrosion by dry sodium chloride at elevated temperatures. This problem has been observed largely in laboratory tests at 450E to 500EF and higher and occasionally in fabrication shops. However, there have been no reported failures of titanium components in service by hot salt stress corrosion. Cleaning with a nonchlorinated solvent (to remove salt deposits, including fingerprints) of parts used above 450EF is recommended. In laboratory tests, with a fatigue crack present in the specimen, certain titanium alloys show an increased crack propagation rate in the presence of water or salt water as compared with the rate in air. These alloys also may show reduced sustained load-carrying ability in aqueous environments in the presence of fatigue cracks. Crack growth rates in salt water are a function of sheet or section thickness. These alloys are not susceptible in the form of thin-gauge sheet, but become susceptible as thickness increases. The thickness at which susceptibility occurs varies over a visual range with the alloy and processing. Alloys of titanium found susceptible to this effect include some from alpha, alpha-beta, and beta-type microstructures. In some cases, special processing techniques and heat treatments have been developed that minimize this
5-5
MMPDS-06 1 April 2011 effect. References 5.1.4(e) through 5.1.4(g) present detailed summaries of corrosion and stress corrosion of titanium alloys. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-HDBK-1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. 5.1.5 OBSOLETE ALLOYS, TEMPERS, AND PRODUCT FORMS BB Table 5.1.5 includes a summary of the titanium alloys, tempers, and product forms that have been removed from the Handbook, along with information regarding why and when they were removed. Table 5.1.5 Obsolete Titanium Alloys, Tempers, and Product Forms
Alloy
Heat Treatment(s)
Product Form
Specification
Basis for Removal
Removal Approved Item No.
Mtg
Last Shown
Edition
Date
Ti-4Al-3Mo- Solution Sheet, 1V treated and strip and aged plate
MIL-T9046
Obsolete
73-09
45
Ti-4Al-4Mn Hot worked Bar and and forging annealed
MIL-T9047
Obsolete
67-10
34
MILHDBK5A, CN2
July 67
Ti-5Al-1.5Fe- Hot worked Bar and 1.4Cr-1.2Mo and forging annealed
MIL-T9047
Obsolete
67-10
34
MILHDBK5A, CN2
July 67
MIL-T9046
Obsolete alloy; cancelled specification
86-22
72
MILHDBK5D, CN3
May 86
Ti-8Mn
Hot rolled Sheet, and strip, and annealed plate
5-6
MILJuly HDBK-5B, 72 CN1
MMPDS-06 1 April 2011
5.2 UNALLOYED TITANIUM Several grades of unalloyed titanium are offered and are classified on the basis of manufacturing method, degree of purity, or strength, there being a close relationship among these. The unalloyed titanium grades most commonly used are produced by the Kroll process, are intermediate in purity, and are commonly referred to as being of commercial purity. 5.2.1 COMMERCIALLY PURE TITANIUM 5.2.1.0 Comments and Properties — Unalloyed titanium is available in all familiar product forms and is noted for its excellent formability. Unalloyed titanium is readily welded or brazed. It has been used primarily where strength is not the main requirement. Manufacturing Considerations — Unalloyed titanium is supplied in the annealed condition permitting extensive forming at room temperature. Severe forming operations also can be accomplished at elevated temperatures (300E to 900EF). Property degradation can be experienced after severe forming if as-received material properties are not restored by re-annealing. Commercially pure titanium can be welded readily by the several methods employed for titanium joining. Atmospheric shielding is preferable although spot or seam welding may be accomplished without shielding. Brazing requires protection from the atmosphere which may be obtained by fluxing as well as by inert gas or vacuum shielding. Environmental Considerations — Titanium has an unusually high affinity for oxygen, nitrogen, and hydrogen at temperatures above 1050EF. This results in embrittlement of the material, thus usage should be limited to temperatures below that indicated. Additional chemical reactivity between titanium and selected environments such as methyl alcohol, chloride salt solutions, hydrogen, and liquid metal, can take place at lower temperatures, as discussed in Section 5.1.4 and its references. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-HDBK-1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. Heat Treatment — Commercially pure titanium is fully annealed by heating to 1000E to 1300EF for 10 to 30 minutes. It is stress relieved by heating to 900E to 1000EF for 30 minutes. Commercially pure titanium cannot be hardened by heat treatment. Specifications and Properties — Some material specifications for commercially pure titanium are presented in Table 5.2.1.0(a). Room temperature mechanical properties for commercially pure titanium are shown in Tables 5.1.2.0(b) and 5.1.2.0(c). The effect of temperature on physical properties is shown in Figure 5.2.1.0. 5.2.1.1 Annealed Condition — Elevated-temperature data for annealed commercially pure titanium are presented in Figures 5.2.1.1.1(a) through 5.2.1.1.3(b). Typical full-range stress-strain curves for the 40 and 70 ksi yield strength commercially pure titanium are shown in Figures 5.2.1.1.6(a) and 5.2.1.1.6(b).
5-7
MMPDS-06 1 April 2011
Table 5.2.1.0(a). Material Specifications for Commercially Pure Titanium
Specification AMS 4900 AMS 4901 AMS 4902 AMS 4940 AMS 4921 MIL-T-81556
Form Sheet, strip, and plate Sheet, strip, and plate Sheet, strip, and plate Sheet, strip, and plate Bar Extruded bars and shapes
5-8
MMPDS-06 1 April 2011
Table 5.2.1.0(b). Design Mechanical and Physical Properties of Commercially Pure Titanium Specification . . . . . . . . . . .
AMS 4940a
AMS 4902a
AMS 4900a
AMS 4901a
AMS 4921b
Designation . . . . . . . . . . . .
CP-70
Form . . . . . . . . . . . . . . . . . .
Sheet, strip, and plate
Bar
Condition . . . . . . . . . . . . . .
Annealed
Annealed
Thickness or diameter, in. .
#1.000
Basis . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . RA, percent: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . .
#2.999c
3.000-4.000c
S
S
S
S
S
S
35 35 ...
50 50 ...
65 65 ...
80 80 ...
80 80d ...
80 80 80
25 25 ...
40 40 ...
55 55 ...
70 70 ...
70 70d ...
70 70 70
... ... ...
... ... ...
... ... ...
70 70 42
... ... ...
... ... ...
... ...
... ...
... ...
120 ...
... ...
... ...
... ...
... ...
... ...
101 ...
... ...
... ...
24e 24e ...
20e 20e ...
18e 18e ...
15e 15e ...
15 15d ...
15 15 15
... ... ...
... ... ...
... ... ...
... ... ...
30 30d ...
30 30 30
E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ..................
15.5 16.0 6.5 ...
Physical Properties: ω, lb/in. . . . . . . . . . . . . . C, K, and α . . . . . . . . . .
0.163 See Figure 5.2.1.0
Last Revised: Oct 2006, MMPDS-03, Item 05-26. a Mechanical properties were established under MIL-T-9046. b Mechanical properties were established under MIL-T-9047. c Maximum of 16-square-inch cross-sectional area. d Long transverse properties apply to rectangular bar only for thickness >0.500 inches and widths >3.000 inches. For AMS 4921, (e) (LT) = 12% and RA (LT) = 25%. e Thickness of 0.025 inch and above.
5-9
MMPDS-06 1 April 2011
Table 5.2.1.0(c). Design Mechanical and Physical Properties of Commercially Pure Titanium Extruded Bars and Shapes Specification . . . . . . . . . . . . MIL-T-81556 Comp. CP-4 Comp. CP-3 Comp. CP-2 Comp. CP-1 Form . . . . . . . . . . . . . . . . . . . Extruded bars and shapes Condition . . . . . . . . . . . . . . . Annealed Thickness or diameter, in. . . 0.188-3.000 Basis . . . . . . . . . . . . . . . . . . . S S S S Mechanical Properties: Ftu, ksi: L ................... 40 50 65 80 LT . . . . . . . . . . . . . . . . . . ... ... ... ... Fty, ksi: L ................... 30 40 55 70 LT . . . . . . . . . . . . . . . . . . ... ... ... ... Fcy, ksi: L ................... ... ... ... ... LT . . . . . . . . . . . . . . . . . . ... ... ... ... Fsu, ksi . . . . . . . . . . . . . . . . ... ... ... ... Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . ... ... ... ... (e/D = 2.0) . . . . . . . . . . . . ... ... ... ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . ... ... ... ... (e/D = 2.0) . . . . . . . . . . . . ... ... ... ... e, percent: L ................... a a a a 3 E, 10 ksi . . . . . . . . . . . . . . 15.5 Ec, 103 ksi . . . . . . . . . . . . . 16.0 G, 103 ksi . . . . . . . . . . . . . . 6.5 µ .................... ... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . 0.163 C, K, and α . . . . . . . . . . . . See Figure 5.2.1.0 a Elongation in percent as follows: Thickness, inches 0.188-1.000 1.001-2.000 2.001-3.000
Comp. CP-4 25 20 18
Comp. CP-3 20 18 15
5-10
Comp. CP-2 18 15 12
Comp. CP-1 15 12 10
MMPDS-06 1 April 2011
Figure 5.2.1.0. Effect of temperature on the physical properties of commercially pure titanium.
5-11
MMPDS-06 1 April 2011
Figure 5.2.1.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of annealed commercially pure titanium.
Figure 5.2.1.1.1(b). Effect of temperature on the tensile yield strength (Fty) of annealed commercially pure titanium.
5-12
MMPDS-06 1 April 2011
Figure 5.2.1.1.2(a). Effect of temperature on the compressive yield strength (Fcy) of annealed commercially pure titanium.
Figure 5.2.1.1.2(b). Effect of temperature on the shear ultimate strength (Fsu) of annealed commercially pure titanium.
5-13
MMPDS-06 1 April 2011
Figure 5.2.1.1.3(a). Effect of temperature on the bearing ultimate strength (Fbru) of annealed commercially pure titanium.
Figure 5.2.1.1.3(b). Effect of temperature on the bearing yield strength (Fbry) of annealed commercially pure titanium.
5-14
MMPDS-06 1 April 2011
5-15 Figure 5.2.1.1.6(a). Typical full-range tensile stress-strain curve for commercially pure titanium sheet (40 ksi yield at room temperature).
MMPDS-06 1 April 2011
5-16 Figure 5.2.1.1.6(b). Typical full-range tensile stress-strain curve for commercially pure titanium sheet (70 ksi yield at room temperature).
MMPDS-06 1 April 2011
5.3 ALPHA AND NEAR-ALPHA TITANIUM ALLOYS The alpha titanium alloys contain essentially a single phase at room temperature, similar to that of unalloyed titanium. Alloys identified as near-alpha titanium have principally an all-alpha structure but contain small quantities of a beta phase because the composition contains some beta stabilizing elements. In both alloy types, alpha phase is stabilized by aluminum, tin, and zirconium. These elements, especially aluminum, contribute greatly to strength. The beta stabilizing additions (e.g., molybdenum and vanadium) improve fabricability and metallurgical stability of highly alpha-alloyed materials. All alpha alloys have excellent weldability, toughness at low temperatures, and long-term elevated-temperature strength. They are well suited to cryogenic applications and to uses requiring good elevated-temperature creep strength. The characteristics of near-alpha alloys are predictably between those of all alpha and alpha-beta alloys in regard to fabricability, weldability, and elevated-temperature strength. The hot workability of both alpha and near-alpha alloys is inferior to that of the alpha-beta or beta alloys and the cold workability is very limited at the high-strength level of these grades. However, considerable forming is possible if correct forming temperatures and procedures are used. 5.3.1 TI-5AL-2.5SN 5.3.1.0 Comments and Properties C Ti-5Al-2.5Sn is an all-alpha alloy available in many product forms and at two purity levels. The high purity grade of this composition is used principally for cryogenic applications and may be characterized as having lower strength but higher ductility and toughness than the standard grade. The normal purity grade also may be used at low temperatures but it is primarily suitable for room to elevated temperature applications (up to 900E or to 1100EF for short times) where weldability is an important consideration. Manufacturing Considerations C Ti-5Al-2.5Sn is not so readily formed into complex shapes as other alloys with similar room temperature properties, but far surpasses them in weldability. Except for some forging operations, fabrication of Ti-5Al-2.5Sn is conducted at temperatures where the structure remains all alpha. Severe forming operations may be accomplished at temperatures up to 1200EF. Moderately severe forming can be done at 300E to 600EF and simple forming may be done at room temperature. Most forming and welding operations are followed by an annealing treatment to relieve residual stresses imposed by the prior operation. Ti-5Al-2.5Sn can be welded readily by inert-gas or vacuum-shielded arc methods or by spot or seam welding without atmospheric shielding. Brazing requires protection from the atmosphere; however, this is accomplished by fluxing as well as by inert gas or vacuum shielding. Environmental Considerations C Ti-5Al-2.5Sn is metallurgically stable at moderate elevated temperatures. The material is susceptible to hot-salt stress corrosion as well as aqueous chloride solution stress corrosion. Care should be exercised in applications involving such environments. The alloy has good oxidation resistance up to 1050EF. Standard grade material has been used at moderately low cryogenic temperatures; however, the ELI grade has higher toughness and has been used in cryogenic applications down to -423EF. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-HDBK-1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. Heat Treatment C This alloy is annealed by heating 1400EF for 60 minutes and 1600EF for 10 minutes and cooling in air. Stress relieving requires 1 or 2 hours at 1000E to 1200EF. Ti-5Al-2.5Sn cannot be hardened by heat treatment.
5-17
MMPDS-06 1 April 2011 Specifications and Properties C Some material specifications for Ti-5Al-2.5Sn are shown in Table 5.3.1.0(a). Room temperature mechanical properties for Ti-5Al-2.5Sn are shown in Tables 5.3.1.0(b) through 5.3.1.0(d). The effect of temperature on physical properties is shown in Figure 5.3.1.0. Table 5.3.1.0(a). Material Specifications for Ti-5Al-2.5Sn
Specifications AMS 4926 MIL-T-81556 AMS 4910 AMS 4966 AMS 6900
Form Bar Extruded bar and shapes Sheet, strip, and plate Forging Bar
5.3.1.1 Annealed Condition C Elevated temperature curves for annealed Ti-5Al-2.5Sn are shown in Figures 5.3.1.1.1 through 5.3.1.1.5. Tensile properties cover the range -423E to 1000EF; whereas other properties are for the range room temperature to 1000EF. Fatigue-crack-propagation data for sheet are shown in Figures 5.3.1.1.9(a) through 5.3.1.1.9(c).
5-18
MMPDS-06 1 April 2011
Table 5.3.1.0(b). Design Mechanical and Physical Properties of Ti-5Al-2.5Sn Sheet, Strip, and Plate
AMS 4910a
Specification . . . . . . . Form . . . . . . . . . . . . . .
Strip
Sheet
Condition . . . . . . . . . . Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ........... LT . . . . . . . . . . Fty, ksi: L ........... LT . . . . . . . . . . Fcy, ksi: L ........... LT . . . . . . . . . . Fsu, ksi . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . (e/D = 2.0) . . . Fbry, ksi: (e/D = 1.5) . . . (e/D = 2.0) . . . e, percent (S-Basis): L ........... LT . . . . . . . . . .
Plate
Annealed 0.0150.079
<0.187
0.0800.187
0.1880.250
0.2511.500
1.5014.000
S
A
B
A
B
A
B
S
S
120 120
120b 120b
128 129
120b 120b
131 132
120b 120b
135 137
120 120
115 115
113 113
110 113
115 118
113 113b
118 121
113b 113b
123 125
113 113
110 110
115 118 75
115 118 75
120 123 80
118 118 75
123 126 82
118 118 75
128 130 85
118 118 75
... ... ...
167 250
167 250
179 268
167 250
183 275
167 250
190 285
167 250
... ...
133 190
133 190
139 198
133 190
142 203
133 190
147 210
133 190
... ...
10 10
10c 10c
... ...
10 10
... ...
10 10
... ...
10 10
10 10
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . µ ..............
15.5 15.5 ... ...
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . .
0.162 See Figure 5.3.1.0
Last Revised: Oct 2006, MMPDS-03, Item 05-26. a b
c
Mechanical properties established under MIL-T-9046, Comp. A1. A-Basis value is specification minimum. The rounded T99 values are higher than specification values as follows: 0.015-0.079 0.080-0.187 0.188-0.250 Ftu L...... 123 126 130 LT...... 123 126 131 Fty L....... .... ... 118 LT...... .... 115 120 Thickness 0.025 inch and above.
5-19
MMPDS-06 1 April 2011
Table 5.3.1.0(c). Design Mechanical and Physical Properties of Ti-5Al-2.5Sn Bar and Forging
Specification . . . . . . . . . . .
AMS 4926a, and AMS 6900b
AMS 4966
Form . . . . . . . . . . . . . . . . .
Bar
Forging
Condition . . . . . . . . . . . . .
Annealed
Annealed
#2.999c
Thickness or diameter, in. . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent (S-Basis): L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . RA, percent (S-Basis): L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . .
3.000-4.000c
A
B
S
115d 115e ...
126 ... ...
115 115 115
115 115f 115f
110d 110e ...
120 ... ...
110 110 110
110 110f 110f
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10e ...
... ... ...
10 10 8
10 10f 10f
25 25e ...
... ... ...
25 25 20
25 25f 25f
E, 103 ksi . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ ..................
15.5 15.5 ... ...
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . . a b c d e f
...
0.162 See Figure 5.3.1.0
For AMS 4926, LT and ST values for e and RA may be different than those shown. Mechanical properties were established by MIL-T-9047. Maximum of 16-square-inch cross-sectional area. A-Basis value is specification minimum. The rounded T99 values are higher than S values as follows: Ftu = 117 ksi, Fty = 113 ksi. Applicable providing LT dimension is >3.000 inches. Applicable, providing LT or ST dimension is $2.500 inches.
5-20
MMPDS-06 1 April 2011
Table 5.3.1.0(d). Design Mechanical and Physical Properties of Ti-5Al-2.5Sn Extrusion Specification . . . . . . . . . . . . MIL-T-81556, Comp. A-1 Form . . . . . . . . . . . . . . . . . . . Extruded bars and shapes Condition . . . . . . . . . . . . . . . Annealed 0.1881.0012.0013.001Thickness or diameter, in. . . 1.000 2.000 3.000 4.000 Basis . . . . . . . . . . . . . . . . . . . S S S S Mechanical Properties: Ftu, ksi: L ................... 120 115 115 115 LT . . . . . . . . . . . . . . . . . . ... ... ... ... Fty, ksi: L ................... 115 110 110 110 LT . . . . . . . . . . . . . . . . . . ... ... ... ... Fcy, ksi: L ................... ... ... ... ... LT . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... ... Fsu, ksi . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . ... ... ... ... (e/D = 2.0) . . . . . . . . . . . . ... ... ... ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent: L ................... 10 10 8 6 LT . . . . . . . . . . . . . . . . . . ... ... ... ... E, 103 ksi . . . . . . . . . . . . . . 15.5 Ec, 103 ksi . . . . . . . . . . . . . 15.5 G, 103 ksi . . . . . . . . . . . . . . ... µ .................... ... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . 0.162 C, K, and α . . . . . . . . . . . . See Figure 5.3.1.0
5-21
.
MMPDS-06 1 April 2011
0.2
C
6
12
5
10
4
-6
0.0
, 10 in./in./F
0.1
K
2
K, Btu/[(hr)(ft )(F)/ft]
C, Btu/(lb)(F)
- Between 70 F and indicated temperature K - At indicated temperature C - At indicated temperature
8
3
6
4
-400
-200
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 5.3.1.0. Effect of temperature on the physical properties of Ti-5Al-2.5Sn alloy.
5-22
MMPDS-06 1 April 2011
Figure 5.3.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of annealed Ti-5Al-2.5Sn alloy sheet.
5-23
MMPDS-06 1 April 2011
Figure 5.3.1.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of annealed Ti-5Al-2.5Sn alloy sheet.
Figure 5.3.1.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of annealed Ti-5Al-2.5Sn alloy sheet.
5-24
MMPDS-06 1 April 2011
Figure 5.3.1.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of annealed Ti-5Al-2.5Sn alloy sheet.
Figure 5.3.1.1.5. Effect of temperature on the elongation (e) of annealed Ti-5Al-2.5Sn alloy sheet.
5-25
MMPDS-06 1 April 2011
1.E-02
Fatigue Crack Propagation Rate, da/dN, in./cycle
Stress Ratio, R 0.10
1.E-03
0.67
Frequency f, Hz 30 - 50
No. of Specimens 8
55
No. of Data Points 109
8
99
1.E-04
1.E-05
1.E-06
1.E-07
1.E-08 1
10
100
Stress Intensity Factor Range, ∆K, ksi-in
0.50
Figure 5.3.1.1.9(a). Fatigue-crack-propagation data for 0.084-inch-thick Ti-5Al2.5Sn titanium alloy mill-annealed sheet. [Reference 5.3.1.1.9] Specimen Thickness: 0.084 inch Specimen Width: 2.76 inches Specimen Type: M(T)
Environment: Temperature: Orientation:
5-26
Lab air RT L-T and T-L
MMPDS-06 1 April 2011
Table 5.3.1.1.9(a) Typical Fatigue Crack Growth Rate Data for Ti-5Al-2.5Sn Sheet, as Shown Graphically in Figure 5.3.1.1.9(a) Stress Ratio ∆K, ksi-in0.50
0.10
Stress Ratio 0.67
∆K, ksi-in0.50
da/dN, in./cycle
0.10
da/dN, in./cycle
3.55
2.91E-08
14.96
4.79E-06
3.76
3.69E-08
15.85
5.59E-06
3.98
4.68E-08
16.79
6.53E-06
4.22
5.92E-08
17.78
7.62E-06
4.47
7.47E-08
18.84
8.89E-06
4.73
9.42E-08
19.95
1.04E-05
5.01
1.18E-07
21.13
1.21E-05
5.31
1.49E-07
22.39
1.40E-05
5.62
1.87E-07
23.71
1.63E-05
5.96
2.34E-07
25.12
1.90E-05
6.31
2.92E-07
26.61
2.20E-05
6.68
3.64E-07
28.18
2.56E-05
7.08
4.53E-07
29.85
2.97E-05
7.50
5.64E-07
31.62
3.44E-05
7.94
6.99E-07
33.50
3.98E-05
8.41
8.66E-07
35.48
4.61E-05
8.91
1.07E-06
37.58
5.33E-05
9.44
1.32E-06
39.81
6.16E-05
10.00
1.63E-06
42.17
7.11E-05
10.59
2.00E-06
44.67
8.21E-05
11.22
2.46E-06
47.32
9.47E-05
11.89
3.02E-06
50.12
1.09E-04
12.59
3.69E-06
53.09
1.26E-04
13.34
4.51E-06
56.23
1.45E-04
5.50E-06
59.57
1.67E-04
14.13
4.09E-06
0.67
5-27
6.70E-06
MMPDS-06 1 April 2011
1.E-02
Fatigue Crack Propagation Rate, da/dN, in./cycle
Stress Ratio, R
1.E-03
Frequency f, Hz
No. of Specimens
No. of Data Points
0.10
30 - 50
8
106
0.67
55
8
98
1.E-04
1.E-05
1.E-06
1.E-07
1.E-08 1
10
100 0.50
Stress Intensity Factor Range, ∆K, ksi-in
Figure 5.3.1.1.9(b): Fatigue-crack-propagation data for 0.084-inch-thick Ti-5Al2.5Sn titanium alloy mill-annealed sheet. [Reference 5.3.1.1.9] Specimen Thickness: 0.084 inch Specimen Width: 2.76 inches Specimen Type: M(T)
Environment: Temperature: Orientation:
5-28
Distilled water RT L-T and T-L
MMPDS-06 1 April 2011
Table 5.3.1.1.9(b) Typical Fatigue Crack Growth Rate Data for Ti-5Al-2.5Sn Sheet, as Shown Graphically in Figure 5.3.1.1.9(b) Stress Ratio ∆K, ksi-in0.50
0.10
Stress Ratio 0.67
∆K, ksi-in0.50
da/dN, in./cycle
0.10
da/dN, in./cycle
3.35
5.20E-08
14.96
5.11E-06
3.55
6.50E-08
15.85
5.97E-06
3.76
8.10E-08
16.79
6.95E-06
3.98
1.01E-07
17.78
8.10E-06
4.22
1.26E-07
18.84
9.41E-06
4.47
1.57E-07
19.95
1.09E-05
4.73
1.95E-07
21.14
1.27E-05
5.01
2.41E-07
22.39
1.47E-05
5.31
2.98E-07
23.71
1.70E-05
5.62
3.67E-07
25.12
1.97E-05
5.96
4.51E-07
26.61
2.27E-05
6.31
5.54E-07
28.18
2.62E-05
6.68
6.79E-07
29.85
3.02E-05
7.08
8.29E-07
31.62
3.48E-05
7.50
1.01E-06
33.50
4.01E-05
7.94
1.23E-06
35.48
4.60E-05
8.41
1.49E-06
37.58
5.28E-05
8.91
1.81E-06
39.81
6.05E-05
9.44
2.19E-06
42.17
6.93E-05
10.00
2.64E-06
44.67
7.93E-05
10.59
3.18E-06
47.32
9.05E-05
11.22
3.82E-06
50.12
1.03E-04
11.89
4.57E-06
53.09
1.18E-04
12.59
5.47E-06
56.23
1.34E-04
13.34
6.53E-06
59.57
1.53E-04
14.13
4.38E-06
0.67
7.78E-06
5-29
9.24E-06
MMPDS-06 1 April 2011
Fatigue Crack Propagation Rate, da/dN, in./cycle
1.E-02
1.E-03
No. of Specimens
No. of Data Points
Stress Ratio, R
Frequency f, Hz
0.10
30 - 50
8
104
0.67 (LT)
55
4
51
0.67 (TL)
55
4
46
1.E-04
1.E-05
1.E-06
1.E-07
1.E-08 1
10
100 0.50
Stress Intensity Factor Range, ∆K, ksi-in
Figure 5.3.1.1.9(c). Fatigue-crack-propagation data for 0.084-inch-thick Ti-5Al2.5Sn titanium alloy mill-annealed sheet. [Reference 5.3.1.1.9] Specimen Thickness: 0.084 inch Specimen Width: 2.76 inches Specimen Type: M(T)
Environment: Temperature: Orientation:
5-30
3.5% NaCl RT L-T and T-L
MMPDS-06 1 April 2011
Table 5.3.1.1.9(c) Typical Fatigue Crack Growth Rate Data for Ti-5Al-2.5Sn Sheet, as Shown Graphically in Figure 5.3.1.1.9(c) Stress Ratio (Orientation) ∆K, ksiin0.50
0.10
0.67 (LT)
Stress Ratio (Orientation)
0.67 (TL)
∆K, ksiin0.50
da/dN, in./cycle
0.10
0.67 (LT)
0.67 (TL)
da/dN, in./cycle
3.35
1.02E-07
14.96
1.15E-05
3.55
1.09E-07
15.85
1.34E-05
3.76
1.19E-07
16.79
1.54E-05
3.98
1.33E-07
1.80E-07
17.78
1.78E-05
4.22
1.53E-07
2.19E-07
18.84
2.04E-05
4.47
1.81E-07
2.81E-07
19.95
2.33E-05
4.73
2.19E-07
3.77E-07
21.14
2.66E-05
5.01
2.70E-07
5.29E-07
22.39
3.03E-05
5.31
3.26E-07
7.80E-07
23.71
3.43E-05
5.62
3.97E-07
1.21E-06
25.12
3.88E-05
5.96
5.06E-07
1.95E-06
26.61
4.38E-05
6.31
6.95E-07
4.76E-06
28.18
4.92E-05
6.68
1.04E-06
7.76E-06
29.85
5.52E-05
7.08
1.66E-06
9.71E-06
31.62
6.17E-05
7.50
2.68E-06
1.01E-05
33.50
6.87E-05
7.94
4.08E-06
1.04E-05
35.48
7.64E-05
8.41
5.49E-06
1.09E-05
37.58
8.46E-05
8.91
6.39E-06
1.13E-05
39.81
9.35E-05
9.44
6.83E-06
1.18E-05
42.17
1.03E-04
10.00
7.42E-06
1.24E-05
44.67
1.13E-04
10.59
8.06E-06
1.30E-05
47.32
1.24E-04
11.22
8.76E-06
1.37E-05
50.12
1.35E-04
11.89
9.52E-06
1.44E-05
53.09
1.47E-04
12.59
1.03E-05
1.52E-05
56.23
1.60E-04
13.34
1.12E-05
1.61E-05
59.57
1.73E-04
14.13
1.22E-05
1.71E-05
5-31
1.33E-05
1.82E-05
MMPDS-06 1 April 2011 5.3.2 TI-8AL-1MO-1V 5.3.2.0 Comments and Properties C Ti-8Al-1Mo-1V alloy is a near-alpha composition developed for improved creep resistance and thermal stability up to about 850EF. The alloy is available as billet, bar, plate, sheet, strip, extrusions, and forgings. Manufacturing Considerations C Room temperature forming of Ti-8Al-1Mo-1V sheet is somewhat more difficult than in Ti-6Al-4V, and for severe operations hot forming is required. Ti-8Al-1Mo-1V can be fusion welded readily with inert-gas protection or spot welding without atmospheric protection. Weld strengths are comparable to those of the parent metal although ductility is somewhat lower in the weldment. Environmental Considerations C Ti-8Al-1Mo-1V exhibits good oxidation resistance and thermal stability up to 850EF. A decrease in tensile elongation has been reported for single-annealed sheet following 150 hours stressed exposure at 1000EF. Extended exposure to temperatures exceeding 600EF adversely affects room temperature spot-weld tension strength. This alloy is not recommended for structural applications at liquid-hydrogen temperatures (-423EF). The Ti-8Al-1Mo-1V alloy also is susceptible to chloride stress-corrosion attack in either elevated-temperature (hot-salt stress-corrosion) or ambient-temperature (aqueous stress-corrosion) chloride environments. Thus, care should be exercised in applying the material in chloride containing environments. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-S-5002 and MIL-HDBK1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. Heat Treatment C Three treatments are used with Ti-8Al-1Mo-1V. These are: Single Anneal: 1450EF for 8 hours, furnace cool. Duplex Anneal: 1450EF for 8 hours, furnace cool, followed by 1450EF for 15 to 20 minutes, air cool. Solution Treated and Stabilized: 1825EF for 1 hour, air cool, 1075EF for 8 hours, air cool. As a general guide, the single anneal is used to obtain highest room temperature mechanical properties and the duplex anneal to obtain highest fracture toughness. Both the single anneal and the duplex anneal are compatible with hot-forming operations. The solution treated and stabilized condition is used for forgings. Specifications and Properties C Material specifications for Ti-8Al-1Mo-1V are presented in Table 5.3.2.0(a). Room temperature mechanical and physical properties for Ti-8Al-1Mo-1V are shown in Tables 5.3.2.0(b) and 5.3.2.0(c). The effect of temperature on physical properties is shown in Figure 5.3.2.0. Table 5.3.2.0(a). Material Specifications for Ti-8AI-1Mo-1V Specification Form AMS 4973 Forging AMS 4915 Sheet, strip, and plate AMS 4916 Sheet, strip, and plate AMS 6910 Bar
5-32
MMPDS-06 1 April 2011
Figure 5.3.2.0. Effect of temperature on the physical properties of Ti-8Al-1Mo-1V alloy.
5.3.2.1 Single-Annealed Condition C Cryogenic, room temperature, and elevated temperature property curves for this condition are shown in Figures 5.3.2.1.1 and 5.3.2.1.4. Typical tensile and compressive stress-strain and tangent-modulus curves are shown in Figures 5.3.2.1.6(a) and 5.3.2.1.6(b) for room temperature and several elevated temperatures. 5.3.2.2 Duplex-Annealed Condition C Cryogenic, room temperature, and elevated temperature curves for this condition are shown in Figure 5.3.2.2.1. Typical tensile and compressive stressstrain and tangent-modulus curves are shown in Figures 5.3.2.2.6(a) and 5.3.2.2.6(b) for room temperature and several elevated temperatures. Fatigue S/N curves for unnotched and notched specimens at room temperature and several elevated temperatures are shown in Figures 5.3.2.2.8(a) through 5.3.2.2.8(f).
5-33
MMPDS-06 1 April 2011
Table 5.3.2.0(b1). Design Mechanical and Physical Properties of Ti-8Al-1Mo-1V Sheet and Plate Specification . . . . . . . . . . . . . AMS 4915a Form . . . . . . . . . . . . . . . . . . .
Sheet
Condition . . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . .
Single Annealed
S
0.18750.500 S
145 145 ...
145 145 ...
140 140 ...
130 130 ...
120 120 120c
135 135 ...
135 135 ...
130 130 ...
120 120 ...
110 110 110c
144 149 ... 93
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
239 294
... ...
... ...
... ...
... ...
196 214
... ...
... ...
... ...
... ...
b
10 10 ...
10 10 ... 17.5d 18.0d 6.7 0.32
10 10 ...
8 8 8c
< 0.1875 Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent: L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . K and α . . . . . . . . . . . . . . . .
Plate
b
...
0.501-1.000
1.001-2.500
2.501-4.000
S
S
S
0.158 0.12 See Figure 5.3.2.0
Last Revised: Oct 2006, MMPDS-03, Item 05-26 a Mechanical properties established from MIL-T-9046, COMP. A 4. b 0.008-0.014 in. thickness, 6 percent; 0.015-0.024 in. thickness, 8 percent; > 0.025 in. thickness, 10 percent. c Applicable, providing ST dimension is > 3.000 inches. d Average, values may vary with test direction.
5-34
MMPDS-06 1 April 2011
Table 5.3.2.0(b2). Design Mechanical and Physical Properties of Ti-8Al-1Mo-1V Sheet and Plate Specification . . . . . . . . AMS 4916a Form . . . . . . . . . . . . . . Sheet Plate Condition . . . . . . . . . . Duplex Annealed Thickness, in. . . . . . . . 0.015-0.024 0.025-0.1875 0.1875-0.500 0.501-1.000 1.001-2.000 2.001-4.000 Basis . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent: L ............... LT . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . µ ................ Physical Properties: ω, lb/in.3 . . . . . . . . . . C, Btu/(lb)(EF) . . . . . K and α . . . . . . . . . . .
S
S
S
S
S
S
135 135
135 135
130 130
130 130
125 125
120 120
120 120
120 120
120 120
120 120
115 115
110 110
126 126 84
126 126 84
... ... ...
... ... ...
... ... ...
... ... ...
223 269
223 269
... ...
... ...
... ...
... ...
174 191
174 191
... ...
... ...
... ...
... ...
8 8
10 10
10 10
10 10
10 10
8 8
17.5b 18.0b 6.7 0.32 0.158 0.12 See Figure 5.3.2.0
Last Revised: Oct 2006, MMPDS-03, Item 05-26 a Mechanical properties established from MIL-T-9046, COMP. A 4. b Average, L and LT; values may vary with test direction.
5-35
MMPDS-06 1 April 2011
Table 5.3.2.0(c). Design Mechanical and Physical Properties of Ti-8Al-1Mo-1V Bar and Forging Specification . . . . . . . . . . . . . AMS 6910a AMS 4973 Form . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . .
a b c d e
Bar Duplex annealed
Forging Solution treated and stabilized
Thickness or diameter, in. . . .
< 2.500b
2.501-4.000b
< 2.499
2.500-4.000
Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fty, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent: L .................... LT . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . E, 103, ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . K and α . . . . . . . . . . . . . . . .
S
S
S
S
130 130c ...
120 120c 120c
130 130d ...
120 120 120
120 120c ...
110 110c 110c
120 120d ...
110 110 110
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10c ...
10 10c 8c
10 10d ...
10 10 10
17.5e 18.0e 6.7 0.32 0.158 0.12 See Figure 5.3.2.0
Mechanical properties established from MIL-T-9047. Maximum of 16 square-inch cross-sectional area. Applicable, providing LT or ST dimension is > 3.000 inches. Applicable, providing LT dimension is > 2.500 inches. Average, values may vary with test direction.
5-36
MMPDS-06 1 April 2011
Figure 5.3.2.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of single-annealed Ti-8Al-1Mo-1V alloy sheet.
5-37
MMPDS-06 1 April 2011
Figure 5.3.2.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of Ti-8Al-1Mo-1V alloy sheet.
5-38
MMPDS-06 1 April 2011 200 T i-8 A l-1 M o -1 V sin g le -a n n e a le d s h e e t
0 .5 -h r e xp o su re
L o n g itu d in a l and L o n g T ra n s v e rs e
160
Stress, ksi
RT
120
4 0 0 oF 5 5 0 oF
80 R a m b e rg - O s g o o d n (R T ) = 3 3 n (4 0 0 o F ) = 5 0 n (5 0 0 o F ) = 5 0
40
T Y P IC A L 0 0
4
8
12
16
20
24
S tra in , 0 .0 0 1 in ./in .
Figure 5.3.2.1.6(a). Typical tensile stress-strain curves for single-annealed Ti-8Al1Mo-1V alloy sheet at room and elevated temperatures. 200 T i-8 A l-1 M o -1 V s in g le -a n n e a le d sh e e t
0 .5 -h r e x p o s u re RT
Stress, ksi
160
RT
5 5 0 oF
120
L o n g itu d in a l and L o n g T ra n s v e rs e
5 5 0 oF
80 R a m b e rg - O s g o o d n (R T ) = 5 0 n (5 5 0 o F ) = 5 0
40
T Y P IC A L 0 0
4
8
12 16 S tra in , 0 .0 0 1 in ./in . C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 3 k si
20
24
Figure 5.3.2.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for single-annealed Ti-8Al-1Mo-1V alloy sheet at room and elevated temperatures.
5-39
MMPDS-06 1 April 2011
Figure 5.3.2.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of duplex-annealed Ti-8Al-1Mo-1V alloy sheet.
5-40
MMPDS-06 1 April 2011
200 L o n g itu d in a l and L o n g T ra n s v e rs e 160
T i-8 A l-1 M o -1 V d u p le x -a n n e a le d s h e e t
0 .5 -h r e xp o s u re
Stress, ksi
RT 120 o
400 F o
550 F 80 R a m b e rg - O s g o o d n (R T ) = 1 6 n (4 0 0 o F ) = 3 2 o n (5 5 0 F ) = 2 4
40
T Y P IC A L 0 0
4
8
12
16
20
24
S tra in , 0 .0 0 1 in ./in .
Figure 5.3.2.2.6(a). Typical tensile stress-strain curves for duplex-annealed Ti8Al-1Mo-1V alloy sheet at room and elevated temperatures.
200 L o n g itu d in a l and L o n g T ra n s v e rs e
T i-8 A l-1 M o -1 V d u p le x a n n e a le d s h e e t 0 .5 -h r e x p o s u re
160
RT
Stress, ksi
RT
120 o
550 F
o
550 F
80 R a m b e rg - O s g o o d n (R T ) = 5 0 o n (5 0 0 F ) = 2 2
40
T Y P IC A L 0 0
4
8
12 16 S tra in , 0 .0 0 1 in ./in . 3 C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 k s i
20
24
Figure 5.3.2.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for duplex-annealed Ti-8Al-1Mo-1V alloy sheet at room and elevated temperatures.
5-41
MMPDS-06 1 April 2011
Figure 5.3.2.2.8(a). Best-fit S/N curves for unnotched, duplex annealed Ti-8Al-1Mo-1V sheet at room temperature, long transverse direction.
Correlative Information for Figure 5.3.2.2.8(a) Product Form: Sheet, 0.050-inch thick Properties:
TUS, ksi 147.2
TYS, ksi 135.6
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.750-inch net width
No. of Heats/Lots: 1
Surface Condition: HNO3/HF pickled References:
Equivalent Stress Equation: Log Nf = 10.57-3.46 log (Seq-66.7) Seq = Smax (1-R)0.61 Std. Error of Estimate, Log (Life) = 0.47 Standard Deviation, Log (Life) = 0.81 R2 = 66.7%
5.3.2.2.8(a) and 5.3.2.2.8(b)
Sample Size = 24 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-42
MMPDS-06 1 April 2011
Figure 5.3.2.2.8(b). Best-fit S/N curves for notched, Kt = 2.6, duplex annealed Ti-8Al-1Mo-1V sheet at room temperature, long transverse direction.
Correlative Information for Figure 5.3.2.2.8(b) Product Form: Sheet, 0.050-inch thick Properties:
TUS, ksi 147.2
TYS, ksi 135.6
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - RT Environment - Air
Temp.,EF RT Unnotched
No. of Heats/Lots: 1
Specimen Details: Notched, hole type, Kt = 2.6 1.500-inch, gross width 1.250-inch, net width 0.250-inch, diameter hole
Equivalent Stress Equation: Log Nf = 14.49-5.90 log (Seq-12.7) Seq = Smax (1-R)0.55 Std. Error of Estimate, Log (Life) = 0.33 Standard Deviation, Log (Life) = 1.10 R2 = 90.9%
Surface Condition: HNO3/HF pickled References:
5.3.2.2.8(a) and 5.3.2.2.8(b)
Sample Size = 26 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-43
MMPDS-06 1 April 2011
Figure 5.3.2.2.8(c). Best-fit S/N curves for unnotched duplex annealed Ti8Al-1Mo-1V sheet at 400E EF, long transverse direction.
Correlative Information for Figure 5.3.2.2.8(c) Product Form: Sheet, 0.050-inch thick Properties:
TUS, ksi 119.5
TYS, ksi 100.8
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - 400EF Environment - Air
Temp.,EF 400
Specimen Details: Unnotched 0.750-inch net width
No. of Heats/Lots: 1
Surface Condition: HNO3/HF pickled References:
Equivalent Stress Equation: Log Nf = 8.30-2.53 log (Seq-73.9) Seq = Smax (1-R)0.74 Std. Error of Estimate, Log (Life) = 0.38 Standard Deviation, Log (Life) = 0.87 R2 = 80.9%
5.3.2.2.8(a) and 5.3.2.2.8(b)
Sample Size = 23 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-44
MMPDS-06 1 April 2011
Figure 5.3.2.2.8(d). Best-fit S/N curves for notched, Kt = 2.6, duplex annealed Ti-8Al-1Mo-1V sheet at 400E EF, long transverse direction.
Correlative Information for Figure 5.3.2.2.8(d) Product Form: Sheet, 0.050-inch thick Properties:
TUS, ksi 119.5
TYS, ksi 100.8
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - 400EF Environment - Air
Temp.,EF 400 Unnotched
No. of Heats/Lots: 1
Specimen Details: Notched, hole type, Kt = 2.6 1.500-inch, gross width 1.250-inch, net width 0.250-inch, diameter hole
Equivalent Stress Equation: Log Nf = 13.39-5.68 log (Seq-18.7) Seq = Smax (1-R)0.46 Std. Error of Estimate, Log (Life) = 0.41 Standard Deviation, Log (Life) = 1.16 R2 = 87.2%
Surface Condition: HNO3/HF pickled References:
5.3.2.2.8(a) and 5.3.2.2.8(b)
Sample Size = 20 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-45
MMPDS-06 1 April 2011
Figure 5.3.2.2.8(e). Best-fit S/N curves for unnotched duplex annealed Ti-8Al-1Mo-1V sheet at 650E EF, long transverse direction.
Correlative Information for Figure 5.3.2.2.8(e) Product Form: Sheet, 0.050-inch thick Properties:
TUS, ksi 110.2
TYS, ksi 86.8
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - 650EF Environment - Air
Temp.,EF 650
Specimen Details: Unnotched 0.750-inch, net width
No. of Heats/Lots: 1
Surface Condition: HNO3/HF pickled References:
Equivalent Stress Equation: Log Nf = 9.83-3.66 log (Seq-73) Seq = Smax (1-R)0.78 Std. Error of Estimate, Log (Life) = 0.88 Standard Deviation, Log (Life) = 1.18 R2 = 44.3%
5.3.2.2.8(a) and 5.3.2.2.8(b)
Sample Size = 20 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-46
MMPDS-06 1 April 2011
Figure 5.3.2.2.8(f). Best-fit S/N curves for notched, Kt = 2.6, duplex annealed Ti-8Al-1Mo-1V sheet at 650E EF, long transverse direction.
Correlative Information for Figure 5.3.2.2.8(f) Product Form: Sheet, 0.050-inch thick Properties:
TUS, ksi 110.2
TYS, ksi 86.8
Test Parameters: Loading - Axial Frequency - 1800 cpm Temperature - 650EF Environment - Air
Temp.,EF 650 Unnotched
No. of Heats/Lots: 1
Specimen Details: Notched, hole type, Kt = 2.6 1.500-inch, gross width 1.250-inch, net width 0.250-inch, diameter hole
Equivalent Stress Equation: Log Nf = 10.16-3.88 log (Seq-23) Seq = Smax (1-R)0.69 Std. Error of Estimate, Log (Life) = 0.38 Standard Deviation, Log (Life) = 0.65 R2 = 66.0%
Surface Condition: HNO3/HF pickled References:
5.3.2.2.8(a) and 5.3.2.2.8(b)
Sample Size = 22 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-47
MMPDS-06 1 April 2011 5.3.3 Ti-6Al-2Sn-4Zr-2Mo 5.3.3.0 Comments and Properties — Ti-6Al-2Sn-4Zr-2Mo is a near-alpha titanium composition developed for improved elevated-temperature performance. The alloy has a titanium-aluminum base that is solid solution strengthened by additions of tin and zirconium. Molybdenum improves both room and elevated temperature strength, creep and thermal stability. Introduction of this alloy initially met the requirements for certain advanced performance gas turbine engine applications. Some of the more recent applications, however, require better creep strength than the alloy initially provided. Development work showed that a small addition of silicon, approximately 0.08 percent, substantially improved the creep strength of the alloy without significantly affecting the thermal stability. The alloy is creep resistant and relatively stable to about 1050EF. Creep and thermal stability of the alloy are further enhanced by solution treating high in the alpha-beta phase field. The alloy is available in bar, billet, plate, sheet, strip, and extrusions.
Manufacturing Conditions — Forging of Ti-6Al-2Sn-4Zr-2Mo at temperatures below the beta transus temperature is recommended. For optimum creep properties beta forging, or a modification of it, is recommended with some loss in ductility to be expected. Elevated temperatures may be used for severe sheet forming operations while room temperature forming may be used for mild contouring. Stress relief annealing may be combined with a final hot-sizing operation. The material can be welded using TIG or MIG fusion processes to achieve 100 percent joint efficiencies but with limited weld zone ductility. As in welding any titanium alloy, shielding from atmospheric contamination is required except for spot or seam welding. Environmental Considerations — Ti-6Al-2Sn-4Zr-2Mo is somewhat more resistant to hot-salt cracking than either Ti-8Al-1Mo-1V or Ti-6Al-4V alloys. The material is marginally susceptible to aqueous chloride solution stress-corrosion cracking. Surface oxides formed during exposure to service temperature (~950EF) do not adversely affect properties. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-S-5002 and MIL-HDBK-1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. Heat Treatment — Several different annealing treatments, which are described below, are available for Ti-6Al-2Sn-4Zr-2Mo. For sheet and strip: Duplex Anneal: 1650EF for ½ hour, air cool, followed by 1450EF for ¼ hour, and air cool. Triplex Anneal: 1650EF for ½ hour, air cool, followed by 1450EF for ¼ hour, air cool, followed by 1100EF for 2 hours and air cool. For plate: Duplex Anneal: 1650EF for 1 hour, air cool, followed by 1100EF for 8 hours and air cool. Triplex Anneal: 1650EF for ½ hour, air cool, followed by 1450EF for ¼ hour, air cool, followed by 1100EF for 2 hours and air cool.
5-48
MMPDS-06 1 April 2011 For bars and forgings: Duplex Anneal: Solution anneal 25E to 50EF below beta transus temperature for 1 hour, air cool or faster, followed by 1100EF for 8 hours and air cool.
Table 5.3.3.0(a). Material Specifications for Ti-6Al-2Sn-4Zr-2Mo Specification Form AMS 4975 Bar AMS 4976 Forging AMS 4919 Sheet, strip, and plate
Specifications and Properties — Material specifications for Ti-6Al-2Sn-4Zr-2Mo are given in Table 5.3.3.0(a). Room temperature mechanical and physical properties for Ti-6Al-2Sn-4Zr-2Mo are presented in Table 5.3.3.0(b) and 5.3.3.0(c). The effect of temperature on physical properties is shown in Figure 5.3.3.0. 5.3.3.1 Single, Duplex, and Triplex Annealed — Room and elevated temperature property curves are shown in Figures 5.3.3.1.1, 5.3.3.1.2, and 5.3.3.1.4. Typical stress-strain curves at room and elevated temperatures are shown in Figures 5.3.3.1.6(a) and 5.3.3.1.6(b). Full range stress-strain curves at room and elevated temperatures are shown in Figure 5.3.3.1.6(c).
5-49
MMPDS-06 1 April 2011
Table 5.3.3.0(b). Design Mechanical and Physical Properties of Ti-6Al-2Sn-4Zr-2Mo Specification . . . . . . . . . . .
AMS 4919a
Form . . . . . . . . . . . . . . . . .
Sheet
Condition . . . . . . . . . . . . . .
Duplex annealed
#0.046
Thickness or diameter, in. . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbrud, ksi: (e/D=1.5) . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . Fbryd, ksi: (e/D=1.5) . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . e, percent (S-Basis): L .................. LT . . . . . . . . . . . . . . . . . .
0.047-0.093
0.094-0.140
0.141-0.187
A
B
A
B
A
B
A
B
135b 135b
143 143
135b 135b
143 143
135b 135b
143 143
135b 135b
143 143
125c 125c
136 134
125c 125c
136 134
125c 125c
136 134
125c 125c
136 134
132 132 ...
142 142 ...
132 132 ...
142 142 ...
132 132 ...
142 142 ...
132 132 ...
142 142 ...
195 217
206 230
205 243
217 258
214 266
227 282
219 279
232 295
171 202
183 217
171 202
183 217
171 202
183 217
171 202
183 217
8e 8e
... ...
e e
... ...
10 10
... ...
10 10
... ...
E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . F ..................
16.5 18.0 6.2 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K and α . . . . . . . . . . . .
0.164 See Figure 5.3.3.0
Issued: Apr 1989, MIL-HDBK-5F, Item 88-20. Last Revised: Oct 2006, MMPDS-03, Item 05-26. a Mechanical properties also meet MIL-T-9046. b A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(L<) = 139 ksi. c A-Basis value is specification minimum. The rounded T99 values are as follows: Fty(L) = 131 ksi and Fty(LT) = 129 ksi. d Bearing values are “dry pin” values per Section 1.4.7.1. e 8% for 0.025 through 0.062 inch and 10% for >0.062 inch.
5-50
MMPDS-06 1 April 2011 Table 5.3.3.0(c). Design Mechanical and Physical Properties of Ti-6Al-2Sn-4Zr-2Mo
Specification . . . . . . . . . . . . . . . . . . . . .
AMS 4975
AMS 4976
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bar
Forging
Condition . . . . . . . . . . . . . . . . . . . . . . . .
STA (Duplex annealed)
STA (Duplex annealed)
Cross-Sectional area, in. . . . . . . . . . .
#16
#9
Thickness, or diameter, in. . . . . . . . .
#3.000
#3.000
2
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT. . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D=1.5) . . . . . . . . . . . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D=1.5) . . . . . . . . . . . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . . . . . . . . . . . e, percent(S-Basis): L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . RA, percent (S-Basis): L ............................. LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a b
A
B
S
130a 130b 130b
144 ... ...
130 130b 130b
120a 120b 120b
131 ... ...
120 120b 120b
... ... ... ...
... ... ... ...
... ... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10b 10b
... ... ...
10 10b 10b
25 25b 25b
... ... ...
25 25b 25b
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.5 18.0 6.2 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . C, K, and α. . . . . . . . . . . . . . . . . . . . . .
0.164 See Figure 5.3.3.0
A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(L) = 138 ksi and Fty(L) = 125 ksi. S-Basis. Applicable providing transverse dimension is $2.500 in.
5-51
MMPDS-06 1 April 2011
Figure 5.3.3.0. Effect of temperature on the physical properties of Ti-6Al-2Sn-4Zr2Mo alloy.
Figure 5.3.3.1.1. Effect of temperature in the tensile ultimate strength (Ftu) and tensile yield strength (Fty) of duplex- and triplex-annealed Ti-6Al-2Sn-4Zr-2Mo (all products).
5-52
MMPDS-06 1 April 2011
Figure 5.3.3.1.2. Effect of temperature on the compressive yield strength (Fcy) of duplex annealed Ti-6Al-2Sn-4Zr-2Mo alloy sheet.
Figure 5.3.3.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of duplex- and triplex-annealed Ti-6Al-2Sn-4Zr-2Mo alloy.
5-53
MMPDS-06 1 April 2011
200 T i-6 A l-2 S n -4 Z r-2 M o d u p le x-a n n e a le d b a r
L o n g itu d in a l 0 .5 -h r e xp o s u re 160
Stress, ksi
RT
120 9 0 0 oF 80
R a m b e rg - O s g o o d n (R T ) = 3 4 n (9 0 0 o F ) = 1 0
40
T Y P IC A L T h ick n e ss = 1 .1 2 5 - 1 .2 5 0 in .
0 0
4
8
12
16
20
24
S tra in , 0 .0 0 1 in ./in .
Figure 5.3.3.1.6(a). Typical tensile stress-strain curves for duplex annealed Ti-6Al2Sn-4Zr-2Mo alloy bar at various temperatures.
200 Longitudinal and Long T ransverse
T i-6A l-2S n-4Z r-2M o duplex- and triplex-annealed sheet
160 RT
Stress, ksi
0.5 -hr exposure
120 900 o F 80 R am b erg - O sgo o d n (R T ) = 35 n (900 o F) = 12
40
T Y P IC A L T hickness = 0.048 - 0.085 in. 0 0
4
8
12
16
20
S train, 0.001 in./in.
Figure 5.3.3.1.6(b). Typical tensile stress-strain curves for duplex and triplex annealed Ti-6Al-2Sn-4Zr-2Mo alloy sheet at various temperatures.
5-54
24
MMPDS-06 1 April 2011
Figure 5.3.3.1.6(c). Typical tensile stress-strain curves (full range) for duplex-annealed Ti-6Al-2Sn-4Zr-2Mo alloy sheet at room and elevated temperatures.
5-55
MMPDS-06 1 April 2011
This page is intentionally blank.
5-56
MMPDS-06 1 April 2011
5.4 ALPHA-BETA TITANIUM ALLOYS The alpha-beta titanium alloys contain both alpha and beta phases at room temperature. The alpha phase is similar to that of unalloyed titanium but is strengthened by alpha stabilizing additions (e.g., aluminum). The beta phase is the high-temperature phase of titanium but is stabilized to room temperature by sufficient quantities of beta stabilizing elements such as vanadium, molybdenum, iron, or chromium. In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be further strengthened by heat treatment. The alpha-beta alloys have good strength at room temperature and for short times at elevated temperature. They are not noted for long-time creep strength. With the exception of annealed Ti-6Al-4V, these alloys are not recommended for cryogenic applications. The weldability of many of these alloys is poor because of the two-phase microstructure. However, some of them can be welded successfully with special precautions. 5.4.1 TI-6AL-4V 5.4.1.0 Comments and Properties — Ti-6Al-4V is available in all mill product forms as well as castings and powder metallurgy forms. It can be used in either the annealed or solution-treated plus aged (STA) conditions and is weldable. Useful temperature range is from -320E to 750EF. For maximum toughness, Ti-6Al-4V should be used in the annealed or duplex-annealed conditions whereas for maximum strength, the STA condition is used. The full strength potential for this alloy is not available in sections greater than 1 inch. This becomes a particular issue with cast Ti-6Al-4V, as prior beta grain size effects, which cannot be remedied by annealing heat treatments, impact room temperature tensile properties as section thickness increases. Manufacturing Considerations — The majority of Ti-6Al-4V mill product ingot material is melted by a double or triple vacuum arc remelt (VAR) ingot process. For non-rotating aerospace quality or commercial grade products, a double VAR ingot practice is usually employed. A percentage of aerospace grade, both airframe and jet engine rotating quality, Ti-6Al-4V ingots are manufactured by electron beam cold hearth melting (EBCHM) or plasma arc melting (PAM) first stage electrodes; followed by VAR into a final round ingot to meet the requirements of rotating quality specifications. It has been demonstrated that single melted EBCHM- or PAM- only round and rectangular ingots of Ti-6Al-4V can be made into flat products meeting AMS 6945 requirements for plate and sheet applications. The final VAR melting to ingot is not necessary in these instances. AMS 6945 is only pertinent for standard grade Ti-6Al-4V materials. Ti-6Al-4V alloy may be forged above the beta transus temperature using procedures to promote a high toughness material. The material is routinely finished below beta transus temperature for good combinations of fabricability, strength, ductility, and toughness. Elevated temperatures are usually used for form flat-rolled products although extensive forming may be accomplished at room temperature. Flat-rolled products are usually formed and used in the annealed condition although some forming in the STA condition is possible. This alloy can be spot-welded and is being fusion welded extensively in certain applications. Established titanium-welding techniques must be employed and special design considerations may be involved in fusion weldments. Stress-relief annealing after welding is recommended. Processing of investment cast Ti-6Al-4V typically requires both chemically milling to remove alpha case resulting from the casting operation, as well as in-process repair welding, as part of the manufacturing process. Welding operations are conducted in an inert-atmosphere to provide protection against oxidation (alpha case) during the welding process, and parts generally are stress annealed after welding.
5-57
MMPDS-06 1 April 2011 Environmental Considerations — Ti-6Al-4V can withstand prolonged exposure to temperatures up to 750EF without loss of ductility. Its toughness in the annealed condition is adequate at temperatures down to -320EF. (A special low interstitial grade may be used down to -423EF.) Ti-6Al-4V is resistant to hot-salt stress corrosion to about its maximum use temperature depending on exposure time and exposure stress. The material is marginally susceptible to aqueous chloride solution stress corrosion, but is considered to have good resistance to this reaction compared with other commonly used alloys. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-S-5002 and MIL-HDBK-1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. Heat Treatment — This alloy is commonly specified in either the annealed condition or in the fully heat-treated condition. Annealing requires 1 hour at 1300EF followed by furnace cooling if maximum ductility is required. The specified fully heat-treated, or solution-treated and aged condition for sheet is as follows: Solution treat at 1700EF for 5 to 25 minutes, quench in water. Age at 975EF for 4 to 6 hours, air cool. For bars and forgings: Solution treat at 1700EF for 1 hour, quench in water. Age at 1000EF for 3 hours, air cool. For investment castings: Refer to the appropriate AMS specification. Specifications and Properties — Some material specifications for Ti-6Al-4V are shown in Table 5.4.1.0(a). Room-temperature mechanical properties for Ti-6Al-4V are shown in Tables 5.4.1.0(b) through 5.4.1.0(g). The effect of temperature on physical properties is shown in Figure 5.4.1.0. Table 5.4.1.0(a). Material Specifications for Ti-6Al-4V
Specification AMS 4904 AMS 4911 AMS 4920 AMS 4934 AMS 4935 AMS 4965 AMS 4928 AMS 4962a AMS 4992 AMS 6930 AMS 6931 AMS 6945 a
Form Sheet, strip, and plate Sheet, strip, and plate Die forging Extrusion Extrusion Bar Bar and die forging Investment casting Investment casting Bar Bar Sheet and Plate
Inactive for new design.
5-58
MMPDS-06 1 April 2011 5.4.1.1 Annealed Condition — Elevated temperature curves for annealed Ti-6Al-4V are shown in Figures 5.4.1.1.1 through 5.4.1.1.5. Typical stress-strain curves at several temperatures are shown in Figures 5.4.1.1.6(a) through 5.4.1.1.6(d). Typical full-range stress-strain curves at room temperature are shown in Figure 5.4.1.1.6(e) and 5.4.1.1.6(f). Unnotched and notched fatigue data for wrought products are shown in Figures 5.4.1.1.8(a) through 5.4.1.1.8(g). Unnotched load and strain control fatigue data for castings are shown in Figures 5.4.1.1.8(h) and 5.4.1.1.8(i) respectively. Fatigue crack-propagation data for plate are shown in Figure 5.4.1.1.9(a) and for castings are shown in Figures 5.4.1.1.9(b) and 5.4.1.1.9(c). 5.4.1.2 Solution-Treated and Aged Condition — Elevated temperature curves for solutiontreated and aged alloy are shown in Figures 5.4.1.2.1 through 5.4.1.2.4. Typical tensile and compressive stress-strain and tangent-modulus curves are shown in Figures 5.4.1.2.6(a) through 5.4.1.2.6(g). Typical fullrange stress-strain curves at several temperatures up to 1000EF are shown in Figure 5.4.1.2.6(h). Fatigue data at room and elevated temperatures are shown in Figures 5.4.1.2.8(a) through 5.4.1.2.8(i).
5-59
MMPDS-06 1 April 2011
Table 5.4.1.0(b1). Design Mechanical and Physical Properties of Ti-6Al-4V Sheet, Strip, and Plate
AMS 4911a
Specification . . . . . . . . Form . . . . . . . . . . . . . .
Sheet
Condition . . . . . . . . . .
AMS 4904b
Plate
Sheet, strip, and plate
Annealed
Solution treated and aged
Thickness, in. . . . . . . .
# 0.1874
0.18752.000
Basis . . . . . . . . . . . . . .
A
B
A
B
A
B
134 134
139 139
130c 130c
135 138
130d 130d
126 126
131 131
120 120c
125 131
133 135 87
138 141 90
124 130 79
213e 272e
221e 283e
171e 208e 8f 8f
Mechanical Properties: Ftu, ksi: L ............. LT . . . . . . . . . . . . Fty, ksi: L ............. LT . . . . . . . . . . . . Fcy, ksi: L ............. LT . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . (e/D = 2.0) . . . . . . e, percent (S-Basis): L ............. LT . . . . . . . . . . . .
0.18750.750
0.7511.000
1.0012.000
S
S
S
S
137 137
160 160
160 160
150 150
145 145
118 118
123 129
145 145
145 145
140 140
135 135
129 142 84
122 128 79
127 140 84
154 162 100
150 ... 93
145 ... 87
... ... ...
206e 260e
214e 276e
206e 260e
217e 274e
236 286
248 308
233 289
... ...
178e 217e
164e 194e
179e 212e
161e 191e
176e 209e
210 232
210 243
203 235
... ...
... ...
10 10
... ...
10 10
... ...
5g 5g
8 8
6 6
6 6
E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ................
2.001-4.000 # 0.1874
16.0 16.4 6.2 0.31
Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . .
0.160 See Figure 5.4.1.0(a)
Last Revised: Oct 2006, MMPDS-03, Item 05-26. a Mechanical properties also met previous MIL-T-9046, Comp. AB-1. b Mechanical properties were established under MIL-T-9046, Comp. AB-1. c A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(L) = 131 ksi, Ftu(LT) = 132 ksi, and Fty(LT) = 123 ksi. d A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(L) = 133 ksi and Ftu(LT) = 133 ksi. e Bearing values are “dry pin” values per Section 1.4.7.1. f 8%—0.025 to 0.062 in. and 10%—0.063 in. and above. g 5%—0.050 in. and above; 4%—0.033 to 0.049 in. and 3%—0.032 in. and below.
5-60
MMPDS-06 1 April 2011 Table 5.4.1.0(b2). Design Mechanical and Physical Properties of Ti-6Al-4V Sheet, Strip, and Plate Specification . . . . . . . . . . AMS 6945 Form . . . . . . . . . . . . . . . . . Sheet Plate Temper . . . . . . . . . . . . . . . Annealed Thickness, (in.) . . . . . . . . . # 0.1874 0.1875-1.000 1.001-2.000 2.001-3.000 3.001-4.000 Basis . . . . . . . . . . . . . . . . . A B A B A B A B A B Mechanical Properties: Ftu, ksi: L ................. 150 137 132 129 129 139 135 132 132 146 LT . . . . . . . . . . . . . . . . 151 137 a 132 a 129a 129a 146 138 134 134 146a Fty, ksi: L ................. 133 139 123b 122 119 115 128 125 122 118 b LT . . . . . . . . . . . . . . . . 133 144 123 b 122 b 119 b 115 b 136 129 125 123 Fcy, ksi: 146 L ................. 140 129 135 128 132 125 128 121 124 160 LT . . . . . . . . . . . . . . . . 147 136 151 135 143 132 138 127 136 Fsu, ksi: 93 91 85 87 82 84 80 82 80 82 L ................. 94 91 85 91 82 86 80 83 80 83 LT . . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 1.5): 239 232 218 221 210 215 205 210 205 210 L ................. 245 237 222 237 214 224 209 217 209 217 LT . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... ... ... ... ST . . . . . . . . . . . . . . . Fbruc, ksi (e/D = 2.0): 290 282 264 268 255 261 249 255 249 255 L ................. 281 272 255 272 246 257 240 249 240 249 LT . . . . . . . . . . . . . . . . ... ... ... ... ... ... … … … … ST . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 1.5): 213 204 188 196 187 192 182 187 176 181 L ................. 212 196 181 200 180 190 175 184 169 181 LT . . . . . . . . . . . . . . . . … ... … ... ... ... ... ... ... ... ST . . . . . . . . . . . . . . . Fbryc, ksi (e/D = 2.0): 251 240 222 231 220 225 215 220 207 213 L ................. 266 246 227 251 225 238 220 231 212 227 LT . . . . . . . . . . . . . . . . … … ... … ... ... … … … … ST . . . . . . . . . . . . . . . e, percent (S-Basis): d … ... … … … 8 8 8 8 L ................. d ... ... … … … 8 8 8 8 LT . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . 16.0 Ec, 103 ksi . . . . . . . . . . . 16.4 G, 103 ksi . . . . . . . . . . . 6.2 µ ................ 0.31 Physical Properties: ω, lb./in.3 . . . . . . . . . 0.16 C, K, and α . . . . . . . . See Figure 5.4.1.0(a) Issued: Oct 2006, MMPDS-03, Item 03-17 a A-Basis value is specification minimum. The rounded T99 for Ftu (LT) # 0.1874 in. = 147 ksi, for 0.1875-1.000 in. = 142 ksi, for 1.001-2.000 in. = 134 ksi, for 2.001-3.000 in. = 129 ksi and for 3.001-4.000 in. = 129 ksi. b A-Basis value is specification minimum. The rounded T99 for Fty (L) for 0.1875-1.000 in. = 125 ksi, for Fty (LT) # 0.1874 in. = 140 ksi, for 0.1875-1.000 in. = 132 ksi, for 1.001-2.000 in. = 126 ksi, for 2.001-3.000 in. = 122 ksi and for 3.001-4.000 in. = 119 ksi. c Bearing values are “dry pin” values per Section 1.4.7.1. d Elongation minimums are as follows: 0.020-0.024 in. = 6%, 0.025-0.062 in. = 7%, 0.063-0.1874 in. = 8%.
5-61
Table 5.4.1.0(c1). Design Mechanical and Physical Properties of Ti-6Al-4V Bar Specification . . . . . . . . . . . . . . . . . .
AMS 4928
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Bar Annealed
Condition . . . . . . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . . . . . .
<0.500
0.500-1.000
1.001-2.000
2.001-3.000
3.001-4.000
4.001-5.000
5.001-6.000
MMPDS-06 1 April 2011
5-62
S A B A B A B A B A B A B Basis . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ....................... 138 135 133 131 130 128 125 135a 142 140 135 134 130a b a a LT . . . . . . . . . . . . . . . . . . . . . . 142 141 139 138 130a 130a 130a 135 135 144 143 135 130a Fty, ksi: L ....................... 128 125 122 119 120 117 114 125 134 131 125c 125c 120c b c c 131 129 127 125 LT . . . . . . . . . . . . . . . . . . . . . . 120c 120c 119 125 134 132 125 125 120c Fcy, ksi: ... ... ... ... L ....................... ... ... ... 129 138 135 129 129 ... LT . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... ... ... ... ... ... ... Fsu, ksi . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... ... 83 83 82 87 86 Fbru, ksi: ... ... ... ... (e/D = 1.5) . . . . . . . . . . . . . . . . ... ... ... ... 201 201 200 212 209 ... ... ... ... (e/D = 2.0) . . . . . . . . . . . . . . . . 253 253 251 ... ... ... ... 266 262 Fbry, ksi: ... ... ... ... ... ... ... ... (e/D = 1.5) . . . . . . . . . . . . . . . . 177 177 177 190 186 ... ... ... ... ... ... ... ... 205 205 205 (e/D = 2.0) . . . . . . . . . . . . . . . . 220 215 e, percent (S-Basis): 10 ... 10 ... 10 ... 10 ... 10 10 10 L ....................... ... ... 10b 10 10 10 ... ... ... ... 10b 10b 10b LT . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... 10b ... 10 ... 8 ... 8 ... ST . . . . . . . . . . . . . . . . . . . . . . ... ... RA, percent (S-Basis): 25 25 20 20 ... ... ... ... L ....................... 25 25 25 ... ... 20b 20 20 20 ... ... ... ... LT . . . . . . . . . . . . . . . . . . . . . . 20b 20b 20b ... ... 15b 15 15 15 ... ... ... ... ST . . . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... E, 103 ksi . . . . . . . . . . . . . . . . . . . 16.9 Ec, 103 ksi . . . . . . . . . . . . . . . . . . 17.2 G, 103 ksi . . . . . . . . . . . . . . . . . . . 6.2 0.31 µ ......................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . 0.160 C, K, and α . . . . . . . . . . . . . . . . . See Figure 5.4.1.0(a) a A-Basis value is specification minimum. The rounded T99 values for Ftu are as follows: 0.500-1.000 (L) = 137 ksi and (LT) = 140 ksi, 1.001-2.000 (LT) = 139 ksi, 2.001-3.000 (L) = 132 ksi and (LT) = 138 ksi, 3.001-4.000 (LT) = 136 ksi, 4.001-5.000 (LT) = 135 ksi, and 5.001-6.000 (LT) = 134 ksi. b Applicable, providing LT or ST dimension is $ 2.500 inches. c A-Basis value is specification minimum. The rounded T99 values for Fty are as follows: 0.500-1.000 (L)and (LT) = 129 ksi, 1.001-2.000 (L) = 126 ksi and (LT) = 127 ksi,2.001-3.000 (L) = 123 ksi and (LT) = 127 ksi, 3.001-4.000 (LT) = 123 ksi, and 4.001-5.000 (LT) = 121 ksi.
Table 5.4.1.0(c2). Design Mechanical and Physical Properties of Ti-6Al-4V Bar Specification . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . Cross-sectional area, in.2 . . . . Thickness or diameter, in. . . . Basis . . . . . . . . . . . . . . . . . . .
0.500-1.000 A B
1.001-2.000 A B
130 130d
130c 130c
142 144
130c 130c
140 143
130c 130c
138 142
130 130c
135 141
128 130c
133 139
125 130c
131 138
120 120d
120e 120e
132 132
120e 120e
128 129
120e 120e
124 126
119 120e
123 126
119 120e
123 126
119 120
123 126
124 ... 80
124 ... 80
... ... ...
124 ... 80
135 ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
194 244
194 244
... ...
194 244
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
170 197
170 197
... ...
170 197
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10d ...
10 10d ...
... ... ...
10 10d ...
... ... ...
10 10d ...
... ... ...
10 10 8
... ... ...
10 10 8
... ... ...
10 10 8
... ... ...
25 25d ...
25 25d ...
... ... ...
25 25d ...
... ... ...
25 25d ...
... ... ...
25 25 15
... ... ...
20 20 15
... ... ...
20 20 15
... ... ...
E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . Issued: Mar 1959, MIL-HDBK-5; Last Revised: Apr 2008, MMPDS-04, Item 04-09. a b c d e
3.001-4.000 A B
4.001-5.000 A B
5.001-6.000 A B
16.9 17.2 6.5 0.31 0.160 See Figure 5.4.1.0(a)
Mechanical properties were based on MIL-T-9047 and revised under legacy alloy review Apr 2008, Item 04-09. Bar cut from plate does not meet the minimum design values shown in this table. A-Basis value is specification minimum. The rounded T99 values for Ftu are as follows: 0.500-1.000 (L) = 137 ksi and (LT) = 140 ksi, 1.001-2.000 (L) = 134 ksi and (LT) = 139 ksi, 2.001-3.000 (L) = 132 ksi and (LT) = 138 ksi, 3.001-4.000 (LT) = 136 ksi, 4.001-5.000 (LT) = 135 ksi, and 5.001-6.000 (LT) = 134 ksi. Applicable, providing LT dimension is $ 3.000 inches. A-Basis value is specification minimum. The rounded T99 values for Fty are as follows: 0.500-1.000 (L)and (LT) = 126 ksi, 1.001-2.000 (L) = 123 ksi and (LT) = 124 ksi, 2.001-3.000 (L) = 122 ksi and (LT) = 124 ksi, 3.001-4.000 (LT) = 123 ksi, and 4.001-5.000 (LT) = 121 ksi.
MMPDS-06 1 April 2011
5-63
Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fsu, ksi (S-Basis) . . . . . . . Fbru, ksi (S-Basis): (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . Fbry, ksi (S-Basis): (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . e, percent (S-Basis): L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . RA, percent (S-Basis): L .................. LT . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . .
<0.500 S
AMS 6931a Barb Annealed <48 2.001-3.000 A B
Table 5.4.1.0(d). Design Mechanical and Physical Properties of Ti-6Al-4V Bar AMS 4965a, and AMS 6930b
Specification . . . . . . . . c
Form . . . . . . . . . . . . . .
Round, square, and hexagon barc
Rectangular bar
Condition . . . . . . . . . . .
Solution treated and aged
..........
0.5018.000
Thickness, in. . . . . . . .
#0.500
Basis . . . . . . . . . . . . . .
Width, in.
4.0018.000
1.5014.000
4.0018.000
2.0014.000
4.0018.000
3.0018.000
4.0018.000
...
...
...
...
...
2.0013.000
3.0014.000
#0.500
0.5011.000
1.0011.500
1.5012.000
2.0013.000
0.501-1.000
1.001-1.500
1.501-2.000
S
S
S
S
S
S
S
S
S
S
S
S
S
S
160 160
155 155
150 150
150 150
145 145
145 145
140 140
135 135
130 130
165 165
160 160
155 155
150 150
140 140
150 150
145 145
140 140
140 140
135 135
135 135
130 130
125 125
120 120
155 155
150 150
145 145
140 140
130 130
... ... 92
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10
10 10
10 10
10 10
10 10
10 10
10 10
10 10
8 8
10 10
10 10
10 10
10 10
10 10
25 25
20 20
20 20
20 20
20 20
20 20
20 20
20 20
15 15
20 20
20 20
20 20
20 20
20 20
E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . a For AMS 4965, e and RA values may be different than those shown. b Mechanical properties based on MIL-T-9047. c Bar cut from plate does not meet the minimum design values shown in this table.
16.9 17.2 6.2 0.31 0.160 See Figure 5.4.1.0(a)
MMPDS-06 1 April 2011
5-64
Mechanical Properties: Ftu, ksi: L ............ LT . . . . . . . . . . . Fty, ksi: L ............ LT . . . . . . . . . . . Fcy, ksi: L ............ LT . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . Fbry, ksi: (e/D = 1.5) . . . . . (e/D = 2.0) . . . . . e, percent: L ............ LT . . . . . . . . . . . RA, percent: L ............ LT . . . . . . . . . . .
1.0014.000
E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
2.001-3.000 S 130 130 120 120 128 128 79 204 261 182 210 6 6 12 12
16.9 17.2 6.5 0.31 0.160 See Figure 5.4.1.0(a)
Issued: Dec 1968, MIL-HDBK-5A CN3, Item 68-19. Last Revised: Apr 2011, MMPDS-06, Item 09-34 a b c d
Properties were based on MIL-T-81556. A-Basis value is specification minimum. The rounded T99 values are higher than specification values as follows: Ftu (L) and (LT) = 132 ksi. and. Fcy (L) = 124 ksi. Applicable, providing LT dimension is $2.500 inches. Bearing values are “dry pin” values per Section 1.4.7.1.
MMPDS-06 1 April 2011
5-65
Table 5.4.1.0(e). Design Mechanical and Physical Properties of Ti-6Al-4V Extrusion Specification . . . . . . . . . . . . . AMS 4935a AMS 4934a Form . . . . . . . . . . . . . . . . . . . . Extrusion Condition . . . . . . . . . . . . . . . . Annealed Solution treated and aged Thickness or diameter, in. . . . #2.000 2.001-3.000 #0.500 0.501-0.750 0.751-1.000 1.001-2.000 Basis . . . . . . . . . . . . . . . . . . . . A B S A B A B A B S Mechanical Properties: Ftu, ksi: 137 130 155 163 151 157 147 153 140 L . . . . . . . . . . . . . . . . 130b LTc . . . . . . . . . . . . . . 130b 137 130 155 163 151 157 147 155 140 Fty, ksi: 120 120 138 147 138 143 133 140 130 L . . . . . . . . . . . . . . . . 116 120 138 147 138 145 133 142 130 LTc . . . . . . . . . . . . . . 116 120 Fcy, ksi: 129 147 157 147 153 142 150 139 L . . . . . . . . . . . . . . . . 120b 120 130 147 157 147 155 139 152 139 LTc . . . . . . . . . . . . . . 125 ... 88 94 99 92 96 89 93 85 Fsu, ksi . . . . . . . . . . . . . . . 84 ... Fbrud, ksi: 226 243 256 237 246 231 240 220 (e/D = 1.5) . . . . . . . . 214 ... 278 311 327 303 315 295 307 281 ... (e/D = 2.0) . . . . . . . . 264 Fbryd, ksi: 180 208 222 208 216 201 212 196 (e/D = 1.5) . . . . . . . . 174 ... 210 242 257 242 250 233 245 228 (e/D = 2.0) . . . . . . . . 203 ... e, percent (S-Basis): ... 6 ... 6 ... 6 ... 6 L ................ 10 10 ... 6 ... 6 ... 6 ... 6 LTc . . . . . . . . . . . . . . 8 8 RA, percent (S-Basis): ... 12 ... 12 ... 12 ... 12 L ................ 20 20 ... 12 ... 12 ... 12 ... 12 LTc . . . . . . . . . . . . . . 15 15
MMPDS-06 1 April 2011
Table 5.4.1.0(f). Design Mechanical and Physical Properties of Ti-6Al-4V Die Forging
Specification . . . . . . . .
AMS 4928
AMS 4920
Form . . . . . . . . . . . . . .
Die forging
Condition . . . . . . . . . .
Alpha-beta or beta processed, annealed
Alpha-beta processed, annealed
Thickness, in. . . . . . . .
#2.000
2.001-4.000
4.001-6.000
#2.000
2.001-6.000
Basis . . . . . . . . . . . . . .
S
S
S
S
S
135 135a ...
130 130a 130a
130 130 130
130 130a ...
130 130a 130a
125 125a ...
120 120a 120a
120 120 120
120 120a ...
120 120a 120a
... ... ... ...
123 128 ... 79
123 128 ... 79
... ... ... ...
123 128 ... 79
... ...
203 257
203 257
... ...
203 257
... ...
171 201
171 201
... ...
171 201
10 10a ...
10 10a 10a
10 10 8
8 8a ...
8 8a 8a
25 20a ...
25 20a 15a
20 20 15
15 15a ...
15 15a 15a
Mechanical Properties: Ftu, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fty, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fcy, ksi: L ........... LT . . . . . . . . . . ST . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . (e/D = 2.0) . . . Fbry, ksi: (e/D = 1.5) . . . (e/D = 2.0) . . . e, percent: L ........... LT . . . . . . . . . . ST . . . . . . . . . . RA, percent: L ........... LT . . . . . . . . . . ST . . . . . . . . . . E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . µ ...............
16.9 17.2 6.5 0.31
Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . .
0.160 See Figure 5.4.1.0(a)
a Applicable providing LT or ST dimension is $2.500 inches.
5-66
MMPDS-06 1 April 2011
Table 5.4.1.0(g). Design Mechanical and Physical Properties of Ti-6Al-4V Titanium Alloy Casting
Specification . . . . . . . . . .
AMS 4962a
AMS 4992
Form . . . . . . . . . . . . . . . .
Investment Casting
Temper . . . . . . . . . . . . . .
HIP and Annealed
Thickness, in. . . . . . . . . .
#1.000
Location within casting . .
Designated area
Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . e, percent (S-Basis) . . . RA, percent (S-Basis) . .
<0.500 B
A
B
A
B
A
B
125b 119 ... ...
128 122 ... ...
125 111 117 86
129 116 122 89
123 112 119 85
127 116 123 87
120 110 117 85
124 115 124 87
... ...
... ...
201 252
207 260
196 246
202 254
192 242
199 250
... ... 5 ...
... ... ... ...
172 207 5 ...
180 216 ... ...
174 210 4 19
180 217 ... ...
172 209 3 12
182 220 ... ...
16.9 17.4 ... ...
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . b
c
1.500-4.000
A
E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . µ ..................
a
0.500-1.500
0.160 See Figure 5.4.1.0(b) ... See Figure 5.4.1.0(b)
Inactive for new design. A-Basis value is specification minimum. The rounded T99 value is 126 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
5-67
MMPDS-06 1 April 2011
6
9
5
8
4
7
3
-6
10
, 10 in./in./F
.
6
2
K, Btu/[(hr)(ft )(F)/ft]
K
5
4
- Between 70 F and indicated temperature K - At indicated temperature C - At indicated temperature
0.3
2
0.2
C 1
0
0.1
-400
-200
0
200
400
600
800
1000
1200
1400
0.0 1600
Temperature, F Figure 5.4.1.0(a). Effect of temperature on the physical properties of Ti-6Al-4V alloy (wrought products).
5-68
C, Btu/(lb)(F)
3
MMPDS-06 1 April 2011
0.50 α - Between 70 °F and indicated temperature C - At indicated temperature
0.45
8
α
0.35
6 5
0.30
4
0.25
C, Btu/ (lb)(°F)
0.20 C
0.15 0.10 0.05 0 0.00 0
200
400
600
800
1000
1200
1400
1600
1800
Temperature, °F
Figure 5.4.1.0(b). Effect of temperature on the physical properties of Ti-6Al-4V Investment Castings.
5-69
α, 10-6 in./in./°F
7
0.40
MMPDS-06 1 April 2011
.
200
Strength at temperature Exposure up to 1/2 hr
Percentage of Room Temperature Strength
180
Fty
160
140
120
100
80
Ftu
60
Fty 40
20
0
-400
-200
0
200
400
600
800
1000
Temperature, F Figure 5.4.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of annealed Ti-6Al-4V alloy (all wrought products).
5-70
MMPDS-06 1 April 2011
Figure 5.4.1.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of annealed Ti-6Al-4V alloy (all wrought products).
Figure 5.4.1.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of annealed Ti-6Al-4V alloy (all wrought products).
5-71
MMPDS-06 1 April 2011
Figure 5.4.1.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of annealed Ti-6Al-4V alloy sheet and bar.
Figure 5.4.1.1.5. Effect of temperature on the elongation of annealed Ti-6Al-4V alloy sheet and bar.
5-72
MMPDS-06 1 April 2011
280 Ramberg - Osgood n (-423 °F) = 20 n (-321 °F) = 21 n (-110 °F) = 20 n (RT) = 33 n (400 °F) = 29 n (700 °F) = 19 n (900 °F) = 9.6
240
Stress, ksi
200
-423 °F
-321 °F -110 °F
160 RT 120 400 °F 700 °F 900 °F
80
40
1/2 -hr exposure TYPICAL
0 0
4
8
12
16
20
Strain, 0.001 in./in.
Figure 5.4.1.1.6(a). Typical tensile stress-strain curves at cryogenic, room, and elevated temperatures for annealed Ti-6Al-4V alloy extrusion.
5-73
MMPDS-06 1 April 2011
200 0 .5 - h r e x p o s u re
T i-6 A l- 4 V a n n e a le d e x tr u s io n s
L o n g itu d in a l
Stress, ksi
160
RT
o
400
120
80
F
700
o
F
900
o
F R a m b e rg - O s g o o d n (R T ) = 2 1 n (4 0 0 o F ) = 1 9 n (7 0 0 oF ) = 1 4 n ( 9 0 0 o F ) = 9 .8
40
T Y P IC A L 0 0
4
8
12
16
20
S tr a in , 0 .0 0 1 in ./in .
Figure 5.4.1.1.6(b). Typical compressive stress-strain curves at room and elevated temperatures for annealed Ti-6Al-4V alloy extrusions.
200 0 .5 -h r e x p o s u re
T i-6 A l- 4 V a n n e a le d e x tru s io n s
L o n g itu d in a l
R a m b e rg - O s g o o d n (R T ) = 2 1 n (4 0 0 oF ) = 1 9 n (7 0 0 oF ) = 1 4 n (9 0 0 o F ) = 9 .8
160
Stress, ksi
RT
120
o
F
700
o
400
F
80 900
o
F T Y P IC A L
40
0 0
4
8
12
16
20
24
C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 3 k s i
Figure 5.4.1.1.6(c). Typical compressive tangent-modulus curves at room and elevated temperatures for annealed Ti-6Al-4V alloy extrusions.
5-74
MMPDS-06 1 April 2011
140
1.500 - 4.00 in.
120
Stress, ksi
100
< 1.500 in.
80
60
Ramberg-Osgood TYS (ksi) n (<1.50 in.) = 16 116 n (1.50-4.00 in.) = 18 118
40
TYPICAL Ti-6Al-4V castings
20
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. Figure 5.4.1.1.6(d). Typical tensile stress-strain curves for AMS 4992 Ti-6Al-4V castings at room temperature.
5-75
MMPDS-06 1 April 2011
Figure 5.4.1.1.6(e). Typical tensile stress-strain curves (full range) for annealed Ti-6Al-4V sheet at room temperature.
5-76
MMPDS-06 1 April 2011
140 130
X 120
1.500-4.00 inch
<1.500 in.
110
X
100
Stress, ksi
90 80 70 60 50 40 30
TYPICAL Ti-6Al-4V casting
20 10 0 0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
Strain, in./in. Figure 5.4.1.1.6(f). Typical stress-strain curves (full-range) for AMS 4992 Ti-6Al4V castings at room temperature.
5-77
MMPDS-06 1 April 2011
Figure 5.4.1.1.8(a). Best-fit S/N curves for unnotched Ti-6Al-4V annealed bar, longitudinal direction.
Correlative Information for Figure 5.4.1.1.8(a)
Product Form: Bar, 1.25- inches diameter Properties: TUS, ksi 137
TYS, ksi 129
Temp.,EF RT
Specimen Details: Unnotched 0.280-inch diameter Surface Conditions: 0 ksi mean stress—32 RMS ground 47 ksi mean stress—100 RMS machined 70 ksi mean stress—32 RMS ground and 100 RMS machined
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — RT Environment — Air No. of Heats/Lots: Not specified Equivalent Stress Equations: Log Nf = 19.18-7.55 log Smax Sm = 0 = 5.70-0.94 Log (Smax-82.3), Sm = 47 = 7.08-2.18 Log (Smax-99.6), Sm = 70 Sample Size = 134
Reference: 5.4.1.1.8(a)
5-78
MMPDS-06 1 April 2011
Figure 5.4.1.1.8(b). Best-fit S/N curves for notched, Kt = 2.43, Ti-6Al-4V annealed bar, longitudinal direction.
Correlative Information for Figure 5.4.1.1.8(b) Product Form: Bar, 1-inch diameter Properties: TUS, ksi 150
TYS, ksi 143
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — RT Environment — Air
Temp.,EF RT
Specimen Details: 60E V-notch 0.025-inch notch radius 0.260-inch test section diameter at notch
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 24.1-10.7 log Seq Seq = Smax(1-R)0.49 Std. Error of Estimate, Log (Life) = 0.677 Standard Deviation, Log (Life) = 0.920 R2 = 46%
Surface Condition: RMS 100 machined Reference: 5.4.1.1.8(a)
Sample Size = 46 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-79
MMPDS-06 1 April 2011
Figure 5.4.1.1.8(c). Best-fit S/N curves for unnotched annealed Ti6Al-4V extrusion at room temperature, longitudinal direction.
Correlative Information for Figure 5.4.1.1.8(c)
Product Form: Extrusion, 0.300- and 0.560- inch thick Properties: TUS, ksi 143
TYS, ksi Temp.,EF 127 RT
Specimen Details: Unnotched 1.50-inches gross width 0.75- inch net width 4.00-inches net section radius Surface Conditions: RMS 63
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — RT Environment — Air No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 24.8-9.6 log (Smax) Std. Error of Estimate, Log (Life) = 0.41 Standard Deviation, Log (Life) = 0.81 R2 = 75%
Reference: 5.4.1.1.8(b) Sample Size = 30 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-80
MMPDS-06 1 April 2011
Figure 5.4.1.1.8(d). Best-fit S/N curves for notched, Kt = 2.7, annealed Ti-6Al-4V extrusion at room temperature, longitudinal direction.
Correlative Information for Figure 5.4.1.1.8(d) Product Form: Extrusion, 0.300- and 0.560-inch thick Properties:
TUS, ksi 143
TYS, ksi 127
Temp.,EF RT
Specimen Details: Notched, hole type, Kt = 2.7 0.250-inch hole diameter 1.50-inches gross width 1.25-inches net width Surface Conditions: RMS 63 Reference: 5.4.1.1.8(b)
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — RT Environment — Air No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 14.8-5.8 log (Seq-14) Seq = Smax(1-R)0.50 Std. Error of Estimate, Log (Life) = 0.41 Standard Deviation, Log (Life) = 0.86 R2 = 78% Sample Size = 40 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-81
MMPDS-06 1 April 2011
Figure 5.4.1.1.8(e). Best-fit S/N curves for notched, Kt = 2.8, annealed Ti-6Al-4V extrusion at 400E E and 600E EF, longitudinal direction.
Correlative Information for Figure 5.4.1.1.8(e) Product Form: Extrusion, 0.300- and 0.560-inch thick Properties:
TUS, ksi 112 101
TYS, ksi 92 77
Temp.,EF 400 600
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — 400E and 600EF Environment — Air No. of Heats/Lots: Not specified
Specimen Details: Notched, hole type, Kt = 2.8 0.250-inch hole diameter 1.250-inches net width 1.500-inch gross width Surface Conditions: RMS 63
Equivalent Stress Equation: Log Nf = 21.0-9.18 log (Seq) Seq = Smax(1-R)0.62 Std. Error of Estimate, Log (Life) = 0.50 Standard Deviation, Log (Life) = 0.89 R2 = 68%
Reference: 5.4.1.1.8(b) Sample Size = 47 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-82
MMPDS-06 1 April 2011
Figure 5.4.1.1.8(f). Best-fit S/N curves for unnotched Ti-6Al-4V annealed sheet, long transverse direction.
Correlative Information for Figure 5.4.1.1.8(f) Product Form: Sheet, 0.063-, 0.070-, 0.078-inch thick Properties:
TUS, ksi 147-152
TYS, ksi 136-143
Temp.,EF RT
Specimen Details: Unnotched, 0.375 inch width Surface Conditions: Machined to 32 RMS, lightly polished with 400 grit emery paper Reference: 5.4.1.1.8(c)
Test Parameters: Loading — Axial Frequency — 10-95 Hz Temperature — RT Environment — Air No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 12.59-4.89 log (Seq-82.8) Seq = Smax(1-R)0.29 Std. Error of Estimate, Log (Life) = 0.62 Standard Deviation, Log (Life) = 0.88 R2 = 50.6% Sample Size = 47 [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
5-83
MMPDS-06 1 April 2011
Figure 5.4.1.1.8(g). Best-fit S/N curves for notched, Kt = 3.0, Ti-6Al-4V annealed sheet, longitudinal and long transverse direction.
Correlative Information for Figure 5.4.1.1.8(g) Product Form: Sheet, 0.063-, 0.070-, 0.078-inch thick Properties:
TUS, ksi 145-152
TYS, ksi 136-146
Temp.,EF RT
Specimen Details: Notched, Kt = 3.0 0.487-inch net section Surface Conditions: Machined to 32 RMS, lightly polished with 400 grit emery paper Reference: 5.4.1.1.8(c)
Test Parameters: Loading — Axial Frequency — 10-95 Hz Temperature — RT Environment — Air No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 19.28-8.25 log (Seq) Seq = Smax(1-R)0.57 Std. Error of Estimate, Log (Life) = 0.53 Standard Deviation, Log (Life) = 0.87 R2 = 62.5% Sample Size = 141 [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
5-84
MMPDS-06 1 April 2011 130 R = -0.50 R = -0.50 Mean Curve R = 0.10 R = 0.10 Runouts R = 0.10 Mean Curve R = 0.50 R = 0.50 Mean Curve
120
Maximum Stress, ksi
110
100
90
80
70
60
50 10,000
100,000
1,000,000
10,000,000
100,000,000
Cycles to Failure
Figure 5.4.1.1.8(h). Best-fit S/N curves for unnotched Ti-6Al-4V mill annealed casting, 0.50 inch thick, room temperature.
Correlative Information for Figure 5.4.1.1.8(h) Product Form: Casting, 0.50-inch thick Properties: TUS, ksi 131
TYS, ksi 118
Temp.,EF RT
Specimen Details: Unnotched 0.160-inch diameter Surface Conditions: Radius and uniform gage section finished using low stress grinding. Final finish of 8 RMS or better obtained with polishing in axial direction. Reference: 5.4.1.1.8(d)
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — RT Environment — Air No. of Heats/Lots: 3 heats, 18 cast plates Equivalent Stress Equation: Log Nf = 21.46 - 8.132 log Seq Seq = Smax(1-R)0..308 Std. Error of Estimate, Log (Life) = 0.297 Standard Deviation, Log (Life) = 0.588 R2 = 74.5% Sample Size = 111 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-85
MMPDS-06 1 April 2011 Ti-6Al-4V MA Castings, 600F, 0.50 Inch Thick 100
90
Maximum Stress, ksi
80
70
60
50
40
R = -0.50 R = -0.50 Mean Curve R = 0.10 R = 0.10 Runouts R = 0.10 Mean Curve R = 0.50 R = 0.50 Mean Curve R = 0.50 DNF
30 1,000
10,000
100,000
1,000,000
10,000,000
100,000,000
Cycles to Failure
Figure 5.4.1.1.8(i). Best-fit S/N curves for unnotched Ti-6Al-4V mill annealed casting, 0.50-inch thick, 600E EF.
Correlative Information for Figure 5.4.1.1.8(i) Product Form: Casting, 0.50-inch thick Properties: TUS, ksi 85
TYS, ksi 67
Temp.,EF 600
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — 600EF Environment — Air
Specimen Details: Unnotched 0.160-inch diameter
No. of Heats/Lots: 3 heats, 18 cast plates
Surface Conditions: Radius and uniform gage section finished using low stress grinding. Final finish of 8 RMS or better obtained with polishing in axial direction.
Equivalent Stress Equation: Log Nf = 38.59 - 17.98 log Seq Seq = Smax(1-R)0..404 Std. Error of Estimate, Log (Life) = 0.386 Standard Deviation, Log (Life) = 0.974 R2 = 84.3%
Reference: 5.4.1.1.8(d)
Sample Size = 33 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-86
MMPDS-06 1 April 2011
120 R = -0.50 R = -0.50 Mean Curve R = 0.10 R = 0.10 Runouts R = 0.10 Mean Curve R = 0.50 R = 0.50 Mean Curve R = 0.50 DNF
110
Maximum Stress, ksi
100
90
80
70
60
50
40 10,000
100,000
1,000,000
10,000,000
100,000,000
Cycles to Failure
Figure 5.4.1.1.8(j). Best-fit S/N curves for unnotched Ti-6Al-4V mill annealed casting, 3.00 inch thick, room temperature.
Correlative Information for Figure 5.4.1.1.8(j) Product Form: Casting, 3.00-inches thick Properties: TUS, ksi 130
TYS, ksi 120
Temp.,EF RT
Specimen Details: Unnotched 0.160-inch diameter Surface Conditions: Radius and uniform gage section finshed using low stress grinding. Final finish of 8 RMS or better obtained with polishing in axial direction. Reference: 5.4.1.1.8(d)
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — RT Environment — Air No. of Heats/Lots: 3 heats, 18 cast plates Equivalent Stress Equation: Log Nf = 26.88 - 11.34 log Seq Seq = Smax(1-R)0..371 Std. Error of Estimate, Log (Life) = 0.338 Standard Deviation, Log (Life) = 0.768 R2 = 80.7% Sample Size = 39 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-87
MMPDS-06 1 April 2011 120 R = -0.50 R = -0.50 Mean Curve R = 0.10 R = 0.10 Runouts R = 0.10 Mean Curve R = 0.50 R = 0.50 Mean Curve R = 0.50 DNF
110
Maximum Stress, ksi
100
90
80
70
60
50
40 1,000
10,000
100,000
1,000,000
10,000,000
100,000,000
Cycles to Failure
Figure 5.4.1.1.8(k). Best-fit S/N curves for unnotched Ti-6Al-4V mill annealed casting, 3.00 inch thick, 600E EF.
Correlative Information for Figure 5.4.1.1.8(k)
Product Form: Casting, 3.00-inches thick Properties: TUS, ksi 80
TYS, ksi 66
Test Parameters: Loading — Axial Frequency — 1800 cpm Temperature — 600EF Environment — Air
Temp.,EF 600
Specimen Details: Unnotched 0.160-inch diameter
No. of Heats/Lots: 3 heats, 18 cast plates
Surface Conditions: Radius and uniform gage section finished using low stress grinding. Final finish of 8 RMS or better obtained with polishing in axial direction.
Equivalent Stress Equation: Log Nf = 37.76 - 18.04 log Seq Seq = Smax(1-R)0..363 Std. Error of Estimate, Log (Life) = 0.566 Standard Deviation, Log (Life) = 0.815 R2 = 51.8%
Reference: 5.4.1.1.8(d)
Sample Size = 34 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-88
MMPDS-06 1 April 2011
. .
Strain Range, in./in.
0.1 1.00-Inch Casting, R, = -1.0 0.50-Inch Casting, R, = -0.50 3.00 -Inch Casting, R, = -0.50 0.500-Inch Casting, R, = 0.10 3.00-Inch Casting, R, = 0.10 Mean Curve, R, = -1.0 Mean Curve, R, = -0.50 Mean Curve, R, = 0.10
0.01
0.001 1000
10000
100000
1000000
10000000
Fatigue Life, Cycles
120
80
100
80
Mean Stress, ksi
Stress Amplitude, ksi
60
60
40
Dashed lines - Predicted Mean Stresses without Relaxation Solid line - Predicted Mean Stresses with Relaxation
40
20
0
20
0 0.000 0.002 0.004 0.006 0.008 0.010
-20 0.000
Strain Amplitude, in./in.
0.002
0.004
0.006
0.008
Strain Amplitude, in./in.
Figure 5.4.1.1.8(l). Best fit strain/life curve, cyclic stress-strain curve, and mean stress relaxation curve for Ti-6Al-4V HIP investment castings at room temperature.
5-89
MMPDS-06 1 April 2011
Correlative Information for Figure 5.4.1.1.8(l) Product Form: AMS 4992 HIP Investment Casting, 0.50-, 1.00-, and 3.00inch thickness
References: 5.4.1.1.8(h) Test Parameters: Strain Rate/Frequency - 1 Hz Wave Form - Triangular Temperature - RT Atmosphere - Lab Air
Thermal Mechanical Processing History: HIP and anneal Properties: TUS, ksi TYS, ksi E, % Temp. EF 0.50 inch 133 121 9.4 75 3.00 inch 131 119 6.5 75
No. of Heats/Lots: 8, 4/thickness Equivalent Strain Equation: Log Nf = -17.666 - 9.913 log (εeq) εeq = (2εa)0.35(σmax/E)0.65 Std. Error of Estimate, Log (Life) = 0.358 Standard Deviation, Log (Life) = 0.808 R2 = 80.4%
Stress-Strain Equations: Cyclic (Companion Specimens) εa = σa/E + 3.556 x 10-11(σa)3.527 E = 17.32 Mean Stress Relaxation σm = 109.6 - 19,420(εa)
Sample Size = 65
Specimen Details: Uniform gage test section 0.200-inch diameter RMS = 8 µε
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
5-90
MMPDS-06 1 April 2011
1.E-01
Fatigue Crack Propagation Rate, da/dN, in./cycle
1.E-02
1.E-03
1.E-04
1.E-05
1.E-06
1.E-07
1.E-08
Stress Ratio, R
Frequency f, Hz
No. of Specimens
No. of Data Points
0.10
1 - 25
9
351
0.70
1 - 25
6
260
1.E-09 1
10
100
1000
Stress Intensity Factor Range, ∆K, ksi-in0.50 Figure 5.4.1.1.9(a1). Fatigue-crack-propagation data for 0.250-inch thick Ti-6Al-4V millannealed titanium alloy plate with buckling restraint. [Reference 5.4.1.1.9(a).] Specimen Thickness: Specimen Width: Specimen Type:
0.25 inch 9.6, 16, 32 inches M(T)
5-91
Environment: Temperature: Orientation:
50% R.H. RT L-T
MMPDS-06 1 April 2011
Table 5.4.1.1.9(a1) Typical Fatigue Crack Growth Rate Data for Ti-6Al-4V Plate, as Shown Graphically in Figure 5.4.1.1.9(a1) Stress Ratio ∆K, ksi-in0.50
0.10
Stress Ratio 0.70
∆K, ksi-in0.50
da/dN, in./cycle 3.76 3.98 4.22 4.47 4.73 5.01 5.31 5.62 5.96 6.31 6.68 7.08 7.50 7.94 8.41 8.91 9.44 10.00 10.59 11.22 11.89 12.59 13.34 14.13 14.96 15.85 16.79 17.78 18.84 19.95 21.14 22.39
8.71E-08 1.36E-07 2.04E-07 2.92E-07 4.04E-07 5.45E-07 7.19E-07 9.31E-07 1.19E-06 1.50E-06 1.88E-06 2.34E-06 2.89E-06 3.57E-06 4.38E-06 5.38E-06 6.59E-06 8.06E-06 9.84E-06 1.20E-05 1.46E-05 1.77E-05 2.15E-05
0.10
0.70
da/dN, in./cycle
6.65E-08 8.54E-08 1.09E-07 1.37E-07 1.73E-07 2.17E-07 2.72E-07 3.41E-07 4.28E-07 5.37E-07 6.76E-07 8.54E-07 1.08E-06 1.37E-06 1.75E-06 2.23E-06 2.86E-06 3.66E-06 4.70E-06 6.03E-06 7.73E-06 9.89E-06 1.26E-05 1.60E-05 2.03E-05 2.55E-05 3.18E-05 3.94E-05 4.84E-05 5.89E-05 7.09E-05 8.46E-05
23.71 25.12 26.61 28.18 29.85 31.62 33.50 35.48 37.58 39.81 42.17 44.67 47.32 50.12 53.09 56.23 59.57 63.10 66.83 70.80 74.99 79.43 84.14 89.13 94.41 100.00 105.93 112.20 118.85 125.89 133.35 141.25
5-92
2.60E-05 3.13E-05 3.76E-05 4.50E-05 5.36E-05 6.38E-05 7.56E-05 8.93E-05 1.05E-04 1.24E-04 1.46E-04 1.71E-04 2.01E-04 2.36E-04 2.79E-04 3.31E-04 3.94E-04 4.72E-04 5.71E-04 6.98E-04 8.63E-04 1.08E-03 1.37E-03 1.77E-03 2.33E-03 3.12E-03 4.26E-03 5.95E-03 8.47E-03 1.23E-02 1.83E-02 2.79E-02
9.99E-05 1.17E-04 1.36E-04 1.57E-04 1.80E-04 2.06E-04 2.36E-04 2.72E-04 3.15E-04 3.71E-04 4.46E-04 5.50E-04 7.03E-04 9.38E-04 1.32E-03 1.99E-03
MMPDS-06 1 April 2011
1.E-01
Fatigue Crack Propagation Rate, da/dN, in./cycle
1.E-02
1.E-03
1.E-04
1.E-05
1.E-06
1.E-07 Stress Ratio, R
Frequency f, Hz
No. of Specimens
0.40
1 - 25
7
No. of Data Points
1.E-08 263
1.E-09 1
10
100
1000
Stress Intensity Factor Range, ∆K, ksi-in0.50 Figure 5.4.1.1.9(a2). Fatigue-crack-propagation data for 0.250-inch thick Ti-6Al-4V mill-annealed titanium alloy plate with buckling restraint. [Reference 5.4.1.1.9(a).] Specimen Thickness: Specimen Width: Specimen Type:
0.25 inch 9.6, 16, 32 inches M(T)
Environment: Temperature: Orientation:
5-93
50% R.H. RT L-T
MMPDS-06 1 April 2011
Table 5.4.1.1.9(a2) Typical Fatigue Crack Growth Rate Data for Ti-6Al-4V Plate, as Shown Graphically in Figure 5.4.1.1.9(a2) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.40 da/dN, in./cycle
0.40 da/dN, in./cycle
5.62
7.92E-08
25.12
5.70E-05
5.96
1.37E-07
26.61
7.00E-05
6.31
2.20E-07
28.18
8.55E-05
6.68
3.31E-07
29.85
1.04E-04
7.08
4.72E-07
31.62
1.25E-04
7.50
6.46E-07
33.50
1.50E-04
7.94
8.53E-07
35.48
1.78E-04
8.41
1.10E-06
37.58
2.11E-04
8.91
1.38E-06
39.81
2.48E-04
9.44
1.71E-06
42.17
2.89E-04
10.00
2.10E-06
44.67
3.35E-04
10.59
2.57E-06
47.32
3.88E-04
11.22
3.12E-06
50.12
4.47E-04
11.89
3.79E-06
53.09
5.16E-04
12.59
4.61E-06
56.23
5.96E-04
13.34
5.62E-06
59.57
6.92E-04
14.13
6.87E-06
63.10
8.09E-04
14.96
8.42E-06
66.83
9.56E-04
15.85
1.04E-05
70.80
1.15E-03
16.79
1.28E-05
74.99
1.40E-03
17.78
1.58E-05
79.43
1.75E-03
18.84
1.96E-05
84.14
2.24E-03
19.95
2.43E-05
89.13
2.97E-03
21.14
3.02E-05
94.41
4.09E-03
22.39
3.74E-05
100.00
5.88E-03
23.71
4.63E-05
105.93
8.89E-03
5-94
MMPDS-06 1 April 2011
Fatigue Crack Propagation Rate, da/dN, in./cycle
10-3
10-4
. .
10-5
10-6
10-7 Ti-6Al-4V Castings, t = 0.5 in. R = -0.5 R = 0.4 Best Fit R = - 0.5 Best Fit R = 0.4 10-8 1
10
100
1000
Stress Intensity Range, K, ksi-in. 1/2 Figure 5.4.1.1.9(b). Typical-crack-propagation data for 0.50-inch thick AMS 4992 Ti6Al-4V castings at R = 0.40 and -0.50. [Reference 5.4.1.1.9(b)]
Specimen Thickness: 0.40 inch Specimen Width: 3.00 inches Specimen Type: C(T)
Environment: Temperature: Orientation:
5-95
Lab Air 75EF NA
MMPDS-06 1 April 2011
Table 5.4.1.1.9(b) Typical Fatigue Crack Growth Rate Data for Ti-6Al-4V Castings, as Shown Graphically in Figure 5.4.1.1.9(b) Stress Ratio ∆K, ksi-in0.50
-0.50
Stress Ratio 0.40
∆K, ksi-in0.50
da/dN, in./cycle
-0.50
0.40
da/dN, in./cycle
8.91
1.73E-07
28.18
1.00E-05
2.54E-05
9.44
2.09E-07
29.85
1.30E-05
2.90E-05
10.00
2.66E-07
31.62
1.64E-05
3.28E-05
10.59
1.41E-07
3.42E-07
33.50
2.02E-05
3.70E-05
11.22
1.82E-07
4.42E-07
35.48
2.43E-05
4.14E-05
11.89
2.22E-07
5.87E-07
37.58
2.84E-05
4.60E-05
12.59
2.64E-07
8.10E-07
39.81
3.25E-05
5.09E-05
13.34
3.11E-07
1.17E-06
42.17
3.65E-05
5.62E-05
14.13
3.68E-07
1.72E-06
44.67
4.03E-05
6.23E-05
14.96
4.44E-07
2.51E-06
47.32
4.41E-05
6.97E-05
15.85
5.49E-07
3.52E-06
50.12
4.79E-05
7.98E-05
16.79
6.95E-07
4.64E-06
53.09
5.20E-05
9.48E-05
17.78
9.02E-07
5.84E-06
56.23
5.65E-05
18.84
1.20E-06
7.51E-06
59.57
6.18E-05
19.95
1.61E-06
9.62E-06
63.10
6.80E-05
21.14
2.20E-06
1.18E-05
66.83
7.52E-05
22.39
3.03E-06
1.42E-05
70.80
8.35E-05
23.71
4.15E-06
1.66E-05
74.99
9.22E-05
25.12
5.65E-06
1.93E-05
79.43
1.00E-04
26.61
7.60E-06
2.22E-05
84.14
1.05E-04
5-96
MMPDS-06 1 April 2011
Fatigue Crack Propagation Rate, da/dN, in./cycle
10-3
10-4
. .
10-5
10-6
10-7 Ti-6Al-4V Castings, t = 3.0 in. R = -0.5 R = 0.4 Best Fit R = - 0.5 Best Fit R = 0.4 10-8 1
10
100
1000
Stress Intensity Range, K, ksi-in. 1/2 Figure 5.4.1.1.9(c). Typical-crack-propagation data for 3.00-inch thick AMS 4992 Ti6Al-4V castings at R = 0.40 and -0.50. [Reference 5.4.1.1.9(b)]
Specimen Thickness: 0.40 inch Specimen Width: 3.00 inches Specimen Type: C(T)
Environment: Temperature: Orientation:
5-97
Lab Air 75EF NA
MMPDS-06 1 April 2011
Table 5.4.1.1.9(c) Typical Fatigue Crack Growth Rate Data for Ti-6Al-4V Castings, as Shown Graphically in Figure 5.4.1.1.9(c) Stress Ratio Stress Ratio ∆K, ksi-in0.50
-0.50
0.40
∆K, ksi-in0.50
da/dN, in./cycle
-0.50
0.40
da/dN, in./cycle
8.91
6.29E-08
29.85
2.10E-06
8.19E-06
9.44
8.80E-08
31.62
2.78E-06
9.53E-06
10.00
1.10E-07
33.50
3.70E-06
1.11E-05
10.59
1.30E-07
35.48
4.95E-06
1.29E-05
11.22
1.49E-07
37.58
6.62E-06
1.51E-05
11.89
1.72E-07
39.81
8.79E-06
1.79E-05
12.59
2.02E-07
42.17
1.16E-05
2.15E-05
13.34
2.45E-07
44.67
1.50E-05
2.61E-05
14.13
1.49E-07
3.06E-07
47.32
1.91E-05
3.17E-05
14.96
1.94E-07
3.94E-07
50.12
2.38E-05
3.79E-05
15.85
2.40E-07
5.20E-07
53.09
2.91E-05
4.35E-05
16.79
2.87E-07
6.99E-07
56.23
3.49E-05
4.62E-05
17.78
3.37E-07
9.47E-07
59.57
4.10E-05
18.84
3.93E-07
1.29E-06
63.10
4.74E-05
19.95
4.59E-07
1.73E-06
66.83
5.43E-05
21.14
5.41E-07
2.31E-06
70.80
6.21E-05
22.39
6.48E-07
3.01E-06
74.99
7.16E-05
23.71
7.90E-07
3.84E-06
79.43
8.42E-05
25.12
9.82E-07
4.79E-06
84.14
1.03E-04
26.61
1.24E-06
5.83E-06
89.13
1.33E-04
28.18
1.60E-06
6.97E-06
5-98
MMPDS-06 1 April 2011
Fatigue Crack Propagation Rate, da/dN, in./cycle
10-3
10-4
. .
10-5
10-6
10-7 Ti-6Al-4V Castings, t = 0.5 in. R = 0.1 R = 0.8 Best Fit R = 0.1 Best Fit R = 0.8 10-8 1
10
100
1000
Stress Intensity Range, K, ksi-in. 1/2 Figure 5.4.1.1.9(d). Typical-crack-propagation data for 0.50-inch thick AMS 4992 Ti-6Al-4V castings at R = 0.10 and 0.80. [Reference 5.4.1.1.9(b)]
Specimen Thickness: 0.40 inch Specimen Width: 3.00 inches Specimen Type: C(T)
Environment: Temperature: Orientation:
5-99
Lab Air 75EF NA
MMPDS-06 1 April 2011
Table 5.4.1.1.9(d) Typical Fatigue Crack Growth Rate Data for Ti-6Al-4V Castings, as Shown Graphically in Figure 5.4.1.1.9(d) Stress Ratio ∆K, ksi-in0.50
0.10
Stress Ratio 0.80
∆K, ksi-in0.50
da/dN, in./cycle
0.10
0.80
da/dN, in./cycle
7.50
1.80E-07
23.71
9.77E-06
7.94
2.24E-07
25.12
1.20E-05
8.41
2.92E-07
26.61
1.44E-05
8.91
3.95E-07
28.18
1.71E-05
9.44
5.48E-07
29.85
2.04E-05
10.00
7.68E-07
31.62
2.38E-05
10.59
1.05E-07
1.08E-06
33.50
2.76E-05
11.22
1.57E-07
1.51E-06
35.48
3.18E-05
11.89
2.04E-07
2.09E-06
37.58
3.65E-05
12.59
2.55E-07
2.83E-06
39.81
4.18E-05
13.34
3.23E-07
3.76E-06
42.17
4.78E-05
14.13
4.27E-07
4.87E-06
44.67
5.47E-05
14.96
5.92E-07
6.14E-06
47.32
6.26E-05
15.85
8.58E-07
7.56E-06
50.12
7.19E-05
16.79
1.28E-06
9.08E-06
53.09
8.27E-05
17.78
1.92E-06
1.07E-05
56.23
9.57E-05
18.84
2.85E-06
1.24E-05
59.57
1.11E-04
19.95
4.13E-06
1.42E-05
63.10
1.30E-04
21.14
5.75E-06
1.62E-05
66.83
1.54E-04
22.39
7.66E-06
1.87E-05
70.80
1.83E-04
5-100
2.19E-05
MMPDS-06 1 April 2011
Fatigue Crack Propagation Rate, da/dN, in./cycle
10-3
10-4
. .
10-5
10-6
10-7 Ti-6Al-4V Castings, t = 3.0 in. R = 0.1 R = 0.8 Best Fit R = 0.1 Best Fit R = 0.8 10-8 1
10
100
Stress Intensity Range, K, ksi-in.
1000 1/2
Figure 5.4.1.1.9(e). Typical-crack-propagation data for 3.00-inch thick AMS 4992 Ti-6Al-4V castings at R = 0.10 and 0.80. [Reference 5.4.1.1.9(b)] Specimen Thickness: 0.50 inch Specimen Width: 3.00 inches Specimen Type: C(T)
Environment: Temperature: Orientation:
5-101
Lab Air 75EF NA
MMPDS-06 1 April 2011
Table 5.4.1.1.9(e) Typical Fatigue Crack Growth Rate Data for Ti-6Al-4V Castings, as Shown Graphically in Figure 5.4.1.1.9(e) Stress Ratio Stress Ratio ∆K, ksi-in0.50
0.10
0.80
∆K, ksi-in0.50
da/dN, in./cycle
0.10
0.80
da/dN, in./cycle
8.91
6.40E-08
26.61
1.66E-06
9.44
1.26E-07
28.18
2.23E-06
10.00
2.08E-07
29.85
3.00E-06
10.59
3.00E-07
31.62
4.02E-06
11.22
3.99E-07
33.50
5.35E-06
11.89
5.05E-07
35.48
7.01E-06
12.59
1.01E-07
6.24E-07
37.58
9.01E-06
13.34
1.34E-07
7.66E-07
39.81
1.13E-05
14.13
1.67E-07
9.44E-07
42.17
1.39E-05
14.96
2.01E-07
1.17E-06
44.67
1.67E-05
15.85
2.36E-07
1.47E-06
47.32
1.96E-05
16.79
2.76E-07
1.84E-06
50.12
2.26E-05
17.78
3.24E-07
2.33E-06
53.09
2.58E-05
18.84
3.85E-07
2.94E-06
56.23
2.94E-05
19.95
4.68E-07
3.72E-06
59.57
3.41E-05
21.14
5.79E-07
4.72E-06
63.10
4.07E-05
22.39
7.34E-07
6.06E-06
66.83
5.13E-05
23.71
9.48E-07
7.99E-06
70.80
7.00E-05
25.12
1.25E-06
74.99
1.07E-04
5-102
MMPDS-06 1 April 2011
Figure 5.4.1.2.1(a) Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of solution-treated and aged Ti-6Al-4V alloy (all products).
5-103
MMPDS-06 1 April 2011
Percent of Room Temperature Strength
100
S tre n g th a t T e m p e ra tu re E x p o s u re u p to 1 /2 h o u r 80
F tu
60
F ty 40
20
T i-6 A l-4 V C a s tin g t = 0 .5 in c h 0 0
100
200
300
400
500
600
700
800
900
o
T e m p e ra tu re , F Figure 5.4.1.2.1(b). Effect of temperature on tensile ultimate (Ftu) and tensile yield (Fty) strength for AMS 4992 Ti-6Al-4V castings, 0.5 inch thickness.
Percent of Room Temperature Strength
100
Strength at T em perature Exposure up to 1/2 hour 80
F tu
60
F ty
40
20
T i-6Al-4V C asting t = 3.0 inch 0 0
100
200
300
400
500
600
700
800
900
o
Tem perature, F Figure 5.4.1.2.1(c). Effect of temperature on tensile ultimate (Ftu) and tensile yield (Fty) strength for AMS 4992 Ti-6Al-4V castings, 3.0 inch thickness.
5-104
MMPDS-06 1 April 2011
Figure 5.4.1.2.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of solution-treated and aged Ti-6Al-4V alloy (all products).
Figure 5.4.1.2.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of solution-treated and aged Ti-6Al-4V alloy (all products).
5-105
MMPDS-06 1 April 2011
Figure 5.4.1.2.4(a) Effect of temperature on the tensile and compressive moduli (E and Ec) of solution-treated and aged Ti-6Al-4V alloy.
Percent of Room Temperature Modulus
100
80
M o d u lu s a t T e m p e ra tu re T Y P IC A L 60
40
T i-6 A l-4 V C a s tin g t = 0 .5 in c h
20
0 0
100
200
300
400
500
600
700
800
900
o
T e m p e ra tu re , F Figure 5.4.1.2.4(b). Effect of temperature on tensile modulus (E) for AMS 4992 Ti-6Al4V castings, 0.5 inch thickness.
5-106
MMPDS-06 1 April 2011
Percent of Room Temperature Modulus
100
80
M o d u lu s a t T e m p e ra tu re T Y P IC A L 60
40
20
T i-6 A l-4 V C a s tin g t = 3 .0 in c h 0 0
100
200
300
400
500
600
700
800
900
o
T e m p e ra tu re , F Figure 5.4.1.2.4(c). Effect of temperature on tensile modulus (E) for AMS 4992 Ti6Al-4V castings, 3.0 inch thickness.
18
Elongation, percent
16 14
E lon gation at T em pe rature
12
T Y P IC A L
10 8 6 4
T i-6A l-4 V C as tin g t = 0.5 in c h
2 0 0
100
200
300
400
500
600
700
800
900
T e m p e ra tu re , o F Figure 5.4.1.2.5(a). Effect of temperature on tensile elongation (e) for AMS 4992 Ti-6Al-4V castings, 0.5 inch thickness.
5-107
MMPDS-06 1 April 2011
18
Elongation, percent
16 14
E lo n g a tio n a t T e m p e r a tu r e
12
T Y P IC A L
10 8 6 4
T i- 6 A l- 4 V C a s tin g t = 3 .0 in c h
2 0 0
100
200
300
400
500
600
700
800
900
o
T e m p e ra tu re , F Figure 5.4.1.2.5(b). Effect of temperature on tensile elongation (e) for AMS 4992 Ti-6Al4V castings, 3.0 inch thickness. 200 Longitudinal and Long T ransverse
T i-6Al-4V ST A sheet RT
160 0.5 -hr exposure
T Y PIC A L
200 o F
Stress, ksi
400 o F 120
600 o F 800 o F R am berg - O sgo o d n (R T ) = 16 n (200 o F ) = 22 n (400 o F) = 15 n (600 o F) = 11 n (800 o F ) = 9.4 n (1000 o F) = 6.2
80 o
1000 F
40
0 0
4
8
12
16
20
24
S train, 0.001 in./in.
Figure 5.4.1.2.6(a). Typical tensile stress-strain curves for solution-treated and aged Ti-6Al-4V alloy sheet at room and elevated temperatures.
5-108
MMPDS-06 1 April 2011
200 T i-6 A l-4 V S T A sheet
L o n g itu d in a l
RT
0 .5 -h r e x p o s u re
160
T Y P IC A L o
200 F
Stress, ksi
4 0 0 oF 6 0 0 oF
120
8 0 0 oF 1 0 0 0 oF 80
R a m b e rg - O s g o o d n (R T ) = 2 2 n (2 0 0 o F ) = 2 7 n (4 0 0 o F ) = 2 2 n (6 0 0 o F ) = 1 2 n (8 0 0 o F ) = 1 1 n (1 0 0 0 o F ) = 5 .7
40
0 0
4
8
12
16
20
24
S tra in , 0 .0 0 1 in ./in .
Figure 5.4.1.2.6(b). Typical compressive stress-strain curves for solution-treated and aged Ti-6Al-4V alloy sheet at room and elevated temperatures.
200 L o n g itu d in a l
RT
0 .5 -h r e x p o s u re
2 0 0 oF
160
T i-6 A l-4 V STA sheet T Y P IC A L
Stress, ksi
4 0 0 oF 120 6 0 0 oF 80
R am b erg - O s g o o d n (R T ) = 2 2 n (2 0 0 o F ) = 2 7 n (4 0 0 o F ) = 2 2 n (6 0 0 o F ) = 1 2 n (8 0 0 o F ) = 1 1 n (1 0 0 0 o F ) = 5 .7
8 0 0 oF
1 0 0 0 oF
40
0 0
4
8
12
16
20
24
3
C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 k s i
Figure 5.4.1.2.6(c). Typical compressive tangent-modulus curves for solution-treated and aged Ti-6Al-4V alloy sheet at room and elevated temperatures.
5-109
MMPDS-06 1 April 2011 200 T i-6 A l-4 V S TA sheet
RT 2 0 0 oF
L o n g T ra n s v e rs e
160
0 .5 -h r e x p o s u re
4 0 0 oF 6 0 0 oF
Stress, ksi
T Y P IC A L 120
8 0 0 oF 1 0 0 0 oF R a m b e rg - O s g o o d n (R T ) = 1 3 n (2 0 0 o F ) = 1 5 n (4 0 0 o F ) = 1 4 n (6 0 0 o F ) = 1 0 n (8 0 0 o F ) = 1 1 n (1 0 0 0 o F ) = 5 .7
80
40
0 0
4
8
12
16
20
24
S tra in , 0 .0 0 1 in ./in .
Figure 5.4.1.2.6(d). Typical compressive stress-strain curves for solution-treated and aged Ti-6Al-4V alloy sheet at room and elevated temperatures.
200
RT
L o n g T ra n s v e rs e
T i-6 A l-4 V S T A sheet
o
200 F
T Y P IC A L
160
o
400 F
0 .5 -h r e x p o s u re
o
Stress, ksi
600 F 120 8 0 0 oF R a m b e rg - O s g o o d n (R T ) = 1 3 n (2 0 0 o F ) = 1 5 n (4 0 0 o F ) = 1 4 n (6 0 0 o F ) = 1 0 n (8 0 0 o F ) = 1 1 n (1 0 0 0 o F ) = 5 .7
1 0 0 0 oF
80
40
0 0
4
8
12
16
20
24
3
C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 k s i
Figure 5.4.1.2.6(e). Typical compressive tangent-modulus curves for solution-treated and aged Ti-6Al-4V alloy sheet at room and elevated temperatures.
5-110
MMPDS-06 1 April 2011 200 L o n g itu d in a l and L o n g T ra n s v e rs e
T i-6 A l-4 V S T A p la te
RT
160
0 .5 -h r e x p o s u re
Stress, ksi
T Y P IC A L 4 0 0 oF
120
6 0 0 oF 8 0 0 oF 80 R a m b e rg - O s g o o d n (R T ) = 2 0 n (4 0 0 o F ) = 1 9 n (6 0 0 o F ) = 1 5 n (8 0 0 o F ) = 1 1
40
T h ic k n e s s = 0 .2 5 0 - 1 .0 0 0 in . 0 0
4
8
12
16
20
24
S tra in , 0 .0 0 1 in ./in .
Figure 5.4.1.2.6(f). Typical tensile stress-strain curves for solution-treated and aged Ti-6Al-4V alloy plate at room and elevated temperatures.
200 T i-6 A l-4 V S T A p la te L o n g itu d in a l and L o n g T ra n s v e rs e
Stress, ksi
160
120
80 R a m b e rg - O s g o o d n (R T ) = 2 6 40 T Y P IC A L T h ic k n e s s = 0 .2 5 0 - 1 .0 0 0 in . 0 0
4
8
12 16 S tra in , 0 .0 0 1 in ./in . C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 3 k s i
20
24
Figure 5.4.1.2.6(g). Typical compressive stress-strain and tangent-modulus curves for solution-treated and aged Ti-6Al-4V alloy plate at room temperature.
5-111
MMPDS-06 1 April 2011
180
Ti-6Al-4V STA
Longitudinal
170
0.5 hour exposure
160
X
RT
150
140
130
X
120
110
X X
100
Stress, ksi
400 oF
900 oF
700 oF
90 o
X
1000 F 80
70
60
50
40
30
20
TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 5.4.1.2.6(h). Typical tensile stress-strain curves (full range) for solutiontreated and aged Ti-6Al-4V alloy at room and elevated temperatures.
5-112
0.14
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(a). Best-fit S/N curves for unnotched solution-treated and aged Ti-6Al-4V sheet at room temperature, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(a) Product Forms: Sheet, 0.063- and 0.125-inch thick Properties: TUS, ksi 166-177
TYS, ksi 153-167
Test Parameters: Loading — Axial Frequency — Ref. 5.4.3.2.8(a), not specified Ref. 5.4.3.2.8(b), 1500-2200 cpm Temperature — RT Environment — Air
Temp.,EF RT
Specimen Details: Unnotched Ref. 5.4.3.2.8(a) Specimen details not available Ref. 5.4.3.2.8(b) 1.000-inch net width 8.000-inches test section radius 3.00-inches gross width
No. of Heats/Lots: 4 Equivalent Strain Equation: Log Nf = 14.29-4.91 log (Seq-30.6) Seq = Smax(1-R)0.42 Std. Error of Estimate, Log (Life) = 0.48 Standard Deviation, Log (Life) = 0.90 R2 = 72%
Surface Conditions: Ref. 5.4.3.2.8(a). Edges finished with a crocus cloth. Ref. 5.4.3.2.8(b). Machined specimens were cleaned with methyl ethyl ketone. Edges polished with number 1 and 00 grit emery paper, recleaned with methyl ethyl ketone.
Sample Size = 99 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
References: 5.4.1.2.8(a) and 5.4.1.2.8(b)
5-113
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(b). Best-fit S/N curves for notched, Kt = 2.8, solution-treated and aged Ti-6Al-4V sheet at room temperature, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(b) Product Forms: Sheet, 0.063- and 0.125-inch thick Properties: TUS, ksi TYS, ksi Temp.,EF 166-177 153-167 RT Specimen Details: Notched, hole type, Kt = 2.8 0.9375-inch net width 1.000-inch gross width 8.000-inches test section radius 0.0625-inch diameter hole
No. of Heats/Lots: 3
Surface Conditions: Machined specimens were cleaned with methyl ethyl ketone. Edges polished with number 1 and 00 grit emery paper and recleaned with methyl ethyl ketone. Reference: 5.4.1.2.8(b)
Test Parameters: Loading — Axial Frequency — 1500-2200 cpm Temperature — RT Environment — Air
Equivalent Strain Equation: Log Nf = 10.87-3.80 log (Seq-24.0) Seq = Smax(1-R)0.50 Std. Error of Estimate, Log (Life) = 0.43 Standard Deviation, Log (Life) = 0.98 R2 = 81% Sample Size = 87 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-114
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(c). Best-fit S/N curves for unnotched solutiontreated and aged Ti-6Al-4V sheet at 400E EF and 600E EF, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(c) Product Forms: Sheet, 0.063- and 0.125-inch thick Properties:
TUS, ksi TYS, ksi 142-143 117-121 125-134 102-113
Specimen Details:
Temp.,EF 400 600
Unnotched Ref. 5.4.3.2.8(a) Specimen details not available Ref. 5.4.3.2.8(b) 1.000-inch gross width 8.000-inches test section radius 3.00-inches gross width 0.9375-inch net width
Surface Conditions: Ref. 5.4.3.2.8(a). Edges finished with a crocus cloth Ref. 5.4.3.2.8(b). Machined specimens were cleaned with methyl ethyl ketone. Edges polished with number 1 and 00 grit emery paper, recleaned with methyl ethyl ketone.
Test Parameters: Loading — Axial Frequency — Ref. 5.4.3.2.8(a), not specified Ref. 5.4.3.2.8(b), 1500-2200 cpm Temperature — 400E and 600EF Environment — Air No. of Heats/Lots: 4 Equivalent Strain Equation: Log Nf = 14.7-5.31 log (Seq-21.8) Seq = Smax(1-R)0.54 Std. Error of Estimate, Log (Life) = 0.58 Standard Deviation, Log (Life) = 0.93 R2 = 61% Sample Size = 163 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
References: 5.4.1.2.8(a) and 5.4.1.2.8(b)
5-115
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(d). Best-fit S/N curves for notched, Kt = 2.8, solutiontreated and aged Ti-6Al-4V sheet at 400 F and 600 F, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(d) Product Forms: Sheet, 0.063- and 0.125-inch thick Properties:
TUS, ksi 142-143 129-133
TYS, ksi 117-121 103-105
Temp.,EF 400 600
Specimen Details: Notched, hole type, Kt = 2.8 1.000-inch gross width 8.000-inches test section radius 0.0625-inch diameter hole 0.9375-inch net width Surface Conditions: Machined specimens were cleaned with methyl ethyl ketone. Edges polished with number 1 and 00 grit emery paper and recleaned with methyl ethyl ketone.
Test Parameters: Loading — Axial Frequency — 1500-2200 cpm Temperature — 400E and 600EF Environment — Air No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 10.64-3.77 log (Seq-20.9) Seq = Smax(1-R)0.51 Std. Error of Estimate, Log (Life) = 0.42 Standard Deviation, Log (Life) = 0.93 R2 = 80% Sample Size =175 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Reference: 5.4.1.2.8(b)
5-116
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(e). Best-fit S/N curves for unnotched solution-treated and aged Ti-6Al-4V sheet at 800E E and 900E EF, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(e) Product Forms: Sheet, 0.063- and 0.125-inch thick Properties: TUS, ksi 120-125 110-111
TYS, ksi 93-96 84-86
Temp.,EF 800 900
Specimen Details: Unnotched 1.000-inch gross width 8.000-inches test section radius 3.00-inches gross width 0.9375-inch net width Surface Conditions: Machined specimens were cleaned with methyl ethyl ketone. Edges polished with number 1 and 00 grit emery paper and recleaned with methyl ethyl ketone. References: 5.4.1.2.8(b)
Test Parameters: Loading — Axial Frequency — 1500-2200 cpm Temperature — 800E and 900EF Environment — Air No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 17.34-6.61 log (Seq) Seq = Smax(1-R)0.50 Std. Error of Estimate, Log (Life) = 0.51 Standard Deviation, Log (Life) = 0.99 R2 = 73% Sample Size = 154 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-117
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(f). Best-fit S/N curves for notched, Kt = 2.8, solutiontreated and aged Ti-6Al-4V sheet at 800E E and 900E EF, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(f) Product Forms: Sheet, 0.063- and 0.125-inch thick Properties: TUS, ksi 120-124 110-111
TYS, ksi 93-96 84-88
Temp.,EF 800 900
Specimen Details: Notched, hole type, Kt = 2.8 1.000-inch gross width 8.000-inches test section radius 0.0625-inch diameter hole 0.9375-inch net width Surface Conditions: Machined specimens were cleaned with methyl ethyl ketone. Edges polished with number 1 and 00 grit emery paper and recleaned with methyl ethyl ketone. Reference: 5.4.1.2.8(b)
Test Parameters: Loading — Axial Frequency — 1500-2200 cpm Temperature — 800E and 900EF Environment — Air No. of Heats/Lots: 3 Equivalent Stress Equation: Log Nf = 11.75-4.45 log (Seq-15.0) Seq = Smax(1-R)0.62 Std. Error of Estimate, Log (Life) = 0.43 Standard Deviation, Log (Life) = 0.96 R2 = 79% Sample Size = 173 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-118
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(g). Best-fit S/N curves for unnotched solution-treated and aged Ti-6Al-4V plate at room temperature, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(g) Product Form: Plate, 1.00 inch Properties: TUS, ksi 158 155
TYS, ksi 149 145
Temp.,EF RT RT
Test Parameters: Loading — Axial Frequency — 1,800-18,000 cpm Temperature — RT Environment — Air
Specimen Details: Unnotched, rounded
No. of Heats/Lots: 2
Uniform Gage Hourglass --3.25 Reduced section radius of curvature, inch 0.195 0.250 Diameter, inch
Equivalent Stress Equation: Log Nf = 24.6-9.35 log (Seq) Seq = Smax(1-R)0.48 Std. Error of Estimate, Log (Life) = 0.39 Standard Deviation, Log (Life) = 0.83 R2 = 79%
Surface Condition: Longitudinally polished with No. 000 emery paper removing all circumferential marks.
Sample Size = 49
References: 5.4.1.2.8(c) and 5.4.1.2.8(d)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-119
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(h). Best-fit S/N curves for unnotched solution-treated and aged Ti-6Al-4V plate at room temperature, long transverse direction.
Correlative Information for Figure 5.4.1.2.8(h) Product Form: Plate, 0.50-inch thick Properties: TUS, ksi 173
TYS, ksi 164
Temp.,EF RT
Specimen Details: Unnotched, flat hourglass 10-inches reduced section radius of curvature 1-inch net section width 0.156-inch net section thickness
Test Parameters: Loading — Axial Frequency — Unspecified Temperature — RT Environment — Air No. of Heats/Lots: 1
Surface Conditions: Machined to 63 RMS
Maximum Stress Equation: Log Nf = 47.9-20.2 log (Smax) Std. Error of Estimate, Log (Life) = 0.33 Standard Deviation, Log (Life) = 0.89 R2 = 87%
Reference: 5.4.1.2.8(d)
Sample Size = 14
5-120
MMPDS-06 1 April 2011
Figure 5.4.1.2.8(i). Best-fit S/N curves for notched, Kt = 3.0, solution-treated and aged Ti-6Al-4V plate at room temperature, longitudinal direction.
Correlative Information for Figure 5.4.1.2.8(i) Product Form: Plate, 1.025- and 0.750-inch thick Properties:
TUS, ksi 155 187
TYS, ksi 145 —
Temp.,EF RT (unnotched) RT (notched)
Specimen Details: Circumferentially notched, Kt = 3.0 Ref. (c) Ref. (e) 0.195 0.430 0.136 0.300 0.005 0.016 60E 60E
Gross diameter, inch Net section, inch Notch radius, r, inch Flank angle, ω
Surface Condition: Ref. (c) notch made with light finishing cuts Ref. (e) notch polished in lathe
Test Parameters: Loading — Axial Frequency — 1,800-18,000 cpm Temperature — RT Environment — Air No. of Heats/Lots: 2 Equivalent Stress Equation: Log Nf = 14.4-5.51 log (Seq) Seq = Smax(1-R)0.58 Std. Error of Estimate, Log (Life) = 0.24 Standard Deviation, Log (Life) = 0.81 R2 = 92% Sample Size = 31 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
References: 5.4.1.2.8(c) and 5.4.1.2.8(e)
5-121
MMPDS-06 1 April 2011 5.4.2 TI-6AL-6V-2SN 5.4.2.0 Comments and Properties — Ti-6Al-6V-2Sn alloy is similar to Ti-6Al-4V alloy in many respects but has higher strength and deeper hardenability (i.e., use of thicker sections possible). A variety of mill product forms are available including billet, bar, plate, sheet, strip, and extrusions, and these may be used in either the annealed or the solution-treated and aged (STA) conditions. The maximum strength is developed in the STA condition in sections up to about 2 inches in thickness. Manufacturing Considerations — To ensure optimum mechanical properties in Ti-6Al-6V-2Sn forgings, at least 50 percent reduction should be done at temperatures below the beta transus temperature (i.e., <1735EF). The Ti-6Al-6V-2Sn is readily formable in the annealed condition. In the sheet or plate forms the alloy is generally used in the annealed condition, although the alloy is capable of heat treatment to higher strength levels with some loss of toughness. When the Ti-6Al-6V-2Sn sheet and plate are hot formed at any temperature over 1000EF and air cooled, the material should be stabilized by reheating to 1000EF followed by air cooling. Welding is not usually recommended although limited weld-joining operations are possible if the assembly is amenable to post-weld thermal treatments for the restoration of ductility to the weld and heat-affected zones. Environmental Considerations — While the short-time elevated-temperature properties and stability of Ti-6Al-6V-2Sn alloy are good, creep-strength above 650EF and long-term stability at temperatures above 800EF are not. The material ages during prolonged exposures around 800EF and above, particularly when under stress. Oxidation resistance of Ti-6Al-6V-2Sn is satisfactory in short-term exposures to 1000EF. The material is nearly equivalent to the Ti-6Al-4V alloy in terms of hot-salt and aqueous chloride solution stresscorrosion resistance. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-S-5002 and MIL-HDBK-1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. Heat Treatment — This alloy is commonly specified in either the annealed condition or the solutiontreated and aged condition. The solution-treated and aged condition is as follows: Solution treat at 1625EF for ½ to 1 hour, quench in water. Age at 1000EF ± 25EF for 4 to 8 hours, air cool. Specifications and Properties — Material specifications for Ti-6Al-6V-2Sn are shown in Table 5.4.2.0(a). Room-temperature mechanical properties are shown in Tables 5.4.2.0(b) through 5.4.2.0(e). The effect of temperature on physical properties is shown in Figure 5.4.2.0. Table 5.4.2.0(a). Material Specifications for Ti-6Al-6V-2Sn
Specification AMS 4979 MIL-T-81556 AMS 4971 AMS 4978 AMS 4918 AMS 4990
Form Bar and forging Extruded bar and shapes Bar and forging Bar and forging Sheet, strip, and plate Sheet, strip, and plate
5-122
MMPDS-06 1 April 2011 5.4.2.1 Annealed Condition — Elevated temperature curves for annealed condition are shown in Figures 5.4.2.1.1(a) through 5.4.2.1.3(b). Typical stress-strain and tangent-modulus curves for this condition are shown in Figures 5.4.2.1.6(a) and 5.4.2.1.6(b). A typical full range tensile stress-strain curve is shown in Figure 5.4.2.1.6(c). Unnotched and notched fatigue data are presented in Figures 5.4.2.1.8(a) and 5.4.2.1.8(b). 5.4.2.2 Solution-Treated and Aged Condition — Elevated temperature curves are shown in Figures 5.4.2.2.1 and 5.4.2.2.2.
5-123
Last Revised: Oct 2006, MMPDS-03, Item 05-26. a Mechanical properties also met previous MIL-T-9046, Comp. AB-3. b Mechanical properties were established under MIL-T-9046, Comp. AB-3. c A-Basis value is specification minimum. The rounded T99 values are as follows: Fty (L) = 147 ksi, Fty (LT) = 149 ksi. d Longitudinal <0.025 in. = 8 percent. Long transverse < 0.025 in. = 6 percent.
MMPDS-06 1 April 2011
5-124
Table 5.4.2.0(b). Design Mechanical and Physical Properties of Ti-6Al-6V-2Sn Sheet, Strip, and Plate Specification . . . . . . . . . . AMS 4918a AMS 4990b Form . . . . . . . . . . . . . . . . Sheet, strip, and plate Condition . . . . . . . . . . . . . Annealed Solution treated and aged 0.18750.5011.0011.5012.0010.18751.5012.501Thickness, in. . . . . . . . . . <0.1875 0.500 1.000 1.500 2.000 4.000 #0.1875 1.500 2.500 4.000 Basis . . . . . . . . . . . . . . . . A B S S S S S S S S S Mechanical Properties: Ftu, ksi: L . . . . . . . . . . . . . . . . 155 160 150 150 150 150 145 170 170 160 150 LT . . . . . . . . . . . . . . . 155 160 150 150 150 150 145 170 170 160 150 Fty, ksi: L . . . . . . . . . . . . . . . . 145c 152 140 140 140 140 135 160 160 150 140 LT . . . . . . . . . . . . . . . 145c 154 140 140 140 140 135 160 160 150 140 Fcy, ksi: L . . . . . . . . . . . . . . . . ... ... 139 142 146 148 ... ... 170 ... ... LT . . . . . . . . . . . . . . . ... ... 151 147 141 136 ... ... 170 ... ... Fsu, ksi . . . . . . . . . . . . . ... ... 91 93 95 95 ... ... 101 ... ... Fbru, ksi: (e/D = 1.5) . . . . . . . . ... ... 236 241 247 250 ... ... 264 ... ... (e/D = 2.0) . . . . . . . . ... ... 294 303 312 317 ... ... 324 ... ... Fbry, ksi: ... 193 196 199 202 ... ... 237 ... ... (e/D = 1.5) . . . . . . . . ... ... 215 223 234 240 ... ... 266 ... ... (e/D = 2.0) . . . . . . . . ... e, percent (S-Basis): ... 10 10 10 10 8 8 8 6 6 L . . . . . . . . . . . . . . . . 10d ... 8 8 8 8 6 6 8 6 6 LT . . . . . . . . . . . . . . . 8d E, 103 ksi . . . . . . . . . . 16.0 Ec, 103 ksi . . . . . . . . . . 16.4 G, 103 ksi . . . . . . . . . . 6.2 µ ................. 0.31 Physical Properties: ω, lb/in.3 . . . . . . . . . . . 0.164 C, K, and α . . . . . . . . . See Figure 5.4.2.0
MMPDS-06 1 April 2011 Table 5.4.2.0(c). Design Mechanical and Physical Properties of Ti-6Al-6V-2Sn Bar
Specification . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ........................ LTb . . . . . . . . . . . . . . . . . . . . . . STb . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ........................ LTb . . . . . . . . . . . . . . . . . . . . . . STb . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ........................ LTb . . . . . . . . . . . . . . . . . . . . . . STb . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ........................ LTb . . . . . . . . . . . . . . . . . . . . . . STb . . . . . . . . . . . . . . . . . . . . . . . RA, percent (S-basis): L ........................ LTb . . . . . . . . . . . . . . . . . . . . . . STb . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . µ ......................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . .
AMS 4978 Bar Air-cool annealeda 1.5013.001#1.500 3.000 4.000 A B A B A B
AMS 4971 and AMS 4979 Bar and forging Solution treated and aged 1.001- 2.001- 3.001#1.000 2.000 3.000 4.000 S S S S
144 150 139 145 136 142 147 152 143 148 140 145 ... ... ... ... ... ...
175 175 ...
170 170 ...
155 155 155
150 150 150
131 138 126 132 123 129 136 141 131 136 127 132 ... ... ... ... ... ...
160 160 ...
155 155 ...
145 145 145
140 140 140
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 8 ...
... ... ...
10 8 8
... ... ...
10 8 8
... ... ...
8 6 ...
8 6 ...
8 6 6
8 6 6
20 15 ...
... ... ...
20 15 15
... ... ...
15 15 15
... ... ... 16.0 16.4 6.2 0.31
20 15 ...
20 15 ...
20 15 15
20 15 15
0.164 See Figure 5.4.2.0
a 1300° to 1350EF for 1-3 hours, air cool to room temperature. b Applicable, providing LT or ST dimension is $2.500 inches.
5-125
MMPDS-06 1 April 2011 Table 5.4.2.0(d). Design Mechanical and Physical Properties of Ti-6Al6V-2Sn Forging
Specification . . . . . . . . . . . . . . .
AMS 4978
Form . . . . . . . . . . . . . . . . . . . . . .
Forging
Condition . . . . . . . . . . . . . . . . . .
Annealed
Thickness, or diameter, in. . . . . .
#2.000
2.001-4.000
Basis . . . . . . . . . . . . . . . . . . . . . .
S
S
150 150 ...
145 145 145
140 140 ...
135 135 135
... ... ... ...
... ... ... ...
... ...
... ...
... ...
... ...
10 8 ...
10 8 7
20 15 15
20 15 15
Mechanical Properties: Ftu, ksi: L ....................... LTa . . . . . . . . . . . . . . . . . . . . . STa . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ....................... LTa . . . . . . . . . . . . . . . . . . . . . STa . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ....................... LTa . . . . . . . . . . . . . . . . . . . . . STa . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D=1.5) . . . . . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . . . . . Fbry, ksi: (e/D=1.5) . . . . . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . . . . . e, percent: L ...................... LTa . . . . . . . . . . . . . . . . . . . . . STa . . . . . . . . . . . . . . . . . . . . . RA, percent: L ...................... LTa . . . . . . . . . . . . . . . . . . . . . STa . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . F .......................
16.0 16.4 6.2 0.31
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . .
0.164 See Figure 5.4.2.0
a
Applicable, providing LT or ST dimension is $2.500 inches.
5-126
MMPDS-06 1 April 2011
Table 5.4.2.0(e). Design Mechanical and Physical Properties of Ti-6Al-6V-2Sn Extruded Bar and Shapes Specification . . . . . . . . . . .
MIL-T-81556 Comp. AB-3
Form . . . . . . . . . . . . . . . . . .
Extruded bar and shapes
Condition . . . . . . . . . . . . . .
Annealed
Thickness or diameter, in. . #2.000 Basis . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbrua, ksi: (e/D=1.5) . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . Fbrya, ksi: (e/D=1.5) . . . . . . . . . . . . (e/D=2.0) . . . . . . . . . . . . e, percent (S-Basis): L ................... LT . . . . . . . . . . . . . . . . . . RA, percent (S-Basis): L ................... LT . . . . . . . . . . . . . . . . . .
a
Solution treated and aged
2.0013.000
3.0014.000
0.1880.500
0.5011.500
1.5012.500
2.5014.000
A
B
S
S
S
S
S
S
142 141
148 148
145 145
140 140
170 170
165 165
160 160
150 150
129 128
135 135
135 135
130 130
160 160
155 155
150 150
140 140
137 136 93
144 142 97
140 140 ...
135 135 ...
165 165 ...
160 160 ...
155 155 ...
145 145 ...
218 268
229 281
... ...
... ...
... ...
... ...
... ...
... ...
196 227
203 235
... ...
... ...
... ...
... ...
... ...
... ...
10 8
... ...
10 8
10 8
8 6
8 6
8 6
8 6
20 15
... ...
20 15
20 15
15 12
15 12
15 12
15 12
E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ....................
16.0 16.4 6.2 0.31
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
0.164 See Figure 5.4.2.0
Bearing values are “dry pin” values per Section 1.4.7.1.
5-127
MMPDS-06 1 April 2011
Figure 5.4.2.0. Effect of temperature on the physical properties of Ti-6Al-6V-2Sn alloy.
5-128
MMPDS-06 1 April 2011
Figure 5.4.2.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of annealed Ti-6Al-6V-2Sn extrusion.
5-129
MMPDS-06 1 April 2011
Figure 5.4.2.1.1(b). Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of annealed Ti-6Al-6V-2Sn plate.
5-130
MMPDS-06 1 April 2011
Figure 5.4.2.1.2(a). Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of annealed Ti-6Al-6V-2Sn extrusion.
5-131
MMPDS-06 1 April 2011
Figure 5.4.2.1.2(b). Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of annealed Ti-6Al-6V-2Sn plate.
5-132
MMPDS-06 1 April 2011
Figure 5.4.2.1.3(a). Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of annealed Ti-6Al-6V-2Sn extrusion.
5-133
MMPDS-06 1 April 2011
Figure 5.4.2.1.3(b). Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of annealed Ti-6Al-6V-2Sn plate.
5-134
MMPDS-06 1 April 2011 200 T i-6 A l-6 V -2 S n a n n e a le d e x tru s io n
Stress, ksi
160
L o n g itu d in a l
120
80 R a m b e rg - O s g o o d n (L ) = 2 6 40
T Y P IC A L
0 0
4
8
12 16 S tra in , 0 .0 0 1 in ./in . C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 3 k s i
20
24
Figure 5.4.2.1.6(a). Typical compressive stress-strain and tangent-modulus curves at room temperature for annealed Ti-6Al-6V-2Sn extrusion.
200 T i-6 A l-6 V -2 S n a n n e a le d e x tru s io n 160
Stress, ksi
L o n g itu d in a l 120
80
R a m b e rg - O s g o o d n (L ) = 3 0 T Y P IC A L
40
0 0
4
8
12
16
20
S tra in , 0 .0 0 1 in ./in .
Figure 5.4.2.1.6(b). Typical tensile stress-strain curve at room temperature for annealed Ti-6Al-6V-2Sn extrusion.
5-135
24
MMPDS-06 1 April 2011
180
X
160 140 120 Stress, ksi
Ti-6Al-6V-2Sn annealed sheet
Longitudinal and Transverse
100 80 60 TYPICAL
40 20 0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in. Figure 5.4.2.1.6(c). Typical tensile stress-strain curve (full range) for annealed Ti6Al-2Sn extrusion at room temperature.
5-136
MMPDS-06 1 April 2011
Figure 5.4.2.1.8(a). Best-fit S/N curves for annealed Ti-6Al-6V-2Sn plate and die forging, Kt = 1.0, longitudinal direction.
Correlative Information for Figure 5.4.2.1.8(a) Product Form:
Plate, 1.57-inches thick; die forging, thickness not specified
Properties:
TUS, ksi TYS, ksi Temp.,EF 154.5 148.5 RT 159.9 151.5 RT
Test Parameters: Loading—Axial Frequency—Unspecified Temperature—RT Atmosphere—Air No. of Heats/Lot: 3
Specimen Details: Unnotched 0.195-inch diameter Unspecified diameter from forging Surface Condition: RMS 32 Unspecified from forging
Equivalent Stress Equation: Log Nf = 20.90 - 8.10 log (Seq) Seq = Sa + 0.41 Sm Std. Error of Estimate, Log (Life) = 23.5 (1/Seq) Standard deviation, Log (Life) = 0.884 R2 = 89%
References: 5.4.1.2.8(c) and 5.4.2.1.8
Sample Size = 38 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-137
MMPDS-06 1 April 2011
Figure 5.4.2.1.8(b). Best-fit S/N curves for annealed Ti-6Al-6V-2Sn plate, Kt = 3.0, longitudinal direction.
Correlative Information for Figure 5.4.2.1.8(b) Product Form: Plate, 1.57-inches thick Properties:
Test Parameters: Loading—Axial Frequency—Unspecified Temperature—RT Atmosphere—Air
TUS, ksi TYS, ksi Temp.,EF 154.6 148.5 RT
Specimen Details: V-Groove, Kt = 3.0 0.195-inch gross diameter 0.136-inch net diameter 0.005-inch root radius 60E flank angle
No. of Heats/Lot: 1 Equivalent Stress Equation: Log Nf = 8.31 - 2.73 log (Seq - 16.9) Seq = Sa + 0.37 Sm Std. Error of Estimate, Log (Life) = 8.87 (1/Seq) Standard Deviation, Log (Life) = 0.947 R2 = 92%
Surface Condition: RMS 32 References: 5.4.1.2.8(c)
Sample Size = 32 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-138
MMPDS-06 1 April 2011
Figure 5.4.2.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of solution-treated and aged Ti-6Al-6V-2Sn plate.
Figure 5.4.2.2.2. Effect of temperature on compressive yield strength (Fcy) of solution-treated and aged Ti-6Al-6V-2Sn plate.
5-139
MMPDS-06 1 April 2011 5.4.3 TI-4.5AL-3V-2FE-2MO 5.4.3.0 Comments and Properties B Ti-4.5Al-3V-2Fe-2Mo alloy is a beta rich alpha-beta titanium composition developed for improved hot formability and fatigue resistance. The alloy consists of fine microstructure and has excellent superplastic formability at temperatures below 1475EF. This alloy also shows significantly improved cold formability over Ti-6Al-4V. Although this alloy was originally developed for flat product applications in the annealed condition, it has expanded into other areas such as billets, bars, and forgings. This alloy has been reported to possess significantly better hardenability than Ti-6Al-4V. Manufacturing Considerations – Superplastic forming of Ti-4.5Al-3V-2Fe-2Mo at temperatures between 1380EF-1425EF is recommended. At these forming temperatures the formation of alpha case is not observed and the thickness of oxygen enriched layer is generally less than 0.001”. Diffusion bonding at 1425EF is possible but slightly higher temperatures than the superplastic forming temperature e.g., 1470EF are recommended to ensure perfect bonding. Ti-4.5Al-3V-2Fe-2Mo is weldable by standard titanium welding techniques. This alloy shows an increase in hardness in the welded zone but with limited ductility loss. Stress relief annealing after welding is recommended.
Environmental Considerations B Ti-4.5Al-3V-2Fe-2Mo exhibits significantly improved resistance to aqueous chloride solution stress-corrosion cracking over Ti-6Al-4V. The alloy is nearly equivalent to Ti-6Al-4V hot - salt stress corrosion cracking. Heat Treatment B This alloy is commonly specified in the annealed condition, but is also used in the solution-treated and aged condition. Annealing : 1325°F for a time commensurate with product thickness. Annealing requires 1 hour at 1475°F followed by furnace cooling if maximum ductility is required. The solution treated and aged conditions commonly employed are as follows : Solution treat at 1500°-1580°F for ½ - 1 hour followed by air cooling. Age at 900°-1060°F followed by air cooling. Specifications and Properties – Some material specifications for Ti-4.5Al-3V-2Fe-2Mo are shown in Table 5.4.3.0(a). Room temperature mechanical properties and physical properties are shown in Table 5.4.3.0(b) through 5.4.3.0(d). Table 5.4.3.0(a). Material Specification for Ti-4.5Al-3V-2Fe-2Mo Titanium Alloy Specification Form AMS 4899 Sheet, Strip, and Plate AMS 4964 Bars, Wire, Forgings, and Rings
5.4.3.1 Anneal Condition – Typical tensile stress-strain and full-range stress-strain curves are shown in Figures 5.4.3.1.6(a) and 5.4.3.1.6(b). Compressive stress-strain and tangent modulus curves are shown in Figure 5.4.3.1.6(c). Unnotched and notched fatigue data as well as fatigue crack propagation data are presented in Figures 5.4.3.1.8(a), 5.4.3.1.8(b) and 5.4.3.1.9.
5-140
MMPDS-06 1 April 2011 Table 5.4.3.0(b). Design Mechanical and Physical Properties of Ti-4.5Al-3V-2Fe-2Mo Titanium Alloy Sheet
Specification
AMS 4899
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Sheet
Condition . . . . . . . . . . . . . . . . . . . . . .
Annealed
Thickness, in. . . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu,c ksi: LT . . . . . . . . . . . . . . . . . . . . . . . . Fbru,d ksi: LT (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry,d ksi: LT (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . .
0.025 to 0.063, exclusive A
B
A
B
134a 134a
145 147
134b 134b
144 144
126a 126a
134 137
126b 126b
132 134
128 131
136 143
130 132
139 141
90
99
91
98
196 258
215 283
207 276
223 296
157 190
171 207
165 198
176 210
8 8
... ...
10 10
... ...
E, 103 ksi . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ..........................
16.0 16.2 ... ...
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . . . . . . . . . α, 10-6 in./in./EF . . . . . . . . . . . . . . . a b c d
0.063 to 0.187, exclusive
0.164 0.12 4.00 5.17 (60Eto 932EF)
A-Basis value is specification minimum. Rounded T99 values for thickness range 0.025 - 0.063 in. are as follows; Ftu (L) and (LT) = 140 ksi, Fty (L) = 129 ksi and Fty (LT) = 131 ksi. A-Basis value is specification minimum. Rounded T99 values for thickness range 0.063 - 0.187 in. are as follows; Ftu (L) = 141 ksi, Ftu (LT) = 140 ksi, Fty (L) = 128 ksi and Fty (LT) = 127 ksi. Determined in accordance with ASTM B769. Bearing values are “dry pin” values per Section 1.4.7.1.
5-141
MMPDS-06 1 April 2011
Table 5.4.3.0(c). Design Mechanical and Physical Properties of Ti-4.5Al-3V-2Fe2Mo Titanium Alloy Bar
Specification . . . . . . . . . . . . . . . . . . .
AMS 4964
Form . . . . . . . . . . . . . . . . . . . . . . . . .
Bar
Condition . . . . . . . . . . . . . . . . . . . . . .
Annealed # 2.000
Thickness, in. . . . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ......................... LT (S-Basis) . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT (S-Basis) . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT (S-Basis) . . . . . . . . . . . . . . . . Fsub, ksi L -R . . . . . . . . . . . . . . . . . . . . . . . Fbru ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent (S-Basis): L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Red. in Area, percent (S-Basis): L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . .
4.001-6.000
A
B
A
B
A
B
135 135
139 ...
130a 130
135 ...
130 130
133 ...
124 125
128 ...
119 120
123 ...
119 120
123 ...
124 ...
128 ...
... ...
... ...
... ...
... ...
81
84
...
...
...
...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10c
... ...
10 10c
... ...
10 10
... ...
25 20c
... ...
20 20c
... ...
20 20
... ...
E, 103 ksi . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ..........................
16.0 16.2 ... ...
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . . . . . . . . . . a b c
2.001-4.000
0.164 0.12 4.00 5.17 (60E-932EF)
A-Basis value is specification minimum. The rounded T99 for Ftu = 131 ksi. Determined in accordance with ASTM B769. Applicable, providing LT dimension is no less than 2.500 inches.
5-142
MMPDS-06 1 April 2011
160
Long Transverse
Longitudinal
Stress, ksi
120
80
Ramberg-Osgood Longitudinal Long Transverse
41 36
TYS (ksi) 141 145
40
TYPICAL Thickness: 0.031 - 0.059 in. 0 0
4
8
12
16
20
Strain, 0.001 in./in. Figure 5.4.3.1.6(a). Typical tensile stress-strain curves at room temperature for annealed Ti-4.5Al-3V-2Fe-2Mo alloy sheet.
Long transverse Ramberg-Osgood Longitudinal
160
Stress, ksi
120
80
Ramberg-Osgood TYS (ksi) n (L) = 28 144 n (LT) = 33 156 40
TYPICAL Thickness: 0.031-0.059 in.
0 0
4
8
12
16
20
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 5.4.3.1.6(b). Typical compressive stress-strain and tangent-modulus curves at room temperature for annealed Ti-4.5Al-3V-2Fe-2Mo alloy sheet.
5-143
MMPDS-06 1 April 2011
200 Long Transverse
Stress, ksi
160
120
Longitudinal
80
40
TYPICAL Thickness: 0.031 - 0.059 in.
0 0.00
0.05
Strain, in./in.
0.10
0.15
Figure 5.4.3.1.6(c). Typical tensile stress-strain curves (full-range) for annealed Ti-4.5Al-3V-2Fe-2Mo alloy sheet.
5-144
MMPDS-06 1 April 2011 . .
150 Ti-4.5Al-3V-2Fe-2Mo Kt=1.0 Stress Ratio 0.05 0.20 + 0.50
+ +
Maximum Stress, ksi
++
140
Runout
→
+ + +
+ ++
130
+ → + → + →
+
→ + → + →
120
→ → →
Note: Stresses are based on net section.
110 103
104
105
106
107
108
Fatigue Life, Cycles Figure 5.4.3.1.8(a). Best-fit S/N curves for unnotched Ti-4.5Al-3V-2Fe-2Mo annealed sheet.
Correlative Information for Figure 5.4.3.1.8 (a) Product Form: 0.059-, 0.118-, 0.157-inch thick Properties:
Test Parameter: Loading - Axial Frequency - 10Hz Temperature - RT Environment - Air
TUS, ksi TYS, ksi Temp., EF 148 - 149 135 - 138 RT
Specimen Details: Unnotched, 0.252-inch width No. of Heats : 3 Surface Conditions: Lightly polished with 400 grit emery paper
Equivalent Stress Equation: Log Nf = 7.72 - 2.59 log ( Seq - 114.68 ) Seq = Smax ( 1 - R ) 0.13 Std. Error of Estimate, Log (Life) = 0.40 Standard Deviation, Log (Life) = 0.60 Adjusted R2 = 56.5%
References: 5.4.3.1.8
Sample Size = 43 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-145
MMPDS-06 1 April 2011 . .
110 Ti-4.5Al-3V-2Fe-2Mo Kt=2.8 Stress Ratio 0.05 0.20 + 0.50 Runout →
+
100
Maximum Stress, ksi
++
90 + +
80
+
+
+
+ + → + →
70 60
+ →
→ → →
50
→ Note: Stresses are based on net section.
40 30 103
104
→
105
106
107
108
Fatigue Life, Cycles Figure 5.4.3.1.8 (b) Best-fit S/N curves for notched, Kt = 2.8, Ti-4.5Al-3V-2Fe-2Mo annealed sheet.
Correlative Information for Figure 5.4.3.1.8 (b) Product Form: 0.059-, 0.118-, 0.157-inch thick Properties:
Test Parameter: Loading - Axial Frequency - 10Hz Temperature - RT Environment - Air
TUS, ksi TYS, ksi Temp., EF 148 - 149 135 - 138 RT
Specimen Details:
Notched, Kt = 2.8 0.466-inch net width
No. of Heats: 3
Surface Conditions: HF/HNO3 pickled
Equivalent Stress Equation: Log Nf = 7.22 - 1.96 log ( Seq - 44.05 ) Seq = Smax ( 1 - R ) 0.65 Std. Error of Estimate, Log (Life) = 0.24 Standard Deviation, Log (Life) = 0.47 Adjusted R2 = 72.9%
References: 5.4.3.1.8
Sample Size = 41 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-146
MMPDS-06 1 April 2011
Figure 5.4.3.1.9. Fatigue-crack-propagation data for 1 inch thick Ti-4.5Al-3V-2Fe2Mo mill annealed titanium alloy plate.
Specimen Thickness: Specimen Width: Specimen Type:
0.25 inch Environment: 50% RH 2.0 inches Temperature: RT C(T) Orientation: L-T
5-147
MMPDS-06 1 April 2011
Table 5.4.3.1.9 Typical Fatigue Crack Growth Rate Data for Ti-4.5Al-3V-2Fe-2Mo Plate, as Shown Graphically in Figure 5.4.3.1.9 Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.05 da/dN, in./cycle
0.05 da/dN, in./cycle
5.62
4.60E-08
16.79
7.12E-06
5.96
6.90E-08
17.78
8.33E-06
6.31
1.02E-07
18.84
9.69E-06
6.68
1.47E-07
19.95
1.12E-05
7.08
2.08E-07
21.14
1.30E-05
7.50
2.91E-07
22.39
1.49E-05
7.94
3.98E-07
23.71
1.72E-05
8.41
5.36E-07
25.12
1.97E-05
8.91
7.12E-07
26.61
2.26E-05
9.44
9.30E-07
28.18
2.59E-05
10.00
1.20E-06
29.85
2.98E-05
10.59
1.52E-06
31.62
3.43E-05
11.22
1.91E-06
33.50
3.96E-05
11.89
2.38E-06
35.48
4.58E-05
12.59
2.92E-06
37.58
5.34E-05
13.34
3.55E-06
39.81
6.24E-05
14.13
4.27E-06
42.17
7.35E-05
14.96
5.10E-06
44.67
8.71E-05
15.85
6.05E-06
5-148
MMPDS-06 1 April 2011 5.4.4 TI-4AL-2.5V-1.5FE 5.4.4.0 Comments and Properties — Ti-4Al-2.5V-1.5Fe alloy is an alpha-beta titanium alloy developed for improved cold and hot formability. The alloy is hot and cold rollable into sheet, strip, coil and plate products with good ductility at strengths comparable to Ti 6Al-4V alloy. The mill products consist of a fine alpha-beta microstructure and are available in continuous cold rolled coil and strip, cold rolled sheet and in hot rolled sheet and plate forms. Manufacturing Considerations — Ti-4Al-2.5V-1.5Fe alloy mill product ingot material is produced by a double melt (primary melt plus vacuum arc remelt (VAR)) ingot process. Ingots can be manufactured by electron beam cold hearth melting (EBCHM) or plasma arc melting (PAM) first stage electrodes followed by VAR into a final round ingot to meet the requirements of aerospace applications. Heat Treatment — This alloy is commonly specified in the mill annealed condition. Specifications and Properties — Material specifications for Ti-4Al-2.5V-1.5Fe are shown in Table 5.4.4.0(a). Room-temperature mechanical properties are shown in Table 5.4.4.0(b) for cold rolled sheet product and Table 5.4.4.0(c) for hot rolled sheet and plate product. The effect of temperature on physical properties is shown in Figure 5.4.4.0(a) for cold rolled sheet product and Figure 5.4.4.0(b) for hot rolled sheet and plate product.
Table 5.4.4.0(a). Material Specifications for Ti-4Al-2.5V-1.5Fe
Specification AMS 6946
Form Cold and Hot Rolled Sheet, Strip and Plate
5.4.4.1 Cold Rolled Sheet, Annealed Condition — Elevated temperature curves for cold rolled sheet are shown in Figures 5.4.4.1.1 through 5.4.4.1.5. Typical stress-strain and tangent-modulus curves for this condition are shown in Figures 5.4.4.1.6(a) and 5.4.4.1.6(b). A typical full range tensile stress-strain curve is shown in Figure 5.4.4.1.6(c). 5.4.4.2 Hot Rolled Sheet and Plate, Annealed Condition —Elevated temperature curves for hot rolled sheet and plate are shown in Figures 5.4.4.2.1 through 5.4.4.2.5. Typical stress-strain and tangent-modulus curves for this condition are shown in Figures 5.4.4.2.6(a) and 5.4.4.2.6(b). A typical full range tensile stress-strain curve is shown in Figure 5.4.4.2.6(c).
5-149
MMPDS-06 1 April 2011 Table 5.4.4.0(b). Design Mechanical and Physical Properties of Ti-4Al-2.5V-1.5Fe Titanium Alloy Cold Rolled Sheet
Specification . . . . . . . . . . .
AMS 6946
Form . . . . . . . . . . . . . . . . .
Cold Rolled Sheet
Condition . . . . . . . . . . . . . .
Annealed
Thickness, in. . . . . . . . . . .
0.020-0.040
0.041-0.100
0.101-0.140
0.141-0.156
Basis . . . . . . . . . . . . . . . . .
A
B
A
B
A
B
A
B
130a 130a
139 145
130a 130a
139 145
130a 130a
139 145
130a 130a
139 145
110a 115a
119 136
110a 115a
119 136
110a 115a
119 136
110a 115a
119 136
116 136
125 161
115 136
125 161
116 136
125 161
116 136
125 161
74
79
76
81
83
89
87
93
182 199
195 222
185 199
198 222
192 199
206 222
195 199
209 222
229 247
244 276
231 247
247 276
238 247
255 276
241 247
258 276
152 138
165 163
156 141
169 166
165 148
178 175
169 151
183 179
175 165
189 195
179 170
193 201
188 183
203 216
191 187
206 221
10 10
... ...
10 10
... ...
10 10
... ...
10 10
... ...
Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsub, ksi L -T . . . . . . . . . . . . . . . Fbruc ksi (e/D = 1.5) : L ................. LT . . . . . . . . . . . . . . . . Fbruc ksi (e/D = 2.0) : L ................. LT . . . . . . . . . . . . . . . . Fbry,c ksi (e/D = 1.5) : L ................. LT . . . . . . . . . . . . . . . . Fbry,c ksi (e/D = 2.0) : L ................. LT . . . . . . . . . . . . . . . . e, percent (S-Basis): L ................. LT . . . . . . . . . . . . . . . . Table continued on next page.
5-150
MMPDS-06 1 April 2011 Table 5.4.4.0(b). Design Mechanical and Physical Properties of Ti-4Al-2.5V-1.5Fe Titanium Alloy Cold Rolled Sheet (Continued)
Specification . . . . . . . . . . .
AMS 6946
Form . . . . . . . . . . . . . . . . .
Cold Rolled Sheet
Condition . . . . . . . . . . . . . .
Annealed
E, 103 ksi : L ................. LT . . . . . . . . . . . . . . . . Ec, 103 ksi : L ................. LT . . . . . . . . . . . . . . . . G, 103 ksi: L ................. LT . . . . . . . . . . . . . . . . µ ..................
15.3 18.5 16.3 18.8 5.8 7.1 0.31
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, K, % . . . . . . . . . . . .
0.161 See Figure 5.4.4.0(a)
Issued Apr. 2011, MMPDS-06, Item 10-19. a b c
A-Basis value is specification minimum. The rounded T99 for Ftu (L) = 134 ksi, for Ftu (LT) = 139 ksi, for Fty (L) = 112 ksi, and for Fty (LT) = 129 ksi . Determined in accordance with ASTM B831, slotted shear test. Bearing values are "dry pin" per Section 1.4.7.1.
5-151
MMPDS-06 1 April 2011 Table 5.4.4.0(c). Design Mechanical and Physical Properties of Ti-4Al-2.5V-1.5Fe Titanium Alloy Hot Rolled Sheet and Plate
Specification . . . . . . . . . . .
AMS 6946
Form . . . . . . . . . . . . . . . . .
Hot Rolled Sheet and Plate
Condition . . . . . . . . . . . . . .
Annealed
Thickness, in. . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsud, ksi L-T . . . . . . . . . . . . . . . T-L . . . . . . . . . . . . . . . Fbrue ksi (e/D = 1.5) : L ................. LT . . . . . . . . . . . . . . . . Fbrue ksi (e/D = 2.0) : L ................. LT . . . . . . . . . . . . . . . . Fbry,e ksi (e/D = 1.5) : L ................. LT . . . . . . . . . . . . . . . . Fbry,e ksi (e/D = 2.0) : L ................. LT . . . . . . . . . . . . . . . . e, percent (S-Basis): L ................. LT . . . . . . . . . . . . . . . . Table continued on next page.
0.125-0.1874
0.1875-1.000
1.001-1.500
1.501-2.100
A
B
A
B
A
B
A
B
130a 130b
137 144
130a 130b
137 143
130a 130b
137 140
130a 130b
137 135
115a 115c
124 132
115a 115c
124 131
115a 115c
124 128
115a 115c
124 123
117 122
126 140
117 122
126 138
117 122
126 135
117 122
126 130
89 89
97 99
90 90
95 99
95 96
100 103
97 99
102 102
206 206
218 228
207 207
218 228
216 218
227 234
219 223
231 231
256 265
269 293
257 265
271 292
268 273
282 294
273 276
288 286
170 160
183 184
170 161
183 183
176 173
190 193
179 179
193 191
198 197
213 227
198 197
213 225
211 210
228 233
217 214
234 229
10 10
... ...
10 10
... ...
10 10
... ...
10 10
... ...
5-152
MMPDS-06 1 April 2011 Table 5.4.4.0(c). Design Mechanical and Physical Properties of Ti-4Al-2.5V-1.5Fe Titanium Alloy Hot Rolled Sheet and Plate (Continued)
Specification . . . . . . . . . . .
AMS 6946
Form . . . . . . . . . . . . . . . . .
Hot Rolled Sheet and Plate
Condition . . . . . . . . . . . . . .
Annealed
E, 103 ksi : L ................. LT . . . . . . . . . . . . . . . . Ec, 103 ksi : L ................. LT . . . . . . . . . . . . . . . . G, 103 ksi: L ................. LT . . . . . . . . . . . . . . . . µ ..................
17.2 18.2 17.6 18.3 6.6 6.9 0.31
Physical Properties: ω, lb/in.3 . . . . . . . . . . . C, K, % . . . . . . . . . . . .
0.161 See Figure 5.4.4.0(b)
Issued Apr. 2011, MMPDS-06, Item 10-19. a b c d e
A-Basis value is specification minimum. The rounded T99 for Ftu (L) = 131 ksi and the Fty (L) = 118 ksi. A-Basis value is specification minimum. The rounded T99 for Ftu (LT) for 0.125-0.500 in. = 140 ksi, for 0.501-1.000 in. = 139 ksi, for 1.001-1.500 in. = 136 ksi, for 1.501-2.100 in. = 131 ksi. A-Basis value is specification minimum. The rounded T99 for Fty (LT) for 0.125-1.000 in. = 126 ksi, for 1.001-1.500 in. = 123 ksi, for 1.501-2.100 in. = 118 ksi. Determined in accordance with ASTM B831, slotted shear test. Bearing values are "dry pin" per Section 1.4.7.1.
5-153
MMPDS-06 1 April 2011
0.24
8
0.22
7
0.20
6
0.18
5
0.16
4
o
C, Btu/(lb)( F)
o
9
α 5
K
-6
0.26
6 α, 10 in./in./ F
10
K, Btu-ft./ft.hr.-oF
0.28
4
3 C
0.14
3
0.12
2
0.10
1
0.08
0
2 Ti-4Al-2.5V-1.5Fe Cold Rolled Sheet 1 0
200
400
600
800
1000
Temperature, oF
Figure 5.4.4.0(a) Effect of temperature on the physical properties of Ti-4Al-2.5V-1.5Fe cold rolled sheet.
0.26
9
0.24
8
0.22
7
0.20
6
0.18
5
0.16
4
o
C, Btu/(lb)( F)
6 α 5
K
α, 10-6 in./in./oF
10
K, Btu-ft./ft.hr.-oF
0.28
4
3 C
0.14
3
0.12
2
0.10
1
0.08
0
2 Ti-4Al-2.5V-1.5Fe Hot Rolled Sheet and Plate 1 0
200
400
600
800
1000
Temperature, oF
Figure 5.4.4.0(b) Effect of temperature on the physical properties of Ti-4Al2.5V-1.5Fe hot rolled sheet and plate.
5-154
MMPDS-06 1 April 2011
Figure 5.4.4.1.1(a) Effect of temperature on the tensile ultimate (Ftu) strength of cold rolled Ti-4Al-2.5V-1.5Fe alloy sheet.
Figure 5.4.4.1.1(b) Effect of temperature on the tensile yield (Fty) strength of cold rolled Ti-4Al-2.5V-1.5Fe alloy sheet.
5-155
MMPDS-06 1 April 2011
Figure 5.4.4.1.2 Effect of temperature on the compression yield (Fcy) strength of cold rolled Ti-4Al-2.5V-1.5Fe alloy sheet.
Figure 5.4.4.1.4 Effect of temperature on the tensile and compressive moduli (E and Ec) of cold rolled Ti-4Al-2.5V-1.5Fe alloy sheet. 5-156
MMPDS-06 1 April 2011
Figure 5.4.4.1.5 Effect of temperature on the elongation (e) of cold rolled Ti-4Al-2.5V-1.5Fe alloy sheet.
5-157
MMPDS-06 1 April 2011
180 Ti-4Al-2.5V-1.5Fe Cold rolled sheet
160
TYPICAL
Long Transverse
140
Stress, ksi
120 Longitudinal
100 80
Ramberg-Osgood (L) n = 30.6 (Solid line)
60 40
n1 = 7.7
K1 = 2.596
n2 = 64.8
K2 = 2.163
(LT) n = 47.1 20
TYS 132.0
160.0
n1 = NA
K1 = NA
n2 = NA
K2 = NA
0 0
2
4
6
8
10
12
14
16
Strain, 0.001 in./in.
Figure 5.4.4.1.6(a). Typical tensile stress-strain curves for Ti-4Al-2.5V-1.5Fe cold rolled sheet at room temperature.
200
Long transverse Ti-4Al-2.5V-1.5Fe Cold rolled sheet
Stress, ksi
160
120 Longitudinal TYPICAL 80
Ramberg-Osgood CYS (ksi) (L) n = 30.7 140 n1 = NA K1 = NA n2 = NA K2 = NA (T) n = 22.3 183 n1 = NA K1 = NA n2 = NA K2 = NA
40
0 0
4
8
12
16
20
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi.
Figure 5.4.4.1.6(b). Typical compressive stress-strain and compressive tangent modulus curves for Ti-4Al-2.5V-1.5Fe cold rolled sheet at room temperature.
5-158
MMPDS-06 1 April 2011
180
170
Long Transverse
160
150
X X
140
Longitudinal
130
120
110
Stress, ksi
100
90
80
70
60
50
40 Ti-4Al-2.5V-1.5Fe Cold rolled sheet
30
20
TYPICAL
10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
Strain, in./in.
Figure 5.4.4.1.6(c). Typical tensile stress-strain curves (full range) for Ti-4Al-2.5V1.5Fe cold rolled sheet at room temperature.
5-159
MMPDS-06 1 April 2011
Figure 5.4.4.1.8(a) Best-fit S/N curves for unnotched cold-rolled Ti-4Al-2.5V-1.5Fe alloy sheet at room temperature, longitudinal orientation Correlative Information for Figure 5.4.4.1.8(a) Product Form:
Cold-rolled sheet, 0.040 B 0.133 inches thick, AMS 6946A
Properties: UTS = 153 ksi, TYS = 133 ksi
Test Parameters: Loading B Axial Frequency B Unspecified Temperature B RT Atmosphere B lab air No. of Heat/Lots: 5/12
Specimen Details:
Unnotched, flat dog-bone fatigue specimen Net Section Width = 0.400 in.
Surface Condition: Unspecified Reference: 5.4.4.1.8
Equivalent Stress Equation: log Nf = 8.733 - 3.028 log (Seq B 85.26) where Seq = Smax (1 B R)0.358 Std. Error of Estimate, Log (Life) = 42.6 x 1/Seq Std. Deviation, Log (Life) = 0.974 R2 = 86.3% Sample Size = 36 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios and maximum stress levels beyond those represented above.]
5-160
MMPDS-06 1 April 2011
Figure 5.4.4.1.8(b) Best-fit S/N curves for unnotched cold-rolled Ti-4Al-2.5V1.5Fe alloy sheet at room temperature, transverse orientation.
Correlative Information for Figure 5.4.4.1.8(b) Product Form: Cold-rolled sheet, 0.040 B 0.133 inches thick, AMS 6946A Properties: UTS = 161 ksi, TYS = 157 ksi
Test Parameters: Loading B Axial Frequency B Unspecified Temperature B RT Atmosphere B lab air No. of Heat/Lots = 5/12
Specimen Details: Unnotched, flat dog-bone fatigue specimen
Surface Condition: Unspecified
Maximum Stress Equation: log Nf = 38.640 - 16.040 log (Smax B 0.00) Std. Error of Estimate, Log (Life) = 29.5 x 1/Smax Std. Deviation, Log (Life) = 0.949 R2 = 88.5%
Reference: 5.4.4.1.8
Sample Size = 12
Net Section Width = 0.400 in.
[Caution: The maximum stress model may provide unrealistic life predictions for maximum stress levels beyond those represented above.]
5-161
MMPDS-06 1 April 2011
Figure 5.4.4.2.1(a) Effect of temperature on the tensile ultimate (Ftu) strength of hot rolled Ti-4Al-2.5V-1.5Fe alloy sheet and plate.
Figure 5.4.4.2.1(b) Effect of temperature on the tensile yield (Fty) strength of hot rolled Ti-4Al-2.5V-1.5Fe alloy sheet and plate.
5-162
MMPDS-06 1 April 2011
Figure 5.4.4.2.2 Effect of temperature on the compression yield (Fcy) strength of hot rolled Ti-4Al-2.5V-1.5Fe alloy sheet and plate.
Figure 5.4.4.2.4 Effect of temperature on the tensile modulus (E) of hot rolled Ti-4Al-2.5V-1.5Fe alloy sheet and plate. 5-163
MMPDS-06 1 April 2011
Figure 5.4.4.2.5 Effect of temperature on the elongation (e) of hot rolled Ti-4Al-2.5V-1.5Fe alloy sheet and plate.
5-164
MMPDS-06 1 April 2011
160 Ti-4Al-2.5V-1.5Fe Hot rolled sheet and plate
140
Long Transverse 120 Longitudinal
Stress, ksi
100
TYPICAL
80
Ramberg-Osgood 60
TYS
(L) n = 64.5 (Solid line) n1 = 31.7
40
138.0
K1 = 2.246
n2 = 155.0 K2 = 2.158 (LT) n = 50.9
20
n1 = 4.9
139.0 K1 = 2.951
n2 = 73.7
K2 = 2.180
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in.
Figure 5.4.4.2.6(a). Typical tensile stress-strain curves for Ti-4Al-2.5V-1.5Fe hot rolled sheet and plate at room temperature.
180 Ti-4Al-2.5V-1.5Fe Hot Rolled Sheet and Plate
Long transverse
160 140
Stress, ksi
120 Longitudinal
100
TYPICAL
80
Ramberg-Osgood CYS (ksi) (L) n = 40.7 137 n1 = NA K1 = NA n2 = NA K2 = NA (T) n = 33.2 151 n1 = NA K1 = NA n2 = NA K2 = NA
60 40 20 0 0
4
8
12
16
20
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi.
Figure 5.4.4.2.6(b). Typical compressive stress-strain and compressive tangent modulus curves for Ti-4Al-2.5V-1.5Fe hot rolled sheet and plate at room temperature.
5-165
MMPDS-06 1 April 2011
160
Long Transverse 150
140
X X
Longitudinal
130
120
110
100
Stress, ksi
90
80
70
60
50
40
30
Ti-4Al-2.5V-1.5Fe Hot rolled sheet and plate
20
TYPICAL 10
0 0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
Strain, in./in.
Figure 5.4.4.2.6(c). Typical tensile stress-strain curves (full range) for Ti-4Al-2.5V1.5Fe hot rolled sheet and plate at room temperature. 5-166
MMPDS-06 1 April 2011
Figure 5.4.4.2.8(a) Best-fit S/N curves for unnotched hot-rolled Ti-4Al-2.5V-1.5Fe alloy plate (0.190 – 0.500 inch thick) at room temperature, longitudinal orientation.
Correlative Information for Figure 5.4.4.2.8(a) Test Parameters: Loading – Axial Frequency – Unspecified Temperature – RT Atmosphere – lab air
Product Form: Hot-rolled plate, 0.190 – 0.500 inches thick, AMS 6946A Properties: UTS = 151 ksi, TYS = 144 ksi
No. of Heat/Lots = 4/12 Specimen Details: Unnotched, flat dog-bone fatigue specimen
Equivalent Stress Equation: log Nf = 22.757 - 10.169 log (Seq – 63.06) where Seq = Smax (1 – R)0.163 Std. Error of Estimate, Log (Life) = 0.227 Std. Deviation, Log (Life) = 0.818 R2 = 92.3%
Net Section Width = 0.400 in. Surface Condition: Unspecified Reference: 5.4.1.1.8
Sample Size = 14 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios and maximum stress levels beyond those represented above.]
5-167
MMPDS-06 1 April 2011
Figure 5.4.4.2.6(b) Best-fit S/N curves for unnotched hot-rolled Ti-4Al-2.5V1.5Fe alloy plate (0.750 – 2.000 inch thick) at room temperature, longitudinal and transverse orientations.
Correlative Information for Figure 5.4.4.2.8(b) Product Form: Hot-rolled plate, 0.750 B 2.000 inches thick, AMS 6946A Properties: UTS(L) = 149 ksi, UTS(T) = 150 ksi TYS(L) = 137 ksi, TYS(T) = 149 ksi
Maximum Stress Equation (R = -0.50): log Nf = 6.087 - 1.224 log (Seq B 86.70) Std. Error of Estimate, Log (Life) = 34.1/Smax Std. Deviation, Log (Life) = 0.500 R2 = 61.0% Sample Size = 12
Specimen Details: Unnotched, flat dog-bone fatigue specimen Net Section Width = 0.400 in. Surface Condition: Unspecified Reference: 5.4.1.1.8 Test Parameters: Loading B Axial Frequency B Unspecified Temperature B RT Atmosphere B lab air No. of Heat/Lots = 4/12
Equivalent Stress Equation (R = 0.1 to 0.5): log Nf = 25.706 - 10.013 log (Seq B 0.00) where Seq = Smax (1 B R)0.233 Std. Error of Estimate, Log (Life) = 0.332 Std. Deviation, Log (Life) = 0.669 R2 = 75.5% Sample Size = 15 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios and maximum stress levels beyond those represented above.]
5-168
MMPDS-06 1 April 2011
5.5 BETA, NEAR-BETA, AND METASTABLE-BETA TITANIUM ALLOYS There is no clear-cut definition for beta titanium alloys. Conventional terminology usually refers to near-beta alloys and metastable-beta alloys as classes of beta titanium alloys. A near-beta alloy is generally one which has appreciably higher beta stabilizer content than a conventional alpha-beta alloy such as Ti-6Al-4V, but is not quite sufficiently stabilized to readily retain an all-beta structure with an air cool of thin sections. For such alloys, a water quench even of thin sections is required. Due to the marginal stability of the beta phase in these alloys, they are primarily solution treated below the beta transus to produce primary alpha phase which in turn results in an enriched, more stable beta phase. This enriched beta phase is more suitable for aging. The Ti-10V-2Fe-3Al alloy is an example of a near-beta alloy. On the other hand, the metastable-beta alloys are even more heavily alloyed with beta stabilizers than near-beta alloys and, as such, readily retain an all-beta structure upon air cooling of thin sections. Due to the added stability of these alloys, it is not necessary to heat treat below the beta transus to enrich the beta phase. Therefore, these alloys do not normally contain primary alpha since they are usually solution treated above the beta transus. These alloys are termed “metastable” because the resultant beta phase is not truly stable—it can be aged to precipitate alpha for strengthening purposes. Alloys such as Ti-15-3, B120VCA, Beta C, and Beta III are considered metastable-beta alloys. Unfortunately, the classification of an alloy as either near-beta or metastable-beta is not always obvious. In fact, the “metastable” terminology is not precise since a near-beta alloy is also metastable—i.e., it also decomposes to alpha plus beta upon aging. There is one obvious additional category of beta alloys—the stable beta alloys. These alloys are so heavily alloyed with beta stabilizers that the beta phase will not decompose to alpha plus beta upon subsequent aging. There are no such alloys currently being produced commercially. An example of such an alloy is Ti-30Mo. The interest in beta alloys stems from the fact that they contain a high volume fraction of beta phase which can be subsequently hardened by alpha precipitation. Thus, these alloys can generate quite highstrength levels (in excess of 200 ksi) with good ductilities. Also, such alloys are much more deep hardenable than alpha-beta alloys such as Ti-6Al-4V. Finally, many of the more heavily alloyed beta alloys exhibit excellent cold formability and as such offer attractive sheet metal forming characteristics. 5.5.1 TI-13V-11CR-3AL 5.5.1.0 Comments and Properties — Ti-13V-11Cr-3Al is a heat-treatable alloy possessing good workability and toughness in the annealed condition and high strength in the heat-treated condition. It is noted for its exceptional ability to harden in heavy sections (up to 6-inch diameter or greater) to tensile strength of 170 ksi Ftu. Manufacturing Considerations — This alloy possesses very good formability at room temperature; stretch forming is usually conducted at 500EF. Ti-13V-11Cr-3Al is readily fusion or spot welded. Arc-welded joints are very ductile in the as-welded condition, but have low strengths. Environmental Considerations — Ti-13V-11Cr-3Al is stable for times up to 1000 hours in the annealed condition at 550EF and in the solution treated and aged condition up to 600EF. Prolonged exposure above these temperatures may result in ductility losses. If welding is employed, the stability of the weld should be investigated under the particular exposure conditions to be encountered. While the material is not noted for good creep performance, Ti-13V-11Cr-3Al has exceptional short-time strength at temperatures to 1200EF and above. Oxidation resistance is satisfactory at such temperatures for short-time exposure and for long-time exposure at the lower elevated temperatures. Hot-salt stress corrosion has been shown to be possible in this 5-169
MMPDS-06 1 April 2011 alloy at temperatures as low as 500EF in highly stressed applications (e.g., rivet heads). It is generally thought that the material is moderately susceptible to aqueous chloride solution stress corrosion. Ti-13V-11Cr-3Al is not noted for good fracture toughness in the aged or high-strength condition and is not recommended in any condition for cryogenic temperature applications. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-S-5002 and MIL-HDBK-1568 for restrictions concerning applications with titanium in contact with these metals or their compounds. Heat Treatment — This alloy is commonly specified in either the annealed condition or in the fully heat-treated condition. The specified fully heat-treated, or solution-treated and aged, condition is as follows: Solution treat at 1450EF for 15 to 60 minutes, air cool (water quench if material is over 2 inches thick). Age at 900EF for 2 to 60 hours, dependent on strength level. (Note: typical aging time to achieve Ftu = 170 ksi is 24 to 36 hours.) Specifications and Properties — Material specifications for Ti-13V-11Cr-3Al are shown in Table 5.5.1.0(a). Room-temperature mechanical and physical properties for Ti-13V-11Cr-3Al are shown in Table 5.5.1.0(b). The effect of temperature on physical properties is shown in Figure 5.5.1.0. Table 5.5.1.0(a). Material Specifications for Ti-13V-11Cr-3Al
Specification
Form
AMS 4917
Sheet, strip, and plate
AMS 6925
Bar
AMS 6926
Bar
5.5.1.1 Annealed Condition — Elevated temperature curves for annealed Ti-13V-11Cr-3Al are shown in Figures 5.5.1.1.1 through 5.5.1.1.4. Typical tensile stress-strain curves for annealed material at temperatures ranging from room temperature to 1000EF are shown in Figure 5.5.1.1.6. Unnotched and notched fatigue data at room and elevated temperatures for annealed sheet are shown in Figures 5.5.1.1.8(a) through 5.5.1.1.8(d). 5.5.1.2 Solution-Treated and Aged Condition — Elevated temperature curves for solutiontreated and aged Ti-13V-11Cr-3Al are shown in Figures 5.5.1.2.1 through 5.5.2.1.4. Typical tensile stressstrain curves at various temperatures are shown in Figure 5.5.1.2.6. Unnotched fatigue data at room and elevated temperatures for solution-treated and aged sheet are shown in Figures 5.5.1.1.8(a) through 5.5.1.1.8(c).
5-170
MMPDS-06 1 April 2011
Table 5.5.1.0(b). Design Mechanical and Physical Properties of Ti-13V-11Cr-3Al Specification . . . . . . . . . . AMS 4917a AMS 6925b AMS 6926 b Form . . . . . . . . . . . . . . . . . Sheet, strip, and plate Bar Solution treated Condition . . . . . . . . . . . . . Annealed Annealed and aged 0.0120.050Thickness or diameter, in. <4.000c 0.049 4.000 <7.000c Basis . . . . . . . . . . . . . . . . . S S S S Mechanical Properties: Ftu, ksi: 170 L ................. 132 125 125 LT . . . . . . . . . . . . . . . . 170d 132 125 125d ST . . . . . . . . . . . . . . . . 125d 170d ... 125 Fty, ksi: L ................. 120 160 126 120 LT . . . . . . . . . . . . . . . . 120d 160d 126 120 120d 160d ST . . . . . . . . . . . . . . . . ... 120 Fcy, ksi: L ................. ... ... ... 120 LT . . . . . . . . . . . . . . . . ... ... ... 120 ST . . . . . . . . . . . . . . . . ... ... ... 120 Fsu, ksi . . . . . . . . . . . . . . ... ... ... 92 Fbru, ksi: ... ... (e/D = 1.5) . . . . . . . . . . ... 207 ... ... (e/D = 2.0) . . . . . . . . . . ... 270 Fbry, ksi: ... ... (e/D = 1.5) . . . . . . . . . . ... 169 ... ... (e/D = 2.0) . . . . . . . . . . ... 200 e, percent: 10 6 L ................. 8 10 c 10 2c LT . . . . . . . . . . . . . . . . 8 10 c ST . . . . . . . . . . . . . . . . ... 10 10 2c RA, percent: L ................. ... ... 25 10 c LT . . . . . . . . . . . . . . . . ... ... 25 5c c ST . . . . . . . . . . . . . . . . ... ... 25 5c 3 E, 10 ksi . . . . . . . . . . . . 14.5 14.5 15.5 Ec, 103 ksi . . . . . . . . . . . ... ... ... G, 103 ksi . . . . . . . . . . . . ... ... ... µ .................. ... ... ... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . 0.174 C, K, and α . . . . . . . . . . See Figure 5.5.1.0 Last Revised: Oct 2006, MMPDS-03, Item 05-26. a Mechanical properties were established under MIL-T-9046, Comp. B-1. b Mechanical properties were established under MIL-T-9047. c Maximum of 16 square-inch cross-sectional area. d Applicable, providing LT or ST dimension is $3.000 inches
5-171
MMPDS-06 1 April 2011
Figure 5.5.1.0. Effect of temperature on the physical properties of Ti-13V-11Cr-3Al alloy.
5-172
MMPDS-06 1 April 2011
Figure 5.5.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of annealed Ti-13V-11Cr-3Al alloy sheet.
Figure 5.5.1.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of annealed Ti-13V-11Cr-3Al alloy sheet.
5-173
MMPDS-06 1 April 2011
Figure 5.5.1.1.3(a). Effect of temperature on the bearing ultimate strength (Fbru) of annealed Ti-13V-11Cr-3Al alloy sheet.
Figure 5.5.1.1.3(b). Effect of temperature on the bearing yield strength (Fbry) of annealed Ti-13V-11Cr-3Al alloy sheet.
5-174
MMPDS-06 1 April 2011
Percent of RoomTemperature Modulus
100
Ti-13V-11Cr-3Al annealed sheet 90
E
80
70
Modulus at temperature Exposure up to 0.5 hr TYPICAL
60 0
200
400
600
800
1000
o
Temperature, F
Figure 5.5.1.1.4. Effect of temperature on the tensile modulus (E) of annealed Ti13V-11Cr-3Al alloy sheet. 150 Longitudinal and Long T ransverse
125
200 o F 400 o F 600 o F 800 o F
0.5 -hr exposure 100 Stress, ksi
T i-13V -11C r-3A l annealed sheet
RT
1000 o F
75
R am b erg - O sg o o d n (R T ) = 43 n (200 o F ) = 30 n (400 o F ) = 17 n (600 o F ) = 12 n (800 o F ) = 11 n (1000 o F ) = 10
50
25
T Y P IC A L 0 0
4
8
12
16
20
S train, 0.001 in./in.
Figure 5.5.1.1.6. Typical tensile stress-strain curves for annealed Ti-13V11Cr-3Al alloy sheet at room and elevated temperatures.
5-175
24
MMPDS-06 1 April 2011
Figure 5.5.1.1.8(a). Best-fit S/N curves for unnotched, annealed Ti-13V11Cr-3Al alloy sheet, longitudinal direction.
Correlative Information for Figure 5.5.1.1.8(a) Product Form: Sheet, 0.043-inch thick Properties:
Test Parameters: Loading—Axial Frequency—3600 cpm Temperature—RT Atmosphere—Air
TUS, ksi TYS, ksi Temp.,EF 138.50 132.80 RT
Specimen Details:
Unnotched, 0.30-inch wide No. of Heats/Lot: Not specified
Surface Condition: As machined, edges polished with emery paper. Reference:
Equivalent Stress Equation: Log Nf = 10.15-3.41 log (Seq-52.2) Seq = Smax (1-R)0.97 Std. Error of Estimate, Log (Life) = 0.58 Standard Deviation, Log (Life) = 0.82 R2 = 50%
5.5.1.1.8
Sample Size = 27 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-176
MMPDS-06 1 April 2011
Figure 5.5.1.1.8(b). Best-fit S/N curves for notched, Kt = 3.0, annealed Ti13V-11Cr-3Al alloy sheet, longitudinal direction.
Correlative Information for Figure 5.5.1.1.8(b) Product Form: Sheet, 0.043-inch thick Properties:
Test Parameters: Loading—Axial Frequency—3600 cpm Temperature—RT Atmosphere—Air
TUS, ksi TYS, ksi Temp.,EF 138.50 132.80 RT
Specimen Details: Notched, edge, K = 3.0 0.448-inch gross width 0.300-inch net width 0.022-inch root radius, r 60E flank angle, ω
No. of Heats/Lots: Not specified Equivalent Stress Equation: Log Nf = 21.93-11.03 log (Seq) Seq = Smax (1-R)0.53 Std. Error of Estimate, Log (Life) = 0.91 Standard Deviation, Log (Life) = 1.11 R2 = 33%
Surface Condition: As machined, edges polished with emery paper. Reference: 5.5.1.1.8
Sample Size = 19 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-177
MMPDS-06 1 April 2011
Figure 5.5.1.1.8(c). Best-fit S/N curves for unnotched, annealed Ti13V-11Cr-3Al alloy sheet at 600E EF, longitudinal direction.
Correlative Information for Figure 5.5.1.1.8(c) Product Form:
Sheet, 0.043-inch thick
Properties:
TUS, ksi TYS, ksi Temp.,EF 116.00 102.61 600
Test Parameters: Loading—Axial Frequency—3600 cpm Temperature—600EF Atmosphere—Air
Specimen Details: Unnotched, 0.300-inch wide No. of Heats/Lot: Not specified Surface Condition: As machined, edges polished with emery paper.
Equivalent Stress Equation: Log Nf = 35.63-16.50 log (Seq) Seq = Smax (1-R)0.34 Std. Error of Estimate, Log (Life) = 0.35 Standard Deviation, Log (Life) = 1.07 R2 = 90%
Reference: 5.5.1.1.8
Sample Size = 12 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-178
MMPDS-06 1 April 2011
Figure 5.5.1.1.8(d). Best-fit S/N curves for unnotched annealed Ti-13V11Cr-3Al alloy sheet at 800E EF, longitudinal direction.
Correlative Information for Figure 5.5.1.1.8(d) Product Form: Properties:
Sheet, 0.043-inch thick
TUS, ksi TYS, ksi 115.80 98.61
Specimen Details:
Test Parameters: Loading—Axial Frequency—3600 cpm Temperature—800EF Atmosphere—Air
Temp.,EF 800
Unnotched, 0.300-inch wide
No. of Heats/Lot: Not specified
Surface Condition: As machined, edges polished with emery paper. Reference:
Equivalent Stress Equation: Log Nf = 21.67-8.88 log (Seq) Seq = Smax (1-R)0.42 Std. Error of Estimate, Log (Life) = 0.84 Standard Deviation, Log (Life) = 1.07 R2 = 39%
5.5.1.1.8
Sample Size = 26 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-179
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
100
Ti-13V-11Cr-3Al STA Sheet 90
Ftu 80
Fty 70
60
50
Strength at temperature Exposure up to 0.5 hrs.
40 0
100
200
300
400
500
600
700
800
900
1000 1100 1200
Temperature, oF
Figure 5.5.1.2.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of solution-treated and aged Ti-13V-11Cr-3Al alloy sheet.
Percent of RoomTemperature Strength
100
Ti-13V-11Cr-3Al STA Sheet 90
Fsu 80
Fcy 70
60
50
Strength at temperature Exposure up to 0.5 hrs.
40 0
100
200
300
400
500
600
700
800
900
1000 1100 1200
Temperature, oF
Figure 5.5.1.2.2. Effect of temperature on the compression yield strength (Fcy) and the shear ultimate strength (Fsu) of solution-treated and aged Ti-13V-11Cr-3Al alloy sheet.
5-180
MMPDS-06 1 April 2011
Percent of RoomTemperature Strength
100
Ti-13V-11Cr-3Al STA Sheet 90
Fbru 80
Fbry
70
60
50
Strength at temperature Exposure up to 0.5 hrs.
40 0
100
200
300
400
500
600
700
800
900
1000 1100 1200
Temperature, oF
Figure 5.5.1.2.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of solution-treated and aged Ti-13V-11Cr-3Al alloy sheet. 100
Percent of RoomTemperature Modulus
Ti-13V-11Cr-3Al Sheet
90
E
80
70
Modulus at Temperature Exposure up to 1/2 hr.
60 0
100
200
300
400
500
600
700
800
900
1000
o
Temperature, F
Figure 5.5.1.2.4. Effect of temperature on the tensile modulus (E) of solution-treated and aged Ti-13V-11Cr-3Al alloy sheet.
5-181
MMPDS-06 1 April 2011
200 Ti-13V-11Cr-3Al STA sheet
RT 200 o F
Longitudinal and Long Transverse
160
400 o F 600 o F 800 o F
Stress, ksi
0.5 -hr exposure 120 1000 o F
Ramberg - Osgood n (RT) = 23 n (200 o F) = 17 n (400 o F) = 16 n (600 o F) = 15 n (800 o F) = 11 n (1000 o F) = 10
80
40
TYPICAL 0 0
4
8
12
16
20
24
Strain, 0.001 in./in.
Figure 5.5.1.2.6. Typical tensile stress-strain curves for solution-treated and aged Ti13V-11Cr-3Al alloy sheet at room and elevated temperatures.
5-182
MMPDS-06 1 April 2011
Figure 5.5.1.2.8(a). Best-fit S/N curves for unnotched, solution treated and aged Ti-13V-11Cr-3Al alloy sheet and plate, longitudinal direction.
Correlative Information for Figure 5.5.1.2.8(a) Product Form: Sheet, 0.043-inch thick and plate, 1.00-inch thick Properties:
Test Parameters: Loading—Axial Frequency—3600 cpm, 10,000 cpm Temperature—RT Atmosphere—Air
TUS, ksi TYS, ksi Temp.,EF 174.5 156.7 RT
No. of Heats/Lot: Not specified
Specimen Details: Unnotched, 0.30-inch wide Unnotched, 0.20-inch wide
Equivalent Stress Equation: Log Nf = 8.37-2.30 log (Seq-20) Seq = Smax (1-R)0.27 Std. Error of Estimate, Log (Life) = 0.093 Standard Deviation, Log (Life) = 0.31 R2 = 91%
Surface Condition: As machined, edges polished with emery paper. As machined, edges were hand-polished. References: 5.5.1.1.8 and 5.5.1.2.8
Sample Size = 17 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-183
MMPDS-06 1 April 2011
Figure 5.5.1.2.8(b). Best-fit S/N curves for unnotched, solution treated and aged Ti-13V-11Cr-3Al alloy sheet at 600E EF, longitudinal direction.
Correlative Information for Figure 5.5.1.2.8(b) Product Form: Sheet, 0.043-inch thick Properties:
Test Parameters: Loading—Axial Frequency—3600 cpm Temperature—600EF Atmosphere—Air
TUS, ksi TYS, ksi Temp.,EF 156.30 127.0 600
Specimen Details:
Unnotched, 0.30-inch wide No. of Heats/Lots: Not specified
Surface Condition: As machined, edges polished with emery paper.
Equivalent Stress Equation: Log Nf = 10.39-4.33 log (Seq-48.5) Seq = Smax (1-R)0.40 Std. Error of Estimate, Log (Life) = 0.90 Standard Deviation, Log (Life) = 1.27 R2 = 50%
Reference: 5.5.1.1.8
Sample Size = 21 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-184
MMPDS-06 1 April 2011
Figure 5.5.1.2.8(c). Best-fit S/N curves for unnotched, solution treated and aged Ti-13V-11Cr-3Al alloy sheet at 800E EF, longitudinal direction.
Correlative Information for Figure 5.5.1.2.8(c) Product Form: Sheet, 0.043-inch thick Properties:
Test Parameters: Loading—Axial Frequency—3600 cpm Temperature—800EF Atmosphere—Air
TUS, ksi TYS, ksi Temp.,EF 149.40 122.30 800
Specimen Details:
Unnotched, 0.30-inch wide No. of Heats/Lots: Not specified
Surface Condition: As machined, edges polished with emery paper.
Equivalent Stress Equation: Log Nf = 30.03-14.03 log (Seq) Seq = Smax (1-R)0.11 Std. Error of Estimate, Log (Life) = 0.85 Standard Deviation, Log (Life) = 1.01 R2 = 29%
Reference: 5.5.1.1.8
Sample Size = 24 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
5-185
MMPDS-06 1 April 2011 5.5.2 TI-15V-3CR-3SN-3AL (TI-15-3) 5.5.2.0 Comments — Ti-15V-3Cr-3Sn-3Al is a solute rich (metastable) beta titanium alloy. It was developed primarily to lower the cost of titanium sheet metal parts by reducing materials and processing cost. Contrary to conventional alpha-beta alloys, this alloy is strip-producible and has excellent room temperature formability characteristics. It can also be aged to a wide range of strength levels to meet a variety of application needs. Although this alloy was originally developed as a sheet alloy, it has expanded into other areas such as fasteners, foil, plate, tubing, castings, and forgings. Manufacturing Considerations — Ti-15V-3Cr-3Sn-3Al is usually supplied in the solution-annealed condition. In this condition, the alloy has a single phase (beta) structure and, hence, is readily cold-formed. After cold-forming, the alloy can be resolution-treated in the 1450E to 1550EF range and subsequently aged in the 900E to 1100EF range, depending upon desired strength. Care should be exercised to ensure that no surface contamination results from the solution treatment. The alloy can be directly aged after forming; however, strength will vary depending upon the amount of cold-work in the part. The alloy can also be hot formed. Heating times prior to hot forming should be minimized in order to prevent appreciable aging prior to forming. Ti-15V-3Cr-3Sn-3Al alloy is readily welded by standard titanium welding techniques. Environmental Considerations — In the aged condition, Ti-15V-3Cr-3Sn-3Al appears to be immune to hot-salt stress corrosion cracking below the 500E to 440EF range. However, some susceptibility has been noted after 100-hour stressed exposures at 600EF. The presence of salt water does not appear to affect the room temperature crack growth behavior of aged material. Alloy Ti-15V-3Cr-3Sn-3Al should not be used in the solution treated condition. Long time exposure of solution treated and cold worked material to service temperatures above approximately 300EF or solution treated material to service temperatures above approximately 400EF can result in low ductility. Under certain conditions, titanium, when in contact with cadmium, silver, mercury, or certain of their compounds, may become embrittled. Refer to MIL-S-5002 and MILHDBK-1568 for restrictions concerning such applications. Heat Treatment — This alloy should be solution-treated for 10-30 minutes in the 1450E to 1550EF range, cooled at a rate approximating an air cool of 0.125 inch thick sheet, and subsequently aged. Aging is generally conducted in the 900E to 1100EF range, followed by an air cool. Aging times will vary depending upon aging temperature. The material can be used in service in the solution treated condition subject to the temperature limitations described above. Specifications and Properties — A material specification for Ti-15V-3Cr-3Sn-3Al is shown in Table 5.5.2.0(a). Room temperature mechanical properties for Ti-15V-3Cr-3Sn-3Al are shown in Table 5.5.2.0(b). The effect of temperature on physical properties is shown in Figure 5.5.2.0. 5.5.2.1
Solution-Treated and Aged (1000E EF) Condition — Typical tensile and
Table 5.5.2.0(a). Material Specification for Ti-15V-3Cr-3Sn-3Al
Specification
Form
AMS 4914
Sheet and strip
compressive stress-strain and compressive tangent-modulus curves are presented in Figures 5.5.2.1.6(a) and 5.5.2.1.6(b).
5-186
MMPDS-06 1 April 2011
Table 5.5.2.0(b). Design Mechanical and Physical Properties of Ti-15V-3Cr-3Sn-3Al Sheet
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 4914
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sheet
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STA (1000EF/8 Hrs.)
Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#0.125
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L ...................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ...................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ...................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e, percent: L ...................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi: L ...................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi: L ...................................... LT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . µ ....................................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a Bearing values are “dry pin” values per Section 1.4.7.1.
5-187
145 145 140 140 139 144 92 216 276 203 233 7 7 15.2 15.7 15.3 16.0 ... ... 0.172 See Figure 5.5.2.0
MMPDS-06 1 April 2011
Figure 5.5.2.0. Effect of temperature on the physical properties of Ti-15V-3Cr-3Sn3Al alloy.
5-188
MMPDS-06 1 April 2011
200 Ti-15V-3Cr-3Sn-3Al o STA (1000 F) sheet 160
Stress, ksi
Long transverse
120 Longitudinal
80 Ram berg-O sgood n (L-tension) = 21 n (LT-tension) = 19
40
T YS (ksi) 155 155
TYPICAL Thickness: 0.020-0.076 in. 0 0
4
8
12 Strain, 0.001 in./in.
16
20
24
Figure 5.5.2.1.6(a). Typical tensile stress-strain curves for solution treated and aged (1000oF) Ti-15V-3Cr-3Sn-3Al alloy sheet at room temperature.
200
L o n g tra n s v e rs e
T i-1 5 V -3 C r-3 S n -3 A l o S T A (1 0 0 0 F ) s h e e t
L o n g itu d in a l
Stress, ksi
160
120
80
T Y P IC A L R a m b e rg -O s g o o d
40
n (L ) = 2 3 n (L T ) = 2 1
T Y S (k s i) 160 164
T h ic k n e s s : 0 .0 2 0 -0 .0 7 6 in .
0 0
4
8
12
16
20
24
S tra in , 0 .0 0 1 in ./in . C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 3 k s i.
Figure 5.5.2.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for solution treated and aged (1000oF) Ti-15V-3Cr-3Sn-3Al alloy sheet at room temperature.
5-189
MMPDS-06 1 April 2011 5.5.3 TI-10V-2FE-3AL (TI-10-2-3) 5.5.3.0 Comments and Properties — Ti-10V-2Fe-3Al is a solute lean beta (near beta) titanium alloy that was developed primarily as a high-strength forging alloy. It has excellent forging characteristics, possessing flow properties at 1500EF similar to Ti-6Al-4V at 1700EF. This characteristic provides advantages, such as lower die cost and better die fill capability. This alloy also provides the best combination of strength and toughness of any of the commercially available titanium alloys. For example, at the 180 ksi tensile ultimate strength level, the alloy has a KIc value of 40 ksi-in.½ minimum. In addition to this high-strength condition, the alloy can also be processed to intermediate strength levels for higher fracture toughness. This alloy has also been reported to exhibit a shape-memory effect. Manufacturing Considerations — Ti-10V-2Fe-3Al is usually supplied as bar or billet product which has been finish forged (or rolled) in the alpha-beta field. In order to optimize the microstructure for the highstrength condition, the forging is usually given a pre-form forge above the beta transus, followed by a 15 to 25 percent reduction below the beta transus. Ideally, the beta forging operation is finished through the beta transus, followed by a quench. The intent of the two-step forging process is to develop a structure without grain boundary alpha, but with elongated primary alpha needles in an aged beta matrix. The alloy is considered to be deep hardenable, capable of generating high strengths in section thicknesses up to approximately 5 inches. The alloy is also readily weldable by conventional titanium welding techniques. Environmental Consideration — In the solution treated plus aged condition, the material exhibits excellent resistance to stress corrosion cracking, typically exhibiting a KIscc > 0.8 KIc. In the solution-treated condition, the material should not be subjected to long-term exposure in the 500E to 800EF range, since such exposure could result in high-strength, low-ductility conditions. Exposure to cadmium, silver, mercury, or certain other compounds should be avoided. Refer to MIL-HDBK-1568 and MIL-S-5002. Heat Treatment — For the high-strength condition, the alloy is generally solution treated approximately 65EF below the beta transus (which is typically 1460E to 1480EF), followed by a water quench and an 8-hour age at 900E to 950EF. Overaging in the 950E to 1150EF range may also be used to obtain lower strength levels. Beta Flecks — Ti-10V-2Fe-3Al is a segregation prone alloy which can exhibit a microstructural phenomenon known as “beta-flecks”. Certain areas may possess a lower beta transus than the matrix (due primarily to beta stabilizer enrichment) and, as such, can fully transform during heat treatment just below the matrix transus. In severe cases, this condition can lead to lower ductility and a reduction in fatigue strength due to grain boundary alpha formation in the “flecked” region. Care should be exercised to procure only material which has been melted under strict control to prevent severe “fleck” formation. Specifications and Properties — Material specifications for Ti-10V-2Fe-3Al are shown in Table 5.5.3.0(a). Room temperature mechanical properties for Ti-10V-2Fe-3Al are presented in Tables 5.5.3.0(b) and 5.5.3.0(c) for die and hand forging. 5.5.3.1 Solution Treated and Aged (900E E to 950E EF) Condition — Typical tensile and compressive stress-strain and compressive tangent-modulus curves are presented in Figure 5.5.3.1.6.
5-190
MMPDS-06 1 April 2011
Table 5.5.3.0(a). Material Specifications for Ti-10V-2Fe-3Al Specification Form AMS 4983 Forging AMS 4984 Forging AMS 4986 Forging
5.5.3.2 Solution Treated and Aged (950E E to 1000E EF) Condition — Typical tensile and compressive stress-strain and compressive tangent-modulus curves are shown in Figure 5.5.3.2.6.
5-191
MMPDS-06 1 April 2011
Table 5.5.3.0(b). Design Mechanical and Physical Properties of Ti-10V-2Fe-3Al Die Forging
Specification . . . . . . . Form . . . . . . . . . . . . . . Condition . . . . . . . . . . Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent: L .............. LT . . . . . . . . . . . . . ST . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . a, 10-6 in./in./EF . . . . C and K . . . . . . . . . .
AMS 4983
AMS 4984
Conventional die forging Solution treated and aged (900E-950EF) <1.000 <3.000 S S
180 180a ...
173 173a 173a
160 160a ...
160 160a 160a
168 166 ... 101
168 166 166 97
244 295
234 284
227 261
227 261
4 4a ...
4 4a 4a 15.9 16.3 ... ... 0.168 5.4 (68-800EF) ...
a Applicable providing LT or ST dimension is >2.500 inches. b Bearing values are “dry pin” values per Section 1.4.7.1.
5-192
MMPDS-06 1 April 2011
Table 5.5.3.0(c). Forging
Design Mechanical and Physical Properties of Ti-10V-2Fe-3Al Hand
Specification . . . . . . . Form . . . . . . . . . . . . . . Condition . . . . . . . . . . Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .............. LT . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent: L .............. LT . . . . . . . . . . . . . RA, percent: L .............. LT . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . a, 10-6 in./in./EF . . . . C and K . . . . . . . . . . a b c
AMS 4986 Hand forging Solution treated and aged (950E-1000EF) 3.001-4.000 <3.000 S S
160 160a
160 160
145 145a
145 145
154 ... 97b
... ... ...
241 293
... ...
218 245
... ...
6 6a
6 6
10 10a
10 10 15.9 16.3 ... ... 0.168 5.4 (68E-800EF) ...
Applicable providing LT dimension is >2.500 inches. Shear strength determined in accordance with ASTM B 769. Bearing values are “dry pin” per Section 1.4.7.1.
5-193
MMPDS-06 1 April 2011
200
L , L T , a n d S T - c o m p re s s io n
L - te n s io n
L T - te n s io n S T - te n s io n
Stress, ksi
160
120 R a m b e rg - O s g o o d n ( L - te n s io n ) = 9 .6 n ( L T - te n s io n ) = 1 3 n (S T - te n s io n ) = 1 3 n ( L - c o m p .) = 1 8 n ( L T - c o m p .) = 1 5 n ( S T - c o m p .) = 1 8
80
40 T Y P IC A L
T h ic k n e s s = 3 .1 0 0 - 3 .3 0 0
T i- 1 0 V -2 F e -3 A l S T A (9 0 0 o F - 9 5 0 o F ) d ie fo rg in g
0 0
4
8
12 16 S tra in , 0 .0 0 1 in ./in . C o m p re s s iv e T a n g e n t M o d u lu s , 1 0 3 k s i
20
24
Figure 5.5.3.1.6. Typical tensile stress-strain, compressive stress-strain, and compressive tangent-modulus curves for solution treated and aged (900o-950oF) Ti10V-2Fe-3Al die forging.
200 L - c o m p r e s s io n L T - te n s io n
160
Stress, ksi
L - te n s io n
120
R am b erg - O sg o o d n ( L - te n s io n ) = 2 4 n ( L T - te n s io n ) = 2 0 n ( L - c o m p .) = 2 1
80
40
T Y P IC A L T h ic k n e s s = 3 .0 0 0 in .
T i- 1 0 V - 2 F e - 3 A l S T A (9 5 0 oF -1 0 0 0 oF ) d ie fo r g in g
0 0
4
8
12 16 S tr a in , 0 .0 0 1 in ./in . C o m p r e s s iv e T a n g e n t M o d u lu s , 1 0 3 k s i
20
24
Figure 5.5.3.2.6. Typical tensile stress-strain, compressive stress-strain, and compressive tangent-modulus curves for solution treated and aged (950o-1000oF) Ti10V-2Fe-3Al die forging.
5-194
MMPDS-06 1 April 2011
5.6 ELEMENT PROPERTIES 5.6.1 BEAMS — See Section 1.3.5 for general information on stress analysis of beams. 5.6.1.1 Simple Beams — Beams of solid, tubular, or similar cross sections can be assumed to fail through exceeding an allowable modulus of rupture in bending (Fb). In the absence of specific data, the ratio Fb/Ftu can be assumed to be 1.25 for solid sections. 5.6.1.1.1 Round Tubes — For round tubes, the value of Fb will depend on the D/t ratio as well as the ultimate tensile stress. The bending modulus of rupture of 6Al-4V titanium alloy is given in Figure 5.6.1.1.1.
5.6.1.1.2 Unconventional Cross Sections — Sections other than solid or tubular should be tested to determine the allowable bending stress.
Figure 5.6.1.1.1. Bending modulus of rupture for solution-treated and aged Ti-6Al-4V alloy round tubing manufactured from bar material.
5-195
MMPDS-06 1 April 2011
This page is intentionally blank.
5-196
MMPDS-06 1 April 2011
REFERENCES 5.1.2(a)
Jaffe, R.I., “The Physical Metallurgy of Titanium Alloys”, Progress in Metal Physics, Vol. 7, Pergammon Press, Oxford, England, pp. 65-167 (1958).
5.1.2(b)
“Aircraft Designer's Handbook for Titanium and Titanium Alloys”, AFML-TR-67-142 (March 1967).
5.1.2(c)
Larson, F.R., “Anisotropy in Titanium Sheet in Uniaxial Tension”, ASM Transactions, 57, pp. 620-631 (1964).
5.1.2(d)
Larson, F.R., “Textures in Titanium Sheet and Its Effects on Plastic Flow Properties”, Army Materials Research Agency, AMRA-TR-65-24 (October 1965).
5.1.4(a)
VanEcho, J.A., “Low Temperature Creep Characteristics of Ti-5A1-2.4Sn and Ti-6A1-4V Alloys”, DMIC Technical Note, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (June 8, 1964).
5.1.4(b)
Broadwell, R.G., Hatch, A.J., Partridge, J.M., “The Room Temperature Creep and Fatigue Properties of Titanium Alloys”, Journal of Materials, 2, (1), pp. 111-119 (March 1967).
5.1.4(c)
Reimann, W.H., “Room Temperature Creep in Ti-6A1-4V”, AFML-TR-68-171 (June 1968).
5.1.4(d)
White, E.L. and Ward, J.J., “Ignition of Metals in Oxygen”, DMIC Report 224, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (February 1, 1966).
5.1.4(e)
Jackson, J.D. and Boyd, W.K., “Corrosion of Titanium”, DMIC Memorandum 218, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (September 1, 1966).
5.1.4(f)
“Accelerated Crack Propagation of Titanium by Methanol, Halogenated Hydrocarbons, and Other Solutions”, DMIC Memorandum 228, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (March 6, 1967).
5.1.4(g)
Lectures from AICE Materials Conference, “Titanium for the Chemical Engineer”, DMIC Memorandum 234, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio (April 1, 1968).
5.3.1.1.9
Wanhill, R.J. et al, “Fatigue Crack Propagation Data for Titanium Sheet Alloys”, Interim Report NLR-TR-72093U, National Aerospace Laboratory, The Netherlands (July 1972) (MCIC 88911).
5.3.2.2.8(a)
McCulloch, A.J., Melcon, M.A., and Young, L., “Fatigue Behavior of Sheet Materials for the Supersonic Transport, Volume 1—Summary and Analysis of Fatigue and Static Test Data”, Lockheed-California Company, AFML-TR-64-399, Volume 1, January 1965 (MCIC 62421).
5.3.2.2.8(b)
McCulloch, A.J., Melcon, M.A., and Young, L., “Fatigue Behavior of Sheet Materials for the Supersonic Transport: Volume 11—Static Test Data, S/N Test Data and S/N Diagrams”, Lockheed-California Company, AFML-TR-64-399, Volume II, January 1965 (MCIC 62422).
5.4.1.1.8(a)
“Fatigue Evaluation of Ti-6Al-4V Bar Stock”, Sikorsky Aircraft, Report No. SER-50631 (Battelle Source M-459) (March 1970). 5-197
MMPDS-06 1 April 2011 5.4.1.1.8(b)
Brockett, R.M. and Gottbrath, J.A., “Development of Engineering Data on Titanium Extrusion for Use in Aerospace Design”, Lockheed-California Co., Technical Report AFML-TR-67-189 (July 1967) (MCIC 69807, Battelle Source M-543).
5.4.1.1.8(c)
Rhode, T.M. and Ertel, P.W., “Constant Amplitude Fatigue Life Data for Notched and Unnotched Annealed Ti-6Al-4V Sheet”, AFWAL-TR-88-4081, January 1988 (Battelle Source M-696).
5.4.1.1.8(d)
Veeck, S., “Static/Dynamic Properties of Cast, HIP’d, and Mill Annealed Ti-6Al-4V”, Report No. TR 1331, Howmet Castings, an Alcoa Business. (August 15, 2003) (Battelle Reference M01005).
5.4.1.1.9(a)
Fedderson, C.E., and Hyler, W.S., “Fracture and Fatigue-Crack Propagation Characteristics of ¼-Inch Mill Annealed Ti-6Al-4V Titanium Alloy Plate”, Report No. G9706, Battelle, Columbus, Ohio (1971).
5.4.1.1.9(b)
Veeck, S., “The Dynamic Properties of Cast, HIP’ed and Mill Annealed Ti-6Al-4V”, Report No TR#1289, Howmet Castings (April 9, 2002).
5.4.1.2.8(a)
“Fatigue Strength Properties for Heat Treated Ti-4Al-30Mo-1V and Ti-6Al-4V Titanium Alloys (LP-69-132 and LP-69-129)”, North American Aviation, Report No. TFD-60-521 (July 18, 1960) (MCIC 65737).
5.4.1.2.8(b)
“Determination of Design Data for Heat Treated Titanium Alloy Sheet”, Lockheed-Georgia Co., Report No. ASD-TDR-62-335, Vol. 3, Contract No. AF33(616)-6346 (May 1962) (MCIC 90172).
5.4.1.2.8(c)
Sommer, A.W. and Martin, G.R., “Design Allowables for Titanium Alloys”, North American Rockwell, AFML-TR-69-161 (June 1969) (MCIC 75727).
5.4.1.2.8(d)
Marrocco, A.G., “Fatigue Characteristics of Ti-6Al-4V and Ti-6Al-6V-2Sn Sheet and Plate”, Grumman Aircraft Engineering Corp., EMG-81 (November 18, 1968) (MCIC 76303).
5.4.1.2.8(e)
Sargent, M.R., “Fatigue Characteristics of Ti-6Al-4V Plate and Forgings (SWIP)”, General Dynamics, FGT-3218 (September 22, 1965) (Battelle Source M-457).
5.4.2.1.8
Marrocco, A.G., “Evaluation of Ti-6Al-4V and Ti-6Al-6V-2Sn Forgings”, Grumman Aircraft Engineering Corporation, EMG-82, November 1968 (Battelle Source M-522).
5.4.3.1
Unpublished data from H. Fukai, NKK, to J. Jackson, Battelle (January 19, 2001, (Battelle Source M-914).
5.5.1
Henning, R.G., “Mechanical Properties of Solution-Treated Titanium Sheet Alloy B120VCA”, ASD TR 61-337 (September 1961).
5.5.1.1.8
Blatherwick, A.A., “Fatigue, Creep, and Stress-Rupture Properties of Ti-13V-11Cr-3Al Titanium Alloy (B120VCA)”, AFML-TR-66-293 (September 1966).
5.5.1.2.8
Schwartzberg, F.R., Kiefer, T. F., and Keys, R. D., “Determination of Low-Temperature Fatigue Properties of Structural Metal Alloys 1 April 1962 through 30 September 1964”, Martin-Cr-64-74 (October 1964), pp. 158 (MCIC 58024).
5-198
MMPDS-06 1 April 2011 5.6(a)
“Theoretical and Experimental Determination of the Bending Modulus of Rupture for Round Titanium Tubing”, Bendix Products Division (July 31, 1958).
5.6(b)
Cozzone, F.P., “Bending Strength in Plastic Range”, Journal of the Aeronautical Sciences (May 1943).
5.6(c)
Ades, C.S., “Bending Strength of Tubing in the Plastic Range”, Journal of Aeronautical Sciences (August 1957).
5.6(d)
“Theoretical and Experimental Determination of the Bending Modulus of Rupture of Round Titanium Tubing”, Systems Engineering Report, Bendix Energy Controls Division, South Bend, Indiana, MS-58-3 (July 1958).
5-199
MMPDS-06 1 April 2011
This page is intentionally blank.
5-200
MMPDS-06 1 April 2011
CHAPTER 6 HEAT-RESISTANT ALLOYS 6.1 GENERAL Heat-resistant alloys are arbitrarily defined as iron alloys richer in alloy content than the 18 percent chromium, 8 percent nickel types, or as alloys with a base element other than iron and which are intended for elevated-temperature service. These alloys have adequate oxidation resistance for service at elevated temperatures and are normally used without special surface protection. So-called “refractory” alloys that require special surface protection for elevated-temperature service are not included in this chapter. This chapter contains strength properties and related characteristics of wrought heat-resistant alloy products used in aerospace vehicles. The strength properties are those commonly used in structural design, such as tension, compression, bearing, and shear. The effects of elevated temperature are presented. Factors such as metallurgical considerations influencing the selection of metals are included in comments preceding the specific properties of each alloy or alloy group. Data on creep, stress-rupture, and fatigue strength, as well as crack-growth characteristics, are presented in the applicable alloy section. There is no standardized numbering system for the alloys in this chapter. For this reason, each alloy is identified by its most widely accepted trade designation. For convenience in presenting these alloys and their properties, the heat-resistant alloys have been divided into three groups, based on alloy composition. These groups and the alloys for which specifications and properties are included are shown in Table 6.1. The heat treatments applied to the alloys in this chapter vary considerably from one alloy to another. For uniformity of presentation, the heat-treating terms are defined as follows: Stress-Relieving — Heating to a suitable temperature, holding long enough to reduce residual stresses, and cooling in air or as prescribed. Annealing — Heating to a suitable temperature, holding, and cooling at a suitable rate for the purpose of obtaining minimum hardness or strength. Solution-Treating — Heating to a suitable temperature, holding long enough to allow one or more constituents to enter into solid solution, and cooling rapidly enough to hold the constituents in solution. Aging, Precipitation-Hardening — Heating to a suitable temperature and holding long enough to obtain hardening by the precipitation of a constituent from the solution-treated condition. The actual temperatures, holding times, and heating and cooling rates used in these treatments vary from alloy to alloy and are described in the applicable specifications.
6-1
MMPDS-06 1 April 2011
Table 6.1. Heat-Resistant Alloys Index
Section 6.2 6.2.1 6.2.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 6.3.8 6.3.9 6.3.10 6.4 6.4.1 6.4.2
Designation Iron-Chromium-Nickel-Base Alloys A-286 N-155 Nickel-Base Alloys Hastelloy X Inconel 600 (Inconel) Inconel 625 Inconel 706 718 Alloy Inconel X-750 (Inconel X) René 41 Waspaloy 230 HR-120 Cobalt-Base Alloys L-605 (25 Alloy) 188 Alloy
6-2
MMPDS-06 1 April 2011 6.1.1 MATERIAL PROPERTIES 6.1.1.1 Mechanical Properties — The mechanical properties of the heat-resistant alloys are affected by relatively minor variations in chemistry, processing, and heat treatment. Consequently, the mechanical properties shown for the various alloys in this chapter are intended to apply only to the alloy, form (shape), size (thickness), and heat treatment indicated. When statistical values are shown, these are intended to represent a fair cross section of all mill production within the indicated scope. Strength Properties — Room temperature strength properties for alloys in this chapter are based primarily on minimum tensile property requirements of material specifications. Values for nonspecification strength properties are derived. The variation of properties with temperature and other data or interest are presented in figures or tables, as appropriate. The strength properties of the heat-resistant alloys generally decrease with increasing temperatures or increasing time at temperature. There are exceptions to this statement, particularly in the case of agehardening alloys; these alloys may actually show an increase in strength with temperature or time, within a limited range, as a result of further aging. In most cases, however, this increase in strength is temporary and, furthermore, cannot usually be taken advantage of in service. For this reason, this increase in strength has been ignored in the preparation of elevated temperature curves as described in Chapter 9. At cryogenic temperatures, the strength properties of the heat-resistant alloys are generally higher than at room temperature, provided some ductility is retained at the low temperatures. For additional information on mechanical properties at cryogenic temperatures, other references, such as the Cryogenic Materials Data Handbook [Reference 6.1.1.1], should be consulted. Ductility — Specified minimum ductility requirements are presented for these alloys in the room temperature property tables. The variation in ductility with temperature is somewhat erratic for the heatresistant alloys. Generally, ductility decreases with increasing temperature from room temperature up to about 1200E to 1400EF, where it reaches a minimum value, then it increases with higher temperatures. Prior creep exposure may also affect ductility adversely. Below room temperature, ductility decreases with decreasing temperature for some of these alloys. Stress-Strain Relationships — The stress-strain relationships presented are typical curves prepared as described in Section 9.3.2. Creep — Data covering the temperatures and times of exposure and the creep deformations of interest are included as typical information in individual material sections. These presentations may be in the form of creep stress-lifetime curves for various deformation criteria as specified in Chapter 9 or as creep nomographs. Fatigue — Fatigue S/N curves for unnotched and notched specimens at room temperature and elevated temperatures are shown in each alloy section. Fatigue crack propagation data are also presented. 6.1.1.2 Physical Properties —Selected physical-property data are presented for these alloys. Processing variables and heat treatment have only a slight effect on these values; thus, the properties listed are applicable to all forms and heat treatments. 6.1.2 Obsolete Alloys, Tempers, and Product Forms B Table 6.1.2 includes a summary of the heat resistant alloys, tempers, and product forms that have been removed from the Handbook, along with information regarding why and when they were removed.
6-3
MMPDS-06 1 April 2011 Table 6.1.2 Obsolete Heat Resistant Alloys, Tempers, and Product Forms
Alloy
Heat Treat- Product Specifi- Basis for ment(s) Form cation Removal
Bar 16-25-6
Stress relieved Forging
Hastelloy B
AMS 5725 MIL-S16538
Sheet ASTM and plate B333 Annealed Rod
ASTM B335
Precipitation Sheet heat treated and strip
AMS 5550
Sheet and strip
AMS 5551
Bar and forging
AMS 5757
Solution Bar and treated, Udimet stabilized and forging 500 aged
Inco 702
M-252
Solution treated and aged
Udimet 700
-
W-545
Solution treated and aged
Removal Approved
Last Shown
Item No.
Mtg
Edition
Date
Obsolete alloy
NA
NA
MILHDBK5A
Feb 66
Obsolete alloy
84-06
67
MILHDBK5D, CN1
Jan 84
Obsolete alloy
89-22
78
MILHDBK5E, CN2
May 89
Jan 84
Obsolete alloy
84-6
67
MILHDBK5D, CN1
AMS 5751
Obsolete alloy
84-6
67
MILHDBK5D, CN1
Jan 84
Forging
none
No public spec coverage
67-07
36
Dropped without inclusion
-
Sheet and strip
AMS 5543
Obsolete alloy
78-01
55
MILHDBK5C
Sept 76
Bar and forging
AMS 5741
`
6-4
MMPDS-06 1 April 2011
6.2 IRON-CHROMIUM-NICKEL-BASE ALLOYS 6.2.0 GENERAL COMMENTS — The alloys in this group, in terms of cost and in maximum service temperature, generally fall between the austenitic stainless steels and the nickel- and cobalt-base alloys. They are used in airframes, principally, in the temperature range 1000E to 1200EF, in those applications in which the stainless steels are inadequate and service requirements do not justify the use of the more costly nickel or cobalt alloys. 6.2.0.1 Metallurgical Considerations Composition — The complex-base alloys comprising this group range from those in which iron is considered the base element to those which border on the nickel-base alloys. All of them contain sufficient alloying elements to place them in the “Superalloy” category, yet contain enough iron to reduce their cost considerably. Chromium, in amounts ranging from 10 to 20 percent or higher, primarily increases oxidation resistance and contributes to strengthening of these alloys. Nickel and cobalt strengthen and toughen these materials. Molybdenum, tungsten, and columbium contribute to hardness and strength, particularly at elevated temperatures. Titanium and aluminum are added to provide age-hardening. Heat Treatment — The complex-base alloys are heat treated with conventional equipment and fixtures such as would be used for austenitic stainless steels. Since these alloys are susceptible to carburization during heat treatment, it is good practice to remove all grease, oil, cutting, lubricant, etc., from the surface before heating. A low-sulfur and neutral or slightly oxidizing furnace atmosphere is recommended for heating. 6.2.0.2 Manufacturing Considerations — The iron-chromium-nickel-base alloys closely resemble the austenitic stainless steels insofar as forging, cold forming, machining, welding, and brazing are concerned. Their higher strength may require the use of heavier forging or forming equipment, and machining is somewhat more difficult than for the stainless steels. Pertinent comments are included under the individual alloys. 6.2.1 A-286 6.2.1.0 Comments and Properties — A-286 is a precipitation-hardening iron-base alloy designed for parts requiring high strength up to 1300EF and oxidation resistance up to 1500EF. It is used in jet engines and gas turbines for parts such as turbine buckets, bolts, and discs, and sheet metal assemblies. A-286 is available in the usual mill forms. A-286 is somewhat harder to hot or cold work than the austenitic stainless steels. Its forging range is 2150E to 1800EF; when finishing below 1800EF, light reductions (under 15 percent) must be avoided to prevent grain coarsening during subsequent heat treatment. A-286 is readily machined in the partially or fully aged condition but is soft and “gummy” in the solution-treated condition. A-286 should be welded in the solution-treated condition. Fusion welding is difficult for large section sizes and moderately difficult for small cross-sections and sheet. Cracking may be encountered in the welding of heavy sections or parts under high restraint. A dimensional contraction of 0.0008 inch per inch is experienced during aging. Oxidation resistance of A-286 is equivalent to that of Type 310 stainless steel up to 1800EF. Some material specifications for A-286 alloy are presented in Table 6.2.1.0(a). Room temperature mechanical and physical properties are shown in Table 6.2.1.0(b). The effect of temperature on physical properties is shown in Figure 6.2.1.0.
6-5
MMPDS-06 1 April 2011
6.2.1.1 Solution-Treated and Aged Condition — Elevated-temperature data are presented in Figures 6.2.1.1.1, 6.2.1.1.3, and 6.2.1.1.4(a) through 6.2.1.1.4(c). Stress rupture properties are specified at 1200EF; the appropriate specifications should be consulted for detailed requirements. Figures 6.2.1.1.8(a) through 6.2.1.1.8(e) are fatigue S/N curves for several elevated temperatures.
Table 6.2.1.0(a). Material Specifications for A-286 Alloy
Specification AMS 5525 AMS 5731 AMS 5732 AMS 5734 AMS 5737
Form
Condition
Sheet, strip, and plate Bar, forging, tubing, and ring Bar, forging, tubing, and ring Bar, forging, and tubing Bar, forging, and tubing
Solution treated (1800EF) Solution treated (1800EF) Solution treated (1800EF) and aged Solution treated (1650EF) Solution treated (1650EF) and aged
Figure 6.2.1.0. Effect of temperature on the physical properties of A-286.
6-6
MMPDS-06 1 April 2011 Table 6.2.1.0(b). Design Mechanical and Physical Properties of A-286 Alloy AMS 5731 AMS 5734 Specification . . . . . . . . . AMS 5525 AMS 5732 AMS 5737 Sheet, strip, Form . . . . . . . . . . . . . . . . Bar and plate Condition . . . . . . . . . . . . Solution treated and aged Thickness or diameter, in. >0.004 #2.499 2.500-5.000 #2.499 2.500-5.000 a Basis . . . . . . . . . . . . . . . . S S S S S Mechanical Properties: Ftu, ksi: L ................ ... 130 130 140 140 b b LT . . . . . . . . . . . . . . . 140 130 130 140 140 ST . . . . . . . . . . . . . . . ... ... 130 ... 140 Fty, ksi: L ................ ... 85 85 95 95 b b 85 95 95 LT . . . . . . . . . . . . . . . 95 85 ST . . . . . . . . . . . . . . . ... ... 85 ... 95 Fcy, ksi: L ................ ... ... ... ... ... LT . . . . . . . . . . . . . . . ... ... ... ... ... Fsu, ksi . . . . . . . . . . . . . ... ... ... ... ... Fbru, ksi: (e/D = 1.5) . . . . . . . . . ... ... ... ... ... (e/D = 2.0) . . . . . . . . . ... ... ... ... ... Fbry, ksi: (e/D = 1.5) . . . . . . . . . ... ... ... ... ... (e/D = 2.0) . . . . . . . . . ... ... ... ... ... e, percent: ... L ................ ... ... 15 12 12 LT . . . . . . . . . . . . . . . 15 15 12b 12 ST . . . . . . . . . . . . . . . ... ... 15 ... 12 RA, percent: ... L ................ ... 20 15 15 b LT . . . . . . . . . . . . . . . ... ... 20 15 15 ST . . . . . . . . . . . . . . . ... ... 20 ... 15 3 E, 10 ksi . . . . . . . . . . . 29.1 Ec, 103 ksi . . . . . . . . . . 29.1 3 G, 10 ksi . . . . . . . . . . . 11.1 µ ................. 0.31 Physical Properties: ω, lb/in.3 . . . . . . . . . . . 0.287 C, K, and α . . . . . . . . . See Figure 6.2.1.0 a
Test direction longitudinal for widths less than 9 inches; transverse for widths 9 inches and over.
b
Applicable to widths $2.500 inches only.
6-7
MMPDS-06 1 April 2011
Figure 6.2.1.1.1. Effect of temperature on the tensile yield strength (Fty) and tensile ultimate strength (Ftu) of A-286 alloy (1800E EF solution treatment temperature).
6-8
MMPDS-06 1 April 2011
Figure 6.2.1.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the EF solution treatment temperature). bearing yield strength (Fbry) for A-286 alloy (1800E
Figure 6.2.1.1.4(a). Effect of temperature on the tensile and compressive moduli (E and Ec) for A-286 alloy (1800E EF solution treatment temperature).
6-9
MMPDS-06 1 April 2011
Figure 6.2.1.1.4(b). Effect of temperature on the shear modulus (G) of A-286 alloy.
Figure 6.2.1.1.4(c). Effect of temperature on Poisson’s ratio (F F) for A-286 alloy.
6-10
MMPDS-06 1 April 2011
Figure 6.2.1.1.8(a). Best-fit S/N curves for unnotched A-286 bar at 800E EF, longitudinal direction.
Correlative Information for Figure 6.2.1.1.8(a) Product Form: Bar, air melted Properties:
TUS, ksi 141.4
TYS, ksi 95.3
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - 800EF Environment - Air
Temp.,EF 800
Specimen Details: Unnotched 0.250-inch diameter Heat Treatment:
No. of Heats/Lots: 1
1650EF for 2 hours, oil quenched and 1300EF for 16 hours, air cooled.
Equivalent Stress Equation: Log Nf = 45.1-19.5 log (Seq) Seq = Smax (1-R)0.47 Std. Error of Estimate, Log (Life) = 0.418 Standard Deviation, Log (Life) = 0.717 R2 = 65.9%
Surface Condition: Not given Reference:
6.2.1.1.8 Sample Size = 17 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-11
MMPDS-06 1 April 2011
Figure 6.2.1.1.8(b). Best-fit S/N curves for notched, Kt = 3.4, A-286 alloy bar at 800E EF, longitudinal direction.
Correlative Information for Figure 6.2.1.1.8(b) Product Form: Bar, air melted Properties:
TUS, ksi 141.4
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - 800EF Environment - Air
TYS, ksi Temp.,EF 95.3 800 Unnotched
Specimen Details: Notched, V-Groove, Kt = 3.4 0.375-inch gross diameter 0.250-inch net diameter 0.010-inch root radius, r 60E flank angle, ω Heat Treatment:
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 11.4-4.4 log (Seq-20) Seq = Smax (1-R)0.75 Std. Error of Estimate, Log (Life) = 0.271 Standard Deviation, Log (Life) = 0.387 R2 = 50.9%
1650EF for 2 hours, oil quenched and 1300EF for 16 hours, air cooled.
Sample Size = 13
Surface Condition: As machined Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6.2.1.1.8
6-12
MMPDS-06 1 April 2011
Figure 6.2.1.1.8(c). Best-fit S/N curves for unnotched A-286 bar at 1000E EF, longitudinal direction.
Correlative Information for Figure 6.2.1.1.8(c) Product Form: Bar, air melted Properties:
TUS, ksi 137.2
TYS, ksi 100.6
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - 1000EF Environment - Air
Temp.,EF 1000
Specimen Details: Unnotched 0.250-inch diameter Heat Treatment:
No. of Heats/Lots: 1
1650EF for 2 hours, oil quenched and 1300EF for 16 hours, air cooled.
Equivalent Stress Equation: Log Nf = 44.2-19.3 log (Seq) Seq = Smax (1-R)0.57 Std. Error of Estimate, Log (Life) = 0.566 Standard Deviation, Log (Life) = 0.835 R2 = 54.0%
Surface Condition: Not given Reference:
6.2.1.1.8 Sample Size = 18 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-13
MMPDS-06 1 April 2011
Figure 6.2.1.1.8(d). Best-fit S/N curves for notched, Kt = 3.4, A-286 alloy bar at 1000E EF, longitudinal direction.
Correlative Information for Figure 6.2.1.1.8(d) Product Form: Bar, air melted Properties:
TUS, ksi 137.2
TYS, ksi 100.6
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - 1000EF Environment - Air
Temp.,EF 1000 Unnotched
Specimen Details: Notched, V-Groove, Kt = 3.4 0.375-inch gross diameter 0.250-inch net diameter 0.010-inch root radius, r 60E flank angle, ω Heat Treatment:
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 7.86-2.19 log (Seq-35.8) Seq = Smax (1-R)0.61 Std. Error of Estimate, Log (Life) = 0.365 Standard Deviation, Log (Life) = 0.510 R2 = 48.7%
1650EF for 2 hours, oil quenched and 1300EF for 16 hours, air cooled.
Sample Size = 17 Surface Condition: As machined Reference:
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6.2.1.1.8
6-14
MMPDS-06 1 April 2011
Figure 6.2.1.1.8(e). Best-fit S/N curves for unnotched A-286 bar at 1250E EF, longitudinal direction.
Correlative Information for Figure 6.2.1.1.8(e) Product Form: Bar, air melted Properties:
TUS, ksi 109.6
TYS, ksi 96.5
Test Parameters: Loading - Axial Frequency - 3600 cpm Temperature - 1250EF Environment - Air
Temp.,EF 1250
Specimen Details: Unnotched 0.250-inch diameter Heat Treatment:
No. of Heats/Lots: 1
1650EF for 2 hours, oil quenched and 1300EF for 16 hours, air cooled.
Equivalent Stress Equation: Log Nf = 30.8-12.8 log (Seq) Seq = Smax (1-R)0.77 Std. Error of Estimate, Log (Life) = 0.513 Standard Deviation, Log (Life) = 0.788 R2 = 57.6%
Surface Condition: Not given Reference:
6.2.1.1.8 Sample Size = 13 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-15
MMPDS-06 1 April 2011 6.2.2 N-155 6.2.2.0 Comments and Properties — N-155 alloy, also known as Multimet, is designed for applications involving high stress up to 1500EF. It has good oxidation properties and good ductility and can be fabricated readily by conventional methods. This alloy has been used in many aircraft applications, including afterburner parts, combustion chambers, exhaust assemblies, turbine parts, and bolting. N-155 is forged readily between 1650E and 2200EF. It is easily formed by conventional methods; intermediate anneals may be required to restore its ductility. This alloy is machinable in all conditions; low cutting speeds and ample flow of coolant are required. The weldability of N-155 is comparable to that of the austenitic stainless steels. The oxidation resistance of N-155 sheet is good up to 1500EF. Some materials specifications for N-155 are presented in Table 6.2.2.0(a). Room temperature mechanical and physical properties for N-155 sheet and tubing in the solution-treated (annealed) condition are presented in Table 6.2.2.0(b). Bars and forgings are not specified by room temperature properties but have specific elevated-temperature requirements. The effect of temperature on physical properties is shown in Figure 6.2.2.0. Table 6.2.2.0(a). Material Specifications for N-155 Alloy
Specification AMS 5532 AMS 5585
Form Sheet Tubing (welded)
Condition Solution treated Solution treated
6.2.2.1 Solution-Treated Condition — Elevated-temperature curves are presented in Figures 6.2.2.1.1(a) and 6.2.2.1.1(b), as well as 6.2.2.1.4(a) and 6.2.2.1.4(b). Stress-rupture properties are specified at 1500EF for sheet and at 1350EF for bars and forgings; the appropriate specifications should be consulted for detailed requirements. 41
Figure 6.2.2.0. Effect of temperature on the physical properties of N-155 alloy.
6-16
MMPDS-06 1 April 2011 Table 6.2.2.0(b). Design Mechanical and Physical Properties of N-155 Alloy
Specification . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent: L ................. LT . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . .
Sheet #0.187 Sa
AMS 5532 Strip and plate Solution treated ... Sa
AMS 5585 Tubing ... S
... 100
... 100
100 ...
... 49b
... ...
49b ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... 40
... 40 29.2 29.2 11.2 See Figure 6.2.2.1.4(b) 0.300 0.103 (70E to 212EF) See Figure 6.2.2.0 See Figure 6.2.2.0
a Test direction longitudinal for widths less than 9 inches: transverse for widths 9 inches and over. b Typical value reduced to minimum. c Strip = 35. Full section <0.625 thick = 40. Full section $0.625 thick = 30.
6-17
c
...
MMPDS-06 1 April 2011
Figure 6.2.2.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of N-155 alloy.
Figure 6.2.2.1.1(b). Effect of temperature on the tensile yield strength (Fty) of N-155 alloy.
6-18
MMPDS-06 1 April 2011
Figure 6.2.2.1.4(a). Effect of temperature on the tensile and compressive moduli (E and Ec) of N-155 alloy.
Figure 6.2.2.1.4(b). Effect of temperature on Poisson’s ratio (F F) for N-155 alloy.
6-19
MMPDS-06 1 April 2011
This page is intentionally blank.
6-20
MMPDS-06 1 April 2011
6.3 NICKEL-BASE ALLOYS 6.3.0 GENERAL COMMENTS — Nickel is the base element for most of the higher temperature heatresistant alloys. While it is more expensive than iron, nickel provides an austenitic structure that has greater toughness and workability than ferritic structures of the same strength level. 6.3.0.1 Metallurgical Considerations Composition — The common alloying elements for nickel are cobalt, iron, chromium, molybdenum, titanium, and aluminum. Cobalt, when substituted for a portion of the nickel in the matrix, improves hightemperature strength; small additions of iron tend to strengthen the nickel matrix and reduce the cost; chromium is added to increase strength and oxidation resistance at very high temperatures; molybdenum contributes to solid solution strengthening. Titanium and aluminum are added to most nickel-base heat resistant alloys to permit age-hardening by the formation of Ni3 (Ti, Al) precipitates; aluminum also contributes to oxidation resistance. The nature of the alloying elements in the age-hardenable nickel-base alloys makes vacuum melting of these alloys advisable, if not mandatory. However, the additional cost of vacuum melting is more than compensated for by the resulting improvements in elevated-temperature properties. Heat Treatment — The nickel-base alloys are heat-treated with conventional equipment and fixtures such as would be used with austenitic stainless steels. Since nickel-base alloys are more susceptible to sulfur embrittlement than are iron-base alloys, it is essential that sulfur-bearing materials such as grease, oil, cutting lubricants, marking paints, etc., be removed before heat treatment. Mechanical cleaning, such as wire brushing, is not adequate and if used should be followed by washing with a suitable solvent or by vapor degreasing. A low-sulfur content furnace atmosphere should be used. Good furnace control with respect to time and temperature is desirable since overheating some of the alloys as little as 35EF impairs strength and corrosion resistance. When it is necessary to anneal the age-hardenable-type alloys, a protective atmosphere (such as argon) lessens the possibility of surface contaminations or depletion of the precipitation-hardening elements. This precaution is not so critical in heavier sections since the oxidized surface layer is a smaller percentage of the cross section. After solution annealing, the alloys are generally quenched in water. Heavy sections may require air cooling to avoid cracking from thermal stresses. In stress-relief annealing of a structure or assembly composed of an aluminum-titanium hardened alloy, it is vitally important to heat the structure rapidly through the age-hardening temperature range, 1200E to 1400EF (which is also the low ductility range) so that stress relief can be achieved before any aging takes place. Parts which are to be used in the fully heat-treated condition would have to be solution-treated, air cooled, and subsequently aged. In this case, the stress-relief treatment would be conducted in the solutiontemperature range. Little difficulty has been encountered with distortion under rapid heating conditions, and distortion of weldments of substantial size has been less than that observed with conventional slow heating methods. 6.3.0.2 Manufacturing Considerations Forging — All of the alloys considered, except for the casting compositions, can be forged to some degree. The matrix-strengthened alloys can be forged with proper consideration of cooling rates, atmosphere, etc. Most of the precipitation-hardenable grades can be forged, although heavier equipment is required and a smaller range of reductions can be safely attained.
6-21
MMPDS-06 1 April 2011 Cold Forming — Almost all of the wrought-nickel-base alloys in sheet form are cold formable. The lower strength alloys offer few problems, but the higher strength alloys require higher forming pressures and more frequent anneals. Machining — All of the alloys in this section are readily machinable, provided the optimum conditions of heat treatment, type of tool speed, feed, depth of cut, etc., are achieved. Specific recommendations on these points are available from various producers of these alloys. Welding — The matrix-strengthening-type alloys offer no serious problems in welding. All of the common resistance- and fusion-welding processes (except submerged arc) have been successfully employed. For the age-hardenable type of alloy, it is necessary to observe some further precautions: (1) Welding should be confined to annealed material where design permits. In full agehardened material, the hazard of cracking in the weld and/or the parent metal is great. (2) If design permits joining some portions only after age hardening, the parts to be joined should be “safe ended” with a matrix-strengthened-type alloy (with increased cross section) and then age hardened; welding should then be carried out on the “safe ends.” (3) Parts severely worked or deformed should be annealed before welding. (4) After welding, the weldment will often require stress relieving before aging. (5) Material must be heated rapidly to the stress-relieving temperature. (6) In a number of the age-hardenable alloys, fusion welds may exhibit only 70 to 80 percent of the rupture strength of the parent metal. The deficiency can often be minimized by design, such as locating welds in areas of lowest temperature and/or stress. The use of special filler wires to improve weld-rupture properties is under investigation. Brazing — The solid-solution-type chromium-containing alloys respond well to brazing, using techniques and brazing alloys applicable to the austenitic stainless steels. Generally, it is necessary to braze annealed material and to keep stresses low during brazing, especially when brazing with low melting alloys, to avoid embrittlement. As with the stainless steels, dry hydrogen, argon, or helium atmospheres (-80EF dew point or lower) are used successfully, and vacuum brazing is now receiving increasing attention. The aluminum-titanium age-hardened nickel-base alloys are difficult to braze, even using extremely dry reducing- and inert-gas atmospheres, unless some method of fluxing, solid or gaseous, is used. An alternative technique which is commonly used is to preplate the areas to be brazed with ½ to 1 mil of nickel. For some metal combinations, a few fabricators prefer to apply an iron preplate. In either case, the plating prevents the formation of aluminum or titanium oxide films and results in better joints. Most of the high-temperature alloys of the nickel-base type are brazed with Ni-Cr-Si-B and Ni-Cr-Si types of brazing alloy. Silver brazing alloys can be used for lower temperature applications. However, since the nickel-base alloys to be brazed are usually employed for higher temperature applications, the higher melting point, stronger, and more oxidation-resistant brazing alloys of the Nicrobraz type are generally used. Some of the gold-base and palladium-base brazing alloys may be useful under some circumstances in intermediate-temperature applications.
6-22
MMPDS-06 1 April 2011 6.3.1 HASTELLOY X 6.3.1.0 Comments and Properties — Hastelloy X is a nickel-base alloy used for combustorliner parts, turbine-exhaust weldments, afterburner parts, and other parts requiring oxidation resistance and moderately high strength above 1450EF. It is not hardenable except by cold working and is used in the solution-treated (annealed) condition. Hastelloy X is available in all the usual mill forms. Hastelloy X is somewhat difficult to forge; forging should be started at 2150E to 2200EF and continued as long as the material flows freely. It should be in the annealed condition for optimum cold forming, and severely formed detail parts should be solution treated at 2150EF for 7 to 10 minutes and cooled rapidly after forming. Machinability of Hastelloy X is similar to that of austenitic stainless steel; the alloy is tough and requires low cutting speeds and ample cutting fluids. Hastelloy X can be resistance or fusion welded or brazed; large or complex fusion weldments require stress relief at 1600EF for 1 hour. Hastelloy X has good oxidation resistance up to 2100EF. It age hardens somewhat during long exposure between 1200E and 1800EF. Some material specifications for Hastelloy X are presented in Table 6.3.1.0(a). Room temperature mechanical and physical properties for Hastelloy X sheet are presented in Table 6.3.1.0(b). AMS 5754 does not specify tensile properties for bars and forgings. Figure 6.3.1.0 shows the effect of temperature on physical properties.
Table 6.3.1.0(a). Material Specifications for Hastelloy X
Specification AMS 5536 AMS 5754
Form Sheet and plate Bar and forging
Condition Solution heat treated Solution heat treated
6.3.1.1 Solution Treated Condition — The effect of temperature on various mechanical properties is presented in Figures 6.3.1.1.1 and 6.3.1.1.4. In addition, certain stress-rupture requirements at 1500EF are specified in AMS 5536 and 5754 for Hastelloy X. Typical tensile stress-strain curves at room and elevated temperatures are presented in Figure 6.3.1.1.6(a). Typical compressive stress-strain and tangent-modulus curves at room and elevated temperatures are presented in Figure 6.3.1.1.6(b).
6-23
MMPDS-06 1 April 2011
Table 6.3.1.0(b). Design Mechanical and Physical Properties of Hastelloy X Sheet and Plate
Specification . . . . . . . . . .
AMS 5536
Form . . . . . . . . . . . . . . . . .
Sheeta and plate
Condition . . . . . . . . . . . . .
Solution treated
Thickness, in. . . . . . . . . . . <0.010 Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent (S-Basis): L ................. LT . . . . . . . . . . . . . . . .
0.0100.019
0.020-0.100
0.1882.000
>2.000
S
S
A
B
S
S
S
... 105
... 105
... 102
... 106
... 105
... 100
... 95
... 45
... 45
... 44
... 47
... 45
... 40
... 40
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... 29
... 35
... ...
... 35
... 35
... 35
E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ..................
29.8 29.8 11.3 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . . . . a
0.1010.187
0.297 See Figure 6.3.1.0 See Figure 6.3.1.0 See Figure 6.3.1.0
Test direction longitudinal for widths less than 9 inches: transverse for widths 9 inches and over.
6-24
MMPDS-06 1 April 2011
Figure 6.3.1.0. Effect of temperature on the physical properties of Hastelloy X.
6-25
MMPDS-06 1 April 2011
Figure 6.3.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of Hastelloy X sheet.
Figure 6.3.1.1.4. Effect of temperature on dynamic modulus (E) of Hastelloy X sheet.
6-26
MMPDS-06 1 April 2011
60 Hastelloy X sheet 0.5 -hr exposure
RT 400 oF
50
800 oF 1000 oF 1200 oF 1400 oF
Stress, ksi
40
30
1600 oF Ramberg - Osgood n (RT) = 10 n (400 F) = 13 n (800 F) = 15 n (1000 F) = 18 n (1200 F) = 19 n (1400 F) = 15 n (1600 F) = 12 n (1800 F) = 7.7 n (2000 F) = 3.8
20 1800 oF
10
2000 oF
TYPICAL 0 0
2
4
6
8
10
Strain, 0.001 in./in.
Figure 6.3.1.1.6(a). Typical tensile stress-strain curves for Hastelloy X sheet at room and elevated temperatures.
6-27
12
MMPDS-06 1 April 2011
60 RT
RT
Hastelloy X bar 0.5 -hr exposure
700 oF
50
700 oF 900 oF
40 Stress, ksi
900 oF
30
20 Ramberg - Osgood n (RT) = 6.9 n (700 F) = 6.7 n (900 F) = 5.6
10
TYPICAL 0 0
2
0
5
4
6 Strain, 0.001 in./in.
10
15
8
10
20
12
25 3
Compressive Tangent Modulus, 10 ksi
Figure 6.3.1.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for Hastelloy X bar at room and elevated temperatures.
6-28
MMPDS-06 1 April 2011 6.3.2 INCONEL 600 6.3.2.0 Comments and Properties — Inconel 600 is a corrosion- and heat-resistant nickelbase alloy used for low-stressed parts operating up to 2000EF. It is not hardenable except by cold working and is usually used in the annealed condition. Inconel 600 is available in all the usual mill forms. Inconel 600 is readily forged between 1900E and 2250EF; “hot-cold” working between 1200E and 1600EF is harmful and should be avoided; cold working below 1200EF results in improved properties. This alloy is readily formed but should be annealed after severe forming operations. The maximum annealing temperature is 1800EF if minimum yield-strength requirements are to be met consistently. Inconel 600 is susceptible to rapid grain growth at 1800EF or higher, and exposures at these temperatures should be brief if large grain size is objectionable. Inconel 600 is somewhat difficult to machine because of its toughness and capacity for work hardening; high-speed steel or cemented-carbide tools should be used, and tools should be kept sharp. This alloy can be resistance or fusion welded or brazed (using nonsilver containing brazing alloy); large or complex fusion weldments should be stress relieved at 1600EF for 1 hour. Oxidation resistance of Inconel 600 is excellent up to 2000EF in sulfur-free atmospheres. This alloy is subject to attack in sulfur-containing atmospheres.
Table 6.3.2.0(a). Material Specifications for Inconel 600
Specification AMS 5540 ASTM B166 AMS 5580 ASTM B564
Form Plate, sheet, and strip Bar and rod Tubing, seamless Forging
Condition Annealed Various Annealed Annealed
Some material specifications for Inconel 600 are presented in Table 6.3.2.0(a). Room temperature mechanical and physical properties are shown in Tables 6.3.2.0(b), 6.3.2.0(c), and 6.3.2.0(d). Figure 6.3.2.0 shows the effect of temperature on the physical properties. 6.3.2.1 Annealed Condition — Elevated-temperature data for this condition are shown in Figures 6.3.2.1.1 through 6.3.2.1.4.
6-29
MMPDS-06 1 April 2011
Table 6.3.2.0(b). Design Mechanical and Physical Properties of Inconel 600
Specification . . . . . . . . . . Form . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . Thickness, in. . . . . . . . . . .
AMS 5540 Sheet, strip, and plate Annealed 0.020-2.000
Outside Diameter, in. . . . .
...
Basis . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................. LT . . . . . . . . . . . . . . . . Fty, ksi: L ................. LT . . . . . . . . . . . . . . . . Fcy, ksi: L ................. LT . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . e, percent: L ................. LT . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ .................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, K, and α . . . . . . . . . .
S
AMS 5580 Tubing Cold drawn ... 5.001#5.000 6.625 S S
ASTM B564 Forging Annealed ... ... S
... 80
80 ...
80 ...
80 ...
... 35
35 ...
30 ...
35 ...
... 35 51
35 ... 51
30 ... 51
35 ... 51
... 152
... 152
... 152
... 152
... ...
... ...
... ...
... ...
... 30
30 ...
35 ...
30 ...
30.0 30.0 11.0 0.29 0.304 See Figure 6.3.2.0
6-30
MMPDS-06 1 April 2011
Table 6.3.2.0(c). Design Mechanical and Physical Properties of Inconel 600 Bar and Rod
Specification . . . . . . . Form . . . . . . . . . . . . . . Condition . . . . . . . . . . Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi: L .............. LT . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent: L .............. E, 103 ksi . . . . . . . . . Ec, 103 ksi . . . . . . . . G, 103 ksi . . . . . . . . . µ ............... Physical Properties: ω, lb/in.3 . . . . . . . . . C, K, and α . . . . . . . a b
ASTM B166 Round #0.499 S
0.500-1.000 S
120 ...
110 ...
90 ...
Square, hexagon, and rectangle Cold-worked 1.001-2.500 S
#0.250 S
0.251-0.499 S
105 ...
100 ...
95 ...
85 ...
80 ...
80 ...
70 ...
... ... ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
7b
10
12 30.0 30.0 11.0 0.29
5b
7
0.304 See Figure 6.3.2.0
Mechanical property requirements apply only when specified by purchaser. Not applicable to thickness <0.094 inch.
6-31
MMPDS-06 1 April 2011
Table 6.3.2.0(d). Design Mechanical and Physical Properties of Inconel 600 Bar and Rod
Specification . . . . . . . . . . . .
ASTM B166 Square, hexagon, and rectangle
Form . . . . . . . . . . . . . . . . . . .
Round
Condition . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent: L ................... E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
Hot-worked 0.250-0.500 0.501-3.000 >3.000 S S S
a b
Bar and rod
All S
Annealed All S
95 ...
90 ...
85 ...
85 ...
80 ...
45 ...
40 ...
35 ...
35 ...
35 ...
... ... ...
... ... ...
... ... ...
... ... ...
35 ... 51
... ...
... ...
... ...
... ...
... 152
... ...
... ...
... ...
... ...
... ...
20
25
30
...
30b
30.0 30.0 11.0 0.29 0.304 See Figure 6.3.2.0
Mechanical property requirements apply only when specified by purchaser. Not applicable to thickness <0.094 inch.
6-32
MMPDS-06 1 April 2011
Figure 6.3.2.0. Effect of temperature on the physical properties of Inconel 600.
6-33
MMPDS-06 1 April 2011
Figure 6.3.2.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of Inconel 600.
Figure 6.3.2.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of Inconel 600.
6-34
MMPDS-06 1 April 2011
Figure 6.3.2.1.3. Effect of temperature on the bearing ultimate strength (Fbru) of Inconel 600.
Figure 6.3.2.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of Inconel 600.
6-35
MMPDS-06 1 April 2011 6.3.3 INCONEL 625 6.3.3.0 Comments and Properties — Inconel 625 is a solid-solution, matrix-strengthened nickel-base alloy primarily for applications requiring good corrosion and oxidation resistance at temperatures up to approximately 1800EF and also where such parts may require welding. The strength of the alloy is derived from the strengthening effect of molybdenum and columbium (niobium); thus, precipitation hardening is not required and the alloy is used in the annealed condition. The strength is greatly affected by the amount of cold work prior to annealing and by the annealing temperature. The material is usually annealed at 1700E to 1900EF for time commensurate with thickness. The properties in this section are restricted to that annealing range. Because the alloy was developed to retain high strength at elevated temperatures, it resists deformation at hot working temperatures but can be readily fabricated with adequate equipment. The combination of strength, corrosion resistance, and ability to be fabricated, including welding by common industrial practices, are the alloy’s outstanding features. Some material specifications for Inconel 625 are listed in Table 6.3.3.0(a). Room temperature mechanical and physical properties for Inconel 625 are listed in Tables 6.3.3.0(b) and 6.3.3.0(c). Figure 6.3.3.0 shows the effect of temperature on the physical properties. Table 6.3.3.0(a). Material Specifications for Inconel 625
Specification AMS 5599 AMS 5666
Form Sheet, strip, and plate Bar, forging, and ring
Condition Annealed Annealed
6.3.3.1 Annealed Condition — Elevated-temperature curves for tensile ultimate strength, tensile yield strength, tensile and compressive moduli, and Poisson’s ratio are presented in Figures 6.3.3.1.1(a) and 6.3.3.1.1(b), as well as 6.3.3.1.4(a) and 6.3.3.1.4(b). Typical stress-strain and tangent-modulus curves are shown in Figures 6.3.3.1.6(a) through 6.3.3.1.6(d). Fatigue S/N curves are presented in Figures 6.3.3.1.8(a) through 6.3.3.1.8(d).
Figure 6.3.3.0. Effect of temperature on the physical properties of Inconel 625.
6-36
MMPDS-06 1 April 2011
Table 6.3.3.0(b). Design Mechanical and Physical Properties of Inconel 625 Sheet and Plate
Specification . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . .
AMS 5599 Sheet and plate Annealed 0.1410.187 A B
0.1880.250 S
0.2511.000 S
123 124
119 120
... 120
53 54
59 60
59 60
... 60
63 64 83
55 56 79
62 63 82
62 63 79
... ... ...
202 263
212 276
201 261
209 272
202 263
... ...
84 105
94 117
83 103
92 115
92 115
... ...
30
...
30
30
Thickness, in. . . . . . . . . . . . .
#0.062
Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
A
B
A
B
A
B
119 120a
127 128
119 120a
126 127
119 120a
125 126
118 119
56 57
62 63
55 56
61 62
54 55
60 61
59 59 79
65 66 84
58 58 79
64 65 84
57 57 79
202 263
216 281
202 263
214 279
88 109
97 121
86 107
95 119
30
...
30
...
a b
0.063-0.109 0.110-0.140
30 ... 29.8 29.8 11.8 0.28
0.305 See Figure 6.3.3.0
A-Basis value is specification minimum. The rounded T99 values are as follows: Ftu(#0.062) = 123 ksi, Ftu (0.063-0.109) = 122 ksi, and Ftu (0.110-0.140) = 121 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
6-37
MMPDS-06 1 April 2011
Table 6.3.3.0(c). Design Mechanical and Physical Properties of Inconel 625 Bar
Specification . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . Basis . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................... ST . . . . . . . . . . . . . . . . . . . Fty, ksi: L .................... ST . . . . . . . . . . . . . . . . . . . Fcy, ksi: L .................... ST . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . e, percent (S-Basis): L .................... E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ ..................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . .
0.500-0.999 S
AMS 5666 Bar Annealed 1.000-1.999 2.000-2.999 S S
3.000-3.999 S
120 ...
120 ...
120 118
120 118
60 ...
60 ...
60 57
60 57
60 ... 79
59 ... 79
56 60 79
53 60 79
192 234
192 234
192 234
192 234
88 102
88 102
88 102
88 102
30
30
30
30
29.8 29.8 11.8 0.28 0.305 See Figure 6.3.3.0
a Bearing values are “dry pin” values per Section 1.4.7.1.
6-38
MMPDS-06 1 April 2011
Figure 6.3.3.1.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of annealed Inconel 625 sheet and bar.
Figure 6.3.3.1.1(b). Effect of temperature on the tensile yield strength (Fty) of annealed Inconel 625 sheet and bar.
6-39
MMPDS-06 1 April 2011
Figure 6.3.3.1.4(a). Effect of temperature on the tensile and compressive moduli (E and Ec) of annealed Inconel 625.
Figure 6.3.3.1.4(b). Effect of temperature on Poisson’s ratio (F F) for annealed Inconel 625 bar.
6-40
MMPDS-06 1 April 2011 100 L o n g itu d in a l and L o n g T ra n s v e rs e 80
0 .5 -h r e x p o s u re
Stress, ksi
RT 60 80 0 oF 12 00 oF
R a m b e rg - O s g o o d n (R T ) = 2 3 n (8 0 0 F ) = 2 4 n (1 2 0 0 F ) = 3 0 n (1 6 0 0 F ) = 1 2
40 1 6 0 0 oF 20
T Y P IC A L A n n e a le d In c o n e l 6 2 5 s h e e t T h ic k n e s s = 0 .0 5 0 - 0 .2 5 0 in .
0 0
2
4
6
8
10
12
S tra in , 0 .0 0 1 in ./in .
Figure 6.3.3.1.6(a). Typical tensile stress-strain curves for annealed Inconel 625 sheet at room and elevated temperatures.
Figure 6.3.3.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for annealed Inconel 625 sheet at room temperature.
6-41
MMPDS-06 1 April 2011 100
80
Stress, ksi
L o n g itu d in a l
S h o rt T ra n s v e rs e
60
R a m b e rg - O s g o o d n (L - te n s io n ) = 2 7 n (S T - te n s io n ) = 2 5
40
T Y P IC A L 20
A n n e a le d In c o n e l 6 2 5 b a r T h ic k n e s s = 0 .5 0 0 - 4 .0 0 0 in .
0 0
2
4
6
8
10
12
S tra in , 0 .0 0 1 in ./in .
Figure 6.3.3.1.6(c). Typical tensile stress-strain curves for annealed Inconel 625 bar at room temperature.
Figure 6.3.3.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for annealed Inconel 625 bar at room temperature.
6-42
MMPDS-06 1 April 2011
Figure 6.3.3.1.8(a). Best-fit S/N curves for annealed unnotched Inconel 625 bar, longitudinal direction.
Correlative Information for Figure 6.3.3.1.8(a) Product Form: Bar, 0.75-inch diameter Properties:
TUS, ksi 133.2
TYS, ksi 73.8
Test Parameters: Loading - Axial Frequency - Unspecified Temperature - RT Environment - Air
Temp.,EF RT
Specimen Details: Unnotched 0.250-inch diameter
No. of Heats/Lots: 1
Surface Condition: Longitudinally polished Reference:
Equivalent Stress Equation: Log Nf = 24.49-9.62 log (Seq) Seq = Smax (1-R)0.42 Std. Error of Estimate, Log (Life) = 22.71 (1/Seq) Standard Deviation, Log (Life) = 0.985 R2 = 90%
6.3.3.1.8(a)
Sample Size = 27 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-43
MMPDS-06 1 April 2011
Figure 6.3.3.1.8(b). Best-fit S/N curves for annealed notched Inconel 625 bar, Kt = 3.0, longitudinal direction.
Correlative Information for Figure 6.3.3.1.8(b) Product Form: Bar, 0.75-inch diameter Properties:
TUS, ksi 133.2
Test Parameters: Loading - Axial Frequency - Unspecified Temperature - RT Atmosphere - Air
TYS, ksi Temp.,EF 73.8 RT
Specimen Details: V-Groove, Kt = 3.0 0.375-inch gross diameter 0.250-inch net diameter 0.013-inch root radius 60E flank angle
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 19.08-7.70 Log (Seq) Seq = Smax (1-R)0.45 Std. Error of Estimate, Log (Life) = 14.31 (1/Seq) Standard Deviation, Log (Life) = 0.959 R2 = 92%
Surface Condition: Polished Reference:
6.3.3.1.8(a)
Sample Size = 26 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-44
MMPDS-06 1 April 2011
Figure 6.3.3.1.8(c). Best-fit S/N curves for annealed unnotched Inconel 625 sheet, long-transverse direction.
Correlative Information for Figure 6.3.3.1.8(c) Product Form: Sheet, 0.093 and 0.125 inch thick Properties:
TUS, ksi 135.4 136.7
TYS, ksi 74.6 69.8
Temp.,EF RT
Specimen Details: Unnotched 0.500-inch wide 0.250-inch wide
No. of Heats/Lots: 2 Equivalent Stress Equation: Log Nf = 26.91-10.77 log (Seq) Seq = Smax (1-R)0.43 Std. Error of Estimate, Log (Life) = 37.39 (1/Seq) Standard Deviation, Log (Life) = 0.933 R2 = 75%
Surface Condition: As ground References:
Test Parameters: Loading - Axial Frequency - Unspecified Temperature - RT Environment - Air
6.3.3.1.8(a) and 6.3.3.1.8(b)
Sample Size = 34 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-45
MMPDS-06 1 April 2011
Figure 6.3.3.1.8(d). Best-fit S/N curves for annealed notched Inconel 625 sheet, Kt = 3.0, long transverse direction.
Correlative Information for Figure 6.3.3.1.8(d) Product Form: Sheet, 0.093- and 0.125-inch thick Properties:
TUS, ksi 135.4 136.7
TYS, ksi 74.6 69.8
Test Parameters: Loading - Axial Frequency - Unspecified Temperature - RT Atmosphere - Air
Temp.,EF RT
No. of Heats/Lots: 2
Specimen Details: Edge notched, Kt = 3.0 0.625-inch gross width 0.030-inch root radius 0.375-inch net width 60E flank angle
Equivalent Stress Equation: Log Nf = 10.35-3.56 Log (Seq-22.89) Seq = Smax (1-R)0.64 Std. Error of Estimate, Log (Life) = 10.52 (1/Seq) Standard Deviation, Log (Life) = 0.816 R2 = 96%
Surface Condition: As ground References:
6.3.3.1.8(a) and 6.3.3.1.8(b)
Sample Size = 37 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-46
MMPDS-06 1 April 2011 6.3.4 INCONEL 706 6.3.4.0 Comments and Properties — Inconel 706 is a vacuum-melted precipitation-hardened, nickel-base alloy with characteristics similar to Inconel 718 except that Inconel 706 has greatly improved machinability. The alloy has good formability and weldability. Like Inconel 718, Inconel 706 has excellent resistance to post-weld strain-age cracking. Depending upon choice of heat treatment, this alloy may be used for applications requiring either (1) high resistance to creep and stress rupture up to 1300EF or (2) high-tensile strength at cryogenic temperatures or elevated temperatures for short times. The creep-resistant heat treatment is characterized by an intermediate stabilizing treatment before precipitation hardening. Inconel 706 also has good resistance to oxidation and corrosion over a broad range of temperatures and environments. Because of close relationship between heat treatment properties and application, the form and applications are listed with specifications in Table 6.3.4.0(a). Room temperature mechanical and physical properties are in Table 6.3.4.0(b). The effect of temperature on physical properties is shown in Figure 6.3.4.0. Table 6.3.4.0(a). Material Specifications for Inconel 706
Specification AMS 5605 AMS 5606 AMS 5701 AMS 5702 AMS 5703
Form Sheet, strip, and plate Sheet, strip, and plate Bar, forging, and ring Bar, forging, and ring Bar, forging, and ring
Tensile Creep-rupture Tensile Creep-rupture Creep-rupture
Application 1800EF solution treated 1750EF solution treated 1800EF solution treated 1750EF solution treated 1750EF solution treated, stabilized and precipitation treated
6.3.4.1 Solution-Treated and Aged Condition (Creep Rupture Heat Treatment) — Effect of temperature on mechanical properties is shown in Figures 6.3.4.1.1, 6.3.4.1.4, and 6.3.4.1.5. Typical tensile stress-strain curves are shown in Figure 6.3.4.1.6(a) and typical compressive stress-strain and tangent-modulus curves in Figure 6.3.4.1.6(b). A full-range tensile stress-strain curve is shown in Figure 6.3.4.1.6(c). Stress-rupture properties are specified at 1200EF; the appropriate specification should be consulted for detailed requirements.
6-47
MMPDS-06 1 April 2011
Table 6.3.4.0(b). Design Mechanical and Physical Properties of Inconel 706
Specification . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . Thickness or diameter, in. . . . . Basis . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ..................... LT . . . . . . . . . . . . . . . . . . . . Fsu, ksi, L & LT . . . . . . . . . . . Fbrua, ksi, L & LT: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . Fbrya, ksi, L & LT: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . e, percent: L ..................... LT . . . . . . . . . . . . . . . . . . . . RA, percent: L ..................... E, 103 ksi . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . µ ...................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . .
AMS AMS 5702 and AMS 5701 5606 AMS 5703 Sheet, strip, and plate Bar and forging Heat treated per indicated specification 0.1882.5002.500#0.187 All <2.500 <2.500 1.000 4.000 4.000 S S S S S S S AMS 5605
... 175
... 170
... 170
170 ...
170 ...
170 ...
165 ...
... 145
... 140
... 135
140 ...
135 ...
130 ...
130 ...
... 152 109
... 146 106
... 141 106
146 ... 106
141 ... 106
136 ... 106
136 ... 103
271 344
263 334
263 334
263 334
263 334
263 334
256 325
202 243
195 234
188 226
195 234
188 226
181 218
181 218
... 12
... 12
... 12
12 ...
12 ...
12 ...
12 ...
...
...
...
15
15
15
15
30.4 30.4 11.0 0.38 0.292 See Figure 6.3.4.0
Issued: Aug 1973, MIL-HDBK-5B, CN2. Last Revised: Apr 2008, MMPDS-04, Item 05-14.
a
Bearing values are “dry pin” values per Section 1.4.7.1.
6-48
MMPDS-06 1 April 2011
.
10
- Between 70 F and indicated temperature
C, Btu/(lb)(F)
2 0.20
8
-6
K, Btu/[(hr)(ft )(F)/ft]
14
, 10 in./in./F
16
12
6
K - At indicated temperature C - At indicated temperature
K
4
10
0.15
8
0.10
6 -500
C
-250
0
250
500
750
1000
1250
1500
1750
2000
Temperature, F
Figure 6.3.4.0. Effect of temperature on the physical properties of solution-treated and aged Inconel 706.
.
100
Percentage of Room Temperature Strength
80
Fty
Ftu 60
40
20
0
Strength at temperature Exposure up to 1/2 hr
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 6.3.4.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of solution treated and aged (creep rupture heat treatment) of Inconel 706.
6-49
MMPDS-06 1 April 2011 .
100
Percentage of Room Temperature Modulus
80
E & Ec
60
40
20
Modulus at temperature Exposure up to 1/2 hr TYPICAL
0
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 6.3.4.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of Inconel 706.
.
35
Elongation at temperature Exposure up to 1/2 hr
Percent Elongation (e)
30
TYPICAL
25
20
15
10
0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 6.3.4.1.5. Effect of temperature on the elongation (e) of solution treated and aged Inconel 706 (creep rupture heat treatment).
6-50
MMPDS-06 1 April 2011 200 L o n g itu d in a l and L o n g T ra n s v e rs e
RT
160
800 oF
0 .5 -h r e x p o s u re
Stress, ksi
1000 oF
1 2 0 0 oF
120 R a m b e rg - O s g o o d n (R T ) = 6 .7 n (8 0 0 o F ) = 7 .0 n (1 0 0 0 o F ) = 1 3 n (1 2 0 0 o F ) = 1 3
80
TYS 148 131 124 124
T Y P IC A L
40
S T A In c o n e l 7 0 6 fo rg e d b a r T h ic k n e s s = 2 .0 0 0 in . 0 0
2
4
6
8
10
12
S tra in , 0 .0 0 1 in ./in .
Figure 6.3.4.1.6(a). Typical tensile stress-strain curves for solution-treated and aged Inconel 706 (creep rupture heat treatment) forged bar. 200 L o n g itu d in a l and L o n g T ra n s ve rs e
0 .5 -h r e xp o s u re T Y P IC A L RT
160
RT o
o
Stress, ksi
800 F
800 F
1 0 0 0 oF 1 2 0 0 oF
120
1 0 0 0 oF
80
o
1200 F R a m b e rg - O s g o o d n (R T ) = 1 1 n (8 0 0 o F ) = 1 0 n (1 0 0 0 o F ) = 9 .7 n (1 2 0 0 o F ) = 9 .2
40
S T A In co n e l 7 0 6 fo rg e d b a r T h ick n e ss = 2 .0 0 0 in .
0 0 0
2
4
5
10
6
8
10
12
14
15
20
25
30
35
S tra in , 0 .0 0 1 in ./in .
C o m p re ss iv e T a n g e n t M o d u lu s, 1 0 3 k s i
Figure 6.3.4.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for solution-treated and aged Inconel 706 (creep rupture heat treatment) forged bar.
6-51
MMPDS-06 1 April 2011
Figure 6.3.4.1.6(c). Typical tensile stress-strain curve (full range) for Inconel 706 bar and sheet at room temperature (creep rupture heat treatment).
6-52
MMPDS-06 1 April 2011 6.3.5 718 ALLOY 6.3.5.0 Comments and Properties — 718 alloy is a vacuum-melted, precipitation-hardened nickel-base alloy. It can be welded easily and excels in its resistance to strain-age cracking. It is also readily formable. Depending on choice of heat treatments, this alloy finds applications requiring either (1) high resistance to creep and stress rupture to 1300EF or (2) high strength at cryogenic temperatures. It also has good oxidation resistance up to 1800EF. 718 alloy is available in all wrought forms and investment castings. Because of the close relationship between heat treatment, properties, and applications, both the product form and application are listed with the specifications in Table 6.3.5.0(a). Room temperature mechanical and physical properties are presented in Tables 6.3.5.0(b) through 6.3.5.0(d). The effect of temperature on physical properties is presented in Figure 6.3.5.0. Table 6.3.5.0(a). Material Specifications for 718 Alloy
Specification AMS 5589 AMS 5590 AMS 5596 AMS 5597 AMS 5662, 5663 AMS 5664 AMS 5383
Form
Application
Tubing Tubing Sheet, strip, plate Sheet, strip, plate Bar, forging Bar, forging Investment castings
Creep-rupture Short-time Creep-rupture Short-time Creep-rupture Short-time Short-time
.
C, Btu/(lb)(F)
0.15
2
0.20
8
-6
K, Btu/[(hr)(ft )(F)/ft]
14
- Between 70 F and indicated temperature K - At indicated temperature C - At indicated temperature
, 10 in./in./F
10
16
12
6
K
4
10
C
0.10
8
0.05
6 -400
-200
0
200
400
600
800
1000
1200
1400
1600
Temperature, EF Figure 6.3.5.0. Effect of temperature on the physical properties of 718 Alloy.
6-53
MMPDS-06 1 April 2011
Table 6.3.5.0(b). Design Mechanical and Physical Properties of 718 Alloy
Specification . . . . . . . . Form . . . . . . . . . . . . . . .
Sheet
Condition . . . . . . . . . . . Thickness, in. . . . . . . . . Basis . . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi: L .............. LT . . . . . . . . . . . . . Fty, ksi: L .............. LT . . . . . . . . . . . . . Fcy, ksi: L .............. LT . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbruc, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . Fbryc, ksi: (e/D = 1.5) . . . . . . . (e/D = 2.0) . . . . . . . e, percent (S-Basis): L .............. LT . . . . . . . . . . . . .
AMS 5590 Tubing
Solution treated and aged per indicated specification 0.010-0.187
0.1880.249
0.2501.000
0.0101.000
O.D. > 0.125 Wall > 0.015
A
B
S
S
S
S
S
180 180b
192 191
180 180
... 180
... 180
185 ...
170 ...
145 147
156 158
148 150
... 150
... 150
150 ...
145 ...
155 158 124
167 170 132
158 161 124
... ... ...
... ... ...
... ... ...
... ... ...
291 380
309 403
291 380
... ...
... ...
... ...
... ...
208 241
223 259
212 246
... ...
... ...
... ...
... ...
... 12
... ...
... 12
... 12
... 12
12 ...
15 ...
29.4 30.9 11.4 0.29
Physical Properties: ω, lb/in.3 . . . . . . . . . . C, K, and α . . . . . . . .
b c
AMS 5589
Sheet and plate
Plate
E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . µ ................
a
AMS 5597
AMS 5596
0.297 See Figure 6.3.5.0
Design allowables were based upon data from samples of material, supplied in the solution treated condition, which were aged to demonstrate heat treatment response by suppliers. Properties obtained by the user may be different, if the material has been formed or otherwise cold-worked. A-Basis value is specification minimum. The rounded T99 value is 183 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
6-54
MMPDS-06 1 April 2011 Table 6.3.5.0(c1). Design Mechanical and Physical Properties of 718 Alloy Bar Specification . . . . . . . . . . . . . AMS 5662a and AMS 5663 Form . . . . . . . . . . . . . . . . . . . . Bar Temper Solution treated and Precipitation Hardened Thickness, (in.) . . . . . . . . . . . . 0.250-0.999 1.000-1.499 1.500-1.999 2.000-2.499 Basis . . . . . . . . . . . . . . . . . . . . A B A B A B A B Mechanical Properties: Ftu, ksi: L .................... 185b 199 185b 199 185b 199 185b 197 c d d d T .................... 180 ... 180 ... 180 ... 180d 196 Fty, ksi: L .................... 150f 159 150f 159 150f 159 150f 159 c d d d T .................... 150 ... 150 ... 150 ... 150d 159 Fcy, ksi: L .................... 156g ... 156g ... 156g ... 156 165 T .................... ... ... ... ... ... ... 156 165 Fsu, ksi: L .................... 111 119 114 123 116 125 118 126 T .................... ... ... ... ... ... ... 119 126 Fbruh, ksi (e/D = 1.5): L .................... 309g ... 309g ... 309g ... 309 329 h Fbru , ksi (e/D = 2.0): L .................... 394g ... 394g ... 394g ... 394 420 h Fbry , ksi (e/D = 1.5): L .................... 216g ... 216g ... 216g ... 216 229 h Fbry , ksi (e/D = 2.0): L .................... 257g ... 257g ... 257g ... 257 272 e, percent (S-Basis): L .................... 12 ... 12 ... 12 ... 12 ... Tc . . . . . . . . . . . . . . . . . . . . 6 ... 6 ... 6 ... 6 ... RA, percent (S-Basis): L .................... 15 ... 15 ... 15 ... 15 ... Tc . . . . . . . . . . . . . . . . . . . . 8 ... 8 ... 8 ... 8 ... 3 E, 10 ksi . . . . . . . . . . . . . . . . 29.4 Ec, 103 ksi . . . . . . . . . . . . . . . 30.9 G, 103 ksi . . . . . . . . . . . . . . . . 11.4 F ..................... 0.29 Physical Properties: 0.297 ω, lb./in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . See Figure 6.3.5.0 Issued: Dec 1968, MIL-HDBK-5, CN3 Last Revised: Apr 2011, MMPDS-06, Item 07-03 a Design allowables are based upon data obtained from testing samples of material, supplied in the solution treated condition which were precipitation hardened to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. b A-Basis value is specification minimum. The rounded T99 for Ftu(L) for 0.250-2.999 inches = 191 ksi. c Applicable providing the T direction is $2.500 inches. d S-Basis, specification minimum providing the T direction is >2.500 inches. e A-Basis value is specification minimum. The rounded T99 for Ftu (T) for 2.000-2.999 = 190 ksi. f A-Basis value is specification minimum. The rounded T99 for Fty(L) for 0.250-1.999 inches = 154 ksi; for Fty(L) and (T) from 2.000-2.999 inches = 154 ksi. g S-Basis. h Bearing values are "dry pin" values per Section 1.4.7.1.
6-55
MMPDS-06 1 April 2011 Table 6.3.5.0(c2). Design Mechanical and Physical Properties of 718 Alloy Bar Specification . . . . . . . . . . . . . AMS 5662a and AMS 5663 AMS 5664 Form . . . . . . . . . . . . . . . . . . . . Bar Temper Solution treated and Precipitation Hardened Thickness, (in.) . . . . . . . . . . . . 2.500-2.999 3.000-4.000 4.001-5.000 #10.000 Basis . . . . . . . . . . . . . . . . . . . . A B A B A B S Mechanical Properties: Ftu, ksi: L .................... 185b 197 185b 195 185b 193 185 c d d T .................... 180 196 180 195 180e 193 180 Fty, ksi: 150e 159 150e 159 150 156 150 L .................... c e T .................... 150 159 150e 159 150 156 150 Fcy, ksi: L .................... 156 165 156 165 156f ... ... T .................... 156 165 156 165 156f ... ... Fsu, ksi: L .................... 120 127 121 128 123 129 ... T .................... 121 128 122 129 124 129 ... Fbrug, ksi (e/D = 1.5): L .................... 309 329 309 326 309f ... ... g Fbru , ksi (e/D = 2.0): L .................... 394 420 394 416 394f ... ... g Fbry , ksi (e/D = 1.5): L .................... 216 229 216 229 216f ... ... g Fbry , ksi (e/D = 2.0): L .................... 257 272 257 272 257f ... ... e, percent (S-Basis): L .................... 12 ... 12 ... 12 ... 12 Tc . . . . . . . . . . . . . . . . . . . . 6 ... 6 ... 6 ... 6 RA, percent (S-Basis): L .................... 15 ... 15 ... 15 ... 15 Tc . . . . . . . . . . . . . . . . . . . . 8 ... 8 ... 8 ... 8 3 E, 10 ksi . . . . . . . . . . . . . . . . 29.4 Ec, 103 ksi . . . . . . . . . . . . . . . 30.9 G, 103 ksi . . . . . . . . . . . . . . . . 11.4 F ..................... 0.29 Physical Properties: ω, lb./in.3 . . . . . . . . . . . . . . 0.297 C, K, and α . . . . . . . . . . . . . See Figure 6.3.5.0 Issued: Dec 1968, MIL-HDBK-5, CN3 Last Revised: Apr 2011, MMPDS-06, Item 07-03 a Design allowables are based upon data obtained from testing samples of material, supplied in the solution treated condition which were precipitation hardened to demonstrate response to heat treatment by suppliers. Properties obtained by the user may be lower than those listed if the material has been formed or otherwise cold or hot worked, particularly in the annealed temper, prior to solution heat treatment. b A-basis value is specification minimum. The rounded T99 for Ftu(L) for 0.250-2.999 inches = 191 ksi. c Applicable providing the T direction is $2.500 inches. d A-basis value is specification minimum. The rounded T99 for Ftu (T) for 2.000-2.999 = 190 ksi. e A-basis value is specification minimum. The rounded T99 for Fty(L) for 0.250-1.999 inches = 154 ksi; for Fty(L) and (T) from 2.000-2.999 inches = 154 ksi. f S-basis. g Bearing values are "dry pin" values per Section 1.4.7.1.
6-56
MMPDS-06 1 April 2011 Table 6.3.5.0(d). Design Mechanical and Physical Properties of 718 Alloy Forging Specification . . . . . . . . . . . . . AMS 5663 AMS 5664 Form . . . . . . . . . . . . . . . . . . . . Forging Temper Solution treated and Precipitation Hardened Thickness, (in.) . . . . . . . . . . . . <3.000 3.000-5.000 #10.000 Basis . . . . . . . . . . . . . . . . . . . . S A B S Mechanical Properties: Ftu, ksi: L .................... 185 185a 198 180 b T .................... 180 180a 195 180 Fty, ksi: L .................... 150 150a 159 150 b T .................... 150 150 158 150 Fcy, ksi: L .................... ... ... ... ... T .................... ... ... ... ... Fsu, ksi: L .................... ... ... ... ... T .................... ... ... ... ... Fbruc, ksi (e/D = 1.5): L .................... ... ... ... ... T .................... ... ... ... ... Fbruc, ksi (e/D = 2.0): L .................... ... ... ... ... T .................... ... ... ... ... Fbryc, ksi (e/D = 1.5): L .................... ... ... ... ... T .................... ... ... ... ... Fbryc, ksi (e/D = 2.0): L .................... ... ... ... ... T .................... ... ... ... ... e, percent (S-Basis): L .................... 12 12 ... 12 Tb . . . . . . . . . . . . . . . . . . . . 10 10 ... 12 RA, percent (S-Basis): L .................... 15 15 ... 15 Tb . . . . . . . . . . . . . . . . . . . . 12 12 ... 15 E, 103 ksi . . . . . . . . . . . . . . . . 29.4 Ec, 103 ksi . . . . . . . . . . . . . . . 30.9 G, 103 ksi . . . . . . . . . . . . . . . . 11.4 F ..................... 0.29 Physical Properties: ω, lb./in.3 . . . . . . . . . . . . . . 0.297 C, K, and α . . . . . . . . . . . . . See Figure 6.3.5.0 Issued: Dec 1968, MIL-HDBK-5, CN3 Last Revised: Apr 2011, MMPDS-06, Item 07-03 a A-Basis value is specification minimum. The rounded T99 for Ftu(L) for 0.250-2.999 inches = 191 ksi. b Applicable providing the T direction is $2.500 inches. c Bearing values are "dry pin" values per Section 1.4.7.1.
6-57
MMPDS-06 1 April 2011
Table 6.3.5.0(e). Design Mechanical and Physical Properties of 718 Alloy Investment Castings
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 5383
Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Investment Casting
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STA
Location within casting . . . . . . . . . . . . . . . . . . .
Any
Thickness, in. . . . . . . . . . . . . . . . . . . . . . . . . . .
#0.500
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
120
Fty, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
105
Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
105
Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
88a
Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . .
202
(e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . .
248
Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . . . .
161
(e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . . . .
188
e, percent . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
RA, percent . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.4
Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30.9
G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4
µ ...................................
See Figure 6.3.5.1.4(c)
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.297
C, K, and α . . . . . . . . . . . . . . . . . . . . . . . . . . .
See Figure 6.3.5.0
a Determined in accordance with ASTM Procedure B769. b Bearing values are “dry pin” values per Section 1.4.7.1.
6-58
MMPDS-06 1 April 2011 6.3.5.1 Solution-Treated and Aged Condition — Elevated-temperature curves are presented in Figures 6.3.5.1.1 and 6.3.5.1.4(a) through 6.3.5.1.4(c). Typical tensile and compressive stressstrain curves as well as typical compressive tangent-modulus curves for sheet and castings are shown in Figures 6.3.5.1.6(a) through 6.3.5.1.6(c). Figure 6.3.5.1.6(d ) is a typical stress-strain curve (full range) for Inconel 718 investment casting. Creep and stress-rupture curves for forging are shown in Figures 6.3.5.1.7(a) through 6.3.5.1.7(e). Supplemental creep and stress-rupture information for forging is presented in Table 6.3.5.1.7. Fatigue S/N and ε/N curves are presented in Figures 6.3.5.1.8(a) through 6.3.5.1.8(k). Fatiguecrack-propagation data for die forging and plate are presented in Figures 6.3.5.1.9(a) through 6.3.5.1.9(c).
Figure 6.3.5.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and tensile yield strength (Fty) of solution-treated and aged 718 Alloy.
6-59
MMPDS-06 1 April 2011
Figure 6.3.5.1.4(a). Effect of temperature on dynamic tensile modulus (E) of solutiontreated and aged 718 Alloy.
Figure 6.3.5.1.4(b). Effect of temperature on dynamic shear modulus (G) of solutiontreated and aged 718 Alloy.
6-60
MMPDS-06 1 April 2011
Figure 6.3.5.1.4(c). Effect of temperature on Poisson’s ratio (µ) for solution-treated and aged 718 Alloy.
6-61
MMPDS-06 1 April 2011 200 L and LT - tension 160 L - compression LT - compression
Stress, ksi
120
Ramberg - Osgood n (L - tension) = 21 n (LT - tension) = 22 n (L - comp.) = 21 n (LT - comp.) = 24
80
40 TYPICAL Thickness = 0.010 - 0.250 in. 0 0
0
2
5
4
6 8 Strain, 0.001
10
12
14
15 20 25 3 Compressive Tangent Modulus, 10 ksi
30
35
10
Figure 6.3.5.1.6(a). Typical tensile stress-strain, compressive stress-strain, and compressive tangent-modulus curves for solution-treated and aged 718 Alloy sheet (AMS 5596) at room temperature.
200
L and ST - compression L - tension 160
ST - tension
Stress, ksi
120
80
Ramberg - Osgood n (L - tension) = 18 n (ST - tension) = 14 n (L and ST - comp.) = 13
40
TYPICAL Thickness = 2.000 - 4.000 in.
0 0
2
4
6
8
10
12
14
Strain, 0.001 in./in. 0
5
10 15 20 25 3 Compressive Tangent Modulus, 10 ksi
30
35
Figure 6.3.5.1.6(b). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for solution-treated and aged (creep-rupture application) 718 Alloy bar (AMS 5662 and AMS 5663) at room temperature.
6-62
MMPDS-06 1 April 2011
.
200
160
Stress, ksi
Compression Tension
120
80
Ramberg-Osgood n (L-tension) = 13 n (L-comp.) = 8.4
40
TYPICAL Thickness:\ 0.500 in. 0
0
2
4
6
8
10
12
14
25
30
35
Strain, 0.001 in./in. 0
5
10
15
20
3
Compressive Tangent Modulus, 10 ksi Figure 6.3.5.1.6(c). Typical tensile stress-strain, compressive stress-strain, and compressive tangent-modulus curves for solution treated and aged 718 Alloy investment casting (AMS 5383) at room temperature.
6-63
MMPDS-06 1 April 2011
Figure 6.3.5.1.6(d). Typical tensile stress-strain curve (full range) for solution treated and aged 718 Alloy investment casting (AMS 5383) at room temperature.
6-64
MMPDS-06 1 April 2011
Figure 6.3.5.1.7(a). Average isothermal 0.10% creep curves for 718 Alloy forging.
Correlative Information for Figure 6.3.5.1.7(a) Makeup of Data Collection: Heat Treatment: 2 [See Table 6.3.5.1.7(f)] Number of Vendors = Unknown Number of Lots = 2 Number of Test Laboratories = 1 Number of Tests = 32 Specimen Details: Type - Unnotched round bar Gage Length - N.A. Gage Thickness - 0.25 inch to 0.375 inch
0.10 Percent Creep Equation: Log t = c + b1 T + b2X + b3X2 + b4X3 T = ER X = log (stress, ksi) c = 185.16 b1 = -0.01778 b2 = -255.25 b3 = 146.28 b4 = -28.65 Analysis Details: Inverse Matrix = [See Table 6.3.5.1.7(f)] Std. Error of Estimate, Log (Hrs) = 0.56 Standard Deviation, Log (Hrs) = 0.99 R2 = 68% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-65
MMPDS-06 1 April 2011
Figure 6.3.5.1.7(b). Average isothermal 0.20% creep curves for 718 Alloy forging.
Correlative Information for Figure 6.3.5.1.7(b) Makeup of Data Collection: Heat Treatment: 2 [See Table 6.3.5.1.7(f)] Number of Vendors = Unknown Number of Lots = 2 Number of Test Laboratories = 1 Number of Tests = 31 Specimen Details: Type - Unnotched round bar Gage Length - N.A. Gage Thickness - 0.25. inch - 0.375 inch
0.20 Percent Creep Equation: Log t = c + b1 T + b2X + b3X2 + b4X3 T = ER X = log (stress, ksi) c = 185.67 b1 = -0.01778 b2 = -255.25 b3 = 146.28 b4 = -28.65 Analysis Details: Inverse Matrix = [See Table 6.3.5.1.7(f)] Std. Error of Estimate, Log (Hrs) = 0.41 Standard Deviation, Log (Hrs) = 0.98 R2 = 82% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-66
MMPDS-06 1 April 2011
Figure 6.3.5.1.7(c). Average isothermal 0.50% creep curves for 718 Alloy forging.
Correlative Information for Figure 6.3.5.1.7(c) Makeup of Data Collection: Heat Treatment: 2 [See Table 6.3.5.1.7(f)] Number of Vendors = Unknown Number of Lots = 2 Number of Test Laboratories = 1 Number of Tests = 22 Specimen Details: Type - Unnotched round bar Gage Length - N.A. Gage Thickness - 0.250 inch - 0.375 inch
0.50 Percent Creep Equation: Log t = c + b1 T + b2X + b3X2 + b4X3 T = ER X = log (stress, ksi) c = 185.75 b1 = -0.01778 b2 = -255.25 b3 = 146.28 b4 = -28.65 Analysis Details: Inverse Matrix = [See Table 6.3.5.1.7(f)] Std. Error of Estimate, Log (Hrs) = 0.34 Standard Deviation, Log (Hrs) = 1.10 [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-67
MMPDS-06 1 April 2011 . .
180
160
140
Stress, ksi
120
100
80
60
40
20 100
101
102
103
104
105
Time to % Strain, Hrs Figure 6.3.5.1.7(d). Average isothermal 5.00% creep curves for 718 Alloy forging.
Correlative Information for Figure 6.3.5.1.7(d) Makeup of Data Collection: Heat Treatment: 2 [See Table 6.3.5.1.7(f)] Number of Vendors = Unknown Number of Lots = 2 Number of Test Laboratories = 1 Number of Tests = 24 Specimen Details: Type - Unnotched round bar Gage Length - N.A. Gage Thickness - 0.250 inch - 0.375 inch
5.00 Percent Creep Equation: Log t = c + b1 T + b2X + b3X2 + b4X3 T = ER X = log (stress, ksi) c = 186.16 b1 = -0.01778 b2 = -255.25 b3 = 146.28 b4 = -28.65 Analysis Details: Inverse Matrix = [See Table 6.3.5.1.7(f)] Std. Error of Estimate, Log (Hrs) = 0.37 Standard Deviation, Log (Hrs) = 1.02
[Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-68
MMPDS-06 1 April 2011 . .
180
160
140
Stress, ksi
120
100
80
60
40
20 100
101
102
103
104
105
Time to Rupture, Hrs Figure 6.3.5.1.7(e). Average isothermal stress rupture curves for 718 Alloy forging.
Correlative Information for Figure 6.3.5.1.7(e) Makeup of Data Collection: Heat Treatment: 2 [See Table 6.3.5.1.7(f)] Number of Vendors = Unknown Number of Lots = 7 Number of Test Laboratories = 2 Number of Tests = 162 Specimen Details: Type - Unnotched round bar Gage Length - N.A. Gage Thickness - 0.250 inch - 0.375 inch
Stress Rupture Creep Equation: Log t = c + b1 T + b2X + b3X2 + b4X3 T = ER X = log (stress, ksi) c = 186.27 b1 = -0.01778 b2 = -255.25 b3 = 146.28 b4 = -28.65 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.29 Standard Deviation, Log (Hrs) = 0.63 Within Heat Treatment Variance = 0.071 Ratio of Between to Within Heat Treatment Variance = (at spec pt.) <0.10 [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-69
Table 6.3.5.1.7. Supplemental Information on the Creep and Stress Rupture Properties of 718 Alloy Forging Heat Treatment Details Heat Treatment No.
Cycle No.
Temperature, EF
Time, Hours
Cool
2
1 2 3
1800 1325 1150
1 8 8
AC, WQ FC (100EF/hr) AC
21
1 2 3
1700-1850 1325 1150
1 8 8
AC FC (100EF/hr) AC
6-70
log t
where Y1 Y2 Y3 Y4
MMPDS-06 1 April 2011
Stress Rupture Equation and Inverse Matrix for the Creep Stress = 0.10, 0.20, 0.50, and 5.00% and Stress Rupture Conditions = c + b1T + b2X + b3X2 + b4X3 + b5Y1 + b6Y2 + b7Y3 + b8Y4 + b9Y5 = = = =
1; Y2, Y3, Y4, Y5 = 0 for Creep Strain = 0.10% Data 1; Y1, Y3, Y4, Y5 = 0 for Creep Strain = 0.20% Data 1; Y1, Y2, Y4, Y5 = 0 for Creep Strain = 0.50% Data 1; Y1, Y2, Y3, Y5 = 0 for Creep Strain = 5.00% Data Y1, Y2, Y3, Y4, Y5 = 0 for Stress Rupture Data
Column Row
1
2
3
4
5
6
7
8
9
1 2 3 4 5 6 7 8 9
1.809E+00 -1.108E-03 -1.978E+00 6.499E-01 -5.748E-02 -1.606E+00 -1.444E+00 -1.015E+00 -9.777E-01
-1.108E-03 6.834E-07 1.212E-03 -3.979E-04 3.517E-05 9.843E-04 8.852E-04 6.219E-04 5.993E-04
-1.978E+00 1.212E-03 3.482E+00 -1.657E+00 2.032E-01 1.634E+00 1.359E+00 6.886E-01 5.921E-01
6.499E-01 -3.979E-04 -1.657E+00 9.145E-01 -1.220E-01 -4.892E-01 -3.610E-01 -6.305E-02 3.594E-03
-5.748E-02 3.517E-05 2.032E-01 -1.220E-01 1.697E-02 3.801E-02 2.248E-02 -1.245E-02 -2.618E-02
-1.606E+00 9.843E-04 1.634E+00 -4.892E-01 3.801E-02 1.471E+00 1.303E+00 9.401E-01 9.124E-01
-1.444E+00 8.852E-04 1.359E+00 -3.610E-01 2.248E-02 1.303E+00 1.222E+00 8.806E-01 8.600E-01
-1.015E+00 6.219E-04 6.886E-01 -6.305E-02 -1.245E-02 9.401E-01 8.806E-01 7.491E-01 6.987E-01
-9.777E-01 5.993E-04 5.921E-01 3.594E-03 -2.618E-02 9.124E-01 8.600E-01 6.987E-01 1.195E+00
MMPDS-06 1 April 2011 . .
180 INCO 718 Kt = 1.0 Stress Ratio - 1.00 - 0.50 + 0.10 0.20 x 0.50 Runout →
+
Maximum Stress, ksi
160 140 + +
120
x
100
++
x x x
80
→ x x
x+ + + →
60
x→ x→ x→
→
40
→ → Note: Stresses are based on net section.
20 0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 6.3.5.1.8(a). Best-fit S/N curves for unnotched 718 Alloy sheet at room temperature, long transverse direction.
Correlative Information for Figure 6.3.5.1.8(a) Product Form: Sheet, 0.066 inch and 0.109 inch Properties:
TUS, ksi TYS, ksi 197.0 164.0 208.7 184.2
Test Parameters: Loading—Axial Frequency—Unspecified Temperature—RT Environment—Air
Temp.,EF RT RT
No. of Heats/Lots: 2
Specimen Details: Unnotched 0.30-inch net width 0.50-inch net width
Equivalent Stress Equation: Log Nf = 8.63 - 2.07 Log (Seq - 58.48) Seq = Smax(1-R).58 Std. Error of Est., Log (Life) = 26.73 (1/Seq) Standard Deviation, Log (Life) = 0.904 R2 = 90.3%
Heat Treatment: See AMS 5596 Surface Condition: #400 grit belt polished
Sample Size = 53 References: 6.2.1.1.8 and 6.3.5.1.8(a) [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-71
MMPDS-06 1 April 2011 . .
180 INCO 718 Kt = 3.0 Stress Ratio - 1.00 - 0.50 + 0.10 0.20 x 0.50 Runout →
Maximum Stress, ksi
160 140 120
+
100
+ +
80
x
+ +
60
x x x+++
+
40
→ x x +→ x + → →
Note: Stresses are based on net section.
20 0 103
104
105
106
107
x→ →
108
Fatigue Life, Cycles Figure 6.3.5.1.8(b). Best-fit S/N curves for notched, Kt = 3.0, 718 Alloy sheet at room temperature, long transverse direction.
Correlative Information for Figure 6.3.5.1.8(b) Product Form: Sheet, 0.066 inch and 0.109 inch Properties:
TUS, ksi TYS, ksi 197.0 164.0 208.7 184.2
Test Parameters: Loading—Axial Frequency—Unspecified Temperature—RT Environment—Air
Temp.,EF RT RT
No. of Heats/Lots: 2
Specimen Details: Notched 60E V-Groove Kt = 3.0 0.300-inch net width 0.220-inch root width 0.625-inch net width 0.030-inch root radius
Equivalent Stress Equation: Log Nf = 8.17 - 2.23 Log (Seq - 30.58) Seq = Smax(1-R).68 Std. Error of Est., Log (Life) = 14.07 (1/Seq) Standard Deviation, Log (Life) = 0.977 R2 = 93.7% Sample Size = 49
Heat Treatment: See AMS 5596
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Surface Condition: As machined References: 6.2.1.1.8 and 6.3.5.1.8(a)
6-72
MMPDS-06 1 April 2011 . .
240 o
INCO 718 1000 F Kt = 1.0 Stress Ratio - 1.00 0.00 + 0.26 0.60 x
220
Maximum Stress, ksi
200 180
→
Note: Stresses are based on net section.
Runout
x
160
x
x
x
x x
140 120
x→
+ + + +
100
+
+
+ →
→
80 60 40 103
104
105
106
107
108
Fatigue Life, Cycles Figure 6.3.5.1.8(c). Best-fit S/N curves for unnotched 718 Alloy sheet at 1000E EF, long transverse direction.
Correlative Information for Figure 6.3.5.1.8(c) Product Form: Sheet, 0.066 inch Properties:
TUS, ksi TYS, ksi 165.0 141.8
Test Parameters: Loading—Axial Frequency—60 Hz Temperature—1000EF Environment—Air
Temp.,EF 1000
Specimen Details: Unnotched 0.30-inch net width
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 23.51 - 10.57 Log (Seq - 50) Seq = Smax(1-R)0.62 Std. Error of Estimate, Log (Life) = 0.414 Standard Deviation, Log (Life) = 0.776 R2 = 71.5%
Heat Treatment: See AMS 5596 Surface Condition: #400 grit belt polished Reference: 6.2.1.1.8
Sample Size = 21 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-73
MMPDS-06 1 April 2011 . .
250 o
INCO 718 1000 F Kt = 3.0 Stress Ratio - 1.00 0.00 + 0.20 0.82 x
225
Maximum Stress, ksi
200 175
→
Note: Stresses are based on net section.
Runout
x
x
x
150
x
125
x
x→
100 +
+
75
+ ++
50
++
+
+ + →→ + →
25
→ →
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 6.3.5.1.8(d). Best-fit S/N curves for notched, Kt = 3.0, 718 Alloy sheet at 1000E EF, long transverse direction.
Correlative Information for Figure 6.3.5.1.8(d) Product Form: Sheet, 0.066 inch Properties:
TUS, ksi TYS, ksi 165.0 141.8
Test Parameters: Loading—Axial Frequency—60 Hz Temperature—1000EF Environment—Air
Temp.,EF 1000 Unnotched
No. of Heats/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 3.0 0.448-inch gross width 0.300-inch net width 0.022-inch root radius, r 60E flank angle, ω
Equivalent Stress Equation: Log Nf = 11.02 - 3.93 Log (Seq - 20) Seq = Smax(1-R)0.91 Std. Error of Estimate, Log (Life) = 0.404 Standard Deviation, Log (Life) = 0.988 R2 = 83.3%
Heat Treatment: See AMS 5596
Sample Size = 23
Surface Condition: As machined
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
Reference: 6.2.1.1.8
6-74
MMPDS-06 1 April 2011 . .
100 o
INCO 718 1400 F Kt = 3.0 Stress Ratio - 1.00 - 0.20 + 0.20 0.60 x
90
Maximum Stress, ksi
80 70
x
Runout
→
x
60
xx
+
x
50
x +
40
+
+
30
+
+ →
+ → → →
20 10
Note: Stresses are based on net section.
0 103
104
105
106
107
108
Fatigue Life, Cycles Figure 6.3.5.1.8(e). Best-fit S/N curves for notched, Kt = 3.0, 718 Alloy sheet at 1400E EF, long transverse direction.
Correlative Information for Figure 6.3.5.1.8(e) Product Form: Sheet, 0.066 inch Properties:
TUS, ksi TYS, ksi 113.0 100.1
Test Parameters: Loading—Axial Frequency—60 Hz Temperature—1400EF Environment—Air
Temp.,EF 1400 Unnotched
No. of Heats/Lots: 1
Specimen Details: Notched, V-Groove, Kt = 3.0 0.448-inch gross width 0.30-inch net width 0.022-inch root radius, r 60E flank angle, ω Heat Treatment: See AMS 5596
Equivalent Stress Equation: Log Nf = 10.29 - 4.02 Log (Seq - 20) Seq = Smax(1-R)0.62 Std. Error of Estimate, Log (Life) = 0.442 Standard Deviation, Log (Life) = 0.717 R2 = 62.0%
Surface Condition: As machined.
Sample Size = 20
Reference: 6.2.1.1.8
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-75
MMPDS-06 1 April 2011 . .
200
180
x
+
x
+
Maximum Stress, ksi
INCO 718 Kt = 1.0 Stress Ratio - 1.00 - 0.50 + 0.10 0.50 x
160
x
+
→
Runout
x
140
x
+
x
120
x→
+
100
x→
x+→ + → + →
+
80
+ →
→
Note: Stresses are based on net section.
60 103
104
→ →
105
106
107
108
109
Fatigue Life, Cycles Figure 6.3.5.1.8(f). Best-fit S/N curves for unnotched 718 Alloy bar and plate at room temperature, longitudinal direction.
Correlative Information for Figure 6.3.5.1.8(f) Product Form: Bar, 0.75-inch diameter; plate, 0.5-, 0.75-, and 1.0-inch thick Properties:
TUS, ksi 204.4 200.0
Specimen Details:
Heat Treatment: Surface Condition:
TYS, ksi 177.7 166.7
Temp.,EF RT RT
Unnotched 0.250-inch diameter 0.200-inch diameter See AMS 5662 and AMS 5596 Unspecified, RMS 8-11
Test Parameters: Loading - Axial Frequency - Unspecified Temperature - RT Environment - Air No. of Heats/Lots:
4
Equivalent Stress Equation: Log Nf = 8.18 - 2.07 log (Seq - 63.0) Seq = Sa + 0.40 Sm Std. Error of Est., Log (Life) = 38.56 (1/Seq) Standard Deviation, Log (Life) = 0.980 R2 = 67.7% Sample Size = 44
References: 6.3.3.1.8(a) and 6.3.5.1.8(b)
[Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-76
MMPDS-06 1 April 2011 . .
160
x
140
Maximum Stress, ksi
INCO 718 Kt=3.0 Stress Ratio -0.50 0.10 0.50 Runout →
x x
120
x
x
100
xx
80
x
60
x
40 20
x→ →
Note: Stresses are based on net section.
0 103
104
→
105
106
107
108
Fatigue Life, Cycles Figure 6.3.5.1.8(g). Best-fit S/N curves for notched, Kt = 3.0, 718 Alloy bar at room temperature, longitudinal direction.
Correlative Information for Figure 6.3.5.1.8(g) Product Form: Bar, 0.75-inch diameter Properties:
TUS, ksi TYS, ksi 204.4 177.7
Test Parameters: Loading—Axial Frequency—Unspecified Temperature—RT Environment—Air
Temp.,EF RT
Specimen Details: Notched, 60E V Notch 0.252-inch diameter 0.013-inch diameter
No. of Heats/Lots: 1 Equivalent Stress Equation: Log Nf = 9.45 - 3.17 Log (Seq - 8.6) Seq = Sa + 0.16 Sm Std. Error of Est., Log (Life) = 6.97 (1/Seq) Standard Deviation, Log (Life) =0.945 R2 = 93.6%
Heat Treatment: See AMS 5662 and AMS 5596 Surface Condition: Unspecified Reference: 6.3.3.1.8(a)
Sample Size = 31 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
6-77
MMPDS-06 1 April 2011
0.100 No Exp, SR = -1.0 No Exp. SR = -1.0 No Exp, SR = 0.0 No Exp. SR = 0.0
Strain Range, in./in.
No Exp, SR = 0.50 No Exp. SR = 0.50 Exp, SR = -1.0 Exp, SR = -1.0
0.010
0.001 1,000
10,000
100,000
1,000,000
Cycles to Failure
100
80
90
70
80
60
SR = -1.0 SR = -1.0 SR = 0.00 SR = 0.00 SR = 0.50 SR = 0.50
50 Mean Stress, ksi
Stress Amplitude, ksi
70 60 50 40
40
30
20
30 10
20 800 F Loop Tips
10
0
800 F Curve
-10
0 0
0.001
0.002
0.003
0.004
0
0.005
0.001
0.002
0.003
0.004
0.005
Strain Amplitude, in./in.
Strain Amplitude, in./in.
Figure 6.3.5.1.8(h). Best-fit g-N curve, cyclic stress-strain, and mean stress relaxation curves for 718 Alloy castings at 800E EF.
6-78
MMPDS-06 1 April 2011 Correlative Information for Figure 6.3.5.1.8(h) Product Form/Thickness:
Test Parameters:
Casting, thickness not specified
Frequency B 20 cycles/minute Wave Form B Triangular Temperature B 800EF Atmosphere B Air Pre-exposure (where applicable) B 1500EF for 2000 hrs.
Thermal Mechanical Processing History: In accordance with AMS 5383 Properties: TUS, ksi TYS, ksi E, msi Temp. F Non pre-exposed 121 104 23.5 800 Pre-exposed (see Test Parameters) 98 58 23.5 800
No. of Heats/Lots: 3 Equivalent Strain Equations: No Prior Exposure
Stress-Strain Equations:
log Nf = -0.468 B 4.464 log (εeq)
Cyclic Loop Tips
εeq = (∆ε)0.58 (σmax/E)0.42
(∆σ/2) = 177.8 (∆εp/2)0.105
Std. Error of Est., log (life) = 0.289 Standard Deviation, log (life) = 0.451 R2 = 58.9%
Mean Stress Relaxation σm = (∆ε/2) E (1 + Rε) / (1 - Rε) ∆ε/2 # 0.00219; Rε = 0.00 ∆ε/2 # 0.00106; Rε = 0.50 σm = 95.70 B 20088 (∆ε/2) 0.00219 < ∆ε/2 < 0.00476; Rε = 0.00 0.00106 < ∆ε/2 < 0.00476; Rε = 0.50 σm = 0 Rε = -1.00 ∆ε/2 $ 0.00476; other Rε values
Sample Size: 22 Prior Exposure log Nf = -2.245 B 5.649 log (εeq) εeq = (∆ε)0.58 (σmax/E)0.42
Specimen Details:
Std. Error of Est., log (life) = 0.232 Standard Deviation, log (life) = 0.608 R2 = 85.4%
Smooth, 0.25 in. diameter
Sample Size: 8
Reference: 6.3.5.1.8(c)
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
6-79
MMPDS-06 1 April 2011
0.100 No Exp, SR = -1.0 No Exp. SR = -1.0 No Exp, SR = 0.0 No Exp. SR = 0.0
Strain Range, in./in.
No Exp, SR = 0.50 No Exp. SR = 0.50 Exp, SR = -1.0 Exp, SR = -1.0
0.010
0.001 1,000
10,000
100,000
1,000,000
Cycles to Failure
90
80
80
70
70
60
60
50
SR = -1.0 SR = -1.0 SR = 0.0 SR = 0.0 SR = 0.5
Mean Stress, ksi
Stress Amplitude, ksi
SR = 0.50
50
40
40
30
30
20
20
10 1000 F Loop Tips
0
10 1000 F Curve
-10
0 0
0.001
0.002
0.003
0.004
0
0.005
0.001
0.002
0.003
0.004
0.005
Strain Amplitude, in./in.
Strain Amplitude, in./in.
Figure 6.3.5.1.8(i). Best-fit g-N curve, cyclic stress-strain, and mean stress relaxation curves for 718 Alloy castings at 1000E E F.
6-80
MMPDS-06 1 April 2011 Correlative Information for Figure 6.3.5.1.8(i) Product Form/Thickness:
Test Parameters:
Casting, thickness not specified
Frequency B 20 cycles/minute Wave Form B Triangular Temperature B 1000EF Atmosphere B Air Pre-exposure (where applicable) B 1500EF for 2000 hrs.
Thermal Mechanical Processing History: In accordance with AMS 5383 Properties: TUS, ksi TYS, ksi E, msi Temp. F Non pre-exposed 115 103 22.3 1000 Pre-exposed (see Test Parameters) 98 62 22.3 1000
No. of Heats/Lots: 3 Equivalent Strain Equations: No Prior Exposure
Stress-Strain Equations:
log Nf = -0.908 B 4.758 log (εeq)
Cyclic Loop Tips
εeq = (∆ε)0.58 (σmax/E)0.42
(∆σ/2) = 144.5 (∆εp/2)0.098
Std. Error of Est., log (life) = 0.388 Standard Deviation, log (life) = 0.523 R2 = 45.1%
Mean Stress Relaxation σm = (∆ε/2) E (1 + Rε) / (1 - Rε) ∆ε/2 # 0.00218; Rε = 0.00 ∆ε/2 # 0.00108; Rε = 0.50 σm = 95.16 B 21297 (∆ε/2) 0.00218 < ∆ε/2 < 0.00447; Rε = 0.00 0.00108 < ∆ε/2 < 0.00447; Rε = 0.50 σm = 0 Rε = -1.00 ∆ε/2 $ 0.00447; other Rε values
Sample Size: 25 Prior Exposure log Nf = -0.994 B 4.243 log (εeq) εeq = (∆ε)0.58 (σmax/E)0.42
Specimen Details:
Std. Error of Est., log (life) = 0.524 Standard Deviation, log (life) = 0.651 R2 = 35.3%
Smooth, 0.25 in. diameter
Sample Size: 16
Reference:
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
6.3.5.1.8(c)
6-81
MMPDS-06 1 April 2011
70
70
SR = SR = SR = SR = SR = SR =
60
60
50
Mean Stress, ksi
Stress Amplitude, ksi
50
40
30
20
-1.0 0.0 0.5 0.0 0.50 -1.0
40
30
20
10 1200 F Loop Tips
10
0
1200 F Curve
-10
0 0
0.001
0.002
0.003
0.004
0.005
0
0.001
0.002
0.003
0.004
0.005
Strain Amplitude, in./in.
Strain Amplitude, in./in.
Inconel 718 Casting Strain Control Fatigue Data, 1200F
0.100 No Exp, SR = -1.0 No Exp. SR = -1.0 No Exp, SR = 0.0 No Exp. SR = 0.0
Strain Range, in./in.
No Exp, SR = 0.50 No Exp. SR = 0.50 Exp, SR = -1.0 Exp, SR = -1.0
0.010
0.001 1,000
10,000
100,000
1,000,000
Cycles to Failure
Figure 6.3.5.1.8(j). Best-fit g-N curve, cyclic stress-strain, and mean stress relaxation curves for 718 Alloy castings at 1200E EF.
6-82
MMPDS-06 1 April 2011
Correlative Information for Figure 6.3.5.1.8(j) Product Form/Thickness:
Test Parameters:
Casting, thickness not specified
Frequency B 20 cycles/minute Wave Form B Triangular Temperature B 1200EF Atmosphere B Air Pre-exposure (where applicable) B 1500F for 2000 hrs.
Thermal Mechanical Processing History: In accordance with AMS 5383 Properties: TUS, ksi TYS, ksi E, msi Temp. F Non pre-exposed 113 98 21.0 1200 Pre-exposed (see Test Parameters) 95 55 21.0 1200
No. of Heats/Lots: 3 Equivalent Strain Equations: No Prior Exposure
Stress-Strain Equations:
log Nf = -0.925 B 4.566 log (εeq)
Cyclic Loop Tips
εeq = (∆ε)0.58 (σmax/E)0.42
(∆σ/2) = 100.2 (∆εp/2)0.0920
Std. Error of Est., log (life) = 0.254 Standard Deviation, log (life) = 0.616 R2 = 83.1%
Mean Stress Relaxation σm = (∆ε/2) E (1 + Rε) / (1 - Rε) ∆ε/2 # 0.00210; Rε = 0.00 ∆ε/2 # 0.00099; Rε = 0.50 σm = 79.56 B 16963 (∆ε/2) 0.00210 < ∆ε/2 < 0.00469; Rε = 0.00 0.00099 < ∆ε/2 < 0.00469; Rε = 0.50 σm = 0 Rε = -1.00 ∆ε/2 $ 0.00469; other Rε values
Sample Size: 23 Prior Exposure log Nf = -2.751 B 5.687 log (εeq) εeq = (∆ε)0.58 (σmax/E)0.42
Specimen Details:
Std. Error of Est., log (life) = 0.394 Standard Deviation, log (life) = 0.678 R2 = 66.2%
Smooth, 0.25 in. diameter
Sample Size: 16
Reference:
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
6.3.5.1.8(c)
6-83
MMPDS-06 1 April 2011 50
40
45
35
40
30
35
25 Mean Stress, ksi
Stress Amplitude, ksi
SR = -1.0 SR = -1.0 SR = 0.0 SR = 0.0 SR = 0.5 SR = 0.50
30
25
20
20
15
10 15
5 10 1500 F Loop Tips
0
1500 F Curve
5
-5
0 0
0.001
0.002
0.003
0.004
0
0.0005
0.001
0.0015
0.002
0.0025
0.003
Strain Amplitude, in./in.
Strain Amplitude, in./in.
Inconel 718 Casting Strain Control Fatigue Data, 1500F
0.100
Strain Range, in./in.
No Exp, SR = -1.0 No Exp. SR = -1.0 No Exp, SR = 0.0 No Exp. SR = 0.0 No Exp, SR = 0.50 No Exp. SR = 0.50 Exp, SR = -1.0 Exp, SR = -1.0
0.010
0.001 1,000
10,000
100,000
1,000,000
Cycles to Failure
Figure 6.3.5.1.8(k). Best-fit g-N curve, cyclic stress-strain, and mean stress relaxation curves for 718 Alloy castings at 1500E EF.
6-84
MMPDS-06 1 April 2011 Correlative Information for Figure 6.3.5.1.8(k) Product Form/Thickness:
Test Parameters:
Casting, thickness not specified
Frequency B 20 cycles/minute Wave Form B Triangular Temperature B 1500EF Atmosphere B Air Pre-exposure (where applicable) B 1500F for 2000 hrs.
Thermal Mechanical Processing History: In accordance with AMS 5383 Properties: TUS, ksi TYS, ksi E, msi Temp. F Non pre-exposed 73 63 19.2 1500 Pre-exposed (see Test Parameters) 56 41 19.2 1500
No. of Heats/Lots: 2 Equivalent Strain Equations: No Prior Exposure
Stress-Strain Equations:
log Nf = -2.180 B 5.087 log (εeq)
Cyclic Loop Tips
εeq = (∆ε)0.58 (σmax/E)0.42
(∆σ/2) = 79.43 (∆εp/2)0.081
Std. Error of Est., log (life) = 0.183 Standard Deviation, log (life) = 0.487 R2 = 85.9%
Mean Stress Relaxation σm = (∆ε/2) E (1 + Rε) / (1 - Rε) ∆ε/2 # 0.00131; Rε = 0.00 ∆ε/2 # 0.00062; Rε = 0.50 σm = 44.79 B 15030 (∆ε/2) 0.00131 < ∆ε/2 < 0.00298; Rε = 0.00 0.00062 < ∆ε/2 < 0.00298; Rε = 0.50 σm = 0 Rε = -1.00 ∆ε/2 $ 0.00298; other Rε values
Sample Size: 13 Prior Exposure log Nf = -4.086 B 5.890 log (εeq) εeq = (∆ε)0.58 (σmax/E)0.42
Specimen Details:
Std. Error of Est., log (life) = 0.623 Standard Deviation, log (life) = 0.862 R2 = 47.8%
Smooth, 0.25 in. diameter
Sample Size: 8
Reference:
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
6.3.5.1.8(c)
6-85
MMPDS-06 1 April 2011
1.E-02
Fatigue Crack Propagation Rate, da/dN, in./cycle
Stress Ratio, R
0.05
1.E-03
Frequency f, Hz
8.33 - 15.0
No. of Specimens
No. of Data Points
7
191
1.E-04
1.E-05
1.E-06
1.E-07
1.E-08 10
100 0.50
Stress Intensity Factor Range, ksi-in
Figure 6.3.5.1.9(a). Fatigue crack propagation data for 718 Alloy die forging (upset ratio = 5) and 0.5-inch thick plate [References 6.3.5.1.9(a) through 6.3.5.1.9(e)] Specimen Thickness: Specimen Width: Specimen Type:
0.30 B 0.50 inch 1.15 B 2.00 inches C(T)
Environment: Temperature: Orientation:
6-86
Lab air RT L-T and T-L
MMPDS-06 1 April 2011
Table 6.3.5.1.9(a) Typical Fatigue Crack Growth Rate Data for 718 Alloy Die Forgings, as Shown Graphically in Figure 6.3.5.1.9(a) Stress Ratio ∆K, ksi-in0.50
Stress Ratio ∆K, ksi-in0.50
0.05 da/dN, in./cycle
0.05 da/dN, in./cycle
10.59
5.27E-08
29.85
5.32E-06
11.22
8.12E-08
31.62
6.40E-06
11.89
1.21E-07
33.50
7.72E-06
12.59
1.74E-07
35.48
9.35E-06
13.34
2.44E-07
37.58
1.14E-05
14.13
3.33E-07
39.81
1.40E-05
14.96
4.44E-07
42.17
1.73E-05
15.85
5.81E-07
44.67
2.16E-05
16.79
7.45E-07
47.32
2.72E-05
17.78
9.41E-07
50.12
3.45E-05
18.84
1.17E-06
53.09
4.42E-05
19.95
1.44E-06
56.23
5.73E-05
21.14
1.76E-06
59.57
7.51E-05
22.39
2.14E-06
63.10
9.94E-05
23.71
2.58E-06
66.83
1.33E-04
25.12
3.09E-06
70.80
1.80E-04
26.61
3.71E-06
74.99
2.45E-04
28.18
4.44E-06
6-87
MMPDS-06 1 April 2011
1.E-02
Fatigue Crack Propagation Rate, da/dN, in./cycle
Stress Frequency No. of No. of Temperature, Ratio, R f, Hz Specimens Data Points °F
0.05 0.05 0.05
1.E-03
0.67 0.67 0.67
6 9 5
149 181 101
800 1000 1200
1.E-04
1.E-05
1.E-06
1.E-07 10
100 0.50
Stress Intensity Factor Range, ksi-in
Figure 6.3.5.1.9(b). Fatigue crack propagation data for 718 Alloy die forging (upset ratio = 5) and 0.5-inch thick plate. [References 6.3.5.1.9(b) through 6.3.5.1.9(g)] Specimen Thickness: Specimen Width: Specimen Type:
0.30 B 0.50 inch 1.16 B 2.00 inches C(T)
Environment: Temperature: Orientation:
6-88
Lab air 800 B 1200 °F L-T and T-L
MMPDS-06 1 April 2011 Table 6.3.5.1.9(b) Typical Fatigue Crack Growth Rate Data for 718 Alloy Die Forgings, as Shown Graphically in Figure 6.3.5.1.9(b)
800
Temperature, F 1000 da/dN, in./cycle
11.89
5.53E-07
9.98E-07
12.59
6.65E-07
1.17E-06
2.21E-06
13.34
7.99E-07
1.37E-06
2.75E-06
14.13
9.60E-07
1.60E-06
3.40E-06
14.96
1.15E-06
1.87E-06
4.19E-06
15.85
1.39E-06
2.20E-06
5.12E-06
16.79
1.67E-06
2.58E-06
6.22E-06
17.78
2.01E-06
3.03E-06
7.53E-06
18.84
2.42E-06
3.56E-06
9.06E-06
19.95
2.91E-06
4.19E-06
1.08E-05
21.14
3.50E-06
4.93E-06
1.29E-05
22.39
4.21E-06
5.81E-06
1.53E-05
23.71
5.07E-06
6.85E-06
1.80E-05
25.12
6.11E-06
8.08E-06
2.10E-05
26.61
7.36E-06
9.54E-06
2.45E-05
28.18
8.87E-06
1.13E-05
2.83E-05
29.85
1.07E-05
1.33E-05
3.26E-05
31.62
1.29E-05
1.58E-05
3.73E-05
33.50
1.55E-05
1.87E-05
4.25E-05
35.48
1.88E-05
2.21E-05
4.81E-05
37.58
2.26E-05
2.63E-05
5.42E-05
39.81
2.73E-05
3.12E-05
6.07E-05
42.17
3.30E-05
3.70E-05
6.76E-05
44.67
3.98E-05
4.40E-05
7.49E-05
47.32
4.80E-05
5.23E-05
8.25E-05
50.12
5.80E-05
6.23E-05
9.04E-05
53.09
7.01E-05
7.42E-05
9.85E-05
56.23
8.47E-05
8.85E-05
1.07E-04
59.57
1.02E-04
1.06E-04
1.15E-04
63.10
1.24E-04
1.26E-04
∆K, ksi-in
0.50
66.83
1.51E-04
70.80
1.80E-04
6-89
1200
MMPDS-06 1 April 2011
1.E-03
Fatigue Crack Propagation Rate, da/dN, in./cycle
Stress Ratio, R
0.080 0.333 0.500 0.667
Frequency No. of f, Hz Specimens
6.67 6.67 6.67 6.67
1 1 1 1
No. of Data Points
22 23 21 22
1.E-04
1.E-05
1.E-06
1.E-07 1
10 0.50 Stress Intensity Factor Range, ksi-in
100
Figure 6.3.5.1.9(c). Fatigue crack propagation data for 718 Alloy 0.5-inch thick plate. [Reference 6.3.5.1.9(f)] Specimen Thickness: Specimen Width: Specimen Type:
0.30 B 0.48 inch 1.15 B 1.99 inches C(T)
Environment: Temperature: Orientation:
6-90
Lab air 1000 °F L-T and T-L
MMPDS-06 1 April 2011 Table 6.3.5.1.9(c) Typical Fatigue Crack Growth Rate Data for 718 Alloy Plate, as Shown Graphically in Figure 6.3.5.1.9(c) Stress Ratio ∆K, ksi-in0.50
0.08
0.33
0.50
0.67
da/dN, in./cycle 6.68 7.08 7.50 7.94 8.41 8.91 9.44 10.00 10.59 11.22 11.89 12.59 13.34 14.13 14.96 15.85 16.79 17.78 18.84 19.95 21.14 22.39 23.71 25.12 26.61 28.18 29.85 31.62 33.50 35.48 37.58 39.81 42.17 44.67 47.32 50.12 53.09 56.23 59.57
5.87E-07 7.06E-07 8.49E-07 1.02E-06 1.23E-06 1.48E-06 1.78E-06 2.14E-06 2.58E-06 3.11E-06 3.74E-06 4.51E-06 5.44E-06 6.56E-06 7.91E-06 9.55E-06 1.15E-05 1.39E-05 1.68E-05 2.03E-05 2.46E-05 2.97E-05 3.59E-05 4.34E-05 5.26E-05 6.36E-05 7.70E-05 9.33E-05
4.06E-07 4.79E-07 5.65E-07 6.67E-07 7.88E-07 9.31E-07 1.10E-06 1.30E-06 1.54E-06 1.82E-06 2.15E-06 2.55E-06 3.02E-06 3.57E-06 4.23E-06 5.01E-06 5.95E-06 7.05E-06 8.36E-06 9.93E-06 1.18E-05 1.40E-05 1.66E-05 1.97E-05 2.35E-05 2.79E-05
6-91
3.41E-07 4.10E-07 4.91E-07 5.88E-07 7.03E-07 8.40E-07 1.00E-06 1.19E-06 1.42E-06 1.68E-06 2.00E-06 2.36E-06 2.79E-06 3.30E-06 3.89E-06 4.58E-06 5.38E-06 6.32E-06 7.40E-06 8.67E-06 1.01E-05 1.18E-05 1.38E-05 1.60E-05
4.50E-08 1.25E-07 2.55E-07 4.17E-07 5.84E-07 7.40E-07 8.88E-07 1.04E-06 1.21E-06 1.41E-06 1.66E-06 1.97E-06 2.34E-06 2.77E-06 3.25E-06 3.74E-06 4.22E-06 4.69E-06 5.15E-06 5.71E-06 6.54E-06 8.05E-06
MMPDS-06 1 April 2011 6.3.6 INCONEL X-750 6.3.6.0 Comments and Properties — Inconel X-750 is a high-strength oxidation-resistant nickel-base alloy. It is used for parts requiring high strength up to 1000EF or high creep strength up to 1500EF and for low-stressed parts operating up to 1900EF. It is hardenable by various combinations of solution treatment and aging, depending on its form and application. Inconel X-750 is available in all the usual wrought mill forms. Inconel X-750 can be readily forged between 1900E and 2225EF; “hot-cold” working between 1200E and 1600EF is harmful and should be avoided. This alloy is readily formed but should be solution treated at 1925EF for 7 to 10 minutes after severe forming operations. It is somewhat more difficult to machine than austenitic stainless steels. Rough machining is easier in the solution-treated condition; finish machining in the partly or fully aged condition. Fusion welding is difficult for large section sizes and moderately difficult for small cross sections and sheet. It must be welded in the annealed or solution-treated condition; weldments should be stress relieved at 1650EF for 2 hours before aging. Nickel brazing, followed by precipitation heat treatment of the brazed assembly, results in strength nearly equal to fully heat-treated material. Oxidation resistance of Inconel X-750 is good to 1900EF; but the beneficial effects of aging are lost above 1500EF. This alloy is subject to attack in sulfur-containing atmospheres. A variety of heat treatments has been developed for Inconel X-750. Each provides special properties and renders the material in the best metallurgical condition for the intended application. Only two of these heat treatments, for applications requiring high strength up to 1100EF, are described below. Annealed and Aged for Sheet, Strip, and Plate — Mill annealed plus 1300EF for 20 hours, and A.C. per AMS 5542. Equalized and Aged for Bar and Forging — 1625EF for 4 hours, A.C., plus 1300EF for 24 hours, and A.C. per AMS 5667. Other heat treatments are available for maximum creep-rupture strength. Some material specifications for Inconel X-750 are shown in Table 6.3.6.0(a). Room temperature mechanical and physical properties are shown in Table 6.3.6.0(b). Table 6.3.6.0(a). Material Specifications for Inconel X-750
Specification AMS 5542 AMS 5667
Form Sheet, strip, and plate Bar and forging
Condition Annealed Equalized
The effect of temperature on the physical properties of this alloy is shown in Figure 6.3.6.0. 6.3.6.1 Annealed and Aged — Elevated-temperature curves for tensile and yield ultimate strengths are shown in Figures 6.3.6.1.1 through 6.3.6.1.3. 6.3.6.2 Equalized and Aged — Elevated-temperature curves are presented in Figures 6.3.6.2.1(a) and 6.3.6.2.1(b), as well as 6.3.6.2.4(a) and 6.3.6.2.4(b).
6-92
MMPDS-06 1 April 2011
Table 6.3.6.0(b). Design Mechanical and Physical Properties of Inconel X-750
Specification . . . . . . . . . . . .
AMS 5542
Form . . . . . . . . . . . . . . . . . .
Strip
Condition . . . . . . . . . . . . . . .
Sheet
AMS 5667 Plate
Annealed and aged
Bars and forgings Equalized and aged
Thickness or diameter, in. . .
#0.009
$0.010
0.0100.187
0.1884.000
<4.000
4.00010.000
Basis . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
S
... 150
... 155
... 165
... 155
165 ...
160 ...
... ...
... ...
... 105
... 100
105 ...
100 ...
... ... ...
... ... ...
... 105 107
... 100 100
105 ... 102
100 ... 99
... ...
... ...
247 313
232 294
247 313
240 304
... ...
... ...
157 189
150 180
157 189
150 180
... ...
... 15
... 20
... 20
20 ...
15 ...
...
...
...
...
25
17
Mechanical Properties: Ftu, ksi: L ................ LT . . . . . . . . . . . . . . . Fty, ksi: L ................ LT . . . . . . . . . . . . . . . Fcy, ksi: L ................ LT . . . . . . . . . . . . . . . Fsu, ksi, L & LT . . . . . . . Fbru, ksi, L & LT: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . Fbry, ksi, L & LT: (e/D = 1.5) . . . . . . . . . (e/D = 2.0) . . . . . . . . . e, percent: L ................ LT . . . . . . . . . . . . . . . RA, percent: L ................ E, 103 ksi . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . µ ...................
30.6 30.6 11.8 0.30
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . Last Revision: Apr 2008, MMPDS-04, Item 05-14.
6-93
0.298 See Figure 6.3.6.0
MMPDS-06 1 April 2011
Figure 6.3.6.0. Effect of temperature on the physical properties of Inconel X-750.
Figure 6.3.6.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and tensile yield strength (Fty) of Inconel X-750 sheet and plate (AMS 5542).
6-94
MMPDS-06 1 April 2011
Figure 6.3.6.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of Inconel X-750.
Figure 6.3.6.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of Inconel X-750.
6-95
MMPDS-06 1 April 2011
Figure 6.3.6.2.1(a). Effect of temperature on the tensile ultimate strength (Ftu) of Inconel X-750 bar (AMS 5667).
Figure 6.3.6.2.1(b). Effect of temperature on the tensile yield strength (Fty) of Inconel X-750 bar (AMS 5667).
6-96
MMPDS-06 1 April 2011
Figure 6.3.6.2.4(a). Effect of temperature on the tensile and compressive moduli (E and Ec) of Inconel X-750.
Figure 6.3.6.2.4(b). Effect of temperature on the shear modulus (G) of Inconel X-750.
6-97
MMPDS-06 1 April 2011 6.3.7 RENÉ 41 6.3.7.0 Comments and Properties — René 41 is a vacuum-melted precipitation-hardening nickel-base alloy designed for highly stressed parts operating between 1200E and 1800EF. Its applications include afterburner parts, turbine castings, wheels, buckets, and high-temperature bolts and fasteners. René 41 is available in the form of sheet, bars, and forgings. René 41 is forged between 1900E and 2150EF; small reductions must be made when breaking up an as-cast structure; cracking may be encountered in finishing below 1850EF. René 41 work hardens rapidly, and frequent anneals are required; to anneal, heat rapidly to 1950EF for 30 minutes and quench. René 41 is difficult to machine. In the soft solution-annealed condition it is gummy; therefore, it should be in the fully aged condition for optimum machinability, and tungsten carbide cutting tools should be used. René 41 can be welded satisfactorily in the solution-treated condition; after welding, the parts should be solution treated for stress relief. René 41 should not be exposed to temperatures above 2050EF during latter stages of hot working or during subsequent operations, otherwise severe intergranular cracking may be encountered. The oxidation resistance of René 41 is good to 1800EF. Lengthy exposure above the aging temperature (1400E to 1650EF) results in loss of strength and room temperature ductility. Some material specifications for René 41 are shown in Table 6.3.7.0(a). Room temperature mechanical and physical properties are shown in Table 6.3.7.0(b). The effect of temperature on physical properties is shown in Figure 6.3.7.0. Table 6.3.7.0(a). Material Specifications for René 41
Specification AMS 5545 AMS 5712 AMS 5713
Form Plate, sheet, and strip Bar and forging Bar and forging
Condition Vacuum melted, solution treated and aged Vacuum melted, solution treated and aged Vacuum melted, solution treated and aged
6.3.7.1 Solution Treated at 1975E F and Aged at 1400E F Condition — Tensile and stress-rupture requirements at elevated temperatures are specified for René 41. The appropriate specification should be consulted for detailed requirements. Other elevated-temperature data for René 41 in this condition are presented in Figures 6.3.7.1.1 through 6.3.7.1.5. A series of creep and stress rupture curves for René 41 alloy foil are shown in Figures 6.3.7.1.7(a) through 6.3.7.1.7(e), creep and stress rupture curves for René 41 alloy sheet are shown in Figures 6.3.7.1.7(f) through 6.3.7.1.7(k), and for René 41 alloy bar in Figures 6.3.7.1.7(l) through 6.3.7.1.7(p). Figure 6.3.7.1.7(p) also includes stress rupture data for René 41 alloy forgings.
6-98
MMPDS-06 1 April 2011
Table 6.3.7.0(b). Design Mechanical and Physical Properties of René 41
Specification . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . Thickness or diameter, in. . . Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent (S-Basis): L ................... LT . . . . . . . . . . . . . . . . . . RA, percent (S-Basis): L ................... E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . a b
AMS 5545 Sheet #0.020 S
Plate Solution treated and aged 0.021-0.187 0.188-0.375 Aa Ba S
AMS 5712 and AMS 5713 Bar and forging #1.000 S
... 160
170b 170b
185 185
... 170
170 ...
... 120
123 123
132 132
... 130
130 ...
... ... ...
132 135 105
142 145 114
... ... 105
133 ... 110
... ...
244 310
266 338
244 310
... ...
... ...
197 245
211 263
208 259
... ...
... 6
... 10
... ...
... 10
8 ...
...
...
... 31.6 31.6 12.1 0.31
...
10
0.298 See Figure 6.3.7.0
Design allowables were based upon data from samples of material, supplied in solution treated condition, which were aged to demonstrate heat-treat response by suppliers. Properties obtained by the user may be different if the material has been formed or otherwise cold-worked. A-Basis value is specification minimum. The rounded T99 value is 178 ksi.
6-99
MMPDS-06 1 April 2011
Figure 6.3.7.0. Effect of temperature on the physical properties of Renet 41.
6-100
MMPDS-06 1 April 2011 100
Percentage of Room Temperature Strength
80
60
40
Strength at temperature Exposure up to 1/2 hr
20
0
0
200
400
600
800
1000
1200
1400
1600
1800
Temperature, F
Figure 6.3.7.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of René 41.
100
Percentage of Room Temperature Strength
80
Fsu 60
Fcy 40
Strength at temperature Exposure up to 1/2 hr
20
0
0
200
400
600
800
1000
1200
1400
1600
1800
Temperature, F
Figure 6.3.7.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of René 41.
6-101
MMPDS-06 1 April 2011
Figure 6.3.7.1.3(a). Effect of temperature on the bearing ultimate strength (Fbru) of René 41.
Figure 6.3.7.1.3(b). Effect of temperature on the bearing yield strength (Fbry) of René 41.
6-102
MMPDS-06 1 April 2011
Figure 6.3.7.1.4. Effect of temperature on the tensile modulus (E) of Renet 41.
Figure 6.3.7.1.5. Effect of temperature on the elongation (e) of Renet 41 (>0.020 thickness) sheet.
6-103
MMPDS-06 1 April 2011
. .
60 R e n e 4 1 S T A F o il t = 0 .0 0 5 in c h 0 .1 0 % C re e p
50
o
1400 F 1 6 0 0 oF 1 8 0 0 oF B e s t-fit C re e p M o d e l B e s t-fit R u p tu re M o d e l
40
Stress, ksi
+
30
20
10
0 1 0 -1
+
100
+
+
+
101
+
102
103
T im e to % S tra in , H rs
Figure 6.3.7.1.7(a). Average isothermal 0.10% creep curves for Rene 41 STA foil.
Correlative Information for Figure 6.3.7.1.7(a) Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 16 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.3.7.1.7
0.10 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -9.0785 b1 = 22,304 b2 = -4,063.7 b3 = 1,809.0 b4 = -509.57 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.40 Standard Deviation, Log (Hrs) = 0.72 R2 = 69% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-104
MMPDS-06 1 April 2011
. .
60 R e n e 4 1 S T A F o il t = 0 .0 0 5 in c h 0 .2 0 % C r e e p
50
1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF B e s t- fit C re e p M o d e l B e s t- fit R u p tu re M o d e l
40
Stress, ksi
+
30
20
10
+
0 1 0 -1
100
+
101
+
++
102
103
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(b). Average isothermal 0.20% creep curves for Rene 41 STA foil.
Correlative Information for Figure 6.3.7.1.7(b)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 16 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.3.7.1.7
0.20 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -8.6061 b1 = 22,304 b2 = -4,063.7 b3 = 1,809.0 b4 = -509.57 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.40 Standard Deviation, Log (Hrs) = 0.72 R2 = 69% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-105
MMPDS-06 1 April 2011
. .
60
50
R e n e 4 1 S T A F o il t = 0 .0 0 5 in c h 0 .5 0 % C r e e p
1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF B e s t-fit C r e e p M o d e l B e s t-fit R u p tu r e M o d e l
+
Stress, ksi
40
30
20
10
+
0 1 0 -1
100
101
+
+
102
+
103
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(c). Average isothermal 0.50% creep curves for Rene 41 STA foil.
Correlative Information for Figure 6.3.7.1.7(c) Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 13 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.3.7.1.7
0.50 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -8.1912 b1 = 22,304 b2 = -4,063.7 b3 = 1,809.0 b4 = -509.57 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.40 Standard Deviation, Log (Hrs) = 0.72 R2 = 69% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-106
MMPDS-06 1 April 2011
. .
60
50
R e n e 4 1 S T A F o il t = 0 .0 0 5 in c h 1 .0 0 % C r e e p
+
1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF B e s t- fit C r e e p M o d e l B e s t- fit R u p tu re M o d e l
Stress, ksi
40
30
20
10
+
0 1 0 -1
100
101
+
102
+
103
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(d). Average isothermal 1.00% creep curves for Rene 41 STA foil.
Correlative Information for Figure 6.3.7.1.7(d)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 11 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.3.7.1.7
1.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -7.8498 b1 = 22,304 b2 = -4,063.7 b3 = 1,809.0 b4 = -509.57 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.40 Standard Deviation, Log (Hrs) = 0.72 R2 = 69% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-107
MMPDS-06 1 April 2011 . .
120 R e n e 4 1 S T A F o il t = 0 .0 0 5 in c h 100
+
Stress, ksi
80
x
1 2 0 0 oF 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF M odel M ean
60
40
+ + +
20
+
x x
0 1 0 -1
100
x
+ +
x
101
+
x
102
103
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(e). Average isothermal stress rupture curves for Rene 41 STA foil.
Correlative Information for Figure 6.3.7.1.7(e) Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 22 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.3.7.1.7
Stress Rupture Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -18.523 b1 = 60,302 b2 = -32,656 b3 = 21,297 b4 = -6,155.5 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.41 Standard Deviation, Log (Hrs) = 1.06 R2 = 85% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-108
MMPDS-06 1 April 2011 . .
140 Rene 41 STA Sheet 0 .1 0 % C re e p t = 0 .0 2 0 - 0 .0 8 0 in c h
120
100
1 2 0 0 oF 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C re e p S tra in M e a n
+
Stress, ksi
x
80
60
40 +
20
+
x
0 1 0 -1
+
xx
x
x
x x
100
xx x
+ +
+
x xx x x
101
x x
+
102
x
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(f). Average isothermal 0.10% creep curves for Rene 41 STA sheet.
Correlative Information for Figure 6.3.7.1.7(f)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 42 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch Reference: 6.3.7.1.7
0.10 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -22.189 b1 = 52,085 b2 = -3,945.2 b3 = -220.68 b4 = -472.65 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.30 Standard Deviation, Log (Hrs) = 0.90 R2 = 89% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-109
MMPDS-06 1 April 2011
. .
140 Rene 41 S TA Sheet 0 .2 0 % C re e p t = 0 .0 2 0 -0 .0 8 0 in c h
120
100
1 2 0 0 oF 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C re e p S tra in M e a n S tre s s R u p tu re M e a n
+
Stress, ksi
x
80
60
40 + +
20 x
0 1 0 -1
+
xx
x
x
100
x
x
xx x
+
x
101
+
xx x
xx
+
102
xx
+
x
103
104
T im e to % S tra in , H r s
Figure 6.3.7.1.7(g). Average isothermal 0.20% creep curves for Rene 41 STA sheet.
Correlative Information for Figure 6.3.7.1.7(g)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 41 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch Reference: 6.3.7.1.7
0.20 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -21.732 b1 = 52,085 b2 = -3,945.2 b3 = -220.68 b4 = -472.65 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.30 Standard Deviation, Log (Hrs) = 0.90 R2 = 89% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-110
MMPDS-06 1 April 2011
. .
140
120
o
+
x
Stress, ksi
100
1200 F 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C r e e p S tra in M e a n S tre s s R u p tu r e M e a n
R ene 41 STA Sheet 0 .5 0 % C re e p t = 0 .0 2 0 - 0 .0 8 0 in c h
80
60
40 +
20
+
x
0 1 0 -1
+
xx
x
100
x
x
x
x xx
101
+
x
x
102
x
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(h). Average isothermal 0.50% creep curves for Rene 41 STA sheet.
Correlative Information for Figure 6.3.7.1.7(h)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =28 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch Reference: 6.3.7.1.7
0.50 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -21.315 b1 = 52,085 b2 = -3,945.2 b3 = -220.68 b4 = -472.65 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.30 Standard Deviation, Log (Hrs) = 0.90 R2 = 89% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-111
MMPDS-06 1 April 2011
. .
80 R ene 41 S TA S heet 1 .0 0 % C r e e p t = 0 .0 2 0 -0 .0 8 0 in c h 60 +
Stress, ksi
x
1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C r e e p S tra in M e a n S tr e s s R u p tu r e M e a n
40
+
20
+
+
x
0 1 0 -1
100
+
x
x
x
x
x x xx
101
x
102
x
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(i). Average isothermal 1.00% creep curves for Rene 41 STA sheet.
Correlative Information for Figure 6.3.7.1.7(i)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 23 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch Reference: 6.3.7.1.7
1.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -21.022 b1 = 52,085 b2 = -3,945.2 b3 = -220.68 b4 = -472.65 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.30 Standard Deviation, Log (Hrs) = 0.90 R2 = 89% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-112
MMPDS-06 1 April 2011
. .
80 R ene 41 STA Sheet 2 .0 0 % C r e e p t = 0 .0 2 0 - 0 .0 8 0 in c h 60
Stress, ksi
+
x
40
1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C r e e p S tr a in M e a n S tr e s s R u p tu r e M e a n
+
20
+
+
x
0 1 0 -1
100
xx x
x
x
101
102
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(j). Average isothermal 2.00% creep curves for Rene 41 STA sheet.
Correlative Information for Figure 6.3.7.1.7(j)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =11 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch
Reference: 6.3.7.1.7
2.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -20.886 b1 = 52,085 b2 = -3,945.2 b3 = -220.68 b4 = -472.65 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.30 Standard Deviation, Log (Hrs) = 0.90 R2 = 89% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-113
MMPDS-06 1 April 2011
. .
200 R ene 41 S TA S heet t = 0 .0 2 0 -0 .0 8 0 in c h
180
1 2 0 0 oF 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF M odel M ean R unout
+
160
x
140
Stress, ksi
→
120 100 80
+ + +
60
→ +
+ ++
→ +
40 20
x x
0 1 0 -1
x
+ + + + +
x x x x xx x x x
100
→ ++ +
+ +
→ + ++ + + + + + ++
xx x xxx x xxx x x xxxx
→ ++
x xxx x xx xx xx xxx x x xx x x
101
→
++
102
x
+ ++ x→ → x+→
103
x→
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(k). Average isothermal stress rupture curves for Rene 41 STA sheet.
Correlative Information for Figure 6.3.7.1.7(k)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 203 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch Reference: 6.3.7.1.7
Stress Rupture Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -20.248 b1 = 61,533 b2 = -26,172 b3 = 16,521 b4 = -4,664.9 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.25 Standard Deviation, Log (Hrs) = 1.02 R2 = 94% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-114
MMPDS-06 1 April 2011 . .
140 Rene 41 STA Bar 0 .1 0 % C r e e p t = 0 .5 0 in c h
120
Stress, ksi
100
80
60 +
40
x +
20
+
x
0 1 0 -1
+ + ++
xx xx
100
x
1 2 0 0 oF 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C re e p S tra in M e a n S tre s s R u p tu r e M e a n
+
x
101
102
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(l). Average isothermal 0.10% creep curves for Rene 41 STA bar.
Correlative Information for Figure 6.3.7.1.7(l)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 20 Specimen Details: Type - Round Gage Length - 1.25 inches Gage Thickness - 0.252-inch diameter Reference: 6.3.7.1.7
0.10 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -18.423 b1 = 45,934 b2 = -2,200.1 b3 = 1,206.2 b4 = -411.29 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.17 Standard Deviation, Log (Hrs) = 0.76 R2 = 95% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-115
MMPDS-06 1 April 2011 . .
140 R ene 41 STA B ar 0 .2 0 % C re e p t = 0 .5 0 in c h
120
Stress, ksi
100
80 1 2 0 0 oF 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C r e e p S tr a in M e a n S tr e s s R u p tu r e M e a n
60 +
x
40 +
20
+
x
0 1 0 -1
+ + ++
xx xx
100
x
101
+
x
102
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(m). Average isothermal 0.20% creep curves for Rene 41 STA bar.
Correlative Information for Figure 6.3.7.1.7(m)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 21 Specimen Details: Type - Round Gage Length - 1.25 inches Gage Thickness - 0.252-inch diameter Reference: 6.3.7.1.7
0.20 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -18.060 b1 = 45,934 b2 = -2,200.1 b3 = 1,206.2 b4 = -411.29 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.17 Standard Deviation, Log (Hrs) = 0.76 R2 = 95% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-116
MMPDS-06 1 April 2011 . .
140 Rene 41 STA Bar 0 .5 0 % C r e e p t = 0 .5 0 in c h
120
Stress, ksi
100
80 +
60
x
40
1 2 0 0 oF 1 4 0 0 oF 1 6 0 0 oF 1 8 0 0 oF C re e p S tra in M e a n S tre s s R u p tu r e M e a n
+
20
+
x x
0 1 0 -1
+
x x x
100
101
+ +
x
102
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(n). Average isothermal 0.50% creep curves for Rene 41 STA bar.
Correlative Information for Figure 6.3.7.1.7(n)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 18 Specimen Details: Type - Round Gage Length - 1.25 inches Gage Thickness - 0.252-inch diameter Reference: 6.3.7.1.7
0.50 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -17.632 b1 = 45,934 b2 = -2,200.1 b3 = 1,206.2 b4 = -411.29 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.17 Standard Deviation, Log (Hrs) = 0.76 R2 = 95% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-117
MMPDS-06 1 April 2011 . .
140 Rene 41 STA Bar 1 .0 0 % C re e p t = 0 .5 0 in c h
120
Stress, ksi
100 +
80
x
60
1 2 00 oF 1 4 00 oF 1 6 00 oF 1 8 00 oF C re e p S tra in M e a n S tre s s R u p tu re M e a n
40 +
20
+
xx
0 1 0 -1
+
x x x
100
101
102
+
x
103
104
T im e to % S tra in , H rs
Figure 6.3.7.1.7(o). Average isothermal 1.00% creep curves for Rene 41 STA bar.
Correlative Information for Figure 6.3.7.1.7(o)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =20 Specimen Details: Type - Round Gage Length - 1.25 inches Gage Thickness - 0.252-inch diameter Reference: 6.3.7.1.7
1.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -17.410 b1 = 45,934 b2 = -2,200.1 b3 = 1,206.2 b4 = -411.29 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.17 Standard Deviation, Log (Hrs) = 0.76 R2 = 95% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-118
MMPDS-06 1 April 2011 . .
200 R e n e 4 1 S T A B a r a n d F o rg in g t = 0 .5 0 -1 .0 0 in c h
180 160
Stress, ksi
140 120
→
1 2 0 0 o F , 0 .5 0 " 1 4 0 0 o F , 0 .5 0 " 1 4 0 0 o F , 1 .0 0 " 1 4 0 0 o F , 1 .0 0 " 1 6 0 0 o F , 0 .5 0 " 1 8 0 0 o F , 0 .5 0 " 1 8 0 0 o F , 1 .0 0 " 1 8 0 0 o F , 1 .0 0 " M odel M ean R unout
bar bar bar fo r g in g bar bar bar fo r g in g
100 80 60 40
→
20 0 1 0 -1
→
100
101
102
103
104
T im e to % S tr a in , H r s
Figure 6.3.7.1.7(p). Average isothermal stress rupture curves for Rene 41 STA bar and forging.
Correlative Information for Figure 6.3.7.1.7(p)
Makeup of Data Collection: Heat Treatment STA Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 64
Stress Rupture Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -20.694 b1 = 67,795 b2 = -29,400 b3 = 18,197 b4 = -5,058
Specimen Details: Type - Round Gage Length - 1.25 - 2.25 inches Gage Thickness - 0.252- 0.505-inch diameter
Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.29 Standard Deviation, Log (Hrs) = 0.97 R2 = 91%
Reference: 6.3.7.1.7
[Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-119
MMPDS-06 1 April 2011 6.3.8 WASPALOY 6.3.8.0 Comments and Properties — Waspaloy is a vacuum-melted precipitation-hardened nickel-base alloy which is strengthened by the precipitation of titanium and aluminum compounds and the solid-solution strengthening effects of chromium, molybdenum, and cobalt. The alloy is designed for highly stressed parts operating at temperatures up to 1550EF, such as aircraft gas turbine blades and discs and rocket engine parts. It is available in all the usual mill forms. The optimum range for forging is 1900E to 2050EF. Avoid working the alloy below 1900EF due to danger of cracking and also decreasing the stress-rupture life. Sufficient soaking time between heating is necessary to ensure complete recrystallization; however, avoid excessive long-time soaking at the high forging temperature. Furnace atmospheres should be either neutral or slightly oxidizing to prevent carburization and to minimize scaling. Waspaloy is relatively difficult to machine. Drilling, turning, etc., can best be accomplished in solution-treated and partially aged condition. Generally, carbine tools are preferred, and positive feeds are required to avoid work hardening. For finish machining, grinding is preferable. Waspaloy is susceptible to hot cracking or “hot-shortness” above 2150EF; therefore, extreme care should be exercised in the design of weldments so that restraint can be minimized. Waspaloy should be welded in the annealed condition, with minimum heat input, and with rapid cooling by means of chill bars and gas backup. This alloy has good resistance to oxidation at temperatures up to 1750EF and to combustion products encountered in aircraft gas turbines. Two heat treatments are used for this material. One is for optimum tensile strength (solution treated 1825E to 1900EF, stabilize 1550EF, 24 hours air cool, and age 16 hours at 1400EF air cool), and the other for stress-rupture properties (solution treated 1975EF, stabilized 1550EF, 24 hours air cool, age 1400EF, 16 hours air cool). Some material specifications for Waspaloy are shown in Table 6.3.8.0(a). Room temperature mechanical properties are shown in Table 6.3.8.0(b). Physical properties at room and elevated temperatures are shown in Figure 6.3.8.0. Table 6.3.8.0(a). Material Specifications for Waspaloy
Specification AMS 5544 AMS 5704 AMS 5706 AMS 5707 AMS 5708 AMS 5709 a
Form Plate, sheet, and strip Forgings Bar, forging, ring Bar, forging, ring Bar, forging, ring Bar, forging, ringa
Primarily for applications requiring high stress-rupture strength.
6.3.8.1 Aged Condition — Stress rupture requirements at elevated temperatures are specified in material specifications. The appropriate specification should be consulted for detailed requirements. The effect of temperature on various mechanical properties is shown in Figures 6.3.8.1.1, 6.3.8.1.4, as well as 6.3.8.1.5(a) and 6.3.8.1.5(b). The effect of temperature on the Ramberg-Osgood parameter, n (tension), is shown in Figure 6.3.8.1.6(a). Typical tensile stress-strain curves are shown in Figure 6.3.8.1.6(b).
6-120
MMPDS-06 1 April 2011
Table 6.3.8.0(b). Design Mechanical and Physical Properties of Waspaloy
Specification . . . . . . . . Form . . . . . . . . . . . . . . . Condition . . . . . . . . . . . Thickness, in. . . . . . . . . Basis . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ............... LT . . . . . . . . . . . . . . Fty, ksi: L ............... LT . . . . . . . . . . . . . . Fcy, ksi: L ............... LT . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . (e/D = 2.0) . . . . . . . . e, percent: L ............... LT . . . . . . . . . . . . . . RA, percent: L ............... E, 103 ksi . . . . . . . . . . Ec, 103 ksi . . . . . . . . . G, 103 ksi . . . . . . . . . . µ ................ Physical Properties: ω, lb/in.3 . . . . . . . . . . C, Btu/(lb)(EF) . . . . . K, Btu/[(hr)(ft2)(EF)/ft] α, 10-6 in./in./EF . . . . .
AMS 5706 and AMS 5707 Bar, forging, and Sheet, strip, and plate Forging ring Solution, stabilization, and precipitation heat treated #0.020 >0.020 #3.500 #3.500 S S S S AMS 5544
AMS 5704
... 170
... 175
175 ...
160 ...
... 110
... 115
120 ...
110 ...
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... 15
... 20
15 ...
15 ...
...
...
18
18
30.6 ... ... ... 0.298 See Figure 6.3.8.0 See Figure 6.3.8.0 See Figure 6.3.8.0
6-121
MMPDS-06 1 April 2011
Figure 6.3.8.0. Effect of temperature on the physical properties of Waspaloy.
Figure 6.3.8.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of Waspaloy.
6-122
MMPDS-06 1 April 2011
Figure 6.3.8.1.4. Effect of temperature on the modulus of elasticity (E) of Waspaloy.
Figure 6.3.8.1.5(a). Effect of temperature on elongation (e) of Waspaloy.
6-123
MMPDS-06 1 April 2011
Figure 6.3.8.1.5(b). Effect of temperature on reduction in area (RA) of Waspaloy bar and forging.
Figure 6.3.8.1.6(a). Effect of temperature on Ramberg-Osgood parameter (n in tension) of Waspaloy.
6-124
MMPDS-06 1 April 2011
Figure 6.3.8.1.6(b). Typical tensile stress-strain curves for Waspaloy at room and elevated temperatures (all products).
6-125
MMPDS-06 1 April 2011 6.3.9. 230 ALLOY 6.3.9.0. Comments and Properties — 230 alloy provides excellent oxidation resistance up to 2100EF for prolonged exposures with superior long term stability, high temperature strength and good fabricability. It is produced in the form of plate, sheet, strip, foil, billet, bar, wire welding products, pipe, tubing, remelt bar, and may be cast using traditional air-melt sand mold or vacuum-melt investment foundry techniques. Products are used for gas turbine components in the aerospace industry, catalyst grid supports in the chemical process industry, and various other high-temperature applications. Environmental Considerations — 230 alloy has excellent corrosion resistance to both air and combustion gas oxidizing environments. It also exhibits excellent nitriding resistance and good resistance to carburization and hydrogen embrittlement. Machining — 230 alloy has similar machining characteristics to other solid-solution- strengthened nickel-based alloys. This group of materials is classified as moderate to difficult to machine, however, they can be machined using conventional methods at satisfactory rates. They work-harden rapidly, requiring slower speeds and feeds with heavier cuts than would be used for machining stainless steels. See HAYNES publication H-3159 for more detailed information. Joining — 230 alloy has excellent forming and welding characteristics similar to HASTELLOY X alloy. It is readily welded using GTAW (Gas Tungsten-Arc Welding), GMAW (Gas Metal-Arc Welding), SMAW (Shielded Metal-Arc Welding), and resistance techniques. HAYNES 230-W™ alloy is the recommended filler metal. Heat Treatment — This alloy is normally final solution heat-treated between 2150E and 2275EF. Annealing during fabrication can be performed at slightly lower temperatures, but a final subsequent solution heat treatment followed by rapid cooling is needed to produce optimum properties and structure. Specifications and Properties — Material specifications are shown in Table 6.3.9.0(a). Table 6.3.9.0(a). Material Specifications for 230 Alloy Wrought
Specification AMS 5878 AMS 5891
Form Plate, sheet, and strip Bar and forging
Room temperature mechanical and physical properties are shown in Tables 6.3.9.0(b) and 6.3.9.0(c). 6.3.9.1. Annealed Condition — Elevated temperature mechanical properties are shown in Figures 6.3.9.1.1(a) and 6.3.9.1.1(b). Typical stress-strain and full-range curves are shown in Figures 6.3.9.1.6(a) and 6.3.9.1.6(b).
6-126
MMPDS-06 1 April 2011
Table 6.3.9.0(b). Design Mechanical and Physical Properties of 230 Alloy Sheet and Plate
Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . Thickness or diameter, in. Basis . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . a
AMS 5878 Sheet 2250 Anneal #0.125 A B
Plate 2200 Anneal #0.400 0.401 to 1.500 A B A B
... 114
... 117
... 115a
... 120
... 111
... 114
... 49
... 53
... 50
... 55
... 48
... 51
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
39
42
40
43
39
42
30.3 ... ... ... 0.324 See Figures 6.3.9.0(a),(b), and (c)
A-Basis value is specification minimum. The rounded T99 value for Ftu (L) = 117 ksi.
6-127
a
A-Basis value is specification minimum. The rounded T99 values for Fty (L) = 48 ksi.
5.001 to 6.000 A
B
107 45a ... ...
110 51 ... ...
... ...
... ...
... ... 35
... ... 46
MMPDS-06 1 April 2011
6-128
Table 6.3.9.0(c). Design Mechanical and Physical Properties of 230 Alloy Bar Specification . . . . . . . . . . . AMS 5891 Form . . . . . . . . . . . . . . . . . Bar Condition . . . . . . . . . . . . . 2250 Anneal Thickness, in. . . . . . . . . . . #1.000 1.001 to 2.000 2.001 to 3.000 3.001 to 4.000 4.001 to 5.000 Basis . . . . . . . . . . . . . . . . . A B A B A B A B A B Mechanical Properties: Ftu, ksi: L . . . . . . . . . . . . . 118 110 117 110 115 110 114 109 112 110 Fty, ksi: L . . . . . . . . . . . . . 51 45a 51 45a 51 45a 51 45a 51 45a Fcy, ksi . . . . . . . . . . . . . . ... ... ... ... ... ... ... ... ... ... Fsu, ksi . . . . . . . . . . . . . . ... ... ... ... ... ... ... ... ... ... Fbru, ksi: (e/D = 1.5) . . . . . . . . . ... ... ... ... ... ... ... ... ... ... (e/D = 2.0) . . . . . . . . . ... ... ... ... ... ... ... ... ... ... Fbry, ksi: ... ... ... ... ... ... ... ... ... ... (e/D = 1.5) . . . . . . . . . ... ... ... ... ... ... ... ... ... ... (e/D = 2.0) . . . . . . . . . 35 46 35 46 35 46 35 46 35 46 e, percent: L . . . . . . . . . . 3 E, 10 ksi . . . . . . . . . . . . 30.3 3 Ec, 10 ksi . . . . . . . . . . . . ... G, 103 ksi . . . . . . . . . . . . ... µ ................... ... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . 0.324 C, K and α . . . . . . . . . . . . See Figures 6.3.9.0(a), 6.3.9.0(b), and 6.3.9.0(c)
MMPDS-06 1 April 2011 0.16
0.15
o
Specific Heat, Btu/lb. F
0.14
0.13
0.12
0.11
0.1
0.09
0.08 0
200
400
600
800
1000
1200
1400
1600
1800
o
Temperature, F
Figure 6.3.9.0(a). Effect of temperature on specific heat of 230 alloy.
18
16
K, Btu-ft./ft.hr.-oF
14 K 12
10
8
6
4 0
200
400
600
800
1000
1200
1400
1600
1800
2000
o
Temperature, F
Figure 6.3.9.0(b). Effect of temperature on thermal conductivity of 230 alloy.
6-129
2000
MMPDS-06 1 April 2011
Coefficient of Thermal Expansion, ppm/
o
F
9.5
9
8.5
8
7.5
7
6.5 0
200
400
600
800
1000
1200
1400
1600
1800
2000
Te m pe r atur e , oF
Figure 6.3.9.0(c). Effect of temperature on mean coefficient of thermal expansion of 230 alloy between 70E E F and the temperature indicated.
Percentage of Room Temperature Strength
100
F tu
80
F ty 60
40 The strain rate to determine TYS was 0.005 in/in/min of gage length. The crosshead rate to determine UTS strength from beyond yield strength was 0.5 in/min of reduced section length.
20
Strength at tem perature 0 0
200
400
600
800
1000
1200
1400
1600
1800
2000
Temperature, F
Figure 6.3.9.1.1(a). Effect of temperature on tensile properties of 230 alloy plate.
6-130
2200
MMPDS-06 1 April 2011
100 90
Percentage of Room Temperature Strength
80 70 F ty
60 50 F tu
40
The strain rate to determine TYS was 0.005 in/in/min of gage length. The crosshead rate to determine UTS strength from beyond yield strength was 0.5 in/min of reduced section length.
30 20 10 0 0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
o
Temperature F
Figure 6.3.9.1.1(b). Effect of temperature on tensile properties of 230 alloy bar ranging up to 1.3 inches in diameter.
6 Percentage of Room Temperature Modulus, 10 ksi
100
80
60
40
20
Modulus at temperature 0 0
200
400
600
800
1000
1200
1400
1600
1800
Temperature, F
Figure 6.3.9.1.4. Effect of temperature on modulus of 230 alloy plate.
6-131
2000
MMPDS-06 1 April 2011 90 80 70
Elongation, %
60 50 40 30 20 10
Typical
0 0
200
400
600
800
1000
1200
1400
1600
1800
2000
Temperature, F
Figure 6.3.9.1.5. Effect of temperature on elongation of 230 alloy plate. 60
50
Ramberg-Osgood, n
40
30
20
10
Typical 0 0
200
400
600
800
1000
1200
1400
1600
Temperature, F
Figure 6.3.9.1.6(a). Effect of temperature on Ramberg-Osgood parameter (n in tension) of 230 alloy plate.
6-132
MMPDS-06 1 April 2011 70
Room Temp. 60
200 o F
Stress, ksi
50
300 o F 40
30
Ramberg-Osgood TYS (ksi) R.T. 18 58 200 o F 16 53 300 o F 16 50
20
10
TYPICAL LT Thickness: 0.050-0.750 in.
0 0
1
2
3
4
5
6
7
8
Strain, 0.001 in./in. Figure 6.3.9.1.6(b). Typical tensile stress-strain curves for 230 plate at room temperature, 200E EF, and 300E EF. 60
400o F 50
Stress, ksi
40
600o F 800o F
30
Ramberg-Osgood TYS (ksi) 400o F 16 46 600o F 16 42 800o F 18 40
20
10
TYPICAL LT Thickness: 0.050-0.750 in. 0 0
1
2
3
4
5
6
7
8
Strain, 0.001 in./in. Fig 6.3.9.1.6(c). Typical tensile stress-strain curves for 230 plate at 400E EF, 600E EF, and 800E EF.
6-133
MMPDS-06 1 April 2011 50
1000o F 40
1200o F
Stress, ksi
30
1400o F
20
Ramberg-Osgood TYS (ksi) 1000 F 22 39 1200 F 27 38 1400 F 34 35
10
TYPICAL LT Thickness: 0.050-0.750 in. 0 0
1
2
3
4
5
6
7
8
Strain, 0.001 in./in. Figure 6.3.9.1.6(d). Typical tensile stress-strain curves for 230 alloy plate at 1000E EF, 1200E EF, and 1400E EF.
50
Stress, ksi
40
1600o F
30
1700o F
1800o F
20
10
TYPICAL LT Thickness: 0.050-0.750 in. 0 0
5
10
15
20
25
30
Strain, 0.001 in./in. Figure 6.3.9.1.6(e). Typical tensile stress-strain curves for 230 alloy plate at 1600E EF, 1700E EF, and 1800E EF.
6-134
MMPDS-06 1 April 2011
140
X
120
X X
Room Temp. 200o F 300o F
Stress, ksi
100
80
60
40
20
TYPICAL LT Thickness: 0.50 to 0.75 inches
0 0.0
0.2
0.4
0.6
0.8
Strain, in./in. Figure 6.3.9.1.6(f). Full range tensile stress-strain curves for 230 alloy plate at room temperature, 200E EF, and 300E EF.
6-135
MMPDS-06 1 April 2011
120
400o F
X X X
100
600o F 800o F
Stress, ksi
80
60
40
20
TYPICAL LT Thickness: 0.50 to 0.75 inches 0 0.0
0.2
0.4
0.6
0.8
Strain, in./in. Figure 6.3.9.1.6(g). Full range tensile stress-strain curves for 230 alloy plate at 400E EF, 600E EF, and 800E EF.
6-136
MMPDS-06 1 April 2011
100
o
1000 F
X 80
o
X
1200 F
Stress, ksi
60
40
1400o F
X
20
TYPICAL LT Thickness: 0.50 to 0.75 inches 0 0.0
0.2
0.4
0.6
0.8
Strain, in./in. Figure 6.3.9.1.6(h). Full range tensile stress-strain curves for 230 alloy plate at 1000E EF, 1200E EF, and 1400E EF.
6-137
MMPDS-06 1 April 2011
50
40
1600o F
Stress, ksi
30
o
1700 F
1800o F
20
X 10
X TYPICAL LT
X Thickness: 0.50 to 0.75 inches 0 0.0
0.2
0.4
0.6
0.8
Strain, in./in. Figure 6.3.9.1.6(i). Full range tensile stress-strain curves for 230 alloy plate at 1600E EF, 1700E EF, and 1800E EF.
6-138
MMPDS-06 1 April 2011 6.3.10
HR-120 ALLOY
6.3.10.0 Comments and Properties — HR-120 alloy is a solid-solution strengthened Fe-NiCr alloy with excellent high temperature strength, very good resistance to carburizing and sulfiding environments, and readily formed hot or cold. Environmental Considerations — HR-120 alloy has very good sulfide and carburization resistance. Oxidation resistance is comparable to other Fe-Ni-Cr materials such as alloys 330 and 800H, yet with a greater strength at temperatures up to 2000EF. Machining — This alloy is readily machinable using conventional practices similar to those for 300 series austenitic stainless steels. Minor adjustments may be required to yield optimum results. See HAYNES publication H-3125B for more detailed information. Joining — Welding characteristics are similar to the HASTELLOY alloys. The alloy is readily welded using GTAW (Gas Tungsten-Arc Welding), GMAW (Gas Metal-Arc Welding), and SMAW (Shielded Metal-Arc Welding) techniques. HAYNES 556™ alloy is the recommended filler wire (AMS 5831) for GTAW and GMAW processes. Multimet® alloy covered electrode (AMS 5795) is recommended for SMAW processes. HASTELLOY X alloy filler wire (AMS 5798) and covered electrode (AMS 5799) may also be used. Heat Treatment — This alloy is solution annealed between 2150° and 2250°F and rapidly cooled. Specifications and Properties — Material specifications are shown in Table 6.3.10.0(a). Table 6.3.10.0(a). Material Specifications for HR-120 Alloy Wrought Products Specification Form AMS 5916 Sheet, strip and plate
Room temperature mechanical and physical properties are shown in Table 6.3.10.0(b). 6.3.10.1 Annealed Condition — Elevated temperature tensile properties are shown in Figure 6.3.10.1.1(a). Stress rupture curves are shown in Figures 6.3.10.1.7(a) and 6.3.10.1.7(b)
6-139
MMPDS-06 1 April 2011
Table 6.3.10.0(b). Design Mechanical and Physical Properties of HR-120 Alloy Sheet, Strip and Plate
Specification . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . Thickness or diameter, in. Basis . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fty, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fcy, ksi: L .................. LT . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . Fbrub, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . Fbryb, ksi: (e/D = 1.5) . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . e, percent (S-Basis): LT . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . µ ................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . a b
A
AMS 5916 Sheet, Strip, and Plate Annealed >0.015 to 0.749 B
0.750 to 2.000 S
... 90a
... 101
... 90
... 40a
... 44
... 40
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
30
... See Figure 6.3.10.1.4 ... ... ...
30
0.324 See Figure 6.3.10.0
A-Basis value is specification minimum. The rounded T99 value for Ftu (LT) = 94 ksi, Fty (LT) = 41 ksi Bearing values are “dry pin” values per Section 1.4.7.1.
6-140
0.20
0.18
30.0
12
27.5
11 α
25.0
0.16
9
C
8
20.0
K, Btu-ft./ft.hr.-oF
C, Btu/(lb)(oF)
22.5
10
0.14
0.12
α, 10-6 in./in./oF
MMPDS-06 1 April 2011
K
17.5
7
15.0
6
12.5
5 4
10.0
HR-120 alloy 3
7.5
0.10
2
5.0 0
200
400
600
800
1000 1200 1400 1600 1800 2000 2200 2400
Temperature, oF
Figure 6.3.10.0(b). Effect of temperature on physical properties of HR-120 alloy.
100
90 F
tu
Percentage of Room Temperature Strength
80
70 F
ty
60 F
ty
50 F
40
tu
30
20
10
0 0
500
1000
1500
T e m p e ra tu re ,
o
2000
2500
F
Figure 6.3.10.1.1. Effect of temperature on tensile properties of HR-120 alloy.
6-141
MMPDS-06 1 April 2011
31
29
Elastic Modulus, 106 psi
27
25
23
21
19
17
15 0
200
400
600
800
1000
1200
1400
1600
1800
2000
Temperature, °F
Figure 6.3.10.1.4. Effect of temperature on elastic modulus of HR-120 alloy.
80
70
1100F 1200F
60
1300F 1400F
Stress, ksi
50
1500F
40 30
20 10
0 1
10
100
1000
10000
100000
Tim e to Ruptur e , Hr s
Figure 6.3.10.1.7(a). Average isothermal stress rupture curves for HR-120 alloy for temperatures from 1100E E to 1500E EF.
6-142
MMPDS-06 1 April 2011
16
14
16 0 0 F 170 0 F 18 0 0 F
12
19 0 0 F 2000F 2 10 0 F
Stress, ksi
10
2200F
8
6
4
2
0 1
10
100
1000
10000
100000
1000000
Tim e to Rupture , Hrs
Figure 6.3.10.1.7(b). Average isothermal stress rupture curves for HR-120 alloy for temperatures from 1600E E to 2200E EF.
6-143
MMPDS-06 1 April 2011 Correlative Information for Figures 6.3.10.1.7(a) and (b) Makeup of Data Collection: Heat Treatment: Annealed Number of Vendors = 1 Number of Lots = Number of Test Laboratories = 1 Number of Tests = 283
Stress Rupture Equation: Log t = c + b1/T + b2X/T + b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -16.671 b1 = 49,051 b2 = -8,375.3 b3 = -2,403.7 b4 = 619.59
Specimen Details: Type - # 0.375-inch thick - Flat > 0.375-inch thick 0.25 inch rd reduced section Adjusted Gage Length 2.6 inches for flat specimens 1.35 inches for rd. specimens Gage Thickness - 0.125" for flat specimens for sheets with thickness of 0.125" or greater. Sheet thickness for specimens from sheet with thickness < 0.125".
Analysis Details: Standard Deviation = 0.598 Standard Error of Estimate = 0.155 Within Heat Treatment Variance = 0.0088 Ratio of Between to Within Heat Treatment Variance = < 0.10 (at spec pt.) R2 = 96.6% [Caution: The stress rupture model may provide unrealistic times to rupture for stresses beyond those represented above.]
6-144
MMPDS-06 1 April 2011
6.4 COBALT-BASE ALLOYS 6.4.0 GENERAL COMMENTS — The use of cobalt in wrought heat-resistant alloys is usually limited to additions of cobalt to alloys of other bases. Very few of the heat-resistant alloys can be considered as cobalt base, since cobalt is seldom the predominating element. For airframe applications, some workability is usually required; the alloys considered in this section are limited to those available in wrought form. 6.4.0.1 Metallurgical Considerations Composition — The common alloying elements for cobalt are chromium, nickel, carbon, molybdenum, and tungsten. Chromium is added to increase strength and oxidation resistance at very high temperatures; nickel to increase toughness; carbon to increase the hardness and strength, especially when combined with chromium and the other carbide formers, molybdenum and tungsten; molybdenum and tungsten also contribute to solid-solution strengthening. Vacuum melting is not required for these alloys. For this reason, the cobalt-base alloys are often competitively priced with vacuum-melted nickel-base alloys although the price of cobalt is higher than that of nickel. Heat Treatment — The cobalt-base alloys are heat treated with conventional equipment and fixtures such as those used with austenitic stainless steels. The use of good heat-treating practices is recommended, although this is not so critical as in the case of the nickel-based alloys. 6.4.0.2 Manufacturing Considerations Forging — Because these alloys are designed to have very high strength at temperatures near the forging range, they require the use of heavy forging equipment. However, the forgeability of these alloys is good over a fairly wide range of temperatures. Hot-cold working is neither required nor recommended for these alloys. Cold Forming — These alloys, when in the solution-treated condition, have excellent ductility and are readily cold formed. Because of their capacity for work hardening, they require higher forming pressures and frequent anneals. Machining — These alloys are tough and they work harden rapidly; consequently, heavy-duty vibration-free machine tools, sharp cutting tools (high-speed steel or carbide tipped), and low cutting speeds are required. Welding — The weldability of the cobalt-base alloys is comparable with that of the austenitic stainless steels. Welding may be accomplished by all commonly used welding processes. Large or complex weldments require stress relief. Brazing — These alloys can be brazed using the same techniques and precautions applicable to stainless steels and nickel-base alloys. Alloys which contain aluminum or titanium require extremely dry, inert gas atmospheres, very high vacuum or a thin (0.002 to 0.0010 inch thick) nickel plating to prevent surface oxidation. It is also necessary to braze the material in the annealed condition and to keep the stresses low during brazing to avoid embrittlement, especially when brazing with low melting alloys. 6.4.0.3 Special Precautions — If the cobalt-base alloys have not been exposed to neutron radiation, no special safety precautions in handling are required. However, neutron irradiation creates a very
6-145
MMPDS-06 1 April 2011 dangerous radioactive isotope, cobalt 60, which has a half life of about 5.2 years. Special precautions must be employed to protect personnel from the radioactive material. 6.4.1 L-605 (25 alloy) 6.4.1.0 Comments and Properties — L-605, also known as 25 alloy, is a corrosion and heatresistant cobalt-base alloy used for moderately stressed parts operating between 1000E and 1900EF. Its applications include gas turbine blades and rotors, combustion chambers, and afterburner parts. L-605 is not hardenable except by cold working and is usually used in the annealed condition. It is available in all the usual mill forms. L-605 forges moderately well between 1900E and 2250EF. In the annealed condition, it has excellent formability at room temperature; severely formed parts should be annealed at 2225EF for 7 to 10 minutes. L-605 is difficult to machine. Its toughness and capacity for work hardening necessitate the use of sharp tools and low cutting speeds; high-speed steel or carbide cutting tools are recommended. L-605 can be fusion or resistance welded or brazed; large or complex fusion weldment should be stress relieved at 1300EF for 2 hours. This alloy has excellent oxidation resistance up to 1900EF. Some material specifications for L-605 are shown in Table 6.4.1.0(a). Room-temperature mechanical and physical properties are shown in Table 6.4.1.0(b). The effect of temperature on physical properties is shown in Figure 6.4.1.0. Table 6.4.1.0(a). Material Specifications for L-605
Specification AMS 5537 AMS 5759
Form Sheet Bar and forging
Condition Solution treated (annealed) Solution treated (annealed)
6.4.1.1 Solution Treated Condition — Elevated temperature properties for this condition are shown in Figures 6.4.1.1.1 through 6.4.1.1.5. A creep nomograph is shown in Figure 6.4.1.1.7. Stressrupture requirements at elevated temperatures are specified in material specifications. The appropriate specification should be consulted for detailed requirements.
6-146
MMPDS-06 1 April 2011
Table 6.4.1.0(b). Design Mechanical and Physical Properties of L-605
Specification . . . . . . . . . . . .
AMS 5537
Form . . . . . . . . . . . . . . . . . . .
Sheet
Plate
Condition . . . . . . . . . . . . . . .
Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent (S-Basis): L ................... LT . . . . . . . . . . . . . . . . . .
Bar and forging
Solution treated
Thickness, in. . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . .
AMS 5759
0.010-0.187
0.188-0.375
#1.000
A
B
S
S
126 130
131 135
... 130
125 ...
57 55a
62 60
... 55
45 ...
41 56 91
45 61 95
... ... 91
42 ... 88
186 232
193 241
186 232
... ...
88 113
96 123
88 113
... ...
...
... ...
... 45
30 ...
b
E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ ....................
32.6 32.6 12.6 0.29
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . K, and α . . . . . . . . . . . . . . .
0.330 0.090 (70E-212EF) See Figure 6.4.1.0
Issued: Aug 1962, MIL-HDBK-5, Item 59-34 Last Revised: Nov 1994, MIL-HDBK-5G, Item 93-15 a A-Basis value is specification minimum. The rounded T99 value: Fty = 56 ksi. b 30 - #0.020; 35 - 0.021 to 0.032; 40 - 0.033 to 0.043; 45 - $0.043.
6-147
MMPDS-06 1 April 2011
Figure 6.4.1.0. Effect of temperature on the physical properties of L-605.
6-148
MMPDS-06 1 April 2011 100
Strength at temperature Exposure up to 1/2 hr
Ftu
Percentage of Room Temperature Strength
80
60
Fty
40
20
0
0
200
400
600
800
1000
1200
1400
1600
1800
Temperature, F
Figure 6.4.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of L-605.
100
Strength at temperature Exposure up to 1/2 hr
Fsu
Percentage of Room Temperature Strength
80
Fcy
60
40
20
0
0
200
400
600
800
1000
1200
1400
1600
1800
Temperature, F
Figure 6.4.1.1.2. Effect of temperature on the compressive yield strength (Fcy) and the shear ultimate strength (Fsu) of L-605.
6-149
MMPDS-06 1 April 2011 100
Fbru
Strength at temperature Exposure up to 1/2 hr
Percentage of Room Temperature Strength
80
Fbry 60
40
20
0
0
200
400
600
800
1000
1200
1400
1600
1800
Temperature, F
Figure 6.4.1.1.3. Effect of temperature on the bearing ultimate strength (Fbru) and the bearing yield strength (Fbry) of L-605 sheet.
100
Percentage of Room Temperature Strength
Dynamic Modulus at temperature 80
60
E & Ec
40
Note: The reduction in dynamic modulus due to elevated temperature may be significantly less than the reduction in static modulus.
20
TYPICAL 0 0
200
400
600
800
1000
1200
1400
1600
1800
2000
o
Temperature, F
Figure 6.4.1.1.4(a). Effect of temperature on dynamic moduli (E and Ec) of L-605 sheet.
6-150
MMPDS-06 1 April 2011
Figure 6.4.1.1.4(b). Effect of temperature on the shear modulus (G) of L-605 sheet.
Figure 6.4.1.1.5. Effect of temperature on the elongation (e) of L-605 (>0.020 thickness) sheet.
6-151
MMPDS-06 1 April 2011 . .
50 L-605 ST Foil 0.10% Creep Strain t = 0.005 inch
Stress, ksi
40
30
1200 oF 1400 oF 1600 oF 1800 oF Creep Strain Model
20 +
x
10
+
+
+
x
0 10-1
+
x
100
+
x
101
x
102
103
Time to % Strain, Hrs Figure 6.4.1.1.7(a) Average isothermal 0.10% creep curves for L-605 ST foil.
Correlative Information for Figure 6.4.1.1.7(a) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 18 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.4.1.1.7
0.10 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -14.775 b1 = 41,039 b2 = -16,597 b3 = 8,266.4 b4 = -2,444.0 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 0.96 R2 = 86% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-152
MMPDS-06 1 April 2011
. .
50 L-605 ST Foil 0.20% Creep Strain t = 0.005 inch
Stress, ksi
40
+
x
30
20 1200 oF 1400 oF 10 oF 1600 1800 oF Creep Strain Model 0 10-1
+
+
+
x
100
x
+ +
x
101
102
103
Time to % Strain, Hrs Figure 6.4.1.1.7(b) Average isothermal 0.20% creep curves for L-605 ST foil.
Correlative Information for Figure 6.4.1.1.7(b)
Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 19 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.4.1.1.7
0.20 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -14.324 b1 = 41,039 b2 = -16,597 b3 = 8,266.4 b4 = -2,444.0 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 0.96 R2 = 86% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-153
MMPDS-06 1 April 2011 . .
50 L-605 ST Foil 0.50% Creep Strain t = 0.005 inch
Stress, ksi
40
30
20
+
x
1200 oF 1400 oF 1600 oF 1800 oF Creep Strain Model
10
+
+ +
x
0 10-1
100
x
101
+
+
x
102
103
Time to % Strain, Hrs Figure 6.4.1.1.7(c) Average isothermal 0.50% creep curves for L-605 ST foil.
Correlative Information for Figure 6.4.1.1.7(c) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 17
0.50 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -13.672 b1 = 41,039 b2 = -16,597 b3 = 8,266.4 b4 = -2,444.0
Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch
Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 0.96 R2 = 86%
Reference: 6.4.1.1.7
[Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-154
MMPDS-06 1 April 2011 . .
50 L-605 ST Foil 1.00% Creep Strain t = 0.005 inch
Stress, ksi
40
30
+
20
x
1400 oF 1600 oF 1800 oF Creep Strain Model
10
+
+ +
x
0 10-1
100
101
x
x
102
103
Time to % Strain, Hrs Figure 6.4.1.1.7(d) Average isothermal 1.00% creep curves for L-605 ST foil.
Correlative Information for Figure 6.4.1.1.7(d) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 10 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.005 inch Reference: 6.4.1.1.7
1.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -13.376 b1 = 41,039 b2 = -16,597 b3 = 8,266.4 b4 = -2,444.0 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 0.96 R2 = 86% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-155
MMPDS-06 1 April 2011 . .
100
Stress, ksi
80
L-605 ST Foil Stress Rupture t = 0.005 inch
+
x
1200 oF 1400 oF 1600 oF 1800 oF Stress Rupture Mean
60
40 +
+
20
x
+ +
x x
0 10-1
+
x x x
100
101
102
x
103
Time to % Strain, Hrs Figure 6.4.1.1.7(e) Average isothermal stress rupture curves for L-605 ST foil.
Correlative Information for Figure 6.4.1.1.7(e) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 22 Specimen Details: Type - Flat Gage Length - 2.25 inch Gage Thickness - 0.005 inch Reference: 6.4.1.1.7
Stress Rupture Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -12.907 b1 = 41,039 b2 = -16,597 b3 = 8,266.4 b4 = -2,444.0 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 0.96 R2 = 86% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-156
MMPDS-06 1 April 2011 . .
50 L-605 ST Sheet 0.10% Creep Strain t = 0.020 - 0.080 inch +
40
Stress, ksi
x
1200 oF 1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30
20 +
10 xx
x x
x
++ +
xx x
0 10-1
100
+
x x
x
+
x x
101
+
x
102
+
x
103
Time to % Strain, Hrs Figure 6.4.1.1.7(f) Average isothermal 0.10% creep curves for L-605 ST sheet.
Correlative Information for Figure 6.4.1.1.7(f) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 43 Specimen Details: Type - Flat Gage Length - 2.25 inch Gage Thickness - 0.020 - 0.080 inch Reference: 6.4.1.1.7
0.10 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -16.776 b1 = 44,655 b2 = -10,730 b3 = -4,011.7 b4 = -2,252.1 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 1.13 R2 = 90% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-157
MMPDS-06 1 April 2011 . .
50 L-605 ST Sheet 0.20% Creep Strain t = 0.020 - 0.080 inch
+
x
40
Stress, ksi
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30
20 +
10
xxx
xx
++
x x x x
0 10-1
100
+
+
xx
101
x
+
x
102
+
x
+
x
103
Time to % Strain, Hrs Figure 6.4.1.1.7(g) Average isothermal 0.20% creep curves for L-605 ST sheet.
Correlative Information for Figure 6.4.1.1.7(g) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 36 Specimen Details: Type - Flat Gage Length - 2.25 inch Gage Thickness - 0.020 - 0.080 inch Reference: 6.4.1.1.7
0.20 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -16.281 b1 = 44,655 b2 = -10,730 b3 = -4,011.7 b4 = -2,252.1 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 1.13 R2 = 90% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-158
MMPDS-06 1 April 2011 . .
50 L-605 ST Sheet 0.50% Creep Strain t = 0.020 - 0.080 inch
+
x
Stress, ksi
40
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30
20 +
10
x
x
xx
x x
+ +
x x
0 10-1
100
x
+
x
101
+
xx
102
x
+
x
103
Time to % Strain, Hrs Figure 6.4.1.1.7(h) Average isothermal 0.50% creep curves for L-605 ST sheet.
Correlative Information for Figure 6.4.1.1.7(h) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 32 Specimen Details: Type - Flat Gage Length - 2.25 inch Gage Thickness - 0.020 - 0.080 inch Reference: 6.4.1.1.7
0.50 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -15.725 b1 = 44,655 b2 = -10,730 b3 = -4,011.7 b4 = -2,252.1 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 1.13 R2 = 90% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-159
MMPDS-06 1 April 2011 . .
50 L-605 ST Sheet 1.00% Creep Strain t = 0.020 - 0.080 inch
+
x
Stress, ksi
40
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30
20 +
10
x
x
x
x xx
+ +
x x
0 10-1
100
101
x
x
102
+
x
+
x
x
103
104
Time to % Strain, Hrs Figure 6.4.1.1.7(i) Average isothermal 1.00% creep curves for L-605 ST sheet.
Correlative Information for Figure 6.4.1.1.7(i) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 29 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch Reference: 6.4.1.1.7
1.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -15.315 b1 = 44,655 b2 = -10,730 b3 = -4,011.7 b4 = -2,252.1 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 1.13 R2 = 90% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-160
MMPDS-06 1 April 2011 . .
50 L-605 ST Sheet 2.00% Creep Strain t = 0.020 - 0.080 inch
1400 oF 1800 oF Creep/Stress Rupture Model
x
Stress, ksi
40
30
20
10 xx
x x x
0 10-1
100
101
102
103
104
Time to % Strain, Hrs Figure 6.4.1.1.7(j) Average isothermal 2.00% creep curves for L-605 ST sheet.
Correlative Information for Figure 6.4.1.1.7(j) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests = 7 Specimen Details: Type - Flat Gage Length - 2.25 inches Gage Thickness - 0.020 - 0.080 inch Reference: 6.4.1.1.7
2.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -14.879 b1 = 44,655 b2 = -10,730 b3 = -4,011.7 b4 = -2,252.1 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 1.13 R2 = 90% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-161
MMPDS-06 1 April 2011 . .
100 L-605 ST Sheet Stress Rupture t = 0.020 - 0.080 inch +
80
x
Stress, ksi
→
1200 oF 1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model Runout
60
40
+ +
+ + +
+ ++ +
→
+ +
x x
20
0 10-1
x x x x
+
+ +
x x x
+ ++ +
+
++ ++
+ x + + + ++ + + x + x x xxx x + + + + ++ + x x x x x x x x x x xx x xx xxx xxx x x xxx xxx xx x xx xx +→ xx x xx→ x x x
100
101
102
→ → → +
+ +
x xx x x x x
→
x
103
Time to % Strain, Hrs Figure 6.4.1.1.7(k) Average Isothermal stress rupture curves for L-605 ST sheet.
Correlative Information for Figure 6.4.1.1.7(k) Makeup of Data Collection: Stress Rupture Equation: Heat Treatment ST Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T Number of Vendors = NA T = ER Number of Lots = NA X = log (stress, ksi) Number of Test Laboratories = 1 c = -14.619 Number of Tests = 250 b1 = 44,655 b2 = -10,730 Specimen Details: b3 = -4,011.7 b4 = -2,252.1 Type - Flat Gage Length - 2.25 inches Analysis Details: Gage Thickness - 0.020 - 0.080 inch Std. Error of Estimate, Log (Hrs) = 0.36 Standard Deviation, Log (Hrs) = 1.13 Reference: 6.4.1.1.7 R2 = 90% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-162
MMPDS-06 1 April 2011 . .
50 L-605 ST Bar and Forging 0.10% Creep Strain t = 0.50 - 1.00 inch
+
x
40
Stress, ksi
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30 +
20
+ + +
+
+ +
10 x
x
x x
+
x x
0 10-1
100
+
x
101
102
Time to % Strain, Hrs Figure 6.4.1.1.7(l) Average isothermal 0.10% creep curves for L-605 ST bar and forging.
Correlative Information for Figure 6.4.1.1.7(l) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =22 Specimen Details: Type - Round Gage Length - 1.25- 2.25 inches Gage Thickness - 0.252 - 0.505-inch diameter Reference: 6.4.1.1.7
0.10 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -19.745 b1 = 58,256 b2 = -24,524 b3 = 13,066 b4 = -4,399.5 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.34 Standard Deviation, Log (Hrs) = 1.12 R2 = 91% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-163
MMPDS-06 1 April 2011
. .
50 L-605 ST Bar and Forging 0.20% Creep Strain t = 0.50 - 1.00 inch
+
x
Stress, ksi
40
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30 +
20
+ ++
+
+ +
10
x x
x
x
x x
+
x
0 10-1
100
x
+
101
102
Time to % Strain, Hrs Figure 6.4.1.1.7(m) Average isothermal 0.20% creep curves for L-605 ST bar and forging.
Correlative Information for Figure 6.4.1.1.7(m) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =22 Specimen Details: Type - Round Gage Length - 1.25- 2.25 inches Gage Thickness - 0.252 - 0.505-inch diameter Reference: 6.4.1.1.7
0.20 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -19.364 b1 = 58,256 b2 = -24,524 b3 = 13,066 b4 = -4,399.5 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.34 Standard Deviation, Log (Hrs) = 1.12 R2 = 91% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-164
MMPDS-06 1 April 2011 . .
50 L-605 ST Bar and Forging 0.50% Creep Strain t = 0.50 - 1.00 inch
+
x
40
Stress, ksi
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30 +
+
20
+ + ++
x
10
+ +
x x
0 10-1
x
100
x x
+
x
101
x
x+ x
102
103
Time to % Strain, Hrs Figure 6.4.1.1.7(n) Average isothermal 0.50% creep curves for L-605 ST bar and forging.
Correlative Information for Figure 6.4.1.1.7(n) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =22 Specimen Details: Type - Round Gage Length - 1.25- 2.25 inches Gage Thickness - 0.252 - 0.505-inch diameter Reference: 6.4.1.1.7
0.50 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -18.852 b1 = 58,256 b2 = -24,524 b3 = 13,066 b4 = -4,399.5 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.34 Standard Deviation, Log (Hrs) = 1.12 R2 = 91% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-165
MMPDS-06 1 April 2011 . .
50 L-605 ST Bar and Forging 1.00% Creep Strain t = 0.50 - 1.00 inch
+
x
Stress, ksi
40
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
30 +
+
20
+ + +
x
10
+ +
x xx
0 10-1
100
x
x
101
+
x
x
102
x
103
Time to % Strain, Hrs Figure 6.4.1.1.7(o) Average isothermal 1.00% creep curves for L-605 ST bar and forging.
Correlative Information for Figure 6.4.1.1.7(o) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =22 Specimen Details: Type - Round Gage Length - 1.25- 2.25 inches Gage Thickness - 0.252 - 0.505-inch diameter Reference: 6.4.1.1.7
1.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -18.416 b1 = 58,256 b2 = -24,524 b3 = 13,066 b4 = -4,399.5 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.34 Standard Deviation, Log (Hrs) = 1.12 R2 = 91% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-166
MMPDS-06 1 April 2011
. .
60
50
L-605 ST Bar and Forging 2.00% Creep Strain t = 0.50 - 1.00 inch
+
x
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
Stress, ksi
40
30 +
+
20
+ +
x
10
0 10-1
+
+ +
x x x
100
101
x
x
102
x
x
103
Time to % Strain, Hrs Figure 6.4.1.1.7(p) Average isothermal 2.00% creep curves for L-605 ST bar and forging.
Correlative Information for Figure 6.4.1.1.7(p) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =21 Specimen Details: Type - Round Gage Length - 1.25- 2.25 inches Gage Thickness - 0.252 - 0.505-inch diameter Reference: 6.4.1.1.7
2.00 Percent Creep Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -17.809 b1 = 58,256 b2 = -24,524 b3 = 13,066 b4 = -4,399.5 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.34 Standard Deviation, Log (Hrs) = 1.12 R2 = 91% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-167
MMPDS-06 1 April 2011 . .
60 L-605 ST Bar and Forging Stress Rupture t = 0.50 - 1.00 inch
50
1400 oF 1600 oF 1800 oF Creep/Stress Rupture Model
+
x
Stress, ksi
40 +
30
+
x
20
+
x
++
x x x x x
10
0 10-1
+
++ + +
x x x xx
xx x x
100
xx
+ ++
x
101
x
x xx x x x x x
102
xx
x
103
104
Time to % Strain, Hrs Figure 6.4.1.1.7(q) Average isothermal stress rupture curves for L-605 ST bar and forging.
Correlative Information for Figure 6.4.1.1.7(q) Makeup of Data Collection: Heat Treatment ST Number of Vendors = NA Number of Lots = NA Number of Test Laboratories = 1 Number of Tests =86 Specimen Details: Type - Round Gage Length - 1.25- 2.25 inch Gage Thickness - 0.252 - 0.505 inch diameter Reference: 6.4.1.1.7
Stress Rupture Equation: Log t = c + b1/T+b2X/T +b3X2/T + b4X3/T T = ER X = log (stress, ksi) c = -17.166 b1 = 58,256 b2 = -24,524 b3 = 13,066 b4 = -4,399.5 Analysis Details: Std. Error of Estimate, Log (Hrs) = 0.34 Standard Deviation, Log (Hrs) = 1.12 R2 = 91% [Caution: The creep rupture model may provide unrealistic predictions for temperatures and stresses beyond those represented above.]
6-168
MMPDS-06 1 April 2011
6.4.2 188 ALLOY 6.4.2.0 Comments and Properties — 188 alloy is a corrosion- and heat-resistant cobaltbase alloy used for moderately stressed parts up to 2100EF. The alloy exhibits outstanding oxidation resistance up to 2100EF resulting from the addition of minute amounts of lanthanum to the alloy system. The alloy exhibits excellent post-aged ductility after prolonged heating of 1000 hours at temperatures up to 1600EF inclusive. 188 alloy is not hardenable except by cold working and is used in the solution-treated condition. The alloy can be forged and welded. Welding can be accomplished by both manual and automatic welding methods including electron beam, gas tungsten air, and resistance welding. Like other cobalt base alloys, machining is difficult necessitating the use of sharp tools and low cutting speeds; high speed steel or carbide cutting tools are recommended. Gas turbine applications include transition ducts, combustion cans, spray bars, flame-holders, and liners. Material specifications for 188 alloy are presented in Table 6.4.2.0(a). Room temperature mechanical and physical properties are shown in Table 6.4.2.0(b). The effect of temperature on physical properties is shown in Figure 6.4.2.0. Table 6.4.2.0(a). Material Specifications for 188 Alloy Specification Form Condition AMS 5608 Sheet and plate Solution treated (annealed) AMS 5772 Bar and forging Solution treated (annealed) 6.4.2.1 Solution-Treated Condition — Elevated-temperature properties are presented in Figures 6.4.2.1.1(a) and 6.4.2.1.1(b), 6.4.2.1.2, 6.4.2.1.4(a) through 6.4.2.1.4(c), and 6.4.2.1.5. Typical tensile stress-strain curves at room temperature are presented in Figure 6.4.2.1.6(a). Typical compressive stress-strain and tangent-modulus curves at room and elevated temperatures are presented in Figure 6.4.2.1.6(b). Strain control fatigue data for bar are presented in Figures 6.4.2.1.8(a) through 6.4.2.1.8(d).
6-169
MMPDS-06 1 April 2011
Table 6.4.2.0(b). Design Mechanical and Physical Properties of 188 Sheet
Specification . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . Thickness, in. . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fty, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . e, percent: LT . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . .
AMS 5608 Sheet Solution Treated <0.020 S
0.020-0.187 S
125 125
125 125
57 55
57 55
... 55 ...
... 55 ...
... ...
... ...
... ...
... ...
40
45 33.6 33.6 12.8 0.31 0.324 See Figure 6.4.2.0
Issued: Dec, 1978, MIL-HDBK-5, Item 76-17 Last Revised: Apr 2011, MMPDS-06, Item 10-47
6-170
MMPDS-06 1 April 2011
Figure 6.4.2.0. Effect of temperature on the physical properties of 188.
Figure 6.4.2.1.1(a). Effect of temperature on tensile ultimate strength (Ftu) of 188 sheet.
6-171
MMPDS-06 1 April 2011
Figure 6.4.2.1.1(b). Effect of temperature on tensile yield strength (Fty) of 188 sheet.
Figure 6.4.2.1.2. Effect of temperature on compressive yield strength (Fcy) of 188 sheet.
6-172
MMPDS-06 1 April 2011
Figure 6.4.2.1.4(a). Effect of temperature on dynamic moduli (E and Ec) of 188.
6-173
MMPDS-06 1 April 2011
Figure 6.4.2.1.4(b). Effect of temperature on dynamic shear modulus (G) for 188.
Figure 6.4.2.1.4(c). Effect of temperature on Poisson’s ratio (µ) for 188.
6-174
MMPDS-06 1 April 2011
Figure 6.4.2.1.5. Effect of temperature on elongation (e) of 188 sheet. 100 H S sheet
80
L o n g itu d in a l
Stress, ksi
L o n g T ra n s ve rs e
60
40 R a m b e rg - O s g o o d n (L o n g itu d in a l) = 1 9 n (L o n g T ra n s ve rs e ) = 8 .4
20
T Y P IC A L
0 0
2
4
6
8
10
S tra in , 0 .0 0 1 in ./in .
Figure 6.4.2.1.6(a). Typical tensile stress-strain curves for 188 sheet at room temperature.
6-175
12
MMPDS-06 1 April 2011
100 188 sheet Long Transverse
80
Ramberg - Osgood n (RT) = 13 n (600 oF) = 13 n (1000 oF) = 15 n (1400 oF) = 18
RT
Stress, ksi
RT
60
TYPICAL
600 oF
1000 oF
o
600 F
1000 oF
40 1400 oF
20
0 0
2
0
5
4 10
6 8 10 Strain, 0.001 in./in. 15
20
25
12 30
14 35
3
Compressive Tangent Modulus, 10 ksi Figure 6.4.2.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for 188 sheet at various temperatures.
6-176
MMPDS-06 1 April 2011
Figure 6.4.2.1.8(a). Best-fit ε/N curve, cyclic stress-strain curve, and mean stress relaxation curve for 188 bar, longitudinal orientation at 800E EF.
6-177
MMPDS-06 1 April 2011 Correlative Information for Figure 6.4.2.1.8(a)
Product Form/Thickness: Bar, 0.5-inch thick diameter
Test Parameters: Strain Rate/Frequency - 20 cpm Wave Form - Triangular Temperature - 800EF Atmosphere - Air
Thermal Mechanical Processing History: Solution annealed (AMS 5772) Properties: TUS, ksi TYS, ksi E, ksi Temp.,EF 102* 55* 75 29,766 800
No. of Heats/Lots: 2 Equivalent Strain Equation: Log Nf = 1.678 - 0.905 log (∆ε-0.00572) Std. Error of Est., Log (Life) = 0.00176 (1/∆ε) Standard Deviation, Log (Life) = 0.65 R2 = 82%
Stress-Strain Equations: Cyclic (Companion Specimens) Proportional Limit = 60 ksi
Sample Size: 18 (∆σ/2) = 109 (∆εp/2)0.06 Mean Stress Relaxation
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
Inadequate data at low strain range values Specimen Details: Uniform gage test section 0.250-inch diameter Reference: 3.8.1.1.8(a)
* Minimum values from AMS 5772.
6-178
MMPDS-06 1 April 2011
Figure 6.4.2.1.8(b). Best-fit ε/N curve and cyclic stress-strain curve for 188 bar, longitudinal orientation at 1200E EF.
6-179
MMPDS-06 1 April 2011 Correlative Information for Figure 6.4.2.1.8(b)
Product Form/Thickness: Bar, 1.5-inches thick Thermal Mechanical Processing History: Solution annealed (AMS 5772) Properties: TUS, ksi TYS, ksi E, ksi Temp.,EF 120* 55* 75 26,050 1200
Test Parameters: Strain Rate/Frequency - 20 cpm Wave Form - Triangular Temperature - 1200EF Atmosphere - Air No. of Heats/Lots: 1
Stress-Strain Equations: Cyclic (Companion Specimens) Proportional Limit = 45 ksi
Equivalent Strain Equation: Log Nf = 1.073 - 0.925 log (∆ε-0.00622) Std. Error of Est., Log (Life) = 0.00134 (1/∆ε) Standard Deviation, Log(Life) = 0.61 R2 = 91%
(∆σ/2) = 293 (∆εp/2)0.22
Sample Size: 14
Specimen Details: Uniform gage test section 0.250-inch diameter
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
Reference: 3.8.1.1.8(a)
* Minimum values from AMS 5772.
6-180
MMPDS-06 1 April 2011
Figure 6.4.2.1.8(c). Best-fit ε/N curve and cyclic stress-strain curve for 188 bar, longitudinal orientation at 1600E EF.
6-181
MMPDS-06 1 April 2011 Correlative Information for Figure 6.4.2.1.8(c)
Product Form/Thickness: Bar, 1.5-inches thick
Test Parameters: Strain Rate/Frequency - 20 cpm Wave Form - Triangular Temperature - 1600EF Atmosphere - Air
Thermal Mechanical Processing History: Solution treated, water quenched (AMS 5772) Properties: TUS, ksi TYS, ksi E, ksi Temp.,EF 120* 55* 75 22,406 1600
No. of Heats/Lots: 1
Stress-Strain Equations: Cyclic (Companion Specimens) Proportional Limit = 36 ksi
Equivalent Strain Equation: Log Nf = 0.011 - 1.343 log (∆ε-0.00283) Std. Error of Estimate, Log (Life) = 0.116 Standard Deviation, Log(Life) = 0.582 R2 = 96%
(∆σ/2) = 82.6 (∆εp/2)0.094
Sample Size: 16
Specimen Details: Uniform gage test section 0.250-inch diameter
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
Reference: 3.8.1.1.8
* Minimum values from AMS 5772.
6-182
MMPDS-06 1 April 2011
Figure 6.4.2.1.8(d). Best-fit ε/N curve and cyclic stress-strain curve for 188 bar, longitudinal orientation at 1800E EF.
6-183
MMPDS-06 1 April 2011 Correlative Information for Figure 6.4.2.1.8(d)
Product Form/Thickness: Bar, 1.5-inches thick
Test Parameters: Strain Rate/Frequency - 20 cpm Wave Form - Triangular Temperature - 1800EF Atmosphere - Air
Thermal Mechanical Processing History: Solution treated, water quenched (AMS 5772) Properties: TUS, ksi TYS, ksi E, ksi Temp.,EF 120* 55* 75 20,353 1800
No. of Heats/Lots: 1
Stress-Strain Equations: Cyclic (Companion Specimens) Proportional Limit = 23 ksi
Equivalent Strain Equation: Log Nf = 0.047 - 1.317 log (∆ε-0.00239) Std. Error of Estimate, Log (Life) = 0.0126 Standard Deviation, Log(Life) = 0.063 R2 = 96%
(∆σ/2) = 66.3 (∆εp/2)0.12
Sample Size: 15
Specimen Details: Uniform gage test section 0.250-inch diameter
[Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
Reference: 3.8.1.1.8(a)
* Minimum values from AMS 5772.
6-184
MMPDS-06 1 April 2011
REFERENCES 6.1.1.1
“Cryogenic Materials Data Handbook,” Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, AFML-TDR-64-280, 1970.
6.2.1.1.8
Blatherwick, A.A. and Cers, A., “Fatigue, Creep and Stress-Rupture Properties of Nicrotung, Super A-286, and Inconel 718”, AFML-TR-65-447 (June 1966) (MCIC 65927).
6.3.3.1.8(a)
Ruff, P.E., “Effect of Manufacturing Processes on Structural Allowables—Phase II”, AFWAL-TR-86-4120, Battelle (November 1986) (Battelle Source M-656).
6.3.3.1.8(b)
Deel, O.L. and Mindlin, H., “Engineering Data on New Aerospace Structural Materials”, AFML-TR-71-249, Battelle (December 1971) (Battelle Source M-465).
6.3.5.1.8(a)
Ruff, P.E., “Effect of Manufacturing Processes on Structural Allowables—Phase I,” AFWAL-TR-85-4128, Battelle (January 1986) (Battelle Source M-654).
6.3.5.1.8(b)
Korth, G.E. and Smokik, G.R., “Status Report of Physical and Mechanical Test Data of Alloy 718”, EG&G Idaho Inc., TREE-1254 (March 1978) (Battelle Source M-603).
6.3.5.1.8(c)
Unpublished data from F109 Engine Development Program conducted by Garrett provide by G.J. Petrak, AFSC/MLSE to H. Mindlin, Battelle, July 7, 1986.
6.3.5.1.9(a)
James, L.A., “Heat-to-Heat and/or Melt Practice Variations in Crack Growth Behavior of Inconel 718”, Mechanical Properties Test Data for Structural Materials, Quarterly Report for Period Ending October 31, 1977, Report ORNL-5349, pp. 196-199, Oak Ridge National Laboratory (December 1977).
6.3.5.1.9(b)
Mills, W.J. and James, L.A., “Effect of Heat-Treatment on Elevated Temperature FatigueCrack Growth Behavior of Two Heats of Alloy 718”, ASME Paper 78-WA-PVP-3 (December 1978).
6.3.5.1.9(c)
James, L.A., “Investigation of Potential Product Form Effects Upon the Fatigue-Crack Growth Behavior of Alloy 718”, Mechanical Properties Test Data for Structural Materials, Semiannual Progress Report for Period Ending July 31, 1979, Report ORNL/BRP-79/5, pp. 5.1-5.4, Oak Ridge National Laboratory (October 1979).
6.3.5.1.9(d)
James, L.A., “The Effect of Product Form Upon Fatigue-Crack Growth Behavior in Alloy 718”, Report HEDL-TME-80-11, Hanford Engineering Development Laboratory (March 1980).
6.3.5.1.9(e)
James, L.A. and Mills, W.J., “Effect of Heat-Treatment and Heat-to-Heat Variations in the Fatigue-Crack Growth Response of Alloy 718—Phase I: Macroscopic Variation”, Report HEDL-TME-80-9, Hanford Engineering Development Laboratory (March 1980).
6.3.5.1.9(f)
James, L.A., “Fatigue-Crack Propagation Behavior of Inconel 718”, Report HEDL-TME-7580, Hanford Engineering Development Laboratory (September 1975).
6-185
MMPDS-06 1 April 2011 6.3.5.1.9(g)
James, L.A., “Heat-to-Heat and/or Melt Practice Variations in Crack Growth Behavior of Alloy 718”, Mechanical Properties Test Data for Structural Materials, Quarterly Progress Report for Period Ending January 31, 1978, Report ORNL-5380, pp. 153-160, Oak Ridge National Laboratory (March 1978).
6-186
MMPDS-06 1 April 2011
CHAPTER 7
MISCELLANEOUS ALLOYS AND HYBRID MATERIALS 7.1 GENERAL This chapter contains the engineering properties and related characteristics of miscellaneous alloys and hybrid materials. In addition to the usual properties, some characteristics relating to the special uses of these alloys are described. For example, the electrical conductivity is reported for the bronzes and information is included on toxicity of particles of beryllium and its compounds, such as beryllium oxide. The organization of this chapter is in sections by base metal and subdivided as shown in Table 7.1. Table 7.1. Miscellaneous Alloys Index
Section 7.2 7.2.1 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.4.2 7.5 7.5.1 7.5.2 7.6 7.6.1
Designation Beryllium Standard Grade Beryllium Copper and Copper Alloys Manganese Bronzes Copper Beryllium Copper-Nickel-Tin (Spinodal Alloy) Multiphase Alloys MP35N Alloy MP159 Alloy Aluminum Alloy Sheet Laminates 2024-T3 Aramid Fiber Reinforced Sheet Laminate 7475-T761 Aramid Fiber Reinforced Sheet Laminate Aluminum-Beryllium Hybrids Al-62Be
7.1.1 Obsolete Alloys, Tempers, and Product Forms – Table 7.1.1 includes a summary of the miscellaneous alloys and hybrid materials, tempers, and product forms that have been removed from the Handbook, along with information regarding why and when they were removed
7-1
MMPDS-06 1 April 2011
Table 7.1.1 Obsolete Miscellaneous Alloys and Hybrid Materials, Tempers, and Product Forms
Alloy
AlBronze TinBronze
Heat Treatment(s)
Product Specifi- Basis for Removal Approved Form cation Removal Item No. Mtg
As cast
Casting
QQ-C390
Cancelled specification
Casting
QQ-C390
Cancelled specification
As cast
.
7-2
89-23
NIN
Last Shown Edition
Date
78
MILHDBK5E, CN1
May 88
-
MILHDBK5E, CN1
May 88
MMPDS-06 1 April 2011
7.2 BERYLLIUM 7.2.0 GENERAL This section contains the engineering properties and related characteristics of beryllium used in aerospace structural applications. Beryllium is a lightweight, high modulus, moderate temperature capability metal that is used for specific aerospace applications. Structural designs utilizing beryllium sheet should allow for anisotropy, particularly the very low short transverse properties. Additional information on the fabrication of beryllium may be found in References 7.2.0(a) through 7.2.0(i). 7.2.1 STANDARD GRADE BERYLLIUM 7.2.1.0 Comments and Properties — Standard grade beryllium bars, rods, tubing, and machined shapes are produced from vacuum hot-pressed powder with 1½ percent maximum beryllium oxide content. These products are also available in numerous other compositions for special purposes but are not covered in this document. Sheet and plate are fabricated from vacuum hot-pressed powder with 2 percent maximum beryllium oxide content. Specifications and Properties — Material specifications for standard grade beryllium are presented in Table 7.2.1.0(a). Table 7.2.1.0(a). Material Specifications for Standard Grade Beryllium
Specification AMS 7906 AMS 7902
Form Bar, rod, tubing, and mechanical shapes Sheet and plate
Room temperature mechanical and physical properties are shown in Tables 7.2.1.0(b) and 7.2.1.0(c). Notch tensile test data are available in Reference 7.2.1.1(g). The effect of temperature on physical properties is shown in Figure 7.2.1.0. 7.2.1.0.1 Manufacturing Considerations Hot Shaping — Beryllium hot-pressed block can be forged and rolled but requires temperatures of 700 F and higher because of brittleness. A temperature range of 1000 to 1400 F is recommended. Hot shaping procedures are given in more detail in Reference 7.2.0(b). Forming — Beryllium sheet should be formed at 1300 to 1350 F, holding at temperature no more than 1.5 hours, for minimum springback. Forming above 1450 F will result in a reduction in strength. Machining — Carbide tools are most often used in machining beryllium. Mechanical metal removal techniques generally cause microcracks and metallographic twins. Finishing cuts are usually 0.002 to 0.005 inch in depth to minimize surface damage. Although most machining operations are performed without coolant, to avoid contamination of the chips, the use of coolant can reduce the depth of damage and give longer tool life. See Reference 7.2.0(c) for more information. Finish machining should be followed by chemical etching at least 0.002-inch from the surface to remove machining damage. See References 7.2.0(h) and 7.2.0(i). A combination of 1350 F stress relief followed by an 0.0005-inch etch may be necessary for close-tolerance parts. Damage-free metal removal techniques include chemical milling and electrochemical
7-3
MMPDS-06 1 April 2011 machining. The drilling of sheet may lead to delamination and breakout unless the drillhead is of the controlled torque type and the drills are carbide burr type. Joining — Parts may be joined mechanically by riveting, but only by squeeze riveting to avoid damage to the beryllium, by bolting, threading, or by press fitting specifically designed to avoid damage. Parts also may be joined by brazing, soldering, braze welding, adhesive bonding, and diffusion bonding. Fusion welding is not recommended. Brazing may be accomplished with zinc, aluminum-silicon, or silverbase filler metals. Many elements, including copper, may cause embrittlement when used as brazing filler metals. However, specific manufacturing techniques have been developed by various beryllium fabricators to use many of the common braze materials. For each method of joining specific detailed procedures must be followed, Reference 7.2.0(f). Surface Treatment — A surface treatment such as chemical etching to remove the machined surface of metal is recommended to ensure the specified properties. All design allowables herein represent material so treated. This surface treatment is especially important when beryllium is to be mechanically joined. References 7.2.0(d), 7.2.0(h), and 7.2.0(i) contain information on etching solutions and procedures. Toxicity Hazard — Particles of beryllium and its compounds, such as beryllium oxide, are toxic, so special precautions to prevent inhalation must be taken. References 7.2.1.1(a) through 7.2.1.1(e) outline the hazard and methods to control it. 7.2.1.1 Hot-Pressed Condition — The effect of temperature on the mechanical properties of hot-pressed beryllium is presented in Figures 7.2.1.1.1 and 7.2.1.1.4.
7-4
MMPDS-06 1 April 2011
Table 7.2.1.0(b). Design Mechanical and Physical Properties of Beryllium Bar, Rod, Tubing, and Mechanical Shapes
Specification . . . . . . . . . . . . . . . . . . . .
AMS 7906
Form . . . . . . . . . . . . . . . . . . . . . . . . . .
Bar, rod, tubing, and machined shapes
Condition . . . . . . . . . . . . . . . . . . . . . .
Hot pressed (ground and etched)
Thickness or diameter, in. . . . . . . . . . .
...
Basis . . . . . . . . . . . . . . . . . . . . . . . . . .
S
Mechanical Properties: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . e, percent: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ...........................
47 47 35 35 ... ... ... ... ... ... ... 2 2 42 42 20 0.10
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . .
0.067 See Figure 7.2.1.0
7-5
MMPDS-06 1 April 2011
Table 7.2.1.0(c). Design Mechanical and Physical Properties of Beryllium Sheet and Plate
Specification . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . .
AMS 7902 Sheet
Condition . . . . . . . . . . . . . . . . . . . . .
Plate Stress relieved (ground and etched)
Thickness or diameter, in. . . . . . . . . .
0.020-0.250
0.251-0.450
0.451-0.600
0.601
Basis . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
70 70
65 65
60 60
40 40
50 50
45 45
40 40
30 30
... ... ...
... ... ...
... ... ...
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
10 10
4 4
3 3
1 1
Mechanical Properties: Ftu, ksi: L ........................ LT . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ........................ LT . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ........................ LT . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent: L ........................ LT . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . µ ..........................
42.5 42.5 20.0 0.10 (L and LT)
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . .
0.067 See Figure 7.2.1.0
7-6
MMPDS-06 1 April 2011
Figure 7.2.1.0. Effect of temperature on the physical properties of beryllium (2% maximum BeO).
Figure 7.2.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and tensile yield strength (Fty) of hot-pressed beryllium bar, rod, tubing, and machined shapes.
7-7
MMPDS-06 1 April 2011
Figure 7.2.1.1.4. Effect of temperature on the tensile and compressive moduli (E and Ec) of hot-pressed beryllium bar, rod, tubing, and machined shapes.
7-8
MMPDS-06 1 April 2011
7.3 COPPER AND COPPER ALLOYS 7.3.0 GENERAL The properties of major significance in designing with copper and copper alloys are electrical and thermal conductivity, corrosion resistance, and good bearing qualities (antigalling). Copper and copper alloys are non-magnetic and can be readily joined by welding, brazing and soldering. The use of copper alloys is usually predicated upon two or more of the above properties plus the ease of casting and hot and cold working into desirable shapes. The thermally unstable range for copper and copper alloys generally begins somewhat above room temperature (150 F). Creep, stress relaxation and diminishing stress rupture strength are factors of concern above 150 F. Copper alloys frequently are used at temperatures up to 480 F. The range between 480 and 750 F is considered very high for copper alloys, since copper and many of its alloys begin to oxidize slightly above 350 F and protection may be required. Bronzes containing Al, Si, and Be oxidize to a lesser extent than the red copper alloys. Precipitation hardened alloys such as copper beryllium and copper-nickel-tin retain strength up to their aging temperatures of 500 to 750 F. Copper alloys used for bearing and wear resistance applications include, in the order of their increasing strength and load-carrying capacity, copper-tin-lead, copper-tin, silicon bronze, manganese bronze, aluminum bronze, copper-nickel-tin, and copper beryllium. Wrought copper beryllium, wrought copper-nickel-tin and cast manganese bronzes are included in MMPDS. Copper-base bearing alloys are readily cast by a number of techniques: statically sand cast, centrifugally cast into tubular shapes, and continuously cast into various shapes. Tin bronze, sometimes called phosphor bronze because phosphorous is used to deoxidize the melt and improve castability, is a low-strength alloy. It is generally supplied as a static (sand) casting or centrifugal casting (tubular shapes from rotating graphite molds). Manganese bronze is considerably stronger than tin bronze, is easily cast in the foundry, has good toughness and is not heat treated. Aluminum bronze alloys, especially those with nickel, silicon, and manganese over 2 percent, respond to heat treatment, resulting in greater strength, and higher galling and fatigue limits than manganese bronze. Aluminum bronze is used in the static and centrifugal cast form or parts may be machined from wrought rod and bar stock. Copper beryllium is the highest strength copperbase bearing material, due to its response to precipitation hardening. Copper beryllium is also available in static and centrifugal cast form but is generally used as wrought shapes, such as extrusions, forgings, and mill shapes. Copper-nickel-tin wrought alloys are available in rod, bar, tube and strip forms and as continuous cast rod, bar, tube, plate and engineered shapes. Copper beryllium and copper-nickel-tin, because of high strength, are also useful as spring materials. In this application high elastic limit, high fatigue strength as well as good electrical conductivity are significant. Copper beryllium resists softening up to 500 F, which is higher than other common copper alloys. Copper beryllium springs are usually fabricated from strip or wire. Consult References 7.3.0(a) through 7.3.0(c) for more information.
7-9
MMPDS-06 1 April 2011 7.3.1 MANGANESE BRONZES 7.3.1.0 Comments and Properties — The manganese bronzes are also known as the highstrength yellow brasses and leaded high-strength yellow brasses. These alloys contain zinc as the principal alloying element with smaller amounts of iron, aluminum, manganese, nickel, and lead present. These bronzes are easily cast. Some material specifications for manganese bronzes are presented in Table 7.3.1.0(a). A cross-index to CDA and former QQ-C-390 designations is presented in Table 7.3.1.0(b). Room temperature mechanical properties are shown in Tables 7.3.1.0(c) and 7.3.1.0(d). Table 7.3.1.0(a). Material Specifications for Manganese Bronzes
Specification
Form
AMS 4860 AMS 4862
Casting Casting
Table 7.3.1.0(b). Cross Index
Copper Alloy UNS No.
CDA Alloy No.
Former QQ-C-390 Alloy No.
C86300 C86500
863 865
C7 C3
7-10
MMPDS-06 1 April 2011
Table 7.3.1.0(c). Design Mechanical and Physical Properties of C86500 Manganese Bronze
Specification . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . . Location within casting . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . µ ............................. Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)( F) . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)( F)/ft] . . . . . . . . . . . . α, 10-6 in./in/ F . . . . . . . . . . . . . . . . . . Electrical conductivity, % IACS . . . . . a
AMS 4860 Sand and centrifugal casting As cast Any area S 65a 25a ... ... ... ... ... ... 20a 15.0 ... ... ... 0.301 0.09 (at 68 F) 50 (at 68 F) 11.3 (68 to 212 F) 22.0
When specified, conformance to tensile property requirements is determined by testing specimens cut from casting.
7-11
MMPDS-06 1 April 2011
Table 7.3.1.0(d). Design Mechanical and Physical Properties of C86300 Manganese Bronze
Specification . . . . . . . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . Location within casting . . . . . . . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . . . . . . . e, percent . . . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . . . . . . µ ................................ Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)( F) . . . . . . . . . . . . . . . . . . . . . K, Btu/[(hr)(ft2)( F)/ft] . . . . . . . . . . . . . . . α, 10-6 in./in/ F . . . . . . . . . . . . . . . . . . . . . Electrical conductivity, % IACS . . . . . . . . a
AMS 4862 Sand and centrifugal casting As cast Any area S 110a 60a ... ... ... ... ... ... 12a 14.2 ... ... ... 0.283 0.09 (at 68 F) 20.5 (at 68 F) 12.0 (68 to 500 F) 8.0
When specified, conformance to tensile property requirements is determined by testing specimens cut from casting.
7-12
MMPDS-06 1 April 2011 7.3.2 COPPER BERYLLIUM 7.3.2.0 Comments and Properties — Copper beryllium refers to a family of copper-base alloys containing beryllium and cobalt or nickel which cause the alloys to be precipitation hardenable. Data for only one high-strength alloy, designated C17200, which contains 1.90 percent (nominal) beryllium, are presented in this section. This alloy is suitable for parts requiring high strength, good wear, and corrosion resistance. Alloy C17200 is available in the form of rod, bar, shapes, mechanical tubing, strip, and casting. Manufacturing Considerations — The heat treatable tempers of rod and bar are designated TB00 (AMS 4650) for solution-treated or TD04 (AMS 4651) for solution-treated plus cold worked conditions. After fabrication operations, the material may be strengthened by precipitation heat treatment (aging). Rod and bar are also available from the mill in the TF00 (AMS 4533) and TH04 (AMS 4534) conditions. Mechanical tubing is available from the mill in TF00 (AMS 4535) condition. Machining operations on rod, bar, and tubing are usually performed on material in the TF00 or (TH04) conditions. This eliminates the volumetric shrinkage of 0.02 percent, which occurs during precipitation hardening, as a factor in maintaining final dimensional tolerances. This material has good machinability in all conditions. Strip is also available in the heat-treatable condition. Parts are stamped or formed in a heat-treatable temper and subsequently precipitation heat treated. For strip, the heat-treatable tempers are designated TB00 (AMS 4530, ASTM B194), TD01 (ASTM B194), TD02 (AMS 4532, ASTM B194), and TD04 (ASTM B194), indicating a progressively greater amount of cold work by the mill. When parts produced from these tempers are precipitation heat treated by the user, the designations become TF00, TH01, TH02, and TH04, respectively. Strip is also available from the mill for the hardened conditions. Design values for these conditions are not included. Environmental Considerations — The copper beryllium alloys have good corrosion resistance and are not susceptible to hydrogen embrittlement. The maximum service temperature for C17200 copper beryllium products is 500 F for up to 100 hours. Specifications and Properties — A cross-index to previous and current temper designations for C17200 alloy is presented in Table 7.3.2.0(a). Table 7.3.2.0(a). Cross-Index to Previous and Current Temper Designations for C17200 Copper Beryllium
Previous Temper
Current ASTM Temper
A AT ¼H ¼HT ½H ½HT H HT
TB00 TF00 TD01 TH01 TD02 TH02 TD04 TH04
Material specifications for alloy C17200 are presented in Table 7.3.2.0(b). Room temperature mechanical properties are shown in Tables 7.3.2.0(c) through 7.3.2.0(g). The effect of temperature on physical properties is depicted in Figure 7.3.2.0.
7-13
MMPDS-06 1 April 2011 Table 7.3.2.0(b). Material Specifications for C17200 Copper Beryllium Alloy
Specification ASTM B194 AMS 4530 AMS 4532 AMS 4650 AMS 4533 AMS 4535 AMS 4651 AMS 4534
Form Strip (TF00, TH01, TH02, TH04) Strip (TF00) Strip (TH02) Bar, rod, shapes, and forgings (TF00) Bar and rod (TF00) Mechanical tubing (TF00) Bar and rod (TF04) Bar and rod (TH04)
The temper index for C17200 alloy is as follows: Section 7.3.2.1 7.3.2.2
Temper TF00 TH04
7.3.2.1 TF00 Temper — Typical tensile and compressive stress-strain and tangent-modulus curves are presented in Figures 7.3.2.1.6(a) and 7.3.2.1.6(b). 7.3.2.2 TH04 Temper — Typical tensile and compressive stress-strain and tangent-modulus curves are presented in Figure 7.3.2.2.6.
7-14
MMPDS-06 1 April 2011
Table 7.3.2.0(c). Design Mechanical and Physical Properties of C17200 Copper Beryllium Strip
Specification . . . . . . . . . . . . . . . . . .
ASTM B194 AMS 4530
ASTM B194
Form . . . . . . . . . . . . . . . . . . . . . . . . .
ASTM B194 AMS 4532
ASTM B194
Strip
Condition . . . . . . . . . . . . . . . . . . . . .
TF00
TH01
TH02
TH04
Thickness, in. . . . . . . . . . . . . . . . . . .
0.188
0.188
0.188
0.188
Basis . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
165 ...
175 ...
185 ...
190 ...
140 ...
150 ...
160 ...
165 ...
140 140 90
150 150 90
160 160 92
165 165 95
214 280
227 297
240 314
247 323
196 210
210 225
224 240
231 247
1
1
Mechanical Properties: Ftu, ksi: L......................... LT . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L......................... LT . . . . . . . . . . . . . . . . . . . . . . . Fcya, ksi: (Estimate) L......................... LT . . . . . . . . . . . . . . . . . . . . . . . Fsua, ksi (Estimate) . . . . . . . . . . . . . Fbrua, ksi: (Estimate) (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . Fbrya, ksi: (Estimate) (e/D = 1.5) . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . e, percent: L.........................
3
2.5
E, 103 ksi . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . µ ...........................
18.5 ... 7.3 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . .
0.298 See Figure 7.3.2.0 for TF00 temper
a
These properties do not represent values derived from tests, but are estimates.
7-15
MMPDS-06 1 April 2011
Table 7.3.2.0(d). Design Mechanical and Physical Properties of C17200 Copper Beryllium Rod and Bar
Specification . . . . . . . . . . . . . . .
AMS 4650 and AMS 4533
Form . . . . . . . . . . . . . . . . . . . . . .
Rod and bar
Condition . . . . . . . . . . . . . . . . . .
TF00
Thickness, in. . . . . . . . . . . . . . . .
1.500
1.501-2.000
2.001-3.000
3.001-3.500
3.501-4.000
Basis . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
S
165 ...
165 158
165 158
165 158
165 158
140 ...
140 137
140 137
140 137
140 137
150 ... ...
149 142 94
145 142 94
143 142 94
139 142 94
226 290
226 290
226 290
226 290
226 290
200 225
200 225
200 225
200 225
200 225
4b
4b
4b
3
3
Mechanical Properties: Ftu, ksi: L...................... ST . . . . . . . . . . . . . . . . . . . . Fty, ksi: L...................... ST . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L...................... ST . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . e, percent: L...................... E, 103 ksi . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . µ ........................
18.5 18.7 7.3 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . .
0.298 See Figure 7.3.2.0
a b
Bearing values are “dry pin” values per Section 1.4.7.1. AMS 4650 specifies e = 3 percent.
7-16
MMPDS-06 1 April 2011
Table 7.3.2.0(e). Design Mechanical and Physical Properties of C17200 Copper Beryllium Rod and Bar
Specification . . . . . . . . . . . . . . . . . . .
AMS 4651
Form . . . . . . . . . . . . . . . . . . . . . . . . . .
Rod and bar
Condition . . . . . . . . . . . . . . . . . . . . . .
TF04
Thickness, in. . . . . . . . . . . . . . . . . . . .
0.375
0.376-1.000
1.001-1.500
1.501-2.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
S
185 ...
180 ...
175 ...
175 169
145 ...
145 ...
145 ...
145 140
... ... ...
148 ... 89
148 ... 90
148 154 93
... ...
242 306
235 298
235 298
... ...
207 225
207 225
207 225
1
1
2
2
Mechanical Properties: Ftu, ksi: L.......................... ST . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L.......................... ST . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L.......................... ST . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . e, percent: L.......................... E, 103 ksi . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . µ ............................
18.5 18.7 7.3 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . . . .
0.298 ...
a
Bearing values are “dry pin” values per Section 1.4.7.1.
7-17
MMPDS-06 1 April 2011
Table 7.3.2.0(f). Design Mechanical and Physical Properties of C17200 Copper Beryllium Rod and Bar
Specification . . . . . . .
AMS 4534
Form . . . . . . . . . . . . . .
Rod and bar
Condition . . . . . . . . . .
TH04 0.375
Thickness, in. . . . . . . . Basis . . . . . . . . . . . . . .
A
B
0.3760.999 A
Mechanical Properties: Ftu, ksi: L . . . . . . . . . . . . . . 182 188 180 ST . . . . . . . . . . . . . ... ... ... Fty, ksi: L . . . . . . . . . . . . . . 157 165 154 ST . . . . . . . . . . . . . ... ... ... Fcy, ksi: L . . . . . . . . . . . . . . ... ... 157 ST . . . . . . . . . . . . . ... ... ... Fsu, ksi . . . . . . . . . . ... ... 89 Fbrub, ksi: (e/D = 1.5) . . . . . . ... ... 242 (e/D = 2.0) . . . . . . ... ... 306 b Fbry , ksi: (e/D = 1.5) . . . . . . ... ... 220 ... 239 (e/D = 2.0) . . . . . . ... e, percent (S-Basis): L .............. 3 ... 3
1.0001.499
1.5001.999
2.5003.000
B
A
B
A
B
A
B
A
B
186 ...
177a ...
184 ...
177 167
183 173
175 168
181 174
172 167
178 173
162 ...
150a ...
162 ...
150 145
158 153
147 142
155 150
145 140
152 147
166 ... 92
153 ... 91
164 ... 95
153 160 94
162 168 97
150 156 95
158 165 98
148 154 94
155 162 96
250 317
238 302
247 313
238 302
246 312
235 298
243 308
231 293
239 303
231 251
214 233
228 248
214 233
226 245
210 228
221 240
207 225
217 236
...
3
...
3
...
3
...
3
...
E, 103 ksi . . . . . . . . Ec, 103 ksi . . . . . . . G, 103 ksi . . . . . . . µ ..............
18.5 18.7 7.3 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . C, K, and α . . . . . .
0.298 ...
a b
2.0002.499
A-Basis value is specification minimum. The rounded T99 values are Ftu(L) = 178 ksi and Fty = 152 ksi. Bearing values are “dry pin” values per Section 1.4.7.1.
7-18
MMPDS-06 1 April 2011 Table 7.3.2.0(g). Design Mechanical and Physical Properties of C17200 Copper Beryllium Mechanical Tubing
Specification . . . . . . . . . . . . . . . . . . .
AMS 4535
Form . . . . . . . . . . . . . . . . . . . . . . . . . .
Mechanical tubing
Condition . . . . . . . . . . . . . . . . . . . . . .
TF00
Outside Diameter, in. . . . . . . . . . . . . .
2.499
2.500-12.000
Wall Thickness, in. . . . . . . . . . . . . . .
0.749
0.750-2.000
Basis . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L.......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L.......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L.......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . . . e, percent (S-Basis): L..........................
A
B
A
B
161 ...
167 ...
161 157
167 163
126 ...
136 ...
126 124
136 134
134 ... 92
145 ... 95
134 135 92
145 146 95
228 287
237 298
228 287
237 298
183 206
197 222
183 206
197 222
3
...
3
...
E, 103 ksi . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . . . µ ............................
18.5 18.7 7.3 0.27
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . . . C, Btu/(lb)( F) . . . . . . . . . . . . . . . . .
0.298 See Figure 7.3.4.0
a
Bearing values are “dry pin” values per Section 1.4.7.1.
7-19
MMPDS-06 1 April 2011
Figure 7.3.2.0. Effect of temperature on the physical properties of copper beryllium (TF00).
Figure 7.3.2.1.6(a). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for C17200 copper beryllium bar and rod in TF00 temper.
7-20
MMPDS-06 1 April 2011
Figure 7.3.2.1.6(b). Typical tensile and compressive stress-strain and compressive tangent-modulus curves for C17200 copper beryllium mechanical tubing in TF00 temper.
Figure 7.3.2.2.6. Typical tensile and compressive stress-strain and compressive tangent-modulus curves for C17200 copper beryllium bar and rod in TH04 temper.
7-21
MMPDS-06 1 April 2011 7.3.3 COPPER-NICKEL-TIN (SPINODAL ALLOY) 7.3.3.0 Comments and Properties — Spinodal alloys are a family of alloys that are hardenable by the spinodal decomposition of a solid solution. The material described in AMS 4596 is a copper alloy of Cu-15Ni-8Sn composition, designated UNS C72900, manufactured using wrought processes on vertically continuous cast sections. The process for finishing relies on spinodal hardening assisted by ordering transformations to achieve strength. This cast, hot worked and spinodally hardened condition produces high strength with good ductility for a copper alloy, approaching that for copper beryllium. Large section cast and wrought C72900 alloy is available in the form of rod, bar, tube and flat products and as a non-wrought system (C96900) in rod, bar, tube, plate and engineered continuous cast shapes. Additions of cold work for hot worked material markedly increase strength and ductility. Manufacturing Considerations — This material is available in the mill-hardened condition to meet the targeted mechanical property combinations afforded by the hardening nature of the alloy. The temper designation for wrought spinodal alloy C72900 made using the cast and hot working process is TX00, incorporating solution annealing and spinodal hardening treatments prior to finishing. The ASTM TX00 temper designation is recognized in AMS 4596 for rod, bars and tube products. Rod, bar and tube with cold work incorporated prior to final spinodal hardening relate to AMS 4597 and the ASTM temper designation is TS. Environmental Considerations — The Cu-15Ni-8Sn alloy system in different tempers have very good corrosion resistance and are not susceptible to hydrogen embrittlement and resist cracking in hydrogen sulfide and chloride environments according to NACE publications. The electrical conductivity of TX00 wrought rod product at room temperature is 8.0 +/- 0.2 % IACS (International Annealed Copper Standard). Measurements were made on material manufactured from hot worked heavy cast sections which were spinodally hardened from which the mechanical property data were created for this standard. Hardness of TX00 wrought rod product at room temperature averages HRC 31.3 with a standard deviation approaching 1.0 over the size range of 1 - 8.5 inch diameter and a specification minimum of HRC30. TX and TS tempers have a demonstrated significant tribological benefit over other copper alloys in a number of heavy load applications in environmentally challenging environments. Specifications and Properties —Material specifications for alloy Cu-15Ni-8Sn (ToughMet 3) are presented in Table 7.3.3.0(a). Room temperature mechanical properties are shown in Table 7.3.3.0(b) and Table 7.3.3.0(c). . Table 7.3.3.0(a). Material Specifications for Copper-Nickel-Tin Alloy
Specification AMS 4596 AMS 4597
Form Bars, Rods, Tubes (TX00) Bars, Rods (TX TS)
7-22
MMPDS-06 1 April 2011 The temper index for Cu-Ni-Sn alloy is as follows: Section 7.3.3.1 7.3.3.2
Temper TX00 TX TS
7.3.3.1 TX00 Temper — Typical tensile and compressive stress-strain and tangent-modulus curves are presented in Figures 7.3.3.1.6(a) and 7.3.3.1.6(b). Typical full-range stress-strain curves are presented in Figure 7.3.3.1.6(c). 7.3.3.2 TX TS Temper — Typical tensile and compressive stress-strain and tangent-modulus curves are presented in Figures 7.3.3.2.6(a) and 7.3.3.2.6(b). Typical full-range stress-strain curves are presented in Figure 7.3.3.2.6(c).
7-23
MMPDS-06 1 April 2011 Table 7.3.3.0(b). Design Mechanical and Physical Properties of Cu-15Ni-8Sn (ToughMet 3), Bar, Rod, and Tubes AMS 4596 Specification . . . . . . . .
Form . . . . . . . . . . . . . . Temper . . . . . . . . . . . .
Tubes
Bars and Rods
Solution Annealed and Spinodal Hardened (TX 00)
Diameter, in. . . . . . . . .
1.100-6.500 (OD)
Basis . . . . . . . . . . . . . .
S
A
B
A
B
130 ...
132 ...
135 ...
127 ...
131 ...
101 ...
107 ...
110 ...
107 ...
112 ...
... ...
120 ...
124 ...
119 ...
125 ...
... ...
87 ...
89 ...
86 ...
89 ...
... ...
205 ...
210 ...
180 ...
186 ...
... ...
264 ...
270 ...
235 ...
242 ...
... ...
159 ...
164 ...
161 ...
169 ...
... ... 8 ...
193 ... 9.5 ...
198 ... ... ...
190 ... 3 ...
199 ... ... ...
Mechanical Properties: Ftu, ksi: L .................. T .................. Fty, ksi: L .................. T .................. Fcy, ksi: L .................. T .................. Fsu, ksi . . . . . . . . . . . . . . La . . . . . . . . . . . . . . . . T ................. Fbrub, ksi (e/D = 1.5) : L ................... T ................. Fbrub, ksi (e/D = 2.0) : L ................... T ................. Fbryb, ksi (e/D = 1.5) : L ................... T ................. Fbryb, ksi (e/D = 2.0) : L ................... T ................. e, percent (S-Basis) . . . . RA, percent (S-Basis) . .
1.000-4.249
E, 103 ksi : . . . . . . . . . . . Ec, 103 ksi: . . . . . . . . . . . G, 103 ksi: . . . . . . . . . . . . F, . . . . . . . . . . . . . . . . .
20.9 20.5 7.8 0.33
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . α, 10-6 in./in./EF . . . . . . .
0.325 0.10 (250EF) 30 (250EF) 9.1 (68 EF to 300 EF)
4.250-8.500
Issued: Apr 2009, MMPDS-04CN1, Item 07-40. a The L shear properties were based on longitudinal samples loaded in the radial direction ( L-R) per ASTM B 769 b Bearing values are Adry pin@ values per Section 1.4.7.1.
7-24
MMPDS-06 1 April 2011 Table 7.3.3.0(c). Design Mechanical and Physical Properties of Cu-15Ni-8Sn (ToughMet 3), Bar, and Rod AMS 4597 Specification . . . . . . . . . .
Form . . . . . . . . . . . . . . . .
Bars and Rods
Temper . . . . . . . . . . . . . .
Solution Annealed, Cold Finished, and Spinodal Hardened (TX TS) 0.500-1.599
Diameter, in. . . . . . . . . . . Basis . . . . . . . . . . . . . . . . Mechanical Properties: Ftu, ksi: L T Fty, ksi: L T Fcy, ksi: L T Fsu, ksi . . . . . . . . . . . . . . . . La . . . . . . . . . . . . . . . . T ................. Fbrub, ksi (e/D = 1.5) : L ................... T ................. Fbrub, ksi (e/D = 2.0) : L ................... T ................. Fbryb, ksi (e/D = 1.5) : L ................... T ................. Fbryb, ksi (e/D = 2.0) : L ................... T ................. e, percent (S-Basis) . . . . RA, percent (S-Basis) . .
a b
1.600-2.750
A
B
A
B
165 ...
170 ...
154 ...
161 ...
155 ...
161 ...
146 ...
152 ...
145 ...
150 ...
145 ...
151 ...
91 ...
93 ...
88 ...
92 ...
205 ...
211 ...
200 ...
209 ...
270 ...
278 ...
240 ...
251 ...
184 ...
191 ...
186 ...
193 ...
216 ... 6 ...
224 ... ... ...
206 ... 3 ...
214 ... ... ...
E, 103 ksi : . . . . . . . . . . . Ec, 103 ksi: . . . . . . . . . . . G, 103 ksi: . . . . . . . . . . . . F, . . . . . . . . . . . . . . . . .
20.9 21.3 8.0 0.32
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . K, Btu/[(hr)(ft2)(EF)/ft] . α, 10-6 in./in./EF . . . . . . .
0.325 0.10 (at 250 F) 29 (at 250 F) 9.1 (from 68 to 300 F)
Issued: Apr 2009, MMPDS-04CN1, Item 08-34. The L shear properties were based on longitudinal samples loaded in the radial direction ( L-R) per ASTM B769 Bearing values are Adry pin@ values per Section 1.4.7.1.
7-25
MMPDS-06 1 April 2011
140 >4.25-8.50 in
Cu-15Ni-8Sn ToughMet 3 Bar
120
100
1.00-4.25 in.
Stress, ksi
Longitudinal 80
60 TYPICAL 40 Ramberg-Osgood n (1.00-4.25 in.) = 18
20
n (>4.25-8.50 in.) = 17
TYS 116 118
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.3.3.1.6(a). Typical tensile stress-strain curves for ToughMet 3 (TX 00) Cu-15Ni-8Sn bar at room temperature.
140 Cu-15Ni-8Sn ToughMet 3 Bar
120
100
t = 1.000-4.250 in.
Stress, ksi
t = >4.250-8.500 in. 80
60
Ramberg-Osgood
CYS (ksi)
n (1.00-4.25 in.) = 17 n (>4.25-8.50 in.) = 14
40
20
130 131
TYPICAL Longitudinal
0 0
5
10
15
20
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi.
Figure 7.3.3.1.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for ToughMet 3 (TX 00) Cu-15Ni-8Sn bar at room temperature.
7-26
MMPDS-06 1 April 2011
140
X
1.00-4.25 inch
X 120
>4.25-8.50 inch
100
Stress, ksi
80
60
Cu-15Ni-8Sn
40
ToughMet 3 Bar Longitudinal 20
TYPICAL
0 0.00
0.05
0.10
0.15
0.20
Strain, in./in.
Figure 7.3.3.1.6(c). Typical tensile stress-strain curves (full-range) for ToughMet 3 (TX 00) Cu-15Ni-8Sn bar at room temperature.
7-27
MMPDS-06 1 April 2011 180 ToughMet 3 TX TS Rod and Bar
160
0.50-1.59 in. Dia.
140
1.60-2.75 in. Dia.
Stress, ksi
120 100 80
Longitudinal
60
TYPICAL Ramberg-Osgood
40
(Dia.: 0.50-1.59) n1 = 11.9 (Dia.: 0.50-1.59) n2 = 53.8
20
K1 = 2.487
TYS 167
K2 = 2.277
(Dia.: 1.60-2.75) n = 18.7
162
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.3.3.2.6(a). Typical tensile stress-strain curves for ToughMet 3 (TX TS) Cu15Ni-8Sn bar at room temperature.
180
0.50-1.59 in Dia.
ToughMet 3 TX TS Rod and Bar
160 140
Stress, ksi
120
1.60-2.75 in Dia.
100 80
TYPICAL 60 Longitudinal 40
Ramberg-Osgood CYS
20
(0.50-1.59 in. Dia.) n = 15.2
164
(1.60-2.75 in. Dia.) n = 14.5
159
0 0
5
10
15
20
Strain, 0.001 in./in. Compressive Tangent Modulus, 103 ksi. Figure 7.3.3.2.6(b). Typical compressive stress-strain and compressive tangentmodulus curves for ToughMet 3 (TX TS) Cu-15Ni-8Sn bar at room temperature.
7-28
MMPDS-06 1 April 2011
180
0.50-1.59 in. Dia.
X
X
160
1.60-2.75 in Dia.
140
120
Stress, ksi
100
80
60
Longitudinal
40 ToughMet 3 TX TS Rod and Bar
20
0 0.00
TYPICAL
0.02
0.04
0.06
0.08
0.10
0.12
Strain, in./in.
Figure 7.3.3.2.6(c). Typical tensile stress-strain curves (full-range) for ToughMet 3 (TX TS) Cu-15Ni-8Sn bar at room temperature.
7-29
MMPDS-06 1 April 2011
This page is intentionally blank.
7-30
MMPDS-06 1 April 2011
7.4 MULTIPHASE ALLOYS 7.4.0 GENERAL This section contains the engineering properties of the “Multiphase” alloys. These alloys, based on the quaternary of cobalt, nickel, chromium, and molybdenum, can be work-strengthened and aged to ultrahigh strengths with good ductility and corrosion resistance. 7.4.1 MP35N ALLOY 7.4.1.0 Comments and Properties — MP35N is a vacuum induction, vacuum arc remelted alloy which can be work-strengthened and aged to ultrahigh strengths. This alloy is suitable for parts requiring ultrahigh strength, good ductility and excellent corrosion and oxidation resistance up to 700 F. Manufacturing Considerations — The work hardening characteristics of MP35N are similar to 304 stainless steel. Drawing, swaging, rolling, and shear forming are excellent deforming methods for work strengthening the alloy. The machinability of MP35N is similar to the nickel-base alloys. Environmental Considerations — MP35N has excellent corrosion, crevice corrosion and stress corrosion resistance in seawater. Due to the passivity of MP35N, a galvanically active coating, such as aluminum or cadmium, may be required to prevent galvanic corrosion of aluminum joints. Initial tests have indicated that MP35N does not appear to be susceptible to hydrogen embrittlement. Short time exposure to temperatures above 700 F causes a decrease in ductility (elongation and reduction of area) at temperature. Mechanical properties at room temperature are not affected significantly by unstressed exposure to temperatures up to 50 degrees below the aging temperature (1000 to 2000 F) for up to 100 hours. Heat Treatment — After work strengthening, MP35N is aged at 1000 to 1200 F for 4 to 4½ hours and air cooled. Material specifications for MP35N are presented in Table 7.4.1.0(a). The room temperature mechanical and physical properties for MP35N are presented in Tables 7.4.1.0(b) and 7.4.1.0(c). The effect of temperature on physical properties is shown in Figure 7.4.1.0. Table 7.4.1.0(a). Material Specifications for MP35N Alloy
Specification AMS 5844 AMS 5845
Form Bar (solution treated, and cold drawn) Bar (solution treated, cold drawn and aged)
7.4.1.1 Cold Worked and Aged Condition — Elevated temperature curves for various mechanical properties are shown in Figures 7.4.1.1.1, 7.4.1.1.4(a) and 7.4.1.1.4(b), and 7.4.1.1.5. Typical tensile stress-strain curves at room and elevated temperatures are shown in Figure 7.4.1.1.6.
7-31
MMPDS-06 1 April 2011
Table 7.4.1.0(b). Design Mechanical and Physical Properties of MP35N Alloy Bar
Specification . . . . . . . . . . . . . . . . .
AMS 5845
Form . . . . . . . . . . . . . . . . . . . . . . .
Bar
Condition . . . . . . . . . . . . . . . . . . .
Solution treated, cold drawn, and aged
Diameter, in.a . . . . . . . . . . . . . . . .
#0.800
0.801-1.000
1.001-1.750
Basis . . . . . . . . . . . . . . . . . . . . . . .
S
S
S
260 ...
260 ...
260 ...
230 ...
230 ...
230 ...
... ... 145
... ... 145
... ... ...
... ...
... ...
... ...
... ...
... ...
... ...
8
8
8
35
35
35
Mechanical Properties: Ftu, ksi: L ....................... LT . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ....................... LT . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ....................... LT . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . Fbry, ksi: (e/D = 1.5) . . . . . . . . . . . . . . . . (e/D = 2.0) . . . . . . . . . . . . . . . . e, percent (S-Basis): L ....................... RA, percent (S-Basis): L ....................... E, 103 ksi . . . . . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . . . . . µ .........................
34.0 ... 11.7 ...
Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . C, Btu/(lb)(EF) . . . . . . . . . . . . . . K and α . . . . . . . . . . . . . . . . . . . .
0.304 0.18 (32E to 70EF) See Figure 7.4.1.0
Issued: Aug 1974, MIL-HDBK-5B, CN3, Item 72-35 Last Revised: Apr 2009, MMPDS-04CN1, Item 08-21. a Tensile specimens are located at T/2 location for bars 0.800 inch and under in diameter or distance between parallel sides and at T/4 location of larger size bars. The strength of bar, especially large diameter, may vary significantly from center to surface; consequently, caution should be exercised in machining parts from bars over 0.800 inch in diameter since strengths may be lower than design values depending on depth of material removed from surface.
7-32
MMPDS-06 1 April 2011
Table 7.4.1.0(c). Design Mechanical and Physical Properties of MP35N Alloy Bar
Specification ......................................
AMS 5844
Form ..................................................
Bar
Condition ...........................................
Solution treated and cold drawn
Diameter, in.a .....................................
1.000
1.001-1.750
Basis ..................................................
S
S
260 ...
260 ...
230 ...
230 ...
... ... 145
... ... ...
... ...
... ...
... ...
... ...
8
8
35
35
Mechanical Properties: Ftu, ksi: L .................................................. LT ............................................... Fty, ksi: L .................................................. LT ............................................... Fcy, ksi: L .................................................. LT ............................................... Fsu, ksi ............................................. Fbru, ksi: (e/D = 1.5) .................................. (e/D = 2.0) .................................. Fbry, ksi: (e/D = 1.5) .................................. (e/D = 2.0) .................................. e, percent: L .................................................. RA, percent: L .................................................. E, 103 ksi ........................................ Ec, 103 ksi ...................................... G, 103 ksi ........................................ µ .......................................................
34.0 ... 11.7 ...
Physical Properties: ω, lb/in.3 .......................................... C, Btu/(lb)( F) .................................. K and α ...........................................
0.304 0.18 (32 to 70 F) See Figure 7.4.1.0
Issued: Aug 1974, MIL-HDBK-5B, CN3, Item 72-35 Last Revised: Dec 1992, MIL-HDBK-5F, CN2, Item 91-20. a Tensile specimens are located at T/2 location for bars 0.800 inch and under in diameter or distance between parallel sides and at T/4 location for larger size bars. The strength of bar, especially large diameter may vary significantly from center to surface; consequently, caution should be exercised in machining parts from bars over 0.800 inch in diameter since strengths may be lower than design values depending on depth of material removed from surface.
7-33
MMPDS-06 1 April 2011
13
2 K, Btu / [(hr)(ft )(°F)/(ft)]
11
8
α
9
-6 α, 10 in./in./°F
9
7
7 K M P 35N α - B e tw e e n 7 0 °F a n d in d ic a te d te m p e ra tu re K - A t in d ica te d te m p e ra tu re
5
3 -4 0 0
-2 0 0
0
200
400
600
800
1000
1200
T e m p e ra tu re , °F
Figure 7.4.1.0. Effect of temperature on the physical properties of MP35N alloy.
100
Room Temperature Strength
Percentage of
80 F tu & F ty 60
40 MP35N bar F
= 260 ksi tu Strength at temperature
20
Exposure up to ½ hr 0 0
100
200
300
400
500
600
700
800
Tem perature, °F
Figure 7.4.1.1.1. Effect of temperature on the tensile ultimate strength (Ftu) and the tensile yield strength (Fty) of cold worked and aged MP35N bar, Ftu = 260 ksi.
7-34
MMPDS-06 1 April 2011
Percentage of Room Temperature E
1 00
80
M P 35 N bar D yna m ic m odu lus at tem pe rature E xpo sure up to ½ hr
60
N ote: T h e reductio n in dyna m ic m odu lus due to elevated tem perature m ay b e sign ificantly less than th e reductio n in static m odulu s
T Y P IC A L
40
20
0 0
20 0
4 00
600
80 0
10 00
1 200
1400
16 00
T em pe rature, °F
Figure 7.4.1.1.4(a). Effect of temperature on the dynamic tensile modulus (E) of MP35N alloy bar.
Percentage of Room Temperature G
100
80
60
M P35N bar Dynam ic m odulus at tem perature Exposure up to ½ hr
TYPIC AL
40
Note: The reduction in dynam ic m odulus due to elevated tem perature m ay be significantly less than the reduction in static m odulus.
20
0 0
200
400
600
800
1000
1200
1400
1600
Tem perature, °F
Figure 7.4.1.1.4(b). Effect of temperature on the dynamic shear modulus (G) of MP35N alloy bar.
7-35
MMPDS-06 1 April 2011
25 M P 35N bar F tu = 260 ksi E longation at tem perature E xposure up to ½ hr
Percent Elongation (e)
20
15
10
5
T Y P IC A L
0 0
100
200
300
400
500
600
700
800
T em perature, °F
Figure 7.4.1.1.5. Effect of temperature on the elongation (e) of cold worked and aged MP35N bar, Ftu = 260 ksi. 300
RT M P35N bar F tu = 2 6 0 k s i 1 /2 -h r e xp o s u re L o n g itu d in a l
240
4 0 0 oF
7 0 0 oF
Stress, ksi
180
120 R a m b e rg - O s g o o d n (R T ) = 1 3 n (4 0 0 o F ) = 1 4 n (7 0 0 o F ) = 1 5
60
T Y P IC A L 0 0
2
4
6
8
10
S tra in , 0 .0 0 1 in ./in .
Figure 7.4.1.1.6. Typical tensile stress-strain curves at room and elevated temperatures for cold worked and aged MP35N bar, Ftu = 260 ksi.
7-36
12
MMPDS-06 1 April 2011 7.4.2 MP159 ALLOY 7.4.2.0 Comments and Properties — MP159 is a vacuum induction, vacuum arc remelted alloy, based on cobalt, nickel, chromium, iron, and molybdenum, which can be work-strengthened and aged to ultrahigh strength. This alloy is suitable for parts requiring ultrahigh strength, good ductility, and excellent corrosion and oxidation resistance up to 1100 F. The alloy maintains its ultrahigh strength very well at temperatures up to 1100 F. Manufacturing Considerations — The work hardening characteristics of MP159 are similar to MP35N and 304 stainless steel. Drawing, swaging, rolling, and shear forming are excellent deforming methods for work strengthening the alloy. The machinability of MP159 is similar to MP35N and the nickelbase alloys. Environmental Considerations — MP159 has excellent corrosion, crevice corrosion, and stress corrosion resistance in various hostile environments. Due to the passivity of MP159, a galvanically active coating, such as aluminum or cadmium, may be required to prevent galvanic corrosion of aluminum joints. Initial tests have indicated that MP159 does not appear to be susceptible to hydrogen embrittlement. Heat Treatment — After work strengthening, MP159 is aged at 1200 to 1250 F ± 25 F for 4 to 4½ hours and air cooled. Material specifications for MP159 are presented in Table 7.4.2.0(a). The room temperature mechanical and physical properties for MP159 are presented in Tables 7.4.2.0(b) and 7.4.2.0(c). The effect of temperature on thermal expansion is shown in Figure 7.4.2.0. Table 7.4.2.0(a). Material Specifications for MP159 Alloy
Specification AMS 5842 AMS 5843
Form Bar (solution treated and cold drawn) Bar (solution treated, cold drawn, and aged)
7.4.2.1 Cold Worked and Aged Condition — The effect of temperature on tension modulus of elasticity and shear modulus is presented in Figure 7.4.2.1.4. A typical stress-strain curve at room temperature is shown in Figure 7.4.2.1.6.
7-37
MMPDS-06 1 April 2011
Table 7.4.2.0(b). Design Mechanical and Physical Properties of MP159 Alloy Bar
Specification .................
AMS 5843
Form ..............................
Bar
Condition ......................
Solution treated, cold drawn, and aged
Diameter, in.a ................
# 0.500
0.501-0.800
0.801-1.750
Basis ..............................
S
S
S
260 ...
260 ...
260 ...
250 ...
250 ...
250 ...
... ... 131
... ... 132b
... ... 134
... ...
... ...
... ...
... ...
... ...
... ...
6
6
6
32
32
32
Mechanical Properties: Ftu, ksi: L ............................ LT .......................... Fty, ksi: L ............................ LT .......................... Fcy, ksi: L ............................ LT .......................... Fsu, ksi ...................... Fbru, ksi: (e/D = 1.5) ............. (e/D = 2.0) ............. Fbry, ksi: (e/D = 1.5) ............. (e/D = 2.0) ............. e, percent (S-Basis): L ............................ RA, percent (S-Basis): L ............................ E, 103 ksi .................. Ec, 103 ksi ................. G, 103 ksi .................. µì ..............................
35.3 ... 11.3 0.37 (solution treated condition)
Physical Properties: ω, lb/in.3 ................... C and K .................... α, 10-6 in./in./° F .......
0.302 ... See Figure 7.4.2.0
Issued: Dec 1990, MIL-HDBK-5F, Item 89-10. Last Revised: Apr 2009, MMPDS-04CN1, Item 08-21. a Tensile specimens are located at T/2 location for bars 0.800 inch and under in diameter or distance between parallel sides and at T/4 location for larger size bars. The strength of bar, especially large diameter, may vary machining parts from bars over 0.800-inch in diameter since strengths may be lower than design values depending on depth of material removed from surface. b Design allowable values based on bar product greater than 0.76 in. in diameter.
7-38
MMPDS-06 1 April 2011
Table 7.4.2.0(c). Design Mechanical and Physical Properties of MP159 Alloy Bar
Specification .....................................
AMS 5842
Form ..................................................
Bar
Condition ..........................................
Solution treated and cold drawn
Diameter, in.a ....................................
0.500
0.501-1.750
Basis ..................................................
S
S
260 ...
260 ...
250 ...
250 ...
... ... 131
... ... ...
... ...
... ...
... ...
... ...
6
6
32
32
Mechanical Properties: Ftu, ksi: L .................................................. LT ............................................... Fty, ksi: L .................................................. LT ............................................... Fcy, ksi: L .................................................. LT ............................................... Fsu, ksi ............................................ Fbru, ksi: (e/D = 1.5) .................................. (e/D = 2.0) .................................. Fbry, ksi: (e/D = 1.5) .................................. (e/D = 2.0) .................................. e, percent: L .................................................. RA, percent: L .................................................. E, 103 ksi ........................................ Ec, 103 ksi ....................................... G, 103 ksi ....................................... µ .....................................................
35.3 ... 11.3 0.37 (solution treated condition)
Physical Properties: ω, lb/in.3 ......................................... C and K .......................................... α, 10-6 in./in./ F .............................
0.302 ... See Figure 7.4.2.0
Issued: Dec 1990, MIL-HDBK-5F, Item 89-10 a Tensile specimens are located at T/2 location for bars 0.800 inch and under in diameter or distance between parallel sides and at T/4 location for larger size bars. The strength of bar, especially large diameter may vary significantly from center to surface; consequently, caution should be exercised in machining parts from bars over 0.800 inch in diameter since strengths may be lower than design values depending on depth of material removed from surface.
7-39
MMPDS-06 1 April 2011
Figure 7.4.2.0. Effect of temperature on thermal expansion of MP159 alloy bar.
Figure 7.4.2.1.4. Effect of temperature on the tensile modulus (E) and shear modulus (G) of MP159 alloy bar.
7-40
MMPDS-06 1 April 2011
300
Longitudinal 240
Stress, ksi
180
120 Ramberg - Osgood n (RT) = 13 TYPICAL
60
Thickness ≤ 0.530 in.
0 0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.4.2.1.6. Typical tensile stress-strain curve at room temperature for cold worked and aged MP159 alloy bar.
7-41
MMPDS-06 1 April 2011
This page is intentionally blank.
7-42
MMPDS-06 1 April 2011
7.5 ALUMINUM ALLOY SHEET LAMINATES 7.5.0 GENERAL This section contains the engineering properties of aluminum alloy sheet laminates. These products consist of thin high-strength aluminum alloy sheets alternating with fiber layers impregnated with adhesive. These sheet laminates provide a very efficient structure for certain applications and exhibit excellent fatigue resistance. Tensile and compressive properties for the aluminum alloy sheet laminates were determined using test specimens similar to those used for testing conventional aluminum alloy sheet with one exception. The Iosipescu shear specimen was the most appropriate configuration for the determination of shear strength. Shear yield strength and shear ultimate strength were determined using the Iosipescu test procedure. Shear yield strength was determined at 0.2% offset from load-deformation curves. Bearing tests were conducted according to ASTM E 238, which is applicable to conventional aluminum alloy products. Bearing specimens exhibited several different types of failure and bearing strength was influenced by failure mode. Consequently, a more suitable bearing test procedure for aramid fiber reinforced aluminum alloy sheet laminates is currently being developed. However, the design values for bearing strength determined according to ASTM E 238 are conservative and are considered suitable for design. These sheet laminates exhibit low elongation as measured by the tensile test. Consequently, a more realistic measure of ductility is total strain at failure, εt, defined as the measure of strain determined from the tensile load-deformation curve at specimen failure. This measurement includes both elastic and plastic strains. The minimum total strain at failure value from the material specification shall be presented in the room temperature design allowable table. These sheet laminates are generally anisotropic. Therefore, design values for each grain orientation of the aluminum alloy sheet shall be presented for all mechanical properties, except Fsu and Fsy. The longitudinal direction is parallel to the rolling direction of the aluminum alloy sheet or length of sheet laminate, while the long transverse direction is 90 to the longitudinal direction or parallel to the width of the sheet laminate. The design values for Fcy, Fsy, Fsu, Fbry, and Fbru were derived conventionally in accordance with the guidelines. 7.5.1 2024-T3 ARAMID FIBER REINFORCED SHEET LAMINATE 7.5.1.0 Comments and Properties — This product consists of thin 2024-T3 sheets alternating with aramid fiber layers embedded in a special resin. Nominal thickness of aluminum sheet is 0.012 inch with a prepreg nominal thickness of 0.0085 inch. The primary advantage of this product is the significant improvement in fatigue and fatigue crack growth properties compared to conventional aluminum alloy structures. The product also has good damping capacity and resistance to impact. Compared to 7475-T761 aramid fiber-reinforced sheet laminate, this product has better formability and damage tolerance characteristics. Manufacturing Considerations — This product can be fabricated by conventional metal practices for machining, sawing, drilling, joining with fasteners and can be inspected by conventional procedures. Environmental Considerations — This product has good corrosion resistance. The maximum service temperature is 200 F. Specification and Properties — A material specification is presented in Table 7.5.1.0(a). Room temperature mechanical properties are presented in Table 7.5.1.0(b).
7-43
MMPDS-06 1 April 2011 Table 7.5.1.0(a). Material Specifications for 2024-T3 Aramid Fiber Reinforced Sheet Laminate
Specification a
Form
AMS 4254a Inactive for new design.
Sheet laminate
7.5.1.1 T3 Temper — Typical tensile and compressive stress-strain and tangent-modulus curves are shown in Figures 7.5.1.1.6(a) through 7.5.1.1.6(l).
7-44
MMPDS-06 1 April 2011 Table 7.5.1.0(b). Design Mechanical and Physical Properties of 2024-T3 Aluminum Alloy, Aramid Fiber Reinforced, Sheet Laminate Specification . . . . . . . . . . . . . . . AMS 4254e Form . . . . . . . . . . . . . . . . . . . . . . Aramid fiber reinforced sheet laminate Laminate lay-up . . . . . . . . . . . . . 2/1 3/2 4/3 5/4 Nominal thickness, in. . . . . . . . . 0.032 0.053 0.074 0.094 Basis . . . . . . . . . . . . . . . . . . . . . . S S S S Mechanical Properties: Ftu, ksi: L ....................... 96 101 101 90 LT . . . . . . . . . . . . . . . . . . . . . . 44 43 42 48 Fty, ksi: L ....................... 49 49 49 48 LT . . . . . . . . . . . . . . . . . . . . . . 30 30 30 33 Fcy, ksi: L ....................... 35 34 33 35 LT . . . . . . . . . . . . . . . . . . . . . . 30 30 30 33 b b b b Fsua, ksi . . . . . . . . . . . . . . . . . . . 16 15 14 14 Fsya, ksi . . . . . . . . . . . . . . . . . . . Fbruc, ksi: 78 73 73 68 L (e/D = 1.5) . . . . . . . . . . . . . . 89 84 80 75 LT (e/D = 1.5) . . . . . . . . . . . . . 93 86 83 77 L (e/D = 2.0) . . . . . . . . . . . . . . 95 89 81 76 LT (e/D = 2.0) . . . . . . . . . . . . . Fbryc, ksi: 53 52 51 50 L (e/D = 1.5) . . . . . . . . . . . . . . 56 52 52 52 LT (e/D = 1.5) . . . . . . . . . . . . . 63 63 61 59 L (e/D = 2.0) . . . . . . . . . . . . . . 66 61 61 60 LT (e/D = 2.0) . . . . . . . . . . . . . d εt , percent: 2 2 2 2 L ....................... 12 12 12 14 LT . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi: L ....................... 9.9 9.9 9.7 9.6 LT . . . . . . . . . . . . . . . . . . . . . . 8.1 7.5 7.1 7.0 Ec, 103 ksi: L ....................... 9.5 9.4 9.3 9.1 LT . . . . . . . . . . . . . . . . . . . . . . 8.0 7.5 7.2 7.0 G, 103 ksi: L ....................... 2.7 2.5 2.4 2.2 LT . . . . . . . . . . . . . . . . . . . . . . 2.6 2.4 2.4 2.2 µ: L ....................... 0.33 0.34 0.34 0.32 LT . . . . . . . . . . . . . . . . . . . . . . 0.29 0.27 0.26 0.25 Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . 0.086 0.084 0.082 0.081 C, K, and α . . . . . . . . . . . . . . . . ... ... ... ... a b c d e
Shear values determined from data obtained using Iosipescu shear specimens. Shear ultimate strengths not determinable due to excessive deflection of specimen. Bearing values are “dry pin” values per Section 1.4.7.1 determined in accordance with ASTM E 238. Total (elastic plus plastic) strain at failure determined from stress-strain curve. Inactive for new design.
7-45
MMPDS-06 1 April 2011 .
60
Longitudinal 50
40
Stress, ksi
Long transverse 30
Ramberg-Osgood
20
n (LT - tension) = 12 Thickness: 0.032 in. Layup: 2/1
10
TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.5.1.1.6(a). Typical tensile stress-strain curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
.
60
Longitudinal 50
Stress, ksi
40
Long transverse 30
Ramberg-Osgood
20
n (LT - tension) = 9.9
Thickness: 0.053 in. Layup: 3/2
10
TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.5.1.1.6(b). Typical tensile stress-strain curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-46
MMPDS-06 1 April 2011 .
60
Longitudinal 50
Stress, ksi
40
Long transverse 30
Ramberg-Osgood
20
n (LT - tension) = 11
Thickness: 0.074 in. Layup: 4/3
10
TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.5.1.1.6(c). Typical tensile stress-strain curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
.
60
Longitudinal 50
Stress, ksi
40
Long transverse
30
Ramberg-Osgood
20
n (LT - tension) = 12
Thickness: 0.094 in. Layup: 5/4
10
TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.5.1.1.6(d). Typical tensile stress-strain curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-47
MMPDS-06 1 April 2011 .
50
TYPICAL
Long transverse Longitudinal
Stress, ksi
40
30
20
Ramberg-Osgood n (L - comp.) = 13 n (LT - comp.) = 12
10
Thickness: 0.032 in. Layup: 2/1 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 7.5.1.1.6(e). Typical compressive stress-strain and compressive tangentmodulus curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate. .
50
TYPICAL Long transverse Longitudinal
Stress, ksi
40
30
20
Ramberg-Osgood n (L - comp.) = 13 n (LT - comp.) = 13
10
Thickness: 0.053 in. Layup: 3/2 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 7.5.1.1.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-48
MMPDS-06 1 April 2011 .
50
TYPICAL Long transverse
Stress, ksi
40
Longitudinal
30
20
Ramberg-Osgood n (L - comp.) = 12 n (LT - comp.) = 12 10
Thickness: 0.074 in. Layup: 4/3 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 7.5.1.1.6(g). Typical compressive stress-strain and compressive tangentmodulus curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
.
50
TYPICAL Long transverse
Stress, ksi
40
Longitudinal
30
20
Ramberg-Osgood n (L - comp.) = 12 n (LT - comp.) = 12 10
Thickness: 0.094 in. Layup: 5/4 0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 7.5.1.1.6(h). Typical compressive stress-strain and compressive tangentmodulus curves for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-49
MMPDS-06 1 April 2011
100
.
X Longitudinal
80
Stress, ksi
60
X
Long transverse 40
Layup: 2/1 Thickness: 0.032 in.
20
TYPICAL 0 0
3
6
9
12
15
18
Strain, 0.01 in./in.
Figure 7.5.1.1.6(i). Typical tensile stress-strain curves (full range) for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
120
X
100
Longitudinal
Stress, ksi
80
60
Long transverse
40
X
Layup: 3/2 Thickness: 0.053 in.
20
TYPICAL 0 0
3
6
9
12
15
18
Strain, 0.01 in./in.
Figure 7.5.1.1.6(j). Typical tensile stress-strain curves (full range) for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-50
MMPDS-06 1 April 2011 120
X 100
Longitudinal
Stress, ksi
80
60
X
Long transverse
40
Layup: 4/3 Thickness: 0.074 in.
20
TYPICAL 0 0
3
6
9
12
15
18
Strain, 0.01 in./in.
Figure 7.5.1.1.6(k). Typical tensile stress-strain curves (full range) for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate. 120
X 100
Longitudinal
Stress, ksi
80
60
Long transverse
40
X
Layup: 5/4 Thickness: 0.094 in.
20
TYPICAL 0 0
3
6
9
12
15
18
Strain, 0.01 in./in.
Figure 7.5.1.1.6(l). Typical tensile stress-strain curves (full range) for 2024-T3 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-51
MMPDS-06 1 April 2011 7.5.2 7475-T761 ARAMID FIBER REINFORCED SHEET LAMINATE 7.5.2.0 Comments and Properties — This product consists of thin 7475-T761 sheets alternating with aramid fiber layers embedded in a special resin. Nominal thickness of aluminum sheet is 0.012 inch with a prepreg nominal thickness of 0.0085 inch. The primary advantage of this product is the significant improvement in fatigue and fatigue crack growth properties compared to conventional aluminum alloy structures. The product also has good damping capacity and resistance to impact. Manufacturing Considerations — This product can be fabricated by conventional metal practices for machining, sawing, drilling, joining with fasteners and can be inspected by conventional procedures. Environmental Considerations — This product has good corrosion resistance. The maximum service temperature is 200 F. Specifications and Properties — A material specification is presented in Table 7.5.2.0(a). Room temperature mechanical properties are presented in Table 7.5.2.0(b). Table 7.5.2.0(a). Material Specifications for 7475-T761 Aramid Fiber Reinforced Sheet Laminate
Specification
Form
AMS 4302
Sheet laminate
7.5.2.1 T761 Temper — Tensile and compressive stress-strain and tangent modulus curves are shown in Figures 7.5.2.1.6(a) through 7.5.2.1.6(f). Full-range tensile stress-strain curves are presented in Figures 7.5.2.1.6(g) through 7.5.2.1.6(j).
7-52
MMPDS-06 1 April 2011
Table 7.5.2.0(b). Design Mechanical and Physical Properties of 7475-T761 Aluminum Alloy, Aramid Fiber Reinforced, Sheet Laminate Specification .................... AMS 4302 Form ................................. Aramid fiber reinforced sheet laminate Laminate lay-up ............... 2/1 3/2 4/3 5/4 Nominal thickness, in. ...... 0.032 0.053 0.074 0.094 Basis ................................. S S S S Mechanical Properties: Ftu, ksi: L ................................. 116 114 111 103 LT ............................... 48 50 51 56 Fty, ksi: L ................................. 84 82 82 76 LT ............................... 40 42 43 48 Fcy, ksi: L ................................. 44 44 46 46 LT ............................... 45 47 48 51 Fsua, ksi ........................... 32 33 33 35 Fsya, ksi ........................... 21 22 23 24 Fbrub, ksi: L (e/D = 1.5) .............. 82 84 83 91 LT (e/D = 1.5) ............ 80 86 85 96 L (e/D = 2.0) .............. 84 88 87 104 LT (e/D = 2.0) ............ 80 86 88 108 Fbryb, ksi: L (e/D = 1.5) .............. 69 66 70 73 LT (e/D = 1.5) ............ 67 69 69 76 L (e/D = 2.0) .............. 79 77 81 83 LT (e/D = 2.0) ............ 72 75 76 84 etc, percent: L ................................. 1.8 1.7 1.8 1.5 LT ............................... 6.6 6.3 6.4 6.1 E, 103 ksi: 9.8 10.0 9.9 9.8 L ................................. 6.7 6.7 7.1 7.7 LT ............................... Ec, 103 ksi: 9.7 9.6 9.6 9.6 L ................................. 6.9 7.0 7.3 7.8 LT ............................... G, 103 ksi: 2.3 2.3 2.6 2.8 L ................................. 2.3 2.3 2.4 2.6 LT ............................... µ: 0.35 0.35 0.35 0.35 L ................................. 0.25 0.25 0.25 0.25 LT ............................... Physical Properties: ω, lb/in.3 ........................ 0.085 0.083 0.082 0.081 C, K, and α ..................... ... ... ... ... a Shear values determined from data obtained using Iosipescu shear specimens. b Bearing values are “dry pin” values per Section 1.4.7.1 determined in accordance with ASTM E 238. c Total (elastic plus plastic) strain at failure determined from stress-strain curve. Values are minimum but not included in AMS 4302.
7-53
MMPDS-06 1 April 2011 .
100
Longitudinal
Stress, ksi
80
60
Long transverse
40
Ramberg-Osgood n (L - tension) = 6.4 n (LT - tension) = 6.1 20
Thickness: 0.032 in. Layup: 2/1 TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.5.2.1.6(a). Typical tensile stress-strain curves for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
.
100
Longitudinal
Stress, ksi
80
60
Long transverse
40
Ramberg-Osgood n (L - tension) = 5.2 n (LT - tension) = 5.8 20
Thickness: 0.053 in. Layup: 3/2 TYPICAL 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.5.2.1.6(b). Typical tensile stress-strain curves for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-54
MMPDS-06 1 April 2011 .
100
Ramberg-Osgood n n n n
80
Thickness: 0.074 in.
Layup: 4/3
Thickness: 0.094 in.
Layup: 5/4
Longitudinal
TYPICAL
60
Stress, ksi
(L - tension, 0.074 in.) = 5.5 (LT - tension, 0.074 in.) = 7.5 (L - tension, 0.094 in.) = 5.7 (LT - tension, 0.094 in.) = 6.4
40
Long transverse
20
0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 7.5.2.1.6(c). Typical tensile stress-strain curves for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate. .
100
Ramberg-Osgood n (L - comp.) = 6.7 n (LT - comp.) = 13 Thickness: 0.032 in.
80
Layup: 2/1
Stress, ksi
TYPICAL Longitudinal
60
Long transverse 40
20
0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 7.5.2.1.6(d). Typical compressive stress-strain and compressive tangentmodulus curves for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-55
MMPDS-06 1 April 2011 .
100
Ramberg-Osgood n (L - comp.) = 6.2 n (LT - comp.) = 14 Thickness: 0.053 in.
80
Layup: 3/2
Stress, ksi
TYPICAL 60
Longitudinal
Long transverse
40
20
0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 7.5.2.1.6(e). Typical compressive stress-strain and compressive tangentmodulus curves for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate. .
100
Ramberg-Osgood n (L - comp., 0.074 in.) = 5.3 n (LT - comp., 0.074 in.) = 15 n (L - comp., 0.094 in.) = 5.8 n (LT - comp., 0.094 in.) = 14
Stress, ksi
80
60
Thickness: 0.074 in.
Layup: 4/3
Thickness: 0.094 in.
Layup: 5/4
TYPICAL
Longitudinal
Long transverse
40
20
0
0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 7.5.2.1.6(f). Typical compressive stress-strain and compressive tangentmodulus curves for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-56
MMPDS-06 1 April 2011
.
120
100
Longitudinal
Stress, ksi
80
60
Long transverse 40
Thickness: 0.032 in. 20
Layup: 2/1 TYPICAL 0
0
8
16
24
32
40
48
Strain, 0.001 in./in.
Figure 7.5.2.1.6(g). Typical tensile stress-strain curves (full range) for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-57
MMPDS-06 1 April 2011
.
120
Longitudinal 100
Stress, ksi
80
60
Long transverse 40
Thickness: 0.053 in. 20
Layup: 3/2 TYPICAL 0
0
8
16
24
32
40
48
Strain, 0.001 in./in.
Figure 7.5.2.1.6(h). Typical tensile stress-strain curves (full range) for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-58
MMPDS-06 1 April 2011
.
140
120
Longitudinal
Stress, ksi
100
80
60
Long transverse
40
Thickness: 0.074 in. 20
Layup: 4/3 TYPICAL
0
0
8
16
24
32
40
48
Strain, 0.001 in./in.
Figure 7.5.2.1.6(i). Typical tensile stress-strain curves (full range) for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-59
MMPDS-06 1 April 2011
.
120
Longitudinal 100
Stress, ksi
80
60
Long transverse 40
Thickness: 0.094 in. 20
Layup: 5/4 TYPICAL 0
0
8
16
24
32
40
48
Strain, 0.001 in./in.
Figure 7.5.2.1.6(j). Typical tensile stress-strain curves (full range) for 7475-T761 aluminum alloy, aramid fiber-reinforced, sheet laminate.
7-60
MMPDS-06 1 April 2011
7.6 ALUMINUM-BERYLLIUM HYBRIDS 7.6.0 GENERAL This section contains the engineering properties and related characteristics of aluminum-beryllium hybrids used in aerospace structural applications. These alloys exhibit high modulus of elasticity, low density, high specific stiffness, high specific strength, good thermal conductivity, and low thermal expansion.
7.6.1 AL-62BE 7.6.1.0 Comments and Properties — Al-62Be alloy materials are powder metal products made by hot consolidating fully prealloyed powder. The spherical powder is gas atomized with a nominal composition of 62% beryllium by weight (75% by volume) and the balance of aluminum. Powder metal processing results in a very fine microstructure of beryllium dendrites and interdendritic aluminum. These alloys are not heat treatable and are supplied fully annealed. Specifications and Properties — Material specifications for Al-62Be are presented in Table 7.6.1.0(a). Table 7.6.1.0(a). Material Specifications for Al-62Be
Specification AMS 7911
Form Hot Isostatically Pressed Preforms
Room temperature mechanical and physical properties are shown in Tables 7.6.1.0(b) and 7.6.1.0(c). The effect of temperature on physical properties is shown in Figure 7.6.1.0(a) and Figure 7.6.1.0(b). Figure 7.6.1.18(a) presents room temperature load control fatigue curves and Figure 7.6.1.1.8(b) presents room temperature strain control fatigue curves. Figure 7.6.1.1.9 presents room temperature fatigue crack propagation data.
7.6.1.0.1 Manufacturing Considerations Machining — Precautions must be taken to control beryllium chips or fines generated during machining. Otherwise, machining is similar to that of aluminum. Tool wear is increased due to the abrasiveness of the beryllium. Aggressive chip loads will maximize material removed per cutter life cycle. Micro-grain tungsten carbide or C-2 cutting tools will outlast high speed steels at least 3 to1. Using coolants will extend cutter life. Coolants for the machining of aluminum have been successfully used for Al-62Be machining. Peck cycles when drilling help to clear chips and extend tool life [Ref. 7.6.1.0.1(a)]. Conservative starting points for roughing operations, based on actual experience and controlled tests, are given in Table 7.6.1.0.1(a). Some results were influenced by spindle speed limits and rigidity of fixtures and work pieces. Unless specified otherwise they are based on un-coated carbide tools and a coolant flush.
7-61
MMPDS-06 1 April 2011
Table 7.6.1.0.1(a) Machining Guidelines for Al-62Be Drill Dia. (Inch) Drilling Speed (surface feet/min)
Feed (in./rev)
Less than 0.150
100
0.002
0.150 and over
150
0.003
Reamer Dia. (Inch)
Reaming Speed (surface feet/min)
Feed (in/rev)
Under 0.100
50
0.004
0.100 to 0.375
50
0.008
Over 0.375
50
0.012
Cutter Dia. (Inch)
End Milling - slotting / facing speed (surface feet/min)
Feed (in/tooth)
Under 0.100
150
0.0004
0.100 to 0.200
200
0.001
Over 0.200
400
0.004
Over 0.200*
800*
0.0015*
* Polycrystalline diamond cutter. Cutter life 20 times carbide.
Cutter Dia. (Inch)
End Milling - peripheral speed (surface feet/min)
Feed (inch/tooth)
Under 0.100
200
0.0002
0.100 to 0.200
250
0.0008
Over 0.200
300
0.002
Cut Depth (Inch)
Turning Speed (surface feet/min)
Feed (in/rev)
0.04
350
0.006
0.15
250
0.01
Unlike typical beryllium alloys, etching to remove machining damage from surfaces is not needed. The recommended stress relief cycle to minimize machining stresses is heating to 925°F (+/- 25F°) for 2 hours after the part is through heated. (This stress relief will not affect tensile strength or ductility owing to the mill anneal common to this material.) Joining - Mechanical fastening using bolts, cut treads and threaded inserts [Ref. 7.6.1.0.1(b), (c)], are the most common method of joining. Aerospace adhesives can be used [Ref. 7.6.1.0.1(d)], but are not common owing to most applications being stiffness driven. Various fabricators have developed dip brazing and diffusion bonding [Ref. 7.6.1.0.1(d)] capabilities. Electron beam welding enables substantial savings compared to parts machined from blocks. Tensile properties of welded specimens exceed base material
7-62
MMPDS-06 1 April 2011 specification minimums [Ref. 7.6.1.0.1(e)]. Joint design differs from aluminum owing to the higher stiffness of this material. Each joining method requires specific detailed procedures for successful results. Surface Treatment and Coatings - Surface treatments and coating similar to aluminum are offered commercially. These include anodizing, conversion coatings, electrolysis nickel (with or without over coat) and epoxy paint. Although Al-62%Be processing is similar to aluminum, Al-62%Be requires special handling and procedures. Use vendors with experience coating these materials. Corrosion - Stress corrosion cracking (SCC) study sponsored by the European Space Agency presented in Reference 7.6.1.0.1(f) concludes that both the base material and electron beam welded material are not susceptible to SCC. Toxicity Hazard — Handling material containing beryllium in solid form poses no special health risk. Like many industrial materials, beryllium-containing materials may pose a health risk if recommended safe handling practices are not followed. Inhalation of airborne beryllium may cause a serious lung disorder in susceptible individuals. The Occupational Safety and Health Administration (OSHA) has set mandatory limits on occupational respiratory exposures. Read and follow the guidance in the Material Safety Data Sheet (MSDS) before working with this material. 7.6.1.1 Hot Isostatic Pressed Condition — The properties presented were developed with AMS7911B (hot isostatically pressed (HIP'ed)) material. These properties would likely apply to AMS7909 material which is also a HIP'ed powder metal product. (AMS7909 is processed as AMS7911B but does not have the mill anneal.) A typical room temperature tensile stress-strain curve and compressive stress-strain curve are presented in Figure 7.6.1.1.6(a) and Figure 7.6.1.1.6(b). Typical room temperature full range tensile stress-strain curve is presented in Figure 7.6.1.1.6(c). The mill anneal (1100°F - 24 hrs) assures any temperature exposure up to 1100°F will not have an effect on AMS7911B properties. (Note the HIP temperature for AMS7909 and AMS7011B is above the mill anneal temperature, so both materials are supplied dead soft. Properties or AMS7909 may degrade to AMS7911B properties with exposure to temperatures above 950°F.) Spherical powder consolidated by hot isostatic pressing (HIP'ing) is very isotropic. Spherical powder ensures random orientation of the grains. Hot isostatic pressing applies the pressure to all sides of the HIP container ensuring uniform consolidation of the powder. The strain to hot consolidation is also very uniform because it is limited by the fill density and the consolidated density. Density - The density of Al-62Be varies slightly with composition with the specification being 0.0748 to 0.0767 lb/in3. The average density of Al-62% Be is 0.0757 lb/in3. Specific Heat - The specific heat for Al-62Be at room temperature is very high at 0.35 BTU/ (lb°F)) and falls to 0.06 BTU/ (lb°F) at cryogenic temperatures. The results shown in Figure 7.6.1.0(a) are for 30 specimens (3 heats, 10 specimens / heat) that were tested by a differential scanning calorimeter (DSC) per ASTM E1269 for temperature ranging from -290° to 480°F. Thermal Diffusivity - Thermal diffusivities for 30 specimens (3 heats, 10 specimens / heat) were measured using the Flash Diffusivity Method (ASTM E1461) for the temperature range of -290° to 480°F. The results show thermal diffusivity increases with decreasing temperature and at about -290°F, the thermal diffusivity increases very steeply, with Al-62Be, as does beryllium. In addition to the standard error associated with simply measuring the thermal diffusivity, errors in measuring the temperature can make a substantial contribution to variability in measuring diffusivity near -290°F.
7-63
MMPDS-06 1 April 2011 Thermal conductivity - The thermal conductivity varies from 118 BTU/ (hr ft2°F)/ft at room temperature to 233 BTU/ (hr ft2°F)/ft at cryogenic temperatures to 95 BTU/ (hr ft2°F)/ft at 480°F. Thermal conductivity was calculated using specific heat (ASTM E1269), thermal diffusivity (ASTM E1461) and density using the data from the 30 specimens (3 heats, 10 specimens / heat). This calculated value for the 30 specimens has little variability at room temperature and above, but increases with decreasing temperatures, especially at cryogenic temperatures. Coefficient of thermal expansion - The mean thermal expansion coefficient ( ) increases with increasing temperature. For 290°F it is 5.3 ppm, for 150°F it is 8.3 ppm, and for 570°F it becomes 9.6 ppm. Figure 7.6.1.0(a) shows the mean thermal expansion coefficient ( ) from 70°F to temperatures from -290° to 570°F. These values were determined by a Michelson laser interferometer measurement system (ASTM Standard E 289 - 95), (performed under vacuum) and are based on results from 30 specimens (3 heats, 10 specimens/heat) [Ref 7.6.1.1(a)].
7-64
MMPDS-06 1 April 2011
Table 7.6.1.0(b). Design Mechanical and Physical Properties of Aluminum-62Beryllium Hot Isostatically Pressed Preforms
Specification .......................................
AMS 7911
Form ....................................................
Preforms
Condition ............................................
Hot pressed and Annealed
Thickness or diameter, in. ...................
...
Basis .................................................... Mechanical Propertiesa: Ftu, ksi: ............................................. Fty, ksi: ............................................ Fcy, ksi: ........................................... Fsub, ksi ............................................ Fbruc, ksi: (e/D = 1.5)d .................................. (e/D = 2.0) ................................... Fbryc, ksi: (e/D = 1.5)d .................................. (e/D = 2.0) ................................... e, percent: (S-basis) .........................
A
B
38 28 26 27
43 31 39 30
... 62
... 71
... 61 2
... 67 ...
E, 103 ksi ......................................... Ec, 103 ksi ........................................ G, 103 ksi ........................................ µ ......................................................
27.7 28.0 ... ...
Physical Properties: .............................. ω, lb/in.3 .......................................... C, K, and α ...................................... Issued: Apr 2011, MMPDS-06, Item 10-27 a b c d
0.075 See Figure 7.6.1.0
Data from the filling and perpendicular directions were combinable. Shear tests were per ASTM B769. Bearing values are “dry pin” values per Section 1.4.7.1. Bearing e/D of 1.5 is not recommended for design.
7-65
MMPDS-06 1 April 2011 10
0.3
0.2
0.1
8
200
K, Btu-ft./ft.hr.-oF
C, Btu/(lb)(oF)
0.4
9
α C
175
7 6
150 125
5
K
100
4
75
3
50
2
25
0.0
0 -400
o
225
-6
250
α, 10 in./in./ F
0.5
1
Al-63Be
0 -200
0
200
400
600
Temperature, oF
Figure 7.6.1.0(a) Effect of temperature on the physical properties of Al-62Be preforms.
Figure 7.6.1.0(b) Effect of temperature on thermal diffusivity of Al-62Be preforms.
7-66
MMPDS-06 1 April 2011 40 Al-62Be HIP'd preform Tensile
Stress, ksi
30
Compressive 20 Ramberg-Osgood CYS (ksi) (Tensile ) n = 6.6 32 n1 = NA K1 = NA, n2 = NA K2 = NA (Compressive) n = 3.7 30 n1 = NA K1 = NA, n2 = NA K2 = NA
10
TYPICAL 0 0
2
4
6
8
Strain, 0.001 in./in.
Figure 7.6.1.6(a). Typical tensile and compressive stress-strain curves for Al62Be HIP’d performs at room temperature.
40 Al-62Be HIP'd preform
Stress, ksi
30
20
10
TYPICAL 0 0
5
10
15
20
25
30
Compressive Tangent Modulus, 103 ksi.
Figure 7.6.1.6(b). Typical compressive tangent modulus curve for Al-62Be HIP’d preform at room temperature.
7-67
MMPDS-06 1 April 2011
50
X 40
Stress, ksi
30
20
10 Al-62Be HIP'd preform
TYPICAL
0 0.00
0.01
0.02
0.03
Strain, in./in.
Figure 7.6.1.6(c). Typical tensile stress-strain curve (full-range) for Al-62Be HIP’d preform at room temperature.
7-68
0.04
MMPDS-06 1 April 2011
Figure 7.6.1.1.8(a) Best-fit S/N curves for unnotched AlbeMet 162 HIP’d blocks
Correlative Information for Figure 7.6.1.1.8(a) Product Form: HIP’d Block
Maximum Stress Equation (R = -1.0):
Properties:
log Nf = 14.495 - 9.141 log (Seq – 11.42 )
UTS = 43.7 ksi, TYS = 31.2 ksi Specimen Details: Unnotched, round fatigue specimen Surface Condition: As machined Reference:
7.6.1.1.1.8
Test Parameters:
Std. Error of Estimate, Log (Life) = 7.8 x 1/Seq Std. Deviation, Log (Life) = 1.208 R2 = 89.1% Sample Size = 15 Equivalent Stress Equation (R = 0.10 – 0.50): log Nf = 25.814 - 17.349 log (Seq – 12.33) where Seq = Smax (1 – R)0.443 Std. Error of Estimate, Log (Life) = 6.7 x 1/Seq
Loading – Axial
Std. Deviation, Log (Life) = 0.947
Frequency – 30 Hertz
R2 = 94.0%
Temperature – RT
Sample Size = 29
Atmosphere – laboratory air
[Caution The equivalent stress model may provide unrealistic life predictions for stress ratios and maximum stress levels beyond those represented above.]
No. of Heat/Lots = 1/1
7-69
MMPDS-06 1 April 2011
Figure 7.6.1.1.8(b) Best-fit ε/N curve and cyclic stress-strain curve for AlbeMet 162 HIP’d blocks
7-70
MMPDS-06 1 April 2011 Correlative Information for Figure 7.6.1.1.8(b) Product Form: HIP’d Block
Test Parameters:
Properties:
Loading – Axial, triangular waveform Frequency – 20 cycles/min.
UTS = 43.7 ksi, TYS = 31.2 ksi
Temperature – RT Atmosphere – laboratory air
Specimen Details: Unnotched, round fatigue specimen
No. of Heat/Lots = 1/1
Diameter = 0.250 in. Gage length = 0.625 in. Equivalent Stress Equation: Surface Condition: As machined
log Nf = -4.424 - 2.977 log (∆ε -0.000812) Std. Error of Estimate, Log (Life) = 0.147 Std. Deviation, Log (Life) = 0.880
Reference:
7.6.1.1.8
R2 = 97.2%
Sample Size = 13 [Caution The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
7-71
MMPDS-06 1 April 2011
Figure 7.6.1.1.9 Fatigue crack propagation data for AlbeMet 162 HIP’d blocks [Reference 7.6.1.1.8]
Specimen Thickness: Specimen Width: Specimen Type: C(T)
0.500 in. 3.000 in.
Environment: Temperature: Orientation:
7-72
35% - 50% R.H. RT N/A
MMPDS-06 1 April 2011
REFERENCES 7.2.0(a)
Williams, R.F. and Ingels, S.E., “The Fabrication of Beryllium—Volume I: A Survey of Current Technology,” NASA TM X-53453 (July 1966).
7.2.0(b)
Williams, R.F. and Ingels, S.E., “The Fabrication of Beryllium Alloys—Volume II: Forming Techniques for Beryllium Alloys,” NASA TM X-43453 (July 1966).
7.2.0(c)
Williams, R.F. and Ingels, S.E., “The Fabrication of Beryllium—Volume III: Metal Removal Techniques,” NASA TM X-53453 (August 1966).
7.2.0(d)
Williams, R.F. and Ingels, S.E., “The Fabrication of Beryllium—Volume IV: Surface Treatments for Beryllium Alloys,” NASA TM X-53453 (July 1966).
7.2.0(e)
Williams, R.F. and Ingels, S.E., “The Fabrication of Beryllium—Volume V: Thermal Treatments for Beryllium Alloys,” NASA TM X-53453 (July 1966).
7.2.0(f)
Williams, R.F. and Ingels, S.E., “The Fabrication of Beryllium—Volume VI: Joining Techniques for Beryllium Alloys,” NASA TM X-53453 (July 1966).
7.2.0(g)
Stonehouse, A.J. and Marder, J.M., “Beryllium,” ASM Metals Handbook, Tenth Edition, Vol. 2, pp. 683-687, 1990.
7.2.0(h)
Hanafee, J.E., “Effect of Annealing and Etching on Machine Damage In Structural Beryllium,” J. Applied Metal Working, Vol. 1, No. 3, pp. 41-51 (1980).
7.2.0(i)
Corle, R.R., Leslie, W.W., and Brewer, A.W., “The Testing and Heat Treating of Beryllium for Machine Damage Removal,” RFP-3084, Rockwell International, Rocky Flats Plant, DOE, Sept. 1981.
7.2.1.1(a)
Breslen, A.U., and Harris, W.B., “Health Protection in Beryllium Facilities, Summary of Ten Years' Experience,” U.S. Atomic Energy Commission, Health and Safety Laboratory, New York Operations Office, Report HASL-36 (May 1, 1958).
7.2.1.1(b)
Breslen, A.U., and Harris, W.B., “Practical Ways to Collect Beryllium Dust,” Air Engineering, 2(7), p. 34 (July 1960).
7.2.1.1(c)
Cholak, J., et al., “Toxicity of Beryllium, Final Technical Engineering Report,” ASD TR 627-665 (April 1962).
7.2.1.1(d)
“Beryllium Disease and Its Control,” AMA Arch. Ind. Health, 19(2), pp. 91-267 (February 1959).
7.2.1.1(e)
Stokinger, H.E., “Beryllium, Its Industrial Hygiene Aspect,” Academic Press (1966).
7.2.1.1(f)
Rossman, M.D., Preuss, O.P., and Powers, M B., Beryllium-Biomedical and Environmental Aspects, Williams and Wilkins, Baltimore, Hong Kong, London, Munich, San Francisco, Sydney, and Tokyo, 319 pages (1991).
7.2.1.1(g)
Crawford, R.F. and Barnes, A.B., “Strength Efficiency and Design Data for Beryllium Structures,” ASD TR 61-692 (1961). 7-73
MMPDS-06 1 April 2011 7.3.0(a)
“The Selection and Application of Wrought Copper and Copper Alloy,” by the ASM Committee on Applications of Copper, ASM Metals Handbook, Vol. 1, 8th Edition, pp. 960972 (1961).
7.3.0(b)
“The Selection and Application of Copper Alloy Castings,” by the ASM Committee on Copper Alloy Castings, ASM Metals Handbook, Vol. 1, 8th Edition, pp. 972-983 (1961).
7.3.0(c)
CDA Standard Handbook, “Part 2—Wrought Mill Producers Alloy Data,” and “Part 7—Cast Products Data,” Copper Development Association, New York.
7.6.1.0.1(a) AlBeMet162® Machining Guidelines, MM-006, Brush Wellman (Battelle Source M-1278). 7.6.1.0.1(b) R, Hook ((EHCOE) Honeywell), M. Svilar (Brush Wellman), "Threaded Insert Pullout from AlBeMet®162 HIP'ed", Brush Wellman (Battelle Source M-1278). 7.6.1.0.1(c) Mark Svilar, "Proof Load Threaded Insert Pullout of AlBeMet® 162 HIP'ed Material", Brush Wellman (Battelle Source M-1278). 7.6.1.0.1(d) H. Berkowitz (Lockheed Martin Electronics & Missiles), T. Parsonage (Brush Wellman), "Beryllium Composites for Advanced Avionics Systems", (Battelle Source M-1278). 7.6.1.0.1(e) "Net Shaping Technology through Electron-Beam Welding", MAAB-022 Brush Wellman (Battelle Source M-1278). 7.6.1.0.1(f) E. Semerad, T. Gross, H. Lichtl, "Stress-Corrosion Cracking Testing of AlBeMet162 Parent Material, HIP and EB Weld", Metallurgy Report No. 3276, Jan. 2002, ESTEC, ESA (Battelle Source M-1278). 7.6.1.1(a)
"Thermal Expansion Results of Brush Wellman Specimens" Precision Measurements and Instruments Corp (PMIC Contract 13167)
7.6.1.1.8
Pytash, E, Westmoreland Mechanical Testing Report No. 9-31501, September 9, 2009.
7-74
MMPDS-06 1 April 2011
CHAPTER 8 STRUCTURAL JOINTS This chapter, while comprising three major parts, primarily is concerned with joint allowables. Part 8.1 is concerned with mechanically fastened joints; Part 8.2, with metallurgical joints (various welding and brazing processes). Part 8.3 contains information for structural component data; it is concerned with bearings, pulleys, and cables. With particular reference to Part 8.1, the introductory section (8.1.1) contains fastener indexes that can be used as a quick reference to locate a specific table of joint allowables. Following this introductory section are five sections comprising the five major fastener categories, as shown in Table 8.0.1.
Table 8.0.1. Structural Joints Index (Fastener Type)
Section Sub-Section 8.1.2
Fastener Type
8.1.2.1 8.1.2.2
Solid Rivets Protruding head Flush head
8.1.3.1 8.1.3.2
Blind fasteners Protruding head Flush head
8.1.4.1 8.1.4.2
Swaged collar fasteners Protruding head Flush head
8.1.5.1 8.1.5.2
Threaded fasteners Protruding head Flush head
8.1.6.1 8.1.6.2
Special fasteners Fastener sleeves Sleeve bolts
8.1.3
8.1.4
8.1.5
8.1.6
In each of the five major sections, there are subsections that describe the factors to be considered in determining the strength of fasteners and joints. After each major section, pertinent tables are presented. Similarly, Part 8.2 has an introductory section (8.2.1), followed by two major sections comprising different metallurgical joints as shown in Table 8.0.2.
8-1
MMPDS-06 1 April 2011
Table 8.0.2. Structural Joints Index (Joining Methods) Section Sub-Section
Joining Methods
8.2.2
Welded joints Fusion Flush and pressure Spot and seam
8.2.2.1 8.2.2.2 8.2.2.3 8.2.3
Brazing 8.2.3.1 8.2.3.2
Copper Silver
Following each 4-digit section, applicable tables and figures for the particular section are presented.
8-2
MMPDS-06 1 April 2011
8.1 MECHANICALLY FASTENED JOINTS To determine the strength of mechanically fastened joints, it is necessary to know the strength of the individual fasteners (both by itself, and when installed in various thicknesses of the various materials). In most cases, failures in such joints occur by tensile failure of the fasteners, shearing of the fasteners and by bearing and/or tearing of the sheet or plate. 8.1.1 INTRODUCTION AND FASTENER INDEXES — Five categories of mechanical fasteners are presently contained in this Handbook, generically defined as follows: Solid Rivets — Solid rivets are defined as one piece fasteners installed by mechanically upsetting one end. Blind Fasteners — Blind fasteners are usually multiple piece devices that can be installed in a joint which is accessible from one side only. When a blind fastener is being installed, a self-contained mechanical, chemical, or other feature forms an upset on its inaccessible or blind side. These fasteners must be destroyed to be removed. This fastener category includes such fasteners as blind rivets, blind bolts, etc. Swaged Collar Fasteners — Swaged collar fasteners are multiple piece fasteners, usually consisting of a solid pin and a malleable collar which is swaged or formed onto the pin to clamp the joint. This fastener usually is permanently installed. This fastener class includes such fasteners as “Hi-Shear” rivets, “Lockbolts”, and “Cherrybucks”. Threaded Fasteners — Fasteners in this category are considered to be any threaded part (or parts) that after assembly in a joint can be easily removed without damage to the fastener or to the material being joined. This classification includes bolts, screws, and a wide assortment of proprietary fasteners. Special Fasteners — As the name implies, this category of fastener is less commonly used in primary aircraft structure than the four categories listed above. Examples of such fastening systems are sleeves, inserts, panel fasteners, etc. In the following 3-digit sections, descriptive information is presented relative to the establishment of design allowables in joints containing these four categories of fasteners. Following each such section are the various tables of joint allowables or associated information for computing joint allowables as described. Tables 8.1.1(a) through 8.1.1(e) are fastener indexes that list the joint allowables tables for each fastener category. These indexes are provided to make it easier to locate the allowables table for a given fastener and sheet material combination. Each of the indexes generally is similarly structured in the following manner. The left-hand column describes the fastener by referring to the NASM part number or to a vendor part number when the fastener is not covered by either series. The second column contains the table number for the allowables table for each fastener. The fastener column has been so arranged that when protruding head and countersunk head fasteners are included in a given fastener index table, the protruding head tables appear first in the second column. The third column identifies generally the base material of the fastener. Generic terms usually are used, such as steel, aluminum, titanium, etc. The fourth column identifies the specific sheet or plate material. Table 8.1.1(f) lists fastener tables which have not been confirmed. The reason and date for removal of this data is indicated. Table 8.1.1(g) lists other alloys, not included in the Table 8.1.1(g), that have become obsolete. It is recommended that Section 9.7 be reviewed in its entirety since it contains detailed information on the generation and analysis of joint data that results in the joint allowables tables contained in this section. 8-3
MMPDS-06 1 April 2011 8.1.1.1 Data Sources — The data shown in subsequent tables are provided by one or more manufacturers as listed in the table. There may be more than one producer of a fastener type, but data support is provided by only the footnoted source. Warning: Caution should be exercised to ensure that use of static joint strength data is applicable only for the data producer(s) indicated by the footnote on each table. 8.1.1.2 Fastener Shear Strengths — Fastener shear strengths accepted and documented by the aerospace industry and government agencies are listed in Table 8.1.1.1. Some existing tables in MMPDS may reflect other values; however, new fastener proposals will be classified in accordance with the abovenoted table. 8.1.1.3 Edge Distance Requirements — The joint allowables in MMPDS are based on joint tests having edge distances of twice the nominal hole diameter, 2D. Therefore, the allowables are applicable only to joints having 2D edge distance.
8-4
MMPDS-06 1 April 2011
Table 8.1.1(a). Fastener Index for Solid Rivets Fastener Identificationa Rivet Hole Size Single Shear Strength of Solid Rivets Unit Bearing Strength Shear Strength Correction Factors NAS1198 (MC)b MS20427M (MC) MS20427M (D)b MS20426AD (D) MS20426D (D) MS20426DD (D) MS20426 (MC) MS20426B (MC) MS20427M (MC) BRFS-D (MC) BRFS-AD (MC) BRFS-DD (MC) BRFS-T (MC) MS14218E (MC) NAS1097KE (MC) MS14218AD (MC) MS14219E (MC) MS14219E (MC) MS20426E (MC) MS20426E (MC) AL905KE (MC)
Table Number
Rivet Material
8.1.2(a) 8.1.2(b) 8.1.2.1(a) 8.1.2.1(b) 8.1.2.1(c) 8.1.2.2(a) 8.1.2.2(b) 8.1.2.2(c) 8.1.2.2(d) 8.1.2.2(e) 8.1.2.2(f) 8.1.2.2(g) 8.1.2.2(h) 8.1.2.2(i) 8.1.2.2(j) 8.1.2.2(k) 8.1.2.2(l) 8.1.2.2(m) 8.1.2.2(n) 8.1.2.2(o) 8.1.2.2(p) 8.1.2.2(q) 8.1.2.2(r) 8.1.2.2(s) 8.1.2.2(t)
... ... ... Aluminum A-286 Monel Monel Aluminum Aluminum Aluminum Aluminum Aluminum Monel Aluminum Aluminum Aluminum Ti-45Cb Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum
a In some cases, entries in this table identify the subject matter in certain tables. b MC, machine countersunk holes; D, dimpled holes.
8-5
Sheet Material
Page No.
... ... ... ...
8-15 8-16 8-17 8-18 8-19 8-20 8-21 8-22 8-23 8-24 8-25 8-26 8-27 8-28 8-29 8-30 8-31 8-32 8-33 8-34 8-35 8-36 8-37 8-38 8-39
A-286 AISI 301/302 AISI 301/302 Aluminum Aluminum Aluminum Clad 2024-T42 AZ31B-H24 Com Pure Titanium Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 7075-T6/Ti-6Al-4V Clad 2024-T3 Clad 2024-T3/7075-T6 Clad 2024-T3 Clad 2024-T3 Clad 7075-T6 Clad 2024-T3 Clad 7075-T6 Clad 2024-T3
MMPDS-06 1 April 2011
Table 8.1.1(b). Fastener Index for Blind Fasteners
Fastener Identification
Fastener Sleeve Material
Table Number
Sheet or Plate Material
Page No.
Protruding-head, Friction-Lock Blind Rivets CR 6636 MS20600M MS20600M MS20600AD and MS20602AD MS20600B
8.1.3.1.1(a) 8.1.3.1.1(b) 8.1.3.1.1(c) 8.1.3.1.1(d) 8.1.3.1.1(e)
A-286 Monel Monel Aluminum Aluminum
Various AISI 301 Clad 2024-T3/7075-T6 Clad 2024-T3 AZ31B-H24
8-41 8-42 8-43 8-44 8-45
Protruding-head, Mechanical-Lock Blind Rivets NAS1398C CR 2643 NAS1398 MS or MW NAS1398 MS or MW NAS1398B NAS1398D NAS1738B and NAS1738E NAS1398B NAS1738B and NAS1738E CR 2A63 CR 4623 CR 4523 NAS1720KE and NAS1720KE ( ) L NAS1720C and NAS1720C ( ) L AF3243 HC3213 HC6223 HC6253 AF3213 CR3213 CR3243 HC3243 AF3223 CR3223
8.1.3.1.2(a) 8.1.3.1.2(a) 8.1.3.1.2(b) 8.1.3.1.2(c) 8.1.3.1.2(d1) 8.1.3.1.2(d1) 8.1.3.1.2(d2) 8.1.3.1.2(e) 8.1.3.1.2(e) 8.1.3.1.2(f) 8.1.3.1.2(g) 8.1.3.1.2(h) 8.1.3.1.2(i)
A-286 A-286 Monel Monel Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum A-286 Monel Aluminum
Alloy Steel Alloy Steel AISI 301-½ Hard Clad 7075-T6 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 AZ31B-H24 AZ31B-H24 Clad 2024-T81 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6
8-46 8-46 8-47 8-48 8-49 8-49 8-50 8-51 8-51 8-52 8-54 8-55 8-56
8.1.3.1.2(j)
A-286
Clad 2024-T3
8-56
8.1.3.1.2(k) 8.1.3.1.2(l) 8.1.3.1.2(m) 8.1.3.1.2(n) 8.1.3.1.2(o) 8.1.3.1.2(p) 8.1.3.1.2(q) 8.1.3.1.2(r) 8.1.3.1.2(s) 8.1.3.1.2(t)
Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum
Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3
8-57 8-58 8-59 8-60 8-61 8-62 8-63 8-64 8-65 8-66
8-6
MMPDS-06 1 April 2011 Table 8.1.1(b). Fastener Index for Blind Fasteners (Continued) Fastener Table Sleeve Sheet or Plate Fastener Identification Number Material Material Flush-head, Friction-Lock Blind Rivets CR 6626 (MC)a MS20601M (MC) MS20601M (D)a MS20601M (MC) MS20601M (MC) MS20601M (MC) MS20601M (MC) MS20601AD and MS20603AD (MC) MS20601B (MC)
8.1.3.2.1(a) 8.1.3.2.1(b) 8.1.3.2.1(c) 8.1.3.2.1(d1) 8.1.3.2.1(d2) 8.1.3.2.1(d3) 8.1.3.2.1(e) 8.1.3.2.1(f) 8.1.3.2.1(g)
A-286 Monel Monel Monel Monel Monel Monel Aluminum Aluminum
Various 17-7PH (TH1050) AISI 301 AISI 301-Ann AISI 301-¼ Hard AISI 301-½ Hard 7075-T6 Clad 2024-T3 AZ31B-H24
Page No. 8-67 8-68 8-69 8-70 8-71 8-72 8-73 8-74 8-75
Flush-head, Mechanical-Lock Spindle Blind Rivets NAS1399C (MC) CR 2642 (MC) NAS1399 MS or MW (MC) NAS1921C (MC) NAS1399 MS or MW (MC) NAS1921M (MC) CR 2A62 (MC) NAS1921B (MC) NAS1399B (MC) NAS1399D (MC) NAS1739B and NAS1379E (MC) NAS1739B and NAS1739E (D) NAS1399B (MC) NAS1739B and NAS1739E (MC) CR 4622 (MC) CR 4522 (MC) NAS1721KE and NAS1721KE ( )L (MC) NAS1721C and NAS1721C ( ) L (MC) HC3212 (MC) MBC 4807 and MBC 4907 (MC) MBC 4801 and MBC 4901 HC6222 (MC) HC6252 (MC) HC6224 (MC) (A-286 pin) HC3214 (MC) (8740 pin) AF3212 (MC) CR3212 (MC) AF3242 (MC) CR3242 (MC) HC3242 (MC) AF3222 (MC) CR3222 (MC) a
8.1.3.2.2(a) 8.1.3.2.2(a) 8.1.3.2.2(b) 8.1.3.2.2(c) 8.1.3.2.2(d) 8.1.3.2.2(e) 8.1.3.2.2(f) 8.1.3.2.2(g) 8.1.3.2.2(h) 8.1.3.2.2(h) 8.1.3.2.2(i) 8.1.3.2.2(i) 8.1.3.2.2(j) 8.1.3.2.2(j) 8.1.3.2.2(k) 8.1.3.2.2(l) 8.1.3.2.2(m) 8.1.3.2.2(n) 8.1.3.2.2(o) 8.1.3.2.2(p) 8.1.3.2.2(q) 8.1.3.2.2(r) 8.1.3.2.2(s) 8.1.3.2.2(t1) 8.1.3.2.2(t2) 8.1.3.2.2(u) 8.1.3.2.2(v) 8.1.3.2.2(w) 8.1.3.2.2(x) 8.1.3.2.2(y) 8.1.3.2.2(z) 8.1.3.2.2(aa)
MC, machine countersunk holes; D, dimpled holes.
8-7
A-286 A-286 Monel A-286 Monel Monel Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum A-286 Monel Aluminum A-286 Aluminum Aluminum Aluminum Aluminum Aluminum 5056 Al 5056 Al Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum
Alloy Steel Alloy Steel AISI 301-½ Hard Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 2024-T81 Clad 7075-T6 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 AZ31B-H24 AZ31B-H24 Clad 7075-T6 Clad 7075-T6/T651 Clad 2024-T3 Clad 7075-T6 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3 Clad 2024-T3
8-76 8-76 8-77 8-78 8-79 8-80 8-81 8-82 8-83 8-83 8-84 8-84 8-85 8-85 8-86 8-87 8-88 8-89 8-90 8-91 8-92 8-93 8-94 8-95 8-96 8-97 8-98 8-99 8-100 8-101 8-102 8-103
MMPDS-06 1 April 2011
Table 8.1.1(b). Fastener Index for Blind Fasteners (Continued)
Fastener Identification
Table Number
Fastener Sleeve Material
Sheet or Plate Material
Page No.
Flush-head Blind Bolts MS21140 (MC) MS90353 (MC) MS90353 (MC)
8.1.3.2.3(a) 8.1.3.2.3(b1) 8.1.3.2.3(b2)
A-286 Alloy Steel Alloy Steel
FF-200, FF-260 and FF-312 (MC)
8.1.3.2.3(c)
Alloy Steel
NS 100 (MC) SSHFA-200 and SSHFA-260(MC)
8.1.3.2.3(d) 8.1.3.2.3(e)
Alloy Steel Aluminum
PLT-150 (MC) NAS1670-L (MC) NAS1674-L (MC)
8.1.3.2.3(f) 8.1.3.2.3(g) 8.1.3.2.3(h)
Alloy Steel Alloy Steel Aluminum
a
Clad 7075-T6/T651 Clad 2024-T3/T351 Clad or Bare 7075-T6 or T651 Clad 2024-T42/ 7075-T6 Clad 7075-T6 Clad 2024-T42/ 7075-T6 Clad 7075-T6/T651 Clad 7075-T6/T651 Clad 7075-T6
8-104 8-105 8-106 8-107 8-108 8-109 8-110 8-111 8-112
MC, machine countersunk holes; D, dimpled holes.
Table 8.1.1(c). Fastener Index for Swaged-Collar/Upset-Pin Fasteners Fastener Identification Ultimate Single-Shear and Tensile Strengths CSR 925 CSR 925 NAS1436-NAS1442 (MC)a NAS7024-NAS7032 (MC) CSR 924 (MC) CSR 924 (MC) HSR 201 (MC) HSR 101 (MC) GPL 3SC-V (MC) GPL 3SC-V (MC) LGPL 2SC-V (MC) LGPL 2SC-V (MC)
Table Number 8.1.4 8.1.4.1(a) 8.1.4.1(b) 8.1.4.2(a) 8.1.4.2(b) 8.1.4.2(c) 8.1.4.2(d) 8.1.4.2(e) 8.1.4.2(f) 8.1.4.2(g) 8.1.4.2(h) 8.1.4.2(i) 8.1.4.2(j)
Fastener Pin Material Alloy Steel and Alum. Titanium Titanium Alloy Steel Alloy Steel Titanium Titanium A-286 Titanium Titanium Titanium Titanium Titanium
a MC, machine countersunk holes.
8-8
Sheet or Plate Material ... Clad 7075-T6 Clad 2024-T3 Clad 7075-T6/T651 Clad 7075-T6/T651 Clad 7075-T6 Clad 2024-T3 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 2024-T3 Clad 7075-T6 Clad 2024-T3
Page No. 8-115 8-116 8-117 8-118 8-119 8-120 8-121 8-122 8-123 8-124 8-125 8-126 8-127
MMPDS-06 1 April 2011 Table 8.1.1(d). Fastener Index for Threaded Fasteners
Fastener Table
Sleeve
a
Number
Material
Single Shear Strength Tensile Strength Tensile Strength Unit Bearing Strength AN 509 Screws (MC)b AN 509 Screws (MC) PBF 11 (MC) TL 100 (MC) TLV 10 (MC) HPB-V (MC) KLBHV with KFN 600 (MC) HL-61-70 (MC) HL-719-79 (MC) HL-11 (MC) HL-911 (MC) NAS4452S and KS 100-FV with NAS4445DD (MC) HPT-V (MC) NAS4452V with NAS4445 DD (MC) HL18Pin, HL70 Collar (MC) HL19 Pin, HL70 Collar (MC)
8.1.5(a) 8.1.5(b1) 8.1.5(b2) 8.1.5.1 8.1.5.2(a1) 8.1.5.2(a2) 8.1.5.2(b) 8.1.5.2(c) 8.1.5.2(d) 8.1.5.2(e) 8.1.5.2(f) 8.1.5.2(g) 8.1.5.2(h) 8.1.5.2(i) 8.1.5.2(j) 8.1.5.2(k)
Fastener Identification
Steel Steel ... Alloy Steel Alloy Steel CRES Alloy Steel
8.1.5.2(l)
Titanium Titanium Titanium CRES Alloy Steel Titanium Titanium Alloy Steel or Titanium Titanium
8.1.5.2(m) 8.1.5.2(n) 8.1.5.2(o)
Titanium Alloy Steel Alloy Steel
Page Sheet
No.
... ... ... ... Clad 2024-T3 Clad 7075-T6 Ti-6Al-4V Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6 Clad 7075-T6
8-130 8-131 8-132 8-133 8-134 8-135 8-136 8-137 8-138 8-139 8-140 8-141 8-142 8-143 8-144
Clad 7075-T6
8-145 8-146
Clad 7075-T6 Clad 7075-T6 Clad 7075-T6
8-147 8-148 8-149
a In some cases entries in this table identify the subject matter in certain tables. b MC, machine countersunk holes; D, dimpled holes.
Table 8.1.1(e). Fastener Index for Special Fasteners
Fastener Identification ACRES Sleeves MIL-B-8831/4 (MC)a MIL-B-8831/4 (MC)
Table Number ... 8.1.6.2(a) 8.1.6.2(b)
Fastener Pin Material A-286 Steel Pin, Aluminum Sleeve Steel Pin, Aluminum Sleeve
a MC, machine countersunk holes.
8-9
Sheet or Plate Material Clad 7075-T6 Clad 7075-T6 Clad 2024-T3
Page No. 8-150 8-151 8-152
MMPDS-06 1 April 2011 Table 8.1.1(f). Non-Confirmed Sunset Fasteners
Removal Approved Fastener Table No.
Fastener Identification
Basis For Removal
Item No.
Meeting
Last Shown
Edition
Date
8.1.2.2(g)
MS20426B (MC)
No Confirmatory Data Supplied
05-35
13th
MMPDS-04
Oct-08
8.1.3.1.2(j)
NAS1720KE & NAS1720KE( )L
No Confirmatory Data Supplied
05-44
13th
MMPDS-04
Oct-08
8.1.3.2.2(m)
NAS1721KE & NAS1721KE( )L (MC)
No Confirmatory Data Supplied
05-53
13th
MMPDS-04
Oct-08
8.1.3.2.3(d)
NS100 (MC)
No Confirmatory Data Supplied
05-54
13th
MMPDS-04
Oct-08
8.1.4.2(b)
NAS7024-NAS7032 (MC)
No Confirmatory Data Supplied
05-55
13th
MMPDS-04
Oct-08
8.1.5.2(l)
HPT-V (MC)
No Confirmatory Data Supplied
05-57
13th
MMPDS-04
Oct-08
8.1.2.2(i)
BRFS-D (MC)
No Confirmatory Data Supplied
05-36
14th
MMPDS-04
Oct-08
8.1.2.2(j)
BRFS-AD (MC)
No Confirmatory Data Supplied
05-37
14th
MMPDS-04
Oct-08
8.1.2.2(k)
BRFS-DD (MC)
No Confirmatory Data Supplied
05-38
14th
MMPDS-04
Oct-08
8.1.2.2(l)
BRFS-T (MC)
No Confirmatory Data Supplied
05-39
14th
MMPDS-04
Oct-08
8.1.3.1.1(b)
MS20600M
No Confirmatory Data Supplied
05-40
14th
MMPDS-04
Oct-08
8.1.3.1.1(c)
MS20600M
No Confirmatory Data Supplied
05-41
14th
MMPDS-04
Oct-08
8.1.3.2.1(b)
MS20601M (MC)
No Confirmatory Data Supplied
05-45
14th
MMPDS-04
Oct-08
8.1.3.2.1(c)
MS20601M (D)
No Confirmatory Data Supplied
05-46
14th
MMPDS-04
Oct-08
8.1.3.1.1(d)
MS20600AD & MS20602AD
No Confirmatory Data Supplied
05-42
15th
MMPDS-04
Oct-08
8.1.3.1.1(e)
MS20600B
No Confirmatory Data Supplied
05-43
15th
MMPDS-04
Oct-08
8.1.3.2.1(d1)
MS20601M (MC)
No Confirmatory Data Supplied
05-47
15th
MMPDS-04
Oct-08
8.1.3.2.1(d2)
MS20601M (MC)
No Confirmatory Data Supplied
05-48
15th
MMPDS-04
Oct-08
8.1.3.2.1(d3)
MS20601M (MC)
No Confirmatory Data Supplied
05-49
15th
MMPDS-04
Oct-08
8.1.3.2.1(e)
MS20601M (MC)
No Confirmatory Data Supplied
05-50
15th
MMPDS-04
Oct-08
8-10
MMPDS-06 1 April 2011 Table 8.1.1(f). Non-Confirmed Sunset Fasteners (Continued)
Fastener Table No.
Removal Approved Fastener Identification
Basis For Removal
Item No.
Meeting
Last Shown
Edition
Date
8.1.3.2.1(f)
MS20601AD & MS20603AD (MC)
No Confirmatory Data Supplied
05-51
15th
MMPDS-04
Oct-08
8.1.3.2.1(g)
MS20601B (MC)
No Confirmatory Data Supplied
05-52
15th
MMPDS-04
Oct-08
8.1.5.2(a1)
AN509 Screws (MC)
No Confirmatory Data Supplied
05-56
15th
MMPDS-04
Oct-08
8.1.5.2(a2)
AN509 Screws (MC)
No Confirmatory Data Supplied
05-59
15th
MMPDS-04
Oct-08
8.1.2.2(c)
MS20426AD (D)
No Confirmatory Data Supplied
07-50
16th
MMPDS-04
Oct-08
8.1.2.2(d)
MS20426D (D)
No Confirmatory Data Supplied
07-51
16th
MMPDS-04
Oct-08
8.1.3.1.1(a)
CR6636
No Confirmatory Data Supplied
07-52
16th
MMPDS-04
Oct-08
8.1.3.2.1(a)
CR6626
No Confirmatory Data Supplied
07-53
16th
MMPDS-04
Oct-08
8.1.3.2.3(c)
FF200, FF260, FF312 (MC)
No Confirmatory Data Supplied
07-54
16th
MMPDS-04
Oct-08
8.1.4.2(a)
NAS1436-1442 (MC)
No Confirmatory Data Supplied
07-55
16th
MMPDS-04
Oct-08
8.1.5.2(c)
TL-100 (MC)
No Confirmatory Data Supplied
07-56
16th
MMPDS-04
Oct-08
8.1.3.2.2(j)
NAS1399 B & NAS1739 B & E
No Confirmatory Data Supplied
08-22
17th
MMPDS-06
Apr-11
8.1.3.2.3(e)
SSHFA-200 & 260
No Confirmatory Data Supplied
08-24
17th
MMPDS-06
Apr-11
8.1.5.2(g)
HL61, HL70 Collar
No Confirmatory Data Supplied
08-25
17th
MMPDS-06
Apr-11
8.1.5.2(h)
HL719, HL79 Collar
No Confirmatory Data Supplied
08-26
17th
MMPDS-06
Apr-11
8-11
MMPDS-06 1 April 2011 Table 8.1.1(f). Non-Confirmed Sunset Fasteners (Continued)
Removal Approved Fastener Table No.
Fastener Identification
Basis For Removal
Item No.
Meeting
Last Shown
Edition
Date
8.1.2.2(a)
MS20437M
No Confirmatory Data Supplied
09-08
18th
MMPDS-06
Apr-11
8.1.2.2(b)
MS20427M
No Confirmatory Data Supplied
09-09
18th
MMPDS-06
Apr-11
8.1.2.2(h)
MS20427M
No Confirmatory Data Supplied
09-10
18th
MMPDS-06
Apr-11
8.1.3.1.2(a)
NAS1398C, CR2643
No Confirmatory Data Supplied
09-11
18th
MMPDS-06
Apr-11
8.1.3.1.2(b)
NAS1398MS or MW
No Confirmatory Data Supplied
09-12
18th
MMPDS-06
Apr-11
Table 8.1.1(g) Obsolete Alloys Previously in Chapter 8
Alloy
Previous Section
Specifi- Basis for Removal cation
Removal Approved
Last Shown
Item No.
Mtg
Edition
Date
1100
8.2.2.3 Spot and QQ-ACancelled and Seam 250/1 superseded to ASTM Welding B209, not used for aerospace
08-40
18th
MMPD S-05
April 2010
3003
8.2.2.3 Spot and QQ-ACancelled and Seam 250/2 superseded to ASTM Welding B209, not used for aerospace
08-40
18th
MMPD S-05
April 2010
.
8-12
MMPDS-06 1 April 2011
Table 8.1.1.1. Fastener Shear Strengths
Current Usage
Fsu, ksi 28 30 34 36 38 41 43 46 49 50 50 50 50 55 75 78 90 95 108 110 112 125 132 145 156 180
Examples of Current Alloys or Material Combinations Which Meet Shear Strength Levela 5056 2117 2017 2219 2017 2024 and 7050-T73 7050-T731 7075 Monel Ti/Nb 5056/A-286 Combination 5056/8740 Combination 5056/15-7PH Combination Monel Alloy Steel and CRES A-286 A-286 Alloy Steel, A-286, Ti-6Al-4V Alloy Steel and Ti-6Al-2Sn A-286 Alloy Steel Alloy Steel and CRES Alloy Steel MP35N Alloy Steel Alloy Steel
Driven Rivets
Blind Fasteners
X X X X X X X
X X X X X X X
Solid Shank Fasteners
X
Undriven X X X X X X Undriven X X
X
a Different tempers and thermal treatments are used to obtain desired fastener shear strengths.
8-13
X X X X X X X X X X X
MMPDS-06 1 April 2011 8.1.2 SOLID RIVETS — Prior to 2003, the allowable ultimate design loads were established from test data using the average ultimate test load divided by 1.15, or an adjusted, lowered curve which enveloped all of the test observations. After 2003, fastener ultimate design loads and shear strength cut-off levels are defined by B-Basis values. Prior to 2003, the yield design load was defined by the group average curve of the test data. After 2003, yield design loads are established using B-Basis values. See Sections 9.7.1.3 and 9.7.1.4 for current statistical procedures for both shear cut-off and joint strength calculations. The recommended diameter dimensions of the upset tail on solid rivets shall be at least 1.5 times the nominal shank diameter except for 2024-T4 rivets which shall be at least 1.4 times the nominal shank diameter. Tail heights shall be a minimum of 0.3 diameter. Shear strengths for driven rivets may be based on areas corresponding to the nominal hole diameter provided that the nominal hole diameter is not larger than the values listed in Table 8.1.2(a). If the nominal hole diameter is larger than the listed value, the listed value shall be used. Shear strength values for solid rivets of a number of rivet materials are given in Table 8.1.2(b). 8.1.2.1 Protruding-Head Solid Rivet Joints — Table 8.1.2.1(c) provides ultimate and yield strength data on protruding-head A-286 solid rivets in aged A-286 sheet, for a variety of conditions of exposure. The unit load at which shear or bearing type of failure occurs is calculated separately and the lower of the two governs the design. The design bearing stress for various materials at both room and elevated temperatures is given in the strength properties stated for each alloy or group of alloys and is applicable to riveted joints wherein cylindrical holes are used and where t/D is greater than or equal to 0.18; where t/D is less than 0.18, tests to substantiate yield and ultimate bearing strengths must be performed. These bearing stresses are applicable only for the design of rigid joints where there is no possibility of relative motion of the parts joined without deformation of such parts. Design bearing stresses at low temperatures will be higher than those specified for room temperature; however, no quantitative data are available. For convenience, “unit” sheet bearing strengths for rivets, based on a bearing stress of 100 ksi and nominal hole diameters, are given in Table 8.1.2.1(a). In computing protruding-head rivet design shear strengths, the shear strength values obtained from Table 8.1.2(b) should be multiplied by the correction factors given in Table 8.1.2.1(b). This compensates for the reduction in rivet shear strength resulting from high bearing stresses on the rivet at t/D ratios less than 0.33 for single-shear joints and 0.67 for double-shear joints. For those rivet material sheet material combinations where test data shows the above to be non-conservative or for rivet materials other than those shown in Table 8.1.2(b), joint allowables should be established by test in accordance with Section 9.7. From such tests tabular presentation of ultimate load and yield load allowables are made. Unless otherwise specified, yield load is defined in Section 9.7.1.1 as the load which results in a joint permanent set equal to 0.04D, where D is the decimal equivalent of the hole diameter defined in Table 9.7.1.1(a). 8.1.2.2 Flush-Head Solid Rivet Joints — Tables 8.1.2.2(a) through 8.1.2.2(t) contain joint allowables for various flush-head solid rivet/sheet material combinations. Shear strength cut-off values are summarized in Table 8.1.2(b). See Section 9.7.1.3 and 9.7.1.4 for current statistical procedures for both shear cut-off and joint strength calculations.
8-14
MMPDS-06 1 April 2011 Yield load allowables are established from test data. Unless otherwise specified, the yield load is defined as the load which results in a joint permanent set equal to 0.04D, where D is the decimal equivalent of the hole diameter defined in Table 9.7.1.1. For machine countersunk joints, the sheet gage specified in the tables is that of the countersunk sheet. When the non-countersunk sheet is thinner than the countersunk sheet, the bearing allowable for the noncountersunk sheet-fastener combination should be computed, compared to the table value, and the lower of the two values selected. Increased attention should be paid to detail design in cases where t/D < 0.25 because of possibly greater incidence of difficulty in service life. Table 8.1.2(a). Standard Rivet-Hole Drill Sizes and Nominal Hole Diameters
Rivet Size, in.
1/16
3/32
1/8
5/32
3/16
1/4
5/16
3/8
Drill No. . . . . . . . . . . . . . . Nominal Hole Diameter, in.
51 0.067
41 0.096
30 0.1285
21 0.159
11 0.191
F 0.257
P 0.323
W 0.386
8-15
Table 8.1.2(b). Single Shear Strength of Solid Rivetsa Undriven Rivet Material 5056-H32 2117-T4 2017-T4
7050-T73
8-16
Monel Ti-45Nb A-286 a b c d e f g h
Fsu (ksi) Min 24 26 35 37 41 49 50 85
Max n/a n/a 42 n/a 46 59 59 95
Rivet Size b
Fsu (ksi)
Rivet Material 5056-H321
d
2117-T3 2017-T3 2024-T31 7050-T731 Monel Ti-45Nb A-286
f
1/16
3/32
1/8
5/32
3/16
1/4
5/16
3/8
c
Driven Single Shear Strength, lbs
28
e
B
99
203
363
556
802
1450
2290
3275
30
e
AD
106
217
389
596
860
1555
2455
3510
38
e
D
134
275
493
755
1085
1970
3115
4445
g
DD
41 d
Rivet Designation
145
297
532
814
1175
2125
3360
4795
43
e
E
h
152
311
558
854
1230
2230
3520
5030
52
e
M
183
376
674
1030
1490
2695
4260
6085
53
e
T
187
384
687
1050
1515
2745
4340
6200
90
e
-
317
651
1165
1785
2575
4665
7375
10500
All rivets must be sufficiently driven to fill the rivet hole at the shear plane. Driving changes the rivet strength from the undriven to the driven condition and thus provides the above driven shear strengths. Shear stresses are for the as driven condition on B-basis probability. Based on nominal hole diameter specified in Table 8.1.2(a). The temper designations last digit (1), indicates recognition of strengthening derived from driving. The bucktail’s minimum diameter is 1.5 times the nominal hole diameter in Table 8.1.2(a). Should not be exposed to temperatures over 150EF. Driven in the W (fresh or ice box) condition to minimum 1.4D bucktail diameter. E (or KE, as per NAS documents).
MMPDS-06 1 April 2011
2024-T4
Driven
MMPDS-06 1 April 2011
Table 8.1.2.1(a). Unit Bearing Strength of Sheet on Rivets, Fbr = 100 ksi Unit Bearing Strength for Indicated Rivet Diameter, lbsa,b,c,d
Sheet thickness, in. 0.0120 0.0160 0.0180 0.0200 0.0250 0.0320 0.0360 0.0400 0.0450 0.0500 0.0630 0.0710 0.0800 0.0900 0.1000 0.1250 0.1600 0.1900 0.2500
1/16 (0.0670)
3/32 (0.096)
80 107 121 134 168 214 241 268 302 335 422 476 536 603 670 838 1072 1273 1675
... ... 173 192 240 307 346 384 432 480 605 682 768 864 960 1200 1536 1824 2400
1/8 5/32 (0.1285) (0.1590) ... ... ... ... 321 411 462 514 578 642 810 912 1028 1157 1285 1606 2056 2442 3210
... ... ... ... ... 509 572 636 716 795 1002 1129 1272 1431 1590 1988 2544 3021 3975
3/16 (0.191) ... ... ... ... ... ... 688 764 860 955 1203 1356 1528 1719 1910 2388 3056 3629 4775
1/4 5/16 3/8 (0.0257) (0.3230) (0.3860) ... ... ... ... ... ... ... ... ... 1285 1619 1825 2056 2313 2570 3213 4112 4883 6425
... ... ... ... ... ... ... ... ... ... 2035 2293 2584 2907 3230 4038 5168 6137 8075
... ... ... ... ... ... ... ... ... ... ... 2741 3088 3474 3860 4825 6176 7334 9650
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Engineering Reference Only - This table has no basis associated with it. b The Bearing Strength values shown are based on the Bearing Stress (Fbr) x sheet thickness x diameter. c The values above are rounded to the nearest pounds. d If the basis of the Bearing Stress (Fbr) is known, and if the variability in the sheet thickness and the diameter are negligible, then the Bearing Strength may take on that basis of the Bearing Stress.
8-17
MMPDS-06 1 April 2011
Table 8.1.2.1(b). Shear Strength Correction Factors for Solid Protruding Head Rivetsa,b Rivet Diameter, in.
1/16 (0.0625)
3/32 (0.0938)
1/8 (0.1250)
5/32 (0.1563)
3/16 (0.1875)
1/4 (0.2500)
5/16 (0.3125)
3/8 (0.3750)
... ... ... ... ... ... ... ... ... 0.922 0.944 0.964 0.981 0.995 1.000
... ... ... ... ... ... ... ... ... ... 0.909 0.933 0.953 0.970 1.000
Single-Shear Rivet Strength Factorsc Sheet thickness, in.: 0.016 . . . . . . . . . . . . . . . 0.018 . . . . . . . . . . . . . . . 0.020 . . . . . . . . . . . . . . . 0.025 . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . 0.036 . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . 0.045 . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . .
0.964 0.981 0.995 1.000 ... ... ... ... ... ... ... ... ... ... ...
... 0.912 0.933 0.970 1.000 ... ... ... ... ... ... ... ... ... ...
... ... ... 0.920 0.964 0.981 0.995 1.000 ... ... ... ... ... ... ...
... ... ... ... 0.925 0.946 0.964 0.981 0.995 1.000 ... ... ... ... ...
... ... ... ... ... 0.912 0.933 0.953 0.970 1.000 ... ... ... ... ...
... ... ... ... ... ... ... ... 0.920 0.961 0.979 0.995 1.000 ... ...
Double-Shear Rivet Strength Factorsd Sheet thickness, in.: 0.016 . . . . . . . . . . . . . . . . 0.018 . . . . . . . . . . . . . . . . 0.020 . . . . . . . . . . . . . . . . 0.025 . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . 0.036 . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . 0.045 . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . 0.190 . . . . . . . . . . . . . . . . 0.250 . . . . . . . . . . . . . . . .
0.687 0.744 0.789 0.870 0.941 0.969 0.992 1.000 ... ... ... ... ... ... ... ... ... ...
... 0.518 0.586 0.708 0.814 0.857 0.890 0.924 0.951 1.000 ... ... ... ... ... ... ... ...
... ... ... 0.545 0.687 0.744 0.789 0.834 0.870 0.937 0.966 0.992 1.000 ... ... ... ... ...
... ... ... ... 0.560 0.631 0.687 0.744 0.789 0.873 0.909 0.941 0.969 0.992 1.000 ... ... ...
... ... ... ... ... 0.518 0.586 0.653 0.708 0.808 0.852 0.890 0.924 0.951 1.000 ... ... ...
... ... ... ... ... ... ... ... 0.545 0.679 0.737 0.789 0.834 0.870 0.935 0.992 1.000 ...
... ... ... ... ... ... ... ... ... 0.550 0.623 0.687 0.744 0.789 0.870 0.941 0.981 1.000
... ... ... ... ... ... ... ... ... ... 0.508 0.586 0.653 0.708 0.805 0.890 0.938 1.000
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Engineering Reference Only - This table has no basis associated with it. b Sheet thickness is that of the thinnest sheet in single-shear joints and the middle sheet in double-shear joints. Values based on tests of aluminum rivets, Reference 8.1 (NACA TN 742) and are rounded to the nearest thousandths digit. c For Single-Shear Values: For D/t ˜ 3 then the Shear Strength Factor = 1.0. For D/t > 3 then the Shear Strength Factor = 1-0.04(D/t -3) d For Double-Shear Values: For D/t ˜ 1.5 then the Shear Strength Factor = 1.0. For D/t > 1.5 then the Shear Strength Factor = 1-0.13(D/t -1.5)
8-18
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Test data from which the yield and ultimate strengths were derived can be found in Reference 8.1.2.1. b Yield critical value - average yield < 2/3 of indicated ultimate value. c Average yield value reduced to match ultimate load. d Rivet shear strength is documented in NAS1198 as 90 ksi. e Permanent set at yield load: 0.005 inch. Note: Because of difficulties encountered upsetting countersunk head rivets in thin A-286 sheet, such conditions should be avoided in design.
MMPDS-06 1 April 2011
8-19
Table 8.1.2.1(c). Static Joint Strength of Protruding Head A-286 Solid Rivets in A-286 Alloy Sheet at Various Temperatures Rivet Type . . . . . . . . . . . . . . . NAS1198 (Fsu = 90 ksi) Sheet Material . . . . . . . . . . . . A-286, solution treated and aged, Ftu = 140 ksi 1200EF, Rapid Heating in Temperature . . . . . . . . . . . . . . Room Temperature 1200EF, Stabilized 15 Minutes 20 Seconds, Tested in 15 Seconds Rivet Diameter, in. . . . . . . . . . 1/8 5/32 3/16 1/8 5/32 3/16 1/8 5/32 3/16 (Nominal Hole Diameter, in.) (0.1285) (0.159) (0.191) (0.1285) (0.159) (0.191) (0.1285) (0.159) (0.191) Sheet thickness, in.: Ultimate Strengtha, lbs. (Estimated Lower Bound) 0.020 . . . . . . . . . . . . . . . . . ... ... 478 ... ... 331 ... ... 470b 0.025 . . . . . . . . . . . . . . . . . 726b ... 587b 590 740 ... 426 626 ... 0.032 . . . . . . . . . . . . . . . . . 752b 930b 1117b 745 932 1132 560 801 962 0.040 . . . . . . . . . . . . . . . . . 783 1164b 1397b 923 1152 1397 682 1002 1204 0.050 . . . . . . . . . . . . . . . . . ... 1198 1729b 1023 1428 1677 ... 1044 1505 0.063 . . . . . . . . . . . . . . . . . ... ... ... 1131 1578 1821 ... ... 1507 0.071 . . . . . . . . . . . . . . . . . ... ... ... 1170 1660 1909 ... ... ... 0.080 . . . . . . . . . . . . . . . . . ... ... ... ... 1752 2008 ... ... ... 0.090 . . . . . . . . . . . . . . . . . ... ... ... ... 1790 2118 ... ... ... 0.100 . . . . . . . . . . . . . . . . . ... ... ... ... ... 2229 ... ... ... 0.125 . . . . . . . . . . . . . . . . . ... ... ... ... ... 2504 ... ... ... 0.160 . . . . . . . . . . . . . . . . . ... ... ... ... ... 2580 ... ... ... Rivet shear strength d . . . . . . . 1198 1729 783 1170 1790 2580 682 1044 1507 Sheet thickness, in.: Yield Strengtha,e lbs. (Conservatively Adjusted Average) 447 ... 0.020 . . . . . . . . . . . . . . . . . ... 300 ... ... 300 ... ... 0.025 . . . . . . . . . . . . . . . . . 590 695 ... 374 464 ... 374 464 ... 0.032 . . . . . . . . . . . . . . . . . 745 932c 974 479 593 713 478 593 712 0.040 . . . . . . . . . . . . . . . . . 867 1152c 1167 598 741 890 598 740 889 0.050 . . . . . . . . . . . . . . . . . 938 1331 1407 ... 925 1112 ... 924 1110 0.063 . . . . . . . . . . . . . . . . . 1031 1447 1649 ... ... 1400 ... ... ... 0.071 . . . . . . . . . . . . . . . . . 1089 1518 1723 ... ... ... ... ... ... 0.080 . . . . . . . . . . . . . . . . . ... 1597 1806 ... ... ... ... ... ... 0.090 . . . . . . . . . . . . . . . . . ... 1686 1898 ... ... ... ... ... ... 0.100 . . . . . . . . . . . . . . . . . ... 1990 ... ... ... ... ... ... ... 0.125 . . . . . . . . . . . . . . . . . ... ... 2221 ... ... ... ... ... ... 0.160 . . . . . . . . . . . . . . . . . ... ... 2543 ... ... ... ... ... ...
MMPDS-06 1 April 2011
Table 8.1.2.2(a). Static Joint Strength of 100° Flush Head Monel Solid Rivets in Machine-Countersunk Stainless Steel Sheet Rivet Type . . . . . . . . . Sheet Material . . . . . . .
MS20427M (Fsu = 49 ksi) AISI 302-Annealed
AISI 301-¼¼ Hard
AISI 301-½½ Hard AISI 301-Full Hard
Rivet Diameter, in. . . . 1/8 (Nominal Hole Diameter, in.) (0.1285)
5/32
3/16
1/8
5/32
3/16
3/32
1/8
5/32
3/16
(0.159)
(0.191)
(0.1285)
(0.159)
(0.191)
(0.096)
(0.1285)
(0.159)
(0.191)
Ultimate Strength, lbs. (Estimated Lower Bound)
Sheet thickness, in.: 0.040 ....................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 09-08, per the Sunset Clause.
0.050 ........................ 0.063 .....................
Date of last publication: April 2010 Allowables were published through handbook versions: MMPDS-05.
0.071 ..................... 0.080 .....................
Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.090 ..................... 0.100 ..................... 0.125 ..................... Rivet shear strengthc
635
973
1400
635
973
1400
355
635
973
1400
0.061
0.077
d
Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ...................... 0.050 ...................... 0.063 ...................... 0.071 ...................... 0.080 ...................... 0.090 ...................... 0.100 ...................... 0.125 ...................... Head height (ref.), in.
0.048
0.061
0.077
0.048
0.061
0.077
0.042
0.048
Last Revised: Apr 2011, MMPDS-06, Item 08-04 and Item 09-08 a Yield critical value - average yield is < 2/3 of indicated ultimate value. b Values above line are for knife-edge condition and the use of fasteners in this condition is undersirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Rivet shear strength is documented in MS20427 d Permanent set at yield load: 0.005 inch. e Average yield value reduced to match ultimate load.
8-20
Last Revised: Apr 2011, MMPDS-06, Item 08-04 and Item 09-09 a Rivet shear strength from Table 8.1.2(b). b Permanent set at yield load: 0.005 inch.
MMPDS-06 1 April 2011
8-21
Table 8.1.2.2(b). Static Joint Strength of 100E E Flush Head Monel Solid Rivets in Dimpled Stainless Steel Sheet Rivet Type . . . . . . . . . . . . . . . . . . . . . . . . . . . MS20427M (Fsu = 49 ksi) Sheet Material . . . . . . . . . . . . . . . . . . . . . . . . AISI 302 - annealed AISI 301 - 1/4 hard AISI 301 - 1/2 hard Rivet Diameter, in. . . . . . . . . . . . . . . . . . . . . 1/8 5/32 3/16 1/4 1/8 5/32 3/16 3/32 1/8 5/32 3/16 (Nominal Hole Diameter, in.) . . . . . . . . . . . . (0.1285) (0.159) (0.191) (0.257) (0.1285) (0.159) (0.191) (0.096) (0.1285) (0.159) (0.191) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: The design allowables for this fastener/sheet combination were removed per 0.020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMPDS Agenda Item GSG 09-09, per the Sunset Clause. 0.025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date of last publication: April 2010 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Allowables were published through handbook versions: MMPDS-05. 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interested parties wishing to participate in providing replacement data should 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . contact the MMPDS Fastener Task Group 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rivet shear strengtha . . . . . . . . . . . . . . . . . . . 635 973 1405 2540 635 973 1405 355 635 973 1405 Yield Strengthb, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Head height (max.), in. . . . . . . . . . . . . . . . . . 0.048 0.061 0.077 0.103 0.048 0.061 0.077 0.042 0.048 0.061 0.077
Table 8.1.2.2(c). Static Joint Strength of 100E E Flush Head Aluminum Alloy (2117-T3) Solid Rivets in Dimpled Aluminum Alloy Sheeta,b Rivet Type . . . . . . . . . . . . . . . . . . . . . . . . . MS20426AD (Fsu = 30 ksi) 2024-T3 2024-T42 2024-T62 2024-T86 2024-T3 Sheet Material . . . . . . . . . . . . . . . . . . . . . . 2024-T62 2024-T42 2024-T81 7075-T6 2024-T81 Rivet Diameter, in. . . . . . . . . . . . . . . . . . . . 3/32 1/8 5/32 3/16 5/32 3/16 1/8 5/32 3/16 (Nominal Hole Diameter, in.) . . . . . . . . . . (0.096) (0.1285) (0.159) (0.191) (0.159) (0.191) (0.1285) (0.159) (0.191) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . The design allowables for this fastener/sheet combination were removed per MMPDS Agenda 0.020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Item GSG 07-50, per the Sunset Clause. 0.025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date of last publication: April 2008 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5.
8-22
0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MMPDS-06 1 April 2011
0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
Rivet shear strengthc . . . . . . . . . . . . . . . . . . Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Head height (max.), in. . . . . . . . . . . . . . . . .
0.036
0.042
0.055
0.070
0.055
0.070
0.042
0.055
0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a These allowables apply to double dimpled sheets and to the upper sheet dimpled into a machine-countersunk lower sheet. Sheet gage is that of the thinnest sheet for double dimpled joints and of the upper dimpled sheet for dimpled, machine-countersunk joints. The thickness of machine-countersunk sheet must be at least one tabulated gage thicker than the upper sheet. In no case shall allowables be obtained by extrapolation for gages other than those shown. b Test data from which the yield strengths listed were derived and can be found in Reference 8.1.2.2. c Rivet shear strength from Table 8.1.2(b). d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
Table 8.1.2.2(d). Static Joint Strength of 100E E Flush Head Aluminum Alloy (2017-T3) Solid Rivets in Dimpled Aluminum Alloy Sheeta,b Rivet Type . . . . . . . . . . . . . . . . . . . . . . . . . MS20426D (Fsu = 38 ksi) Sheet Material . . . . . . . . . . . . . . . . . . . . . . 2024-T3 and 2024-T42 2024-T86 and 7075-T6 2024-T62 and 2024-T81 Rivet Diameter, in. . . . . . . . . . . . . . . . . . . . 5/32 3/16 1/4 5/32 3/16 1/4 5/32 3/16 1/4 (Nominal Hole Diameter, in.) . . . . . . . . . . (0.159) (0.191) (0.257) (0.159) (0.191) (0.257) (0.159) (0.191) (0.257) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 07-51, per the Sunset Clause. 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date of last publication: April 2008 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interested parties wishing to participate in providing replacement data should contact the 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . MMPDS Fastener Task Group
8-23
Rivet shear strengthc . . . . . . . . . . . . . . . . . .
755
1090
1970 755 1090 1970 755 Yield Strengthd, lbs. (Conservatively Adjusted Average)
1090
1970
Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Head height (max.), in. . . . . . . . . . . . . . . . .
0.055
0.070
0.095
0.070
0.095
0.055
0.070
0.095
0.055
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a These allowables apply to double dimpled sheets and to the upper sheet dimpled into a machine-countersunk lower sheet. Sheet gage is that of the thinnest sheet for double dimpled joints and of the upper dimpled sheet for dimpled, machine-countersunk joints. The thickness of machine-countersunk sheet must be at least one tabulated gage thicker than the upper sheet. In no case shall allowables be obtained by extrapolation for gages other than those shown. b Test data from which the yield strengths listed were derived and can be found in Reference 8.1.2.2. c Rivet shear strength from Table 8.1.2(b). d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
MMPDS-06 1 April 2011
0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MMPDS-06 1 April 2011
Table 8.1.2.2(e). Static Joint Strength of 100E E Flush Head Aluminum Alloy (2024-T31) Solid Rivets in Dimpled Aluminum Alloy Sheeta,b
MS20426DD (Fsu = 41 ksi)
Rivet Type . . . . . . . . . . . . . . . . . . Sheet Material . . . . . . . . . . . . . . .
2024-T3 2024-T42
2024-T62 2024-T81
2024-T86 7075-T6
Rivet Diameter, in. . . . . . . . . . . . .
3/16
1/4
3/16
1/4
3/16
1/4
(Nominal Hole Diameter, in.) . . .
(0.191)
(0.257)
(0.191)
(0.257)
(0.191)
(0.257)
Ultimate Strength, lbs.(Estimated Lower Bound) Sheet thickness, in.: 0.032 . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . . Rivet shear strengthc . . . . . . . . . .
744 941 1110 1175 ... ... ... 1175
... 879 1359 1727 1883 2025 2125 2125
786 982 1152 1175 ... ... ... 1175
... 1300 1705 2010 2125 ... ... 2125
786 982 1152 1175 ... ... ... 1175
... 1300 1705 2010 2125 ... ... 2125
Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . .
582 666 738 925 ... ... ...
... 879 1308 1564 1711 1928 2121
649 816 961 1068 ... ... ...
... 962 1308 1564 1711 ... ...
786 982 1152 1175 ... ... ...
... 978 1543 1958 2125 ... ...
Head height (max.), in. . . . . . . . .
0.070
0.095
0.070
0.095
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a These allowables apply to double dimpled sheets and to the upper sheet dimpled into a machine-countersunk lower sheet. Sheet gage is that of the thinnest sheet for double dimpled joints and of the upper dimpled sheet for dimpled, machine-countersunk joints. The thickness of machine-countersunk sheet must be at least one tabulated gage thicker than the upper sheet. In no case shall allowables be obtained by extrapolation for gages other than those shown. b Test data from which the yield strengths listed were derived and can be found in Reference 8.1.2.2. c Rivet shear strength from Table 8.1.2(b). d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-24
MMPDS-06 1 April 2011 Table 8.1.2.2(f). Static Joint Strength of 100E E Flush Head Aluminum Alloy Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................
MS20426DD (2024-T31) (Fsu = 41 ksi)
MS20426D (2017-T3) (Fsu = 38 ksi)
MS20426AD (2117-T3) (Fsu = 30 ksi)
Sheet Material ...........................
Clad 2024-T42
Rivet Diameter, in. .................... 3/32 (Nominal Hole Diameter, in.) (0.096)
1/8
5/32
3/16
5/32
3/16
1/4
3/16
1/4
(0.1285)
(0.159)
(0.191)
(0.159)
(0.191)
(0.257)
(0.191)
(0.257)
Ultimate Strengtha, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 .........................................
178b
...
...
...
...
...
...
...
...
0.040 .........................................
193
309b
...
...
...
...
...
...
...
0.050 .........................................
206
340
479b
...
580b,c
...
...
0.063 ......................................... 0.071 ......................................... 0.080 .........................................
216 ... ...
363 373 ...
523 542 560
b
705
739 769
c
657
690 720
...
...
b,c
...
886
c
...
942
...
c
...
992
...
859
917 969
...
0.090 .........................................
...
...
575
795
746
1015
1552
1035
1647b,c
0.100 .........................................
...
...
...
818
...
1054
1640c
1073
1738c
0.125 .........................................
...
...
...
853
...
1090
1773
1131
1877
0.160 .........................................
...
...
...
...
...
...
1891
...
2000
0.190 .........................................
...
...
...
...
...
...
1970
...
2084
217
388
596
862
755
1090
1970
1175
2125
d
Rivet shear strength .................
b,c
b
Yield Strengtha,e, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 .........................................
132
...
...
...
...
...
...
...
...
0.040 .........................................
153
231
...
...
...
...
...
...
...
0.050 .........................................
188
261
321
...
345
...
...
...
...
0.063 .........................................
213
321
402
471
401
515
...
614
...
0.071 .........................................
...
348
453
538
481
557
...
669
...
0.080 .........................................
...
...
498
616
562
623
...
761
...
0.090 .........................................
...
...
537
685
633
746
861
842
1053
0.100 .........................................
...
...
...
745
...
854
1017
913
1115
0.125 .........................................
...
...
...
836
...
1018
1313
1021
1357
0.160 .........................................
...
...
...
...
...
...
1574
...
1694
0.190 .........................................
...
...
...
...
...
...
1753
...
1925
Head height (ref.), in. ...............
0.036
0.042
0.055
0.070
0.055
0.070
0.095
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Test data from which the yield and ultimate strength listed were derived can be found in Reference 8.1.2.2. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. c Yield critical value - average yield is <2/3 of the indicated ultimate value. d Rivet shear strength is documented in MS20426. e Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-25
MMPDS-06 1 April 2011 Table 8.1.2.2(g). Static Joint Strength of 100E E Flush Head Aluminum Alloy (5056H321) Solid Rivets in Machine-Countersunk Magnesium Alloy Sheet Rivet Type ................................ MS20426B (Fsu = 28 ksi) Sheet Material .......................... AZ31B-H24 Rivet Diameter, in. ................... 3/32 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) .. (0.096) (0.1285) (0.159) (0.191) (0.257) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 ........................... The design allowables for this fastener/sheet combination 0.040 ........................... were removed per MMPDS Agenda Item GSG 05-35, per the 0.050 ........................... Sunset Clause. 0.063 ........................... Date of last publication: April 2008 0.071 ........................... Allowables were published through handbook versions: 0.080 ........................... MMPDS-04 and MIL-HDBK-5. 0.090 ........................... Interested parties wishing to participate in providing 0.100 ........................... replacement data should contact the MMPDS Fastener Task 0.125 ........................... Group 0.160 ........................... 0.190 ........................... Rivet shear strengthc ................ 203 363 556 802 1450 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ........................... 0.040 ........................... 0.050 ........................... 0.063 ........................... 0.071 ........................... 0.080 ........................... 0.090 ........................... 0.100 ........................... 0.125 ........................... 0.160 ........................... 0.190 ........................... Head height (ref.), in. ............... 0.036 0.042 0.055 0.070 0.095 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Yield critical value - average yield is <2/3 of the indicated ultimate value. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Rivet shear strength is documented in MS20426. d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-26
MMPDS-06 1 April 2011
Table 8.1.2.2(h). Static Joint Strength of 100E E Flush Head Monel Solid Rivets in Machine-Countersunk Titanium Alloy Sheet Rivet Type .......................................... MS20427M (Fsu = 49 ksi) Sheet Material .................................... Commercially Pure Titanium, Ftu = 80 ksi Rivet Diameter, in. ............................. 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) ............ (0.1285) (0.159) (0.191) (0.257) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ............................................. The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 09-10, per the 0.050 ............................................. Sunset Clause. 0.063 ............................................. 0.071 ............................................. Date of last publication: April 2010 Allowables were published through handbook versions: 0.080 ............................................. MMPDS-05. 0.090 ............................................. 0.100 ............................................. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task 0.125 ............................................. Group 0.160 ............................................. Rivet shear strengthb .......................... 635 973 1400 2540 Yield Strengthc, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ............................................. 0.050 ............................................. 0.063 ............................................. 0.071 ............................................. 0.080 ............................................. 0.090 ............................................. 0.100 ............................................. 0.125 ............................................. 0.160 ............................................. Head height (max.), in. ...................... 0.048 0.061 0.077 0.103 Last Revised: Apr 2011, MMPDS-06, Item 08-04 and Item 09-10 a Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. b Rivet shear strength is documented in MS20427. c Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-27
MMPDS-06 1 April 2011
Table 8.1.2.2(i). Static Joint Strength of 120E E Flush Shear Head Aluminum Alloy (2017-T3) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................. BRFS-Da (Fsu = 38 ksi) Sheet Material ............................ Clad 2024-T3 Rivet Diameter, in. .................... 3/32 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.)b (0.096) (0.1285) (0.159) (0.191) (0.257) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.020 ............................ 0.025 ............................ The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-36, per 0.032 ............................ the Sunset Clause. 0.040 ............................ 0.050 ............................ Date of last publication: April 2008 Allowables were published through handbook versions: 0.063 ............................ MMPDS-04 and MIL-HDBK-5. 0.071 ............................ 0.080 ............................ Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task 0.090 ............................ Group 0.100 ............................ 0.125 ............................ Rivet shear strengthc ................. 275 494 755 1090 1970 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 ............................ 0.025 ............................ 0.032 ............................ 0.040 ............................ 0.050 ............................ 0.063 ............................ 0.071 ............................ 0.080 ............................ 0.090 ............................ 0.100 ............................ 0.125 ............................ Head height (ref.), in. ................ 0.018 0.023 0.030 0.039 0.049 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Fasteners installed in hole diameters of 0.0975, 0.1285, 0.1615, 0.1945, 0.257, +0.0005, -0.001, respectively. c Shear strength based on Table 8.1.2(b) and Fsu = 38 ksi. d Permanent set at yield load: 4% of nominal diameter.
8-28
MMPDS-06 1 April 2011
Table 8.1.2.2(j). Static Joint Strength of 120E E Flush Shear Head Aluminum Alloy (2117-T3) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................. BRFS-ADa (Fsu = 30 ksi) Sheet Material ............................ Clad 2024-T3 3/32 1/8 5/32 3/16 1/4 Rivet Diameter, in. ..................... (0.096) (0.1285) (0.159) (0.191) (0.257) (Nominal Hole Diameter, in.)b Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.020 ............................ 0.025 ............................ The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-37, per 0.032 ............................ the Sunset Clause. 0.040 ............................ 0.050 ............................ Date of last publication: April 2008 Allowables were published through handbook versions: 0.063 ............................ MMPDS-04 and MIL-HDBK-5. 0.071 ............................ 0.080 ............................ Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task 0.090 ............................ Group 0.100 ............................ 0.125 ............................ Rivet shear strengthc .................. 217 388 596 862 1550 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 ............................ 0.025 ............................ 0.032 ............................ 0.040 ............................ 0.050 ............................ 0.063 ............................ 0.071 ............................ 0.080 ............................ 0.090 ............................ 0.100 ............................ 0.125 ............................ Head height (ref.), in. ................ 0.018 0.023 0.030 0.039 0.049 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Fasteners installed in hole diameters of 0.0975, 0.1285, 0.1615, 0.1945, 0.257, +0.0005, -0.001, respectively. c Shear strength based on Table 8.1.2(b) and Fsu = 38 ksi. d Permanent set at yield load: 4% of nominal diameter.
8-29
MMPDS-06 1 April 2011
Table 8.1.2.2(k). Static Joint Strength of 120E E Flush Shear Head Aluminum Alloy (2024-T31) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ....................................... BRFS-DDa (Fsu = 41 ksi) Sheet Material ................................. Clad 2024-T3 Rivet Diameter, in. .......................... 3/16 1/4 (Nominal Hole Diameter, in.)b ........ (0.191) (0.257) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 .................................. The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-38, per the 0.050 .................................. Sunset Clause.
0.063 .................................. 0.071 .................................. 0.080 .................................. 0.090 ..................................
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.100 .................................. Rivet shear strengthc .......................
1180 2120 d Yield Strength , lbs. (Conservatively Adjusted Average)
Sheet thickness, in.: 0.040 .................................. 0.050 .................................. 0.063 .................................. 0.071 .................................. 0.080 .................................. 0.090 .................................. 0.100 .................................. Head height (ref.), in. ......................
0.039
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Fasteners installed in hole diameters of 0.1935 and 0.257, ±0.0005. c Shear strength based on Table 8.1.2(b) and Fsu = 41 ksi. d Permanent set at yield load: 4% of nominal diameter.
8-30
0.049
MMPDS-06 1 April 2011
Table 8.1.2.2(l). Static Joint Strength of 120E E Flush Shear Head Ti-45 Cb Solid Rivets in Machine-Countersunk Aluminum Alloy and Titanium Sheet Rivet Type ................................... BRFS-Ta (Fsu = 53 ksi) Sheet Material ............................ Clad 7075-T6 Annealed Ti-6Al-4V Rivet Diameter, in. ...................... 1/8 5/32 3/16 1/8 5/32 3/16 (Nominal Hole Diameter, in.)b (0.1285) (0.159) (0.191) (0.1285) (0.159) (0.191) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ...................................... 0.032 ...................................... The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-39, per the 0.040 ...................................... Sunset Clause. 0.050 ...................................... 0.063 ...................................... Date of last publication: April 2008 Allowables were published through handbook versions: 0.071 ...................................... MMPDS-04 and MIL-HDBK-5. 0.080 ...................................... 0.090 ...................................... Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task 0.100 ...................................... Group 0.125 ...................................... 0.160 ...................................... Rivet shear strengthc .................. 687 1050 1520 687 1050 1520 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 ...................................... 0.032 ...................................... 0.040 ...................................... 0.050 ...................................... 0.063 ...................................... 0.071 ...................................... 0.080 ...................................... 0.090 ...................................... 0.100 ...................................... 0.125 ...................................... 0.160 ...................................... Head height (ref.), in. ................. 0.023 0.030 0.039 0.023 0.030 0.039 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Allowables developed from tests with hole diameters noted, except 5/32 and 3/16 diameters were 0.161 and 0.1935 ±0.0005, respectively. c Rivet shear strength based on Table 8.1.2(b) and Fsu = 53 ksi. d Permanent set at yield load: 4% of nominal hole diameter.
8-31
MMPDS-06 1 April 2011 Table 8.1.2.2(m). Static Joint Strength of 120E E Flush Shear Head Aluminum Alloy (7050-T731) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................. MS14218Ea (Fsu = 43 ksi) Sheet Material ............................ Clad 2024-T3 Rivet Diameter, in. ...................... 1/8 5/32 3/16 7/32 1/4 9/32 5/16 (0.1285) (0.159) (0.191) (0.228) (0.257) (0.290) (0.323) (Nominal Hole Diameter, in.)b Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: ... ... ... ... ... ... 0.025 ...................................... 215c c 0.032 ...................................... 307 346 ... ... ... ... ... c 0.040 ...................................... 434 478 529 ... ... ... ... c 0.050 ...................................... 508 673 732 806 ... ... ... c ... 0.063 ...................................... 536 781 1045 1135 1200 1285 0.071 ...................................... 554 803 1110 1365 1445 1530 1630c 0.080 ...................................... 558 827 1140 1565 1735 1835 1930 0.090 ...................................... ... 854 1175 1605 1990 2200 2320 0.100 ...................................... ... ... 1205 1645 2030 2525 2725 0.125 ...................................... ... ... 1230 1740 2140 2650 3205 0.160 ...................................... ... ... ... 1755 2230 2820 3400 0.190 ...................................... ... ... ... ... ... 2840 3525 Rivet shear strengthd ................... 558 854 1230 1755 2230 2840 3525 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 ...................................... 215 ... ... ... ... ... ... 0.032 ...................................... 307 346 ... ... ... ... ... 0.040 ...................................... 388 478 529 ... ... ... ... 0.050 ...................................... 487 601 721 806 ... ... ... 0.063 ...................................... 536 760 912 1085 1200 1285 ... 0.071 ...................................... 552 803 1030 1225 1377 1530 1630 0.080 ...................................... 558 827 1140 1385 1554 1755 1930 0.090 ...................................... ... 854 1175 1560 1750 1970 2200 0.100 ...................................... ... ... 1205 1645 1950 2200 2445 0.125 ...................................... ... ... 1230 1735 2140 2650 3060 0.160 ...................................... ... ... ... 1755 2230 2810 3400 0.190 ...................................... ... ... ... ... ... 2840 3525 Head height (ref.), in. ................. 0.027 0.035 0.044 0.053 0.061 0.069 0.077 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Allowables developed from tests with hole diameters noted, except 5/32, 3/16, and 5/16 diameters were 0.161, 0.1935, and 0.316, respectively. Hole tolerances were +0.0005, -0.001 inch. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. d Shear strength based on Table 8.1.2(b) and Fsu = 43 ksi. e Permanent set at yield load: 4% of nominal hole diameter.
8-32
MMPDS-06 1 April 2011 Table 8.1.2.2(n). Static Joint Strength of 100E E Flush Shear Head Aluminum Alloy (7050-T73) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ................................. NAS1097-KEa (Fsu = 41 ksi) Sheet Material ............................ Clad 2024-T3 Clad 7075-T6 1/8 5/32 3/16 1/4 1/8 5/32 3/16 1/4 Nominal Rivet Diameter, in. ..... (Nominal Hole Diameter, in.)b ... (0.1285) (0.159) (0.191) (0.257) (0.1285) (0.159) (0.191) (0.257) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ................................... 227c ... ... ... 278c ... ... ... c c 0.032 ................................... 326 367 ... ... 354 441 ... ... c c 0.040 ................................... 437 505 561 ... 439 547 661 ... c 0.050 ................................... 466 679 773 908 456 674 823 1120c 0.063 ................................... 485 717 1005 1275 477 700 980 1330 0.071 ................................... 497 731 1025 1500 490 716 999 1570 0.080 ................................... 507 747 1045 1750 505 734 1020 1760 0.090 ................................... 521 765 1065 1840 520 754 1045 1790 0.100 ................................... 531 781 1085 1870 531 774 1070 1825 0.125 ................................... ... 814 1135 1935 ... 814 1130 1905 0.160 ................................... ... ... 1175 2030 ... ... 1175 2020 0.190 ................................... ... ... ... 2110 ... ... ... 2115 0.250 ................................... ... ... ... 2125 ... ... ... 2125 d Rivet shear strength .................. 531 814 1175 2125 531 814 1175 2125 Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 ................................... 192 ... ... ... 222 ... ... ... 0.032 ................................... 283 311 ... ... 307 356 ... ... 0.040 ................................... 349 439 479 ... 372 475 542 ... 0.050 ................................... 398 538 674 767 398 572 724 894 0.063 ................................... 462 617 799 1105 431 612 836 1205 0.071 ................................... 497 665 857 1310 451 638 867 1400 0.080 ................................... 507 720 921 1400 474 666 900 1490 0.090 ................................... 521 765 995 1500 499 698 938 1540 0.100 ................................... 531 781 1065 1595 525 729 976 1595 0.125 ................................... ... 814 1135 1835 ... 808 1070 1720 0.160 ................................... ... ... 1175 2030 ... ... 1175 1895 0.190 ................................... ... ... ... 2110 ... ... ... 2050 0.250 ................................... ... ... ... 2125 ... ... ... 2125 Head height (ref.), in. ................ 0.029 0.037 0.046 0.060 0.029 0.037 0.046 0.060 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Lockheed-Georgia Company. b Fasteners installed in hole diameters of 0.130, 0.158, 0.191, and 0.254 ± 0.003 inch, respectively. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. d Shear strength based on Table 8.1.2(b) and Fsu = 41 ksi. e Permanent set at yield load: 4% of nominal hole diameter.
8-33
MMPDS-06 1 April 2011
Table 8.1.2.2(o). Static Joint Strength of 120E E Flush Shear Head Aluminum Alloy (2117T3) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ................................. MS14218ADa (Fsu = 30 ksi) Sheet Material ........................... Clad 2024-T3 Rivet Diameter, in. .................... 3/32 1/8 5/32 3/16 7/32 1/4 (0.1285) (0.159) (0.191) (0.228) (0.257) (Nominal Hole Diameter, in.)b .. (0.096) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: ... ... ... ... ... 0.020 .................................... 125c c 0.025 .................................... 153 212 ... ... ... ... c 0.032 .................................... 188 263 334 ... ... ... c ... ... 0.040 .................................... 216 322 408 498 c 0.050 .................................... 217 380 498 609 740 849c 0.063 .................................... ... 388 588 751 910 1040 0.071 .................................... ... ... 596 817 1015 1155 0.080 .................................... ... ... ... 842 1125 1290 0.090 .................................... ... ... ... 862 1205 1425 0.100 .................................... ... ... ... ... 1225 1520 0.125 .................................... ... ... ... ... ... 1555 d Rivet shear strength ................ 217 388 596 862 1225 1555 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 .................................... 125 ... ... ... ... ... 0.025 .................................... 153 212 ... ... ... ... 0.032 .................................... 188 263 334 ... ... ... 0.040 .................................... 216 319 408 498 ... ... 0.050 .................................... 217 370 492 609 740 849 0.063 .................................... ... 388 574 733 910 1040 0.071 .................................... ... ... 596 794 1005 1155 0.080 .................................... ... ... ... 842 1090 1275 0.090 .................................... ... ... ... 862 1180 1380 0.100 .................................... ... ... ... ... 1225 1480 0.125 .................................... ... ... ... ... ... 1555 Head height (ref.), in. ............... 0.022 0.027 0.035 0.044 0.053 0.061 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Load allowables developed from tests with hole diameters noted, except 3/32, 5/32, and 3/16 diameters were 0.098, 0.161, and 0.1935, respectively. Hole tolerance was +0.0005, -0.001 inch. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Shear strength based on Table 8.1.2(b) and Fsu = 30 ksi. e Permanent set at yield load: 4% of nominal hole diameter.
8-34
MMPDS-06 1 April 2011
Table 8.1.2.2(p). Static Joint Strength of 120E E Flush Tension Type Head Aluminum Alloy (7050-T731) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ................................ MS14219 Ea (Fsu = 43 ksi) Sheet Material ........................... Clad 2024-T3 Rivet Diameter, in. .................... 3/32 1/8 5/32 3/16 7/32 1/4 9/32 5/16 (Nominal Hole Diameter, in.)b (0.096) (0.1285) (0.159) (0.191) (0.228) (0.257) (0.290) (0.323) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 ..................................... 210c ... ... ... ... ... ... ... c 0.040 ..................................... 279 339 ... ... ... ... ... ... c 0.050 ..................................... 310 473 527 ... ... ... ... ... 0.063 ..................................... 311 538 743 819c ... ... ... ... ... ... ... 0.071 ..................................... ... 558 788 979 1065c 0.080 ..................................... ... ... 834 1105 1280 ... ... ... c 0.090 ..................................... ... ... 854 1165 1520 1625 ... ... 0.100 ..................................... ... ... ... 1230 1605 1890 2020c 2120c 0.125 ..................................... ... ... ... ... 1755 2145 2580 2965 0.160 ..................................... ... ... ... ... ... 2230 2840 3415 0.190 ..................................... ... ... ... ... ... ... ... 3525 Rivet shear strengthd ................. 311 588 854 1230 1755 2230 2840 3525 Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ..................................... 210 ... ... ... ... ... ... ... 0.040 ..................................... 277 339 ... ... ... ... ... ... 0.050 ...................................... 301 468 527 ... ... ... ... ... 0.063 ..................................... 309 538 728 819 ... ... ... ... 0.071 ..................................... ... 543 788 979 1065 ... ... ... 0.080 ..................................... ... ... 823 1100 1280 ... ... ... 0.090 ..................................... ... ... 833 1165 1490 1625 ... ... 0.100 ..................................... ... ... ... 1190 1605 1875 2020 2120 0.125 ..................................... ... ... ... ... 1705 2145 2580 2945 0.160 ..................................... ... ... ... ... ... 2200 2765 3390 0.190 ..................................... ... ... ... ... ... ... ... 3455 Head height (ref.), in. .....................
0.034
0.041
0.053
0.068
0.077
0.090
0.100
0.104
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Load allowables developed from tests with hole diameters noted, except 5/32, 3/16, and 5/16 diameter were 0.161, 0.1935, and 0.316, respectively. Hole tolerances were + 0.0005, -0.001 inch. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength based on Table 8.1.2(b) and Fsu = 43 ksi. e Permanent set at yield load: 4% of nominal hole diameter.
8-35
MMPDS-06 1 April 2011
Table 8.1.2.2(q). Static Joint Strength of 120E E Flush Tension Type Head Aluminum Alloy (7050-T731) Solid Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ................................. Sheet Material ........................... Rivet Diameter, in. .................... (Nominal Hole Diameter, in.)b
3/32 (0.096)
Sheet thickness, in.: 0.032 .....................................
272c
MS14219 Ea (Fsu = 43 ksi) Clad 7075-T6 1/8 5/32 3/16 7/32 1/4 9/32 (0.1285) (0.159) (0.191) (0.228) (0.257) (0.290) Ultimate Strength, lbs. (Estimated Lower Bound) ... c
5/16 (0.323)
...
...
...
...
...
...
0.040 .....................................
297
455
...
...
...
...
...
...
0.050 .....................................
311
522
704c
...
...
...
...
...
0.063 .....................................
...
558
c
803
1065
...
...
...
...
c
0.071 .....................................
...
...
832
1140
1435
...
...
...
0.080 ..................................... 0.090 .....................................
... ...
... ...
854 ...
1180 1220
1600 1650
...
2030c
... ...
... ...
0.100 .....................................
...
...
...
1230
1700
2090
2565c
2860c
... ... 311
... ... 558
... ... 854
... ... 1230
1755 ... 1755
2230 ... 2230
2740 2840 2840
3295 3525 3525
0.125 ..................................... 0.160 ..................................... Rivet shear strengthd .................
Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ..................................... 0.040 ..................................... 0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 ..................................... 0.160 .....................................
272 296 308 ... ... ... ... ... ... ...
... 455 522 550 ... ... ... ... ... ...
... ... 704 802 823 845 ... ... ... ...
... ... ... 1065 1140 1170 1205 1220 ... ...
... ... ... ... 1435 1600 1650 1685 1740 ...
... ... ... ... ... ... 2030 2090 2195 ...
... ... ... ... ... ... ... 2565 2715 2815
... ... ... ... ... ... ... 2860 3295 3480
Head height (ref.), in. ...............
0.034
0.041
0.053
0.068
0.077
0.090
0.100
0.104
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Rivet Corp. b Allowables developed from tests with hole diameters noted, except 3/32, 5/32, 3/16, and 5/16 diameters were 0.098, 0.161, 0.1935, and 0.316, respectively. Hole tolerances were +0.0005, -0.001 inch. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength based on Table 8.1.2(b) and Fsu = 43 ksi. e Permanent set at yield load: 4% of nominal hole diameter.
8-36
MMPDS-06 1 April 2011
Table 8.1.2.2(r). Static Joint Strength of Solid 100o Flush Head Aluminum Alloy (7050-T73) Solid Rivets in Machine Countersunk Aluminum Alloy Sheet
Rivet Type ............................................
MS20426E (Fsu = 41 ksi)a
Sheet Material ......................................
Clad 2024-T3
Rivet Diameter, in. ............................... b
(Nominal Hole Diameter, in.) .............
1/8
5/32
3/16
1/4
(0.1285)
(0.159)
(0.191)
(0.257)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ................................................. 0.050 ................................................. 0.063 ................................................. 0.071 ................................................. 0.080 ................................................. 0.090 ................................................. 0.100 ................................................. 0.125 ................................................. 0.160 ................................................. 0.190 ................................................. Rivet shear strengthd
386c 419 463 491 521 531 ... ... ... ... 531
... 592c 647 680 718 760 802 814 ... ... 814
... ... 870c 910 955 1005 1055 1175 ... ... 1175
... ... ... ... ... 1610c 1680 1845 2085 2125 2125
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ................................................. 0.050 ................................................. 0.063 ................................................. 0.071 ................................................. 0.080 ................................................. 0.090 ................................................. 0.100 ................................................. 0.125 ................................................. 0.160 ................................................. 0.190 ................................................. Head Height (ref.), in.
262 327 412 464 517 531 ... ... ... ...
... 404 510 574 647 728 794 814 ... ...
... ... 612 690 777 875 972 1160 ... ...
... ... ... ... ... 1175 1310 1635 2070 2125
0.042
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Lockheed Ga. Co. and Air Force Materials Laboratory. b Load allowables developed from tests with hole diameters of 0.130, 0.158, 0.191, and 0.256 ± 0.003 inch. c The values in the table above the horizontal line in each column are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires the specific approval of the procuring agency. d Shear strength based on area computed from nominal hole diameters in Table 8.1.2(b) and Fsu = 41 ksi. e Permanent set at yield load: 4% of the nominal hole diameter.
8-37
MMPDS-06 1 April 2011
Table 8.1.2.2 (s). Static Joint Strength of Solid 100o Flush Head Alumunim Alloy (7050-T73) Solid Rivets in Machine Countersunk Aluminum Alloy Sheet
Rivet Type .......................................
MS20426E (Fsu = 41 ksi)a
Sheet Material .................................
Clad 7075-T6
Rivet Diameter, in. .......................... b
(Nominal Hole Diameter, in.) ........
1/8
5/32
3/16
1/4
(0.1285)
(0.159)
(0.191)
(0.257)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ............................................ 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ 0.190 ............................................ Rivet shear strengthd Sheet thickness, in.: 0.040 ............................................ 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ 0.190 ............................................ Head height (ref.), in.
318c ... ... ... 393 492c ... ... c 440 606 745 ... 469 642 840 ... 502 683 898 ... 531 728 952 1430c 1570 ... 773 1005 1755 ... 814 1140 2010 ... ... 1175 2125 ... ... ... 2125 531 814 1175 e Yield Strength , lbs. (Conservatively Adjusted Average) 257 330 423 469 502 531 ... ... ... ...
... 399 515 586 666 728 773 814 ... ...
... ... 607 693 789 896 1005 1140 1175 ...
... ... ... ... ... 1175 1320 1680 2010 2125
0.042
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Lockheed Ga. Co., Air Force Materials Laboratory, Allfast, Cherry Fasteners, Douglas Aircraft Co., and Huck Mfg. Co. b Load allowables developed from tests with hole diameters of 0.130, 0.158, 0.191, and 0.256 ± 0.003 inch. c The values in the table above the horizontal line in each column are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires the specific approval of the procuring agency. d Shear strength based on area computed from nominal hole diameters in Table 8.1.2(b) and Fsu = 41 ksi. e Permanent set at yield load: 4% of the nominal hole diameter.
8-38
MMPDS-06 1 April 2011
Table 8.1.2.2(t). Static Joint Strength of 105 degree Flush Shear Head Aluminum Alloy (7050) Solid Rivet in 100 degree Machine-Countersunk Alloy Sheet
Rivet Type ...........................................
AL 905 KEa (Fsu = 41 ksi)
Sheet Material .....................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ............
1/8 (0.1285)
5/32 (0.159)
3/16 (0.191)
1/4 (0.257)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 ............................................... 0.040 ............................................... 0.050 ............................................... 0.063 ............................................... 0.071 ............................................... 0.080 ............................................... 0.090 ............................................... 0.125 ............................................... 0.160 ...............................................
325c 396 452 498 526 531 -------
--502c 612 696 731 771 814 -----
----750c 923 980 1030 1080 1175 ---
------1280c 1425 1585 1735 1985 2125
Rivet Shear Strengthd ..........................
531
814
1175
2125
Yield Strength, lbs.e (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ............................................... 0.040 ............................................... 0.050 ............................................... 0.063 ............................................... 0.071 ............................................... 0.080 ............................................... 0.090 ............................................... 0.125 ............................................... 0.160 ............................................... Head height [ref.],f in.
..............
268 326 399 493 526 531 -------
--415 504 620 692 771 814 -----
----619 759 845 942 1050 1175 ---
------1060 1175 1305 1450 1955 2125
0.029
0.037
0.046
0.060
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Ateliers De La Haute Garonne SARL. b Loads developed from tests with hole diameters of 0.1285, 0.161, 0.193, and 0.257, +/- 0.001 inch. c The values above the horizontal line in each column are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring activity. d Rivet shear strength is based upon Table 8.1.2(b) and Fsu = 41 ksi. e Permanent set at yield load: 4% of nominal diameter. f Head height values reflect driven rivet configuration.
8-39
MMPDS-06 1 April 2011 8.1.3 BLIND FASTENERS — Prior to 2003, the allowable ultimate design loads were established from test data using the average ultimate test load divided by 1.15, or an adjusted, lowered curve which enveloped all of the test observations. After 2003, fastener ultimate design loads and shear strength cut-off levels are defined by B-Basis values. Prior to 2003, the yield design load was defined by the group average curve of the test data. After 2003, yield design loads are established using B-Basis values. See Sections 9.7.1.3 and 9.7.1.4 for current statistical procedures for both shear cut-off and joint strength calculations. The strengths shown in the following tables are applicable only for the grip lengths and hole tolerances recommended by the respective fastener manufacturers. For some fastener systems, permanent set at yield load may be increased if hole sizes greater than those listed in the applicable table are used. This condition may exist even though the test hole size lies within the manufacturer’s recommended hole size range. The strength values were established from test data and are applicable to “joints” with e/D $ 2.0. For joints with e/D ratios less than 2.0, tests to substantiate the use of yield and ultimate strength allowables must be made. Ultimate strength values of protruding- and flush-head blind fasteners were obtained as described in Section 9.7.1.5. Unless otherwise specified, the yield load was defined as the load which resulted in a joint permanent set equal to 0.04D, where D is the decimal equivalent of the hole or fastener shank diameter, as defined in Table 9.7.1.1. Some tables are footnoted to show the previous criteria used for those particular tables. For machine countersunk joints, the sheet gage specified in the tables is that of the countersunk sheet. When the non-countersunk sheet is thinner than the countersunk sheet, the bearing allowable for the non-countersunk sheet-fastener combination should be computed, compared to the table value, and the lower of the two values selected. Increased attention should be paid to detail design in cases where t/D < 0.25 because of the possibility of unsatisfactory service life. Joint allowable strengths of blind fasteners in double-dimpled or dimpled into machine countersunk applications should be established on the basis of specific tests acceptable to the procuring or certifying agency. Reference should be made to the requirements of the applicable procuring or certifying agency relative to the use of blind fasteners such as the limitations of usage in design standard NASM33522.
8.1.3.1 Protruding-Head Blind Fasteners
8.1.3.1.1 Friction-Lock Blind Rivets — Tables 8.1.3.1.1(a) through 8.1.3.1.1(e) contain joint allowables for various protruding-head, friction-lock blind rivet/sheet material combinations. 8.1.3.1.2 Mechanical-Lock Spindle Blind Rivets — Tables 8.1.3.1.2(a) through 8.1.3.1.2(t) contain joint allowables for various protruding-head, mechanical-lock spindle blind rivet/sheet material combinations. 8.1.3.2 Flush-Head Blind Fasteners
8.1.3.2.1 Friction-Lock Blind Rivets — Tables 8.1.3.2.1(a) through 8.1.3.2.1(g) contain joint allowables for various flush-head, friction-lock blind rivet/sheet material combinations.
8-40
MMPDS-06 1 April 2011 8.1.3.2.2 Mechanical-Lock Spindle Blind Rivets — Tables 8.1.3.2.2(a) through 8.1.3.2.2(aa) contain joint allowables for various flush-head, mechanical-lock spindle blind rivet/sheet material combinations. 8.1.3.2.3 Flush-Head Blind Bolts — Tables 8.1.3.2.3(a) through 8.1.3.2.3(h) contain joint allowables for various flush-head blind bolt/sheet material combinations.
Table 8.1.3.1.1(a). Static Joint Strength of Blind Protruding Head A-286 Rivets in Alloy Steels, Titanium Alloy and A-286 Alloy Sheet
Rivet Type ..................................
CR 6636a (Fsu = 75 ksi)
Sheet Material ............................
Alloy Steel, Ftu = 125 ksi, Titanium Alloys, Ftu = 120 ksi, and A-286 Alloy, Ftu = 140 ksi
Rivet Diameter, in. .................... (Nominal Hole Diameter, in.) ...
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
1/4 (0.258)
Ultimate Strengthb, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.008 ........................................ 0.012 ........................................ 0.016 ........................................ 0.020 ........................................ 0.025 ........................................ 0.032 ........................................ 0.040 ........................................ 0.050 ........................................ 0.063 ........................................ 0.071 ........................................ 0.080 ........................................ 0.090 ........................................ 0.100 ........................................ 0.112 ........................................ Rivet shear strengthc ..................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 07-52, per the Sunset Clause. Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
970
1490
2150
3890
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield strength is in excess of 80% of ultimate. This is based on a previous Navy Bureau of Aeronautics definition that yield strength would not be considered to be critical if it exceeded 1.15 x 2.3 of design ultimate strength. There was no requirement for submission of the yield data for inclusion in ANC-5. c Shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 75 ksi.
8-41
MMPDS-06 1 April 2011
Table 8.1.3.1.1(b). Static Joint Strength of Protruding Head Monel Rivets in Stainless Steel Sheet Rivet Type ................................. MS20600M (Fsu = 55 ksi) Sheet Material ........................... AISI 301-Annealed AISI 301-½ Hard Rivet Diameter, in. .................... 1/8 5/32 3/16 1/4 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) ... (0.130) (0.162) (0.154) (0.258) (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.010 ........................... 0.012 ........................... The design allowables for this fastener/sheet combination 0.016 ........................... were removed per MMPDS Agenda Item GSG 05-40, per the 0.020 ........................... Sunset Clause. 0.025 ........................... 0.032 ........................... Date of last publication: April 2008 Allowables were published through handbook versions: 0.040 ........................... MMPDS-04 and MIL-HDBK-5. 0.050 ........................... 0.063 ........................... Interested parties wishing to participate in providing 0.071 ........................... replacement data should contact the MMPDS Fastener Task Group 0.080 ........................... 0.090 ........................... 0.100 ........................... 0.125 ........................... 0.160 ........................... Rivet shear strengthb ................... 713 1090 1580 2855 713 1090 1580 2855 c Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.010 ........................... 0.012 ........................... 0.016 ........................... 0.020 ........................... 0.025 ........................... 0.032 ........................... 0.040 ........................... 0.050 ........................... 0.063 ........................... 0.071 ........................... 0.080 ........................... 0.090 ........................... 0.100 ........................... 0.125 ........................... 0.160 ........................... Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Yield critical value - average yield is < 2/3 of the indicated ultimate value. b Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 55 ksi. c Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter. d Average yield value reduced to match Ultimate Load.
8-42
MMPDS-06 1 April 2011
Table 8.1.3.1.1(c). Static Joint Strength of Blind Protruding Head Monel Rivets in Aluminum Alloy Sheet Rivet Type ................................ MS20600M (Fsu = 55 ksi) Sheet Material ........................... 2024-T3 7075-T6 Rivet Diameter, in. ................... 1/8 5/32 3/16 1/4 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) . (0.130) (0.162) (0.194) (0.258) (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ........................... 0.032 ........................... The design allowables for this fastener/sheet combination 0.040 ........................... were removed per MMPDS Agenda Item GSG 05-41, per the 0.050 ........................... Sunset Clause. 0.063 ........................... Date of last publication: April 2008 0.071 ........................... Allowables were published through handbook versions: 0.080 ........................... MMPDS-04 and MIL-HDBK-5. 0.090 ........................... Interested parties wishing to participate in providing 0.100 ........................... replacement data should contact the MMPDS Fastener Task 0.125 ........................... Group 0.160 ........................... 0.190 ...........................
Rivet shear strengtha ................
713
1090 1580 2855 713 1090 1580 b Yield Strength , lbs. (Conservatively Adjusted Average)
Sheet thickness, in.: 0.025 ........................... 0.032 ........................... 0.040 ........................... 0.050 ........................... 0.063 ........................... 0.071 ........................... 0.080 ........................... 0.090 ........................... 0.100 ........................... 0.125 ........................... 0.160 ........................... 0.190 ........................... Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 55 ksi. b Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-43
2855
MMPDS-06 1 April 2011
Table 8.1.3.1.1(d). Static Joint Strength of Blind Protruding Head Alloy (2117-T3) Rivets in Aluminum Alloy Sheet
Rivet Type ...............................................
MS20600AD and MS20602AD (Fsu = 30 ksi)
Sheet Material .........................................
Clad 2024 T3
Rivet Diameter, in. ................................. (Nominal Hole Diameter, in.) ................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
1/4 (0.258)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 .......................................... 0.032 .......................................... 0.040 .......................................... 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 ..........................................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-42, per the Sunset Clause. Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.100 .......................................... Rivet shear strengtha ...............................
388
596
862
1550
b
Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 .......................................... 0.032 .......................................... 0.040 .......................................... 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 30 ksi. b Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-44
MMPDS-06 1 April 2011
Table 8.1.3.1.1(e). Static Joint Strength of Blind Protruding Head Aluminum Alloy (5056) Rivets in Magnesium Alloy Sheet
Rivet Type .................................
MS20600B (Fsu = 28 ksi)
Sheet Material ...........................
AZ31B-H24
Rivet Diameter, in. ................... (Nominal Hole Diameter, in.)
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
1/4 (0.258)
Ultimate Strengtha, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ........................... 0.032 ........................... 0.040 ........................... 0.050 ........................... 0.063 ........................... 0.071 ........................... 0.080 ........................... 0.090 ........................... 0.100 ........................... 0.125 ........................... 0.160 ........................... Rivet shear strengthb ................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-43, per the Sunset Clause. Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
363
556
802
1450
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Yield strength is in excess of 80% of ultimate. This is based on a previous Navy “Bureau of Aeronautics” definition that yield strength was not considered to be critical if it exceeded 1.15 x 2/3 of design ultimate strength. There was no requirement for submission of the yield data for inclusion in ANC-5. b Shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 28 ksi.
8-45
MMPDS-06 1 April 2011
Table 8.1.3.1.2(a). Static Joint Strength of Blind Protruding Head Locked Spindle A-286 Rivets in Alloy Steel Sheet
Rivet Type ..................................
NAS1398Ca and NAS1398C, Code Ab (Fsu = 75 ksi)
Sheet Material ............................ Rivet Diameter, in. .................... (Nominal Hole Diameter, in.)
CR 2643a (Fsu = 95 ksi)
Alloy Steel Ftu = 180 ksi 1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strengthc, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ............................ 0.032 ............................ 0.040 ............................ 0.050 ............................ 0.063 ............................ 0.071 ............................ 0.080 ............................ 0.090 ............................ 0.100 ............................ Rivet shear strength ..................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 09-11, per the Sunset Clause. Date of last publication: April 2010 Allowables were published through handbook versions: MMPDS-05. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group 970d
1490d
2150d
1230e
1885e
2720e
Last Revised: Apr 2011, MMPDS-06, Item 08-04 and Item 09-11 a Data supplied by Cherry Fasteners. b Confirmatory data supplied by Olympic Fastening Systems, Inc. c Yield strength is in excess of 80% of ultimate. This is based on a previous Navy "Bureau of Aeronautics" definition that yield strength would not be considered to be critical if it exceeded 1.15 x 2/3 of design ultimate strength. There was no requirement for submission of the yield data for inclusion in ANC-5. d Rivet shear strength is documented in NAS1400. e Shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 95 ksi.
8-46
MMPDS-06 1 April 2011
Table 8.1.3.1.2(b). Static Joint Strength of Blind Protruding Head Locked Spindle Monel Rivets in Stainless Steel Sheet Rivet Type .................................
NAS1398 MS or MWa and NAS1398 MS or MW, Code Ab (Fsu = 55 ksi)
Sheet Material ...........................
AISI 301-½ Hard
Rivet Diameter, in. .................... (Nominal Hole Diameter, in.)
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strengthc, lbs. (Estimated Lower Bound)
Sheet thickness, in.: 0.025 ....................... 0.032 ....................... 0.040 ....................... 0.050 ....................... 0.063 ....................... 0.071 ....................... 0.080 ....................... 0.090 ....................... 0.100 ....................... Rivet shear strengthd ............
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 09-11, per the Sunset Clause. Date of last publication: April 2010 Allowables were published through handbook versions: MMPDS-05. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group 710
1090
1580
Last Revised: Apr 2011, MMPDS-06, Item 08-04 and Item 09-12 a Data supplied by Cherry Fasteners. b Confirmatory data supplied by Olympic Fastening Systems, Inc. c Yield strength is in excess of 80% of ultimate strength. This is based on a previous Navy "Bureau of Aeronautics" definition that yield strength was not considered to be critical if it exceeded 1.15 x 2/3 of design ultimate strength. There was no requirement for submission of the yield strength data for inclusion in ANC-5. d Rivet shear strength is documented in NAS1400.
8-47
MMPDS-06 1 April 2011
Table 8.1.3.1.2(c). Static Joint Strength of Blind Protruding Head Locked Spindle Monel Rivets in Aluminum Alloy Sheet
Rivet Type .........................................
NAS1398 MS or MWa and NAS1398 MS or MW, Code Ab (Fsu = 55 ksi)
Sheet Material ...................................
Clad 7075-T6
Rivet Diameter, in. .......................... (Nominal Hole Diameter, in.) ..........
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strengthc, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ................................... 0.032 ................................... 0.040 ................................... 0.050 ................................... 0.063 ................................... 0.071 ................................... 0.080 ................................... 0.090 ................................... 0.100 ................................... 0.125 ................................... Rivet shear strengthd .......................
318 404 466 546 647 710 ... ... ... ... 710
... 506 624 720 845 921 1009 1090 ... ... 1090
... ... 774 922 1072 1168 1272 1387 1507 1580 1580
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Confirmatory data supplied by Olympic Fastening Systems, Inc. c Yield strength is in excess of 80% of ultimate. This is based on a previous Navy "Bureau of Aeronautics" definition that yield strength would not be considered to be critical if it exceeded 1.15 x 1/3 of design ultimate strength. There was no requirement for submission of the yield data for inclusion in ANC-5. d Rivet shear strength is documented in NAS1400.
8-48
MMPDS-06 1 April 2011
Table 8.1.3.1.2(d1). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type . . . . . . . . . . . . . . . . NAS1398Ba (Fsu = 30 ksi) NAS1398Da (Fsu = 38 ksi) Sheet Material . . . . . . . . . . . . . Clad 2024-T3 Rivet Diameter, in. . . . . . . . . . . 1/8 5/32 3/16 1/4 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) (0.130) (0.162) (0.194) (0.258) (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . 228 ... ... ... 228 ... ... ... 0.032 . . . . . . . . . . . . . . . . . . . 289 364 412 ... 304 364 ... ... 0.040 . . . . . . . . . . . . . . . . . . . 337 448 553 670 355 470 553 ... 0.050 . . . . . . . . . . . . . . . . . . . 388 521 662 914 418 548 696 914 0.063 . . . . . . . . . . . . . . . . . . . ... 596 781 1145 494 647 816 1205 0.071 . . . . . . . . . . . . . . . . . . . ... ... 854 1240 ... 710 894 1303 0.080 . . . . . . . . . . . . . . . . . . . ... ... 862 1350 ... 755 975 1420 0.090 . . . . . . . . . . . . . . . . . . . ... ... ... 1475 ... ... 1069 1545 0.100 . . . . . . . . . . . . . . . . . . . ... ... ... 1550 ... ... 1090 1670 0.125 . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... ... 1970 b Rivet shear strength . . . . . . . . . 388 596 862 1550 494 755 1090 1970 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Rivet shear strength documented in NAS1400.
8-49
MMPDS-06 1 April 2011
Table 8.1.3.1.2(d2). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet
Rivet Type ..............................................................
NAS1738B and NAS1738Ea (Fsu = 34 ksi)
Sheet Material ........................................................
Clad 2024-T3
Rivet Diameter, in. ................................................. (Nominal Hole Diameter, in.) .................................
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound)
Sheet thickness, in.: 0.025 ......................................................... 0.032 ......................................................... 0.040 ......................................................... 0.050 ......................................................... 0.063 ......................................................... 0.071 ......................................................... 0.080 ......................................................... 0.090 ......................................................... 0.100 ......................................................... Rivet shear strengthc ..............................................
267 368 427 480 547b 554b ... ... ... 554
305 428 567 650 735 785b 837b ... ... 837
330 473 636 815 912 976 1042b 1115b 1128b 1128
Yield Strengthd, lbs. (Conservatively Adjusted Average)
Sheet thickness, in.: 0.020 ......................................................... 0.025 ......................................................... 0.032 ......................................................... 0.040 ......................................................... 0.050 ......................................................... 0.063 ......................................................... 0.071 ......................................................... 0.080 ......................................................... 0.090 ......................................................... 0.100 .........................................................
185 242 298 321 336 336 336 ... ... ...
213 285 386 453 489 508 508 508 ... ...
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Rivet shear strength was documented in NAS1740 prior to Revision (1), dated January 15, 1974. d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-50
228 317 433 568 625 680 684 684 684 684
MMPDS-06 1 April 2011
Table 8.1.3.1.2(e). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Magnesium Alloy Sheet
Sheet Material . . . . . . . . . . . . . . Rivet Diameter, in. . . . . . . . . . . (Nominal Hole Diameter, in.) . .
NAS1738B and NAS1738Ea (Fsu = 34 ksi)
NAS1398Ba (Fsu = 30 ksi)
Rivet Type . . . . . . . . . . . . . . . . .
AZ31B-H24 1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
1/4 (0.258)
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . . Rivet shear strength . . . . . . . . . .
163 208 255 298 352 385 388 ... ... ... ... 388c
... 256 324 394 461 501 550 596 ... ... ... 596c
... 310 388 485 588 639 695 755 820 862 ... 862c
... ... 519 654 822 924 1020 1109 1191 1397 1550 1550c
202 261 325 372 425 458 495 536b 554b ... ... 554d
... 321 401 501 570 609 656 709 759 837b ... 837d
... 372 465 579 708 756 809 866 925 1072b 1128b 1128d
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . .
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ...
155 198 248 302 325 336 336 336 336 ... ...
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Rivet shear strength is documented in NAS1400. d Rivet shear strength was documented in NAS1740 prior to Revision (1), dated January 15, 1974. e Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-51
... 243 304 380 460 478 499 508 508 508 ...
... 282 353 441 556 614 638 664 684 684 684
MMPDS-06 1 April 2011
Table 8.1.3.1.2(f). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy (2219) Rivets in Aluminum Alloy Sheet
Rivet Type ................................
CR 2A63a (Fsu = 36 ksi)
Sheet Material ..........................
Clad 2024-T81
Rivet Diameter, in. .................... (Nominal Hole Diameter, in.) ..
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in. 0.025 .................................... 0.032 .................................... 0.040 .................................... 0.050 .................................... 0.063 .................................... 0.071 .................................... 0.080 .................................... 0.090 .................................... 0.100 .................................... Rivet shear strengthb ................
256 295 340 395 467 478 ... ... ... 478
... 404 458 527 617 672 734 741 ... 741
... ... 592 675 783 848 922 1005 1063 1063
Yield Strengthc, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 .................................... 0.032 .................................... 0.040 .................................... 0.050 .................................... 0.063 .................................... 0.071 .................................... 0.080 .................................... 0.090 .................................... 0.100 ....................................
256 295 336 383 440 445 ... ... ...
... 404 458 521 598 646 683 690 ...
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Shear strength values based on indicated nominal hole diameters and Fsu = 36 ksi. c Permanent set at yield load: 4% of nominal hole diameter.
8-52
... ... 592 675 770 827 890 963 984
MMPDS-06 1 April 2011
Table 8.1.3.1.2(g). Static Joint Strength of Blind Protruding Head Locked Spindle A-286 Rivets in Aluminum Alloy Sheet
Rivet Type ...............................
CR4623a (Fsu = 75 ksi)
Sheet Material .........................
Clad 7075-T6
Rivet Diameter, in. .................. (Nominal Hole Diameter, in.)b
1/8 (0.130)
Sheet thickness, in.: 0.020 .......................................... 0.025 .......................................... 0.032. ......................................... 0.040 .......................................... 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... Rivet shear strengthc ................... Sheet thickness, in.: 0.020 .......................................... 0.025 .......................................... 0.032 .......................................... 0.040 .......................................... 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 ..........................................
5/32 (0.162)
3/16 (0.194)
1/4 (0.258)
Ultimate Strength, lbs. (Estimated Lower Bound) 237 298 385 486 610 772 856 903 956 995 ... ... ... ... 995
... 367 478 601 757 958 1080 1220 1340 1405 1545 ... ... ... 1545
... ... 566 714 902 1145 1290 1455 1645 1830 2055 2215 ... ... 2215
... ... ... 939 1185 1505 1705 1925 2175 2425 3035 3570 3885 3920 3920
Yield Strengthd, lbs. (Conservatively Adjusted Average) 237 296 381 478 596 690 747 812 857 879 ... ... ... ...
... 367 475 594 745 932 1005 1085 1175 1265 1365 ... ... ...
... ... 565 709 890 1125 1270 1385 1495 1600 1870 1995 ... ...
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Allowable loads developed from test with hole diameters as listed. c Fastener shear strength based on nominal hole diameters and Fsu = 75 ksi from data analysis. d Permanent set at yield load: 4% of nominal hole diameter.
8-53
... ... ... 938 1180 1490 1680 1895 2140 2360 2715 3215 3425 3690
MMPDS-06 1 April 2011
Table 8.1.3.1.2(h). Static Joint Strength of Blind Protruding Head Locked Spindle Monel Rivets in Aluminum Alloy Sheet
Rivet Type ...............................
CR 4523a (Fsu = 65 ksi)
Sheet Material ............................
Clad 7075-T6
Rivet Diameter, in ...................... (Nominal Hole Diameter, in.)b ...
1/8 (0.130)
Sheet thickness, in.: 0.020 .......................................... 0.025 .......................................... 0.032 .......................................... 0.040 .......................................... 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... Rivet shear strengthc ................... Sheet thickness, in.: 0.020 .......................................... 0.025 .......................................... 0.032 .......................................... 0.040 .......................................... 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 ..........................................
5/32 (0.162)
3/16 (0.194)
1/4 (0.258)
Ultimate Strength, lbs. (Estimated Lower Bound) 221 284 373 475 602 701 729 760 796 831 863 ... ... ... 863
... 344 456 582 740 945 1055 1095 1140 1180 1290 1340 ... ... 1340
... ... 533 684 875 1120 1270 1440 1540 1590 1725 1905 1920 ... 1920
... ... ... 878 1130 1455 1655 1885 2135 2390 2760 3005 3215 3400 3400
Yield Strengthd, lbs. (Conservatively Adjusted Average) 221 279 360 453 569 659 707 729 752 776 834 ... ... ...
... 344 447 561 706 893 965 1035 1105 1135 1205 1305 ... ...
... ... 530 667 841 1065 1205 1340 1430 1520 1645 1765 1870 ...
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Allowable loads developed from test with hole diameters as listed. c Fastener shear strength based on nominal hole diameters and Fsu = 65 ksi from data analysis. d Permanent set at yield load: 4% of nominal hole diameter.
8-54
... ... ... 878 1110 1405 1590 1795 2030 2260 2590 2880 3015 3290
MMPDS-06 1 April 2011
Table 8.1.3.1.2(i). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy (7050) Rivets in Aluminum Alloy Sheet
Rivet Type ...........................................
NAS 1720KE and NAS 1720KE( )La,b (Fsu = 33 ksi)
Sheet Material .....................................
Clad 2024-T3
Rivet Diameter, in. .............................. (Nominal Hole Diameter, in.)c ............
1/8 (0.130)
Sheet thickness, in.:
Ultimate Strength, lbs. (Estimated Lower Bound)
0.020 ................................................... 0.025 ................................................... 0.032 ................................................... 0.040 ................................................... 0.050 ................................................... 0.063 ................................................... 0.071 ................................................... 0.080 ................................................... 0.090 ................................................... 0.100 ................................................... 0.125 ................................................... 0.160 ................................................... Rivet shear strengthd ........................... Sheet thickness, in.: 0.020 ................................................... 0.025 ................................................... 0.032 ................................................... 0.040 ................................................... 0.050 ................................................... 0.063 ................................................... 0.071 ................................................... 0.080 ................................................... 0.090 ................................................... 0.100 ................................................... 0.125 ................................................... 0.160 ...................................................
174 219 282 354 376 392 402 413 425 437 450 ... 450
5/32 (0.162)
... 272 350 440 552 585 597 611 626 641 680 700 700
3/16 (0.194)
... ... 417 525 659 816 831 847 866 884 929 950 950
Yield Strengthe, lbs. (Conservatively Adjusted Average)
174 215 261 314 366 382 391 402 414 426 450 ...
... 272 340 406 489 570 582 595 610 625 662 700
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Avdel Corp. b Fasteners should not be used for structural applications where the t/D is less than 0.15. c Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +0.0005, -0.0000 inch. d Rivet shear strength is documented in NAS 1722. e Permanent set at yield load: 4% of nominal diameter.
8-55
... ... 417 504 603 732 809 825 843 861 905 950
MMPDS-06 1 April 2011
Table 8.1.3.1.2(j). Static Joint Strength of Blind Protruding Head Locked Spindle A-286 Rivets in Aluminum Alloy Sheet Rivet Type ................................ NAS1720C and NAS1720C( )La,b (Fsu = 75 ksi) Sheet Material .......................... Clad 7075-T6 Rivet Diameter, in. ................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.)c . (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ............................ 0.032 ........................... 0.040 ........................... The design allowables for this fastener/sheet combination were removed per MMPDS Agenda 0.050 ........................... Item GSG 05-44, per the Sunset Clause. 0.063 ........................... 0.071 ........................... Date of last publication: April 2008 Allowables were published through handbook 0.080 ........................... versions: MMPDS-04 and MIL-HDBK-5. 0.090 ........................... 0.100 ........................... Interested parties wishing to participate in providing replacement data should contact the MMPDS 0.125 ........................... Fastener Task Group 0.160 ........................... 0.190 ........................... Rivet shear strengthd ................ 1000 1500 2200 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 ............................ 0.032 ........................... 0.040 ........................... 0.050 ........................... 0.063 ........................... 0.071 ........................... 0.080 ........................... 0.090 ........................... 0.100 ........................... 0.125 ........................... 0.160 ........................... 0.190 ........................... Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Avdel Corp. b Fasteners should not be used for structural applications where t/D is less than 0.15. c Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, ±.0001 inch d Rivet shear strength is documented in NAS1722. e Permanent set at yield load: 4% of nominal diameter.
8-56
MMPDS-06 1 April 2011 Table 8.1.3.1.2(k). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type ..............................................................
AF3243 (Fsu = 51 ksi approx.)a
Sheet Material ........................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...............................
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 ....................................................................
242 302 371 456 538 556 577 600 622 679 759
--382 467 572 710 795 828 856 885 955 ---
--453 551 674 834 932 1040 1110 1140 1225 1335
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED.
Rivet shear strengthc
.............................
814
1245
1685
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 ....................................................................
242 302 371 456 538 556 577 600 622 679 759
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Allfast Fastening Systems Inc. b Loads developed from tests with hole diameters of 0.144, 0.178, and 0.207, +/-0.001 inch. c Rivet shear strength is documented in Table 8.1.1.1. d Permanent set at yield load: 4% of nominal diameter.
8-57
--382 467 572 710 795 828 856 885 955 ---
--453 551 674 834 932 1040 1110 1140 1225 1335
MMPDS-06 1 April 2011
Table 8.1.3.1.2(l). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type ..............................................................
HC3213 (Fsu = 51 ksi approx.)a
Sheet Material ........................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...............................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.020 .................................................................... 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 .................................................................... 0.190 ....................................................................
225 265 320 383 461 538 558 581 607 632 664 -----
--351 419 498 596 723 801 840 872 904 983 1030 ---
----527 621 738 891 985 1090 1180 1220 1315 1445 1480
Rivet shear strengthc
664
1030
1480
.............................
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 .................................................................... 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 .................................................................... 0.190 ....................................................................
182 222 278 343 423 436 444 453 463 473 497 -----
--284 354 434 534 658 668 679 691 704 734 777 ---
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International Inc. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c Rivet shear strength is documented on Table 8.1.1.1. d Permanent set at yield load: 4% of nominal diameter.
8-58
----431 527 647 803 898 951 965 980 1015 1065 1110
MMPDS-06 1 April 2011
Table 8.1.3.1.2(m). Static Joint Strength of Protruding Head Locked Spindle Aluminum Alloy Blind Rivets in Aluminum Alloy Sheet Rivet Type ........................................ HC6223a (Fsu = 50 ksi) Nominal Sheet and Plate Material .................. Clad 2024-T3 Rivet Diameter, in. .......................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.) ......... (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.016 .......................................... ... ... ... 0.020 .......................................... ... ... ... 0.025 .......................................... 272 ... ... 0.032 .......................................... 367 437 ... 0.040 .......................................... 427 573 661 0.050 .......................................... 476 664 864 0.063 .......................................... 539 743 975 0.071 .......................................... 578 792 1033 0.080 .......................................... 622 846 1099 0.090 .......................................... 664 907 1171 0.100 .......................................... ... 967 1244 0.125 .......................................... ... 1030 1425 0.160 .......................................... ... ... 1480 0.190 .......................................... ... ... ... b Rivet shear strength ........................ 664 1030 1480 c Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.016 .......................................... ... ... ... 0.020 .......................................... ... ... ... 0.025 .......................................... 255 ... ... 0.032 .......................................... 320 406 ... 0.040 .......................................... 394 498 605 0.050 .......................................... 417 613 743 0.063 .......................................... 437 648 901 0.071 .......................................... 449 664 920 0.080 .......................................... 463 681 940 0.090 .......................................... 478 700 963 0.100 .......................................... ... 720 986 0.125 .......................................... ... 768 1044 0.160 .......................................... ... ... 1125 0.190 .......................................... ... ... ... Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International, Inc. b Rivet shear strength is documented in Table 8.1.1.1. c Permanent set at yield load: 4% of nominal hole diameter.
8-59
MMPDS-06 1 April 2011 Table 8.1.3.1.2(n). Static Joint Strength of Protruding Head Locked Spindle Aluminum Alloy Blind Rivets in Aluminum Alloy Sheet Rivet Type ........................................ HC6253a (Fsu = 50 ksi) Sheet Material ................................. Clad 2024-T3 Rivet Diameter, in. ......................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.) ........ (0.144) (0.178) (0.207) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.016 .......................................... ... ... ... 0.020 .......................................... ... ... ... 0.025 .......................................... ... ... ... 0.032 .......................................... 344 419 ... 0.040 .......................................... 436 532 613 0.050 .......................................... 513 674 777 0.063 .......................................... 559 789 992 0.071 .......................................... 588 824 1055 0.080 .......................................... 620 864 1101 0.090 .......................................... 656 908 1152 0.100 .......................................... 691 952 1204 0.125 .......................................... 781 1063 1332 0.160 .......................................... 814 1217 1512 0.190 .......................................... ... 1245 1666 0.250 .......................................... ... ... 1685 Rivet shear strengthb ........................ 814 1245 1685 c Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.016 .......................................... ... ... ... 0.020 .......................................... ... ... ... 0.025 .......................................... ... ... ... 0.032 .......................................... 344d 419d ... 0.040 .......................................... 403 532d 613d 0.050 .......................................... 462 619 731 0.063 .......................................... 523 715 879 0.071 .......................................... 541 774 948 0.080 .......................................... 560 805 1025 0.090 .......................................... 583 832 1079 0.100 .......................................... 605 859 1110 0.125 .......................................... 660 928 1190 0.160 .......................................... 738 1024 1302 0.190 .......................................... ... 1245 1397 0.250 .......................................... ... ... 1588 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International, Inc. b Rivet shear strength is documented in Table 8.1.1.1. c Permanent set at yield load: 4% of nominal hole diameter. d Calculated yield reduced to match ultimate strength.
8-60
MMPDS-06 1 April 2011 Table 8.1.3.1.2(o). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type ..............................................................
AF3213 (Fsu = 51 ksi approx.)a
Sheet Material ........................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...............................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.020 .................................................................... 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 .................................................................... 0.190 ....................................................................
223 262 317 380 411 441 459 480 503 526 583 -----
--347 416 494 592 640 663 689 717 746 818 918 ---
----522 616 733 875 902 933 968 1000 1085 1205 1310
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED.
Rivet shear strengthc
.............................
664
1030
1480
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 .................................................................... 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 .................................................................... 0.190 ....................................................................
223 262 317 362 378 398 411 425 441 457 496 -----
--347 416 494 562 588 604 622 641 661 710 779 ---
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Allfast Fastening Systems Inc. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c Rivet shear strength is documented in Table 8.1.1.1. d Permanent set at yield load: 4% of nominal diameter.
8-61
----522 616 733 814 833 854 878 901 960 1040 1110
MMPDS-06 1 April 2011
Table 8.1.3.1.2(p). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type ..............................................................
CR3213 (Fsu = 51 ksi approx.)a
Sheet Material ........................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...............................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.020 .................................................................... 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 ....................................................................
250 280 322 370 430 492 513 536 562 587 652
--389 441 501 576 673 733 769 801 833 913
----576 648 737 853 925 1005 1080 1115 1215
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED.
Rivet shear strengthc ...............................................
664
1030
1480
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 .................................................................... 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 ....................................................................
214 238 272 298 315 338 351 367 384 401 445
--332 375 424 463 491 508 527 549 570 624
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Textron Aerospace Fasteners. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c Rivet shear strength is documented in Table 8.1.1.1. d Permanent set at yield load: 4% of nominal diameter.
8-62
----491 550 623 672 692 716 741 767 831
MMPDS-06 1 April 2011
Table 8.1.3.1.2(q). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type ..............................................................
CR3243 (Fsu = 51 ksi approx.)a
Sheet Material ........................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...............................
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 ....................................................................
317 366 421 489 579 623 640 660 679 728
--494 562 647 758 826 902 957 981 1040
--617 696 795 924 1000 1090 1190 1280 1350
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED.
Rivet shear strengthc
.............................
814
1245
1685
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 ....................................................................
272 317 368 432 451 462 475 489 503 538
--425 488 567 664 677 693 710 728 771
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Textron Aerospace Fasteners. b Loads developed from tests with hole diameters of 0.144, 0.178, and 0.207, +/-0.001 inch. c Rivet shear strength is documented in Table 8.1.1.1. d Permanent set at yield load: 4% of nominal diameter.
8-63
--527 600 692 811 884 911 931 951 1000
MMPDS-06 1 April 2011
Table 8.1.3.1.2(r). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type ..............................................................
HC3243 (Fsu = 51 ksi approx.)a
Sheet Material ........................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...............................
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 .................................................................... 0.190 .................................................................... 0.250 ....................................................................
252 312 380 465 546 576 610 647 685 779 814 -----
--397 481 586 723 803 844 891 937 1050 1215 1245 ---
--473 571 693 852 950 1060 1125 1175 1310 1500 1665 1685
Rivet shear strengthc
814
1245
1685
.............................
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 .................................................................... 0.032 .................................................................... 0.040 .................................................................... 0.050 .................................................................... 0.063 .................................................................... 0.071 .................................................................... 0.080 .................................................................... 0.090 .................................................................... 0.100 .................................................................... 0.125 .................................................................... 0.160 .................................................................... 0.190 .................................................................... 0.250 ....................................................................
252 312 371 401 440 464 491 521 551 626 730 -----
--397 481 569 617 646 680 717 754 846 976 1085 ---
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International Inc. b Loads developed from tests with hole diameters of 0.144, 0.178, and 0.207, +/-0.001 inch. c Rivet shear strength is documented on HC3243 standards drawing. d Permanent set at yield load: 4% of nominal diameter.
8-64
--473 571 693 790 824 863 906 949 1055 1205 1335 1595
MMPDS-06 1 April 2011 Table 8.1.3.1.2(s). Static Joint Strength of Blind Protruding Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type . . . . . . . . . . . . . . . . . . . . AF3223 (Fsu = 50 ksi approx.)a Sheet Material . . . . . . . . . . . . . . . . . Clad 2024-T3 1/8 5/32 3/16 Rivet Diameter, in. . . . . . . . . . . . . . . (0.130) (0.162) (0.194) (Nominal Hole Diameter, in.)b . . . . . Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . . . 272 ... ... 0.032 . . . . . . . . . . . . . . . . . . . . . .
331
431
...
0.040 . . . . . . . . . . . . . . . . . . . . . .
390
516
640
0.050 . . . . . . . . . . . . . . . . . . . . . .
421
606
767
0.063 . . . . . . . . . . . . . . . . . . . . . .
461
656
883
0.071 . . . . . . . . . . . . . . . . . . . . . .
486
687
920
0.080 . . . . . . . . . . . . . . . . . . . . . .
514
722
962
0.090 . . . . . . . . . . . . . . . . . . . . . .
545
760
1005
0.100 . . . . . . . . . . . . . . . . . . . . . .
576
799
1050
0.125 . . . . . . . . . . . . . . . . . . . . . .
653
896
1170
0.160 . . . . . . . . . . . . . . . . . . . . . .
664
1030
1330
0.190 . . . . . . . . . . . . . . . . . . . . . .
...
...
1460
c
664
1030
1460
Rivet shear strength . . . . . . . . . . . . .
d
Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . . .
243
...
0.032 . . . . . . . . . . . . . . . . . . . . . .
312
387
...
0.040 . . . . . . . . . . . . . . . . . . . . . .
390
485
580
0.050 . . . . . . . . . . . . . . . . . . . . . .
421
606
727
0.063 . . . . . . . . . . . . . . . . . . . . . .
448
656
883
0.071 . . . . . . . . . . . . . . . . . . . . . .
463
678
920
0.080 . . . . . . . . . . . . . . . . . . . . . .
481
700
958
0.090 . . . . . . . . . . . . . . . . . . . . . .
500
723
987
0.100 . . . . . . . . . . . . . . . . . . . . . .
519
747
1015
0.125 . . . . . . . . . . . . . . . . . . . . . .
566
806
1085
0.160 . . . . . . . . . . . . . . . . . . . . . .
633
889
1185
0.190 . . . . . . . . . . . . . . . . . . . . . .
...
...
1270
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Allfast Fastening Systems Inc. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c Rivet shear strength as documented in Table 8.1.1.1. d Permanent set at yield load: 4% of nominal diameter.
8-65
...
MMPDS-06 1 April 2011 Table 8.1.3.1.2(t). Static Joint Strength of Protruding Head 5056 Aluminum Alloy Rivets in Clad Aluminum Alloy Sheet Rivet Type . . . . . . . . . . . . . . . . . . . . CR3223 (Fsu = 50 ksi approx.)a Sheet Material . . . . . . . . . . . . . . . . . Clad 2024-T3 Rivet Diameter, in. . . . . . . . . . . . . . . 1/8 5/32 3/16 (Nominal Hole Diameter, in.)b . . . . . (0.130) (0.162) (0.194) Ultimate Strength, lbs.(Estimated Lower Bound) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . . . 257 ... ... 0.032 . . . . . . . . . . . . . . . . . . . . . . 316 408 ... 0.040 . . . . . . . . . . . . . . . . . . . . . . 383 492 606 0.050 . . . . . . . . . . . . . . . . . . . . . . 450 596 731 0.063 . . . . . . . . . . . . . . . . . . . . . . 486 701 894 0.071 . . . . . . . . . . . . . . . . . . . . . . 509 729 987 0.080 . . . . . . . . . . . . . . . . . . . . . . 534 760 1025 0.090 . . . . . . . . . . . . . . . . . . . . . . 562 795 1065 0.100 . . . . . . . . . . . . . . . . . . . . . . 590 830 1105 c 0.125 . . . . . . . . . . . . . . . . . . . . . . 659 917 1210 0.160 . . . . . . . . . . . . . . . . . . . . . . 664c 1030c 1355c 0.190 . . . . . . . . . . . . . . . . . . . . . . ... ... 1480c Rivet shear strengthd . . . . . . . . . . . . . 664 1030 1480 Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 . . . . . . . . . . . . . . . . . . . . . . 221 ... ... 0.032 . . . . . . . . . . . . . . . . . . . . . . 279 351 ... 0.040 . . . . . . . . . . . . . . . . . . . . . . 321 434 525 0.050 . . . . . . . . . . . . . . . . . . . . . . 333 498 649 0.063 . . . . . . . . . . . . . . . . . . . . . . 350 519 720 0.071 . . . . . . . . . . . . . . . . . . . . . . 360 531 736 0.080 . . . . . . . . . . . . . . . . . . . . . . 371 545 752 0.090 . . . . . . . . . . . . . . . . . . . . . . 384 561 771 0.100 . . . . . . . . . . . . . . . . . . . . . . 396 577 790 0.125 . . . . . . . . . . . . . . . . . . . . . . 428 616 837 0.160 . . . . . . . . . . . . . . . . . . . . . . 472 671 903 0.190 . . . . . . . . . . . . . . . . . . . . . . ... ... 959 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Textron Aerospace Fasteners. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.0005 inch. c Yield value is less than 2/3 of indicated ultimate strength value. d Rivet shear strength as documented in Table 8.1.1.1. e Permanent set at yield load: 4% of nominal diameter.
8-66
MMPDS-06 1 April 2011
Table 8.1.3.2.1(a). Static Joint Strength of Blind 100E Flush Head A-286 Rivets in Machine-Countersunk Alloy Steel, Titanium Alloy, and A-286 Alloy Sheet Rivet Type .......................................... CR 6626a (Fsu = 75 ksi) Alloy Steel, Ftu = 125 ksi, Titanium Alloy, Ftu = 120 ksi, and Sheet Material .................................... A-286 Alloy, Ftu = 140 ksi Rivet Diameter, in. .............................. 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) ............. (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ..................................... 0.050 ..................................... The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 07-53, per 0.063 ..................................... the Sunset Clause. 0.071 ..................................... 0.080 ..................................... Date of last publication: April 2008 Allowables were published through handbook versions: 0.090 ..................................... MMPDS-04 and MIL-HDBK-5. 0.100 ..................................... 0.112 ..................................... Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener 0.125 ..................................... Task Group 0.140 ..................................... 0.160 ..................................... 0.190 ..................................... Rivet shear strengthd .......................... 970 1490 2150 3890 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ..................................... 0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.112 ..................................... 0.125 ..................................... 0.140 ..................................... 0.160 ..................................... 0.190 ..................................... Head height (ref.), in. .......................... 0.042 0.055 0.070 0.095 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 75 ksi. e Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-67
Table 8.1.3.2.1(b). Static Joint Strength of Blind 100E E Flush Head Monel Rivets in Machine-Countersunk Stainless Steel
Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ............................... 0.050 ............................... 0.063 ............................... 0.071 ............................... 0.080 ............................... 0.090 ............................... 0.100 ............................... 0.125 ............................... 0.160 ............................... 0.180 ............................... Head height (ref.), in. ............ 0.042 0.055 0.070 0.095 0.042 0.055 0.070 0.095 0.042 0.055 0.070 0.095 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Yield critical value - average yield is < 2/3 of the indicated ultimate value. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. c Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu values at 55 ksi, 50 ksi, and 45 ksi at room temperature, 500EF and 700EF, respectively. d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter. e Average yield value reduced to match Ultimate Load.
MMPDS-06 1 April 2011
8-68
Rivet Type ............................. MS20601M (R.T. Fsu = 55 ksi) Sheet Material ........................ 17-7PH, TH 1050 Temperature ........................... Room 500EF 700EF Rivet Diameter, in. ................ 1/8 5/32 3/16 1/4 1/8 5/32 3/16 1/4 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) (0.130) (0.162) (0.194) (0.258) (0.130) (0.162) (0.194) (0.258) (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ............................... The design allowables for this fastener/sheet combination were removed per MMPDS 0.050 ............................... Agenda Item GSG 05-45, per the Sunset Clause. 0.063 ............................... 0.071 ............................... Date of last publication: April 2008 0.080 ............................... Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. 0.090 ............................... 0.100 ............................... 0.125 ............................... Interested parties wishing to participate in providing replacement data should contact the 0.160 ............................... MMPDS Fastener Task Group 0.180 ............................... 713 1090 1580 2855 648 993 1430 2590 590 904 1305 2360 Rivet shear strengthc .............
MMPDS-06 1 April 2011
Table 8.1.3.2.1(c). Static Joint Strength of Blind 100E Flush Head Monel Rivets in Dimpled Stainless Steel Sheet Rivet Type . . . . . . . . . . . . . . . . . . . . . . MS20601M (Fsu = 55 ksi) Sheet Material . . . . . . . . . . . . . . . . . . . AISI 301-Annealed AISI 301-1/4 Hard Rivet Diameter, in. . . . . . . . . . . . . . . . . 1/8 5/32 3/16 1/4 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) . . . . . . . (0.130) (0.162) (0.194) (0.258) (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.010 . . . . . . . . . . . . . . . . . . . . . . . 0.012 . . . . . . . . . . . . . . . . . . . . . . . The design allowables for this fastener/sheet combination 0.016 . . . . . . . . . . . . . . . . . . . . . . . were removed per MMPDS Agenda Item GSG 05-46, per the 0.020 . . . . . . . . . . . . . . . . . . . . . . . Sunset Clause. 0.025 . . . . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . . . . Date of last publication: April 2008 Allowables were published through handbook versions: 0.040 . . . . . . . . . . . . . . . . . . . . . . . MMPDS-04 and MIL-HDBK-5. 0.050 . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . Interested parties wishing to participate in providing 0.071 . . . . . . . . . . . . . . . . . . . . . . . replacement data should contact the MMPDS Fastener Task 0.080 . . . . . . . . . . . . . . . . . . . . . . . Group 0.090 . . . . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . . . . Rivet shear strengtha 635 973 1405 2540 635 973 1405 2540 Yield Strengthb, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.010 . . . . . . . . . . . . . . . . . . . . . . . 0.012 . . . . . . . . . . . . . . . . . . . . . . . 0.016 . . . . . . . . . . . . . . . . . . . . . . . 0.020 . . . . . . . . . . . . . . . . . . . . . . . 0.025 . . . . . . . . . . . . . . . . . . . . . . . 0.032 . . . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . . . . Head height (ref.), in. . . . . . . . . . . . . . . 0.042 0.055 0.070 0.095 0.042 0.055 0.070 0.095 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Rivet shear strength from Table 8.1.1.1. b Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-69
MMPDS-06 1 April 2011
Table 8.1.3.2.1(d1). Static Joint Strength of Blind 100E Flush Head Monel Rivets in Machine-Countersunk Stainless Steel Sheet Rivet Type ........................................ MS20601M (Fsu = 55 ksi) Sheet Material .................................. AISI 301-Annealed Rivet Diameter, in. ........................... 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) .......... (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ................................... The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-47, per the 0.050 ................................... Sunset Clause.
0.063 ................................... 0.071 ................................... 0.080 ................................... 0.090 ................................... Rivet shear strengthc ........................
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group 713
1090
1580
2855
d
Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ................................... 0.050 ................................... 0.063 ................................... 0.071 ................................... 0.080 ................................... 0.090 ................................... Head height (ref.), in. .......................
0.042
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Yield critical value - average yield is <2/3 of the indicated ultimate value. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 55 ksi. d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-70
Table 8.1.3.2.1(d2). Static Joint Strength of Blind 100E E Flush Head Monel Rivets in Machine-Countersunk Stainless Steel Sheet Rivet Type . . . . . . . . . . . . . . . Sheet Material . . . . . . . . . . . . Temperature . . . . . . . . . . . . . . Rivet Diameter, in. . . . . . . . . . 1/8 (Nominal Hole Diameter, in.) (0.130)
Room 5/32 3/16 (0.162) (0.194)
MS20601M (R.T. Fsu = 55 ksi) AISI 301-¼ Hard 500EF 1/4 1/8 5/32 3/16 1/4 1/8 (0.258) (0.130) (0.162) (0.194) (0.258) (0.130) Ultimate Strength, lbs. (Estimated Lower Bound)
713
1090
1580
2855 648 993 1430 2590 590 Yield Strengthd, lbs. (Conservatively Adjusted Average)
Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . 0.180 . . . . . . . . . . . . . . . . . . Head height (ref.), in. . . . . . .
0.042
0.055
0.070
0.095
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-48, per the Sunset Clause. Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task
0.042
0.055
0.070
0.095
0.042
904
1305
2360
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a b c d
Yield critical value - average yield is <2/3 of the indicated ultimate value. Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 55 ksi at R.T., Ftu = 50 ksi at 500EF, and Fsu = 45 ksi at 700EF. Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
MMPDS-06 1 April 2011
8-71
Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . 0.180 . . . . . . . . . . . . . . . . . Rivet shear strengthc . . . . . . .
700EF 5/32 3/16 1/4 (0.162) (0.194) (0.258)
Table 8.1.3.2.1(d3). Static Joint Strength of Blind 100E E Flush Head Monel Rivets in Machine-Countersunk Stainless Steel Sheet Rivet Type . . . . . . . . . . . . . . . Sheet Material . . . . . . . . . . . . Temperature . . . . . . . . . . . . . . Rivet Diameter, in. . . . . . . . . . 1/8 (Nominal Hole Diameter, in.) (0.130)
Room 5/32 3/16 (0.162) (0.194)
MS20601M (R.T. Fsu = 55 ksi) AISI 301-½ Hard 500EF 1/4 1/8 5/32 3/16 1/4 1/8 (0.258) (0.130) (0.162) (0.194) (0.258) (0.130) Ultimate Strength, lbs. (Estimated Lower Bound)
713
1090
1580
2855 648 993 1430 2590 590 d (Conservatively Adjusted Average) Yield Strength , lbs.
Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . 0.180 . . . . . . . . . . . . . . . . . Head height (ref.), in. . . . . . . .
0.042
0.055
0.070
0.095
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-49, per the Sunset Clause. Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.042
0.055
0.070
0.095
0.042
904
1305
2360
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a b c d
Yield critical value - average yield is <2/3 of the indicated ultimate value. Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 55 ksi at R.T., Fsu = 50 ksi at 500EF, and Fsu = 45 ksi at 700EF. Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
MMPDS-06 1 April 2011
8-72
Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . 0.180 . . . . . . . . . . . . . . . . . Rivet shear strengthc . . . . . . .
700EF 5/32 3/16 1/4 (0.162) (0.194) (0.258)
MMPDS-06 1 April 2011
Table 8.1.3.2.1(e). Static Joint Strength of Blind 100E Flush-Head Monel Rivets in Machine-Countersunk Aluminum Alloy Sheet
Rivet Type ........................................
MS20601M (Fsu = 55 ksi)
Sheet Material ...................................
7075-T6
Rivet Diameter, in. ............................ (Nominal Hole Diameter, in.) ...........
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
1/4 (0.258)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ................................................. 0.050 ................................................. 0.063 ................................................. 0.071 ................................................. 0.080 ................................................. 0.090 ................................................. 0.100 ................................................. 0.125 ................................................. 0.160 ................................................. 0.190 ................................................. Rivet shear strengthc .........................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-50, per the Sunset Clause. Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
713
1090
1580
2855
Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ................................................. 0.050 ................................................. 0.063 ................................................. 0.071 ................................................. 0.080 ................................................. 0.090 ................................................. 0.100 ................................................. 0.125 ................................................. 0.160 ................................................. 0.190 ................................................. Head height (ref.), in. ......................
0.042
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Yield critical value - average yield is <2/3 of the indicated ultimate value. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 55 ksi. d Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-73
MMPDS-06 1 April 2011
Table 8.1.3.2.1(f). Static Joint Strength of Blind 100E Flush Head Aluminum Alloy (2117-T3) Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .......................................... MS20601AD and MS20603AD (Fsu = 30 ksi) Sheet Material .................................... Clad 2024-T3 Rivet Diameter, in. .............................. 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) ............. (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ..................................... The design allowables for this fastener/sheet combination 0.050 ..................................... were removed per MMPDS Agenda Item GSG 05-51, per the Sunset Clause. 0.063 ..................................... Date of last publication: April 2008 0.071 ..................................... Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. 0.080 ..................................... 0.090 ..................................... Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener 0.100 ..................................... Task Group
0.125 ..................................... Rivet shear strengthb ........................... Sheet thickness, in.: 0.040 ..................................... 0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 ..................................... Head height (ref.), in. ..........................
388 596 862 1550 c Yield Strength , lbs. (Conservatively Adjusted Average)
0.042
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. b Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 30 ksi. c Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-74
MMPDS-06 1 April 2011
Table 8.1.3.2.1(g). Static Joint Strength of Blind 100E Flush Head Aluminum Alloy (5056-H321) Rivets in Machine-Countersunk Magnesium Alloy Sheet Rivet Type .......................................... MS20601B (Fsu = 28 ksi) Sheet Material .................................... AZ31B-H24 Rivet Diameter, in. .............................. 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.) ............. (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ..................................... The design allowables for this fastener/sheet combination 0.050 ..................................... were removed per MMPDS Agenda Item GSG 05-52, per 0.063 ..................................... the Sunset Clause.
0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 ..................................... 0.160 ..................................... 0.190 ..................................... Rivet shear strengthb ........................... Sheet thickness, in.: 0.040 ..................................... 0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 ..................................... 0.160 ..................................... 0.190 ..................................... Head height (ref.), in. .........................
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
363 556 802 1450 Yield Strengthc, lbs. (Conservatively Adjusted Average)
0.042
0.055
0.070
0.095
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. b Rivet shear strength based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 28 ksi. c Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-75
MMPDS-06 1 April 2011
Table 8.1.3.2.2(a). Static Joint Strength of Blind 100E Flush Head Locked Spindle A-286 Rivets in Machine-Countersunk Alloy Steel Sheet Rivet Type . . . . . . . . . . . . . . . . . NAS1399Ca (Fsu = 75 ksi) CR 2642a (Fsu = 95 ksi) Sheet Material . . . . . . . . . . . . . . Alloy Steel, Ftu = 180 ksi Rivet Diameter, in. . . . . . . . . . . . 1/8 5/32 3/16 1/8 5/32 3/16 (Nominal Hole Diameter, in.) . . (0.130) (0.162) (0.194) (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . 380b,c ... ... 380b,c ... ... b b,c 0.050 . . . . . . . . . . . . . . . . . . . 475 588 ... 475 588b,c ... b b,c 0.063 . . . . . . . . . . . . . . . . . . . 698 741 890 698 741 890b,c 0.071 . . . . . . . . . . . . . . . . . . . 840 908 1004b 840 908 1004b b 0.080 . . . . . . . . . . . . . . . . . . . 970 1108 1171 1002 1108 1171 0.090 . . . . . . . . . . . . . . . . . . . ... 1333 1438 1185 1333 1438 0.100 . . . . . . . . . . . . . . . . . . . ... 1490 1710 1230 1559 1710 0.125 . . . . . . . . . . . . . . . . . . . ... ... 2150 ... 1885 2380 0.160 . . . . . . . . . . . . . . . . . . . ... ... ... ... ... 2720 Rivet shear strength . . . . . . . . . . 970d 1490d 2150d 1230e 1885e 2720e Yield Strengthf, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . 137 ... ... 180 ... ... 0.050 . . . . . . . . . . . . . . . . . . . 292 219 ... 320 278 ... 0.063 . . . . . . . . . . . . . . . . . . . 494 468 387 536 513 432 0.071 . . . . . . . . . . . . . . . . . . . 614 620 570 665 675 628 0.080 . . . . . . . . . . . . . . . . . . . 755 793 776 816 860 847 0.090 . . . . . . . . . . . . . . . . . . . ... 983 1003 981 1063 1090 0.100 . . . . . . . . . . . . . . . . . . . ... 1176 1236 1144 1267 1337 0.125 . . . . . . . . . . . . . . . . . . . ... ... 1809 ... 1777 1950 0.160 . . . . . . . . . . . . . . . . . . . ... ... ... ... ... 2720 Head height (ref.), in. . . . . . . . . . 0.042 0.055 0.070 0.042 0.055 0.070 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength is documented in NAS1400. e Shear strength is based on areas computed from nominal hole diameters in Table 8.1.2(a) and Fsu = 95 ksi. f Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-76
MMPDS-06 1 April 2011
Table 8.1.3.2.2(b). Static Joint Strength of Blind 100E Flush Head Locked Spindle Monel Rivets in Machine-Countersunk Stainless Steel Sheet
Rivet Type . . . . . . . . . . . . . . . . .
NAS1399 MS or MWa (Fsu = 55 ksi)
Sheet Material . . . . . . . . . . . . . .
AISI 301-1/2 Hard
Rivet Diameter, in. . . . . . . . . . . . (Nominal Hole Diameter, in.) . .
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . .
287b,c
...
...
0.050 . . . . . . . . . . . . . . . . . . .
363
445b,c
...
0.063 . . . . . . . . . . . . . . . . . . .
491
569
671b,c
0.071 . . . . . . . . . . . . . . . . . . .
569
668
755b
0.080 . . . . . . . . . . . . . . . . . . .
657
776
886
0.090 . . . . . . . . . . . . . . . . . . .
710
898
1032
0.100 . . . . . . . . . . . . . . . . . . .
...
1019
1182
0.125 . . . . . . . . . . . . . . . . . . .
...
1090
1580
Rivet shear strengthd . . . . . . . . .
710
1090
1580
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . .
163
...
...
0.050 . . . . . . . . . . . . . . . . . . .
243
253
...
0.063 . . . . . . . . . . . . . . . . . . .
348
384
401
0.071 . . . . . . . . . . . . . . . . . . .
413
463
496
0.080 . . . . . . . . . . . . . . . . . . .
487
554
606
0.090 . . . . . . . . . . . . . . . . . . .
568
655
726
0.100 . . . . . . . . . . . . . . . . . . .
...
753
846
0.125 . . . . . . . . . . . . . . . . . . .
...
1004
1156
0.042
0.055
0.070
Head height (ref.), in. . . . . . . . . .
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength is documented in NAS1400. e Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-77
MMPDS-06 1 April 2011
Table 8.1.3.2.2(c). Static Joint Strength of 100E Flush Head Locked Spindle A-286 Blind Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................. NAS1921Ca (Fsu = 80 ksi) Sheet Material ............................ Clad 7075-T6 Rivet Diameter, in. ..................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.) (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in. 0.050 ..................................... 612b ... ... b b 0.063 ..................................... 749 956 ... 0.071 ..................................... 831b 1060b ... b b 1180 1450b 0.080 ..................................... 923 b b 0.090 ..................................... 1110 1305 1605b 0.100 ..................................... 1090b 1435b 1755b b 0.125 ..................................... ... 1670 2130b 0.160 ..................................... ... ... 2400b c Rivet shear strength ................. 1090 1670 2400 Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ..................................... 365 ... ... 0.063 ..................................... 466 571 ... 0.071 ..................................... 528 649 ... 0.080 ..................................... 598 737 873 0.090 ..................................... 639 835 990 0.100 ..................................... 686 931 1105 0.125 ..................................... ... 1065 1325 0.160 ..................................... ... ... 1605 Head height (ref.), in. ................ 0.042 0.055 0.070 Last Revised: Apr 2010, MMPDS-05, Item 09-44 a b c d
Data supplied by Huck Manufacturing Company. Yield critical value - average yield is <2/3 of indicated ultimate value. Rivet shear strength is documented in NAS1900. Permanent set at yield load: 4% of nominal diameter (revised May 1, 1985 from the greater of 0.012 inch or 4% of nominal diameter).
8-78
MMPDS-06 1 April 2011
Table 8.1.3.2.2(d). Static Joint Strength of Blind 100E Flush Head Locked Spindle Monel Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type . . . . . . . . . . . . . . . . . NAS1399 MS or MWa (Fsu = 55 ksi) Sheet Material . . . . . . . . . . . . . . Clad 7075-T6 Rivet Diameter, in. . . . . . . . . . . . 1/8 5/32 3/16 (Nominal Hole Diameter, in.) . . (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: ... ... 0.040 . . . . . . . . . . . . . . . . . . . 323b,c 0.050 . . . . . . . . . . . . . . . . . . . 404b 499b,c ... b b 0.063 . . . . . . . . . . . . . . . . . . . 500 631 757b,c 0.071 . . . . . . . . . . . . . . . . . . . 557 703b 855b 0.080 . . . . . . . . . . . . . . . . . . . 610 784 958b 0.090 . . . . . . . . . . . . . . . . . . . 636 873 1065b 0.100 . . . . . . . . . . . . . . . . . . . 662 937 1175 0.125 . . . . . . . . . . . . . . . . . . . 710 1015 1370 0.160 . . . . . . . . . . . . . . . . . . . ... 1090 1505 0.190 . . . . . . . . . . . . . . . . . . . ... ... 1580 Rivet shear strengthd . . . . . . . . . 710 1090 1580 Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . 139 ... ... 0.050 . . . . . . . . . . . . . . . . . . . 223 218 ... 0.063 . . . . . . . . . . . . . . . . . . . 331 353 351 0.071 . . . . . . . . . . . . . . . . . . . 397 436 451 0.080 . . . . . . . . . . . . . . . . . . . 472 529 563 0.090 . . . . . . . . . . . . . . . . . . . 556 633 687 0.100 . . . . . . . . . . . . . . . . . . . 562 737 811 0.125 . . . . . . . . . . . . . . . . . . . 574 873 1120 0.160 . . . . . . . . . . . . . . . . . . . ... 894 1260 0.190 . . . . . . . . . . . . . . . . . . . ... ... 1280 Head height (ref.), in. . . . . . . . . . 0.042 0.055 0.070 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength is documented in NAS1400. e Permanent set at yield load: 4% of nominal diameter (revised May 1, 1985, from the greater of 0.005 inch or 2.5% of nominal diameter).
8-79
MMPDS-06 1 April 2011
Table 8.1.3.2.2(e). Static Joint Strength of 100E Flush Head Locked Spindle Monel Blind Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................. NAS 1921 Ma (Fsu = 75 ksi) Sheet Material ............................ Clad 7075-T6 Rivet Diameter, in. ..................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.) (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in. 0.050 ............................ 595b ... ... 0.063 ............................ 732b 927b ... b b 1035 ... 0.071 ............................ 816 1158b 1400b 0.080 ............................ 913b 0.090 ............................ 946b 1289b 1570b b b 0.100 ............................ 980 1415 1720b 0.125 ............................ 1020 1525b 2055b b 0.160 ............................ ... 1565 2245b 0.190 ............................ ... ... 2260 Rivet shear strengthc ................ 1020 1565 2260 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ............................ 354 ... ... 0.063 ............................ 447 554 ... 0.071 ............................ 504 625 ... 0.080 ............................ 569 707 843 0.090 ............................ 607 796 952 0.100 ............................ 626 885 1060 0.125 ............................ 686 972 1265 0.160 ............................ ... 1080 1430 0.190 ............................ ... ... 1540 Head height (ref.), in. ................ 0.042 0.055 0.070 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Rivet shear strength is documented in NAS 1900. d Permanent set at yield load: 4% of nominal diameter (revised May 1, 1985 from the greater of 0.012 inch or 4% of nominal diameter).
8-80
MMPDS-06 1 April 2011
Table 8.1.3.2.2(f). Static Joint Strength of Blind 100E Flush Head Aluminum Alloy (2219) Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................. CR 2A62a (Fsu = 36 ksi) Sheet Material ............................ Clad 2024-T81 Rivet Diameter, in. ..................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.) (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in. 0.050 ............................ 203 ... ... 0.063 ............................ 289 319 ... 0.071 ............................ 342 385 ... 0.080 ............................ 393 461 503 0.090 ............................ 416 542 603 0.100 ............................ 439 610 701 0.125 ............................ 478 682 894 0.160 ............................ ... 741 1013 0.190 ............................ ... ... 1063 b Rivet shear strength ................. 478 741 1063 c Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ............................ 169 ... ... 0.063 ............................ 247 267 ... 0.071 ............................ 295 326 ... 0.080 ............................ 349 394 423 0.090 ............................ 409 468 514 0.100 ............................ 424 544 603 0.125 ............................ 448 658 827 0.160 ............................ ... 670 960 0.190 ............................ ... ... 1002 Head height (ref.), in. ................ 0.042 0.055 0.070 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Shear strength values are based on indicated nominal hole diameters and Fsu = 36 ksi. c Permanent set at yield load: 4% of nominal diameter.
8-81
MMPDS-06 1 April 2011
Table 8.1.3.2.2(g). Static Joint Strength of Blind 100E E Flush Head Locked Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheet
Rivet Type ....................................................
NAS1921B0()-0(), NAS1921B0()S0(), NAS1921B0()S0()Ua (Fsu = 36 ksi)
Sheet Material ..............................................
Clad 7075-T6
Rivet Diameter, in. (Nominal Hole Diameter, in.) ......................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ........................................................ 0.050 ........................................................ 0.063 ........................................................ 0.071 ........................................................ 0.080 ........................................................ 0.090 ........................................................ 0.100 ........................................................ 0.125 ........................................................ 0.160 ........................................................
171b 232 313 360 416 477 494 -----
--267b 366 427 498 571 647 755 ---
----411b 484 566 658 748 978 1090
Rivet shear strengthc
495
755
1090
.........................
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ........................................................ 0.050 ........................................................ 0.063 ........................................................ 0.071 ........................................................ 0.080 ........................................................ 0.090 ........................................................ 0.100 ........................................................ 0.125 ........................................................ 0.160 ........................................................ Head height [ref.], in.
.........................
110 161 247 303 354 373 393 -----
--171 254 315 395 484 549 610 ---
----270 330 399 506 611 803 906
0.042
0.055
0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Values above the horizontal line in each column are for knife-edge condition and the use of fasteners in this condition
is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring activity. c Rivet shear strength is documented in NAS1900. d Permanent set at yield load: 4% of nominal diameter.
8-82
MMPDS-06 1 April 2011
Table 8.1.3.2.2(h). Static Joint Strength of Blind 100E Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type . . . . . . . . . . . . . . . . NAS1399Ba (5056) (Fsu = 30 ksi) NAS1399Da (2017) (Fsu = 36 ksi)
Sheet Material . . . . . . . . . . . . . Rivet Diameter, in. . . . . . . . . . . (Nominal Hole Diameter, in.) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . Rivet shear strengthd . . . . . . . . Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . Head height (ref.), in. . . . . . . . .
Clad 2024-T3 1/8 5/32 3/16 1/8 5/32 3/16 (0.130) (0.162) (0.194) (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) 149b,c ... ... 149b,c ... ... b b,c b b,c 223 230 ... 223 230 ... b b b,c b b 349 356 319 349 356b,c 310 366 415b 448b 379b 420b 448b 388 492b 544b 423 506b 547b ... 578 646b 459 600b 660b b ... 596 751 494 652 775b ... ... 862 ... 755 969 ... ... ... ... ... 1090 388 596 862 494 755 1090 e Yield Strength , lbs. (Conservatively Adjusted Average) 72 114 197 247 304 ... ... ... ... 0.042
... 113 182 245 316 396 473 ... ... 0.055
... ... 170 220 304 399 493 729 ... 0.070
72 114 197 247 304 367 431 ... ... 0.042
... 113 182 245 316 396 473 672 ... 0.055
... ... 170 220 304 399 493 729 1060 0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength is documented in NAS1900. e Permanent set at yield load: 4% of nominal diameter (revised May 1, 1985, from the greater of 0.005 inch or 2.5% of nominal diameter).
8-83
MMPDS-06 1 April 2011 Table 8.1.3.2.2(i). Static Joint Strength of Blind 100E Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk and Dimpled Aluminum Alloy Sheet NAS1739Ba and NAS1739Ea,b NAS1739Bc and NAS1739Eb,c Rivet Type . . . . . . . . . . . . . . . . . . (Fsu = 34 ksi) (Fsu = 34 ksi) Sheet Material . . . . . . . . . . . . . . . Clad 2024-T3 Rivet Diameter, in. . . . . . . . . . . . . 1/8 5/32 3/16 1/8 5/32 3/16 (Nominal Hole Diameter, in.) . . . (0.144) (0.178) (0.207) (0.144) (0.178) (0.207) Ultimate Strength, lbs.(Estimated Lower Bound) Sheet thickness, in.: 0.020 . . . . . . . . . . . . . . . . . . . . ... ... ... 246 334 418 0.025 . . . . . . . . . . . . . . . . . . . . ... ... ... 281 376 465 ... ... 330 436 536 0.032 . . . . . . . . . . . . . . . . . . . . 212d d 0.040 . . . . . . . . . . . . . . . . . . . . 266 326 ... 386 506 616 0.050 . . . . . . . . . . . . . . . . . . . . 344 410 ... 456 592 716 0.063 . . . . . . . . . . . . . . . . . . . . 441 533 606d 546 703 845 0.071 . . . . . . . . . . . . . . . . . . . . 504 608 696 ... 771 926 0.080 . . . . . . . . . . . . . . . . . . . . 554 693 794 ... 837 1015 0.090 . . . . . . . . . . . . . . . . . . . . ... 787 900 ... ... 1110 0.100 . . . . . . . . . . . . . . . . . . . . ... 837 1015 ... ... ... 0.125 . . . . . . . . . . . . . . . . . . . . ... ... 1128 ... ... ... 554 837 1128 554 837 1128 Rivet shear strengthe . . . . . . . . . . . f Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.020 . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... 0.025 . . . . . . . . . . . . . . . . . . . . ... ... ... ... ... ... 0.032 . . . . . . . . . . . . . . . . . . . . 159 ... ... ... ... ... 0.040 . . . . . . . . . . . . . . . . . . . . 212 247 ... ... ... ... 0.050 . . . . . . . . . . . . . . . . . . . . 279 331 ... ... ... ... 0.063 . . . . . . . . . . . . . . . . . . . . 365 437 492 ... ... ... 0.071 . . . . . . . . . . . . . . . . . . . . 418 503 568 ... ... ... 0.080 . . . . . . . . . . . . . . . . . . . . 448 577 654 ... ... ... 0.090 . . . . . . . . . . . . . . . . . . . . ... 659 750 ... ... ... 0.100 . . . . . . . . . . . . . . . . . . . . ... 689 845 ... ... ... 0.125 . . . . . . . . . . . . . . . . . . . . ... ... 960 ... ... ... Head height (ref.), in. . . . . . . . . . . 0.035 0.047 0.063 0.035 0.047 0.063 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Machine-countersunk holes. b Data supplied by Cherry Fasteners. Confirmatory data for machine-countersunk holes provided by Allfast Fastening Systems, Inc. c Dimpled holes. These allowables apply to double dimpled sheets and to the upper sheet dimpled into a machinecountersunk lower sheet. Sheet gauge is that of the thinnest sheet for double dimpled joints and of the upper dimpled, machine-countersunk joints. The thickness of the machine-countersunk sheet must be at least one tabulated gauge thicker than the upper sheet. In no case shall allowables be obtained by extrapolation for gauges other than those shown. d The values in the table above the horizontal line in each column are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. e Rivet shear strength is documented in NAS1740. f Permanent set at yield load: 4% of nominal diameter (revised May 1, 1985, from the greater of 0.005 inch or 2.5% of nominal diameter).
8-84
MMPDS-06 1 April 2011 Table 8.1.3.2.2(j). Static Joint Strength of Blind 100E Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk Magnesium Alloy Sheet NAS1739B and NAS Rivet Type . . . . . . . . . . . . . . . . . . . . . . NAS1399Ba (Fsu = 30 ksi) 1739Ea (Fsu = 34 ksi) Sheet Material . . . . . . . . . . . . . . . . . . . AZ31B-H24 Rivet Diameter, in. . . . . . . . . . . . . . . . . 1/8 5/32 3/16 1/4 1/8 5/32 3/16 (Nominal Hole Diameter, in.) . . . . . . . (0.130) (0.162) (0.194) (0.258) (0.144) (0.178) (0.207) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 . . . . . . . . . . . . . . . . . . . . . . . . The design allowables for this fastener/sheet 0.040 . . . . . . . . . . . . . . . . . . . . . . . . combination were removed per MMPDS Agenda Item GSG 08-22, per the Sunset Clause. 0.050 . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . Date of last publication: April 2010 0.071 . . . . . . . . . . . . . . . . . . . . . . . . Allowables were published through handbook versions: MMPDS-05 and MIL-HDBK-5. 0.080 . . . . . . . . . . . . . . . . . . . . . . . .
0.090 . . . . . . . . . . . . . . . . . . . . . . . . Interested parties wishing to participate in providing 0.100 . . . . . . . . . . . . . . . . . . . . . . . . replacement data should contact the MMPDS Fastener Task Group 0.125 . . . . . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . . . . . . Rivet shear strength . . . . . . . . . . . . . . . 388d 596d 862d 1550d 554e 837e 1128e Yield Strengthf, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 . . . . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . . . . . . Head height (ref.), in. . . . . . . . . . . . . . . 0.042
0.055
0.070
0.095
0.035
0.047
0.063
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Yield value is less than 2/3 of the indicated ultimate strength value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength is documented in NAS1400. e Rivet shear strength is documented in NAS1740 dated March 1968. f Permanent set at yield load: the greater of 0.005 inch or 2.5% of nominal diameter.
8-85
MMPDS-06 1 April 2011 Table 8.1.3.2.2(k). Static Joint Strength of Blind 100E Flush Head Locked Spindle A-286 Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ................................... CR 4622a (Fsu = 75 ksi) Sheet Material ............................. Clad 7075-T6 Rivet Diameter ............................ 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.)b (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 .................................... 595c ... ... ... 0.063 .................................... 733c 932c ... ... c c 0.071 .................................... 817 1035 ... ... 0.080 .................................... 913 1160c 1410c ... c c 0.090 .................................... 947 1290 1570 ... 0.100 .................................... 982 1420 1725c 2360c 0.125 .................................... 995 1525 2060 2880c 0.160 .................................... ... 1545 2215 3605 0.190 .................................... ... ... ... 3810 0.250 .................................... ... ... ... 3920 d Rivet shear strength .................. 995 1545 2215 3920 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 .................................... 211 ... ... ... 0.063 .................................... 348 339 ... ... 0.071 .................................... 489 470 ... ... 0.080 .................................... 608 620 574 ... 0.090 .................................... 664 787 774 ... 0.100 .................................... 720 947 970 853 0.125 .................................... 860 1120 1400 1505 0.160 .................................... ... 1365 1695 2410 0.190 .................................... ... ... ... 2740 0.250 .................................... ... ... ... 3405 Head height (ref.), in. ................. 0.041 0.054 0.069 0.095 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Allowable loads developed from test with nominal hole diameters as listed. c Yield critical value - average yield is <2/3 of the indicated ultimate value. d Fastener shear strength based upon nominal hole diameters and Fsu = 75 ksi from data analysis. e Permanent set at yield load: 4% of nominal diameter.
8-86
MMPDS-06 1 April 2011
Table 8.1.3.2.2(l). Static Joint Strength of Blind 100E Flush Head Locked Spindle Monel Rivets in Machine-Countersunk Aluminum Alloy Sheet and Plate Rivet Type .................................. CR 4522a (Fsu = 65 ksi) Sheet and Plate Material ............ Clad 7075-T6 and T651 Rivet Diameter ........................... 1/8 5/32 3/16 1/4 (Nominal Hole Diameter, in.)b (0.130) (0.162) (0.194) (0.258) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: ... ... ... 0.050 ................................... 529c c c 0.063 ................................... 632 828 ... ... c c 0.071 ................................... 694 906 ... ... 0.080 ................................... 754 995c 1240c ... c 0.090 ................................... 776 1095 1360 ... c 0.100 ................................... 797 1170 1475 ... 0.125 ................................... 852 1240 1695 2485c 0.160 ................................... 863 1335 1810 2975 0.190 ................................... ... 1340 1910 3105 0.250 ................................... ... ... 1920 3365 0.312 ................................... ... ... ... 3400 d Rivet shear strength ................. 863 1340 1920 3400 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.050 ................................... 169 ... ... ... 0.063 ................................... 346 273 ... ... 0.071 ................................... 454 408 ... ... 0.080 ................................... 561 562 483 ... 0.090 ................................... 621 732 688 ... 0.100 ................................... 682 874 888 ... 0.125 ................................... 833 1060 1300 1355 0.160 ................................... 863 1325 1615 2225 0.190 ................................... ... 1340 1885 2585 0.250 ................................... ... ... 1920 3300 0.312 ................................... ... ... ... 3400 Head height (ref.), in. ................ 0.042 0.055 0.070 0.095 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Allowable loads developed from test with nominal hole diameters as listed. c Yield critical value - average yield is <2/3 of the indicated ultimate value. d Fastener shear strength based upon nominal hole diameters and Fsu = 65 ksi from data analysis. e Permanent set at yield load: 4% of nominal diameter.
8-87
MMPDS-06 1 April 2011
Table 8.1.3.2.2(m). Static Joint Strength of Blind 100E Flush Head Locked Spindle Aluminum Alloy (7050) Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ................................. NAS1721KE and NAS1721KE( )La (Fsu = 33 ksi) Sheet Material ........................... Clad 7075-T6 Rivet Diameter, in. .................... 1/8 5/32 3/16 (0.130) (0.162) (0.194) (Nominal Hole Diameter, in.)b .. Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ............................. The design allowables for this fastener/sheet combination 0.050 ............................ were removed per MMPDS Agenda Item GSG 05-53, per the Sunset Clause. 0.063 ............................ Date of last publication: April 2008 0.071 ............................ Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. 0.080 ............................
0.090 ............................ 0.100 ............................ 0.125 ............................ Rivet shear strengthd ................. Sheet thickness, in.: 0.040 ............................ 0.050 ............................ 0.063 ............................ 0.071 ............................ 0.080 ............................ 0.090 ............................ 0.100 ............................ 0.125 ............................ Head height (ref.), in. ................
Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
450 700 950 e Yield Strength , lbs. (Conservatively Adjusted Average)
0.042
0.055
0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Avdel Corp. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, ±.0001 inch c The values in the table above the horizontal line in each column are for knife-edge conditions, and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires the specific approval of the procuring agency. d Yield critical value - average yield is <2/3 of the indicated ultimate value. e Rivet shear strength is documented in NAS1722. f Permanent set at yield load: 4% of nominal diameter
8-88
MMPDS-06 1 April 2011
Table 8.1.3.2.2(n). Static Joint Strength of Blind 100E Flush Head Locked Spindle A-286 Rivets in Machine-Countersunk Aluminum Alloy Sheet
Rivet Type . . . . . . . . . . . . . . . . . . . . . . . .
NAS1721C and NAS1721C( )La (Fsu = 75 ksi)
Sheet Material . . . . . . . . . . . . . . . . . . . . .
Clad 7075-T6
Rivet Diameter, in. . . . . . . . . . . . . . . . . . . (Nominal Hole Diameter, in.)b . . . . . . . . .
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound)
Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.190 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.250 . . . . . . . . . . . . . . . . . . . . . . . . . . Rivet shear strengthe . . . . . . . . . . . . . . . .
454c, d 585d 751d 853d 881d 896 912 951 1000 ... ... 1000
... 707c,d 919d 1045d 1190d 1345d 1365d 1415 1485 1500 ... 1500
... ... 1075c,d 1230d 1405d 1595d 1785d 1970 2055 2125 2200 2200
Yield Strengthf, lbs. (Conservatively Adjusted Average)
Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.190 . . . . . . . . . . . . . . . . . . . . . . . . . . 0.250 . . . . . . . . . . . . . . . . . . . . . . . . . .
77 220 375 470 578 615 641 707 799 ... ...
... 122 352 471 604 753 902 997 1110 1210 ...
... ... 246 425 585 763 942 1330 1470 1585 1820
Head height (ref.), in. . . . . . . . . . . . . . . .
0.042
0.055
0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Avdel Corp. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, ±0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires the specific approval of the procuring agency. d Yield critical value - average yield is <2/3 of indicated ultimate value. e Rivet shear strength is documented in NAS1722. f Permanent set at yield load: 4% of nominal diameter.
8-89
MMPDS-06 1 April 2011
Table 8.1.3.2.2(o). Static Joint Strength of Blind Flush Head Locked Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheet
Rivet Type ...............................................
HC3212 (Fsu = 51 ksi approx.)a
Sheet Material .........................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ......................................................... 0.050 ......................................................... 0.063 ......................................................... 0.071 ......................................................... 0.080 ......................................................... 0.090 ......................................................... 0.100 ......................................................... 0.125 ......................................................... 0.160 ......................................................... 0.190 ......................................................... 0.250 .........................................................
280c,d 318 367 397 431 469 507 602 664 -----
--436c,d 497 535 577 624 671 789 954 1030 ---
----643c,d 688 739 795 851 992 1190 1355 1480
Rivet shear strengthe
664
1030
1480
............................
Yield Strength, lbs.f (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ............................................................ 0.050 ............................................................ 0.063 ............................................................ 0.071 ............................................................ 0.080 ............................................................ 0.090 ............................................................ 0.100 ............................................................ 0.125 ............................................................ 0.160 ............................................................ 0.190 ............................................................ 0.250 ............................................................ Head height [ref.], in.
............................
151 244 366 397 431 454 476 532 610 -----
--236 387 480 577 624 671 740 837 921 ---
----382 494 619 758 851 979 1095 1195 1395
0.042
0.055
0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International Inc. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires specific approval of the procuring activity. d Yield critical value - average yield is <2/3 of indicated ultimate value. e Rivet shear strength is documented in Table 8.1.1.1. f Permanent set at yield load: 4% of nominal diameter.
8-90
MMPDS-06 1 April 2011 Table 8.1.3.2.2(p). Static Joint Strength of Blind 100E Flush Head Locked Spindle 2014 Aluminum Alloy Rivets in Machine Countersunk Aluminum Alloy Sheet
Rivet Type ..................................
MBC 4807 and 4907 (Fsu = 33 ksi approx.)a
Sheet Material ............................
Clad 2024-T3
Rivet Diameter, in. ..................... b
(Nominal Hole Diameter, in.) ...
1/8
5/32
3/16
(0.130)
(0.162)
(0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ......................................
183c
...
... c
0.050 ......................................
243
286
...
0.063 ......................................
320
382
437c
0.071 ......................................
368
441
508
0.080 ......................................
412
508
588
0.090 ......................................
435
582
677
0.100 ......................................
450
641
766
0.125 ......................................
...
700
937
0.160 ......................................
...
...
950
450
700
950
d
Rivet shear strength ..................
Yield Strength, lbs.e (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ......................................
102
...
...
0.050 ......................................
173
160
...
0.063 ......................................
264
274
263
0.071 ......................................
309
345
347
0.080 ......................................
333
423
441
0.090 ......................................
360
486
546
0.100 ......................................
387
519
651
0.125 ......................................
...
602
765
0.160 ......................................
...
...
904
0.041
0.053
0.068
Head height (ref.), in. .................
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Avdel Systems Ltd. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions, and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires the specific approval of the procuring agency. d Rivet shear strength is documented in NAS 1722, and rivets meet the requirements of NAS 1721. e Permanent set at yield load: 4% of nominal diameter.
8-91
MMPDS-06 1 April 2011
Table 8.1.3.2.2(q). Static Joint Strength of Blind Protruding Head Locked Spindle 2014 Aluminum Alloy Rivets in Aluminum Alloy Sheet
Rivet Type .................................
MBC 4801 and 4901 (Fsu = 33 ksi approx.)a
Sheet Material ...........................
Clad 2024-T3
Rivet Diameter, in. .................... (Nominal Hole Diameter, in.)b ...
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.025 ..................................... 0.032 ..................................... 0.040 ..................................... 0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 ..................................... Rivet shear strengthc .................
247 284 326 378 415 437 450 ... ... ... 450
... 389 441 507 589 617 649 684 700 ... 700
... ... 571 650 751 814 864 906 948 950 950
Yield Strength, lbs.d (Conservatively Adjusted Average) Sheet thickness, in.: 0.025 ..................................... 0.032 ..................................... 0.040 ..................................... 0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 .....................................
238 277 321 368 381 389 399 ... ... ...
... 375 431 500 572 583 594 607 619 ...
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Avdel Systems Ltd. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, ±0.001 inch. c Rivet shear strength is documented in NAS 1722, and rivets meet the requirements of NAS 1720. d Permanent set at yield load: 4% of nominal diameter.
8-92
... ... 552 635 743 810 828 843 858 896
MMPDS-06 1 April 2011
Table 8.1.3.2.2(r). Static Joint Strength of 100E Flush Head Locked Spindle Aluminum Alloy Blind Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .................................... HC6222a (Fsu = 50 ksi) Nominal Sheet Material .............................. Clad 2024-T3 Rivet Diameter, in. ...................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.) ...... (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ............................... 270b ... ... b ... 0.050 ............................... 317 420 0.063 ............................... 377 496 624b 0.071 ............................... 414 542 680 0.080 ............................... 456 594 743 0.090 ............................... 503 652 812 0.100 ............................... 550 711 882 0.125 ............................... 664 856 1055 0.160 ............................... ... 1030 1299 0.190 ............................... ... ... 1480 0.250 ............................... ... ... ... c Rivet shear strength ................... 664 1030 1480 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ............................... 196 ... ... 0.050 ............................... 252 306 ... 0.063 ............................... 323 395 464 0.071 ............................... 368 451 530 0.080 ............................... 417 512 605 0.090 ............................... 445 581 687 0.100 ............................... 459 650 770 0.125 ............................... 494 714 972 0.160 ............................... ... 775 1045 0.190 ............................... ... ... 1108 0.250 ............................... ... ... ... Head height (ref.), in. .................. 0.042 0.055 0.070 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International, Inc. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. c Rivet shear strength is documented in Table 8.1.1.1. d Permanent set at yield load: 4% of nominal hole diameter.
8-93
MMPDS-06 1 April 2011 Table 8.1.3.2.2(s). Static Joint Strength of 100E Flush Head Locked Spindle Aluminum Alloy Blind Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ........................................ HC6252a (Fsu = 50 ksi) Sheet Material .................................. Clad 2024-T3 Rivet Diameter, in. .......................... 1/8 5/32 3/16 (Nominal Hole Diameter, in.) .......... (0.144) (0.178) (0.207) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 ..................................
265 b,c
...
... b,c
...
0.040 ..................................
304
408
0.050 .................................. 0.063 ..................................
352 414
467 544
... 665 c
0.071 .................................. 0.080 .................................. 0.090 .................................. 0.100 .................................. 0.125 .................................. 0.160 .................................. 0.190 .................................. 0.250 .................................. Rivet shear strengthd ........................
452 495 543 591 701 814 ... ... 814
591 645 704 763 911 1097 1237 1245 1245
720 782 851 920 1092 1332 1505 1685 1685
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 .................................. 0.040 .................................. 0.050 .................................. 0.063 .................................. 0.071 .................................. 0.080 .................................. 0.090 .................................. 0.100 .................................. 0.125 .................................. 0.160 .................................. 0.190 .................................. 0.250 ..................................
154 214 288 384 444 494 513 531 576 640 ... ...
... 240 332 451 524 607 698 758 814 893 961 1096
... ... ... 500 586 682 788 895 1048 1139 1218 1376
Head height (ref.), in. ............................
0.035
0.047
0.063
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International, Inc. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring activity. d Rivet shear strength is documented in Table 8.1.1.1. e Permanent set at yield load: 4% of nominal hole diameter.
8-94
MMPDS-06 1 April 2011
Table 8.1.3.2.2(t1). Static Joint Strength of 100E Flush Shear Head Locked Spindle Aluminum Alloy Blind Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type .......................................
HC6224a (Fsu = 50 ksi) Nominal
Sheet Material .................................
Clad 2024-T3
Rivet Diameter, in. ......................... (Nominal Hole Diameter, in.)b ........
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 .................................
230
294c
0.040 .................................
282
358
437c
0.050 ................................. 0.063 .................................
347 431
439 544
534 660
0.071 ................................. 0.080 ................................. 0.090 ................................. 0.100 ................................. 0.125 ................................. 0.160 ................................. 0.190 ................................. Rivet shear strengthd .......................
456 493 535 576 664 ... ... 664
608 681 716 768 897 1030 ... 1030
737 824 921 979 1135 1350 1480 1480
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ................................. 0.040 ................................. 0.050 ................................. 0.063 ................................. 0.071 ................................. 0.080 ................................. 0.090 ................................. 0.100 ................................. 0.125 ................................. 0.160 ................................. 0.190 .................................
185 248 328 431 448 457 467 477 503 ... ...
209 288 387 516 595 681 697 710 742 786 ...
320 438 592 687 794 912 979 1030 1080 1125
Head height (ref.), in. .....................
0.028
0.037
0.046
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International, Inc. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194 ± 0.0002. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring activity. d Rivet shear strength is documented in Table 8.1.1.1. e Permanent set at yield load: 4% of nominal hole diameter.
8-95
MMPDS-06 1 April 2011
Table 8.1.3.2.2(t2). Static Joint Strength of 100E E Flush Shear Head Locked Spindle Aluminum Alloy Blind Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ........................................................ HC3214a(Fsu = 50 ksi)Nominal Sheet Material .................................................. Clad 2024-T3 Rivet Diameter, in ........................................... 1/8 5/32 3/16 (Nominal Hole Diameter, in) .......................... (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in: 0.032 ............................................................ 214 272b ... 0.040 ............................................................ 264 333 405b 0.050 ............................................................ 325 410 497 0.063 ............................................................ 406 511 617 0.071 ............................................................ 427 572 691 0.080 ............................................................ 464 621 774 0.090 ............................................................ 504 671 856 0.100 ............................................................ 544 721 916 0.125 ............................................................ 644 846 1066 0.160 ............................................................ 664 1020 1275 0.190 ............................................................ ... 1030 1455 0.250 ............................................................ ... ... 1480 c Rivet shear strength ........................................ 664 1030 1480 Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in: 0.032 ............................................................ 196 230 ... 0.040 ............................................................ 256 305 348 0.050 ............................................................ 325 399 461 0.063 ............................................................ 406 511 607 0.071 ............................................................ 427 572 691 0.080 ............................................................ 453 621 774 0.090 ............................................................ 475 678 856 0.100 ............................................................ 497 705 916 0.125 ............................................................ 552 773 1030 0.160 ............................................................ 628 868 1140 0.190 ............................................................ ... 950 1240 0.250 ............................................................ ... ... 1435 Head height (ref), in ........................................ 0.028 0.037 0.046 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International Inc. b Values above the horizontal line in each column are for knife-edge conditions, the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires the specific approval of the procuring activity. c Rivet shear strength is based upon nominal hole diameter and Fsu = 50 ksi. d Permanent set at yield: 4% of nominal hole diameter.
8-96
MMPDS-06 1 April 2011 Table 8.1.3.2.2(u). Static Joint Strength of Blind Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheets Rivet Type ..........................................................
AF3212 (Fsu = 51 ksi approx.)a
Sheet Material ....................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...........................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ................................................................ 0.050 ................................................................ 0.063 ................................................................ 0.071 ................................................................ 0.080 ................................................................ 0.090 ................................................................ 0.100 ................................................................ 0.125 ................................................................ 0.160 ................................................................ 0.190 ................................................................ 0.250 ................................................................
143c 247 383 414 435 457 480 537 616 -----
--224c 393 497 614 647 676 746 846 931 ---
----370c 494 634 790 902 987 1105 1205 1410
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED.
Rivet shear strengthd
.............................
664
1030
1480
Yield Strength, lbs.e (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ................................................................ 0.050 ................................................................ 0.063 ................................................................ 0.071 ................................................................ 0.080 ................................................................ 0.090 ................................................................ 0.100 ................................................................ 0.125 ................................................................ 0.160 ................................................................ 0.190 ............................................................... 0.250 ................................................................ Head height [ref.], in.
.............................
143 235 310 330 353 379 404 468 557 -----
--224 371 431 486 518 549 629 740 835 ---
----370 491 572 662 713 808 914 1055 1280
0.042
0.055
0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Allfast Fastening Systems Inc. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions, and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires specific approval of the procuring activity. d Rivet shear strength is documented in Table 8.1.1.1. e Permanent set at yield load: 4% of nominal diameter.
8-97
MMPDS-06 1 April 2011
Table 8.1.3.2.2(v). Static Joint Strength of Blind Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ..........................................................
CR3212 (Fsu = 51 ksi approx.)a
Sheet Material ....................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...........................
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 .............................................................. 0.050 .............................................................. 0.063 .............................................................. 0.071 .............................................................. 0.080 .............................................................. 0.090 .............................................................. 0.100 .............................................................. 0.125 ..............................................................
297c, d 342d 401d 437d 477 513 536 594
--462c, d 535d 580d 630d 687d 743 834
----683c, d 737d 798d 865d 932 1100
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED.
Rivet shear strengthe
664
1030
1480
Yield Strength, lbs.f (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 .............................................................. 0.050 .............................................................. 0.063 .............................................................. 0.071 .............................................................. 0.080 .............................................................. 0.090 .............................................................. 0.100 .............................................................. 0.125 .............................................................. Head height [ref.], in.
.............................
131 181 247 287 333 361 371 394
--204 286 336 393 456 518 576
----317 377 444 520 595 783
0.042
0.055
0.070
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Textron Aerospace Fasteners. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions, and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires specific approval of the procuring activity. d Yield critical value - average yield is < 2/3 of indicated ultimate value. e Rivet shear strength is documented in Table 8.1.1.1. f Permanent set at yield load: 4% of nominal diameter.
8-98
MMPDS-06 1 April 2011 Table 8.1.3.2.2(w). Static Joint Strength of Blind Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ..........................................................
AF3242 (Fsu = 51 ksi approx.)a
Sheet Material ....................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...........................
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 ................................................................ 0.040 ................................................................ 0.050 ................................................................ 0.063 ................................................................ 0.071 ................................................................ 0.080 ................................................................ 0.090 ................................................................ 0.100 ................................................................ 0.125 ................................................................ 0.160 ................................................................ 0.190 ................................................................
193c 250 321 414 470 524 550 577 643 736 814
--299c 387 501 571 651 738 804 886 1000 ---
------573c 654 746 849 951 1120 1250 1365
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED. Rivet shear strengthd
814
1245
1685
Yield Strength, lbs.e (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ................................................................ 0.040 ................................................................ 0.050 ................................................................ 0.063 ................................................................ 0.071 ................................................................ 0.080 ................................................................ 0.090 ................................................................ 0.100 ................................................................ 0.125 ................................................................ 0.160 ................................................................ 0.190 ................................................................ Head height (ref.), in.
192 250 321 414 470 524 550 577 643 736 814
--298 387 501 571 651 738 804 886 1000 ---
------573 654 746 849 951 1120 1250 1365
0.035
0.047
0.063
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Allfast Fastening Systems Inc. b Loads developed from tests with hole diameters of 0.144, 0.178, and 0.207, +/-0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions, and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires the specific approval of the procuring activity. d Rivet shear strength is documented in Table 8.1.1.1. e Permanent set at yield load: 4% of nominal diameter.
8-99
MMPDS-06 1 April 2011
Table 8.1.3.2.2(x). Static Joint Strength of Blind Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ..........................................................
CR3242 (Fsu = 51 ksi approx.)a
Sheet Material ....................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.)b ...........................
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 ................................................................ 0.040 ................................................................ 0.050 ................................................................ 0.063 ................................................................ 0.071 ................................................................ 0.080 ................................................................ 0.090 ................................................................ 0.100 ................................................................ 0.125 ................................................................
245c,d 302 374 467 568 584 602 620 664
--378c,d 467 582 653 732 872 894 950
------681c 764 856 959 1165 1230
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED. Rivet shear strengthe
814
1245
1685
Yield Strength, lbs.f (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ................................................................ 0.040 ................................................................ 0.050 ................................................................ 0.063 ................................................................ 0.071 ................................................................ 0.080 ................................................................ 0.090 ................................................................ 0.100 ................................................................ 0.125 ................................................................
158 206 265 330 361 395 434 473 569
--245 318 413 471 514 562 609 729
------472 540 616 678 734 873
Head height (ref.), in. .........................................
0.035
0.047
0.063
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Textron Aerospace Fasteners. b Loads developed from tests with hole diameters of 0.144, 0.178, and 0.207, +/-0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions, and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires the specific approval of the procuring activity. d Yield critical value - average yield is < 2/3 of indicated ultimate value. e Rivet shear strength is documented in Table 8.1.1.1. f Permanent set at yield load: 4% of nominal diameter.
8-100
MMPDS-06 1 April 2011 Table 8.1.3.2.2(y). Static Joint Strength of Blind Flush Head Locked Spindle Aluminum Alloy Rivets in Machine-Countersunk Aluminum Alloy Sheet Rivet Type ..........................................................
HC3242 (Fsu = 51 ksi approx.)a
Sheet Material ....................................................
Clad 2024-T3
Rivet Diameter, in. (Nominal Hole Diameter, in.b .............................
1/8 (0.144)
5/32 (0.178)
3/16 (0.207)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 .............................................................. 0.040 .............................................................. 0.050 .............................................................. 0.063 .............................................................. 0.071 .............................................................. 0.080 .............................................................. 0.090 .............................................................. 0.100 .............................................................. 0.125 .............................................................. 0.160 .............................................................. 0.190 .............................................................. 0.250 ..............................................................
267c,d 310 363 433 475 522 560 597 690 814 -----
--411c,d 477 563 616 675 741 803 918 1075 1215 ---
------682c 744 813 889 966 1130 1320 1480 1685
THIS FASTENER HAS ONLY BEEN TESTED IN THE SHEET GAGES SHOWN IN THIS TABLE. DESIGN DATA FOR SHEET GAGES OR DIAMETERS OTHER THAN THOSE SHOWN HERE CANNOT BE EXTRAPOLATED. Rivet shear strengthe
814
1245
1685
Yield Strength, lbs.f (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 .............................................................. 0.040 .............................................................. 0.050 .............................................................. 0.063 .............................................................. 0.071 .............................................................. 0.080 .............................................................. 0.090 .............................................................. 0.100 .............................................................. 0.125 .............................................................. 0.160 .............................................................. 0.190 .............................................................. 0.250 ..............................................................
138 218 317 433 475 510 527 543 585 644 -----
--217 340 500 598 675 741 781 833 906 968 ---
------529 643 772 889 966 1075 1160 1235 1375
Head height (ref.), in. .........................................
0.035
0.047
0.063
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck International Inc. b Loads developed from tests with hole diameters of 0.144, 0.178, and 0.207, +/-0.001 inch. c The values in the table above the horizontal line in each column are for knife-edge conditions, and the use of fasteners in this condition is undesirable. The use of knife-edge conditions in the design of military aircraft requires the specific approval of the procuring activity. d Yield critical value - average yield is <2/3 of indicated ultimate value. e Rivet shear strength is documented on HC3242 standards drawing. f Permanent set at yield load: 4% of nominal diameter.
8-101
MMPDS-06 1 April 2011 Table 8.1.3.2.2(z). Static Joint Strength of Blind Flush Head Locked Spindle Aluminum Alloy Rivets in Aluminum Alloy Sheet Rivet Type . . . . . . . . . . . . . . . . . . . . AF3222 (Fsu = 50 ksi approx.)a Sheet Material . . . . . . . . . . . . . . . . . Clad 2024-T3 Rivet Diameter, in. . . . . . . . . . . . . . . 1/8 5/32 3/16 (Nominal Hole Diameter, in.)b . . . . . (0.130) (0.162) (0.194) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . . . . 202c ... ... 0.050 . . . . . . . . . . . . . . . . . . . . . .
287
316c
...
0.063 . . . . . . . . . . . . . . . . . . . . . .
388
452
492c
0.071 . . . . . . . . . . . . . . . . . . . . . .
412
536
593
0.080 . . . . . . . . . . . . . . . . . . . . . .
439
608
706
0.090 . . . . . . . . . . . . . . . . . . . . . .
469
645
832
0.100 . . . . . . . . . . . . . . . . . . . . . .
498
683
891
0.125 . . . . . . . . . . . . . . . . . . . . . .
573
775
1000
0.160 . . . . . . . . . . . . . . . . . . . . . .
664
905
1155
0.190 . . . . . . . . . . . . . . . . . . . . . .
...
1015
1290
0.250 . . . . . . . . . . . . . . . . . . . . . .
...
1030
1480
664
1030
1480
d
Rivet shear strength . . . . . . . . . . . . .
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . . . .
160
...
...
0.050 . . . . . . . . . . . . . . . . . . . . . .
216
249
...
0.063 . . . . . . . . . . . . . . . . . . . . . .
290
341
383
0.071 . . . . . . . . . . . . . . . . . . . . . .
335
397
451
0.080 . . . . . . . . . . . . . . . . . . . . . .
379
460
527
0.090 . . . . . . . . . . . . . . . . . . . . . .
421
531
611
0.100 . . . . . . . . . . . . . . . . . . . . . .
462
591
696
0.125 . . . . . . . . . . . . . . . . . . . . . .
566
720
880
0.160 . . . . . . . . . . . . . . . . . . . . . .
664
901
1095
0.190 . . . . . . . . . . . . . . . . . . . . . .
...
1015
1280
0.250 . . . . . . . . . . . . . . . . . . . . . .
...
1030
1480
0.042
0.055
0.070
Head height (ref.), in. . . . . . . . . . . . .
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Allfast Fastening Systems Inc. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.001 inch. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in the design of military aircraft requires specific approval of the procuring agency. d Rivet shear strength as documented in Table 8.1.1.1. e Permanent set at yield load: 4% of nominal diameter.
8-102
MMPDS-06 1 April 2011 Table 8.1.3.2.2(aa). Static Joint Strength of Flush Head 5056 Aluminum Alloy Rivets in Clad Aluminum Alloy Sheet Rivet Type . . . . . . . . . . . . . . . . . . . . CR3222 (Fsu = 50 ksi approx.)a Sheet Material . . . . . . . . . . . . . . . . . Clad 2024-T3 1/8 5/32 3/16 Rivet Diameter, in. . . . . . . . . . . . . . . (0.130) (0.162) (0.194) (Nominal Hole Diameter, in.)b . . . . . Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: ... ... 0.040 . . . . . . . . . . . . . . . . . . . . . . 286c,d 0.050 . . . . . . . . . . . . . . . . . . . . . .
328d
0.063 . . . . . . . . . . . . . . . . . . . . . .
382
d
0.071 . . . . . . . . . . . . . . . . . . . . . .
445c,d
...
513
658c,d
416
555d
708d
0.080 . . . . . . . . . . . . . . . . . . . . . .
454
602d
764d
0.090 . . . . . . . . . . . . . . . . . . . . . .
496
654
827d
0.100 . . . . . . . . . . . . . . . . . . . . . .
528
706
889
0.125 . . . . . . . . . . . . . . . . . . . . . .
589
821
1045
0.160 . . . . . . . . . . . . . . . . . . . . . .
664
928
1215
0.190 . . . . . . . . . . . . . . . . . . . . . .
...
1020
1325
0.250 . . . . . . . . . . . . . . . . . . . . . .
...
1030
1480
1030
1480
e
Rivet shear strength . . . . . . . . . . . . .
d
664 f
Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 . . . . . . . . . . . . . . . . . . . . . .
158
...
...
0.050 . . . . . . . . . . . . . . . . . . . . . .
199
247
...
0.063 . . . . . . . . . . . . . . . . . . . . . .
252
313
373
0.071 . . . . . . . . . . . . . . . . . . . . . .
285
354
422
0.080 . . . . . . . . . . . . . . . . . . . . . .
322
399
476
0.090 . . . . . . . . . . . . . . . . . . . . . .
362
450
537
0.100 . . . . . . . . . . . . . . . . . . . . . .
384
501
598
0.125 . . . . . . . . . . . . . . . . . . . . . .
425
597
750
0.160 . . . . . . . . . . . . . . . . . . . . . .
483
669
881
0.190 . . . . . . . . . . . . . . . . . . . . . .
...
731
955
0.250 . . . . . . . . . . . . . . . . . . . . . .
...
854
1100
0.041
0.054
0.069
Head height (ref.), in. . . . . . . . . . . . .
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Textron Aerospace Fasteners. b Loads developed from tests with hole diameters of 0.130, 0.162, and 0.194, +/- 0.0005 inch. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in the design of military aircraft requires the specific approval of the procuring agency. d Yield value is less than 2/3 of indicated ultimate strength value. e Rivet shear strength as documented in Table 8.1.1.1. f Permanent set at yield load: 4% of nominal diameter.
8-103
MMPDS-06 1 April 2011
Table 8.1.3.2.3(a). Static Joint Strength of Blind 100E E Flush Head A-286 Bolts in Machine-Countersunk Aluminum Alloy Sheet and Plate
Fastener Type ............................. Sheet and Plate Material ........... Fastener Diameter, in. ............... (Nominal Shank Diameter, in.) .. Sheet or plate thickness, in.: 0.071 ................................... 0.080 ................................... 0.090 ................................... 0.100 ................................... 0.125 ................................... 0.160 ................................... 0.190 ................................... 0.200 ................................... 0.250 ................................... 0.312 ................................... Fastener shear strengthd ............ Sheet or plate thickness, in.: 0.071 ................................... 0.080 ................................... 0.090 ................................... 0.100 ................................... 0.125 ................................... 0.160 ................................... 0.190 ................................... 0.200 ................................... 0.250 ................................... 0.312 ................................... Head height (ref.), in. ................
MS21140a (Fsu = 95 ksi) Clad 7075-T6 and T651 5/32 3/16 1/4 5/16 3/8 (0.163) (0.198) (0.259) (0.311) (0.373) Ultimate Strength, lbs. (Estimated Lower Bound) 1165b,c ... ... ... ... b b,c 1330 1600 ... ... ... b b 1515 1805 ... ... ... b b b,c 1700 2020 2615 ... ... b b b b,c 1980 2595 3295 3935 ... b b b ... 2925 4335 5080 6010b,c ... ... 5005b 6150b 7205b ... ... ... 6520b 7680b ... ... ... 7215b 9810b ... ... ... ... 10380b 1980 2925 5005 7215 10380 e Yield Strength , lbs. (Conservatively Adjusted Average) 478 584 702 819 1115 ... ... ... ... ... 0.074
... 627 730 901 1260 1760 ... ... ... ... 0.082
... ... ... 1025 1435 2090 2655 ... ... ... 0.108
... ... ... ... 1540 2285 2965 3190 4320 ... 0.140
... ... ... ... ... 2430 3235 3510 4860 6460 0.168
Last Revised: Apr 2011, MMPDS-06, Item 08-04 & Item 09-46 a Data supplied by Huck Manufacturing Company. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength is documented in MIL-F-8975. e Permanent set at yield load: 4% of nominal diameter (revised May 1, 1986, from the greater of 0.012 inch or 4% of nominal diameter).
8-104
MMPDS-06 1 April 2011
Table 8.1.3.2.3(b1). Static Joint Strength of Blind 100E Flush Head Alloy Steel Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type .............................. MS90353, MS90353S, and MS90353Ua (Fsu = 112 ksi) Sheet and Plate Material ............ Clad 2024-T3 and T351 Fastener Diameter, in. ................ 5/32 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.) ... (0.163) (0.198) (0.259) (0.311) (0.373) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.071 .................................... 1120b,c ... ... ... ... b b,c 1480 ... ... ... 0.080 .................................... 1305 b b 0.090 .................................... 1510 1735 ... ... ... b b b,c 2000 2380 ... ... 0.100 .................................... 1740 b b b b,c 0.125 .................................... 2080 2670 3210 3625 ... 3195b 4440b 5060b 5700b,c 0.160 .................................... 2340b 0.190 .................................... ... 3450b 5090b 6310b 7180b 0.250 .................................... ... ... 5900b 7860b 9890b 0.312 .................................... ... ... ... 8500b 11600b 0.375 .................................... ... ... ... ... 12200b Fastener shear strengthd ............. 2340 3450 5900 8500 12200 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.071 .................................... 403 ... ... ... ... 0.080 .................................... 513 501 ... ... ... 0.090 .................................... 636 652 ... ... ... 0.100 .................................... 759 799 1045 ... ... 0.125 .................................... 989 1170 1525 1620 ... 0.160 .................................... 1170 1510 2200 2430 2610 0.190 .................................... ... 1700 2700 3120 3440 0.250 .................................... ... ... 3330 4170 5095 0.312 .................................... ... ... ... 4955 6175 0.375 .................................... ... ... ... ... 7135 Head height (ref.), in. ................. 0.072 0.080 0.105 0.137 0.165 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Yield critical value - average yield is <2/3 of indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength is documented in MIL-F-81177. e Permanent set at yield load: 4% of nominal diameter.
8-105
MMPDS-06 1 April 2011
Table 8.1.3.2.3(b2). Static Joint Strength of Blind 100E Flush Head Alloy Steel Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Rivet Type ................................. MS90353a (Fsu = 112 ksi) Sheet and Plate Material ........... Clad or Bare 7075-T6 and T651 Fastener Diameter, in. ............... 5/32 3/16 1/4 5/16 3/8 (Nominal Hole Diameter, in.) ... (0.163) (0.198) (0.259) (0.311) (0.373) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.071 .................................. 1360b,c ... ... ... ... c b,c 0.080 .................................. 1535 1830 ... ... ... c c 0.090 .................................. 1710 2090 ... ... ... 0.100 .................................. 1880c 2330c 2970b,c ... ... c c c b,c 0.125 .................................. 2200 2825 3805 4490 ... c c 3365 4760 5850 6960b,c 0.160 .................................. 2340 0.190 .................................. ... 3450 5370c 6790c 8310c 0.250 .................................. ... ... 5900 8290c 10450c 0.312 .................................. ... ... ... 8500 12200 0.375 .................................. ... ... ... ... 12200 d Fastener shear strength ........... 2340 3450 5900 8500 12200 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.071 .................................. 557 ... ... ... ... 0.080 .................................. 666 757 ... ... ... 0.090 .................................. 787 875 ... ... ... 0.100 .................................. 909 1025 1240 ... ... 0.125 .................................. 1215 1395 1640 1860 ... 0.160 .................................. 1640 1910 2315 2590 2850 0.190 .................................. ... 2355 2895 3290 3675 0.250 .................................. ... ... 4055 4680 5345 0.312 .................................. ... ... ... 6125 7075 0.375 .................................. ... ... ... ... 8830 Head height (ref.), in. ............... 0.072 0.080 0.105 0.137 0.165 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Yield critical value - average yield is <2/3 of indicated ultimate value. d Fastener shear strength is documented in MIL-F-81177. e Permanent set at yield load: 4% of nominal diameter revised May 1, 1986, from the greater of 0.012 inch or 4% of nominal diameters.
8-106
MMPDS-06 1 April 2011
Table 8.1.3.2.3(c). Static Joint Strength of Blind 100E Flush Head Alloy Steel Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type .............................. FF-200a FF-260a FF-312a Clad Clad Clad Clad Clad Clad Sheet and Plate Material ............. 2024-T42 7075-T6 2024-T42 7075-T6 2024-T42 7075-T6 Fastener Diameter, in. ................. 3/16 3/16 1/4 1/4 5/16 5/16 (Nominal Shank Diameter, in.) ... (0.198) (0.198) (0.259) (0.259) (0.311) (0.311) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.071 ............................. The design allowables for this fastener/sheet combination 0.080 ............................. were removed per MMPDS Agenda Item GSG 07-54, per the 0.090 ............................. Sunset Clause.
0.100 ............................. 0.125 ............................. 0.160 ............................. 0.190 ............................. 0.250 .............................
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.312 ............................. Fastener shear strengthd Sheet or plate thickness, in.: 0.071 ............................. 0.080 ............................. 0.090 ............................. 0.100 ............................. 0.125 ............................. 0.160 ............................. 0.190 ............................. 0.250 ............................. 0.312 ............................. Head height (ref.), in. .................
2620 2620 4500 4500 6000 6000 e Yield Strength , lbs. (Conservatively Adjusted Average)
0.077
0.102
0.134
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Monogram Aerospace Fasteners. b Yield critical value - average yield is <2/3 of indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength is documented in NAS1675. e Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-107
MMPDS-06 1 April 2011
Table 8.1.3.2.3(d). Static Joint Strength of Blind 100E Flush Head Alloy Steel Fasteners in Machine-Countersunk Aluminum Alloy Sheet Fastener Type .................................. NS 100a Sheet Material ................................. Clad 7075-T6 Fastener Diameter, in. ..................... 5/32 3/16 1/4 (Nominal Shank Diameter, in.) ....... (0.163) (0.198) (0.259) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.063 ......................................... The design allowables for this fastener/sheet combination 0.071 ......................................... were removed per MMPDS Agenda Item GSG 05-54, per the 0.080 ......................................... Sunset Clause.
0.090 ......................................... 0.100 ......................................... 0.125 ......................................... 0.160 ......................................... 0.190 ......................................... 0.250 ......................................... Fastener shear strengthd .................
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group 2190
3325
5690
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.063 ......................................... 0.071 ......................................... 0.080 ......................................... 0.090 ......................................... 0.100 ......................................... 0.125 ......................................... 0.160 ......................................... 0.190 ......................................... 0.250 ......................................... Head height (ref.), in. .....................
0.069
0.077
0.102
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Monogram Aerospace Fasteners. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength values are A basis from analysis of test data. e Permanent set at yield load: 4% of nominal diameter (revised May 1, 1985, from the greater of 0.012 inch or 4% of nominal diameter).
8-108
MMPDS-06 1 April 2011
Table 8.1.3.2.3(e). Static Joint Strength of Blind 100E Flush Head Aluminum Alloy Fasteners in Machine-Countersunk Aluminum Alloy Sheet Fastener Type ..................................... SSHFA-200a (Fsu = 50 ksi) SSHFA-260a (Fsu = 50 ksi) Sheet Material .................................... Clad 2024-T42 Clad 7075-T6 Clad 2024-T42 Clad 7075-T6 Fastener Diameter, in. ........................ 3/16 3/16 1/4 1/4 (Nominal Shank Diameter, in.) .......... (0.198) (0.198) (0.259) (0.259) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.:
0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 ..................................... 0.160 ..................................... 0.190 ..................................... 0.250 ..................................... Fastener shear strengthc ..................... Sheet thickness, in.: 0.050 ..................................... 0.063 ..................................... 0.071 ..................................... 0.080 ..................................... 0.090 ..................................... 0.100 ..................................... 0.125 ..................................... 0.160 ..................................... 0.190 ..................................... 0.250 ..................................... Head height (ref.), in. .........................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 08-24, per the Sunset Clause. Date of last publication: April 2010 Allowables were published through handbook versions: MMPDS-05 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
1550 1550 2650 2650 d Yield Strength , lbs. (Conservatively Adjusted Average)
0.061
0.061
0.088
0.088
Last Revised: Apr 2011, MMPDS-06, Items 08-04, 08-24 a Data supplied by Monogram Aerospace Fasteners. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Fastener shear strength is documented in NAS1675. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-109
MMPDS-06 1 April 2011
Table 8.1.3.2.3(f). Static Joint Strength of Blind 100E Flush Head Alloy Steel Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate PLT-150a (Fsu = 112 ksi) Fastener Type ..................................... (H-11 Nut and screw, Inconel X-750 or A-286 Sleeve) Sheet or Plate Material ........................ Clad 7075-T6 and T651 Fastener Diameter, in. ......................... 5/32 3/16 1/4 3/8 (Nominal Shank Diameter, in.) .......... (0.163) (0.198) (0.259) (0.373) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.063 ..................................... 1120b,c ... ... ... b b,c 0.071 ..................................... 1320 1470 ... ... 0.080 ..................................... 1550b 1755b ... ... b b 0.090 ..................................... 1730 2060 ... ... 0.100 ..................................... 1885b 2350b 2820b,c ... b b b 0.125 ..................................... 2300 2850 3825 ... 0.160 ..................................... 2340b 3450b 4790b 6695b,c 0.190 ..................................... ... ... 5570b 8440b b 0.250 ..................................... ... ... 5900 10700b 0.312 ..................................... ... ... ... 12250b Fastener shear strengthd ...................... 2340 3450 5900 12250 Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.063 ..................................... 534 ... ... ... 0.071 ..................................... 615 730 ... ... 0.080 ..................................... 705 830 ... ... 0.090 ..................................... 805 953 ... ... 0.100 ..................................... 906 1075 1345 ... 0.125 ..................................... 1235 1390 1750 ... 0.160 ..................................... 1545 1910 2310 3160 0.190 ..................................... ... ... 2965 3850 0.250 ..................................... ... ... 3840 5395 0.312 ..................................... ... ... ... 6985 Head height (ref.), in. .......................... 0.069 0.077 0.102 0.160 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Voi-Shan Industries (Inconel X-750 Sleeve) and Monogram Aerospace Fasteners (A-286 Sleeve). b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and Fsu = 112 ksi. e Permanent set at yield load: 4% of nominal diameter (revised May 1, 1985, from the greater of 0.012 inch or 4% of nominal diameter).
8-110
MMPDS-06 1 April 2011
Table 8.1.3.2.3(g). Static Joint Strength of Blind 100E Flush Head Alloy Steel Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ................................ NAS1670-La Sheet and Plate Material ............... Clad 7075-T6 and T651 b 5/32 3/16 1/4 5/16 3/8 Fastener Diameter, in. .................. (Nominal Shank Diameter, in.) ..... (0.163) (0.198) (0.259) (0.311) (0.373) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.063 ............................... 1110c,d ... ... ... ... 0.071 ............................... 1230c 1530c,d ... ... ... c c 0.080 ............................... 1365 1700 ... ... ... c c 0.090 ............................... 1525 1885 ... ... ... 0.100 ............................... 1678c 2065c 2800c,d ... ... c c c,d 0.125 ............................... 1678 2530 3400 4165 ... c c c 0.160 ............................... 1678 2620 4255 5190 6350c,d 0.190 ............................... ... 2620 4500c 6000c 7395c 0.250 ............................... ... ... 4500 6000 9625c 0.312 ............................... ... ... ... ... 9750 0.375 ............................... ... ... ... ... 9750 e Fastener shear strength ............... 1678 2620 4500 6000 9750 f Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.063 ............................... 500 ... ... ... ... 0.071 ............................... 601 647 ... ... ... 0.080 ............................... 711 788 ... ... ... 0.090 ............................... 802 941 ... ... ... 0.100 ............................... 887 1085 1255 ... ... 0.125 ............................... 1105 1340 1770 1930 ... 0.160 ............................... 1405 1700 2250 2720 3055 0.190 ............................... ... 2020 2655 3200 3890 0.250 ............................... ... ... 3480 4185 5020 0.312 ............................... ... ... ... ... 6280 0.375 ............................... ... ... ... ... 7520 Head height (ref.), in. ................... 0.069 0.077 0.102 0.134 0.160 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Monogram Aerospace Fasteners. b Fasteners installed in 0.165/0.166, 0.200/0.201, 0.261/0.262, 0.312/0.313, 0.375/0.376 inch holes. c Yield critical value - average yield is < 2/3 of the indicated ultimate value. d Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. e Fastener shear strength is documented in NAS1675. f Permanent set at yield load: 4% of nominal diameter.
8-111
MMPDS-06 1 April 2011
Table 8.1.3.2.3(h). Static Joint Strength of Blind 100E Flush Head Aluminum Alloy Fasteners in Machine-Countersunk Aluminum Alloy Sheet Fastener Type ............................... NAS1674-La Sheet Material .............................. Clad 7075-T6 Fastener Diameter, in. .................. 5/32 3/16 1/4 b (Nominal Shank Diameter, in.) (0.163) (0.198) (0.259) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 .............................. 548c ... ... 0.063 .............................. 756c 853 ... 0.071 .............................. 882c 1010 ... 0.080 .............................. 960 1185 ... 0.090 .............................. ... 1375 1645 0.100 .............................. ... 1550 1900 0.125 .............................. ... ... 2535 0.160 .............................. ... ... 2650 Fastener shear strengthd .............. 960 1550 2650 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 .............................. 356 ... ... 0.063 .............................. 481 666 ... 0.071 .............................. 561 774 ... 0.080 .............................. 650 892 ... 0.090 .............................. ... 1025 1275 0.100 .............................. ... 1155 1450 0.125 .............................. ... ... 1880 0.160 .............................. ... ... 2480 Head height (ref.), in. .................. 0.049 0.061 0.088 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Monogram Aerospace Fasteners. b Fasteners installed in 0.165/0.166, 0.199/0.200, 0.260/0.261 inch holes. c Yield critical value - average yield is <2/3 of the indicated ultimate value. d Fastener shear strength is documented in NAS1675. e Permanent set at yield load: 4% of nominal diameter.
8-112
MMPDS-06 1 April 2011 8.1.4 SWAGED COLLAR/UPSET-PIN FASTENERS — Prior to 2003, the allowable ultimate design loads were established from test data using the average ultimate test load divided by 1.15, or an adjusted, lowered curve which enveloped all of the test observations. After 2003, fastener ultimate design loads and shear strength cut-off levels are defined by B-Basis values. Prior to 2003, the yield design load was defined by the group average curve of the test data. After 2003, yield design loads are established using B-Basis values. See Sections 9.7.1.3 and 9.7.1.4 for current statistical procedures for both shear cut-off and joint strength calculations. The strengths shown in the following tables are applicable only when grip lengths and hole tolerances are as recommended by respective fastener manufacturers. For some fastener systems, permanent set at yield load may be increased if hole sizes greater than those listed in the applicable table are used. This condition may exist even though the test hole size lies within the manufacturer’s recommended hole size range (refer to Section 9.4.1.3.3). The ultimate allowable shear load for lockbolts and lockbolt stumps may be obtained from Table 8.1.4 for the appropriate shear stress level. Tensile strengths of lockbolts and lockbolt stumps also are contained in Table 8.1.4. For lockbolts under combined loading of shear and tension installed in material having a thickness large enough to make the shear cutoff strength critical for shear loading, the following interaction equations are applicable: Steel lockbolts, Rt + Rs10 = 1.0 7075-T6 lockbolts, Rt + Rs5 = 1.0 where Rt and Rs are the ratios of applied load to allowable load in tension and shear, respectively. Unless otherwise specified, yield load is defined in Section 9.4.1.3.3 as the load which results in a joint permanent set equal to 4% D, where D is the decimal equivalent of the fastener shank diameter, as defined in 9.4.1.2(a).
8.1.4.1 Protruding-Head Swaged Collar Fastener Joints — Tables 8.1.4.1(a) and 8.1.4.1(b) contain joint allowables for various protruding-head swaged collar fastener/sheet material combinations. It has been shown that protruding shear head (representative configurations are NAS 2406 to NAS 2412 and M43859/1) fastener joints may not develop the full bearing strength of joint material. Therefore, static allowable loads for protruding shear head fasteners must be established from test data using the criteria specified in Section 9.4.1. For shear joints with protruding tension head fasteners, the load per fastener at which shear or bearing type of failure occurs is calculated separately and the lower of the two governs the design. Allowable shear loads are obtained from Table 8.1.4. The design bearing stresses for various materials at room and other temperatures are given in strength properties stated for each alloy or group of alloys, and are applicable to joints with pins in cylindrical holes and where t/D > 0.18. Where t/D < 0.18, tests to substantiate yield and ultimate bearing strengths must be performed. These bearing stresses are applicable only for design of rigid joints where there is no possibility of relative motion of the parts joined without deformation of such parts. For convenience, “unit” sheet bearing strengths for pins, based on bearing stress of 100 ksi and nominal fastener diameters, are given in Table 8.1.5.1. The strength for a specific combination of fastener, sheet thickness, and sheet material is obtained by multiplying the proper “unit” strength by the ratio of material allowable bearing stress (ksi) to 100.
8-113
MMPDS-06 1 April 2011 8.1.4.2 Flush-Head Swaged Collar Fastener Joints — Tables 8.1.4.2(a) through 8.1.4.2(j) contain joint allowables for various flush-head swaged collar fastener/sheet material combinations. The allowable loads for flush-head swaged collar fasteners were established from test data using the following criteria, unless otherwise noted in the footnotes of individual tables.
Ultimate Load — Design allowable ultimate load as defined in Section 9.7.1.5. The allowable loads shown for flush-head swaged collar fasteners are applicable to joints having e/D equal to or greater than 2.0. For machine countersunk joints, the sheet gage specified in the tables is that of countersunk sheet. When the non-countersunk sheet is thinner than the countersunk sheet, the bearing allowable for the noncountersunk sheet-fastener combination should be computed, compared to the table value, and the lower of the two values selected.
8-114
Table 8.1.4. Ultimate Single-Shear and Tensile Strengths of Lockbolts and Lockbolt Stumpsa Heat Treated Alloy Steelb(160 ksi) Single-Shear Strength, lbs.
Nominal Diameter (inches)
a b c d e f g h
2007f/1822g 2623 4660 7290 10490
Single-Shear Strength, lbs.
Tensile Strength, lbs.
Tensile Strength, lbs.
Tensile Typed
Shear Typee
Tensile Typed
NAS 1456 thru 1462 NAS 1465 thru 1472 NAS 1475 thru 1482 NAS 1486 thru 1492 NAS 1496 thru 1502
NAS 1414 thru 1422 NAS 1424 thru 1432 NAS 1436 thru 1442 NAS 1446 thru 1452
NAS 1516 thru 1522 NAS 1525 thru 1532 NAS 1535 thru 1542 NAS 1546 thru 1552 NAS 1556 thru 1562
1100f 2210 4080 6500d 10100h
705g 1105 2040 3250 5050
960f 1260 2185 3450 4970
Lockbolts are pull-gun driven; lockbolt stumps are hammer or squeeze driven. Used with 2024-T4 aluminum alloy collar, NAS 1080. Used with 6061-T6 aluminum alloy collar. Tensile type have a higher head and more grooves than the shear type and can be either protruding or 100E flush head. Strength value listed refers to lowest strength fastener configuration within this type. Shear type have shorter head and less grooves than the tensile type and can be either protruding or 100E flush head. Strength values listed refer to lowest strength fastener configuration within this type. Available as lockbolt only (0.164 dia. for #8 lockbolts). Available as lockbolt stump only (0.156 dia. for 5/32 stumps). Five groove design on lockbolts.
740f 1195 2200 3500 5455
MMPDS-06 1 April 2011
8-115
5/32 . . . . . . . . . 3/16 . . . . . . . . . 1/4 . . . . . . . . . . 5/16 . . . . . . . . . 3/8 . . . . . . . . . .
7075-T6c
MMPDS-06 1 April 2011
Table 8.1.4.1(a). Static Joint Strength of Protruding Shear Head Ti-6Al-4V Cherrybuck Fasteners in Aluminum Alloy Sheet
Fastener Type
.............................
CSR 925a (Fsu = 95 ksi)
Sheet Material
.............................
Clad 7075-T6
Fastener Diameter, in. .................... (Nominal Shank Diameter, in.)b .....
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... Fastener shear strengthc ................
995 1227 1371 1532 1711 1890 2007 ... ... 2007
... 1442 1607 1792 2001 2205 2694 ... ... 2694
... ... ... 2415 2688 2960 3641 4595 4660 4660
Yield Strengthd, lbs. (Conservatively Adjusted Average)
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 ..........................................
861 1013 1107 1213 1331 1448 1741 ... ...
... 1225 1334 1455 1592 1727 2068 ... ...
... ... ... 2067 2246 2425 2873 3499 4036
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Fasteners installed in clearance holes (0.0005" - 0.002"). c Fastener shear strength based on area computed from nominal shank diameters in Table 9.7.1.1 and Fsu = 95 ksi. d Permanent set at yield load: 4% of nominal diameter.
8-116
MMPDS-06 1 April 2011
Table 8.1.4.1(b). Static Joint Strength of Protruding Shear Head Ti-6Al-4V Cherrybuck Fasteners in Aluminum Alloy Sheet
Fastener Type ..............................
CSR 925a (Fsu = 95 ksi)
Sheet Material .............................
Clad 2024-T3
Fastener Diameter, in. ................. (Nominal Shank Diameter, in.)b ...
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
Ultimate Strength, lbs. (Estimated Lower Bound)
Sheet thickness, in.: 0.050 ........................................... 0.063 ........................................... 0.071 ........................................... 0.080 ........................................... 0.090 ........................................... 0.100 ........................................... 0.125 ........................................... 0.160 ........................................... 0.190 ........................................... Fastener shear strengthc .............
807 1020 1150 1300 1465 1630 2007 ... ... 2007
... 1180 1335 1505 1695 1885 2360 2694 ... 2694
... ... ... 1970 2220 2470 3095 3975 4660 4660
Yield Strengthd, lbs. (Conservatively Adjusted Average)
Sheet thickness, in.: 0.050 ........................................... 0.063 ........................................... 0.071 ........................................... 0.080 ........................................... 0.090 ........................................... 0.100 ........................................... 0.125 ........................................... 0.160 ........................................... 0.190 ...........................................
619 747 827 916 1015 1115 1360 ... ...
... 889 981 1085 1200 1315 1600 2000 ...
... ... ... 1495 1645 1795 2175 2705 3155
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Fasteners installed in clearance holes (0.0005" - 0.002"). c Fastener shear strength based on area computed from nominal diameters in Table 9.7.1.1 and Fsu = 95 ksi. d Permanent set at yield load: 4% of nominal diameter.
8-117
MMPDS-06 1 April 2011
Table 8.1.4.2(a). Static Joint Strength of 100E Flush Shear Head Alloy Steel Lockbolt Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ..................... NAS 1436-1442a (Fsu = 95 ksi) Sheet and Plate Material ....... Clad 7075-T6 and T651 Fastener Diameter, in. ........... 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.) (0.190) (0.250) (0.312) (0.375) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.071 ......................... The design allowables for this fastener/sheet combination 0.080 ......................... were removed per MMPDS Agenda Item GSG 07-55, per the Sunset Clause. 0.090 .........................
0.100 ......................... 0.125 ......................... 0.160 ......................... 0.190 ......................... 0.250 .........................
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.312 ......................... Fastener shear strengthc Sheet or plate thickness, in.: 0.071 ........................ 0.080 ........................ 0.090 ........................ 0.100 ........................ 0.125 ........................ 0.160 ........................ 0.190 ........................ 0.250 ........................ 0.312 ..................... Head height (max.), in. .........
2620 4650 7300 10500 d Yield Strength , lbs. (Conservatively Adjusted Average)
0.049
0.063
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Fastener shear strength is documented in NAS 1413. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-118
0.071
0.081
MMPDS-06 1 April 2011 Table 8.1.4.2(b). Static Joint Strength of 100E Flush Shear/Tension Head Alloy Steel Lockbolt Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ....................... NAS 7024-7032a,b (Fsu = 108 ksi) Sheet and Plate Material ...... Clad 7075-T6 and T651 Fastener Diameter, in. .......... 1/8 5/32 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.) (0.125) (0.156) (0.190) (0.250) (0.312) (0.375) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.040 ............................... 0.050 ............................... The design allowables for this fastener/sheet combination 0.063 ............................... were removed per MMPDS Agenda Item GSG 05-55, per the 0.071 ............................... Sunset Clause. 0.080 ............................... 0.090 ............................... Date of last publication: April 2008 Allowables were published through handbook versions: 0.100 ............................... MMPDS-04 and MIL-HDBK-5. 0.125 ............................... 0.160 ............................... Interested parties wishing to participate in providing 0.190 ............................... replacement data should contact the MMPDS Fastener Task 0.250 ............................... Group 0.312 ............................... 0.324 ............................... 0.375 ............................... 0.433 ............................... Fastener shear strengthe ....... 1325 2070 3060 5300 8280 11930 f Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.040 ............................... 0.050 ............................... 0.063 ............................... 0.071 ............................... 0.080 ............................... 0.090 ............................... 0.100 ............................... 0.125 ............................... 0.160 ............................... 0.190 ............................... 0.250 ............................... 0.312 ............................... 0.324 ............................... 0.375 ............................... 0.433 .................................. Head height (ref.), in. .............. 0.042 0.050 0.060 0.077 0.094 0.111 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Used with NAS1080K aluminum alloy collar. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Yield critical value - average yield is <2/3 of the indicated ultimate value. e Fastener shear strength is documented in NAS1413. f Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-119
MMPDS-06 1 April 2011
Table 8.1.4.2(c). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Cherrybuck Fasteners in Machine-Countersunk Aluminum Alloy Sheet
Fastener Type ...............................
CSR 924a (Fsu = 95 ksi)
Sheet Material ..............................
Clad 7075-T6
Fastener Diameter, in. .................. (Nominal Shank Diameter, in.)b ...
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ 0.190 ............................................ 0.250 ............................................ Fastener shear strengthb ..............
941 1207 1385 1557 1775 1876 1950 2007 ... ... 2007
... 1383 1588 1779 2050 2263 2542 2660 2694 ... 2694
... ... ... 2281 2594 2919 3765 4387 4525 4660 4660
Yield Strengthc, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ 0.190 ............................................ 0.250 ............................................
659 887 1022 1116 1189 1257 1393 1608 ... ...
... 985 1148 1325 1480 1545 1733 1978 2191 ...
... ... ... 1625 1894 2162 2619 2950 3231 3794
Head height (ref.), in. ...............................
0.034
0.046
0.060
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and Fsu = 95 ksi. c Permanent set at yield load: 4% of nominal diameter.
8-120
MMPDS-06 1 April 2011
Table 8.1.4.2(d). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Cherrybuck Fasteners in Machine-Countersunk Aluminum Alloy Sheet
Fastener Type ...............................
CSR 924a (Fsu = 95 ksi)
Sheet Material ..............................
Clad 2024-T3
Fastener Diameter, in. .................. (Nominal Shank Diameter, in.)b ...
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ 0.190 ............................................ 0.250 ............................................ Fastener shear strengthd ..............
737 1019 1152 1279c 1419c 1560c 1898c 2007c ... ... 2007
... 1118 1319 1509 1673c 1834c 2242c 2680c 2694 ... 2694
... ... ... 1837 2168 2500 3036c 3786c 4404c 4660 4660
Yield Strengthe, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ 0.190 ............................................ 0.250 ............................................
511 712 786 840 900 960 1110 1321 ... ...
... 778 922 1039 1109 1178 1352 1596 1805 ...
... ... ... 1276 1513 1750 1979 2300 2575 3125
Head height (ref.), in. ...................
0.034
0.046
0.060
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Cherry Fasteners. b Fasteners installed in clearance holes (0.0005 - 0.002). c Yield critical load - average yield is <2/3 of the indicated ultimate. d Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and Fsu = 95 ksi. e Permanent set at yield load: 4% of nominal diameter.
8-121
MMPDS-06 1 April 2011
Table 8.1.4.2(e). Static Joint Strength of 100E Flush Shear Head A-286 Rivets in MachineCountersunk Aluminum Alloy Sheet
Fastener Type ...............................
HSR201a (Fsu = 95 ksi)
Sheet Material ..............................
7075-T6
Fastener Diameter, in. .................. (Nominal Shank Diameter, in.)b ...
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ Fastener shear strengthc ...............
1055 1330 1500 1690 1900 2007 ... ... 2007
1220 1545 1740 1955 2200 2445 2694 ... 2694
... 2030 2285 2575 2895 3220 4025 4660 4660
Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................
835 1055 1185 1340 1505 1675 ... ...
870 1225 1380 1550 1745 1940 2420 ...
... 1605 1810 2040 2295 2550 3190 4180
Head height (nom.), in. ................
0.040
0.046
0.060
Last Revised: Apr 2011, MMPDS-06, Item 08-04 & Item 09-45 a Data supplied by Hi-Shear Corporation. b Hole Size: Fastener installed in 0.000 interference to 0.005 clearance. c Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and Fsu = 95 ksi. d Permanent set at yield load: 4% of nominal diameter.
8-122
MMPDS-06 1 April 2011
Table 8.1.4.2(f). Static Joint Strength of 100E Flush Shear Head Ti-8Mo-8V-2Fe-3Al Rivets in Machine-Countersunk Aluminum Alloy Sheet
Rivet Type ....................................
HSR101a (Fsu = 95 ksi)
Sheet Material ..............................
7075-T6
Rivet Diameter, in. ....................... (Nominal Shank Diameter, in.)b ...
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................ Rivet shear strengthc ...................
1040 1310 1480 1665 1875 2007 ... ... 2007
1205 1520 1715 1930 2170 2410 2694 ... 2694
... 2000 2255 2540 2855 3175 3965 4660 4660
Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.125 ............................................ 0.160 ............................................
797 1005 1130 1275 1435 1595 ... ...
921 1165 1310 1475 1660 1845 2310 ...
... 1530 1725 1945 2185 2430 3035 3885
Head height (nom.), in. ................
0.040
0.046
0.060
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Hi-Shear Corporation. b Hole Size: Fastener installed in 0.000 interference to 0.005 clearance. c Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and 1/4 = 0.250 and Fsu = 95 ksi. d Permanent set at yield load: 4% of nominal diameter.
8-123
MMPDS-06 1 April 2011
Table 8.1.4.2(g). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Lockbolt Fasteners in Machine-Countersunk Aluminum Alloy Sheet
Rivet Type ........................................
GPL3SC-V Pina,b (Fsu = 95 ksi), 2SC-3C Collar
Sheet Material ..................................
Clad 7075-T6
Rivet Diameter, in. ........................... (Nominal Shank Diameter, in)c ........
3/16 (0.190)
1/4 (0.250)
5/16 (0.312)
3/8 (0.375)
Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.050 ................................................ 0.063 ................................................ 0.071 ................................................ 0.080 ................................................ 0.090 ................................................ 0.100 ................................................ 0.125 ................................................ 0.160 ................................................ 0.190 ................................................ 0.250 ................................................ Rivet shear strengthe ........................
1105 1500 1740 2020 2200 2355 2694 ... ... ... 2694
... 1800d 2125 2485 2885 3310 3945 4660 ... ... 4660
... ... 2430 2865 3365 3865 5135 6245 7010 7290 7290
... ... ... 3170d 3780 4390 5880 8005 8955 10490 10490
Yield Strengthf, lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.050 ................................................. 0.063 ................................................. 0.071 ................................................. 0.080 ................................................. 0.090 ................................................. 0.100 ................................................. 0.125 ................................................. 0.160 ................................................. 0.190 ................................................. 0.250 .................................................
948 1160 1290 1435 1600 1760 2095 ... ... ...
... 1585 1755 1945 2160 2375 2910 3585 ... ...
... ... 2265 2500 2765 3030 3705 4640 5440 6270
... ... ... 3090 3415 3740 4535 5670 6635 8230
Head height (ref.), in. .......................
0.048
0.063
0.070
0.081
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company and Voi-Shan Industries. b Aluminum coated per NAS 4006. c Hole Size: Fastener installed in 0.005" interference to 0.0005" clearance. d Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. e Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and 1/4 = 0.250 and Fsu = 95 ksi. f Permanent set at yield load: 4% of nominal diameter.
8-124
MMPDS-06 1 April 2011
Table 8.1.4.2(h). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Lockbolt Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate
Rivet Type ..................................
GPL3SC-V Pina,b (Fsu = 95 ksi), 2SC-3C Collar
Sheet Material ............................
Clad 2024-T3
Rivet Diameter, in. ..................... (Nominal Shank Diameter, in.)c .
3/16 (0.190)
1/4 (0.250)
5/16 (0.312)
3/8 (0.375)
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... 0.312 .......................................... 0.375 .......................................... Rivet shear strengthf ..................
Ultimate Strength, lbs. (Estimated Lower Bound) 938 ... ... ... 1255 1535d ... ... 1455 1795 2085 ... 1680 2085 2440 2740d 2845 3230 2410 1920e 2080e 2735 3245 3725 2460e 3470e 4270 4930 2694 4175e 5505e 6645 ... 4590e 6260e 7885e ... 4660 7230 9705e ... ... 7290 10490 ... ... ... ... 4660 7290 10490 2694
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... 0.312 ..........................................
Yield Strengthg, lbs. (Conservatively Adjusted Average) 777 ... ... ... 945 1285 ... ... 1050 1435 1810 ... 1140 1590 2030 2440 1230 1760 2260 2750 1320 1910 2475 3065 1545 2205 2975 3705 1860 2620 3495 4475 ... 2975 3935 5010 ... 3685 4820 6075 ... ... 5740 7175
Head height (ref.), in. .................
0.048
0.063
0.070
0.081
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company and Voi-Shan Industries. b Aluminum coated per NAS 4006. c Hole size: Fasteners installed in 0.005" interference to 0.0005" clearance. d Values above line are for knife-edge condition and the use of fasteners in this condition is undersirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. e Yield critical load - average yield is <2/3 of indicated ultimate value. f Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and Fsu = 95 ksi. g Permanent set at yield load: 4% of nominal diameter.
8-125
MMPDS-06 1 April 2011
Table 8.1.4.2(i). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Lockbolt Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate
Rivet Type ..................................
LGPL2SC-V Pina,b (Fsu = 95 ksi), 3SLC-C Collar
Sheet Material ............................
Clad 7075-T6
Rivet Diameter, in. ..................... (Nominal Shank Diameter, in.)c .
3/16 (0.190)
1/4 (0.250)
5/16 (0.312)
3/8 (0.375)
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... 0.312 .......................................... Rivet shear strengthe .................
Ultimate Strength, lbs. (Estimated Lower Bound) 1040 ... ... ... d 1370 1710 ... ... 1575 1980 2345 ... 1805 2280 2715 3105d 2060 2615 3130 3620 2315 2950 3550 4130 2590 3790 4605 5375 2694 4430 6070 7150 ... 4660 6750 8660 ... ... 7290 10154 ... ... ... 10490 2694 4660 7290 10490
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... 0.312 ..........................................
Yield Strengthf, lbs. (Conservatively Adjusted Average) 948 ... ... ... 1160 1585 ... ... 1290 1755 2265 ... 1435 1945 2500 3090 1600 2160 2765 3415 1760 2375 3030 3740 2095 2910 3705 4535 2395 3585 4640 5670 ... 3900 5440 6635 ... ... 6270 8230 ... ... ... 9255
Head height (ref.), in. ...............
0.048
0.063
0.070
0.081
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company and Voi-Shan Industries. b Aluminum coated per NAS 4006. c Hole size: Fasteners installed in 0.005" interference to 0.0005" clearance. d Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. e Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and Fsu = 95 ksi. f Permanent set at yield load: 4% of nominal diameter.
8-126
MMPDS-06 1 April 2011
Table 8.1.4.2(j). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Lockbolt Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate
Rivet Type ...............................
LGPL2SC-V Pina,b (Fsu = 95 ksi), 3SLC-C Collar
Sheet Material .........................
Clad 2024-T3
Rivet Diameter, in. .................. (Nominal Shank Diameter, in.)c
3/16 (0.190)
1/4 (0.250)
5/16 (0.312)
3/8 (0.375)
Sheet thickness, in.: 0.050 ....................................... 0.063 ....................................... 0.071 ....................................... 0.080 ....................................... 0.090 ....................................... 0.100 ....................................... 0.125 ....................................... 0.160 ....................................... 0.190 ....................................... 0.250 ....................................... 0.312 ....................................... 0.375 ....................................... Rivet shear strengthf ...............
Ultimate Strength, lbs. (Estimated Lower Bound) 836 ... ... ... d 1180 1350 ... ... 1395 1630 1775 ... 1640 1950 2155 2270d 2300 2595 2800 1900e 2115e 2650 3035 3335 2340 3530e 4140 4640 e 2655 4000 5645 6500 2694 4355 6085 8080e ... 4660 6965 9180 ... ... 10270 7290 ... ... ... 10490 2694 4660 10490 7290
Sheet thickness, in.: 0.050 ....................................... 0.063 ....................................... 0.071 ....................................... 0.080 ....................................... 0.090 ....................................... 0.100 ....................................... 0.125 ....................................... 0.160 ....................................... 0.190 ....................................... 0.250 ....................................... 0.312 ....................................... 0.375 .......................................
Yield Strengthg, lbs. (Conservatively Adjusted Average) 733 ... ... ... 901 1220 ... ... 1005 1360 1745 ... 1125 1515 1930 2270 1250 1685 2140 2635 1380 1855 2355 2895 1640 2280 2895 3530 1910 2795 3640 4430 2140 3100 4230 5200 ... 3700 4985 6440 ... ... 5760 7375 ... ... ... 8325
Head height (ref.), in. ..............
0.048
0.063
0.070
0.081
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company and Voi-Shan Industries. b Aluminum coated per NAS 4006. c Hole size: Fasteners installed in 0.0005" interference to 0.0005" clearance. d Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. e Yield critical load - average yield is <2/3 of the indicated ultimate. f Fastener shear strength based on area computed from nominal shank diameter in Table 9.7.1.1 and Fsu = 95 ksi. g Permanent set at yield load: 4% of nominal diameter.
8-127
MMPDS-06 1 April 2011 8.1.5 THREADED FASTENERS — Prior to 2003, the allowable ultimate design loads were established from test data using the average ultimate test load divided by 1.15, or an adjusted, lowered curve which enveloped all of the test observations. After 2003, fastener ultimate design loads and shear strength cut-off levels are defined by B-Basis values. Prior to 2003, the yield design load was defined by the group average curve of the test data. After 2003, yield design loads are established using B-Basis values. See Sections 9.7.1.3 and 9.7.1.4 for current statistical procedures for both shear cut-off and joint strength calculations. The strengths shown in the following tables are applicable only when grip lengths and hole tolerances are as recommended by the respective fastener manufacturers. For some fastener systems, permanent set at yield load may be increased if hole sizes greater than those listed in the applicable table are used. This condition may exist even though the test hole size lies within the manufacturer’s recommended hole size range (refer to Section 9.7.1.1). The ultimate single shear strength of threaded fasteners at full diameter is shown in Table 8.1.5(a). The ultimate tensile strength of threaded fasteners is shown in Tables 8.1.5(b1) and 8.1.5(b2). In both tables values shown are a product of the indicated strength and area, with the area based on the following:
Shear — Based on basic shank diameter. Tension — Based on the nominal minor diameter of the thread as published in Table 2.21 of Handbook H-28. For any given threaded fastener the allowable load shall be chosen using an appropriate category corresponding to minimum tensile strength, shear strength, or other requirements of the pertinent procurement specification. It is recognized that some procurement specifications may provide higher tensile strengths than those reported in Tables 8.1.5(b1) and 8.1.5(b2), since they may be based on a larger effective area than shown in the table. The values listed herein have been judged acceptable for design, acknowledging that they may be slightly conservative since they are based on the nominal minor diameter area. Unless otherwise specified, the yield load is defined in Section 9.7.1.1 for threaded fasteners as the load at which the joint permanent is set equal to 0.04D, where D is the decimal equivalent of the fastener shank diameter as defined in Table 9.7.1.1.
8.1.5.1 Protruding-Head Threaded Fastener Joints — It has been shown that protruding shear head (representative configuration is NAS 1982) fastener joints may not develop the full bearing strength of the joint material. Therefore, static allowable loads for protruding shear head fasteners must be established from test data using the criteria specified in Section 9.7. For shear joints with protruding tension head fasteners, the load per fastener at which shear or bearing type of failure occurs is separately calculated, and the lower of the two values so determined governs the design. Allowable shear loads may be obtained from Table 8.1.5(a). The design bearing stresses for various materials at room and other temperatures are given in the properties for each alloy or group of alloys, and are applicable to joints with fasteners in cylindrical holds and where t/D $ 0.18. Where t/D < 0.18, tests to substantiate yield and ultimate bearing strengths must be performed. These bearing stresses are applicable only for design of rigid joints where there is no possibility of relative motion of the parts joined without deformation of such parts.
8-128
MMPDS-06 1 April 2011 For convenience, “unit” sheet bearing strengths for threaded fasteners, based on a strength of 100 ksi and nominal fastener diameters, are given in Table 8.1.5.1. The strength for a specific combination of fasteners, sheet thickness, and sheet material is obtained by multiplying the proper “unit” strength by the ratio of material allowable bearing stress (ksi) to 100. The following interaction formula is applicable to AN series bolts under combined shear and tension loading: Rs3 + Rt2 = 1.0, where Rs and Rt are ratios of applied load to allowable load in shear and tension, respectively.
8.1.5.2 Flush-Head Threaded Fastener Joints — Tables 8.1.5.2(a) through 8.1.5.2(o) contain joint allowables for various flush-head threaded fastener/sheet material combinations. Unless otherwise noted, the allowable loads for flush-head threaded fasteners were established from test data using the following criteria:
Ultimate Load — Design allowable ultimate load as defined in Section 9.7.1.5. The allowables shown for flush-head threaded fasteners are applicable to joints having e/D equal to or greater than 2.0. For machine countersunk joints, the sheet gage specified in the tables is that of the countersunk sheet. When the non-countersunk sheet is thinner than the countersunk sheet, the bearing allowable for the non-countersunk sheetfastener combination should be computed, compared to the table value, and the lower of the two values selected.
8-129
Table 8.1.5(a). Ultimate Single Shear Strength of Threaded Fasteners Shear Stress of Fastener, ksi Fastener Diameter in. Sizea 0.112 #4 0.125 1/8 0.138 #6 0.156 5/32 0.164 #8
35
38
75
90
95
108
125
132
145
156
Basic Shank Area 0.0098520 0.012272 0.014957 0.019175 0.021124
345 430 523 671 739
374 466 568 729 803
739 920 1120 1435 1580
Ultimate Single Shear Strength, lbs. 887 936 1060 1230 1105 1165 1325 1530 1345 1420 1615 1870 1725 1820 2070 2395 1900 2005 2280 2640
1300 1620 1970 2530 2785
1425 1775 2165 2780 3060
1535 1910 2330 2990 3295
3/16 #10 #12 7/32 1/4
0.027612 0.028353 0.036644 0.037582 0.049087
966 992 1280 1315 1715
1045 1075 1390 1425 1865
2070 2125 2745 2815 3680
2485 2550 3295 3380 4420
2620 2690 3480 3570 4660
2980 3060 3955 4060 5300
3450 3540 4580 4700 6140
3645 3740 4840 4960 6480
4005 4110 5315 5445 7115
4310 4420 5720 5860 7660
0.312 0.375 0.438 0.500 0.562
5/16 3/8 7/16 1/2 9/16
0.076699 0.11045 0.15033 0.19635 0.24850
2680 3865 5260 6870 8700
2915 4200 5710 7460 9440
5750 8280 11250 14700 18600
6900 9935 13500 17650 22350
7290 10450 14250 18650 23600
8280 11900 16200 21200 26800
9590 13800 18750 24500 31050
10100 14550 19800 25900 32800
11100 16000 21750 28450 36000
11950 17200 23450 30600 38750
0.625 0.750 0.875 1.000 1.125
5/8 3/4 7/8 1 1-1/8
0.30680 0.44179 0.60132 0.78540 0.99402
10700 15450 21050 27450 34750
11650 16750 22850 29850 37750
23000 33100 45100 58900 74600
27600 39750 54100 70700 89500
29150 42000 57100 74600 94400
33100 47700 64900 84800 107000
38350 55200 75200 98200 124000
40500 58300 79400 103500 131000
44500 64000 87200 113500 144000
47900 68900 93800 122500 155000
1.250 1.375 1.500
1-1/4 1-3/8 1-1/2
1.2272 1.4849 1.7671
43000 52000 61800
46600 56400 67100
92000 111000 132500
110000 133500 159000
116500 141000 167500
132500 160000 190500
153000 185500 220500
162000 196000 233000
177500 215000 256000
191000 231500 275500
a Fractional equivalent or screw number.
MMPDS-06 1 April 2011
8-130
0.188 0.190 0.216 0.219 0.250
Table 8.1.5(b1). Ultimate Tensile Strength of Threaded Fastenersa
Tensile Stress of Fastener, ksi
55
62
62.5
125
Nominal Minor Areac 0.0050896 0.0076821 0.012233
280 423 673
316 476 758
0.190 0.250 0.312 0.375 0.438
10-32 1/4-28 5/16-24 3/8-24 7/16-20
0.018074 0.033394 0.053666 0.082397 0.11115
994 1835 2950 4530 6110
1120 2070 3325 5110 6890
1130 2085 3350 5150 6950
2255 4170 6710 10300 13850
0.500 0.562 0.625 0.750 0.875
1/2-20 9/16-18 5/8-18 3/4-16 7/8-14
0.15116 0.19190 0.24349 0.35605 0.48695
8310 10550 13350 19550 26750
9370 11900 15100 22050 30150
9450 11950 15200 22250 30400
1.000 1.125 1.250 1.375 1.500
1-12 1-1/8-12 1-1/4-12 1-3/8-12 1-1/2-12
0.63307 0.82162 1.0347 1.2724 1.5345
34800 45200 56900 70000 84400
39250 50900 64200 78900 95100
39550 51400 64700 79500 95900
160
180
MIL-S-7742d
Ultimate Tensile Strength, lbs.e,f 318 636 713 480 960 1075 765 1525 1710
814 1225 1955
916 1380 2200
2530 4680 7510 11500 15550
2890 5340 8590 13150 17750
3250 6010 9660 14800 20000
18900 23950 30400 44500 60900
21150 26850 34050 49800 68200
24150 30700 38950 57000 77900
27200 34500 43800 64100 87700
79100 102500 129000 159000 191500
88600 115000 144500 178000 214500
101000 131500 165500 203500 245500
114000 147500 186000 229000 276000
Last Revised: Apr 2009, MMPDS-04 CN1, Item 08-19 a The values in this table are for Type I fasteners which have not been modified. These values are not valid for Type III fasteners or for fasteners that have been modified with safetywire or thread locking devices. Nuts, fastener heads and fastener threads should not be modified. b Fractional equivalent or number and threads per inch. c The tension fastener allowables above are based on the nominal minor diameter thread area for MIL-S-7742 threads from Table 2.2.1 of Handbook H-28. d Inactive for new design. See Table 8.1.5(b2) for new design. e Values shown above heavy line are for 2A threads, all other values are for 3A threads. f Nuts and fastener heads designed to develop the ultimate tensile strength of the fastener are required to develop the tabulated tension loads.
MMPDS-06 1 April 2011
8-131
Fastener Diameter in. Sizeb 0.112 4-40 0.138 6-32 0.164 8-32
140
Table 8.1.5(b2). Ultimate Tensile Strength of Threaded Fastenersa (Continued) Tensile Stress of Fastener, ksi
Fastener Diameter in. Sizeb 0.112 4-40 0.138 6-32 0.164 8-32 0.190 10-32 0.250 1/4-28
160
180
220
260
Maximum Minor Areac 0.0054367 0.0081553 0.012848 0.018602 0.034241
869 1305 2055 2975 5480
979 1465 2310 3345 6160
1195 1790 2825 4090 7530
1410 2120 3340 4840 8900
AS-8879d Ultimate Tensile Strength, lbs.e,f
5/16-24 3/8-24 7/16-20 1/2-20 9/16-18
0.054905 0.083879 0.11323 0.15358 0.19502
8780 13400 18100 24550 31200
9880 15100 20350 27600 35100
12050 18450 24900 33750 42900
14250 21800 29400 39900 50700
0.625 0.750 0.875 1.000 1.125
5/8-18 3/4-16 7/8-14 1-12 1-1/8-12
0.24700 0.36082 0.49327 0.64156 0.83129
39500 57700 78900 102500 133000
44500 64900 88800 115500 149500
54300 79400 108500 141000 182500
64200 93800 128000 166500 216000
1.250 1.375 1.500
1-1/4-12 1-3/8-12 1-1/2-12
1.0456 1.2844 1.5477
167000 205500 247500
188000 231000 278500
230000 282500 340500
271500 333500 402000
Last Revised: Apr 2009, MMPDS-04 CN1, Item 08-19. a aa a The values in this table are for Type I fasteners which have not been modified. These values are not valid for Type III fasteners or for fasteners that have been modified with safetywire or thread locking devices. Nuts, fastener threads should not be modified. Definitions of Type I, II, and III, are referenced in NAS 4002 and 4003.. b Fractional equivalent or number and threads per inch. c The tension fastener allowables above are based on the maximum minor diameter thread area for AS 8879 threads from Tables II and III of AS 8879. d Properties based on MIL-S-8879 e Values are for 3A threads.
f Nuts and fastener heads designed to develop the ultimate tensile strength of the fastener are required to develop the tabulated tension loads.
MMPDS-06 1 April 2011
8-132
0.312 0.375 0.438 0.500 0.562
Table 8.1.5.1. Unit Bearing Strength of Sheet and Plate in Joints With Threaded Fasteners or Pins; Fbr = 100 ksi Unit Bearing Strength of Sheet for Fastener Diameter Indicated, lbs.a 0.156
0.164
0.188
0.190
0.250
0.312
0.375
0.438
0.500
0.562
0.625
0.750
0.875
1.000
Thickness, in. 0.032 . . . . . . . . . . . . 0.036 . . . . . . . . . . . . 0.040 . . . . . . . . . . . . 0.045 . . . . . . . . . . . . 0.050 . . . . . . . . . . . . 0.063 . . . . . . . . . . . . 0.071 . . . . . . . . . . . . 0.080 . . . . . . . . . . . . 0.090 . . . . . . . . . . . . 0.100 . . . . . . . . . . . . 0.125 . . . . . . . . . . . . 0.160 . . . . . . . . . . . . 0.200 . . . . . . . . . . . . 0.250 . . . . . . . . . . . . 0.312 . . . . . . . . . . . . 0.375 . . . . . . . . . . . . 0.500 . . . . . . . . . . . . 0.625 . . . . . . . . . . . . 0.750 . . . . . . . . . . . . 0.875 . . . . . . . . . . . . 1.000 . . . . . . . . . . . .
500 563 625 704 781 985 1110 1250 1407 1562 1953 2500 3125 3916 4867 5850 7800 9750 11700 13650 15600
525 590 656 738 820 1033 1164 1312 1476 1640 2050 2624 3280 4100 5117 6150 8200 10250 12300 14350 16400
... 675 750 845 940 1180 1330 1500 1690 1875 2340 3000 3750 4688 5866 7050 9400 11750 14100 16450 18800
... 684 760 855 950 1197 1349 1520 1710 1900 2375 3040 3800 4750 5928 7125 9500 11875 14250 16625 19000
... ... ... ... 1250 1575 1775 2000 2250 2500 3125 4000 5000 6250 7800 9375 12500 15625 18750 21875 25000
... ... ... ... ... 1969 2219 2500 2812 3125 3906 5000 6250 7812 9734 11700 15600 19500 23400 27300 31200
... ... ... ... ... ... 2662 3000 3375 3750 4688 6000 7500 9375 11700 14063 18750 23440 28125 32810 37600
... ... ... ... ... ... ... 3500 3938 4375 5469 7000 8750 10940 13670 16425 21900 27375 32850 38325 43800
... ... ... ... ... ... ... ... 4500 5000 6250 8000 10000 12500 15600 18750 25000 31250 37500 43750 50000
... ... ... ... ... ... ... ... ... ... 7030 9000 11250 14060 17530 21075 28100 35125 42150 49175 56200
... ... ... ... ... ... ... ... ... ... 7812 10000 12500 15625 19500 23400 31250 39062 46875 54650 62500
... ... ... ... ... ... ... ... ... ... ... 12000 15000 18750 23400 28125 37500 46875 56250 65625 75000
... ... ... ... ... ... ... ... ... ... ... ... 17500 21875 27300 32810 43750 54690 65625 76560 87500
... ... ... ... ... ... ... ... ... ... ... ... 20000 25000 31200 37500 50000 62500 75000 87500 100000
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Bearing strengths shown are based on nominal fastener diameter.
MMPDS-06 1 April 2011
8-133
Fastener, Diameter, in.
MMPDS-06 1 April 2011
Table 8.1.5.2(a1). Static Joint Strength of 100E Flush Head Alloy Steel Screws in Machine-Countersunk Aluminum Alloy Sheet and Plate
Fastener Type ......................
AN509a steel screw (Fsu = 75 ksi) w/MS20365 or equiv. steel nut
Sheet and Plate Material .....
Clad 2024-T3 and T351
Fastener Diameter, in. ......... (Nominal Shank Diameter, in.)
3/16 (0.190)
1/4 (0.250)
5/16 (0.312)
3/8 (0.375)
½ (0.500)
Ultimate Strengthe, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.080 ................................. 0.090 ................................ 0.100 ................................ 0.125 ................................ 0.160 ................................ 0.190 ................................ 0.250 ................................ 0.312 ................................
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item GSG 05-56, per the Sunset Clause. Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.375 ................................ Fastener shear strengthd ......
2126
3682
5750
8280
14730
Yield Strengthe,f, lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.080 ................................ 0.090 ................................ 0.100 ................................ 0.125 ................................ 0.160 ................................ 0.190 ................................ 0.250 ................................ 0.312 ................................ 0.375 ................................ Head height (ref.), in. ..........
0.080
0.106
0.133
0.159
0.213
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a This fastener is no longer manufactured; do not specify for new designs. b Yield critical value - average yield is <2/3 of the indicated ultimate value. c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength based on area computed from nominal shank diameters in Table 9.7.1.1 and Fsu = 75 ksi. e Test data from which the yield and ultimate strengths were derived can be found in Reference 8.1.5.2. f Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-134
MMPDS-06 1 April 2011
Table 8.1.5.2(a2). Static Joint Strength of 100E Flush Head Alloy Steel Screws in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ........................ AN509a steel screw (Fsu = 75 ksi) w/MS20365 or equiv. steel nut Sheet and Plate Material ....... Clad 7075-T6 and T651 Fastener Diameter, in. ........... 3/16 1/4 5/16 3/8 ½ (Nominal Shank Diameter, in.) (0.190) (0.250) (0.312) (0.375) (0.500) Ultimate Strengthb, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.080 .................................. The design allowables for this fastener/sheet combination 0.090 .................................. were removed per MMPDS Agenda Item GSG 05-59, per the Sunset Clause. 0.100 ..................................
0.125 .................................. 0.160 .................................. 0.190 .................................. 0.250 .................................. 0.312 ..................................
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.375 .................................. Fastener shear strengthe ........ Sheet or plate thickness, in.: 0.080 .................................. 0.090 .................................. 0.100 .................................. 0.125 .................................. 0.160 .................................. 0.190 .................................. 0.250 .................................. 0.312 .................................. 0.375 .................................. Head height (ref.), in. ............
2126 3682 5750 8280 14730 Yield Strengthb,f, lbs. (Conservatively Adjusted Average)
0.080
0.106
0.133
0.159
0.213
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a This fastener is no longer manufactured; do not specify for new designs. b Test data from which the yield and ultimate strengths were derived can be found in Reference 8.1.5.2. c Yield critical value - average yield is <2/3 of the indicated ultimate value. d Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. e Fastener shear strength based on area computed from nominal shank diameters in Table 9.7.1.1 and Fsu = 75 ksi. f Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-135
MMPDS-06 1 April 2011
Table 8.1.5.2(b). Static Joint Strength of 100E Flush Head Stainless Steel (PH13-8Mo, H1000) Fasteners in Machine-Countersunk Titanium Alloy Sheet and Plate Fastener Type ............................... PBF 11a (Fsu = 125 ksi) Sheet and Plate Material .............. Annealed Ti-6Al-4V Rivet Diameter, in. ....................... 5/32 1/4 3/8 1/2 (0.164) (0.250) (0.375) (0.500) (Nominal Shank Diameter, in.)b ... Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.040 ........................................ 1535c ... ... ... 0.050 ........................................ 1963 ... ... ... 0.063 ........................................ 2528 3656 ... ... 0.071 ........................................ 2640 4213 ... ... 0.080 ........................................ ... 4813 6820 ... 0.090 ........................................ ... 5438 7818 ... 0.100 ........................................ ... 6140 8775 11250c 0.125 ........................................ ... ... 11264 14575 0.160 ........................................ ... ... 13810 19250 0.190 ........................................ ... ... ... 23200 0.200 ........................................ ... ... ... 24540 d Fastener shear strength ............... 2640 6140 13810 24540 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.040 ........................................ 1237 ... ... ... 0.050 ........................................ 1543 ... ... ... 0.063 ........................................ 1947 2969 ... ... 0.071 ........................................ 2049 3350 ... ... 0.080 ........................................ ... 3756 5667 ... 0.090 ........................................ ... 4219 6370 ... 0.100 ........................................ ... 4600 7101 9500 0.125 ........................................ ... ... 8789 11825 0.160 ........................................ ... ... 10645 15025 0.190 ........................................ ... ... ... 17825 0.200 ........................................ ... ... ... 18400 Head height (nom.), in. ................ 0.040 0.060 0.077 0.101 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company and PB Fasteners. b Fasteners installed in clearance holes (0.0025-0.0030). c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength based on areas computed from indicated nominal shank diameter Fsu = 125 ksi. e Permanent set at yield load: 4% of nominal diameter.
8-136
MMPDS-06 1 April 2011
Table 8.1.5.2(c). Static Joint Strength of 100E Flush Head Tapered Alloy Steel Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ......................... TL 100a (Fsu = 108 ksi) Sheet and Plate Material ........ Clad 7075-T6 and T651 Fastener Diameter, in. ............ 3/16 1/4 5/16 3/8 7/16 ½ (Nominal Shank Diameter, in.) (0.1969) (0.2585) (0.3214) (0.3860) (0.4490) (0.5122) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.100 .................................. The design allowables for this fastener/sheet combination 0.125 .................................. were removed per MMPDS Agenda Item GSG 07-56, per the Sunset Clause. 0.160 ..................................
0.190 .................................. 0.250 .................................. 0.285 .................................. 0.312 .................................. 0.344 .................................. 0.375 .................................. 0.500 .................................. Fastener shear strengthb ......... Sheet or plate thickness, in.: 0.100 .................................. 0.125 .................................. 0.160 .................................. 0.190 .................................. 0.250 .................................. 0.285 .................................. 0.312 .................................. 0.344 .................................. 0.375 .................................. 0.500 .................................. Head height (max.), in. ..........
Date of last publication: April 2008 Allowables were published through handbook versions: MMPDS-04 and MIL-HDBK-5. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
3290 5670 8760 12640 17100 22250 c Yield Strength , lbs. (Conservatively Adjusted Average)
0.048
0.063
0.070
0.081
0.100
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Briles Manufacturing Company. b Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 108 ksi. c Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-137
0.110
MMPDS-06 1 April 2011
Table 8.1.5.2(d). Static Joint Strength of 100E Flush Head Tapered STA Ti-6Al-4V Fasteners in Machine-Countersunk Aluminum Alloy Sheet Fastener Type ............................... TLV 10a (Fsu = 95 ksi) Sheet Material .............................. Clad 7075-T6 Fastener Diameter, in. .................. 1/8 5/32 3/16 1/4 (Nominal Shank Diameter, in.) .... (0.1437) (0.1688) (0.1965) (0.2583) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.032 ........................................ 488b ... ... ... b b 0.040 ........................................ 610 713 826 ... 0.050 ........................................ 768 896 1050 ... 0.063 ........................................ 967 1145 1312 1730b 0.071 ........................................ 1120 1290 1491 1960 0.080 ........................................ 1260 1470 1690 2223 0.090 ........................................ 1377 1670 1910 2505 0.100 ........................................ 1441 1845 2130 2800 0.125 ........................................ 1530 2010 2580 3540 0.160 ........................................ 1540 2125 2800 4410 0.190 ........................................ ... ... 2880 4750 0.250 ........................................ ... ... ... 4980 c Fastener shear strength ............... 1540 2125 2880 4980 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ........................................ 488 ... ... ... 0.040 ........................................ 610 713 826 ... 0.050 ........................................ 753 890 1050 ... 0.063 ........................................ 925 1118 1301 1730 0.071 ........................................ 1035 1240 1467 1960 0.080 ........................................ 1138 1377 1637 2192 0.090 ........................................ 1238 1522 1806 2455 0.100 ........................................ 1321 1639 1976 2711 0.125 ........................................ 1480 1880 2331 3304 0.160 ........................................ 1540 2111 2683 3986 0.190 ........................................ ... ... 2880 4437 0.250 ........................................ ... ... ... 4980 Head height (max.), in. ................ 0.033 0.041 0.048 0.063 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Lockheed Georgia Company. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 95 ksi. d Permanent set at yield load: the greater of 0.012 inch or 4% of fractional diameter.
8-138
MMPDS-06 1 April 2011 Table 8.1.5.2(e). Static Joint Strength of 70E Flush Head Tapered Ti-6Al-4V Fasteners in Non-Matching Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ........................ HPB-Va (Fsu = 95 ksi) Sheet and Plate Material ....... Clad 7075-T6 and T651 Fastener Diameter ................. (Nominal Shank Diameter, in.)b 3/16 1/4 5/16 3/8 (0.1976) (0.2587) (0.3211) (0.3850) 82E 82E 75E Sheet Countersink Angle ...... 82E Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.063 ................................. 1355 ... ... ... 0.071 ................................. 1554 2041 ... ... 0.080 ................................. 1710 2296 ... ... 0.090 ................................. 1847 2583 3207 ... 0.100 ................................. 1984 2864 3567 4269 0.125 ................................. 2319 3293 4454 5336 0.160 ................................. 2792 3908 5176 6611 0.190 ................................. 2913 4444 5836 7396 0.250 ................................. ... 4993 7155 8968 0.312 ................................. ... ... 7692 10613 0.375 ................................. ... ... ... 11058 0.500 ................................. ... ... ... 11058 Fastener shear strengthc ........ 2913 4993 7692 11058 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.063 ................................. 1269 ... ... ... 0.071 ................................. 1429 1874 ... ... 0.080 ................................. 1613 2108 ... ... 0.090 ................................. 1812 2376 2949 ... e 0.100 ................................. 1984 2637 3279 3928 0.125 ................................. 2319e 3293e 4093 4906 e e 0.160 ................................. 2718 3908 5176 6285 e e 0.190 ................................. 2913 4397 5836 7396e e 0.250 ................................. ... 4993 6980 8968e 0.312 ................................. ... ... 7692e 10257 0.375 ................................. ... ... ... 11058e 0.500 ................................. ... ... ... 11058e Head height (max.), in. ......... 0.057 0.067 0.076 0.086 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by PB Fasteners. b Fasteners installed in interference holes (0.0015-0.0048). c Fastener shear strength based on areas computed from the indicated nominal shank diameter and Fsu = 95 ksi. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter. e Average yield value reduced to match ultimate load.
8-139
MMPDS-06 1 April 2011
Table 8.1.5.2(f). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Fasteners in Machine-Countersunk Aluminum Alloy Sheet Fastener Type ......................... KLBHV Pin (Fsu = 95 ksi), KFN 600 Nuta Sheet Material ........................ Clad 7075-T6 Fastener Diameter, in. ............ 5/32 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.)b (0.164) (0.190) (0.250) (0.3125) (0.375) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 .................................. 748c ... ... ... ... 0.050 .................................. 987 1112 ... ... ... c 0.063 .................................. 1291 1462 1813 ... ... 0.071 .................................. 1428 1679 2100 ... ... 0.080 .................................. 1571 1888 2438 2902 ... 0.090 .................................. 1722 2058 2794 3322 3867 0.100 .................................. 1883 2231 3150 3810 4402 0.125 .................................. 2007 2694 3725 4924 5724 0.160 .................................. ... ... 4531 4901 7397 0.190 .................................. ... ... 4660 6790 8452 0.200 .................................. ... ... ... 7083 8789 0.250 .................................. ... ... ... 7290 10490 d Fastener shear strength ......... 2007 2694 4660 7290 10490 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 .................................. 594 ... ... ... ... 0.050 .................................. 740 859 ... ... ... 0.063 .................................. 931 1079 1419 ... ... 0.071 .................................. 1049 1213 1600 ... ... 0.080 .................................. 1176 1368 1806 2267 ... 0.090 .................................. 1283 1534 2031 2540 3052 0.100 .................................. 1375 1675 2250 2824 3375 0.125 .................................. 1606 1942 2813 3517 4219 0.160 .................................. ... ... 3306 4455 5386 0.190 .................................. ... ... 3725 4983 6385 0.200 .................................. ... ... ... 5168 6581 0.250 .................................. ... ... ... 6038 7636 Head height (ref.), in. ............. 0.043 0.048 0.063 0.070 0.081 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Kaynar Manufacturing Co., Inc. b Fasteners installed in interference holes (0.003-0.055). c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 95 ksi. e Permanent set at yield load: 4% of the nominal diameter.
8-140
MMPDS-06 1 April 2011
Table 8.1.5.2(g). Static Joint Strength of 100E Flush Shear AISI 431a Hi-Lok Fasteners in Aluminum Alloy Sheet and Plate Rivet Type .............................. HL 61 Pin (Fsu = 125 ksi), HL 70 Collarb Sheet and Plate Material ........ Clad 7075-T6 and T651 Rivet Diameter ....................... 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.) (0.190) (0.250) (0.312) (0.375) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.090 .................................. The design allowables for this fastener/sheet combination 0.100 .................................. were removed per MMPDS Agenda Item GSG 08-25, per the Sunset Clause. 0.125 .................................. Date of last publication: April 2010 0.160 .................................. Allowables were published through handbook versions: MMPDS-05 and MIL-HDBK-5. 0.190 ..................................
0.250 .................................. 0.312 ..................................
Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group
0.375 .................................. 0.500 .................................. Fastener shear strengthd ......... Sheet or plate thickness, in.: 0.090 .................................. 0.100 .................................. 0.125 .................................. 0.160 .................................. 0.190 .................................. 0.250 .................................. 0.312 .................................. 0.375 .................................. 0.500 .................................. Head height (max.), in. ..........
3544 6140 9590 13810 e Yield Strength , lbs. (Conservatively Adjusted Average)
0.049
0.063
0.077
0.051
Last Revised: Apr 2011, MMPDS-06, Items 08-04, 08-25 a AISI 431 is prohibited from use in Air Force and Navy structure by MIL-STD-1568 and SD-24, respectively, because of its sensitivity to heat treatment. Use of fasteners made of this material in design of military aerospace structures requires the specific approval of the procuring agency. b Data supplied by Hi-Shear Corporation. c Yield critical value - average yield is <2/3 of the indicated ultimate value. d Fastener shear strength based on areas computed from the indicated nominal shank diameter and Fsu = 125 ksi. e Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-141
MMPDS-06 1 April 2011 Table 8.1.5.2(h). Static Joint Strength of 100E Flush Shear Head Alloy Steel Hi-Lok Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ......................... HL 719 Pin (Fsu = 108 ksi), HL 79 Collara Sheet and Plate Material ........ 7075-T6 and T651 5/32 3/16 1/4 5/16 3/8 Fastener Diameter, in. ............ (0.164) (0.190) (0.250) (0.312) (0.375) (Nominal Shank Diameter, in.)b Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.040 .................................. The design allowables for this fastener/sheet combination 0.050 .................................. were removed per MMPDS Agenda Item GSG 08-26, per the 0.063 .................................. Sunset Clause. 0.071 .................................. Date of last publication: April 2010 0.080 .................................. Allowables were published through handbook versions: 0.090 .................................. MMPDS-05 and MIL-HDBK-5. 0.100 .................................. Interested parties wishing to participate in providing 0.125 .................................. replacement data should contact the MMPDS Fastener Task 0.160 .................................. Group 0.190 .................................. 0.250 .................................. 0.312 .................................. 0.375 .................................. Fastener shear strengthd ......... 2281 3062 5300 8280 11930 e Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.040 .................................. 0.050 .................................. 0.063 .................................. 0.071 .................................. 0.080 .................................. 0.090 .................................. 0.100 .................................. 0.125 .................................. 0.160 .................................. 0.190 .................................. 0.250 .................................. 0.312 .................................. 0.375 .................................. Head height (nom.), in. .......... 0.040 0.046 0.060 0.067 0.077 Last Revised: Apr 2011, MMPDS-06, Items 08-04, 08-26 a Data supplied by Hi-Shear Corporation. b Fasteners installed in interference holes (0.001-0.002). c Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. d Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 108 ksi. e Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-142
MMPDS-06 1 April 2011 Table 8.1.5.2(i). Static Joint Strength of 100E Flush Shear Head Ti-6Al-4V Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ............................... HL 11 Pin (Fsu = 95 ksi), HL 70 Collara Sheet and Plate Material ............... Clad 7075-T6 and T651 Fastener Diameter, in. .................. 5/32 3/16 1/4 5/16 (Nominal Shank Diameter, in.) .... (0.164) (0.190) (0.250) (0.312) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.040 ........................................ 734b 837b ... ... b 0.050 ........................................ 941 1083 1343 ... 0.063 ........................................ 1207 1393 1762 2170b 0.071 ........................................ 1385 1588 2012 2463 0.080 ........................................ 1557 1779 2281 2823 0.090 ........................................ 1775 2050 2594 3193 0.100 ........................................ 1876 2263 2919 3631 0.125 ........................................ 1950 2542 3765 4594 0.160 ........................................ 2007 2660 3970 5890 0.190 ........................................ ... 2694 4165 6105 0.250 ........................................ ... ... 4530 6580 0.312 ........................................ ... ... 4660 7050 0.375 ........................................ ... ... ... 7290 Fastener shear strengthc ................ 2007 2694 4660 7290 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.040 ........................................ 674 794 ... ... 0.050 ........................................ 835 982 1325 ... 0.063 ........................................ 1038 1230 1655 2141 0.071 ........................................ 1130 1355 1813 2338 0.080 ........................................ 1230 1480 2062 2620 0.090 ........................................ 1342 1625 2250 2880 0.100 ........................................ 1440 1750 2470 3420 0.125 ........................................ 1670 2020 2930 3860 0.160 ........................................ 1891 2360 3480 4620 0.190 ........................................ ... 2560 3840 5150 0.250 ........................................ ... ... 4440 6170 0.312 ........................................ ... ... 4660 6900 0.375 ........................................ ... ... ... 7290 Head height (nom.), in. ................. 0.040 0.046 0.060 0.067 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Hi-Shear Corporation. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 95 ksi. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-143
MMPDS-06 1 April 2011 Table 8.1.5.2(j). Static Joint Strength of 100E Flush Shear Head Ti-6Al-6V-2Sn Fasteners in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ................................ HL 911 Pin (Fsu = 108 ksi), HL 70 Collara Sheet and Plate Material ................ Clad 7075-T6 and T651 Fastener Diameter, in. ................... 5/32 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.) ...... (0.164) (0.190) (0.250) (0.312) (0.375) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.040 ......................................... 780b ... ... ... ... b 0.050 ......................................... 982 1137 1456 ... ... b ... 0.063 ......................................... 1264 1458 1863 2287 0.071 ......................................... 1426 1642 2094 2570 3096b 0.080 ......................................... 1622 1866 2425 2920 3473 0.090 ......................................... 1740 2105 2750 3339 3965 0.100 ......................................... 1794 2310 3063 3777 4415 0.125 ......................................... 1915 2455 3875 4770 5666 0.160 ......................................... 2098 2660 4219 6181 7339 0.190 ......................................... 2252 2840 4450 6483 8788 0.250 ......................................... 2281 3062 4925 7067 9589 0.312 ......................................... ... ... 5300 7670 10362 0.375 ......................................... ... ... ... 8280 11079 0.500 ......................................... ... ... ... ... 11930 Fastener shear strengthc ................. 2281 3062 5300 8280 11930 Yield Strengthd, lbs. (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.040 ......................................... 734 ... ... ... ... 0.050 ......................................... 882 1044 1394 ... ... 0.063 ......................................... 1076 1300 1750 2190 ... 0.071 ......................................... 1184 1406 1938 2472 2995 0.080 ......................................... 1320 1540 2188 2774 3332 0.090 ......................................... 1392 1680 2375 3066 3768 0.100 ......................................... 1480 1810 2569 3358 4120 0.125 ......................................... 1700 2085 3031 4010 5019 0.160 ......................................... 1870 2380 3563 4818 6074 0.190 ......................................... 1978 2530 3937 5354 6749 0.250 ......................................... 2178 2740 4375 6269 8183 0.312 ......................................... ... ... 4687 6883 9209 0.375 ......................................... ... ... ... 7418 9870 0.500 ......................................... ... ... ... ... 11039 Head height (nom.), in. .................. 0.040 0.046 0.060 0.067 0.077 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Hi-Shear Corporation. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 108 ksi. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-144
MMPDS-06 1 April 2011
Table 8.1.5.2(k). Static Joint Strength of 100E Flush Head Ti-6Al-6V-2Sn or Alloy Steel, Shear Type Fasteners in Machine-Countersunk Aluminum Alloy Sheet NAS 4452S and KS 100-FV Pinsa (Fsu = 108 ksi), Fastener Type ............................... NAS 4445DD Nut Sheet Material .............................. 7075-T6 Fastener Diameter, in. .................. 1/8 5/32 3/16 1/4 (Nominal Shank Diameter, in.) .... (0.138) (0.164) (0.190) (0.250) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet thickness, in.: 0.040 ........................................ 644 ... ... ... 0.050 ........................................ 857 976 1065 ... 0.063 ........................................ 1131 1305 1458 1750b 0.071 ........................................ 1268 1512 1697 2062 0.080 ........................................ 1428 1703 1964 2406 0.090 ........................................ 1499 1910 2227 2794 0.100 ........................................ 1539 2084 2458 3181 0.125 ........................................ 1615 2200 2848 4063 0.160 ........................................ ... 2281 3036 4900 0.190 ........................................ ... ... 3062 5113 0.250 ........................................ ... ... ... 5300 c Fastener shear strength ............... 1615 2281 3062 5300 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 ........................................ 609 ... ... ... 0.050 ........................................ 766 906 1029 ... 0.063 ........................................ 946 1157 1325 1706 0.071 ........................................ 1044 1278 1505 1956 0.080 ........................................ 1152 1412 1668 2219 0.090 ........................................ 1261 1555 1848 2500 0.100 ........................................ 1320 1694 2014 2762 0.125 ........................................ 1444 1904 2397 3350 0.160 ........................................ ... 2106 2661 4100 0.190 ........................................ ... ... 2845 4419 0.250 ........................................ ... ... ... 4925 Head height (max.), in. ................ 0.037 0.040 0.049 0.063 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Fastener shear strength is documented in NAS 4444. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-145
MMPDS-06 1 April 2011 Table 8.1.5.2(l). Static Joint Strength of 70E Flush Head Straight Shank Ti-6Al-4V Fasteners in Non-Matching Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ....................................... HPT-Va (Fsu = 95 ksi) Sheet and Plate Material ....................... Clad 7075-T6 and T651 Fastener Diameter ................................. 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.)b ............ (0.193) (0.255) (0.3175) (0.380) Sheet Countersink Angle ...................... 82E 82E 82E 75E Ultimate Strength, lbs (Estimated Lower Bound) Sheet or plate thickness, in.: 0.063 ................................................ The design allowables for this fastener/sheet 0.071 ................................................ combination were removed per MMPDS Agenda Item 0.080 ................................................ GSG 05-57, per the Sunset Clause. 0.090 ................................................ Date of last publication: April 2008 0.100 ................................................ Allowables were published through handbook versions: 0.125 ................................................ MMPDS-04 and MIL-HDBK-5. 0.160 ................................................ Interested parties wishing to participate in providing 0.190 ................................................ replacement data should contact the MMPDS Fastener 0.250 ................................................ Task Group 0.312 ................................................ 0.375 ................................................ Fastener shear strengthc ........................ 2779 4851 7521 10774 d Yield Strength , lbs (Conservatively Adjusted Average) Sheet or plate thickness, in.: 0.063 ................................................ 0.071 ................................................ 0.080 ................................................ 0.090 ................................................ 0.100 ................................................ 0.125 ................................................ 0.160 ................................................ 0.190 ................................................ 0.250 ................................................ 0.312 ................................................ 0.375 ................................................ Head height (max.), in. ......................... 0.060 0.070 0.080 0.090 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by PB Fasteners. b Fasteners installed in interference holes (0.0045-0.0055). c Fastener shear strength based on areas computed from the indicated nominal shank diameter and Fsu = 95 ksi. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-146
MMPDS-06 1 April 2011
Table 8.1.5.2(m). Static Joint Strength of 100E Flush Shear Head STA Ti-6Al-4V Fasteners in Machine-Countersunk Aluminum Alloy Sheet Fastener Type ........................... NAS 4452V Pin (Fsu = 95 ksi), NAS 4445D Nuta Sheet Material ........................... Clad 7075-T6 Fastener Diameter, in. .............. 5/32 3/16 1/4 5/16 3/8 (Nominal Shank Diameter, in.) . (0.164) (0.190) (0.250) (0.312) (0.375) Ultimate Strength, lbs. (Estimated Lower Bound) Sheet or plate thickness, in.: 0.040 .................................... 766b ... ... ... ... 0.050 .................................... 1092 1173 ... ... ... b 0.063 .................................... 1450 1639 1886 ... ... 0.071 .................................... 1633 1889 2290 ... ... 0.080 .................................... 1805 2136 2710 3028 ... 0.090 .................................... 1955 2368 3135 3651 ... 0.100 .................................... 2007 2557 3515 4230 4669 0.125 .................................... ... 2694 4273 5485 6428 0.160 .................................... ... ... 4660 6776 8426 0.190 .................................... ... ... ... 7290 9708 0.250 .................................... ... ... ... ... 10490 Fastener shear strengthc ............ 2007 2694 4660 7290 10490 d Yield Strength , lbs. (Conservatively Adjusted Average) Sheet thickness, in.: 0.040 .................................... 712 ... ... ... ... 0.050 .................................... 891 1034 ... ... ... 0.063 .................................... 1103 1295 1712 ... ... 0.071 .................................... 1223 1445 1932 ... ... 0.080 .................................... 1349 1604 2169 2715 ... 0.090 .................................... 1475 1768 2420 3056 ... 0.100 .................................... 1489 1920 2658 3383 4082 0.125 .................................... ... 2241 3196 4145 5072 0.160 .................................... ... ... 3812 5076 6321 0.190 .................................... ... ... ... 5746 7265 0.250 .................................... ... ... ... ... 8802 Head height (max.), in. ............. 0.040 0.049 0.063 0.077 0.091 Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Huck Manufacturing Company. b Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knifeedge condition in design of military aircraft requires specific approval of the procuring agency. c Fastener shear strength is documented in NAS 4444. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-147
MMPDS-06 1 April 2011
Table 8.1.5.2(n). Static Joint Strength of Protruding Shear Head Alloy Steel Hi-Lok Fasteners in Aluminum Alloy Sheet
Fastener Type .............................
HL 18 Pin (Fsu = 95 ksi), HL 70 Collara
Sheet Material ............................
Clad 7075-T6
Fastener Diameter, in. ................ (Nominal Shank Diameter, in.)b .
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
5/16 (0.312)
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... Rivet shear strengthc ..................
Ultimate Strength, lbs. (Estimated Lower Bound) 1078 ... ... ... 1353 1559 ... ... 1520 1776 ... ... 1718 1957 2593 ... 1890 2224 2937 ... 1930 2473 3250 4050 2007 2580 4063 5075 ... 2694 4450 6509 ... ... 4620 6880 ... ... 4660 7290 2007 2694 4660 7290
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 ..........................................
Yield Strengthd, lbs. (Conservatively Adjusted Average) 976 ... ... ... 1251 1426 ... ... 1430 1624 ... ... 1589 1848 2344 ... 1746 2065 2687 ... 1875 2242 3031 3660 ... 2563 3750 4734 ... ... 4406 6051 ... ... ... 6686
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Hi-Shear Corporation. b Fasteners installed in clearance holes (0.0005-0.0025). c Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 95 ksi. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-148
MMPDS-06 1 April 2011
Table 8.1.5.2(o). Static Joint Strength of 100E Flush Shear Head Alloy Steel Hi-Lok Fasteners in Machine-Countersunk Aluminum Alloy Sheet
Fastener Type .............................
HL 19 Pin (Fsu = 95 ksi), HL 70 Collara
Sheet Material ............................
Clad 7075-T6
Fastener Diameter, in. ................ (Nominal Shank Diameter, in.)b .
5/32 (0.164)
3/16 (0.190)
1/4 (0.250)
5/16 (0.312)
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 .......................................... Rivet shear strengthc ..................
Ultimate Strength, lbs. (Estimated Lower Bound) 968 ... ... ... 1251 1408 ... ... 1400 1606 ... ... 1595 1823 2344 ... 1815 2050 2675 ... 1903 2300 3000 3660 2005 2570 3781 4685 ... 2694 4420 6051 ... ... 4625 6832 ... ... 4660 7290 2007 2694 4660 7290
Sheet thickness, in.: 0.050 .......................................... 0.063 .......................................... 0.071 .......................................... 0.080 .......................................... 0.090 .......................................... 0.100 .......................................... 0.125 .......................................... 0.160 .......................................... 0.190 .......................................... 0.250 ..........................................
Yield Strengthd, lbs. (Conservatively Adjusted Average) 839 ... ... ... 1031 1191 ... ... 1141 1336 ... ... 1279 1480 2013 ... 1416 1632 2219 ... 1540 1805 2420 3143 1807 2173 3000 3777 ... 2545 3670 4800 ... ... 4144 5514 ... ... ... 6686
Head height (nom.), in. ..............
0.040
0.046
0.060
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by Hi-Shear Corporation. b Fasteners installed in clearance holes (0.0005-0.0025). c Fastener shear strength based on areas computed from indicated nominal shank diameter and Fsu = 95 ksi. d Permanent set at yield load: the greater of 0.012 inch or 4% of nominal diameter.
8-149
0.067
MMPDS-06 1 April 2011
8.1.6 SPECIAL FASTENERS — Prior to 2003, the allowable ultimate design loads were established from test data using the average ultimate test load divided by 1.15, or an adjusted, lowered curve which enveloped all of the test observations. After 2003, fastener ultimate design loads and shear strength cut-off levels are defined by B-Basis values. Prior to 2003, the yield design load was defined by the group average curve of the test data. After 2003, yield design loads are established using B-Basis values. See Sections 9.7.1.3 and 9.7.1.4 for current statistical procedures for both shear cut-off and joint strength calculations. Due to the special nature of this classification of fastener, care must be exercised in their application. Consideration should be given to the proposed fastener application and its compatibility with data presented in this section. In particular, test and analysis methods used for fasteners in this section may necessarily be different than those used in preceding sections.
8.1.6.1 Fastener Sleeves — Fastener sleeves are precision-formed, tubular elements designed to replace oversize fasteners used in the repair of damaged or enlarged holes.
8.1.6.1.1 A-286 ACRES Sleeves in 7075-T6 Aluminum Alloy Sheet and Plate — Analysis of static lap joint data indicates that a single 100E low profile head, A-286 [ACRES Sleeve (part number JK5512C)] installed with titanium or steel Hi-Loks and alloy steel lockbolts (up to 108 ksi Fsu) provided static joint allowable shear loads equivalent to those developed by the above-noted fasteners when tested without sleeves. Fasteners and sleeves were installed to the same comparable hole tolerance and fit condition as fasteners when tested alone. The analysis was restricted to static lap joint data (in accordance with MILSTD-1312 Test 4) and equivalency to fastener systems other than those listed above is not implied. Other properties such as tensile strength, preload, fatigue strength, and corrosion characteristics should be verified by test data. When using sleeves, knife-edge conditions should be avoided. 8.1.6.2 Sleeve Bolts — Tables 8.1.6.2(a) and 8.1.6.2(b) contain joint allowables for various sleeve bolt/sheet material combinations. Sleeve bolts are made of precision-formed aluminum alloy sleeve elements assembled on standard taper shank bolts. When the assembly is placed in a cylindrical hole and the bolt is drawn into the sleeve, the sleeve expands, thus filling the hole and causing an interference-fit condition. The allowable loads were established from test data using the following criteria:
Ultimate Load — Design allowable ultimate load as defined in Section 9.7.1.5. See Sections 9.7.1.3 and 9.7.1.4 for current statistical procedures for both shear cut-off and joint strength calculations. Yield Load — Design allowable yield load as defined in Section 9.7.1.5. Additionally, unless otherwise specified, yield load is defined as the load level at which the joint permanent set is 0.04D, where D is the decimal equivalent of the nominal hole diameter, per MIL-B-8831/4. The allowable loads shown for flush-head fasteners are applicable to joints having e/D equal to or greater than 2.0. For machine countersunk joints, the sheet gage specified in the tables herein is that of the countersunk sheet. When the non-countersunk sheet is thinner than the countersunk sheet, the bearing allowable for the non-countersunk sheet-fastener combination should be computed, compared to the table value, and the lower of the two values selected.
8-150
MMPDS-06 1 April 2011 Table 8.1.6.2(a). Static Joint Strength of 100E Reduced Flush Head, Alloy Steel Pin, Aluminum Alloy Sleeve, Fastener in Machine-Countersunk Aluminum Alloy Sheet and Plate
Fastener Type .........................
MIL-B-8831/4a (Fsu = 108 ksi)
Sheet Material ........................
Clad 7075-T6
Fastener Diameter, in. ............ (Nominal Hole Diameter, in.)b,c
3/16
1/4
5/16
3/8
7/16
½
(0.2390)
(0.3032)
(0.3695)
(0.4350)
(0.5022)
(0.5735)
Sheet thickness, in.: 0.100 ...................................... 0.125 ...................................... 0.160 ...................................... 0.190 ...................................... 0.250 ...................................... 0.312 ...................................... 0.375 ...................................... 0.500 ...................................... Rivet shear strengthd ..............
2585 3205 3290 ... ... ... ... ... 3290
Sheet thickness, in.: 0.100 ...................................... 0.125 ...................................... 0.160 ...................................... 0.190 ...................................... 0.250 ...................................... 0.312 ...................................... 0.375 ...................................... 0.500 ......................................
Yield Strengthe, lbs. (Conservatively Adjusted Average) 2080 ... ... ... ... ... 2570 3300 4075 ... ... ... 3255 4170 5135 6105 7125 ... ... 4915 6040 7175 8360 9635 ... ... 7855 9310 10825 12450 ... ... ... 11520 13375 15360 ... ... ... 12355 15620 18320 ... ... ... ... ... 21570
Sleeve head height (ref.), in. ..
0.062
Ultimate Strength, lbs. (Estimated Lower Bound) ... ... ... ... 4100 5035 ... ... 5205 6385 7560 8790 5670 7535 8925 10360 ... 8760 11640 13495 ... ... 12395 16195 ... ... 12640 16625 ... ... ... 17100 5670 8760 12640 17100
0.075
0.082
0.093
0.115
... ... ... 11900 15480 19180 21265 22250 22250
0.120
Last Revised: Apr 2011, MMPDS-06, Item 08-04
a b c d e
Data supplied by P.B. Fasteners. Inactive for new design. Nominal hole diameter based on max. expanded sleeve & min. hole + min. hole using larger expanded diameter from MIL-B-8831/4 2 dated 23 August 1982. Fasteners installed to interference levels of 0.0025-0.008 in. Fastener shear strength is documented in NAS 1724 as 108 ksi. Permanent set at yield load: 4% of nominal hole diameter.
8-151
MMPDS-06 1 April 2011
Table 8.1.6.2(b). Static Joint Strength of 100E Reduced Flush Head, Alloy Steel Pin, Aluminum Alloy Sleeve, Fastener in Machine-Countersunk Aluminum Alloy Sheet and Plate Fastener Type ........................
MIL-B-8831/4a (Fsu = 108 ksi)
Sheet Material .......................
Clad 2024-T3
Fastener Diameter, in. ........... (Nominal Hole Diameter, in.)b,c
3/16 (0.2390)
Sheet thickness, in.: ............. 0.100 ................................. 0.125 0.160 0.190 0.250 0.312 0.375 0.500 0.625 0.750 0.875 1.000 Rivet shear strengthd ...........
1/4 (0.3032)
5/16 (0.3695)
3/8 (0.4350)
7/16 (0.5022)
1/2 (0.5735)
Ultimate Strength, lbs. (Estimated Lower Bound) 2175 2720 3290 ... ... ... ... ... ... ... ... ... 3290
... 3450 4415 5240 5480 5655 5670 ... ... ... ... ... 5670
... 4205 5380 6390 7945 8165 8385 8760 ... ... ... ... 8760
... ... 6335 7525 9895 11085 11345 11865 12385 12640 ... ... 12640
... ... 7315 8685 11425 14260 14845 15445 16045 16645 17100 ... 17100
... ... ... 9920 13050 16285 19070 19755 20440 21225 21805 22250 22250
Yield Strengthe, lbs.(Conservatively Adjusted Average)
Sheet thickness, in.: 0.100 0.125 0.160 0.190 0.250 0.312 0.375 0.500 0.625 0.750 0.875 1.000
1575 1880 2310 ... ... ... ... ... ... ... ... ...
... 2505 3050 3515 4450 5055 5560 ... ... ... ... ...
... 3200 3865 4435 5570 6745 7460 8680 ... ... ... ...
... ... 4720 5395 6735 8115 9525 11010 12385 12640 ... ...
... ... 5655 6430 7980 9580 11205 13655 15315 16645 17100 ...
... ... ... 7595 9360 11185 13040 16720 18625 20520 21805 22250
Sleeve head height (ref.), in.
0.062
0.075
0.082
0.093
0.115
0.120
Last Revised: Apr 2011, MMPDS-06, Item 08-04 a Data supplied by P.B. Fasteners. Inactive for new design.
b Nominal hole diameter based on max. expanded sleeve & min. hole + min. hole using larger expanded diameter from MIL-B-8831/4 2 dated 23 August 1982. c Fasteners installed to interference levels of 0.002-0.008 in. d Fastener shear strength is documented in NAS 1724 as 108 ksi. e Permanent set at yield load: 4% of nominal hole diameter.
8-152
MMPDS-06 1 April 2011
8.2 METALLURGICAL JOINTS In the design of metallurgical joints, the strength of the joining material (for example, weld metal) and the adjacent parent material must be considered. The joint should be analyzed on the basis of its loading, the specified allowable strengths, dimensions and geometry.
8.2.1 INTRODUCTION AND DEFINITIONS — The allowable strength for both the adjacent parent metal and the weld metal is given below in the particular section dealing with the method of forming used, and the material being joined. The following subparagraphs define certain joining processes.
Welding — Welding consists of joining two or more pieces of metal by applying heat, pressure or both, with or without filler material, to produce a localized union through fusion or recrystallization across the joint interface. Examples of common welding processes include: fusion [inert-gas, shielded-arc welding with tungsten electrode (TIG) and inert-gas shielded metal-arc welding using covered electrodes (MIG)], resistance (spot and seam), and flash. Several terms used in describing various sections of a welded joint are illustrated in Figure 8.2.1. Brazing — Brazing consists of joining metals by the application of heat causing the flow of a thin layer, capillary thickness, of nonferrous filler metal into the space between the pieces. Bonding results from the intimate contact produced by the dissolution of a small amount of base metal in the molten filler metal, without fusion of the base metal. 8.2.2 WELDED JOINTS — The weld metal section of a joint should be analyzed on the basis of its loading, specified allowable strength, dimensions and geometry. The effects of the parent metal are to be accounted for as specified herein.
Figure 8.2.1. Schematic diagram of weld and parent metal.
8-153
MMPDS-06 1 April 2011 8.2.2.1 Fusion Welding—Arc and Gas — Section 9.7.2 contains a detailed discussion of one acceptable method of establishing fusion welding allowables. As stated in that section, other methods can be employed as approved by certifying agencies. The following subsections contain specific information for a number of materials. 8.2.2.1.1 Strength of Fusion Welded Joints of Steel Alloys — Allowable fusion weld-metal strengths of steel alloys are shown in Table 8.2.2.1.1(a). Design allowable stresses for the weld metal are based on 85 percent of the respective minimum tensile ultimate test values. For steel joints welded after heat treatment, the allowable strengths near the weld are given in Tables 8.2.2.1.1(b) and 8.2.2.1.1(c). Table 8.2.2.1.1(a). Strength of Fusion Welded Joints of Steel Alloys Heat Treatment Welding Rod Material Subsequent to Welding or Electrode Fsu, ksi Carbon and alloy steels . . None . . . . . . . . . . . . . . . . . AMS 6457 . . . . . . . . . . . . . . . . 32 AWSA5.1 classes E6010 and E6013 . . . . . . . . . . . . . . . 32 Alloy steels . . . . . . . . . . . None . . . . . . . . . . . . . . . . AMS 6452 . . . . . . . . . . . . . . . . 43 Alloy steels . . . . . . . . . . . Stress relieved . . . . . . . . . AWSA5.5 class E10013 . . . . . . 50 MIL-E-22200/10, classes MIL10018-M1
Table 8.2.2.1.1(b). Allowable Ultimate Tensile Stresses Near Fusion Welds in 4130, 4140, or 8630 Steelsa Section Thickness ¼ inch or less Type of Joint Ultimate Tensile Stress, ksi Tapered joints of 30E or lessb . . . . . . . . . . . . . . . . . . . . . 90 All others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 a Welded after heat treatment or normalized after weld. b Gussets or plate inserts considered 0E taper with centerline.
Table 8.2.2.1.1(c). Allowable Bending Modulus of Rupture Near Fusion Weld in 4130, 4140, 4340, or 8630 Steelsa Type of Joint Bending Modulus of Rupture, ksi
Tapered joints of 30E or lessb . . . . . All others . . . . . . . . . . . . . . . . . . . . .
Fb from Figure 2.8.1.1 for Ftu = 90 ksi 0.9 of the values of Fb from Figure 2.8.1.1 for Ftu = 90 ksi
a Welded after heat treatment or normalized after weld. b Gussets or plate inserts considered 0E taper with centerline.
8-154
Ftu, ksi 51 51 72 85
MMPDS-06 1 April 2011 For materials heat treated after welding, the allowable strength in the parent metal near a welded joint may equal the allowable strength for the material in the heat treated condition as given in the tables of design mechanical properties of the specific alloys; however, it should be noted that the weld metal allowables are based on 85 percent of these values.
8.2.2.2 Flash and Pressure Welding — The ultimate tensile allowable strength and bending allowable modulus of rupture for flash and pressure welds are given in Tables 8.2.2.2(a) and 8.2.2.2(b). A higher efficiency may be permitted in special cases by the applicable procuring or certifying agency upon approval of the manufacturer’s process specification. 8.2.2.3 Spot and Seam Welding — Permission to use spot and seam welding on structural parts is governed by the requirements of the procuring or certifying agency. Table 8.2.2.3 gives the recommended allowable edge distance for spot and seam welds.
8.2.2.3.1 Design Shear Strengths for Spot and Seam Welds in Uncoated Steels and Nickel and Cobalt Alloys — The design shear strength for spot welds for these materials are given in Tables 8.2.2.3.1(a) and 8.2.2.3.1(b). The thickness ratio of the thickest sheet to the thinnest outer sheet in the combination should not exceed 4:1. 8.2.2.3.1.1 Effects of Spot-Welds on the Parent Metal Strength of 300 Series Stainless Steel — In applications of spot welding where ribs, intercostals, or doublers are attached to sheet, either at splices or at other joints on the sheet panels, the allowable ultimate strength of the spot-welded stainless steel sheet shall be determined by multiplying the ultimate tensile strength of the sheet (A or S-value) by the appropriate efficiency factors shown in Figures 8.2.2.3.1.1(a) through 8.2.2.3.1.1(c). Efficiencies for gages under 0.012 shall be determined by test. 8.2.2.3.2 Design Shear Strengths for Spot and Seam Weldings in Aluminum Alloys — The acceptable aluminum and aluminum alloy combinations for spot and seam welding are given in Table 8.2.2.3.2(a). Design shear-strength for spot welds in aluminum alloys are given in Tables 8.2.2.3.2(b) and 8.2.2.3.2(c). The thickness ratio of the thickest to the thinnest outer sheet in the combination should not exceed 4:1. Design shear-strength for spot-welded joints, based on tearing of the sheet, is given in Table 8.2.2.3.2(d) for some aluminum alloys, together with the maximum pitches that permit attainment of these strengths. Joints having larger pitches fail in the spot welds rather than by tearing of the sheet, and are governed by Tables 8.2.2.3.2(b) and 8.2.2.3.2(c). The design shear strengths listed are also applicable to seam welds.
8.2.2.3.2.1 Effects of Spot Welds on Parent Metal Strength of Aluminum Alloys — In applications of spot welding other than splices, where ribs, intercostals, or doublers are attached to sheet, the allowable ultimate strength of the spot-welded sheet may be determined by multiplying the ultimate tensile strength of the sheet (A or S-values) by the appropriate efficiency factor shown on Figure 8.2.2.3.2.1. Efficiencies for gages under 0.020 shall be determined by test. 8.2.2.3.2.2 Fatigue Strength of Spot-Welded Joints in Aluminum Alloys — The fatigue strength of spot-welded joints in aluminum alloy are given in Figures 8.2.2.3.2.2(a) through 8.2.2.3.2.2(e).
8-155
MMPDS-06 1 April 2011 8.2.2.3.3 Design Shear Strengths for Spot and Seam Welds in Magnesium Alloys — Design shear-strength for spot welds in magnesium alloys are given in Table 8.2.2.3.3. The thickness ratio of the thickest sheet to the thinnest outer sheet in the combination should not exceed 4:1. 8.2.2.3.4 Design Shear Strengths for Spot and Seam Welds in Titanium and Titanium Alloys — Design shear strength for spot welds in titanium and titanium alloys are given in Tables 8.2.2.3.4(a) and 8.2.2.3.4(b). The thickness ratio of the thickest sheet to the thinnest outer sheet in the combination should not exceed 4:1.
Table 8.2.2.2(a). Allowable Ultimate Tensile Stress for Flash Welds in Steel Tubing Tubing
Allowable Ultimate Tensile Stress of Welds
Normalized tubing — not heat treated (including normalizing) after welding ............................................................................
1.0 Ftu (based on Ftu of normalized tubing)
Heat-treated tubing welded after heat treatment ......................
1.0 Ftu (based on Ftu of normalized tubing)
Tubing heat treated (including normalizing) after welding. Ftu of unwelded material in heat-treated condition: < 100 ksi ................................................................................ 100 to 150 ksi ........................................................................ > 150 ksi ................................................................................
0.9 Ftu 0.6 Ftu + 30 0.8 Ftu
Table 8.2.2.2(b). Allowable Bending Modulus of Rupture for Flash Welds in Steel Tubing
Allowable Bending Modulus of Rupture of Welds (Fb from Figure 2.8.1.1 using values of Ftu listed)
Tubing Normalized tubing — not heat treated (including normalizing after welding ............................................................................
1.0 Ftu (based on Ftu of normalized tubing)
Heat-treated tubing welded after heat treatment ......................
1.0 Ftu (based on Ftu of normalized tubing)
Tubing heat treated (including normalizing) after welding. Ftu of unwelded material in heat-treated condition: < 100 ksi ................................................................................ 100 to 150 ksi ........................................................................ > 150 ksi ................................................................................
8-156
0.9 Ftu 0.6 Ftu + 30 0.8 Ftu
MMPDS-06 1 April 2011
Table 8.2.2.3. Recommended Minimum Edge Distance and Spacing for Spot-Welded Jointsa Nominal Thicknessb of Thinner Sheet, inch 0.016 0.020 0.025 0.032 0.040 0.050 0.063 0.071 0.080 0.090 0.100 0.125 0.160 a b c
Minimum Lap Jointc,d Edge Distance, inch 0.19 0.20 0.22 0.25 0.28 0.31 0.38 0.41 0.44 0.47 0.50 0.56 0.69
Minimum Spacinge, inch 0.19 0.30 0.38 0.46 0.52 0.58 0.67 0.73 0.79 0.89 1.00 1.25 1.60
Reference Aluminum Association and American Welding Society Handbook. Intermediate gages will require interpolation between adjacent gages. Edge distances are measured materials in contact; this can be to a free edge or to a sheet metal radius where one material bends away from another. Edge distances less than those specified above may be used provided there is no expulsion of weld material or bulging of the edge of the sheet; however, these joints may have less static strength and shorter fatigue life.
d Minimum contacting overlap is twice the minimum edge distance. e Less than minimum recommended spacing may cause shunting that leads to deterioration of weld strengths and joint life.
8-157
MMPDS-06 1 April 2011
Table 8.2.2.3.1(a). Spot-Weld Design Shear Strengtha,b in Thin Sheet and Foil for Uncoated Steelsc and Nickel and Cobalt Alloys (Welding Specification AWS D17.2d)
Spots/inch Thickness of Thinnest Outer Sheet, in.
Standard (Ns)e
Rangef,g
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
40 20 12 10 9 7 6 5
1-50 1-30 1-17 1-14 1-13 1-10 1-8 1-7
Material Ultimate Tensile Strength, ksi Above 185
150 to 185
90 to 149
Below 90
Design Shear Strength, pounds per linear inch (Xm) 72 144 240 324 392 432 504 552
64 128 208 280 340 380 440 488
52 104 164 228 272 304 352 392
36 72 120 152 188 220 256 284
a Strength based on 80 percent of minimum values specified in Specification MIL-W-6858. b The allowable tensile strength of spot-welds is 25 percent of the design shear strength. Higher values may be used, however, if these are substantiated by tests acceptable to the procuring or certifying agency. c Refers to plain carbon steels containing not more than 0.15 percent carbon, austenitic, heat and corrosion resistant, and precipitation hardening steels. The reduction in strength of spot-welds due to the cumulative effects of time-temperaturestress factors is not greater than the reduction in strength of the parent metal. d Properties based on MIL-W-6858. e When the number of spots per inch is within 15 percent of the standard spot per inch requirement, the design shear strengths tabulated above shall apply. f When the number of spots differs from the standard spots per inch by 15 percent or greater, but does not exceed the noted Xm (K) Nr ' Xr Ns
range of spots per inch, applicable design strength shall be determined as noted below: where Xm Ns Nr Xr K K
= = = = = =
design shear strength in accordance with the above table standard spots per inch in accordance with the above table required spots per inch (production part) actual design shear strength requirement 1.15 when number of spots per inch is reduced more than 15 percent of the standard spacing of the above table 0.90 when number of spots is increased more than 15 percent of the standard spacing but within range of the tabular spacing.
g When the number of spots per inch is above the range indicated in the table, the design shear strength shall remain constant at the value obtained at the top of the range.
8-158
MMPDS-06 1 April 2011
Table 8.2.2.3.1(b). Spot-Weld Design Shear Strengtha,b in Panels for Uncoated Steelsc and Nickel and Cobalt Alloys (Welding Specification AWS D17.2d)
Design Shear Strength, pounds per spot Material Ultimate Tensile Strength, ksi Nominal thickness of thinner sheet, in.: 0.009.............................. 0.010.............................. 0.012.............................. 0.016.............................. 0.018.............................. 0.020.............................. 0.022.............................. 0.025.............................. 0.028.............................. 0.032.............................. 0.036.............................. 0.040.............................. 0.045.............................. 0.050.............................. 0.056.............................. 0.063.............................. 0.071.............................. 0.080.............................. 0.090.............................. 0.100.............................. 0.112.............................. 0.125..............................
Above 185
150 to 185
90 to 149
Below 90
160 196 280 384 472 508 584 696 820 1000 1200 1400 1680 1960 2304 2840 3360 3880 4480 5040 5600 6228
140 164 220 320 392 424 488 580 684 836 1004 1168 1436 1700 2040 2472 2984 3528 4072 4576 5092 5664
104 128 160 236 272 312 360 424 508 620 736 852 1028 1204 1416 1688 2028 2404 2812 3200 3636 4052
80 92 120 172 200 224 264 320 372 452 552 652 804 956 1168 1408 1664 1964 2308 2640 3036 3440
a Strength based on 80 percent of minimum values specified in Specification MIL-W-6858. b The allowable tensile strength of spot-welds is 25 percent of the design shear strength. Higher values may be used, however, if these are substantiated by tests acceptable to the procuring or certifying agency. c Refers to plain carbon steels containing not more than 0.15 percent carbon and to austenitic heat and corrosion resistant, precipitation hardening steels. The reduction in strength of spot-welds due to the cumulative effects of time-temperature-stress factors is not greater than the reduction in strength of the parent metal. d Properties based on MIL-W-6858.
8-159
MMPDS-06 1 April 2011
Figure 8.2.2.3.1.1(a). Efficiency of the parent metal in tension for spot-welded AISI 301-A, and AISI 347-A, and AISI 301-1/4 stainless steel.
Figure 8.2.2.3.1.1(b). Efficiency of the parent metal in tension for spot-welding AISI 301-1/2H stainless steel.
8-160
MMPDS-06 1 April 2011
Figure 8.2.2.3.1.1(c). Efficiency of the parent metal in tension for spot-welded AISI 301-H stainless steel.
8-161
Table 8.2.2.3.2(a). Acceptable Aluminum and Aluminum Alloy Combinationa for Spot and Seam Welding AMS 4029b
AMSQQ-A250/3
AMSQQ-A250/4b
AMSQQ-A250/5
Bare 2014
Clad 2014
Bare 2024
* * * ... ... ... ... ... ... ... ... * ...
* ... * ... ... ... ... ... ... ... ... * ...
* * * ... ... ... ... ... ... ... ... * ...
Specification . . . . . . . . . . . . . . . . . .
Material . . . . . . . . . . . . . . . . . . . . .
Specification
AMS 4025e, AMS 4026e, AMS 4027e
AMSQQ-A250/12b
AMSQQ-A250/13f
Clad 2024
5052
6061
Bare 7075
Clad 7075
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ...
* * * ... ... ... ... ... ... ... ... * ...
... ... ... ... ... ... ... ... ... ... ... ... ...
Material Bare 2014b Clad 2014 Bare 2024b Clad 2024 5052 5052 5052 5052 6061 6061 6061 Bare 7075b Clad 7075b
a The various aluminum and aluminum-alloy materials referred to in this table may be spot-welded in any combinations except the combinations indicated by the asterisk(*) in the table. The combinations indicated by the asterisk (*) may be spot-welded only with the specific approval of the procuring or certifying agency. b This table applies to construction of land- and carrier-based aircraft only. The welding of bare, high-strength alloys in construction of seaplanes and amphibians is prohibited unless specifically authorized by the procuring or certifying agency. c Inactive for new design. d Acceptance established under QQ-A-250/8. e Acceptance established under QQ-A-250/11. f Clad heat-treated and aged 7075 material in thicknesses less than 0.020 inch shall not be welded without specific approval of the procuring or certifying agency.
MMPDS-06 1 April 2011
8-162
AMS-4029 AMS-QQ-A-250/3 AMS-QQ-A-250/4 AMS-QQ-A-250/5 AMS-QQ-A-250/8c AMS 4015d AMS 4016d AMS 4017d AMS 4025e AMS 4026e AMS 4027e AMS-QQ-A-250/12 AMS-QQ-A-250/13f
AMS-QQ-A250/8c, AMS 4015d, AMS 4016d, AMS 4017d
MMPDS-06 1 April 2011
Table 8.2.2.3.2(b). Spot-Weld Design Shear Strength in Thin Sheet and Foil for Bare and Clad Aluminum Alloysa,b,c (Welding Specification AWS D17.2d)
Spots/inch
Material Ultimate Tensile Strength, ksi 56 and Above
Thickness of Thinnest Outer Sheet, in.
Standard (Ns)e
Rangef,g
0.001.................... 0.002.................... 0.003.................... 0.004.................... 0.005.................... 0.006.................... 0.007.................... 0.008....................
40 20 12 10 9 7 6 5
1-50 1-30 1-17 1-14 1-13 1-10 1-8 1-7
Below 56
Design Shear Strength, pounds per linear inch (Xm) 24 48 80 108 132 148 168 188
16 32 52 72 92 100 112 128
a The reduction in strength of spot-welds due to the cumulative effects of time-temperature-stress factors is not greater than the reduction in strength of the parent metal. b Strength based on 80 percent of minimum values specified in Specification MIL-W-6858. c The allowable tensile strength of spot-welds is 25 percent of the design shear strength. Higher values may be used, however, if these are substantiated by tests acceptable to the procuring or certifying agency. d Properties based on MIL-W-6858. e When the number of spots per inch is within 15 percent of the standard spot per inch requirement, the design shear strengths tabulated above shall apply. f When the number of spots differs from the standard spots per inch by 15 percent or greater, but does not exceed the noted range of spots per inch, applicable design strength shall be determined as noted below: XM (K) Nr ' Xr Ns
where Xm Ns Nr Xr K K
= = = = =
design shear strength in accordance with the above table standard spots per inch in accordance with the above table required spots per inch (production part) actual design shear strength requirement 1.15 when number of spots per inch is reduced more than 15 percent of the standard spacing of the above table = 0.90 when number of spots is increased more than 15 percent of the standard spacing but within range of the tabular spacing.
g When the number of spots per inch is above the range indicated in the table, the design shear strength shall remain constant at the value obtained at the top of the range.
8-163
MMPDS-06 1 April 2011
Table 8.2.2.3.2(c). Spot-Weld Design Shear Strength in Panels for Bare and Clad Aluminum Alloysa,b,c (Welding Specification AWS D17.2d)
Design Shear Strength, pounds per spot Material Ultimate Tensile Strength, ksi...
56 and Above
35 to 56
19.5 to 34.9
Below 19.5
48 60 88 100 112 128 148 172 208 244 276 324 372 444 536 660 820 1004 1192 1424 1696 2020 2496 2980 3228 5880
40 52 80 92 108 124 140 164 188 220 248 296 344 412 488 576 684 800 936 1072 1300 1538 1952 2400 2592 5120
... 24 56 68 80 96 116 140 168 204 240 280 320 380 456 516 612 696 752 800 840 ... ... ... ... ...
... 16 40 52 64 76 88 108 132 156 180 208 236 272 316 360 420 476 540 588 628 ... ... ... ... ...
Nominal thickness of thinner sheet, in.: 0.010 0.012 0.016 0.018 0.020 0.022 0.025 0.028 0.032 0.036 0.040 0.045 0.050 0.056 0.063 0.071 0.080 0.090 0.100 0.112 0.125 0.140 0.160 0.180 0.190 0.250
................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................ ................................................
a The reduction in strength of spot-welds due to the cumulative effects of time-temperature-stress factors is not greater than the reduction in strength of the parent metal. b Strength based on 80 percent of minimum values specified in Specification MIL-W-6858. c The allowable tensile strength of spot-welds is 25 percent of the design shear strength. Higher values may be used, however, if these are substantiated by tests acceptable to the procuring or certifying agency. d Properties based on MIL-W-6858.
8-164
Table 8.2.2.3.2(d). Maximum Static Strength of Spot-Welded Joints in Aluminum Alloys and Corresponding Maximum Design Spot-Weld Pitcha,b Single Row Joints Material..........
7075-T6 clad
2024-T3 clad
Multiple Row Joints 6061-T6
7075-T6 clad
Thickness of
2024-T3 clad
6061-T6
Pitch÷No.
Pitch÷No.
Strength,
Pitch,
Strength,
Pitch,
Strength,
Pitch,
Strength,
of Rows,
Strength,
Pitch÷No.
Strength,
of Rows,
in.
lbs/in.
in.
lbs/in.
in.
lbs/in.
in.
lbs/in.
in.
lbs/in.
of Rows, in.
lbs/in.
in.
288 346 461 577 721 923 1059 1230 1452 1589 1742 1913 2084 2289 2511
0.167 0.173 0.191 0.194 0.205 0.225 0.261 0.302 0.369 0.415 0.471 0.525 0.572 0.622 0.675
250 300 400 500 625 800 918 1067 1259 1378 1511 1660 1808 1986 2179
0.192 0.200 0.220 0.224 0.237 0.260 0.301 0.349 0.426 0.479 0.543 0.605 0.659 0.717 0.788
210 252 336 420 525 672 778 910 1082 1187 1306 1438 1580 1728 1900
0.190 0.206 0.238 0.257 0.267 0.280 0.319 0.378 0.451 0.485 0.524 0.556 0.596 0.620 0.684
438 526 701 876 1095 1402 1752 2190 2759 3110 3504 3942 4380 4906 5475
0.110 0.114 0.126 0.128 0.135 0.148 0.158 0.170 0.194 0.212 0.234 0.255 0.272 0.290 0.310
384 461 614 768 960 1229 1536 1920 2419 2726 3072 3456 3840 4301 4800
0.125 0.130 0.143 0.146 0.154 0.169 0.180 0.194 0.222 0.242 0.267 0.290 0.310 0.331 0.353
329 395 526 658 822 1053 1316 1645 2073 2336 2632 2961 3290 3685 4112
0.122 0.132 0.152 0.164 0.170 0.179 0.188 0.209 0.235 0.247 0.260 0.270 0.284 0.291 0.316
0.010........... 0.012........... 0.016........... 0.020........... 0.025........... 0.032........... 0.040........... 0.050........... 0.063........... 0.071........... 0.080........... 0.090........... 0.100........... 0.112........... 0.125...........
a For multiple row joints row spacing is at minimum and same pitch in all rows. b For pitches greater than those shown, strength is governed by Tables 8.2.2.3.2(b) and (c).
MMPDS-06 1 April 2011
8-165
Thinnest Sheet,
MMPDS-06 1 April 2011
Figure 8.2.2.3.2.1. Efficiency of the parent metal in tension for spot-welded aluminum alloys.
8-166
MMPDS-06 1 April 2011
Figure 8.2.2.3.2.2(a). Fatigue strength of spot-welded joints in aluminum alloy sheet. Load Ratio = 0.05 (static failure by tearing sheet).
8-167
MMPDS-06 1 April 2011
Figure 8.2.2.3.2.2(b). Fatigue strength of spot-welded joints in aluminum alloy sheet. Load Ratio = 0.05 (static failure by shear in the spot welds).
8-168
MMPDS-06 1 April 2011
Figure 8.2.2.3.2.2(c). Fatigue strength of triple row spot-welded lap joints in 6061-T6 aluminum alloy sheet. Load Ratio = 0.05.
8-169
MMPDS-06 1 April 2011
Figure 8.2.2.3.2.2(d). Fatigue strength of spot-welded multiple row joints in aluminum alloy sheet. Load Ratio = 0.05 (static failure by shear in the spot welds).
8-170
MMPDS-06 1 April 2011
Figure 8.2.2.3.2.2(e). Fatigue strength of triple row spot-welded lap joints in 6061-T6 aluminum alloy sheet. Load Ratio = 0.05 (static failure by tear in sheets).
8-171
MMPDS-06 1 April 2011
Table 8.2.2.3.3. Spot-Weld Design Shear Strength in Panels for Magnesium Alloysa,b,c (Welding Specification AWS D17.2d)
Design Shear Strength, pounds per spot Material Ultimate Tensile Strength, ksi...
Greater than 19.5
Less than 19.5
Nominal thickness of thinner sheet, in.: 0.012 ............................................ 0.016 ............................................ 0.018 ............................................ 0.020 ............................................ 0.022 ............................................ 0.025 ............................................ 0.028 ............................................ 0.032 ............................................ 0.036 ............................................ 0.040 ............................................ 0.045 ............................................ 0.050 ............................................ 0.056 ............................................ 0.063 ............................................ 0.071 ............................................ 0.080 ............................................ 0.090 ............................................ 0.100 ............................................ 0.112 ............................................ 0.125 ............................................
24 56 68 80 96 116 140 168 204 240 280 320 380 456 516 612 696 752 800 840
16 40 52 64 76 88 108 132 156 180 208 236 272 316 360 420 476 540 588 628
a Strength based on 80 percent of minimum values specified in Specification MIL-W-6858. b The allowable tensile strength of spot-welds is 25 percent of the design shear strength. Higher values may be used, however, if these are substantiated by tests acceptable to the procuring or certifying agency. c Magnesium alloys AZ31B and HK31A may be spot-welded in any combination. d Properties based on MIL-W-6858.
8-172
MMPDS-06 1 April 2011
Table 8.2.2.3.4(a). Spot-Weld Design Shear Strength in Thin Sheet and Foils for Titanium and Titanium Alloysa,b,c (Welding Specification AWS D17.2d)
Spots/inch Thickness of Thinnest Outer Sheet, in. 0.001 ........... 0.002 ........... 0.003 ........... 0.004 ........... 0.005 ........... 0.006 ........... 0.007 ........... 0.008 ...........
Materials Ultimate Tensile Strength, ksi Above 185
Standard (Ns)e
Rangef,g
40 20 12 10 9 7 6 5
1-50 1-30 1-17 1-14 1-13 1-10 1-8 1-7
150 to 185
90 to 149
Below 90
Design Shear Strength, pounds per linear inch (Xm) 72 144 240 324 392 432 504 552
64 128 208 280 340 380 440 488
52 104 164 228 272 304 352 392
36 72 120 152 188 220 256 284
a
The reduction in strength of spot-welds due to the cumulative effects of time-temperature-stress factors is not greater than the reduction in strength of the parent metal. b Strength based on 80 percent of minimum values specified in Specification MIL-W-6858. c The allowable tensile strength of spot-welds is 25 percent of the design shear strength. Higher values may be used, however, if these are substantiated by tests acceptable to the procuring or certifying agency. d Properties based on MIL-W-6858. e When the number of spots per inch is within 15 percent of the standard spot per inch requirement, the design shear strengths tabulated above shall apply. f When the number of spots differs from the standard spots per inch by 15 percent or greater, but does not exceed the noted range of spots per inch, applicable design strength shall be determined as noted below: XM/Ns(K)Nr = Xr where Xm Ns Nr Xr K
= = = = =
design shear strength in accordance with the above table standard spots per inch in accordance with the above table required spots per inch (production part) actual design shear strength requirement 1.15 when number of spots per inch is reduced more than 15 percent of the standard spacing of the above table K = 0.90 when number of spots is increased more than 15 percent of the standard spacing but within range of the tabular spacing.
g When the number of spots per inch is above the range indicated in the table, the design shear strength shall remain constant at the value obtained at the top of the range.
8-173
MMPDS-06 1 April 2011
Table 8.2.2.3.4(b). Spot-Weld Design Shear Strength in Panels for Titanium and Titanium Alloya,b,c (Welding Specification AWS D17.2d)
Design Shear Strength, pounds per spot Material Ultimate Tensile Strength, ksi ..............
Above 100
100 and Below
164 220 320 392 424 488 580 684 836 1004 1168 1438 1702 2040 2400 2702 3048 3430 3810 4260 4760
128 160 236 272 312 360 424 508 620 736 852 1028 1204 1416 1688 1914 2160 2435 2702 3030 3380
Nominal thickness of thinner sheet, in.: 0.010 .................................................. 0.012 .................................................. 0.016 .................................................. 0.018 .................................................. 0.020 .................................................. 0.022 .................................................. 0.025 .................................................. 0.028 .................................................. 0.032 .................................................. 0.036 .................................................. 0.040 .................................................. 0.045 .................................................. 0.050 .................................................. 0.056 .................................................. 0.063 .................................................. 0.071 .................................................. 0.080 .................................................. 0.090 .................................................. 0.100 .................................................. 0.112 .................................................. 0.125 .................................................. a b c d
The reduction in strength of spot-welds due to the cumulative effects of time-temperature-stress factors is not greater than the reduction in strength of the parent metal. Strength based on 80 percent of minimum value specified in Specification MIL-W-6858. The allowable tensile strength of spot-welds is 25 percent of the design shear strength. Higher values may be used, however, if these are substantiated by tests acceptable to the procuring or certifying agency. Properties based on MIL-W-6858.
8-174
MMPDS-06 1 April 2011 8.2.3 BRAZING 8.2.3.1 Copper Brazing — The allowable shear strength for copper brazing of steel alloys shall be 15 ksi, for all conditions of heat treatment. Higher values may be allowed upon approval of the procuring or certifying agency. The effect of the brazing process on the strength of the parent or base metal of steel alloys shall be considered in the structural design. Where copper furnace brazing is employed, the calculated allowable strength of the base metal which is subjected to the temperatures of the brazing process shall be in accordance with the following: Material
Allowable Strength
Heat-treated material (including normalized) used in “as-brazed” condition
Mechanical properties of normalized material
Heat-treated material (including normalized) reheat-treated during or after brazing
Mechanical properties corresponding to heat treatment performed
8.2.3.2 Silver Brazing — Silver-brazed areas should not be subjected to temperatures exceeding 900EF. Silver brazing alloys are listed in specification QQ-B-654. Deviation from this specification may be allowed upon approval of the procuring or certifying agency. The allowable shear strength for silver brazing of steel alloys shall be 15 ksi, provided that clearances or gaps between parts to be brazed do not exceed 0.010 in. Deviation from this specified allowable value may be allowed upon approval of the procuring or certifying agency. The effect of silver brazing on the strength of the parent or base metal is the same as shown for copper brazing in Section 8.2.3.1.
8-175
MMPDS-06 1 April 2011
This page is intentionally blank.
8-176
MMPDS-06 1 April 2011
8.3 BEARINGS, PULLEYS, AND WIRE ROPE Bearings — Design, strengths, selection criteria, and other data for plain and antifriction bearings are found in AFSC Design Handbook AFSC DH-2-1, Chapters 3 and 6. Pulleys — Pulley strengths and design data are to be utilized in accordance with Specification MILP-7034.
Wire Rope — Strengths and design data for wire rope are to be selected from the following specifications, whichever is appropriate: MIL-DTL-83420 or MIL-DTL-87161.
8-177
MMPDS-06 1 April 2011
This page is intentionally blank.
8-178
MMPDS-06 1 April 2011
REFERENCES 8.1
Hartman, E.C. and Westcoat, C., “The Shear Strength of Aluminum Alloy Driven Rivets as Affected by Increasing D/t Ratios,” U.S. National Advisory Committee for Aeronautics, Technical Note No. 942, 23 pp. (July 1944).
8.1.2.1 Fugazzi, G.R., “Results of Test Evaluation Program to Develop Design Joint Strength Load Allowable Values for A-286 Solid Rivets Under Room and Elevated Temperature Conditions,” Almay Research and Testing Corporation Report No. G8058, 63 pp. (November 1964). 8.1.2.2 “Report on Flush Riveted Joint Strength,” Airworthiness Requirements Committee, A/C Industries Association of America, Inc., Airworthiness Project 12 (Revised May 25, 1948). 8.1.5.2 “Report on Flush Screw Joint Strength,” Airworthiness Requirements Committee, A/C Industries Association of American, Inc., Airworthiness Project 20 (Revised April 6, 1953).
8-179
MMPDS-06 1 April 2011
This page is intentionally blank.
8-180
MMPDS-06 1 April 2011
CHAPTER 9 GUIDELINES FOR THE PRESENTATION OF DATA This chapter contains Guidelines for judging adequacy of data, procedures for analyzing data in determining property values for inclusion in previous chapters, and formats for submitting results of analyses to the MMPDS Coordination Group for approval. The index that follows should be helpful in locating sections of these Guidelines applicable to specific properties: Section 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.1.7 9.1.8 9.2 9.2.1 9.2.2 9.2.3 9.2.3.1 9.2.3.2 9.2.3.3 9.2.3.4 9.2.3.5 9.2.3.6 9.2.3.7 9.2.4 9.2.4.1 9.2.4.2 9.2.4.3 9.2.4.4 9.2.4.5 9.2.4.6 9.2.4.7 9.2.4.8 9.2.5 9.2.5.1 9.2.5.2 9.2.5.3
Description
Page
General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross-Index Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Approval Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Documentation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rounding Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 7 7 7 7 7 10 12 14 15
Material, Specification, Testing, and Data Requirements . . . . . . . . . . . . . . . . . Material Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Specification Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Required Test Methods/Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Property Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Direction and Specimen Location . . . . . . . . . . . . . . . . . . . . . . . . . . Tension, Compression, Shear and Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . Other Static Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Required Test Methods to Determine Dynamic and Time Dependent Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fusion-Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-Basis Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A- and B-Basis Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derived Property Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Other Static Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Requirements for Determination of Dynamic and Time Dependent Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fastener Strength Table Sunset Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fusion-Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creep and Creep Rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fusion-Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
15 15 15 18 18 20 20 21 27 28 29 29 30 35 36 38 42 46 52 52 52 59 60
MMPDS-06 1 April 2011 Section
Description
9.3 9.3.1 9.3.2 9.3.3 9.3.3.1 9.3.3.2 9.3.3.3 9.3.3.4 9.3.3.5
Submission of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Computer Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Format for the Computation of T99 and T90 Values . . . . . . . . . . . . . . . Data Format for Derived Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Format for the Construction of Typical Stress-Strain Curves . . . . . . . Data Format for Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Format for Other Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4 9.4.1 9.4.2 9.4.3 9.4.3.1 9.4.3.2 9.4.3.3 9.4.3.4
Substantiation of S-Basis Minimum Properties . . . . . . . . . . . . . . . . . . . . . . . . . S-Basis Minimum Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Validating Design Properties for Existing Materials (When a Change in Processing has Occurred) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Confirmation of Design Properties for Legacy Alloys . . . . . . . . . . . . . . . . . . . . Initial Steps and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Increase in Design Allowables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Decrease in Design Allowables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derived Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5 9.5.1 9.5.1.1 9.5.1.2 9.5.1.3 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.5.2.4 9.5.3 9.5.3.1 9.5.3.2 9.5.3.3 9.5.4 9.5.4.1 9.5.4.2 9.5.4.3 9.5.4.4 9.5.4.5 9.5.4.6 9.5.4.7 9.5.4.8 9.5.4.9 9.5.4.10 9.5.5
Analysis Procedures for Statistically Computed Minimum Static Properties Specifying the Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deciding Between Direct and Indirect Computation . . . . . . . . . . . . . . . . . . Testing for Regression Effects and Homogeneity . . . . . . . . . . . . . . . . . . . . Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quadratic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tests for Adequacy of a Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tests for Equality of Several Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . Combinability of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The k-Sample Anderson-Darling Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The F Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The t Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Determining the Form of Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anderson-Darling Test for Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Normal Probability Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-Parameter Weibull Acceptability Test . . . . . . . . . . . . . . . . . . . . . . . . Modified Anderson-Darling Test for Pearsonality . . . . . . . . . . . . . . . . . . . . The Pearson Backoff Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pearson Probability Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modified Anderson-Darling Test for Weibullness . . . . . . . . . . . . . . . . . . . . The Weibull Backoff Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Weibull Probability Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Detection of Lower-Tail Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Direct Computation Without Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Page 63 63 63 63 64 64 68 68 69 73 73 74 75 75 75 76 76 81 81 81 84 85 93 96 97 100 103 106 106 108 109 111 111 112 112 114 115 115 119 121 122 124 126
MMPDS-06 1 April 2011 Section 9.5.5.1 9.5.5.2 9.5.5.3 9.5.6 9.5.6.1 9.5.7 9.5.7.1 9.5.7.2 9.5.7.3 9.5.7.4 9.5.8
Description Sequential Pearson Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sequential Weibull Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nonparametric Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Direct Computation by Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . Performing the Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indirect Computation without Regression (Reduced Ratios/ Derived Properties) Treatment of Grain Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Treatment of Test Specimen Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Treatment of Clad Aluminum Alloy Plate . . . . . . . . . . . . . . . . . . . . . . . . . . Computational Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indirect Computation using Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6 9.6.1 9.6.1.1 9.6.1.2 9.6.1.3 9.6.1.4 9.6.1.5 9.6.1.6 9.6.1.7 9.6.1.8 9.6.1.9 9.6.1.10 9.6.2 9.6.2.1 9.6.3 9.6.3.1 9.6.3.2 9.6.3.3 9.6.4 9.6.4.1 9.6.4.2
Analysis Procedures for Dynamic and Time Dependent Properties . . . . . . . . Load and Strain Control Fatigue Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Collection and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatigue Life Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaluation of Mean Stress and Strain Effects . . . . . . . . . . . . . . . . . . . . . . . Estimation of Fatigue Life Model Parameters . . . . . . . . . . . . . . . . . . . . . . . Treatment of Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assessment of the Fatigue Life Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Set Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Treatment of Runouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recognition of Time Dependent Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatigue Crack Growth Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Collection and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fracture Toughness Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plane-Strain Fracture Toughness Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plane Stress and Transitional Fracture Toughness . . . . . . . . . . . . . . . . . . . . Crack Resistance (R-Curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creep and Creep-Rupture Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Collection and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7 9.7.1 9.7.1.1 9.7.1.2 9.7.1.3 9.7.1.4 9.7.1.5 9.7.2 9.7.2.1 9.7.2.2
Analysis Procedures for Structural Joint Properties . . . . . . . . . . . . . . . . . . . . . Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yield Load Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Shear Strength of Fastener . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sheet Critical and Transition Critical Strengths . . . . . . . . . . . . . . . . . . . . . . Calculation of Allowable Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fusion-Welded Joint Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Collection and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8 9.8.1 9.8.2
Examples of Data Analysis and Data Presentation for Static Properties . . . . . Direct Analyses of Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indirect Analyses of Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9-3
Page 131 132 133 134 134 136 136 137 137 138 139 141 141 144 145 146 148 149 155 156 158 159 161 161 162 164 164 164 166 172 172 174 179 179 180 181 185 186 199 199 200 202 203 203 216
MMPDS-06 1 April 2011 Section 9.8.3 9.8.3.1 9.8.3.2 9.8.3.3 9.8.4
Description Tabular Data Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modulus of Elasticity and Poisson’s Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Room Temperature Graphical Mechanical Properties . . . . . . . . . . . . . . . . . . . .
Page 220 220 225 226 226
9.8.4.1
Typical Stress-Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
226
9.8.4.2
Compression-Tangent-Modulus Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . .
235
9.8.4.3
Full-Range Tensile Stress-Strain Curves . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8.4.4 9.8.4.5 9.8.4.6
Minimum Stress-Strain and Stress-Tangent-Modulus Curves . . . . . . . . . . . Biaxial Stress-Strain Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mathematical Representation of Stress-Strain Curves . . . . . . . . . . . . . . . . .
238 243 243
9.8.5 9.8.5.1 9.8.5.2 9.8.5.3 9.8.5.4 9.8.5.5 9.8.5.6 9.8.5.7 9.8.5.8
Elevated Temperature Graphical Mechanical Properties . . . . . . . . . . . . . . . . . . Strength Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elongation and Reduction of Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modulus of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of Thermal Exposure on Room Temperature Strength . . . . . . . . . . . Effect of Thermal Exposure on Elevated Temperature Strength . . . . . . . . . Simple Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complex Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9 9.9.1 9.9.1.1 9.9.1.2 9.9.2 9.9.3 9.9.3.1 9.9.3.2 9.9.4 9.9.4.1 9.9.5 9.9.5.1 9.9.6 9.9.6.1 9.9.6.2 9.9.6.3 9.9.6.4
Examples of Data for Dynamic and Time Dependent Properties . . . . . . . . . . . Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Load Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Strain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fatigue Crack Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fracture Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plane Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Plane Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creep and Creep Rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creep-Rupture Example Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanically Fastened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example Problems for Three Diameter Blind Fastener Dataset . . . . . . . . . . Fusion-Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Room Temperature Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data on Effect of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Use of Design Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.10 9.10.1
Statistical Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . One-Sided Tolerance Limit Factors, K, for the Normal Distribution, 0.95 Confidence, and n-1 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.950 Fractiles of the F Distribution Associated with n1 and n2 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.10.2
9-4
244 247 247 259 259 260 261 262 262 263 267 267 273 280 285 291 291 291 292 293 299 305 332 332 332 333 334 335 336 338
MMPDS-06 1 April 2011 Section 9.10.3
Description
Page
0.950 Fractiles of the F Distribution Associated with n1 and n2 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.10.4
339
0.95 and 0.975 Fractiles of the t Distribution Associated with df Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
340
9.10.5
Area Under the Normal Curve from -4 to the Mean + Zp Standard Deviations .
341
9.10.6
One-Sided Tolerance-Limit Factors for the Three-Parameter Weibull Acceptability Test with 95 Percent Confidence . . . . . . . . . . . . . . . . . . . . . .
9.10.7
342
One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution with 95 Percent Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
343
9.10.8
γ-values for Computing Threshold of Three-Parameter Weibull Distribution . .
349
9.10.9
Ranks, r, of Observations, n, for an Unknown Distribution Having the Probability and Confidence of T99 and T90 Values . . . . . . . . . . . . . . . . . . . .
9.10.10
352
Fractiles of F Distribution Associated with n1(numerator) and n2 (denominator) Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9-5
354 357
MMPDS-06 1 April 2011
This page is intentionally blank.
9-6
MMPDS-06 1 April 2011
9.1 GENERAL INFORMATION This section of the Guidelines covers general information. Information specific to individual properties can be found in pertinent sections. Abbreviations, symbols, and definitions can be found in Appendix A. 9.1.1 INTRODUCTION — Design properties in MMPDS are used in the design of aerospace structures and elements. Thus, it is exceedingly important that the values presented in MMPDS reflect as accurately as possible the actual properties of the products covered. Throughout the Guidelines, many types of statistical computations are referenced. Since these may not be familiar to all who may be analyzing data in the preparation of MMPDS proposals, a detailed description of each operation is required. To present the detailed description in the individual sections, however, would unnecessarily complicate the orderly presentation of the overall computational procedures. Therefore, the detailed description of the statistical techniques have been covered in Sections 9.5, 9.6, and 9.7. 9.1.2 CROSS INDEX — Table 9.1.2 shows a cross index reference table on various subjects in Chapter 9. Mechanically fastened joint procedures and the appropriate sections are referenced in Figure 9.1.2. 9.1.3 APPLICABILITY — The minimum data requirements and analytical procedures defined in these Guidelines for establishment of MMPDS design properties and elevated temperature curves should be used to obtain approval of such values or curves when proposed to the MMPDS Coordination Group or a certifying agency. However, the minimum data requirements and analytical procedures are not mandatory; to the extent of precluding use of other analytical procedures which can be substantiated. Any exceptions or deviations must be reported when requesting approval of these values or curves by the Coordination Group or certifying agency. 9.1.4 APPROVAL PROCEDURES — The MMPDS Coordination Group (a voluntary, joint Government-Industry activity) meets twice yearly. At each meeting, this group acts upon proposed changes or additions to the document submitted in writing in advance of the meeting. The agenda is normally mailed to attendees four weeks prior to the meeting date, and the minutes four weeks following the meeting. Attachments for either the agenda or the minutes should be delivered to the Secretariat well in advance of the mailing date. Attachments containing proposed changes or additions to the document shall include specific notations of changes or additions to be made; adequate documentation of supporting data; analytical procedures used; discussion of analysis of data; and a listing of exceptions or deviations from the requirements of these Guidelines. Approval procedures for establishment of MMPDS equivalent design values are defined by the individual certifying agency. 9.1.5 DOCUMENTATION REQUIREMENTS — The purpose of adequate documentation of proposals submitted to the MMPDS Coordination Group is to permit an independent evaluation of proposals by each interested attendee and to provide a historical record of actions of the Coordination Group. For this reason, both supporting data and a description of analytical procedures employed must be made available to attendees, either as an integral portion of an attachment to the agenda or minutes, or by reference to other documents that may reasonably be expected to be in the possession of MMPDS meeting attendees. A specific example of the latter would be certain reports of Government-sponsored research or material evaluations for which distribution included the MMPDS attendance list. In some cases involving large quantities of supporting data, it may suffice (at the discretion of the Coordination Group) to furnish a single copy of these data to the Secretariat, from whom they would be available to interested attendees. 9-7
MMPDS-06 1 April 2011 Table 9.1.2 Cross Index Table for Chapter 9 Task Material Spec. Requirements
Data Set Requirements
Experimental Requirements
Analysis Methods
Data Reporting
Examples
9.2.2 9.4
9.2.4
9.2.3
...
9.8.3.1
...
- Direct Analysis
...
9.2.4.2
...
9.5.5 9.5.6
9.3.3.1
9.8.1
- Indirect Analysis
...
9.2.4..3
...
9.5.7 9.5.8
9.3.3.2
9.8.2
- Regression & Homogeneity
...
9.5.1.2
...
9.5.2
...
...
- Data Combinability
...
9.5.3
...
9.5.2.4 9.5.3
...
9.8.1
- Statistical Distributions
...
...
...
9.5.4
...
9.8.1
...
Subject
Static Strength
Elastic Properties
9.2.3.4
9.2.4.4
...
9.8.4
9.3.3.3 9.8.3.2
Physical Properties
9.2.3.4
...
9.2.3.4
...
9.8.3.3
...
Effect of Temperature
...
9.2.4.4.3
...
9.8.5
...
...
Stress-Strain Curves
...
9.2.4.4.2
...
...
9.3.3.3 9.8.4
9.8.4.1
Fatigue
9.2.3.5.1
9.2.4.5.1
9.2.3.5.1 9.2.5.1
9.6.1
...
9.9.1
Fracture Toughness
9.2.3.5.3
9.2.4.5.3
9.2.3.5.3
9.6.3
...
9.9.3
Crack Growth
9.2.3.5.2
9.2.4.5.2
9.2.3.5.2
9.6.2
9.9.2
9.9.2
9.2.3.5.4
9.2.4.5.4 9.2.5.2
9.2.3.5.4
9.6.4
9.9.4
9.9.4.1
Fasteners
9.2.3.6
9.2.4.6 9.3.3.4
9.2.3.6
9.7.1
9.3.3.4 9.9.5
9.9.5.1
Metallurgical Joints
9.2.3.7
9.2.4.7
9.2.3.7 9.2.5.3
9.7.2
9.9.6
Creep
9-8
...
MMPDS-06 1 April 2011
Test Methods 9.2.3.6 Mechanically Fastened Joints 9.2.3.7 Fusion-Welded Joints
Data Requirements 9.2.4.6 Mechanically Fastened Joints 9.2.4.7 Fastener Strength Table Sunset Clause 9.2.4.8 Fusion-Welded Joints 9.3.3.4 Data Format for Fasteners 9.3.3.5 Data Format for Other Properties
Analysis Procedures (Allowables Curve) 9.7.1 Mechanically Fastened Joints 9.7.1.1 Mechanically Fastened Joints 9.7.1.2 Yield Load Determination 9.7.1.3 Shear Strength of Fastener 9.7.1.4 Sheet Critical and Transition Critical Strengths 9.7.1.5 Calculation of Allowable Loads
Data Presentation (Table Format) 9.9.5 Mechanically Fastened Joints 9.9.6 Fusion-Welded Joints
Analysis Example Problems 9.9.5.1 Example Problem for Three Diameter Blind Fastener Dataset (Problems I thru V)
Figure 9.1.2 Mechanically Fastened Joint Procedures
9-9
MMPDS-06 1 April 2011 All relevant reference documents (specifications, testing standards, data submissions, etc.) for proposals must be provided in English, to facilitate interpretation and evaluation by the MMPDS Coordination Group. If metric units are used as the primary system of units in these documents, they should be supplied along with a soft conversion to English units. The following English units are standard within MMPDS: • • • • • • • • • • • • • •
Coefficient of thermal expansion, 10-6 in./in./F Density, lb./in3 Fracture toughness, ksi-in1/2 Frequency, Hz (cycles per second), or cpm (cycles per minute) Load, lbs., or kips (103 lbs.) Modulus of elasticity (Tension and Compression), 103 ksi Shear Modulus, 103 ksi Specific heat, Btu/(lb.)(F) Strain, in./in. Stress or strength, ksi Temperature, EF Thermal conductivity, Btu/[(hr)(ft2)(F)/ft] Thickness, in. Time, hrs.
Refer to Section 9.2.3.1 for the terminology used within MMPDS for mechanical properties. 9.1.6 SUMMARY — The objective of this summary is to provide a global overview of Chapter 9 without defining specific statistical details. This overview will be most helpful to those unfamiliar with the statistical procedures used in MMPDS and to those who would like to learn more about the philosophy behind the MMPDS guidelines. Chapter 9 is the “rule book” for MMPDS. Since 1966, these guidelines have described statistical procedures used to calculate mechanical properties for alloys included in the Handbook. Recommended changes in the guidelines are reviewed first by the Guidelines Task Group (GTG) and later approved by the entire coordination committee. Recommended changes in statistical procedures within the guidelines are evaluated first by the Statistics Working Group (SWG), which supports the GTG. Similarly, recommended changes in fastener analysis procedures are examined by the Fastener Task Group (FTG) before approval by the coordination committee. Chapter 9 is divided into subchapters that cover the analysis methods used to define room and elevated temperature properties. The room temperature mechanical properties are tensile, compression, bearing, shear, fatigue, fracture toughness, elongation and elastic modulus. The elevated temperature properties are the same, except that creep and stress rupture properties are added to the list. Analysis procedures for fatigue, fatigue crack growth and mechanically fastened joints are also covered since these data are commonly used in aircraft design. The presentation of these data varies depending upon the data type. For instance, the room temperature mechanical properties (tensile, compression, bearing, shear, elongation, elastic modulus, and fracture toughness) are provided in a tabular format, while the fatigue, elevated temperature properties, and typical stress-strain curves are presented in graphical format. The majority, by far, of the data in MMPDS are room temperature design properties: including tensile (Ftu, Fty), shear (Fsu), compression (Fcy), bearing ultimate and yield strengths (Fbru and Fbry), elongation and elastic modulus. Room temperature design properties are the primary focus in the Handbook because most aircraft, commercial and military, typically operate at near-ambient temperatures and because most material specifications include only room temperature property requirements.
9-10
MMPDS-06 1 April 2011 Many different statistical techniques may be useful in analysis of mechanical-property data. Brief descriptions of procedures that will be used most frequently in this application are given in Sections 9.5, 9.6, and 9.7. More detailed descriptions of these and other statistical techniques and tables in their various forms can be found in a number of workbooks and texts; Reference 9.1.5 is a particularly useful one. Before an alloy can be considered for inclusion in MMPDS, it must be covered by a commercial or government specification. There are two main reasons for this: (1) the alloy, and its method of manufacture, must be “reduced to standard practice” to increase confidence that the material, if obtained from different suppliers, will still demonstrate similar mechanical properties, and (2) specification minimum properties are included in MMPDS tables as design properties in situations where there are insufficient data to determine statistically based material design values. Design minimum mechanical properties tabulated in MMPDS are calculated either by “direct” or “indirect” statistical procedures. The minimum sample size required for the direct computation of T99 and T90 values (from which A- and B-Basis design properties are established) is 100. These 100 observations must include data from at least 10 heats and 10 lots (as defined in the next paragraph). A T99 value is a statistically computed, one-sided lower tolerance limit, representing a 95 percent confidence lower limit on the first percentile of the distribution. Similarly, a T90 value is a statistically computed, one-sided lower tolerance limit, representing a 95 percent lower confidence limit on the tenth percentile of the distribution. If the sample cannot be described by a Pearson1 or Weibull distribution, the T99 and T90 values must be computed by nonparametric (distribution free) means, which can only be done if there are at least 299 observations. (In most cases, only minimum tensile ultimate and yield strength values are determined by the direct method.) T90 values are not computed if there are insufficient data to compute T99 values, even though a much smaller sample size is required to compute nonparametric T90 values. This is because the general consensus within the MMPDS committee has been that a large number of observations (in the realm of 100) are needed from a large number of heats and lots (e.g. 10) for a particular material to properly characterize the variability in strength of that product. A lot represents all of the material of a specific chemical composition, heat treat condition or temper, and product form that has passed through all processing operations at the same time. Multiple lots can be obtained from a single heat. A heat of material, in the case of batch melting, is all of the material that is cast at the same time from the same furnace and is identified with the same heat number. In the case of continuous melting, a single heat of material is generally poured without interruption. The exception is for ingot metallurgy wrought aluminum products, where a single heat is commonly cast in sequential aluminum ingots, which are melted from a single furnace charge and poured in one or more drops without changes in the processing parameters. Minimum compression, bearing, and shear strengths are typically determined through the indirect method. This is done to reduce cost, because as few as 10 data points (from 3 heats and 10 lots) can be used, in combination with “paired” direct properties to compute a design minimum value. In this indirect method, the compression, bearing, and shear strengths are paired with tensile values determined in the same region of the product to produce a ratio. Statistical analyses of these ratios are conducted to obtain lower bound estimates of the relationship between the primary property and the ratioed property. These ratios are then multiplied with the appropriate Ftu or Fty in the Handbook to obtain the Fsu, Fcy, Fbru, Fbry values for shear, compression, and bearing (ultimate and yield), respectively. When procedures other than those described are employed in preparation of data proposals, they should be described adequately in the proposal.
1 A Pearson distribution analysis with zero skewness is comparable to the normal analysis method used in earlier versions of the handbook.
9-11
MMPDS-06 1 April 2011 Many mechanical property tables in the Handbook include data for specific grain directions and thickness ranges. This is done to better represent anisotropic materials, such as wrought products, that often display variations in mechanical properties as a function of grain direction and/or product thickness. Therefore, it is common practice to test for variability in mechanical properties as a function of product thickness. This is done through the use of regression analysis for both direct and indirect properties. If a regression is found to be significant, properties may be computed separately (without regression) for reduced thickness ranges. To compliment the mechanical property tables, the Handbook also contains typical stress-strain curves. These curves are included to illustrate each material’s yield behavior and to graphically display differences in yield behavior for different grain directions, tempers, etc. These curves are identified as typical because they are based upon only a few test points. Typical curves are shown for both tension and compression and are extended to just beyond the 0.2 percent yield stress. Each typical curve also contains a shape factor called the Ramberg-Osgood number (n). These numbers can be used in conjunction with a material’s elastic modulus to empirically develop a stress-strain curve. Typical tensile full-range stressstrain curves are also provided that illustrate deformation behavior from the proportional limit to fracture. In addition, compression tangent-modulus curves are provided to describe compression instability. Effect of temperature and thermal exposure curves are included throughout the Handbook. The curves are presented as a percentage of the room temperature design value. For these curves, there is a minimum data requirement and statistical procedures have been established to construct the curves. The creep rupture plots are shown as typical isothermal curves of stress versus time. The physical properties are shown as a function of temperature for each property, i.e., specific heat, thermal conductivity, etc. Physical properties are reported as average actual values, not a percentage of a room temperature value. In addition to the mechanical properties, statistically based S/N fatigue curves are provided in the Handbook, since many airframe structures experience dynamic loading conditions. The statistical procedures are fairly rigorous. For example, the procedure describes how to treat outliers and run-outs (discontinued tests), and which models to use to best-fit a specific set of data. Each fatigue figure includes relevant information such as Kt, R value, material properties, sample size and equivalent stress equation. Each figure should be closely examined by the user to properly identify the fatigue curves required for a particular design. Design properties for mechanical fasteners and mechanically fastened elements are also included in MMPDS. A unique analysis procedure has been developed for mechanical fasteners because fasteners generally do not develop the full bearing strength of materials in which they are installed. Joint allowables are determined from test data using the statistical analysis procedures described in Section 9.7. 9.1.7 Data Basis —There are four types of room temperature mechanical properties included in MMPDS. They are listed here, in order, from the least statistical confidence to the highest statistical confidence, as follows: Typical Basis — A typical property value is an average value and has no statistical assurance associated with it. S-Basis — This designation represents or is based on the specification minimum value specified by the governing industry specification (as issued by standardization groups such as SAE Aerospace Materials Division, ASTM, etc.) or federal or military standards for the material. (See MIL-STD-970 for order of preference of specifications.) For certain products heat treated by the user (for example, steels hardened and tempered to a designated Ftu), the S-Basis value may reflect a specified quality-control requirement. Traditionally, the statistical assurance of S-Basis values has not been known. However, the statistical assurance associated with S-Basis values established since 1975 is known within the limitations 9-12
MMPDS-06 1 April 2011 of the qualification sample and the analysis method used to evaluate the data. Within those constraints SBasis values established since 1975 may be viewed as estimated A-Basis values. For properties which do not have a specification minimum, the designated S-basis represents either the calculated minimums using the normal S-basis equation or (in most cases for compression, shear, and bearing properties) the derived properties which get their basis from the denominator (see Indirect Analysis). In cases where the primary test direction (specification minimum) is an A- and B-basis, but the derived property is an S-basis, it indicates that the reduced ratios were questionable, most likely due to insufficient data according to current guidelines. Wherever possible, the statistical validity of these estimated A-Basis (S-Basis) values should be verified as soon as sufficient heats and lots of material are available from the major producers. This should be done to establish more rigorous A-Basis properties by the methods described in MMPDS. If the more rigorous A-Basis property exceeds the S-Basis value, the major suppliers and users of the material may benefit from updating or replacing the specification because then they will be able to take full advantage of the capabilities of the material within the design allowable tables in MMPDS. In the opposite (and fortunately infrequent) situation where the more rigorous A-Basis property falls well below the S-Basis value, the repercussions may be greater for both the user and producer. Actual design margins (as compared to originally perceived design margins) on primary structure may be reduced below desirable levels if the S-Basis value must be downgraded to a lower A-Basis value. The perceived adequacy of a material for a particular application may be reduced if the S-Basis value is reduced to match a lower A-Basis value. However, under most circumstances, the S-Basis value should be reduced to match the A-Basis value if process improvements cannot be instituted to raise the A-Basis value to the level of the original S-Basis value. B-Basis — This designation indicates that at least 90 percent of the population of values is expected to equal or exceed the statistically calculated mechanical property value, with a confidence of 95 percent. This statistically calculated number is computed using the procedures specified in Section 9.5. A-Basis — The lower value of either the statistically calculated number T99, or the specification minimum (S-Basis). The statistically calculated number indicates that at least 99 percent of the population is expected to equal or exceed the statistically calculated mechanical property value with a confidence of 95 percent. This statistically calculated number is computed using the procedures specified in Section 9.5. Sections 9.2.4.2 and 9.5.1.1 contain discussions of data requirements for direct computation of design properties based on current process capability of the majority of suppliers of a given material and product form. To assure that the A- and B-Basis values, defined above, represent true current process capability of a material, all available original test data for current material that is produced and supplied to the appropriate government, industry, or equivalent company specifications are included in calculating these values. (However, to be considered for inclusion in MMPDS, a material must be covered by an industry, Federal, or Military specification per Section 9.1.6.) Only positive proof of improper processing or testing is cause for exclusion of original test data, except that the number of tests per lot shall not exceed the usual frequency of testing for the product. It is recognized, however, that extensive acceptance testing resulting in elimination of low-strength material from the population may justify establishment of higher mechanical property values for the remaining material. Since this is a function of both the type of product and the nature and frequency of the acceptance tests practiced by each company, it is impractical to attempt to include these considerations in this document. Usually, only tensile ultimate and yield strengths in a specified testing direction are determined in such a manner that they can be termed A- and B-Basis values, in accordance with definitions given above. Only tensile ultimate strength, tensile yield strength, elongation, and reduction of area (for some alloys) are 9-13
MMPDS-06 1 April 2011 normally specified in the governing specifications and can be termed S-Basis values. However, ratioing procedures (described in Section 9.5.4) have been established, by which other property values such as compression, shear, and bearing are computed to have approximately the same assurance levels as A-, B-, or S-Basis values for tensile ultimate and yield strength. Property values determined in this manner are presented as having the same data basis as tensile ultimate and yield strengths in the same column of the table. Current practice regarding the use of the above data bases in the presentation of room temperature design properties is as follows: (1) Room temperature design properties for tensile ultimate and yield strengths are presented as A-, B-, or S-Basis values. Calculated T99 values that are higher than corresponding S-Basis values are presented as footnotes in MMPDS property tables, and these T99 values are not qualified for general use in design unless the specification requirements are increased to equal the T99 value. However, T99 values that are equal to or lower than corresponding S-Basis values replace S-Basis values as the A-Basis values in the document. (2) The S-Basis value is used for elongation and reduction of area. (3) If an A-Basis value is presented for a strength property, the corresponding B-Basis value is also presented. (4) A- and B-Basis values, when available, replace S-Basis values, based upon item (1) conditions. (5) A- and B-Basis values, based upon data representing samples of material supplied in the annealed, solution treated, or as-fabricated conditions, which were heat treated to demonstrate response to heat treatment by suppliers, are incorporated into MMPDS with an explanatory footnote. The properties of extrusions should be based upon the as-extruded thickness. Selection of the mechanical properties based upon its machined thickness at the time of quenching may not be conservative. It is recognized that structural fabrication and processing can alter mechanical properties. The use of A- and B-Basis values for structural design requires consideration of such effects. These material property values are derived from the statistically computed T99 and T90 values defined earlier. (6) Strength at room temperature after thermal exposure is presented graphically as a percentage of the tabulated design property. (7) Design data for all other properties, such as elastic modulus, Poisson’s ratio, creep, fatigue, and physical properties, are presented on a typical basis unless indicated otherwise. 9.1.8 Rounding Procedures —When the lower tolerance bound (T99 or T90) results in a fractional number, the actual mechanical property value used in the room temperature tables is determined by rounding according to Section 6.4 of ASTM E 29, Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications.
9-14
MMPDS-06 1 April 2011
9.2 MATERIAL, SPECIFICATION, TESTING, AND DATA REQUIREMENTS 9.2.1 MATERIAL REQUIREMENTS — The product used for the determination of minimum design values for incorporation into MMPDS must be production material. The material must have been produced using production facilities and standard fabrication and processing procedures. If a test program to determine requisite mechanical properties is initiated before a public specification describing this product is available, precautionary measures must be taken to ensure that the product supplied for the test program conforms to the specification, when published, and represents production material. Dimensionally discrepant castings or special test configurations may be used for the development of derived properties with prior approval by the MMPDS Coordination Group, providing these castings meet the requirements of the applicable material specification. Design values for separately cast test specimens are not presented in MMPDS. 9.2.2 SPECIFICATION REQUIREMENTS — To be considered for inclusion in MMPDS, a product must be covered by an industry specification (AMS specification issued by SAE Aerospace Materials Division or an ASTM standard published by the American Society for Testing and Materials), or a government specification (Military or Federal). If a public specification for the product is not available, action should be initiated to prepare a draft specification. Standard manufacturing procedures shall have been established for the fabrication and processing of production material before a draft specification is prepared. The draft specification shall describe a product which is commercially available on a production basis. An AMS draft specification should be submitted to the SAE Aerospace Materials Division and an ASTM standard should be transmitted to the American Society for Testing and Materials for publication. See Section 9.4 for requirements to substantiate the S-Basis properties. 9.2.3 REQUIRED TEST METHODS/PROCEDURES — Testing standards used in MMPDS are summarized in Table 9.2.3. In most cases, testing standards maintained by the American Society for Testing and Materials, ASTM, are referenced. The primary exception is fastener testing, where NASM-1312 is used as the reference standard. The mostly recently approved version of each standard is used as the baseline for all test data reviewed for inclusion in MMPDS.
9-15
Table 9.2.3. Summary of Required Testing Standards within MMPDS
Property to be Determined or Procedure to be Followed Bearing Classification of Extensometers Coefficient of Thermal Expansion Compression Creep and Rupture
Elongation Exfoliation Corrosion Fastener Mechanical Properties Fatigue - Load Control Fatigue - Strain Control Fatigue Crack Growth
Title of Testing Standard
ASTM E 238 Method for Pin-Type Bearing Test of Metallic Materials ASTM E 83
Method of Verification and Classification of Extensometers
ASTM E 831 Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis ASTM E 9 Compression Testing of Metallic Materials ASTM E 139 Rec. Practice for Conducting Creep, Creep-Rupture, & Stress-Rupture Tests of Metallic Materials ASTM C 693 Test Method for Density of Glass by Buoyancy ASTM E 111 Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus ASTM E 143 Test Method for Shear Modulus at Room Temperature ASTM E 111 Test Method for Young's Modulus, Tangent Modulus, and Chord Modulus ASTM E 8 Test Method for Tension Testing of Metallic Materials ASTM G 34 Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test) NASM-1312 Fastener Test Methods ASTM E 466 Recommended Practice for Constant Amplitude Axial Fatigue Tests of Metallic Materials ASTM E 606 Recommended Practice for Constant Amplitude Low Cycle Fatigue Testing ASTM E 647 Test Method for Measurement of Fatigue Crack Growth Rates
Relevant Section(s) within Guidelines 9.2.3.2, 1.4.7.1, 3.1.2 9.1.3.3, 9.2.4.4.2 9.2.3.4 1.7.1 9.2.3.9 9.2.3.4 9.2.3.3, 9.8.1.3.1 9.8.1.3.1 9.2.3.3, 9.8.1.3.1 1.4.3.5 3.1.2.3.1 9.2.3.6, 9.2.4.6.3 9.6.1 9.6.1 9.2.3.6
MMPDS-06 1 April 2011
9-16
Density Elastic Modulus – Compression Elastic Modulus – Shear Elastic Modulus – Tension
Designation
MMPDS-06 1 April 2011
9-17
Table 9.2.3. Summary of Required Testing Standards within MMPDS (Continued) Property to be Determined Designation Title of Testing Standard Relevant Section(s) or Procedure to be within Guidelines Followed Fracture Toughness - Plane ASTM E 399 Test Method for Plane-Strain Fracture Toughness of Metallic Materials 9.6.3 Strain Fracture Toughness - Plane ASTM E 561 Recommended Practice for R Curve Determination 9.6.3 Stress Poisson's Ratio ASTM E 132 Test Method for Poisson's Ratio at Room Temperature 9.8.1.3.1 Reduction in Area ASTM E 8 Test Method for Tension Testing of Metallic Materials 1.4.3.5 Shear – Pin ASTM B 769 Test Method for Shear Testing of Aluminum Alloys 9.2.3.2, 3.1.2 Shear – Slotted ASTM B 831 Standard Test Method for Shear Testing of 9.2.2 Thin Aluminum Alloy Products Specific Heat ASTM D 2766 Test Method for Specific Heat of Liquids and Solids 9.2.3.4 Stress Corrosion Cracking ASTM G 47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking 3.1.2.3.1 of High Strength Aluminum Alloy Products Tension ASTM E 8 Test Method for Tension Testing of Metallic Materials 1.4.4.1 ASTM A 370 Standard Test Methods and Definitions for Mechanical Testing of Steel 1.4.4.1 Products ASTM B 557 Test Methods of Tension Testing Wrought 1.4.4.1 and Cast Aluminum- and Magnesium-Alloy Products Tension - Elevated ASTM E 21 Recommended Practice for Elevated Temperature Tension Tests of 1.4.4.1 Temperatures Metallic Materials Thermal Conductivity ASTM C 714 Test Method for Thermal Diffusivity of Carbon and Graphite by a 9.2.3.4 Thermal Pulse Method
MMPDS-06 1 April 2011 9.2.3.1 Mechanical-Property Terms — Mechanical properties that are presented as room temperature design properties are listed in Table 9.2.3.1. It is important that use of a subscripted, capital letter “F” should be limited to designation of minimum values. Its use to designate an individual test value can lead to confusion and should be avoided in MMPDS data proposals. The absence of a directionality symbol implies that the property value is applicable to each of the grain directions when the product dimensions exceed approximately 2.5 inches. Table 9.2.3.1. Mechanical Property Terms
Property Tensile Ultimate Strength Tensile Yield Strength Compressive Yield Strength Shear Ultimate Strength Shear Yield Strength* Bearing Ultimate Strength Bearing Yield Strength Elongation Total Strain at Failure* Reduction of Area
Symbol Room temperature Minimum Value
Units ksi ksi ksi ksi ksi ksi ksi percent percent percent
Ftu Fty Fcy Fsu Fsy Fbru Fbry e et RA
Individual or Typical Value TUS TYS CYS SUS SYS BUS BYS elong. strain at failure red. of area
* As applicable.
The listed mechanical property symbols should be followed by one of the following additional symbols for wrought alloys, not castings. L
—
Longitudinal direction; parallel to the principal direction of flow in a worked metal.
T
—
Transverse direction; perpendicular to the principal direction of flow in a worked metal; may be further defined as LT or ST.
LT
— Long-transverse direction; the transverse direction having the largest dimension, often called the “width” direction.
ST —
Short-transverse direction; the transverse direction having the smallest dimension, often called the “thickness” direction.
Values of Fbru and Fbry should indicate the appropriate edge distance/hole diameter (e/D) ratio. Design properties are presented for two such ratios: e/D = 1.5 and e/D = 2.0. Data for use in establishing these properties should be based on ASTM standard testing practices. The test practice and any deviations therefrom should be reported when submitting proposals to the MMPDS Coordination Group for consideration. 9.2.3.2 Testing Direction and Specimen Location — Table 9.2.3.2(a) lists the primary testing direction for various products. When performing derived property test programs, it is imperative that the test specimens be taken from the same sheet, plate, bar, extrusion, forging, or casting. Derived property test specimens must also be located in close proximity. If derived property coupons or specimens are machined prior to heat treatment, all specimens representing a lot must be heat treated simultaneously in
9-18
MMPDS-06 1 April 2011 the same heat treat load through all heat treating operations. This procedure is necessary to provide precise mechanical property relationships (ratios). Table 9.2.3.2(a) Primarya Testing Direction for Various Alloy Systems Carbon and Low Alloy Steels
Non-Heat Treatable Alum. Alloys
Heat Treatable Alum. Alloys
Magnesium Alloys
Titanium Alloys
LT
L
LT
L
Bar
L
L
L
Tubing
L
L
Extrusion
L
Die Forging Hand Forging
Product Form
Sheet and Plate
a b c
Corrosion and Heat Resistant Alloys
Other Alloys
c
LT
b
L
c
L
b
L
L
L
L
b
L
L
L
c
L
b
b
L
L
L
c
b
b
b
LT
LT
LT
c
b
b
Although material specifications may contain mechanical property requirements for two or three grain directions, the primary test direction indicates the grain direction which is tested regularly. See applicable material specification. See applicable material specification. In cases where there is no primary test direction, mechanical property ratios shall be formed using strength values which represent the same grain directions in the numerator and denominator. The design allowable is computed as the product of the reduced ratio and the Fty or Ftu value for the grain direction represented by the reduced ratio.
Test specimens must be located within the cross section of the product in accordance with the applicable material specification, or applicable sampling specification, such as AMS 2355, AMS 2370, and AMS 2371 (See list of references at the end of Chapter 9). Subsize tensile and compressive test specimens may be used if necessary. Derived test specimens must be located within the same cross section of the product as the tensile property they will be paired with (tensile ultimate or yield in the primary grain direction). For derived properties in the short transverse direction, this is not always practical. Compression and shear properties in the short transverse direction are typically centered at the mid-plane of the product (T/2). The hole in the bearing test specimen should be centered at the same cross section as the tensile property in the primary grain direction (typically T/4 for products greater than 1.5 inches thick). Specimen drawings should be provided along with each data proposal, with English units included. The applicable testing standard should be identified along with the specimen drawings. If the standard is not routinely available in English, an English translation of the standard should be provided. Test specimens must be excised in longitudinal and long transverse grain directions. Tensile, compression, shear, and bearing test specimens must be excised in the short transverse grain directions for product thicknesses show in Table 9.2.3.2(b). Mechanical properties must also be obtained in the 45E grain direction (in the same plane as the L and LT samples) for materials that have significantly different properties in this direction than the standard grain directions. For some product configurations, it may be impractical to obtain transverse bearing specimens. For aluminum die forgings, the longitudinal grain direction is defined as orientations parallel, within ±15E, to the predominate grain flow. The preferred definition for long transverse grain direction is perpendicular, within ±15E, to the longitudinal (predominate) grain direction and parallel, within ±15E, to the parting plane. (Both conditions must be met to satisfy this definition.) The short transverse grain direction is defined as perpendicular, within ±15E, to the longitudinal (predominate) grain direction and perpendicular, within ±15E, to the parting plane. (Both conditions must be met.)
9-19
MMPDS-06 1 April 2011 Table 9.2.3.2(b). Product Thicknesses Requiring Short Transverse Tests Specimens
Property
Minimum Product Thickness, in.
Tensile
1.5 inches at T/2
Compression
3 inches at T/2
Shear
3 inches at T/2*
Bearing
4 inches at T/4 test location
* Round specimens should be used for ST shear testing
9.2.3.3 Tension, Compression, Shear and Bearing — All tests must be performed in accordance with applicable ASTM specifications, or their equivalent. Tensile (ASTM E 8, A 370, and B 557), compression (ASTM E 9), shear (ASTM B 769 and B 831), and bearing (ASTM E 238) tests must be conducted at room temperature to determine tensile yield and ultimate strengths, compressive yield strength, shear ultimate strength, and bearing yield and ultimate strengths for e/D = 1.5 and e/D = 2.0 for each grain direction and each lot of material. All data must be identified by heat or melt number and lot number. For materials used exclusively in high temperature applications, such as gas turbine or rocket engines, the determination of design values for compression, shear, and bearing strengths may be waived by the MMPDS Coordination Group. In lieu of data for these properties, sufficient elevated temperature data for tensile yield and ultimate strengths, as well as modulus of elasticity, shall be submitted so that elevated temperature curves can be constructed. Data should be submitted for the useful temperature range of the product. See Section 9.2.4.4.3 for data requirements for elevated temperature curves. Shear testing should be done in conformance to ASTM B 769, pin shear or double shear testing, or ASTM B 831, slotted shear testing, or an equivalent public specification. Both of these ASTM standards were written specifically for aluminum alloys, but they have routinely been used for steel, titanium, magnesium, and heat resistant alloys. Typically, ASTM B 769 is used for thicknesses/diameters over 0.25 inches and ASTM B 831 is used for thicknesses/diameters less than 0.25 inches. Test results from these two methods are not interchangeable. The specification used should be identified as well as the grain orientations and loading directions in accordance with ASTM B 769 or ASTM B 831 as appropriate. Bearing tests for products from all alloy systems shall be conducted in accordance with ASTM E 238, or an equivalent public specification, using “clean pin” test procedures. For aluminum alloy plate, bearing specimens are oriented flatwise and for aluminum alloy die and hand forgings, bearing specimens must be oriented edgewise, as described in Section 3.1.2.1.1. 9.2.3.4 Other Static Properties 9.2.3.4.1 Modulus and Poisson’s Ratio — Tensile and compressive modulus of elasticity values must be determined using a Class B-1 or better extensometer. Measurements must be made on at least three lots of material. The method of determining or verifying the classification of extensometers is identified in ASTM E 83. ASTM E 111 is the standard test method for the determination of Young’s Modulus, tangent modulus, and chord modulus of structural materials. A modulus value shall also be obtained for the 45 degree grain orientation (in the same plane as the L and LT samples) for materials that are anticipated to have significantly different properties in this direction than the standard grain directions. Modulus values are “typical.” Poisson’s ratio values must be determined in accordance with ASTM E 132. 9.2.3.4.2 Physical Properties — Density, specific heat, thermal conductivity, and mean coefficient of thermal expansion are physical properties normally included in MMPDS. Physical properties 9-20
MMPDS-06 1 April 2011 are presented in the room temperature property tables if they are not presented in effect-of-temperature curves (see Section 9.8.3.3). The basis for physical properties is “typical.” Table 9.2.3.4.2 displays units and symbols used in MMPDS, and also shows recommended ASTM test procedures for measuring these properties. Since other procedures are sometimes employed in measuring physical properties, the methods actually used to develop the values proposed for inclusion in MMPDS should be reported in the supporting data proposal. For specific heat and thermal conductivity values reported in the room temperature property table, the reference temperature of measurement is also shown [for example, for 2017 aluminum the specific heat is 0.23 (at 212EF)]. For tabulated values of mean thermal expansion, temperature range of the coefficient is shown [for example, 12.5 (70E to 212EF)]. The reference temperature of 70EF is used as the standard for mean coefficient of thermal expansion curves shown in MMPDS. Table 9.2.3.4.2. Units, Symbols, and ASTM Test Procedures Used to Compute and Present Physical Property Data in MMPDS Property
Units
Symbol
Recommended ASTM Test Procedures
lb/in.3
ω
C 693
Btu/lb-EF
C
D 2766
Btu(hr-ft -EF/ft)
K
C 714a
10-6(in./in./EF)
α
E 831
Density Specific heat
2
Thermal conductivity Mean coefficient of thermal expansion
a ASTM C 714 is a test for thermal diffusivity from which thermal conductivity can be computed.
9.2.3.5 Required Test Methods to Determine Dynamic and Time Dependent Properties 9.2.3.5.1 Fatigue — Both strain-controlled and load-controlled axial fatigue data are included in MMPDS. Constant amplitude test data are the primary focus. Well-documented, initial and/or periodic overstrain data may also be included. Data obtained under strain control are considered only for unnotched, uniform-gage-length specimens, while both notched and unnotched specimens are considered for load-control conditions. The relevant standards for strain and load control fatigue testing are ASTM E 606 and ASTM E 466, respectively. 9.2.3.5.2 Fatigue Crack Growth — Fatigue-crack-propagation data may be generated by several types of fracture mechanics test specimens as described in ASTM E 647. The principal criteria for acceptance of data are twofold. One is that a valid stress-intensity-factor formulation be available for the specimen; the other is that nominal net-section stresses, as calculated by concepts of elementary strength of materials, be less than eighty percent (80%) of the tensile yield strength of the material. Basic data are generated as crack lengths, “a”, and associated cycle counts, “N.” These data are interpreted as crack-growth rates determined as slopes, or average slopes, of sequential subsets of data. For MMPDS, da/dN is calculated as the weighted average incremental slope approximation
da dN
.
∆a ∆N
% i&1
Ni &Ni&1 Ni%1 &Ni&1
∆a ∆N
& i
∆a ∆N
i'2,...,n&1
[9.2.3.5.2(a)]
i&1
from the measured crack-growth data as illustrated in Figure 9.2.3.5.2. However, alternative methods, such as polynomial fitting of the “a” versus “N” curve, are acceptable for computation of da/dN values. By this indexing and calculating procedure “n” measurements provide “n-2” slope or rate values at all but first and last measurement points. The directly associated stress-intensity factor, K, for each slope computation is 9-21
MMPDS-06 1 April 2011 computed in accordance with Equation 9.2.3.5.2(b) where g(a,w) is a geometric scaling function dependent on crack and specimen geometry, and S is nominal stress. K ' S a g(a,w) ,
[9.2.3.5.2(b)]
Figure 9.2.3.5.2. Analytical definition of crack-growth rate calculation.
9.2.3.5.3 Fracture Toughness — The degree of lateral constraint at the crack tip determines whether plane strain (high lateral constraint) or plane stress test methods should be used. Plane-Strain Fracture Toughness — For materials which are inherently brittle, or for structure and flaw configurations which are in triaxial tension due to their thickness or bulk restraint, quasi-planestrain-stress conditions can be obtained in a finite-sized structural element. Triaxial stress state implicit to plane strain effectively embrittles the material by providing maximum restraint against plastic deformation. In this condition, component behavior is essentially elastic until fracture stress is reached and is readily amenable to analysis in terms of elastic fracture mechanics. This mode of fracture is frequently characteristic of the very high strength metals. While a wide variety of fracture specimens are available for specified testing objectives, the notch-bend specimen and compact specimen generally offer the greatest convenience and material economics for testing. Details of recommended testing practice are presented in ASTM E 399. Plane-Stress and Transitional-Fracture Toughness — In ductile materials and relatively thin structural elements, stress state may approach plane-stress conditions. As a result, crack tip plasticity and stable-crack growth may be expected in cracked structural components under load prior to reaching a critical stress-intensity factor value. Furthermore, due to the interaction of plasticity and geometry, characteristic fracture toughness of a material may vary with the stress state, as illustrated in Figure 9.2.3.5.3(a).
9-22
MMPDS-06 1 April 2011
Figure 9.2.3.5.3(a). Variation of fracture toughness with thickness or stress state (size effect).
It is convenient to consider critical stress-intensity factor values, varying with thickness or stress state, as indices of crack-damage resistance. The stress-intensity factor can be used as a consistent measure of crack damage, not only for fracture instability, but also for other levels of crack damage severity, provided the damage is consistently specified and detected. This concept implies that plane-stress and transitional-fracture toughness of metallic materials, while not necessarily a fixed value for the material, is a characteristic value for a given product form, thickness, grain direction, temperature, and strain rate. Because of the complexity of crack behavior in plane-stress and transitional-stress states, test methods for evaluating material toughness have not been completely standardized; however, several useful methods do exist. One of the most widely used techniques, the R-curve procedure, is documented in ASTM E 561. Although each configuration generates nearly consistent results when data are properly evaluated, it is recommended that each general flaw configuration be interpreted and applied within its own design context. Middle Tension Panels — Because it simulates typical crack conditions in thin-sheet structures, the middle tension panel is a popular testing configuration for evaluating crack behavior. This specimen is illustrated in Figure 9.2.3.5.3(b).
9-23
MMPDS-06 1 April 2011
Figure 9.2.3.5.3(b). Middle tension panel.
The crack-tip plasticity and slow-stable growth of the crack which are attendant to plane-stress or transitional stress state conditions may cause a deviation from abrupt fracture which is normally associated with crack extension under ideal plane conditions, as illustrated in Figure 9.2.3.5.3(c).
9-24
MMPDS-06 1 April 2011
Figure 9.2.3.5.3(c). Crack growth curve.
Two limiting damage levels are noted in this figure. Point O is the threshold or onset of slow, stable tear where the crack slowly extends after reaching a threshold stress level. Point C is fracture instability. Both levels of crack damage can be associated with a different stress intensity factor, or damage index, for product forms and thicknesses of interest. These damage levels can be identified either directly with the K value as determined from instantaneous stress-crack length coordinate dimensions at these points, or approximately by the coordinates of Point A, which is residual strength, or apparent toughness concept of relating initial crack length to final fracture stress. The stress intensity factor, K, associated with any of these damage levels is determined from K ' f a @ Y, ksi in
[9.2.3.5.3(a)]
where, for this configuration, a = half-length of middle crack Y = (π sec πa/W)½. The locus of data points can be represented by a parametric stress-intensity factor curve, as shown in Figure 9.2.3.5.3(d), where each curve represents a different stress-intensity factor formulation. The slow growth curve is superimposed on this figure to illustrate the general relationship between the threshold of stable crack extension, apparent instability, and fracture instability for a typical crack. 9-25
MMPDS-06 1 April 2011 Because of experimental difficulties associated with precise detection of threshold and instability points, points O and C, apparent toughness, or residual strength concept of crack damage is used in this presentation. This is the locus of data points “A”, noted in Figure 9.2.3.5.3(c), which determine apparent fracture toughness. Kapp ' fc πao secπa o/W
1 2
.
[ 9.2.3.5.3(b)]
See Reference 9.2.3.5.3 for additional information.
Figure 9.2.3.5.3(d). Stress intensity factor curves as parametric indices of crack damage.
9-26
MMPDS-06 1 April 2011 9.2.3.5.4 Creep and Creep Rupture — The following paragraphs provide guidelines on testing methods for developing creep and creep-rupture data. Test Methods—Test methods must conform to ASTM E 139. However, it is recognized that this standard allows considerable latitude in procedures such that the mean trends and variability in the results can be significantly affected. In case a significant difference is found in results from different testing sources, the following should be evaluated: • Material Condition • Specimen Dimensions and Configuration (geometry effect) • Specimen Surface Preparation (residual stresses) • Specimen Alignment (concentricity, fixturing, load train, and loading method) • Temperature Control (number, type, and location of sensors, reference junction temperature control, monitoring and recording) • Extensometers (type, fixturing, and recording) • Strain Recording (records inelastic strain on loading and creates a record to be evaluated for test stability) • Documentation (testing procedures) • General Laboratory Conditions, Personnel Qualifications, Calibration Intervals. The submittor of a proposal should provide documentation sufficient to permit a comparative evaluation of data. Inability to do so may cause rejection of some associated data, or the entire proposal. 9.2.3.6 Mechanically Fastened Joints —Although many fasteners for which joint allowables are given in MMPDS are covered by MIL and NAS specifications (which provide for minimum shear strength values), many proprietary fasteners are listed wherein minimum shear strength values are established by the manufacturer. In either case, sufficient testing is necessary to establish minimum values. The intent of this subsection is to provide minimum test procedures to document shear strength of fasteners appearing in MMPDS, regardless of specification source. Shear strengths shall be determined from shear-critical single-shear test results or double-shear test results. Double-shear test results performed in accordance with NASM 1312, Test 13, are preferred over single-shear results, except for blind fasteners and driven rivets. For these latter fasteners, shear-critical tests shall be conducted with all components in the installed condition in hardened steel test plates. NASM 1312, Test 20, is the required test method. Furthermore, when fasteners of a given configuration and material are identical in every respect except for head size and shape, fastener shear test data are necessary only on one head style. Room-temperature testing equipment and procedures should comply with the provisions of NASM 1312, Tests 4, 13, and 20 (See list of references at the end of Chapter 9 for both single- and double-shear tests). Specimen design should be as provided in NASM 1312, Test 4, Figure 1.
9-27
MMPDS-06 1 April 2011 9.2.3.7 Fusion-Welded Joints — Two types of transverse-weld tensile coupon configurations are recommended. Use flat coupons for materials up to 0.5-inch thickness. For weld joint thicknesses greater than 0.5-inch, round coupons are recommended. These two configurations are shown in Figure 9.2.3.7(a) and (b), respectively. Exact specimen dimensions are dependent on thickness of the weldment being evaluated, but geometric similitude is maintained within each type of specimen. Appropriate dimensions are given for the reduced test section of each coupon. The dimensions of gripping areas at each end are optional and may be modified to accommodate standard test fixtures. Remove the weld heads from all flat coupons unless standards have been established regarding weld reinforcement configuration. When data are required for welds with reinforcements intact, their configurations must be specified. When round coupons are used in thick weldments, location within the weldment becomes an additional variable which must be described and associated with data. At present, coupon configuration requirements for evaluation of properties other than transverse tensile have not been sufficiently defined to be utilized on an industry-wide basis. Due to the nature of fatigue testing, no specific test configurations are recommended. Configurations selected according to standard base metal practices have been used and may be satisfactory. Weld reinforcements are of particular significance in fatigue testing, and should be removed or specified in detail, together with a description of the coupon used.
Figure 9.2.3.7(a). Flat transverse-weld tensile coupon.
9-28
MMPDS-06 1 April 2011
Figure 9.2.3.7(b). Round transverse-weld tensile coupon.
Fracture toughness coupons should conform to the latest requirements defined by ASTM E 399. Crack location with respect to weldment is of particular importance, and the criteria for validity of specimen must be met. Coupons used for evaluation of other weldment properties, such as fillet-weld shear strength and creep or stress rupture, also require definition in order to be used for design strengths. Availability of accepted test methods for base metal evaluation, as evidence by federal and ASTM standards, has resulted in their general application to testing of weldments. These standards control test equipment, data accuracy, and loading rates. Reference to existing base metal test methods are generally considered satisfactory for mechanical property testing of weldments except for configuration definition. The testing practice and any deviations should be reported when data samples are generated. In no case may a test result be discarded on the basis of a defect found after final inspection—for example, during post-test examination of fractured surfaces. 9.2.4 DATA REQUIREMENTS — Data requirements for the various types of data included in MMPDS are described in this section. Data requirements for determination of mechanical and physical properties within MMPDS are summarized in Table 9.2.4. The customary statistical basis of each material property is listed, along with the relative importance of each data type within the Handbook. Potential extenuating circumstances, such as special material usage requirements, are also considered. Where applicable for each data type, the minimum sample size and the minimum number of heats and lots are identified. Applicable MMPDS introductory or guideline sections are also referenced. 9.2.4.1 S-Basis Values —To incorporate a new product into MMPDS on an S-Basis, it is required that at least 30 test samples from at least three heats of material be provided for each thickness range and product form. These requirements are applicable to each alloy, product form and heat
9-29
MMPDS-06 1 April 2011 treat condition or temper. For SAE/AMS specification minimum requirements, refer to part F of the SAE/AMS Editorial Style Manual for the Preparation of Aerospace Material Specifications (AMS) Metals and Processes and Nonmetallic Materials. Section 9.2.3 delineates the requirements for a test program to generate mechanical property data suitable for computation of derived properties. A test matrix, based on these requirements, is shown in Table 9.2.4.1. Calculation of S-Basis minimum properties is shown in Section 9.4.
9.2.4.2 A- and B-Basis Values — The direct calculation of statistical minimum properties (T99 and T90 values) requires a substantial quantity of data to determine (1) the form of distribution and (2) reliable estimates of the population parameters describing the distribution. Prior experience with the material under consideration will help in determining sample size requirements. Each material should be represented by a sample containing at least 100 observations, assuming these data are distributed according to a three-parameter Weibull distribution or a Pearson Type III distribution, or 299 observations if neither of these families of distributions adequately describe the data. The sample must include multiple lots, representing at least ten production heats, casts, or melts, from a majority of important producers. See Table 9.2.4.2 for definitions of lot, heat, cast, and melt. The sample should be distributed as evenly as possible over the size range applicable to the tolerance bound for the mechanical property. In order to avoid an undesirable biasing of the sample in favor of lots represented by more observations than other lots, the number of observations from each lot must be nearly equal. If grouped data are reported in intervals of 1 ksi or less, they may be “ungrouped” and analyzed as described below. The uniform smoothing method for ungrouping grouped data should be used. For the uniform smoothing method, observations in an interval are spread uniformly over that interval. The ith observation in an interval is set equal to
ai = L +
i (U - L) n +1
i = 1,2,..., n
where n = L = U =
the number of observations in the interval the lower end point of the interval the upper end point of the interval.
The amount of data must be adequate to assure that the sample is representative of the population. Although censoring is highly undesirable, parametric techniques will “tolerate” a limited degree of censoring. In contrast, nonparametric techniques will not “tolerate” censoring. Determination of a T99 value by nonparametric techniques requires at least 299 individual observations that represent 10 heats, casts, or melts. Additional data are very desirable. The selection of the number 299 is not arbitrary. Rather, 299 represents the smallest sample for which the lowest observation is a 95 percent confidence, 99 percent exceedance tolerance bound, or T99 value. For smaller samples, the T99 value falls below the lowest observation and thus cannot be determined without knowledge of the form of the distribution. The lowest of 29 observations corresponds to a 95 percent confidence, 90 percent exceedance tolerance bound, or T90 value. The T90 value must be based on data from at least 10 heats, casts, or melts. It is important to note that B-Basis properties are not included in the Handbook without A-Basis properties.
9-30
Table 9.2.4. Summary of Data Requirements within MMPDS Customary Statistical Relative Extenuating Circumstances for Mechanical or Physical Basis Importance in Special Material Usage Property MMPDS Requirements Same as Tensile Properties
Mandatory
Except for elevated temperature applications
Coefficient of Thermal Expansion Compression Yield Strengtha (Derived)
Typical
Strongly recommended
Especially for anticipated range of usage
Same as Tensile Properties
Mandatory
Creep and Rupture
Raw Data w/ Best-Fit Curves
Recommended
Density
Typical
Mandatory
Effect of Temperature Curves
Same as Room Temperature Properties
Recommended
Especially for elevated temperature applications
Effect of Thermal Exposure
Same as Baseline Properties Typical
Recommended Mandatory
Especially for elevated temperature applications Clad materials must have primary and secondary modulus properties defined
Elastic Modulus (T and C) Elevated Temperatures Elongation
Typical
Mandatory
For anticipated usage range
S-Basis
Mandatory
Two-inch gage length preferred
Fastener Assembled Joint Strength
B-Basis
Mandatory
Dependent on number of diameters
Elastic Modulus (Tension and Compression)
Especially for elevated temperature applications
a Optional direct property determination involves same minimum data requirements as tension yield and ultimate. b Tests per temperature, at least 4 temperatures over usage range. c 5 heats required for single form and thickness.
20
3
10
1.4.5.2, 9.2.3.2, 9.2.3.3, 9.2.4.3 6 tests per creep strain level 1.4.8.2, and temp, at least 4 temps 9.2.3.5.4, over usage range 9.2.4.5.4, 9.2.5.2, 9.9.4 Duplicate measurements 9.2.3.4.2, 9.2.4.4, 9.8.3.3 5b
2c
5
9.2.3.3, 9.2.4.4.3, 9.8.1.5 b c 5 2 5 9.8.5.5, 9.8.5.6, 9.2.3.3 9 3 Multi1.4.4.1, ple 9.2.3.4.1, 9.2.4.4.1, 9.8.3.2 9 3 Multi9.8.3.2 ple 30 3 Multi- 1.4.3.4, 1.4.4.5 ple 9.2.4.4.2, 9.5.1.3, 9.8.5.2 See Table 9.2.4.6.3 9.2.3.6, 9.2.4.6.3
MMPDS-06 1 April 2011
9-31
Bearing Yield and Ultimate Strengtha (Derived)
Minimum Data Applicable Requirements Handbook Sections Sample No. of No. of Size Heats Lots 20 3 10 1.4.7.1, 1.5.2.3 9.2.3.2, 9.2.3.3, 9.2.4.3 Triplicate measurements 9.2.3.4.2, 9.2.4.4, 9.8.5.4
Table 9.2.4. Summary of Data Requirements within MMPDS (Continued)
Mechanical or Physical Property
Customary Statistical Basis
Relative Importance in MMPDS
Extenuating Circumstances Minimum Data Applicable for Special Material Usage Requirements Handbook Requirements Sampl No. of No. of Sections e Size Heats Lots
A-Basis
Mandatory
Fastener Tensile Strength
A-Basis
Mandatory
Fatigue-Load Control
Raw Data w/ BestFit Curves
Fatigue-Strain Control
Raw Data w/ BestFit Curves Raw Data w/ BestFit Curves
Recommended Especially for high-cycle fatigue 6 tests per R ratio, 3 R critical applications ratios, no minimum heat or lot requirements Recommended Especially for low-cycle fatigue 10 tests for Rε = -1.0, 6 1.4.9, 9.2.5.1 critical applications tests other strain ratios Recommended Especially for damage tolerance Duplicate da/dN results 1.4.13, critical applications for relevant stress ratios 9.2.3.5.2, and stress intensity range 9.2.4.5.2 Recommended Mandatory for materials with 30 3 10 1.4.12.3, spec. min. requirements for plain 9.2.3.5.3, strain fracture toughness 9.2.4.5.3, 9.6.3, 9.9.3.1 d 2 5 1.4.12.4, Recommended Mandatory for materials with spec minimum requirements for 9.2.3.5.3, 9.2.4.5.3, plane stress fracture toughness 9.6.3, 9.9.3.2 Strongly Duplicate measurements 1.4.3.1, recommended 9.2.3.4.1, 9.8.3.2
Fatigue Crack Growth
Fracture Toughness - Plane Strain
Max., Avg., Min., Coef. of Variance, S-Basis
Fracture Toughness - Plane Stress
Raw Data w/ BestFit Curves
Poisson’s Ratio
Typical
d
At least 15 tests per fastener diameter At least 15 per diameter
See Table 9.2.4.6.3 See Table 9.2.4.6.3
9.2.3.6, 9.2.4.6.3 9.2.3.6, 9.2.4.6.3 1.4.9, 9.2.5.1
Minimum sample size not specified, testing should be conducted at 6 or more panel widths to confidently represent trends over the panel widths of interest. Refer to ASTM E 561 for testing details.
MMPDS-06 1 April 2011
9-32
Fastener Shear Strength
Table 9.2.4. Summary of Data Requirements within MMPDS (Concluded) Mechanical or Physical Customary Statistical Relative Extenuating Circumstances for Property Basis Importance in Special Material Usage MMPDS Requirements Typical
Recommended
Shear Ultimate Strengtha
Same as Tensile Properties
Mandatory
Except for elevated temperature applications
Specific Heat
Typical
Strongly recommended
Important to document over anticipated usage range
Stress Corrosion Cracking
Letter Rating
Recommended
Especially for susceptible aluminum alloys Desirable to have accurate plastic strain offsets from 10-6 to 3 x 10-2
Duplicate measurements
Applicable Handbook Sections 1.4.3.4, 1.4.4.6, 9.8.3 1.4.6.2, 1.5.5.2, 9.2.3.2, 9.2.3.3, 9.2.4.3 1.8.3.3, 9.2.3.4.2, 9.2.4.4 3.1.2.3
Conform to replication requirements in ASTM G 47 6 3 6 9.8.4.1, 9.8.4.2 9.8.4.4.2
Stress/Strain Curves (To Yield) Typical Tension and Compression
Mandatory
Stress/Strain Curves (Full Range) Tension Tension Yield and Ultimate Strength Tension Yield and Ultimate Strength
Typical
Mandatory
6
3
S-Basis
Mandatory
30
3
A- and B-Basis
Strongly recommended
100
10
Tension Yield and Ultimate Strength
A- and B-Basis
Strongly recommended
299
10
10
1.4.4.1, 9.2.3.2, 9.2.3.3
Tension Yield and Ultimate Strength - Elevated Temps Thermal Conductivity
Typical
Recommended
e
2
5
Typical
Strongly recommended
1.4.4, 9.2.3.3, 9.2.4.4.3 9.2.3.4.2, 9.2.4.4, 9.8.3.3
e
Especially for strength critical applications; a parametric representation of data is possible Especially for strength critical applications; a parametric representation of data is not possible Mandatory for elevated temperature applications Important to document over anticipated usage range
6
9.8.4.1, 9.8.4.3 9.2.4.4.2 Multi1.4.4.1, ple 9.2.3.2, 9.2.3.3 10 1.4.4.1, 9.2.3.2, 9.2.3.3
Duplicate measurements
Minimum sample size not specified, testing should be conducted at 6 or more temperatures to confidently represent trends over the temperature range of interest. Testing in regions where properties are expected to change rapidly with changes in temperature must be done at temperature intervals sufficiently small to clearly identify mean trends.
MMPDS-06 1 April 2011
9-33
Reduction In Area
Minimum Data Requirements Sample No. of No. of Size Heats Lots When tested, use same criteria as for elongation 20 3 10
Table 9.2.4.1 Test Matrix to Provide Required Mechanical Property Data for Determination of Design Values for Derived Properties
Test Specimen Requirements d,e,f,g
h i j k
CYS
TUS & TYS
BUS & BYSi, e/D = 1.5
h
SUS
BUS & BYSi, e/D = 2.0
Lot Numbera,b,c
L
LT
STj
L
LT
STj
L
LT
STj
L
LTj
L
LTj
A
2k
2
2
2
2
2
2
2
2
2
2
2
2
B
2
2
2
2
2
2
2
2
2
2
2
2
2
C
2
2
2
2
2
2
2
2
2
2
2
2
2
D
2
2
2
2
2
2
2
2
2
2
2
2
2
E
2
2
2
2
2
2
2
2
2
2
2
2
2
F
2
2
2
2
2
2
2
2
2
2
2
2
2
G
2
2
2
2
2
2
2
2
2
2
2
2
2
H
2
2
2
2
2
2
2
2
2
2
2
2
2
I
2
2
2
2
2
2
2
2
2
2
2
2
2
J
2
2
2
2
2
2
2
2
2
2
2
2
2
Ten lots, representing at least three production heats, or casts or melts, are required. Thicknesses of ten lots shall span thickness range of product form covered by material specification. For a single lot, multiple heat treat lots shall not be used to meet 10-lot requirement. If elastic modulus values for E and Ec are not available, elastic modulus tests should be conducted on three lots. Stress-strain data from at least three lots shall be submitted. Full-range tensile stress-strain data from at least one lot shall be submitted, but data from three or more lots are preferred. Mechanical properties shall also be obtained in the 45E grain orientation (in the same plane as the L and LT samples) for materials that are anticipated to have significantly different properties in this direction than the standard grain directions. It is recommended that sheet and strip $0.050 inch in thickness be selected for shear tests conducted according to ASTM B 831. Shear testing of sheet <0.050 inch in thickness may result in invalid results due to buckling around the pin hole areas during testing. It is recommended that minimum sheet and strip selected for bearing tests comply with the t/D ratio (0.25-0.50) specified in ASTM E 238. For failure modes, see Figure 9.3.3.4. As applicable, depending on product form and size. At least two specimens are recommended; however, a single test is acceptable when there are at least 20 acceptable paired tests.
MMPDS-06 1 April 2011
9-34 a b c d e f g
d,e,g
MMPDS-06 1 April 2011
Table 9.2.4.2. Definitions of Heat, Melt, and Cast
Material
Heat, Melt, or Cast
Ingot Metallurgy Wrought Products Excluding Aluminum Alloys
A heat is material which, in the case of batch melting, is cast at the same time from the same furnace and is identified with the same heat number; or, in the case of continuous melting, is poured without interruption.
Ingot Metallurgy Wrought Aluminum Alloy Products
A cast consists of the sequential aluminum ingots which are melted from a single furnace charge and poured in one or more drops without changes in the processing parameters. (The cast number is for internal identification and is not reported.)
Powder Metallurgy Wrought Products Including MetalMatrix Composites
A heat is a consolidated (vacuum hot pressed) billet having a distinct chemical composition.
Cast Alloy Products Including Metal-Matrix Composites
A melt is a single homogeneous batch of molten metal for which all processing has been completed and the temperature has been adjusted and made ready to pour castings. (For metal-matrix composites, the molten metal includes unmelted reinforcements such as particles, fibers, or whiskers.)
9.2.4.3 Derived Property Values — Minimum compression, bearing and shear strength values are typically derived by pairing compression, bearing and shear test results with tensile test values determined in the same region of the product. The computation of a derived value for each significant test direction requires at least ten paired measurements from ten lots of material obtained from at least three production heats, casts, or melts for each product form and heat-treat condition or temper. If two lots are from the same heat, cast, or melt and have the same product form and thickness, they must be heat-treated separately in order to constitute two lots. Therefore, it is recommended that two lots with the same product form and thickness come from a different heat, cast, or melt. Ten lots of material, as shown in Table 9.2.4, from at least three production heats, casts or melts for each product form and heat treat condition shall be tested to determine required mechanical properties. (See Table 9.2.4.2 for definitions of heat, melt and cast.) A lot is defined as all material of a specific chemical composition, heat treat condition or temper, and product form which has been processed at the same time through all processing operations. Different sizes and configurations from a heat cast or melt shall be considered different lots. For a single lot of material, only one heat treat lot may be used to meet the ten-lot requirement. Thicknesses of the 10 lots to be tested shall span the thickness range of the product form covered by the material specification (or for the thickness range for which design values are to be established). Test specimens for paired ratios shall be located in close proximity and shall be taken from the same sheet, plate, bar, extrusion, forging, or casting. If coupons or specimens are machined prior to heat treatment, all coupons or specimens from the same lot shall be heat treated simultaneously in the same heattreat load through all heat-treating operations. Some or all of the lots may be heat treated together provided they are of the same product form that represent different thicknesses or heats, casts, or melts.
9-35
MMPDS-06 1 April 2011 In the cases where multiple observations are available from a single lot, the average of those observations shall be treated as an individual observation. Since some variation in strength may be expected from one specimen location to another, use of lot averages minimizes the effect of this variable. 9.2.4.4 Other Static Properties —Data requirements for defining elastic properties, stressstrain curves, and effect of temperature curves are described in the following sections. A precise density value in pounds per cubic inch shall be provided. Although not required, physical property data for coefficient of expansion, thermal conductivity, and specific heat should be submitted, when available. Also, information regarding manufacturing (fabrication and processing), environmental effects (corrosion resistance), heat treat condition and applicable specification shall be provided so that a comments and properties section can be prepared. 9.2.4.4.1 Modulus of Elasticity —Tensile and compressive modulus of elasticity values shall be determined from at least three lots of material. Elastic modulus values are those obtained using a Class B-1 or better extensometer. The method of determining or verifying the classification of extensometers is identified in ASTM E 83. ASTM E 111 is the standard test method for the determination of Young’s Modulus, tangent modulus, and chord modulus of structural materials. A modulus value shall also be obtained for the 45 degree grain orientation (in the same plane as the L and LT samples) for materials that are anticipated to have significantly different properties in this direction than the standard grain directions. Typical values for elastic moduli at room temperature are tabulated in MMPDS room-temperature property tables. Values for these properties at other temperatures may be approximated by multiplying the room-temperature value by appropriate percentages from effect-of-temperature curves in MMPDS. 9.2.4.4.2 Typical Stress-Strain Curves — Room temperature tensile and compressive loaddeformation curves or stress-strain data for each grain direction, from at least three lots shall be provided. Room temperature, full-range, tensile load deformation curves or stress-strain data for each grain direction shall also be provided. Full-range stress-strain data shall be provided from at least one lot, but data from three lots are preferable. For heat resistant materials for which elevated temperature data for tensile yield and ultimate strengths are required, room and elevated temperature stress-strain data shall be provided. Preparation of each typical stress-strain curve requires (1) several representative original stress-strain curves, (2) average values for yield strength from original stress-strain curves, or, when available, product average values for yield strength, and (3) typical elastic-modulus values at test temperature. Original stress-strain curves are utilized to obtain a representative curve shape, which may be characterized by the Ramberg-Osgood parameter. The minimum number of original stress-strain curves required is dependent on the degree of variation from one curve to another. If curves are found to be similar in shape, and the range of products (thickness, etc.) is small, one curve from each of three plots should be adequate. Otherwise, the number of original curves should be increased as necessary, to insure an adequate sampling. Original stress-strain curves determined using an ASTM E 83 Class A extensometer (Tuckerman, Martens, etc.) are preferred for preparation of typical stress-strain curves up to 0.005-in./in. plastic strain or higher. When curves having this precision and accuracy are not available (particularly for full-range and elevated-temperature curves), curves determined using Class B-1 extensometers may be used as indicated in ASTM E 83. The modulus value used in constructing a stress-strain curve must agree with the value obtained from the room-temperature table value multiplied by the appropriate percentage from the elevated temperature curve.
9-36
MMPDS-06 1 April 2011
For some materials, the shape of the stress-strain curve, yield strength, and elastic modulus vary with test direction. When this is the case, individual curves should be prepared for each test direction, and each curve should be labeled accordingly. Likewise, tensile and compressive stress-strain curves usually differ, and individual curves should be prepared for each type of loading. If two or more finished curves are found to be identical, they may be combined in presenting the finished curves. Product average values for yield strength, ultimate strength, and elongation are average values determined from production lots of the specific product form and rounded to the nearest whole number. Product average values represent current production capabilities; hence, these are typically supplied by producers. The selection of test temperatures to be represented by typical stress-strain curves should be guided by the temperatures at which the product is typically used. In the absence of other information, these temperatures should include room temperature, other temperatures at which tensile properties are determined in conformance with the requirement of applicable procurement specifications, and appropriate temperatures within the useful application range for the product. 9.2.4.4.3 Elevated Temperature Curves — An idealistic approach to the establishment of elevated temperature curves would be to have A-Basis design values at a sufficient number of temperatures to define corresponding temperature curves on an A-Basis. If such data were available, finished curves would be constructed by plotting A-values on a percentage scale and analytically defining a smooth curve, and the procedures described in Section 9.8.5.1.1 would not be applicable. Unfortunately, the cost of generating the required data is prohibitive, and idealism must be tempered with practicality. For this reason, data requirements and the procedures described in Sections 9.8.5.1.1 and 9.8.5.1.2 allow some latitude to make fullest use of whatever data may be available. These procedures, as described in the indicated sections, are intended both to establish the general shape of curves, and to adjust their scaling in such manner that the resulting product of a percentage value from the curve and a corresponding value from the room-temperature property table will yield a design value, at some designated temperature, that will be a good approximation of a directly computed design value at that temperature. To establish the shape of an elevated-temperature curve, the sample shall include observations from at least five lots of material, composed of at least two heats at each of several temperatures. For a single product form and thickness, data from at least five heats are recommended to allow for a heat-to-heat variability where no product form or dimensional variability exists. If the additional heats are not available, a note shall be included in the figures to indicate the specific dimension the curve represents (not the thickness range indicated in the associated mechanical property table) and number of heats (minimum of 3 is still required). Choice of temperatures shall be guided by probable range of service temperatures anticipated for the material, as well as by its metallurgical characteristics. For materials used at cryogenic temperatures, testing is normally conducted at -110E, -320E, and -423EF; however, no attempt shall be made to extrapolate the curve below the lowest temperature for which adequate data are available. For elevated temperature applications, data should normally be available at temperature intervals from 200E to 300EF except in regions of time-temperature-dependent metallurgical change, where temperature intervals of perhaps 100E to 150EF are appropriate. Extrapolation beyond the range of temperatures covered by adequate data is not allowed. For a number of alloys, most specifically heat-resisting alloys, procurement specifications may designate minimum property values at temperatures other than room temperature, and either A- or S-Basis values may be available at both room temperature and secondary testing temperatures. When this is the case,
9-37
MMPDS-06 1 April 2011 the elevated temperature curve may be scaled by means of these values. 9.2.4.5 Data Requirements for Determination of Dynamic and Time Dependent Properties 9.2.4.5.1 Fatigue — Most fatigue data generated in load control may be considered for inclusion in MMPDS. However, load-control experiments on unnotched samples can produce ratcheting failures rather than true fatigue failures. This can be a problem with materials that cyclically soften. In the absence of cyclic stress-strain data, the acceptability of short-life data obtained under load control on unnotched specimens can be difficult to evaluate. Therefore, results from specimens tested at a maximum stress level greater than the average tensile ultimate strength of the material should not be used. In addition, test results obtained under load control that have produced average fatigue lives on unnotched specimens of less than 103 cycles should be excluded. Short-life, load-control data generated on notched samples tested at high stress levels may be considered. Fatigue data generated under strain control over a wide range of strain ratios and ranges can be acceptable also. High-strain-range tests producing low fatigue lives can be considered, assuming that documented bending strains were held within ASTM E 606 limits and buckling failures were not produced. Documenting the stress response associated with each test result is important. The stress data that are reported should reflect the material’s stable response, including effects of cyclic hardening or softening and of mean stress relaxation provided such data were obtained at other than Rε = -1. The normal convention is to report the stress values associated with one-half the material’s fatigue life to crack initiation. Several criteria are commonly used to define crack initiation in a test under strain control. The primary requirements for inclusion in MMPDS are that the criteria be specific and applied consistently. If multiple sources of data are being considered, the potential problem of inconsistent crack initiation criteria must be addressed before that data are merged. If strain-control data only are reported with fatigue test results obtained under strain control, these data must be supported by well-documented cyclic stress-strain curves and mean stress relaxation data for that specific material. For fatigue experiments under load control, data are normally generated at specific stress ratios or mean stress levels. If the stress ratio is held constant, a fatigue curve is generated by performing a series of experiments at prescribed maximum stress levels, such that the desired range of fatigue lives is achieved. If mean stress levels are held constant, a range of maximum stress levels is also used, but the stress ratio for each maximum stress level is different. Presentation of the latter type of data in a traditional Smax-versus-log Nf display, with individual stress ratio curves, can be cumbersome because of the large number of stress ratios involved. For this reason, constant mean-stress fatigue data should be identified by mean stress level, even though they are plotted on a standard Smax-versus-log Nf display. The illustrations should be clearly labeled to properly identify the mean-stress or stress-ratio levels. To evaluate, analytically, the effects of stress or strain ratio on the fatigue performance of a particular material, it is recommended that data be available for at least three stress or strain ratios, or alternatively, three mean-stress or strain levels. Similarly, at least three stress or strain levels are recommended to evaluate the effects of mean stress on fatigue performance. In the case of data under strain control, a specific strain ratio or mean strain may not define a mean-stress level uniquely. For Rε = -1.0 (mean strain = 0), the stress ratio is usually very close to R = -1.0 (mean stress = 0)–if it is not, the data should be examined carefully for validity. For strain ratios greater than Rε = -1.0, the stress ratio is usually less than the strain ratio, and the difference is generally greater at the greatest strain ranges. For very large strain ranges in ductile materials, the stable stress ratio will approach R = -1.0 (mean stress = 0), regardless of the strain ratio, Rε. Mean stress relaxation behavior is illustrated in Figure 9.2.4.5.1.
9-38
MMPDS-06 1 April 2011 There should be at least six non-runout fatigue test results for each condition, and these data should be distributed over at least two orders of magnitude in fatigue life. These requirements are the minimum sample sizes normally required to consider developing a fatigue data display. Meeting the minimum data requirements does not ensure an acceptable set of fatigue curves. In cases involving highly scattered data, substantially larger sample sizes may be required to achieve a meaningful description of mean fatigue trends. The statistical procedures used to evaluate the significance of a fatigue data collection are described in Section 9.6.1.7.
9-39
MMPDS-06 1 April 2011
Figure 9.2.4.5.1. Schematic of stabilized mean stress relaxation for different strain ranges at Rε = 0.
9-40
MMPDS-06 1 April 2011 9.2.4.5.2 Fatigue Crack Growth — In order to establish a positive trend in rate behavior, it is recommended that rate data be generated over a range of at least two orders of magnitude. In general, this will be associated with a domain of stress-intensity-factor range from one half to a full order of magnitude. Good experimental techniques, coupled with this data-range criterion, should provide a concise and consistent data display for linear or other analysis. When planning experimental programs to achieve the best, most complete derivation of fatiguecrack-propagation data, the range of ∆K over which tests are conducted should include those which will provide crack-growth rates as low as 10-8 inches/cycle. Furthermore, if possible, multiple heats of material should be included. Ideally, to properly document the effects of stress ratio, fatigue crack growth data should also be generated over a range of R ratios (0.1, 0.4, and 0.7 are typically good values). If data representing negative R ratios are available, they should also be included. 9.2.4.5.3 Fracture Toughness — For materials covered by public specifications that include minimum fracture toughness requirements, at least three specimens each from a minimum of ten lots of material for each test direction (at least 30 observations total) are required for inclusion in MMPDS. Middle Tension Panels — To identify the material tested, it is necessary to report alloy temper, product form, and grain directions being tested. Reference tensile properties, actually representative of specimen or material lot (i.e., not specification or MMPDS A and B values), are also necessary information. These shall include yield strength, ultimate strength, and elongation. The specimen configuration is described by measured thickness, panel width, and free length between grips. The minimum flaw details to be reported are fatigue stress levels used in generating the fatigue crack and length of the fatigue crack existent prior to the rising load fracture test. The test procedure shall be described briefly, identifying environment (temperature, humidity, salinity, etc.), loading rate, and the mode of buckling restraint. The report of test results shall include maximum load and stress, and estimated critical crack length (indicate method of detection, such as visual observation, film record, or compliance calibration). It is recommended that whenever practical, a record of load versus crack length be obtained to assess slow stable crack extension prior to fracture. 9.2.4.5.4 Creep and Creep Rupture —A sufficient number of creep and/or creep rupture tests should be performed to clearly define creep and/or creep rupture trends as a function of applied stress for the range of temperatures of interest. Typically, at least eight tests should be completed for each temperature, and at least 20 tests performed for each multi-temperature regression that is performed. The “spacing” of the temperatures tested generally should be close enough that the highest stress level at a given temperature (which can be expected to produce the shortest average creep times) is greater than or equal to the lowest stress level at the next higher temperature, and vice versa. Another factor to consider when defining a series of creep tests is heat-to-heat variability. The creep test program may be based on as few as two heats of material if the heat-to-heat component of variability is less than 25% of the within-heat variability. On the other hand, the creep test program should be based on at least five heats of material if the heat-to-heat component of variability is greater than 65% of the withinheat variability. In any case, the heats of material that are tested should be distributed randomly and essentially equally throughout the test matrix. Additional experimental design suggestions for creep testing are included in Section 9.2.5.2.
9-41
MMPDS-06 1 April 2011 For isostrain creep, collected data will include stress, temperature, modulus and plastic strain on initial loading, and strain-time pairs sufficient to define a curve. While strain-time pairs will be only those for the isostrain of interest, after inelastic strain on loading has been included in the reported strain, it may be that reported data may not correspond to isostrain levels. Consequently, isostrain-time pairs may be read from a smooth curve drawn through the values recorded during the test. For rupture, collected data will include stress, temperature, time-to-rupture, percent elongation, and reduction of area. Percent elongation and reduction of area can then be used to define rupture ductility curves or equations. 9.2.4.6 Mechanically Fastened Joints 9.2.4.6.1 Introduction of a New Fastener System —When introducing a new fastener for possible inclusion in MMPDS, the sponsor shall submit a written request (on company letterhead) to the Chairman, MMPDS Coordination Group, providing the following information: (1)
A description of the fastener such as: (a) type of fastener (driven rivet, blind fastener, swaged collar, etc.), (b) fastener material (alloy and temper), (c) unique or new features, (d) nominal sizes and actual diameters, and (e) part drawings and functional description.
(2)
Reason for fastener usage or intended usage such as: (a) higher strength, (b) higher or lower temperature capability, (c) improved fatigue performance, and (d) lower installed cost.
(3)
Development and use status. (It is not required that the fastener system actually be in use on production airframe structure, but there should be a high level of interest and an intent to use the fastener.) (a) What are current or planned airframe applications? (b) How long has the fastener been produced on a production (nonexperimental) basis? Include preliminary lap joint test data that demonstrates that sufficient diameters and grips are available to conduct a design allowable test program (i.e., data for at least one test for each diameter/grip combination contained in the proposed test plan).
(4)
Specification status. Under what type of specification is the fastener covered (NASM or Company)?
(5)
In what sheet or plate material will the fastener be installed? (The proposed allowables should be for the same or similar sheet or plate material that the sponsor is using or plans to use.)
(6)
Shank deformation. Does shank deform during installation? Verification is desirable. (a) If a blind fastener, is it hole filling or nonhole filling? Verification of hole fill is desirable. (b) If a solid shank fastener, are design values to be presented for clearance or interference holes?
(7)
Has the sponsor conducted any testing on the fastener system (especially joint allowables) and will the sponsor provide data to the MMPDS Coordination Group?
(8)
Has the sponsor reviewed (or will the sponsor review) test program plan, actual testing, analysis of data, and specifications?
(9)
Are the fastener holes to be cold worked or a sleeve inserted? If so, the reproducibility of this part of the fastener installation process must be verified.
9-42
MMPDS-06 1 April 2011 9.2.4.6.2 Sample Fasteners —At time of approval of a fastener static joint strength proposal, fastener manufacturer shall submit, to the Chairman, MMPDS Coordination Group, 10 fasteners each from maximum and minimum diameter and grip size tested in the allowables program. These 40 samples shall be from the same production lots as those used in the test program. Samples shall be packaged suitable for storage with full identification of contents on the container. The information may also include any storage time limitation due to coating or lubricant life. The information required to complete the report described in Section 9.3.3.4 must also be included. 9.2.4.6.3 General Data Requirements —The types of data required to develop a fastener system design curve are shown schematically in Figure 9.2.4.6.3. There are three facets to consider, which are described in following subsections: (1) shear strength of the fastener, Region 3; (2) sheet critical strength, bearing and transition regions, Regions 1 and 2; and (3) tensile properties of sheet and plate material used in the joint. Each of these facets is described in the next two subsections. The remaining subsections address data requirements for determination of the tensile strength of a fastener, and an assembled joint. The requirements are summarized in Table 9.2.4.6.3. Recommended data formats are discussed in Section 9.3.3.4.
P u / D2, x 10-4
Shea r Cut Off (Region 3)
Transition (Region 2)
B earing (Region 1)
t/D
Figure 9.2.4.6.3 Schematic diagram of Pu/D2 versus t/D. Table 9.2.4.6.3 General Data Requirements Test Type Reference Section 2 2
3
4 2
5
9.2.4.6.3(a)
30
45
60
752
Fastener Tension1
9.2.4.6.3(c)
302
452
602
752
Assembled Joint Strength
9.2.4.6.3(d)
42
57
72
87
Sheet Tension
9.2.4.6.3(b)
Fastener Shear
1
Number of Diameters 2
3 tests each sheet per NASM1312 Test 4
1
15 each diameter, 3 Lots, 2 heats 2 If existing fastener material. If new material, not previously used for fasteners, 10 tests from each of 10 production lots made up of 3 heats of material (minimum 100 tests).
9-43
MMPDS-06 1 April 2011 Shear Strength of Fastener — At least 15 shear tests are required for each fastener diameter for which allowables are to be established. Fasteners for each diameter shall be selected from at least three production lots that represent at least two heats of the fastener component materials. The major components of multi-piece fasteners shall meet the two heat requirement. A product lot shall consist of finished fasteners of the same part number, class, grip and diameter, which conform to the following: (1) (2) (3) (4)
fabricated by the same process major components each made from material of the same heat major components heat treated in one continuous run or order produced as one continuous run or order
The major components of multi-piece fasteners of the production lot shall individually meet the definition above. Fasteners developed from materials not previously used for fastener applications will require additional testing in order to determine statistically reliable minimum shear strengths. Test values should be developed in accordance with the test methods noted above using hole sizes specified in those methods or Table 9.7.1, as appropriate. Test values shall represent a minimum of 10 tests from each of 10 production lots made of at least 3 heats of material (100 tests). Fasteners tested should be evenly distributed over the diameter range under consideration with grip ranging from 2 to 3 diameters for solid and blind rivets and any appropriate length for solid shank fasteners. Shear strength (Fsu) should be computed based on hole size for solid and blind rivets and measured shank diameter for non-hole filling blind fasteners and pins. In the sheet critical range, fasteners with different head shapes, head sizes (NAS 1097, MS 29694, or MS 20426), material, or heat treatment will be considered different fasteners and shall require separate tests. Sheet materials with different heat treatments or compositions will be considered different materials and also shall require separate tests. In the case of aluminum alloys, data obtained with clad sheet may be used to determine allowables for clad and bare sheet; however, allowables obtained from tests on bare sheet can be used only to determine allowables for bare sheet. In the case of all sheet materials, data from tests using sheet at one heat-treat level may be used to determine allowables for sheet having higher strength heat treatments. However, the reverse is not permissible. Tensile Properties of Sheet — At least three sheet tension test results as required by NASM 1312, Test 4, shall be provided for each sheet or plate used to make single-shear test specimens described in the previous subsection. Tensile ultimate and yield strengths and percent elongation shall be reported in accordance with ASTM E 8. Grain direction shall be that applicable to the procurement specification tensile test requirements. Tabulated data shall identify single-shear specimens made from sheet to which each group of sheet-tension specimens apply by appropriate coding. Tensile Strength of Fastener — Tensile strength shall be determined for all fastener systems except solid and blind rivets from tests performed in accordance with NASM 1312, Test 8. Tensile test requirements and analytical methods shall be the same as for shear strength determination (see Section 9.2.4.6.1). Assembled Joint Strength — The requirement for data from two fabricating and testing sources applies to assembled joint strength. Approximately 75 percent of required data shall come from one source; the remainder from a second source. Data shall cover the t/D (thickness/diameter) range that results in bearing, transitional and shear-type failures as shown in Figure 9.2.4.6.3. It is suggested that the second source concentrate testing in the bearing and transition regions. Selection of sheet thickness shall be made in such a way that, for each fastener diameter, an even distribution of data is achieved over the t/D range with
9-44
MMPDS-06 1 April 2011 about 20 percent of the data taken at t/D values for which joint failure will be by fastener shear (not applicable to dimpled joints). Minimum sheet thickness should be restricted to one thickness below knife edge for flush head fasteners and no tests below t/D or 0.18. Sheet thickness/fastener grip combinations shall be selected to include a uniform distribution of minimum and maximum grip conditions throughout the t/D range tested. Specimen fabrication and testing shall be allocated to provide data from each source, distributed across the sheet critical and transition ranges. All diameters of a given fastener for which joint allowable loads are established shall be included in the test plan. Since a fastener system usually comprises 2 to 5 diameters, the quantity of joint specimens to be tested will be expected to vary, depending upon number of fastener diameters. Quantity of data shall include results from at least the following valid tests: two diameters, 42 tests; three diameters, 57 tests; four diameters, 72 tests; five diameters, 87 tests. In allocating test joint specimens among fastener diameters, for a three- or four-diameter fastener line a larger quantity of specimens shall be used for the largest and smallest diameters with somewhat less testing for intermediate diameter(s). In the case of a five-diameter fastener line, larger quantities of specimens should be allocated to the largest, middlemost, and smallest diameters with somewhat less testing for the two remaining intermediate diameters. For each diameter and t/D combination tested, a minimum of three specimens should be used. In addition, approximately an equal number of tests must be run at each t/D. 9.2.4.6.4 Confirmatory Data — If a manufacturer wishes to have their company name added to the footnote of an existing table as a supplier of confirmatory data, or to add to an existing product, function, or modification, the following procedure shall be used: (1)
Repeat, in total (quantities and conditions), the original test program from which the table was developed.
(2)
The T90 curves, (yield and ultimate), of the original data set will establish the baseline performance requirements, regardless of the construction method employed for the published table, in accordance with section 9.7.1.4.
(3)
The T90 curves, (yield and ultimate), of the proposed supplier’s data set will be constructed, and compared to the baseline curves of the original data set in accordance with the criteria defined in section 9.2.4.7.2. (The same criteria defined for sunset clause conformance.)
(4)
If the proposed supplier’s data set conforms to the criteria of section 9.2.4.7.2, then the design allowable table will be modified in accordance with Item 17(c) of section 9.9.5.
(5)
Note that the published data values of the original table will not be modified.
If a manufacturer wishes the company name to be added to the footnote of an existing design allowable table with four or more diameters as a supplier of confirmatory data, but does not produce or market the fastener in all diameters contained in the design allowable table, the following procedure shall be used: (1)
The new supplier shall test at least three successive diameters, including the smallest diameter in the design table, or at least three successive diameters including the largest diameter in the design allowable table. Test quantities shall be the same as defined in section 9.2.4.6.3.
(2)
The T90 curves, (yield and ultimate), of the original data set will establish the baseline performance requirements, regardless of the construction method employed for the published table, in accordance with section 9.7.1.4.
9-45
MMPDS-06 1 April 2011 (3)
The T90 curves, (yield and ultimate), of the proposed supplier’s data set will be constructed, and compared to the baseline curves of the original data set in accordance with the criteria defined in section 9.2.4.7.2. (The same criteria defined for sunset clause conformance).
(4)
The following footnote will be added to the design allowable table: “Confirmatory data provided by XYZ Company.” This footnote will be flagged to the supplier’s part number and applicable fastener diameters.
(5)
Note that the published data values of the original table will not be modified.
9.2.4.7 Fastener Strength Table Sunset Clause - Published, joint allowables tables contained in Chapter 8 will be subject to a review of their integrity every seven years. Confirmatory test data shall be generated by the original data supplier(s), or other interested parties, and reviewed by the Fastener Task Group, (FTG), to ensure that current fabrication methods continue to produce strength levels equal to, or greater than those published in the handbook. Published tables for which confirmatory data is not provided will be removed from the handbook at the next change notice or revision publication date which occurs a minimum of one year after formal announcement of the removal of the table in the MMPDS coordination meeting minutes. The original supplier(s) of data, as indicated by the table's footnotes, shall be notified by letter by the FTG one year in advance to when a table is subject to review. Additionally, the fastener task group shall introduce an agenda item in the general coordination meeting minutes when a given table is subject for review. Other interested parties or airframe designers are encouraged to participate in the review process. If no written commitment to supply confirmatory data is received by the FTG after one year, the agenda item shall be forwarded from the FTG to the general coordination meeting to remove the table from the handbook after a minimum of another year elapsed time, at the next change notice or publication date. In the case of multiple data suppliers for a fastener system, and one supplier company does not wish to supply confirmatory data, that company's name will be removed from the pertinent table footnote. Figure 9.2.4.7 illustrates the typical timeline of the sunset review process. 9.2.4.7.1 Sunset Confirmatory Data Sets - Confirmatory data set test observations associated with the sunset clause shall consist of approximately 25% of a regular test program. The FTG shall review the original data set submitted for a given fastener system, and define the sheet thicknesses and diameters required for confirmation. The original supplier(s) or other interested parties who wish for the table to remain in the handbook will be responsible for performing specimen testing, and will submit a data package to the FTG in accordance with the referenced guidelines of Section 9.3.3.4 and Figure 9.3.3.4. Sample fasteners and the failed test coupons of sunset conformance data sets will be submitted to the FTG for retention, and are a portion of the data package. A minimum of six (6) sample fasteners of the test diameters and grips are required for retention. Note that the 25% reduced dataset is generally applicable to original or confirmatory suppliers of data of the original table, as indicated in the data source footnotes. Alternate suppliers of a given fastening system, who have not previously submitted data for a given table and who wish to be noted as a supplier of confirmatory data, must submit a full data package in accordance with paragraph 9.2.4.6.5. 9.2.4.7.2 Sunset Conformance Criteria - Conformance comparisons for the sunset clause will be performed by the FTG in accordance with the B-Basis statistical procedure defined in Section 9.7.1.4. The T90 curves, (yield and ultimate), of the original data set will establish the baseline performance requirements. The confirmatory data points will be added to the existing table's data set, and updated T90
9-46
MMPDS-06 1 April 2011 curves generated, for both yield and ultimate. The FTG shall compare the original, baseline T90 curves with the updated T90 curves containing the confirmatory data. Disposition of the published table shall be determined from the following scenarios: (1)
The updated T90 curves are greater than or equal to the original T90 curve over the entire t/D range. The pertinent table shall remain published unchanged in the handbook for another 7 year period, until its next review.
(2)
An updated T90 curve is less than the original T90 curve, over a narrow range of t/D, but is equal to or greater than the original T90 curve over the majority of the t/D range. The pertinent table shall remain published in the handbook for another 7 year period, until its next review. The amount of permissible deviation of the updated curve is defined by the following: a. b.
The updated T90 curve cannot have a strength level less than 10% of the value below the original T90 curve at any t/D ratio. The updated T90 curve cannot be less than the original T90 curve over a range of 10% of the total t/D range below the t/D value defining shear cut-off for ultimate, or 10% of the entire t/D range of the dataset for yield.
(3)
The updated ultimate T90 curve does not reach the shear cut-off value. The pertinent table will be removed in a minimum of one year after announcement in the GCC meeting minutes, at the next handbook publication.
(4)
An updated T90 curve's performance falls outside the bounds defined in (2) above. The pertinent table will be removed in a minimum of one year after announcement in the GCC meeting minutes, at the next handbook publication.
Figures 9.2.4.7.2 and 9.2.4.7.3 illustrate examples of conforming and non-conforming data sets. 9.2.4.7.3 Non-conforming Sunset Fastener Systems - Fastener allowables tables which do not meet the sunset conformance criteria, or for which no confirmatory data is provided will have their design data removed from the handbook. Reference to tables with removed data will be maintained in the handbook via the original header information, and a boxed notice describing the date and circumstances of the removal of the data.
The design allowables for this fastener/sheet combination were removed per MMPDS Agenda Item yy-xx, per the Sunset Clause. Date of last publication: mmm-yyyy Allowables were published through handbook versions: MMPDS-xx and MIL-HDBK-5J. Interested parties wishing to participate in providing replacement data should contact the MMPDS Fastener Task Group. 9.2.4.7.4 Replacement Tables for Non-conforming Sunset Fastener Systems - A fastener supplier(s) or interested party can request a new, replacement table for a fastening system that fails the sunset
9-47
MMPDS-06 1 April 2011 conformance criteria. The replacement table's design values will be determined by the FTG in accordance with the B-Basis statistical procedure defined in section 9.7.1.4. The replacement data set and table will conform to the following guidelines: (1)
The same fastener part number will be included in the title block of the table. Identification of the replacement table's hardware must remain the same as the original dataset.
(2)
A new, entire dataset in accordance with all the requirements of section 9.2.4.6 is necessary to replace the design data for removed tables. The new dataset will supplement the test observations of the initial sunset confirmatory data, in the event the table was removed due to non-conformance with the sunset criteria.
(3)
A footnote will be added at the bottom of the replacement table indicating the date and source of the replacement data.
9-48
Notification Prior to Review Response Period
Published in GCC Minutes
Table Removed
MMPDS-06 1 April 2011
9-49
Commitment to Develop Data
Data Set Defined
Tests Performed
Analysis
Table Accepted/Rejected
Table Removed Table Confirmed
Figure 9.2.4.7
Typical Sunset Clause Timeline and Milestones
MMPDS-06 1 April 2011
9-50 Figure 9.2.4.7.2
Sunset Non-Conformance Example
MMPDS-06 1 April 2011
9-51 Figure 9.2.4.7.3
Sunset Non-Conformance Example #2
MMPDS-06 1 April 2011
9.2.4.8 Fusion-Welded Joints — The type of data required (i.e., tension, shear, fatigue, etc.) and general welding conditions of interest must be established first. The data sample must be adequate to determine form and distribution of the population from which it was drawn. If the weldment population definition is broad and allows considerable latitude in the range of parameters defined, it is obvious that larger sample sizes will be required. Certain minimum requirements can be stated, however, based on statistical considerations. For data to be directly analyzed on a statistical basis, a typical weldment population exhibiting nearly normal distribution characteristics should be represented by a sample containing a minimum of 100 random observations. These observations should include at least 10 subsamples representing random variables such as base material lots, filler material lots, weld processing variables, and weld machine operators and setups. Direct analysis of a data sample not normally distributed requires at least 299 observations to establish a minimum value on an A-Basis. A B-value may be established from the smaller sample defined above. As in the previous case, the observations should be representative of the total population. Due to the number of variables inherent in a welding process, it is advisable to make as broad a sampling as practicable within the population definition. The range of material and processing parameters included in the sample will obviously influence sample size. The total number of observations should be sufficient to identify factors that may be significant within the population, such as joint thickness, weld repair, filler material, and heat-treat condition. 9.2.5 EXPERIMENTAL DESIGN — General guidance on experimental design for fatigue, creeprupture and fusion-welded joints is included in the following subsections. 9.2.5.1 Fatigue —In view of the data requirements in Section 9.2.3.5.1 and 9.2.5.1, fatigue data generated for inclusion in MMPDS should be the result of a well-planned test program. The following general discussion of fatigue test planning is based in large part on the concepts presented in References 9.2.5.1(a) and 9.2.5.1(b), and ASTM E 739. Those interested in the detailed aspects of fatigue test planning should refer to these and other sources. The discussion that follows pertains to fatigue testing under either load control or strain control. Traditionally, fatigue testing under load control has been performed to evaluate the fatigue performance of engineering materials and components subjected to numerous load fluctuations. Notched specimens are often used to evaluate the effect of stress concentrations upon fatigue life in load-control testing. The nominal stresses during load-control testing are generally below the materials yield strength and the resulting fatigue lives are usually greater than 104 cycles. Load-control tests with high meanstress levels may develop unconstrained cyclic plasticity which may lead to racheting failures (see Figure 9.6.1(b) in Section 9.6.1). Unless cyclic strains are monitored in load-control tests, it is not possible to know exactly when unconstrained cyclic plasticity will develop. In general, however, there are test conditions that should be avoided when operating under load control, as follows: (1)
Unnotched-specimen fatigue tests in which fatigue lives less than 103 cycles to failure are expected.
(2)
Fatigue tests involving net-section maximum stresses greater than the yield strength or over 95 percent of the typical monotonic ultimate strength of the material.
9-52
MMPDS-06 1 April 2011
Strain-controlled fatigue testing has emerged since the mid-1950s because the fatigue damage process was found to be highly dependent upon cumulative plastic deformation. Cycling a material between two strain limits can alter the material’s stress-strain response (cyclic hardening or softening) compared to the monotonic response. Fatigue testing under strain control should be considered in cases where constrained inelastic cyclic strains may occur in the actual component. Strain control should also be used for any conditions where unconstrained cyclic plasticity may lead to racheting failures in load-control testing. Fatigue data obtained under load control for use in MMPDS should be generated for at least three stress ratios (see Figure 9.2.5.1). Fatigue lives ranging from approximately 103 to 106 cycles are most commonly of interest while the stress ratios chosen should normally span the range from about R = -1.0 to 0.50 or greater. Fatigue data obtained under strain control are commonly generated at Rε = -1.0. These data will be considered for MMPDS, but generating data for at least two other strain ratios is also desirable. The stabilized value of mean stress attained in a strain-control test at Rε greater than -1.0 will be different from that observed at the beginning of the test for materials that undergo cyclic mean stress relaxation. The degree of stress relaxation will depend on strain range and strain ratio, the magnitude being greater at larger strain ranges or larger strain ratios. Complete relaxation to a zero mean stress is the limiting case. When testing at strain ratios greater than -1.0, it is appropriate to limit the strain ranges to values below those at which total cyclic mean-stress relaxation occurs. The amount of cyclic stress relaxation also varies with the anticipated fatigue life. Large-strainrange, low-cycle tests usually exhibit the greatest mean stress relaxation. Because of this behavior, it is usually appropriate to run the positive mean strain experiments at strain ranges less than or equal to the level that produces complete mean stress relaxation. A given series of fatigue tests conducted under strain control should be targeted to describe the useful life range for the material. The life range explored need only be limited on the low side by the maximum strain ranges that can be performed without specimen buckling problems, and on the high side by the maximum strain rates that are allowable, in combination with the permissible duration of individual tests. Life ranges of 10 to 106 cycles are reasonable to explore in strain-control tests with many materials and specimen geometries (see Figure 9.2.5.1). Strain-control tests performed for inclusion in MMPDS should normally be conducted with symmetric waveforms, with no hold times at frequencies ranging from 0.10 to 5 Hz— depending on the response of extensometry and recording equipment. It is important to document the strain rates and conformance of the testing techniques with ASTM E 606.
9-53
MMPDS-06 1 April 2011
Figure 9.2.5.1. Schematic fatigue data displays (showing the initial exploratory tests as symbols and the strain levels subsequently chosen for replicate fatigue testing as bars; the length of the bars denoting observed data variability).
9-54
MMPDS-06 1 April 2011
Long-life fatigue tests are a special situation in strain-control testing because of the extended test periods that may be required, especially if maximum test frequencies must be kept at or below 1 Hz. For example, a test run at 1 Hz involving one million cycles requires about 11½ days. Decreasing the duration of long-life, strain-control fatigue tests are desirable whenever possible; otherwise, a few tests in the 106 to 107 cycle range can take as much time as the rest of the life curve. Switching from strain-control testing to load-control testing at a greater frequency at some point in the life of the specimen is becoming a common practice. This switch is typically done when the cyclic response is nominally elastic. Usually the frequency can be increased by a factor of 10 or more but even a factor of 2 or 3 is certainly worthwhile. When the control mode and/or frequency are changed, certain criteria should be observed. When generating a strain-control fatigue curve, ranging from the short-life regime (10 to 103 cycles) to the long-life regime (106 to 108 cycles), the fatigue tests can be placed in three groups for consideration. At the short-life end of the curve, the material response will typically vary throughout the test. In this regime, a significant amount of inelastic strain may be present, cyclic hardening or softening may occur as well as mean stress shifts. In short, no consistent relationships exist between stress and strain and, therefore, no control mode change is recommended in this life regime. For intermediate life tests, some inelastic strain may be present and, for a period of time, the stress-strain relationship may vary. Generally, however, a stabilized, consistent relationship is eventually achieved. Under these conditions, it may be possible to switch the test mode to load control at a higher frequency. In the long-life regime, very little inelastic strain will normally be present, and stress-strain stabilization is achieved very rapidly. Here, switching from the strain-control mode to the load-control mode can be accomplished. The material behavior cited above can only be evaluated by starting all of the tests in the straincontrol mode and then switching the mode and frequency when stabilized stress-strain behavior is achieved. An evaluation of the strain rate behavior of the material in the strain-control mode (within the normal response capabilities of the equipment) may be desirable to determine if the stress-strain relationship is likely to change when the frequency is changed. In summary, do not switch control modes in the low life regime of the fatigue curve. When some inelastic strain is present, switching may be employed if stable stress-strain response can be obtained and a negligible strain rate effect at the test temperature and strain range of interest can be demonstrated (i.e., it can be shown that fatigue life and stress range are not influenced by loading rate). One very good check is to produce overlapping data points in this regime where some tests are run to failure in the strain-control mode while others are switched to high-frequency load-control mode after stabilization is obtained. This is necessary to provide assurance that the switching procedure is not influencing results. At the very long-life end of the curve, the essentially elastic behavior of the material is most conducive to switching of control modes. The greatest benefit of the increased frequency can also be obtained here. If results have shown that switching is successful at the intermediate strain range level, then the probability of the long-life tests being at least as successful is high. If, however, the material
9-55
MMPDS-06 1 April 2011
exhibits a measurable inelastic strain and is slow to stabilize even after many cycles, caution should be exercised in making the decision for a control mode change. When the determination that a test should be switched from strain control to load control has been made, the following sequence is recommended: (1)
Note the maximum and minimum stabilized load levels.
(2)
Gradually reduce the strain range to zero. This process should take several cycles (at least 10). If a measurable inelastic strain is present, the strain range reduction should take sufficient cycles so the magnitudes of the maximum and minimum loads are reduced symmetrically.
(3)
At this point (strain range at zero) the load may or may not be at zero, depending on the conditions of strain ratio and strain range to which the specimen was exposed. If a residual load is present, the load should be adjusted to zero by carefully changing the strain level.
(4)
Next, the test system should be switched to the load-control mode and the test restarted. The strain-control cycling may have been performed using a triangular waveform. The higher frequency testing under load control generally employs a sine wave. The waveshape difference is only of secondary importance, and most machines can easily control a high frequency sine wave. The actual frequency used should be well within the capability of the test equipment so that the load can be accurately measured and controlled. Furthermore, care must be taken to avoid frequency effects, e.g., selfheating, and strain-rate effects. This is commonly a problem with tests involving a significant amount of inelastic strain.
When reproducing the maximum and minimum stresses that existed under strain-control testing, first introducing the mean load on the specimen and then gradually increasing the load range symmetrically from this point is generally preferred. Whatever procedures are used should be clearly defined and well documented. The tendency of the load-control results to be slightly more conservative than those generated in strain-control testing is worth repeating. When a specimen develops a fatigue crack, a test that is being conducted under strain-control mode will generally exhibit a reduced tensile load as the crack propagates. Under load-control testing, the load remains constant and the crack will grow faster, resulting in a lesser life. For this reason, all data generated by this technique should be so noted and identified on data tables and graphs. Essentially two steps are involved in the generation of a fatigue curve for a specific stress or strain ratio. First, the general shape of the curve should be determined. Nonreplicated fatigue tests completed at not more than four to six maximum stress levels are usually sufficient to define the basic shape of the curve above the fatigue limit. After the shape of the curve is found from test results, or estimated from fatigue data on similar materials, then the mean curve should be verified through carefully planned replicate fatigue tests.
9-56
MMPDS-06 1 April 2011
If the lower maximum stress levels or strain ranges chosen result in nonfailures or runouts1, do not repeat these stress levels while defining the general shape of the fatigue curve. Simply focus on relatively evenly spaced stress or strain levels that generally provide fatigue failures. In performing these exploratory fatigue tests, obtaining the test specimens from a random sample that adequately represents the material is important. In that context, specimens should be taken from several different lots if possible. Particular care should also be given to minimizing nuisance variables such as test machine effects, frequency effects, surface finish irregularities, residual stress effects, or environmental variations. Unfortunately, variables such as specimen fabrication can influence fatigue results to such an extent that the effect being studied is eclipsed. Composition, thermal-mechanical processing and the origin of the material should be well documented. The same type documentation should apply to the fabrication of the specimens. ASTM E 606 provides an example of a machining procedure in Appendix X3. In addition, fabricating fatigue specimens also involves many special considerations. For example, simulating a component fabrication process for making the specimens may be desired, e.g., heat treating before or after machining. The specimens may be ground or lathe turned. A mechanical polish or electropolish may be employed. Special processing such as shot peening, stress relieving, plating or coating may be used. All of these procedures (including their sequence) must be documented. The formation of surface residual stresses should be recognized as one of the most influential effects of machining, although it is frequently overlooked. Any mechanical removal of material from the specimen can produce residual stresses on the surface. Even when special care is taken to remove material very gradually, residual stresses (either surface or profile) may approach the yield point of the material. Under certain conditions these stresses can have a dramatic effect on the fatigue life of the specimen. Whenever the test environment and strain range are such that these stresses are not dissipated, they can alter the stress on the surface of the specimen. Crack initiation and propagation life will therefore be affected. Machining processes for producing fatigue specimens, therefore, should be evaluated not only on the basis of machining tolerances and surface finish, but also on the magnitude, consistency, and profile of these residual stresses. Fatigue tests that exhibit little inelastic strain are especially influenced by the procedures employed in specimen preparation. Test results in these intermediate- and long-life regimes can be very confusing and misleading if the residual stresses are not considered. These stresses should at least be measured and documented and, in some cases, it may be desirable to stress relieve or electro-polish the specimens. After the general shape of the fatigue curve has been identified (as shown in Figure 9.2.3.6 for three different stress and strain ratios), replicate tests at specific stress or strain levels may be performed to improve the statistical definition of the fatigue curve. Normally, replications at three levels are sufficient, if no fatigue limit is anticipated (or no attempt is to be made to define one).
1 A specific fatigue cycle limit should be chosen as a runout point, and that limit should be used for all further tests on that material, regardless of the stress or strain ratio. For materials that typically display constant amplitude fatigue limits (many steels do), a runout limit as low as 3 x 106 cycles may be satisfactory. Normally, however, a runout limit of 107 cycles is preferred, especially for materials that typically do not show a definite fatigue limit (many aluminums do not) and for experiments conducted at reasonably high cyclic frequencies (107 cycles is accumulated in less than 4 days of continuous cycling at 30 Hz). Fatigue tests for cast metals are traditionally continued to 2 x 107 cycles as a fatigue limit.
9-57
MMPDS-06 1 April 2011
The replicated stress or strain levels should be selected to represent initial estimates (based on the exploratory experiments) that would be expected to provide average fatigue lives at the extremes of the life interval of interest and at an intermediate fatigue life. For example, if load-control tests are to be performed and the fatigue performance between 104 and 106 cycles to failure is of concern, select three maximum stress levels for each stress ratio that appear likely to provide average fatigue lives of about 104, 105, and 106 cycles to failure, respectively. Figure 9.2.5.1 illustrates this maximum stress and strain level selection process. As this figure suggests, specifying the levels with great precision is not necessary (or justified). The use of levels that have been established from exploratory testing may be appropriate. Use the same levels as those used on one of the exploratory tests if it results in a fatigue life near one of the life ranges of interest. The order of fatigue testing at these stress levels should be randomized for each series of replicates. If further definition of the fatigue curve is desired in the long-life regime, replication at a fourth maximum stress level may be helpful1. To select this stress level, examine the number of runouts obtained at the lowest of the three replicated stress levels. If the number of runouts is less than 50 percent at the lowest stress level, select another, somewhat lower stress level for replication (5 to 10 percent is suggested). Alternatively, if the number of runouts at the lowest of the three replicated stress levels is above 50 percent, select a fourth replicated stress level that is somewhat higher (again, 5 to 10 percent is suggested). Using such an approach, defining a fatigue limit stress at the selected runout level in clearly defined statistical terms will, in many cases, be possible. The amount of replication required at each maximum stress level or strain range is the key remaining issue. Reference 9.2.5.1(a) recommends a minimum of 50 to 75 percent replication for design allowables data. This translates into two to four specimens at each stress or strain level. If the data displays minor variability, two specimens per level may be sufficient. If the data are highly variable, even four specimens per level may still not clearly define a statistically significant mean fatigue curve (see Section 9.6.1.7). Adding the number of specimens recommended for curve shape definition and the number recommended for replication, the normal minimum number of fatigue tests per curve ranges from 8 to 16. Therefore, the development of fatigue curves for three stress or strain ratios for a fatigue data display in MMPDS might be based on 24 to 48 specimens. If additional stress or strain ratios are to be considered, the number of recommended tests would expand further, although fewer tests may be employed at these R-ratios. More fatigue specimens are recommended for test in developing a fatigue data display for use in MMPDS than are actually required by current minimum data standards (see Section 9.2.4.5.1). This discrepancy exists primarily because the satisfaction of current minimum data standards does not ensure a statistically significant set of fatigue curves. The chance of producing a significant set of fatigue curves is much greater if the recommended fatigue test planning procedure is used and the designed test matrix is carefully completed. Strain control fatigue data for a particular material must be accompanied by sufficient information to allow the construction of a cyclic stress-strain curve. Normally, such a curve can be constructed from stress-strain pairs recorded from stable hysteresis loops. Pairs obtained from a number 1
It is assumed here that long-life fatigue tests will be run in load control or started in strain control and switched to load control as discussed earlier.
9-58
MMPDS-06 1 April 2011
of different tests covering a wide range of plastic strain ranges will allow construction of a complete cyclic stress-strain curve. Results from replicated incremental step tests may also be used to construct cyclic stress-strain tests [Reference 9.2.5.1(c)]. 9.2.5.2 Creep-Rupture — A design of experiments approach to creep data development is highly recommended because it provides the maximum amount of useful data for the least expenditure of time and testing funds. If such an approach is not used, it is likely that several times as many test data will not serve as well in developing desired mathematical models of creep behavior as data developed through design of experiments. This section is devoted to a description of design of experiments approach which can be used to develop regression models to mathematically portray creep rupture life and creep as a function of temperature and stress. One method for planning testing is to develop a test layout in matrix form, with temperatures in rows and expected creep lives in columns. Then, through testing, simply fill out blocks within the matrix. There should be a minimum of eight observations per isothermal line, or twenty observations per Larson-Miller or other regression model. This ensures coverage of all conditions of interest. Choosing the Number of Temperatures and Life Intervals—Before the test matrix can be formed, interval sizes must be considered, first for temperature and then life. (a)
Temperature—A range of temperatures is usually required. For example, if experiments must range from 1000E through 1500EF, a choice must be made whether to perform tests at six levels (1000EF, 1100EF, 1200EF, 1300EF, 1400EF, 1500EF), or maybe at three levels (1000EF, 1300EF, 1500EF). The decision can be quite complicated and based on such phenomena as: (1) (2) (3)
The relative closeness of the isothermal lines Parallel or divergent isothermal lines The precipitation of secondary phases within the life ranges of interest.
However, this selection can be greatly simplified with very little user risk. Start with the lowest temperature, and then choose the next temperature line such that at least one level of testing stress, on log stress-log life plot, will be common to both temperatures. Then, proceed to the next temperature line, etc., ensuring like stress values on adjacent temperature levels. (b)
Life—Divide a log-life cycle into four equidistant segments. For example, between 100 hours and 1000 hours, the divisions would be approximately 180 hours, 320 hours, and 560 hours on the log-life scale. These divisions are far enough apart to insure a well-defined curve and a minimum overlap of data. To convert from temperature and life desired to temperature and test stress requires that there be some prior knowledge of this relationship. If there is no prior knowledge, a series of “probe” tests must be made to locate the isothermal lines on a log-log plot.
Choosing the Number of Heats—Batch variations in chemistry, heat treating, etc., can cause considerable variations in the mechanical properties of an alloy. This difference is referred to as heat-to-heat
9-59
MMPDS-06 1 April 2011 components, as opposed to within-heat components of variance.2 Heat-to-heat standard deviation is usually 50 to 70 percent of within-heat standard deviation. The root sum square of the two components of variance produces a measure of scatter about the regression that, when added to curve fitting error, gives the regression parameter called SEE (Standard Error of Estimate). SEE is a product of regression analysis; it is rarely determined as defined above. It is this parameter which fixes design minimums about the regression estimates of the typical or mean values. To make a mathematically sound decision on the minimum number of heats that should be used in a given analysis, it is necessary that an estimate of heat-to-heat and within-heat variance be known. This can usually be estimated from like alloys, or calculated from development data. Simulation has shown the following minimum number of heats to be satisfactory: (1)
When the heat-to-heat component of variance is less than 25 percent of within-heat variance, use two heats equally.
(2)
When the heat-to-heat component of variance is between 25-65 percent of within-heat variance, use three heats equally.
(3)
When the heat-to-heat component of variance is greater than 65 percent of within-heat variance, use five heats equally.
Heats should be distributed randomly and essentially equally throughout the test matrix to insure an unbiased heat distribution. When regression models are developed from data that were not taken from an experimental model, heats are rarely chosen randomly. Therefore, unless there are large samples of data in all areas of the regression matrix, this imbalance of heat sample sizes must be accounted for as described in Section 9.6.4.2 Order of testing must also be randomized so that any time-, operator-, or machine-oriented effects are randomly distributed within the test matrix as described in Reference 9.2.5.2. 9.2.5.3 Fusion-Welded Joints — Data generation involves developing a testing program based on considerations of design data requirements, population definition, subpopulation definition, welding procedures, testing procedures, and minimum test data requirements. Data generation is in two parts: (1)
Determination of the properties of weld coupons cut from simple panels welded in accordance with a welding process specification.
(2)
Determination of the strength of welded structural components and the relation between the structural component strength and the coupon strength determined in (1).
9.2.5.3.1 Basic Population Definition — A basic population definition is selected, satisfying the general welding conditions previously established. The procedure for population definition requires a detailed review of applicable welding conditions to select a single population which will provide data consistent with requirements of the specification. The example shown in Figure 9.2.5.3.1 for 6061 aluminum weldments is typical of a basic population definition. In this example, tooling and heat input have not been specified.
2
The within heat variance is the pooled variability of data from all heats, where the variability for each heat is calculated about its own average regression line. The heat-to-heat variance is calculated from the variability of each heat=s average regression line about the overall average regression line of all heats. All heat average curves are assumed to be parallel in log life.
9-60
MMPDS-06 1 April 2011
9.2.5.3.2 Subpopulation Definition — Appropriate subpopulations must be selected. Obvious subpopulations or associated populations in Figure 9.2.5.3.1 would be alternative weld/heat treating sequences, filler materials, welding processes, weld repair, joint thickness, and weld classes (quality level). Selection of these preplanned subpopulations is dependent upon previous knowledge of their potential effect on weldment properties. However, those mentioned are most frequently encountered subpopulations required. 9.2.5.3.3 Welding Procedure — The variables defining the selected basic and subpopulations must be controlled within (but no better than) their prescribed ranges during test program welding. This requires welding in accordance with a referenced specification and any additional requirements which may limit the population. The generation of data requires that welding be conducted under production conditions rather than closely controlled laboratory conditions. Data for development of design properties must realistically represent the variation allowed in referenced specification and/or supplemental requirements for each variable. Weldments from which data are generated should represent the product of several welders, welding machines, and weld setups. It is required to select test samples from weldments produced at different times by different operators guided only by specified requirements.
9-61
MMPDS-06 1 April 2011
BASE MATERIAL Alloy: 6061 Aluminum per AMS-QQ-A-250/11 Form: Sheet Preweld Heat Treat Condition: T4 or T6 Postweld Heat Treat Condition: As-Welded Material Thickness: 0.09 inch Filler Material: 4043 per QQ-B-655 WELDING VARIABLES Joint Preparation Joint Type: Butt Edge Preparation: Square Groove Cleaning: Deoxidize, solvent wipe and hand scrape Tooling: None Specified Welding Conditions Process: Mechanized GTA Sequence: Single Pass Position: Flat Heat Input: Not Specified Weld Repair: None WELDMENT QUALITY Inspection Methods Visual Radiographic, Mil-Std-453 Penetrant, Mil-I-6866 Acceptance Levels External Weld Beads: Removed Flush Underfill and Undercut: None Allowed Cracks: None Allowed Pores: *Maximum size 0.02-inch, one per inch Mismatch: 10% of Thickness Maximum Internal Pores and Inclusions: *Maximum Size 50% T or 0.12 inch whichever is lesser. Maximum accumulated amount less than 2% of cross section area. *Sharp-tailed or crack-like indications not allowed, appropriate acceptance levels will be added.
Figure 9.2.5.3.1. Example population definition.
9-62
MMPDS-06 1 April 2011
9.3 SUBMISSION OF DATA 9.3.1 RECOMMENDED PROCEDURES —This section specifies the procedure for submission of mechanical property data for statistical analysis; specifically data supplied for the determination of T99 and T90 values for Ftu and Fty and for data supplied to obtain derived property values for Fcy, Fsu, Fbru and Fbry. The amount of data to be supplied for both of these are indicated in other sections of Chapter 9, such as Table 9.2.4.1 for derived property values. This section covers the format for submission of data. 9.3.2 COMPUTER SOFTWARE — The data may be supplied on CD-ROM in a PC-compatible format. The data files may also be submitted as attachments to an e-mail message. It is recommended that the software applications in Table 9.3.2 be used to construct the data files. Along with the electronic version, provide a hard (paper) copy of the data and any other supporting documentation such as specimen dimensions, gage length etc. This information will be stored in the MMPDS archives for future reference. Company-specific data will be treated as proprietary information at the request of the submitting organization. Table 9.3.2. Software Applications for Data Submission
• ASCII text editor • •
Current Spreadsheet or Database Applications The Chairman or Secretary of MMPDS can be contacted concerning software compatibility questions.
The data supplied on these disks or sent by e-mail are to be supplied in English units and the original units, if other than English. For example, physical dimensions should be reported in units of inches to the nearest thousandth of an inch (X.XXX), stress should be reported in units of ksi to the nearest one hundredth of a ksi (X.XX), strain is to be reported in percent to the nearest tenth of a percent (X.X) and modulus is to be reported in units of msi to the nearest tenth of a msi (X.X). If necessary, refer to Appendix A-4 to convert to English units of measure. 9.3.3 GENERAL DATA FORMATS — Table 9.3.3 shows the information that should be supplied in electronic form along with the mechanical test results. The alloy type, temper/heat treatment, product form, specimen location and specification number will be identified. Columns (or data fields), in order, will contain grain direction, product thickness, unit of product thickness, lot number, and heat number. Columns will be added towards the right of the heat number and will contain the individual test results as discussed in Sections 9.3.3.1 and 9.3.3.4. When specifying grain direction for wrought product strengths, etc., use the conventions identified in Table 9.2.4.3: L for longitudinal, LT for long transverse, and ST for short transverse. Products that are anticipated to have significantly different properties in directions other than those stated above should be tested in the appropriate directions and the results reported. There are several types of product forms identified in the Handbook; therefore, the term product form should be properly defined and reported in this column. Examples for wrought products are sheet, plate, bar, and forging. Examples for cast products are sand casting , investment casting, and permanent mold casting. For wrought products, specimen location should be t/2 or t/4. For cast products, specimen location should indicate designated or non-designated areas.
9-63
MMPDS-06 1 April 2011 Table 9.3.3. General Data Format Alloy Trade Name
Temper/Heat Treatment
Product Form
Industry/Government Specification No.
Grain Direction
Product Thickness
Unit (in.), or Area (in.2) Lot No. Heat No.
Specimen Location (or Designation)
TUS, ksi
TYS, ksi
CYS, ksi
e, %
9.3.3.1 Data Format for the Computation of T99 and T90 Values — The tensile test results that are to be reported for determination of A and B-Basis properties are tensile ultimate strength (TUS), tensile yield strength (TYS), elongation (e), reduction of area (RA), and elastic modulus (E). The results of these tests are to be reported as shown in Table 9.3.3.1 along with alloy designation, specification, lot and/or heat number, product thickness, grain direction, etc. as previously shown in Table 9.3.3. The number of tests required for determining A and B-Basis properties are identified in Section 9.2.4.1. 9.3.3.2 Data Format for Derived Properties — For the derived property values, several types of tests may be conducted such as tensile, compression, shear and bearing, as shown in Table 9.2.4.1. The results of these tests are to be reported as shown in Table 9.3.3.2 along with alloy designation, specification, lot and/or heat number, product thickness, grain direction, etc. as previously shown in Table 9.3.3. The ultimate strength properties are to be contained in one file as shown in Table 9.3.3.2(a) while the yield strength properties are to be contained in another file as shown in Table 9.3.3.2(b). Generally, two tests are preferred (one required) for a given test type and product thickness. The results of these tests are to be reported in columns adjacent to each other. For example, TUS Test #1 and TUS Test #2 are on the same row for a given thickness and heat. An additional column should be created to report the specimen number for the second test. This column should be just to the left of the test result. The same procedure is to be used for the other properties. The abbreviations (see Appendix A) for the other test types are CYS for compressive yield, SUS for shear ultimate, and BUS and BYS for bearing ultimate and bearing yield strengths, respectively. For the bearing properties, also identify the e/D ratio of either 1.5 or 2.0.
9-64
Table 9.3.3.1. Data Format for Determination of A and B-Basis Values of Ftu and Fty Alloy Trade Name
Heat No.
depends upon the product form, see Table 9.3.3.
UTS, ksi
TYS, ksi
Elongation %
Red. of Area, %
Elastic Modulus, ksi
MMPDS-06 1 April 2011
9-65
The information to be entered between these two columns
Lot No.
Table 9.3.3.2(a). Derived Ultimate Properties Alloy Trade Name
Heat No.
columns depends upon the product form, see Table 9.3.3.
* Two tests are preferred, only one is required.
TUS Test 1
TUS Test 2*
SUS Test 1
SUS Test 2*
BUS e/D=1.5 Test 1
BUS e/D=1.5 Test 2*
BUS e/D-2.0 Test 1
BUS e/D=2.0 Test 2*
MMPDS-06 1 April 2011
9-66
The information to be entered between these two
Lot No.
Table 9.3.3.2(b). Derived Yield Properties Alloy Trade Name
Heat No.
columns depends upon the product form, see Table 9.3.3.
* Two tests are preferred, only one is required.
TYS Test 1
TYS Test 2*
CYS Test 1
CYS Test 2*
BYS e/D=1.5 Test 1
BYS e/D=1.5 Test 2*
BYS e/D-2.0 Test 1
BYS e/D=2.0 Test 2*
MMPDS-06 1 April 2011
9-67
The information to be entered between these two
Lot No.
MMPDS-06 1 April 2011 9.3.3.3 Data Format for the Construction of Typical Stress-Strain Curves — The individual tensile and compression stress-strain data should also be submitted in electronic form, if possible, so that typical tensile and compression stress-strain curves, compression tangent-modulus and typical (fullrange) stress-strain curves can be constructed. In order to construct a typical stress-strain curve, the individual specimen curves must be documented up to slightly beyond the 0.2 percent offset yield strength. To construct a typical (full-range) stress-strain curve, the individual curves must be documented through to failure. The data for the stress-strain curves must be supplied on separate electronic media from the mechanical property data. The data should be stored in a file which contains the load (or stress) in the first column and the displacement (or strain) in the second column. Each load or displacement stress-strain pair should be identified with its corresponding specimen identification number. For the load-displacement curves, the load should be reported in pounds (X.) and the displacement should be reported in units of thousandth of an inch (X.XXX). For stress-strain curves, the stress should be reported to the nearest hundredth of a ksi (X.XX) and strain should be reported to the nearest X.XX x10-6 units. A hard copy of the load displacement curve should also be submitted for each stress-strain curve. 9.3.3.4 Data Format for Fasteners — A report will be submitted to MMPDS Coordination Group summarizing the test program, results, analysis, and suggested table of joint allowables for MMPDS. The following information will be provided in the report: (1)
A description of sheet and plate material with heat-treatment details and mechanical property test data for each sheet thickness used in the program in accordance with the requirements of Section 9.2.4.6.3.
(2)
A description of fastener, including drawings and specifications. If the fastener is not covered by a government or industry specification, a copy of an appropriate draft specification will be attached to the report.
(3)
A statement of compliance with NASM 1312, including a detailed statement of any differences from this standard.
(4)
Basic test data [see Figure 9.7.1.4(a)], including that required in NASM 1312, and representative load deflection curves.
(5)
Values for fastener shear calculation: as defined in Section 9.7.1.3 and fastener shear stress curves, where applicable.
(6)
Designation of allowable shear strength reliability (90 or 99 percent value).
(7)
Calculated t/D, Pu/D2, and Py/D2 values [see Figure 9.7.1.4(a) for sample format].
(8)
Seven or more graphs, as required, of P/D2 versus t/D, as described in detail in Section 9.7.1.4, including the proposed design allowable curves for yield and ultimate load.
(9)
Calculations of allowable loads (see Figure 9.7.1.5 for sample format).
(10)
The suggested allowable load tables in the format shown in Section 9.9.5.
9-68
MMPDS-06 1 April 2011 (11)
Failure identification mode for failure of each fastener and/or joint is required, as shown in Figure 9.3.3.4. If failure is unique or not covered in the figure, so indicate.
(12)
Off-set used to obtain yield data.
(13)
Draft, in NAS or MS format, of specification for applicable fastener system.
9.3.3.5 Data Format for Other Properties — Data submission format for data types not discussed in Section 9.3.3.1 through 9.3.3.4 have not been standardized. The Chairman or Secretary of MMPDS can be contacted concerning most convenient data submission formats.
9-69
MMPDS-06 1 April 2011 1. SHEET FAILURE
(a) Bearing Deformation of Hole
(b) Tearing of Sheet Allowing Fastener Pull-Through, Head Pull-Through, or Nut Collar of Formed Head Pull-Through
(c) Tearing of Sheet at Edge Margin
(d) Shear Out of Sheet Through Edge Margin
(e) Hoop Tension Failure of Sheet
2. FASTENER HEAD FAILURE
(a) Head Dished in Tension
(b) Partial Shear Failure of Head
(c) Shear Failure of Head
(d) Tensile Failure at Head to Shank Junction
Figure 9.3.3.4. Failure identification code.
9-70
MMPDS-06 1 April 2011 3. FASTENER NUT OR FORMED HEAD FAILURE
(a) Blind Head Deformed in Tension
(b) Nut Stripped / Shank Stripped
(c) Nut Cracked
(d) Tensile Failure in Threads
(e) Shear Failure of Blind or Formed Head
(f)
Tension Failure of Formed Head
4. FASTENER SHANK FAILURE
(a) Sleeve or Stem Tensile Failure
(b) Tensile Failure in Shank
5. FASTENER SHANK SHEAR FAILURE
(b) Brittle Failure at Shear Plane
(a) Ductile Failure at Shear Plane
Figure 9.3.3.4. Failure identification code S Continued.
9-71
MMPDS-06 1 April 2011
This page is intentionally blank.
9-72
MMPDS-06 1 April 2011
9.4 SUBSTANTIATION OF PROPERTIES 9.4.1 S-BASIS MINIMUM PROPERTIES — A product must be covered by an industry specification prior to being considered for inclusion into MMPDS. Within a specification, one of the basic requirements is to provide minimum properties (S-Basis), which includes tension yield, tension ultimate, elongation and compression yield (when specified). The statistical significance to the S-Basis properties is typically not known. However, since ~ 1975, the minimum mechanical properties in the SAE/AMS specifications have been statistically justified with a procedure described in part F of the SAE/AMS Editorial Style Manual for the Preparation of Aerospace Material Specifications (AMS) Metals and Processes and Nonmetallic Materials. With that in mind, a procedure has been established to provide a level of statistical significance to S-Basis properties contained within the Handbook. A material being submitted for inclusion into MMPDS must include the basis of the specification properties as part of the substantiation package. This substantiation package should include the number of test samples, the number of lots, and the method used to determine any property covered in the specification, even if it will not be reported in MMPDS. This could include the development of minimum as well as maximum properties. Consideration will be given to the specified sizes, product forms, heat treatments, and other variables affecting the physical and mechanical properties. It is also expected that the test material chemistry be in the nominal specification range and not tailored to the chemistry extremes. It is recommended that the substantiation of properties be based on a procedure similar to SAE/AMS in which the analysis of data or other appropriate documentation supports a statistical S-Basis value, where at least 99 percent of the population of values is expected to equal or exceed the minimum value with a confidence of 95 percent. The data requirements for an S-Basis value are described in Section 9.2.4.1. The S-Basis value may be computed by assuming the distribution of the sample population to be normal and using the following equation:
¯ & s @ k Minimum S ' X 99 where
¯ X s k99
= = =
sample mean standard deviation one-sided tolerance-limit factor corresponding to a proportion at least 0.99 of a normal distribution and a confidence coefficient of 0.95 based on the number of specimens (See Table 9.10.1).
All data analyses must be performed in English units. Strength data recorded in metric units should be converted to English units, to the nearest 0.01 ksi, before data analyses are undertaken. If desired by the data supplier, metric equivalent tables and figures can be included as part of the working data submitted with a data proposal, but the tables and/or figures proposed for inclusion in MMPDS will contain only English units. When the tensile and compressive properties vary significantly with thickness, regression analysis should be used. Although the establishment of an S-Basis value should be based upon the statistically computed value, the S-Basis value may be slightly lower, based on experience and judgement.
9-73
MMPDS-06 1 April 2011 9.4.2 VALIDATING DESIGN PROPERTIES FOR EXISTING MATERIALS (WHEN A CHANGE IN PROCESSING HAS OCCURRED) — In some situations, the validity of existing design properties in the Handbook may be questioned because of a change in production methods. This question may be raised even if no change has been made in required minimum properties within the governing specification. This section provides guidance for such situations, where there has been a potentially significant change in production methods for an existing material with published properties. Specifically, guidance is given here for demonstrating that there has been no change in material properties. The guidance includes an appropriate statistical procedure, and an indication of the approximate sample size that would be required to demonstrate that there is no reduction in properties (within a specified tolerance). Note that this test is based on the initial assumption (null hypothesis) that no change in properties has occurred. If the goal of the analysis is to demonstrate, with a high level of confidence, that a reduction in properties has occurred, a different statistical procedure should be used that involves calculation of an upper tolerance bound for the 1st and 10th percentiles. Section 9.5.4.3 Three-Parameter Weibull Acceptability Test, provides guidance for calculating upper tolerance bounds for the 1st percentile. At least 30 observations from 3 or more heats are required to perform this analysis. (In this type of investigation where design properties have already been tabulated in the Handbook, the number of tests required is lower than the minimum of 100 observations required for initially establishing design properties in the Handbook.) Procedure: Calculate T90 and T99 using the methods described in the Handbook. For this purpose, the number of observations may be as low as 30, provided that the data from at least 3 heats of material are represented. If the recalculated T90 and T99 values are found to be at least as high as the tabled values minus the specified tolerance, then design minimum properties of the material produced under the new method may be considered to be consistent with the tabled values within the specified tolerance. Uncertainty in T90 and T99 is inversely proportional to sample size. Therefore, if less than 100 observations are used to calculate T90 and T99, then the increased uncertainty may cause the recalculated values to be lower than the values published in the Handbook, even if there has been no change in properties. For different tolerances, measured in standard deviations, Table 9.4.2 provides estimates of the numbers of observations that would be required to demonstrate (with high confidence) that the design properties have not dropped B if indeed they have not dropped. Sample sizes are presented for calculating both T90 and T99. With these sample sizes, there is a 90 percent likelihood that the new T90 and T99 value will be at least the tabled value minus the specified tolerance (assuming that the process change really has not reduced material properties and that the tabled values represent the 10th and 1st percentiles, respectively). Note that smaller sample sizes are required for T90 than for T99, and smaller sample sizes are required if the tolerance is greater. These sample size estimates are based on symmetric distributions. Negatively skewed distributions require greater sample sizes on average; positively skewed distributions require fewer observations. (These sample sizes were determined using the sequential Pearson procedure.)
9-74
MMPDS-06 1 April 2011 Table 9.4.2. Approximate Sample Sizes Required to Demonstrate Acceptable Mechanical Properties within Specified Tolerances
Permissible reduction* (tolerance) 0.50 0.75 1.00 1.25
Sample size needed to demonstrate (with 90% confidence) that the new property meets the tabled value within the specified tolerance 1st Percentile >300 180 115 85
10th Percentile 100 55 35 <30
* Measured in standard deviations. 9.4.3 CONFIRMATION OF DESIGN PROPERTIES FOR LEGACY ALLOYS CC Several of the design properties in the Handbook have been in existence for numerous years. Design allowables which have not been evaluated in 10 years will be identified for confirmation. The priority in which these alloys are reevaluated will be determined by the MMPDS Coordinating Committee and availability of data. This section provides guidance for the analysis process, what is considered a significant change in design properties and what action should be taken when a significant change is determined. The initial step-by-step procedure is illustrated in Figure 9.4.3(a) and described in Section 9.4.3.1. The step-by-step procedure when there is a significant increase in the design properties is illustrated in Figure 9.4.3(b) and described in Section 9.4.3.2. The step-by-step procedure when there is a significant decrease in the design properties is illustrated in Figure 9.4.3(c) and described in Section 9.4.3.3. 9.4.3.1 Initial Steps and Analysis –– Once the material and product form have been selected, a request is generated to acquire current data from the majority of important producers. It is expected that only production lot release data will be available for analysis. The data are then analyzed using standard analysis guidelines as described in Section 9.5. The resulting design allowables, developed from current production data, are compared to the existing design allowables in the Handbook. If there is a difference of at least 2 ksi AND 2%, the difference is considered significant for engineering purposes. If the difference is not significant by this definition, no change is made to the design allowables in the Handbook and a footnote is added to the table identifying the date of the confirmation as follows: Design allowables were last confirmed MMM-YYYY. Further investigation is required if a significant difference is determined as defined above. If the original data is available and if time allows, it may be helpful to re-analyze the original data using current analysis methods. Although the re-analysis of the original data will not affect the actions based on the analysis results of the current data, it may provide insight into the reason for the change in the design allowables, whether it is due to a change in the analysis process or possibly a change in some aspect of the properties; such as the mean, variability, or skewness of the data. If the significant difference results in an increase from the current allowables, the steps illustrated in Figure 9.4.3(b) and Section 9.4.3.2 are followed. If the significant difference results in a decrease from the current allowables, the steps illustrated in Figure 9.4.3(c) and Section 9.4.3.3 are followed. 9.4.3.2 Increase in Design Allowables ––Where there is a significant engineering increase in the current data allowables, and the existing A-basis allowables are below the specification minimum, the A-Basis allowables will be increased up to the specification minimum values. The associated B-Basis allowables would also be recalculated and increased, if warranted. For any increase over the specification minimum value, one of the actions described in the paragraph below will be taken.
9-75
MMPDS-06 1 April 2011 In cases where the A-Basis is the specification minimum and the current data shows an increase to the rounded T99 value, a request is submitted to the appropriate specification committee to increase the specification minimum. If the minimum is increased, the table will be revised to reflect the new values. If the specification minimum is not increased, or until it is increased, on of the following actions will be taken: 1) The table will be confirmed as is with a note indicating "Desing allowables were last confirmed MMM-YYYY". 2) The table will be revised with the current production results (the specification minimum and change in B-basis will be considered). 3) If only a few values are to be changed and it does not disrupt the property trends, those values will be revised along with the affected derived properties. 4) No change will occur to the A- and B-Basis values, but the increased values will be footnoted as T99 and T90 minimums. It may be decided to show these T99 and T90 minimums in a separate table, with all the updated derived property allowables, adding the following statement: “The rounded T99 and T90 values represent production capability at the time the table was last confirmed.” 5) Another possibility is to create a new specification with the higher minimums. 9.4.3.3 Decrease in Design Allowables –– If a significant decrease is observed in the current data allowables from the existing design allowables, one of the two actions will occur if the current data represents the minimum requirements for A- and B-basis allowables; 1) The design allowables will be decreased to reflect the current data. 2) If it is only a minimal change and does not disrupt the property trends, only the affected value(s) and related derived properties will be revised. If the current data consists of a smaller sample size or heat/lot numbers, additional data should be gathered to meet minimum data requirements and the data reanalyzed. If additional data is not available in a timely manner, the design allowables will be decreased and shown as S-basis minimums. 9.4.3.4 Derived Properties BB Most compression, shear, and bearing properties are based on reduced ratios and are derived from the tensile properties. When the tensile properties change, the related derived properties must also be adjusted. For legacy alloys, the validity of the existing reduced ratios and their use in calculating updated derived properties will be handled on a case-by-case basis. A decision will be made based on the availability, date, and amount of data used to determine the existing derived properties. If tensile design allowables are adjusted, the paired derived property should also be adjusted accordingly.
9-76
MMPDS-06 1 April 2011
Acqu ir e cu rrent data from majority of imp ortant pr oducer s
Analyze per MMPDS guidelines ( see Fig. 9.5.1)
It there a significant differ ence fro m allowables (>2 ksi & 2%)?
No
-No change to table - Add footn ote to identify date last confir med
Yes If time and da ta are available, reanalyze origin al d ata using curr ent method s
Yes
Is or iginal data available for reanalysis ?
Yes
Is the differ ence due to th e analysis method
No or Unknown Determine if change in allowab les is due to change in mate rial, analysis method or combination
No
Is the d iffer ence an incr ease ?
Yes
Go to Figure 9.4.3(b) (increa se)
No
Use curr ent data a nd analysis method s
Go to Figur e 9 .4.3(c) (decr ease)
Figure 9.4.3(a). Design Properties Analysis Process for Legacy Alloys.
9-77
MMPDS-06 1 April 2011
SITUATION Current data is significantly (>2ksi & 2%) above design allowables
Do new T99 values exceed specification minimums?
No
Revise table -Increase A-basis values to T99 -Increase B-basis and derived values accordingly _Add footnote to identify date last confirmed
Yes
Request increase in Specification minimum.
Request Rejected
Write new specification
Spec. minimums increased Options: 1) Confirm table as is, no changes. Add confirmatory footnote 2) Revise entire table with updated allowables. 3) Few revisions, if no change to trend 4) Update T99 & T90 values in footnotes only
-Add new table for new specification
Figure 9.4.3(b). Increase in Design Properties for Legacy Alloys
9-78
MMPDS-06 1 April 2011
S IT U AT ION C ur re n t d a ta is sig nifica ntly (<2ksi & 2% ) be low de sig n a llow a ble s
W a s sa mp le s size > o r = 1 0 0 fr om 1 0 he ats & 1 0 lots?
Yes
D e cre a se d e sig n allo w ab le s
No Acquire mo re d a ta to me e t min imu m g u id elin e s a n d re ca lcula te
If no ad d ition a l d a ta in time ly m a nn e r D e cr e a se d esig n a llo w ab le to cu r re n t da ta a nd sh o w a s S -b asis
Co n sid e r e ffe ct o n ten sile p rop e r tie s in o the r orie n ta tio ns a nd o n d e rive d p r o pe r ties
P r o po se ch a ng e s
Re vise T a ble N O TE Re vise T ab le : If th e ch an g e ca u se s a cha ng e in the p rop e rty tre nd o r a d isco n tin u ity in p ro p er tie s as a fun ctio n o f th ickn e ss , th e e n tir e tab le w ill be r evise d to r efle ct cu rr en t da ta min imu m s.
Figure 9.4.3(c). Decrease in Design Properties for Legacy Alloys.
9-79
MMPDS-06 1 April 2011
This page is intentionally blank.
9-80
MMPDS-06 1 April 2011
9.5 ANALYSIS PROCEDURES FOR STATISTICALLY COMPUTED MINIMUM STATIC PROPERTIES Procedures used to determine tolerance bounds for mechanical properties vary somewhat from one sample to another. All involve a number of steps that are illustrated by the flowchart in Figure 9.5. These steps can be summarized as follows: (1) (2) (3)
Specify the population to which the property applies Decide on the procedure for computing the property Compute the property.
These steps are described in greater detail in Sections 9.5.1 through 9.5.8, and a number of examples of the several procedures are presented in Section 9.8. 9.5.1 SPECIFYING THE POPULATION— For computational purposes, definition of a population must be sufficiently restrictive to ensure that computed tolerance bounds for design properties are realistic and useful. This is done by establishing a range of products and test conditions for which a mechanical property can be characterized by a single statistical distribution, perhaps as a function of a dimensional characteristic. In most cases a homogeneous population of data for a measured test parameter should not include more than one alloy, heat-treated condition, or test temperature. It is not necessarily obvious whether such a population may include more than one product form or size, grain direction or processing history. Strip, plate, bars, and forgings of one alloy may have essentially the same TYS, while for another material the TYS may differ greatly among those product forms. To resolve these questions, appropriate statistical tests of significance should be applied to the respective groups of data. These tests are described in detail in Sections 9.5.2, 9.5.3 and 9.5.4. Section 9.8 presents examples of their use in MMPDS data analyses. The step-by-step procedure for specifying the population is illustrated in Figure 9.5.1 and described below. This procedure is used to determine whether several available data sets may be combined for the purpose of computing design allowables. The procedure is applicable to data collections for which regression analysis is required, as well as those for which regression is not required. In the latter case, an acceptability test is employed to eliminate unacceptable data sets. This procedure is described in Sections 9.5.4.3 and 9.5.4.4. A corresponding acceptability test for the regression setting is described in Section 9.5.1.2. 9.5.1.1 Deciding Between Direct and Indirect Computation — The only roomtemperature design properties that are regularly determined by direct computation are Ftu and Fty. This procedure is usually limited to a specified or usual testing direction because there are seldom enough data available to determine properties in other test directions. Two rules govern the choice between direct and indirect computation: (1)
Ftu and Fty in the specified or usual testing direction may be determined by direct computation only.
(2)
Ftu and Fty in other testing directions (as well as Fcy, Fsu, Fbru, and Fbry in all directions) may be determined by direct computation only if (a) the data are adequate to determine the distribution form and reliable estimates of population parameters, or (b) the sample includes 299 or more individual, representative observations of the property to be determined.
9-81
MMPDS-06 1 April 2011
Gross Sample
Direct
Decide between Direct or Indirect Computation (Section 9.5.1.1)
Indirect
Significant Regressions?
Go to Figure 9.5.1 Yes
No
Indirect Analysis (Section 9.5.8)
Indirect Analysis (Section 9.5.7)
Go to Figure 9.5.1.2(a)
Figure 9.5 Determination of Method of Design Allowable Analysis.
9-82
MMPDS-06 1 April 2011
Perform trial regression on each data set
Any significant regressions?
No
No
Test all data sets for acceptability and eliminate unacceptable data sets (Sections 9.2.4 & 9.5.4)
One or more data sets eliminated
Data sets homogenous with k-sample A-D test? (Section 9.5.3)
Not Equal
Equal
Yes
Pool data and calculate allowables by regression (Section 9.5.6) or by dividing data into dimension ranges (Sections 9.5.5 & 9.5.7)
All remaining data sets acceptable
Calculate allowables for each data set and report minimum values
Test for equality of the individual regression lines (Section 9.5.2.4)
Yes
Pool data and calculate allowable from pooled sample (Section 9.5.5)
Go to Figure 9.5.5(b)
Go to Figure 9.5.1.2(b)
Figure 9.5.1. Determination of Direct Design Allowables.
9-83
Calculate allowables by regression for each data set and report minimum values (Section 9.5.6)
MMPDS-06 1 April 2011 For example, assume that available data for a relatively new alloy comprise 50 observations of TUS in the specified testing direction. This sample is not considered large enough to determine the distribution form and reliable estimates of population mean and standard deviation. Since only direct computation is permitted in this instance, determination of T99 and T90 values must be postponed until a larger sample is available. However, these properties may be considered for presentation on the S-Basis at the discretion of the MMPDS Coordination Group, contingent on availability of an acceptable procurement specification for the material. If the number of observations increases to 100, this quantity may be adequate to allow determination of T99 and T90 values, provided data can be described by a Pearson Type III (gamma) (subsequently referred to as simply “Pearson”) or Weibull distribution. If the distribution cannot be described parametrically, at least 299 observations are required so that computation can proceed without knowledge of the distributional form. If the above example involved observations of SUS instead of TUS, the same criteria would apply for direct computation. However, Fsu could be determined by indirect computation with as few as twenty paired observations of SUS and TUS (representing at least ten lots and three heats), provided Ftu has been established. 9.5.1.2 Testing for Regression Effects and Homogeneity — In most cases, there will be a fairly clear-cut division between one population and another. For example, L and T properties either are or are not nearly identical. However, wrought product properties may sometimes vary linearly or curvilinearly with some dimensional characteristic, such as thickness. Examples are effect of thickness on TUS, effect of temperature on TUS, and effect of stress on cycles or time to rupture. It is necessary, therefore, to first test the data for the relationship between the property and the material dimension. Before employing a regression analysis in the determination of material properties, one must ascertain that the average of the property to be regressed varies continuously and linearly or quadratically with some dimensional parameter x (such as x = t, 1/t, etc., where t is thickness). If the variation of average is attributable to other causes, regression should not be used. Regression analysis, as described herein, also assumes that residuals are normally distributed about the regression line. Residuals are the differences between observed data values and the values which are predicted by the fitted regression equation. Validity of this normality assumption should be evaluated by performing the Anderson-Darling test presented in Section 9.5.4.1. The procedures for fitting a regression equation of the form, TUS = a + bx, or (SUS/TUS) = a + bx, or (SUS/TUS) = a + bx + cx2, to n data points are described in Section. 9.5.2. In addition to estimates for a and b (and possibly c), this procedure produces two F statistics. One statistic (F1) tests the significance of regression. The other statistic (F2) tests the adequacy of a linear model for describing the relationship between the material property and the dimensional parameter. If F2 indicates a lack of fit of the model to the data, a transformation of the data may account for the nonlinearity. If F1 indicates an insignificant regression, one of the other appropriate
9-84
MMPDS-06 1 April 2011 analysis techniques, as described in Section 9.5.5 for direct computation, or 9.5.7 for indirect computation, should be used. If any one of a group of data sets analyzed by regression shows a significant effect on properties due to the selected material dimension, all regressions should be tested for equality to determine whether the data sets may be combined and considered a homogeneous population. The procedure described in Section 9.5.2.4 should be used to perform this test. If the regressions are accepted as equal, then T99 and T90 values can be calculated in one of two ways: (1) by regression; or (2) by dividing data into thickness ranges and calculating T99 and T90 values for each range. If the regressions are not equal, T99 and T90 values should be calculated separately for each data set and minimum T99 and T90 values determined for all data sets should be reported. The method for determining T99 and T90 by regression is described in Section 9.5.6. Figures 9.5.1.2(a) and (b) illustrate the procedures used to determine design allowables when regression is required. If none of the individual data sets (e.g. different producers) show significant regression due to the chosen material dimension, the different data sets should be tested for homogeneity using a k-sample Anderson-Darling test as described in Section 9.5.3.1. If data sets are found to be homogenous, data should be pooled and T99 and T90 values should be calculated using the single combined data set. If data from the various producers constitute more than one population, the following procedure should be used. (1)
Data sets which do not comply to the minimum number of observations as stated in Sections 9.2.4.2 should be excluded from any further evaluation until they meet the minimum requirements.
(2)
Each remaining data set should be tested for acceptability using the three-parameter Weibull acceptability test described in Section 9.5.4.3. If there is statistical evidence that one or more statistically distinct data sets do not meet the specification minimum value, the results will be brought to the Material Task Group where a decision will be made on whether or not these data sets should be included in the computation of material property values.
(3)
All remaining data sets should be tested for homogeneity using the k-sample AndersonDarling test. If the data sets are found to be homogeneous, T99 and T90 values can be calculated using a single combined data set. If the populations are not homogeneous, material property values must be determined by calculating T99 and T90 values for each data set. In the latter case, the data set with the lowest T99 and T90 values will generally be used to establish minimum design values.
9.5.1.3 Data Transformation 9.5.1.3.1 Use of Transformed Data with Backoff - In some situations a concern may arise when a logarithmic transformation is applied to data with small values resulting in zero or negative values in the transformed metric. Although this situation is not likely to occur with strength data, individuals that use the MMPDS methodologies for other physical measurements (e.g. elongation) may occasionally encounter this problem. Since the maximum backoff within MMPDS is 1% of the average, the minimum value minus the backoff will only be zero or negative if the data have a very large span over a few orders of magnitude. For a dataset such as this, a log transformation would likely be prudent thereby eliminating the issue.
9-85
MMPDS-06 1 April 2011 However, it is simple to modify the existing procedures so that zero or negative values after backing off never occur, as follows: Define Y(1), Y(2) and OFFSET as follows: 1) 2) 3)
Y(1) = smallest distinct value in dataset (raw or transformed as appropriate) Y(2) = second smallest distinct value in dataset (raw or transformed as appropriate) IF Y(1) > 0 THEN OFFSET = 0; ELSE OFFSET = 0.10*(Y(2)-Y1)) - Y(1)
The OFFSET is then added to each point in the dataset and the unrounded statistics (Mean, T90, T99, etc.) are computed using the current methods. The OFFSET is then subtracted from these values prior to rounding. 9.5.1.3.2 Correcting for Bias - In some situations, especially those involving computation of typical properties rather than lower bound properties (e.g. KIC data), it is also important to avoid bias in the computation of the mean value from log or power transformed data. Since these transformations are monotonic, a simple inverse transformation g-1(") may be applied to obtain the T90 and T99 values in the original metric. (The inverse transformation should be applied prior to rounding.) In this situation inverse transformations are appropriate because the T90 and T99 statistics are statements about percentiles of the dataset and percentiles map properly when a monotonic transformation is applied. However, if the mean value is also of interest, a simple inverse transformation cannot be applied without correcting for bias. For example, the mean of a log-transformed dataset will back-transform to the median in the original metric. To correct for the bias, a Taylor Series expansion of the inverse function may be applied, a procedure often referred to as the "Delta Method." Logarithmic Transformations Let X be the original metric and let Y=ln(X) be the transformed data. Also, define µ = E(Y) and = σ2= Var(Y) To determine the mean value in the original metric: E(X) = E(eY) the following steps should be taken: 1)
expand eY in a Taylor Series about µ: eY|µ ~ eµ + eµ (Y-µ) + (1/2)eµ (Y-µ)2
2)
then calculate the expectations for E(eY|µ) as follows: E(eY|µ) ~ eµ + eµ E(Y-µ) + (1/2)eµ E((Y-µ)2) = eµ + 0 + eµ (1/2)E((Y-µ)2) = eµ + 0 + eµ (1/2) σ2
9-86
MMPDS-06 1 April 2011 = eµ (1 + σ2/2)
In other words, to correct for the bias, the exponentiated mean must be multiplied by (1 + σ2/2). Power Transformations Let X be the original metric and let Y=X(1/p) be the transformed data. Also, define µ = E(Y) and = σ2= Var(Y) To determine the mean value in the original metric: E(X) = E(Yp) the following steps should be taken: 1)
expand Yp in a Taylor Series about µ: Yp|µ ~ µ p + pµ p-1 (Y-µ) + (1/2) p(p-1)µ p-2 (Y-µ)2
2)
then calculate the expectations E(Yp|µ ) as follows: E(Yp|µ ) ~ µ p + pµ p-1 E(Y-µ) + (1/2) p(p-1)µ p-2 E((Y-µ)2) = µ p + 0 + (1/2) p(p-1)µ p-2 E((Y-µ)2) = µ p + 0 + (1/2) p(p-1)µ p-2 σ 2 = µ p (1 + (1/2) p(p-1)(σ/µ)2)
In this case, to correct for the bias, the inverse-transformed mean must be multiplied by (1 + (1/2) p(p-1)(σ/µ)2) Example: Square Root Transformation Suppose that: µ = E(%X) = E(Y) and σ2= Var(%X) = Var(Y) In this case, the bias may be corrected by using the definition of variance: Var(Z) = E(Z2) B (E(Z))2 Or, E(Z2) = Var(Z) + (E(Z))2 So, E(X) = E((%X)2) = Var(%X) + (E(%X))2 = σ2 + µ 2
9-87
MMPDS-06 1 April 2011
This result means that in this case the bias is additive and is equal to the variance. This can be verified by using p = 2 in the above formula, and performing the same correction for bias and producing the same result: E(Y2|µ ) ~ µ 2 (1 + (1/2) 2(2-1)(σ/µ)2) = µ 2 (1 + σ/µ)2 = µ 2 + σ2 9.5.1.3.3 Transformation of Variables in a Regression Analysis - In a regression setting
it may be helpful to transform the independent variable (e.g. thickness) to linearize data trends as a function of that variable, thereby simplifying subsequent regression analyses. For example, Figure 9.5.1.3.3(a) displays a collection of tensile yield strength data generated over a broad range of thicknesses (0.04 to 4.0 inches), along with a linear regression fit to the overall data trends. Clearly, the linear fit to the data does a poor job of representing the overall data trends, substantially underestimating the average properties for the thinnest material and substantially overestimating the average properties for the thickest material. 125 120
Tens ile Yield Strength, k si
115 110 105 100 95 90 85 80 75 0
0.5
1
1.5
2
2.5
3
3.5
4
Thickness, in.
Figure 9.5.1.3.3(a) Example of Strength Properties Developed Over a Broad Range of Product Thicknesses, with a Superimposed Linear Regression Fit to the Data Trends
With such a poor estimate of the mean trends it would be impossible to develop realistic design allowables for this material based on regression analysis.
9-88
MMPDS-06 1 April 2011 An attempt to represent the average trends of the same dataset with a quadratic regression is shown in Figure 9.5.1.3.3(b). In this case, the average properties of the thinnest products are better represented, but the average properties of the thickest products are still not represented well, with an unrealistic upward shift in predicted properties for the very thickest material. 125 120
Tensile Yield Strength, ksi
115 110 105 100 95 90 85 80 75 0
0.5
1
1.5
2
2.5
3
3.5
4
Thicknes s, in.
Figure 9.5.1.3.3(b) Example of Strength Properties Developed Over a Broad Range of Product Thicknesses, with a Superimposed Quadratic Regression Fit to the Data Trends
Once again, this relatively poor estimate of the mean trends would decrease the accuracy of design allowables estimates developed for this material through regression analysis. However, a simple log-transformation of the thickness values for this dataset produces a very well-behaved linear data trend, as shown in Figure 9.5.1.3.3(c). The log transformation "stretches out" the low-thickness regime relative to the high-thickness regime, thereby "linearizing" data trends that originally looked very non-linear. It is logical to assume that design allowables developed through a linear regression analysis of the tensile properties as a function of the transformed thicknesses, as shown in Figure 9.5.1.3.3(c), would be more realistic than those developed based on lower bound tolerance limits from the mean trends shown in either Figure 9.5.1.3.3(a) or (b). That is because the overall trends of the data are far better represented, as can be seen in Figure 9.5.1.3.3(d), where the mean curve shown in Figure 9.5.1.3.3(c) is re-plotted on the arithmetic scale used initially in Figure 9.5.1.3.3(a) and (b).
9-89
MMPDS-06 1 April 2011
125 120
Tensile Yield Strength, ksi
115 110 105 100 95 90 85 80 75 -1.5
-1.3
-1.1
-0.9
-0.7
-0.5
-0.3
-0.1
0.1
0.3
0 .5
0.7
log (Thickness , in.)
Figure 9.5.1.3.3(c) Example of Strength Properties Developed Over a Broad Range of Product Thicknesses with a Superimposed Log-Linear Regression Fit to the Data Trends
125 120
Tensile Yield Strength, ksi
115 110 105 100 95 90 85 80 75 0
0.5
1
1.5
2
2.5
3
3.5
Thickness, in.
Figure 9.5.1.3.3(d) Example of Strength Properties Developed Over a Broad Range of Product Thicknesses, with a Superimposed Linear Regression Fit to the Transformed (Logarithmic) Thickness Values
9-90
4
MMPDS-06 1 April 2011 In a regression setting it may also be helpful to transform the dependent variable so that the regression residuals are not positively or negatively skewed, and more closely approximate a normal distribution. Such a transformation may allow completion of standard least squares regression analyses, without making special provisions for positively or negatively skewed regression residuals. For example, Figure 9.5.1.3.3(e) shows strength properties generated over a broad range of thicknesses that not only show nonlinear trends with thickness, but also show a tendency toward positive skewness in the residuals (deviations of individual observations from the mean curve). 180
160
Tensile Yield Strength, ksi
140
120
100
80
60
40 0.00
0.50
1.0 0
1.50
2.00
2.50
3.00
3.50
4.00
Thickness, in.
Figure 9.5.1.3.3(e) Example of Strength Properties Showing Positive Skewness Tendencies and Developed Over a Broad Range of Product Thicknesses, with a Superimposed Log-Linear Regression Fit to the Data Trends
Clearly, the linear regression fit to these data does a very poor job of representing the overall mean trends. Similarly, the quadratic regression fit to these data also provides an inadequate representation of the overall mean trends, as shown in Figure 9.5.1.3.3(f). However, a double log transformation of the dependent and independent variables removed the nonlinearity in data trends with thickness and the skewness in the residuals, as shown in Figure 9.5.1.3.3(g).
9-91
MMPDS-06 1 April 2011
180
log (Tensile Yield S trength, ksi)
160
140
120
100
80
60
40 0.00
0.50
1.0 0
1.50
2.00
2.50
3.00
3.50
4.00
Thickness, in.
Figure 9.5.1.3.3(f) Example of Strength Properties Showing Positive Skewness Tendencies and Developed Over a Broad Range of Product Thicknesses, with a Superimposed Quadratic Regression Fit to the Data Trends
2.50 2.40
log (Tensile Yield S trength, ksi)
2.30 2.20 2.10 2.00 1.90 1.80 1.70 1.60 y = -1.01765E-01x + 1.96009E+00
1.50 -1.50
-1 .30
-1.10
-0.90
-0.70
-0.50
-0.30
-0.10
0.10
0.30
0.50
0.70
log (Thickness, in.)
Figure 9.5.1.3.3(g) Example of Transformed Strength Properties to Eliminate Positive Skewness of Residuals with a Superimposed Log-Linear Regression Fit to the Data Trends
9-92
MMPDS-06 1 April 2011
The mean trends shown in Figure 9.5.1.3.3(g) are shown in the traditional format in Figure 9.5.1.3.3(h). This result provides a suitable baseline from which to work to compute realistic design allowables without resort to complex skewed distribution regression analysis procedures. 200 180
log (Tensile Yield S trength, ksi)
160 140 120 100 80 60 40 20 0 0.00
0.50
1.0 0
1.50
2.00
2.50
3.00
3.50
4.00
Thickness, in.
Figure 9.5.1.3.3(h) Example of Untransformed Strength Properties Developed Over a Broad Range of Product Thicknesses, with a Superimposed Linear Regression Fit to the Transformed (Logarithmic) Thickness Values
9.5.2 REGRESSION ANALYSIS — Mathematical techniques for performing a simple linear regression analysis are contained in Section 9.5.2.1. Similar techniques for performing a quadratic regression analysis are contained in 9.5.2.2. Statistical tests to determine whether a linear or quadratic regression adequately describes the data are described in Section 9.5.2.3. A test for equality of several regression lines is presented in Section 9.5.2.4. Example analyses are presented in Section 9.8 using hypothetical data to illustrate the regression calculations. Figure 9.5.1.2(b) provides guidance in choosing an appropriate regression analysis to use for calculating design allowables.
9-93
MMPDS-06 1 April 2011
I n d ire c t A n a ly s is R e g re s s io n R e q u ire d (F ro m F ig u re 9 . 5 )
D e t e rm in e I n d iv id u a l R a t io o f P ro p e rt ie s
(TU S , S U S , B U S )/ TU S
(TY S , C Y S , B Y S )/ TY S
D e t e rm in e R e g re s s io n E q u a t io n f (x ), w h e re x = t h ic k n e s s , c ro s s s e c t io n a l a re a , e t c . (S e c t io n 9 . 5 . 8 )
C om pute R educ ed R a t io s a t A p p ro p ria t e V a lu e s o f x
C o m p u t e : (R a t io )(F t y )
C o m p u t e : (R a t io )(F t u )
Figure 9.5.1.2(a). Determination of Indirect Design Allowables When Regression is Required.
9-94
MMPDS-06 1 April 2011
Pooling of data (determined from Figure 9.5.1)
Was trial Linear Regression adequate? (Section 9.5.2.3)
No
No
Are there data at 4 or more dimensional levels?
Yes
Are data roughly equally spaced?
No
Consider collecting more appropriate test data
Yes
Consider transformations of the data from which regression methods may work, or use methods described in Section 9.5.5 (Direct Computation) or Section 9.5.7 (Indirect Computation
Fit a Quadratic Model (Section 9.5.2.2)
Yes Is Quadratic Regression adequate?
No
Yes
Is Quadratic Regression significant?
No
Yes
Calculate allowables based on regression methods in Section 9.5.6 (Direct Computation) of Section 9.5.8 (Indirect Computation)
Figure 9.5.1.2(b). Determination of Direct Allowables When Regression is Required.
9-95
MMPDS-06 1 April 2011 Regression is sometimes employed with transformed variables; that is, it may be necessary to work with log(TUS), t2, or 1/(T + 460), for example. When this is the case, the analyst must remember to transform variables back to the original engineering units after final computations. Regression analysis, as described herein, also assumes that residuals are normally distributed about the regression line. Residuals are the differences between observed data values and the values which are predicted by the fitted regression equation. Validity of this normality assumption should be evaluated by performing the Anderson-Darling test presented in Section 9.5.4.1. 9.5.2.1 Linear Regression — Linear regression is appropriate when there is an approximate linear relationship between two measurable characteristics. Such a relationship is expressed algebraically by an equation that, in the case of two measurable characteristics x and y, has the form y ' α % βx % ε
[9.5.2.1(a)]
where x = independent variable y = dependent variable α = true intercept of the regression equation β = true slope of the regression equation ε = measurement or experimental error by which y differs from the ideal linear relationship. Aside from the error term, ε, this is the equation of a straight line. The parameter α determines the point where this line intersects the y-axis, and the β represents its slope. The variables x and y may represent either direct measurements or some transformation measurements of the characteristics under consideration. Knowing or assuming such an approximate linear relationship, the problem becomes one of estimating the parameters α and β of the regression equations. It is necessary to have a random sample consisting of n pairs of observations, which is denoted by (x1, y1),(x2, y2),..., (xn, yn). Such a sample can be represented graphically by n points plotted on a coordinate system, in which x is plotted horizontally and y vertically. A subjective solution can be obtained by drawing a line that, by visual inspection, appears to fit the points satisfactorily. An objective solution is given by the method of least squares. The method of least squares is a numerical procedure for obtaining a line having the property that the sum of squares of vertical deviations of the sample points from this line is less than that for any other line. In this analysis, the least-squares line is represented by the equation í = a + bx , in which í = predicted value of y for any value of x a and b = estimates of the parameters α and β in the true regression equation obtained by the least squares method presented below.
9-96
[9.5.2.1(b)]
MMPDS-06 1 April 2011 It can be shown with the aid of calculus that the values of a and b that minimize the sum of squares of the vertical deviations are given by the formulas: 'y & b 'x n
a '
b '
where
[9.5.2.1(c)]
Sxy
[9.5.2.1(d)]
Sxx
Sxy ' 'xy &
'x 'y n
Sxx ' 'x 2 &
'x 2 n
,
[9.5.2.1(e)]
and .
[9.5.2.1(f)]
The root mean square error of y is expressed as Sy '
'(y & yˆ )2 n & 2
[9.5.2.1(g)]
where í is the predicted value of y defined above. This quantity is an estimate of the standard deviation of the distribution of y about the regression line. A convenient computational formula for sy is
sy '
Syy & b 2Sxx
[9.5.2.1(h)]
n & 2
where Syy ' 'y 2 &
'y 2 n
[9.5.2.1(i)]
The quantity R2 = (b2Sxx)/Syy measures the proportion of total variation in the y data, about its average, that is explained by the regression. An R2 equal to 1 indicates that the regression model describes the data perfectly, which is rare in practice. R2 provides a rough idea of how well data is described by a linear regression. A more precise determination of the adequacy of a linear regression is discussed in Section 9.5.2.3. 9.5.2.2 Quadratic Regression — Quadratic regression is appropriate when there is an approximate quadratic relationship between two measurable characteristics. Such a relationship is expressed algebraically by an equation that, in the case of two measurable characteristics x and y, has the form
9-97
MMPDS-06 1 April 2011 y = α + βx + γx2 + g,
[9.5.2.2(a)]
where x y α β γ g
= = = = = =
independent variable dependent variable true intercept of the regression equation true coefficient of the linear term in the regression equation true coefficient of the quadratic term in the regression equation measurement or experimental error by which y differs from the ideal linear relationship.
Aside from the error term, g, this is the equation of a parabola. The parameter α determines the point where this curve intersects the y-axis. The variable x and y may represent either direct measurements or some transformation measurements of the characteristics under consideration. Knowing or assuming such an approximately quadratic relationship, the problem becomes one of estimating the parameters α, β, and γ of the regression equation. It is necessary to have a random sample consisting of n pairs of observations, which is denoted by (x1,y1), (x2,y2), ..., (xn,yn). Such a sample can be represented graphically by n points plotted on a coordinate system, in which x is plotted horizontally, y vertically. A subjective solution can be obtained by drawing a curve that, by visual inspection, appears to fit the points satisfactorily. An objective solution is given by the method of least squares. The method of least squares is a numerical procedure for obtaining a second-degree polynomial having the property that the sum of squares of vertical deviations of the sample points from this curve is less than that for any other second-degree polynomial. In this analysis, the least squares curve is represented by the equation
yˆ ' a % bx % cx 2
[9.5.2.2(b)]
,
in which í = predicted value of y for any value of x a, b, and c = estimates of the parameters α, β and γ in the true regression equation obtained by the least squares method presented below. It can be shown with the aid of calculus that the values of a, b, and c that minimize the sum of squares of the vertical deviations are given by the formulas: a ' ¯y & b j
& c j
x n
x2 n
j X1Y j X2 & j X2Y j X1X2 b ' D 2
9-98
MMPDS-06 1 April 2011
j X2Y j X1 & j X1Y j X1X2 c ' D
[9.5.2.2(c)]
D ' j X1 j X2 & j X1X2 2
[9.5.2.2(d)]
2
where 2
2
and where X1 = x - Σx/n, X2 = x2 - Σx2/n, Y = y - Σy/n, all symbols being summed are subscripted by i, and all summations are over i=1 to n. The root mean square error of y is expressed as
sy '
j (y&ˆy) n & 3
2
[9.5.2.2(e)]
where í is the predicted value of y defined above. This quantity is an estimate of the standard deviation of the distribution of y about the regression curve. A convenient computational formula for sy is
sy '
2 j Y &bj X1Y&cj X2Y / (n&3)
[9.5.2.2(f)]
The quantity R2 = 1-(n-3) s2y / ΣY2 measures the proportion of total variation in the y data, about its average, that is explained by the regression. An R2 equal to 1 indicates that the regression model describes the data perfectly, which is rare in practice. R2 provides a rough idea of how well the data are described by a quadratic regression. Another quantity, Q, is required to compute allowables by quadratic regression analysis. Q is defined as 2
3
4
Q ' q1 % 2q2x o % (2q3%q4) xo % 2q5 x o % q6 xo
[9.5.2.2(g)]
where x0 is the value of the independent variable for which the allowable is being calculated and q1, q2, q3, q4, q5 and q6 are defined as: q1 = k [ ce – d2], q2 = k [ cd – be], q3 = k [ bd – c2],
9-99
MMPDS-06 1 April 2011 q4 = k [ ae – c2], q5 = k [ bc – ad], and q6 = k [ ac – b2] where* a = n, b = Σ xi, c = Σ xi2, d = Σ xi3, e = Σ xi4, and k = [ (ace + 2bcd) – ( c3 + ad2 + b2e) ]-1. 9.5.2.3 Tests for Adequacy of a Regression — It is possible that the relationship between the dependent variable y and the independent variable x may not be well approximated by the chosen model (linear or quadratic). In that case, the predicted values, modeled by a line or a quadratic curve, would not “fit” the data very well. It is also possible that the relationship between x and y, although well described by the chosen model, is not very strong. That is, there may not be much change in the y values over the range of x considered. This is measured by the “significance” of the regression. Both the lack of fit and the significance of a linear regression equation can be evaluated through an analysis of variance as described in this section. To evaluate the adequacy of a regression model requires satisfying two conditions. First, it is necessary that there are multiple observations at one or more values of the independent variable x. Second, in the case of a linear regression, there must be three or more distinct x values; in the case of a quadratic regression, there must be four or more distinct x values. The analysis of variance for testing lack of fit and significance of regression is based on the assumption that the measurement errors, εi, in the relationship between yi and xi [see 9.5.2.1(a) and 9.5.2.2(a)] are independent and normally distributed with an overall mean of zero and a constant variance of σ2. Assuming uniformity of variance of measurement errors over the range of the independent variable, the normality assumption concerning unobservable εi can be checked by performing the Anderson-Darling test for normality on the observed residuals
e i = y i − yˆ i , *
Although it is not necessary for the computations, the values q1, q2, q3, q4, q5, and q6 represent elements
of the inverted matrix ( X ' X )
−1
q1 = q 2 q3
q2 q4 q5
n q3 q 5 , where X ' X = ∑ xi ∑ xi2 q 6
9-100
∑x ∑x ∑x ∑x ∑x ∑x i 2 i 3 i
2 i 3 i 4 i
.
MMPDS-06 1 April 2011
i=1,…, n, where
yˆ i = a + bx i in the case of linear regression, and
yˆ = a + bx + cx 2 i i i in the case of quadratic regression. See Sections 9.5.2.1 and 9.5.2.2 for details on the computation of a, b, and c, and see Section 9.5.4.1 for details on the Anderson-Darling test for normality. By plotting the residuals, ei, against the respective xi, an informal check on the assumption of constant variance is possible as well. In such a plot, residuals should vary approximately equally over the range of xi values. The analysis of variance table for testing lack of fit and significance of a linear regression is shown below. In this table, n represents the total number of data points for which x and y are available, k represents the number of distinct x values. Formulas for calculating the terms provided in the table are described below.
Degrees of Freedom Source of Variation Regression Error Lack of Fit Pure Error Total
Linear 1 n-2 k-2 n-k n-1
Sum of Squares, SS SSR SSE SSLF SSPE SST
Quadratic 2 n-3 k-3 n-k n-1
Mean Squares, MS MSR MSE MSLF MSPE
Fcalc F1 F2
The sums of squares (SS terms) for the Regression, Error, and Total lines of the analysis of variance table are calculated using the following:
∑ ( yˆ = ∑ (y = ∑ (y
SSR =
i
SST
i
SSE
i
− y)2 − y)2 − yˆ i ) 2
To calculate the sums of squares for lack of fit (SSLF) and pure error (SSPE) requires a relabeling of the data, ordered by x value. To this point, the measured values yi have been arbitrarily ordered. For these calculations, let Yuj represent the jth data value at the uth x level, and let nu represent the number of data values at the uth x level. Let
nu
Yu =
∑Y
uj
j=1
9-101
/n u
MMPDS-06 1 April 2011 Also, let Yˆuj = yˆ i ,
or the predicted y value corresponding to the x value paired with Yuj. (Notice that
Yˆu 1 = Yˆu 2 = Yˆu 3 = L = Yˆun , because each of these y values have the same x value paired with it.)
Then k
SSLF =
nu
∑ ∑ (Y
u
ˆ −Y uj
), 2
u =1 j =1
and
SSPE = SSE – SSLF. The sums of squares are then divided by their respective degrees of freedom to compute mean squares follows:
Mean Square MSR MSE MSLF MSPE
Linear Regression SSR SSE/(n-2) SSLF/(k-2) SSPE/(n-k)
Quadratic Regression SSR/2 SSE/(n-3) SSLF/(k-3) SSPE/(n-k)
These mean squares are used to compute two F statistics which test for lack of fit and significance of regression. (Note: If the requirements described at the beginning of this section are not satisfied, then it is not possible to test for lack of fit.) The two F statistics, F1 and F2, are defined as ratios of the mean squares as specified below: F1 = MSR/MSE F2 = MSLF/MSPE. F2 and Table 9.10.2 are used to test for lack of fit. If F2 is greater than the 95th percentile of the F distribution with k – 2 numerator degrees of freedom (k – 3 for quadratic regression) and n – k denominator degrees of freedom (from Table 9.10.2), then there is significant lack of fit. In this case it may be concluded (with a 5 percent risk of error) that linear regression does not adequately describe the relationship between x and y. Otherwise, lack of fit can be considered insignificant and the chosen model can be assumed. If lack of fit is not significant, the significance of regression may be tested using F1 and Table 9.10.2. If F1 is greater than the 95th percentile of the F distribution with 1 numerator degree of freedom (2 for quadratic regression) and n – 2 denominator degrees of freedom (n – 3 for quadratic regression), then regression is significant and the selected model may be assumed. Otherwise, regression is not significant and x is considered to have little or no predictive value for y.
9-102
MMPDS-06 1 April 2011 9.5.2.4 Testing for Equality of Several Regressions — The procedure presented in this section is designed to test the hypothesis that the true regression equations corresponding to two or more independent data sets are equal (linear or quadratic). It is appropriately applied to test the equality of several regressions in determining whether corresponding data sets should be combined for the purpose of calculating design allowables. To test k regressions for equality, the following procedure should be performed. Perform separate regression analyses for each data set. The same model form should be used in all regressions (all linear or all quadratic). Add error sum of squares (SSE) values from each of the separate regressions to obtain SSE(F), the error sum of squares for the full model which allows separate slope and intercept parameters for each data set. Then fit a single regression to the combined data from all data sets to obtain SSE(R), error sum of squares for the reduced model which contains a single set of coefficients a and b (and c for quadratic models) which apply to all data sets. The F statistic for testing the equality of the k regressions is F '
SSE(R) & SSE(F) SSE(F) ÷ 2(k & 1) n & 2k
for simple linear models, and F '
SSE(R) & SSE(F) SSE(F) ÷ 3(k & 1) n & 3k
for quadratic models, where n denotes total number of observations in all k data sets combined. In the linear case, if F is greater than the 95th percentile of the F distribution with 2(k - 1) numerator degrees of freedom and n - 2k denominator degrees of freedom (from Table 9.10.2), the hypothesis that the regressions are equal is rejected. In the quadratic case, if F is greater than the 95th percentile of the F distribution with 3(k - 1) numerator degrees of freedom, and n - 3k denominator degrees of freedom, the hypothesis that the regressions are equal is rejected. See Reference 9.5.2.4 for more detail. Example of Computations — In this example, x represents thickness and y represents the TYS values determined from a group of tensile tests. Values of x and y are as follows: X 0.100 0.100 0.200 0.200 0.300 0.300 0.400 0.400 0.500 0.500
Y 121 119 114 108 112 108 112 106 101 99
9-103
MMPDS-06 1 April 2011 From these data, the following quantities may be calculated: n Σx Σy Σx2 Σy2 Σxy
(Σx)2 (Σy)2 (Σx)(Σy) Sxx Sxy Syy
= 10 =3 = 1100.0 = 1.1 = 121452 = 321.6
=9 = 1210000 = 3300 = 0.20 = -8.4 = 452.
The slope of the regression line is: b '
Sxy Sxx
&8.4 ' &42 0.20
'
.
The y-intercept of the regression line is: a '
'y & b 'x 1100 (&42)(3) ' & ' 110 % 12.6 ' 122.6 n 10 10
.
Thus the final equation of the least squares regression line is: í = a + b x = 122.6 ! 42x . The total of the y data at each x level is needed to calculate lack of fit and pure error sums of squares. These totals are as follows: xi
Ti
0.1
240
0.2 0.3
222 220
0.4 0.5
218 200
There are data values at k = 5 different x levels, with ni = 2 values at each level and j (Ti /ni) ' k
i'1
2
(240)2 (200)2 % ... % ' 121404 2 2
Thus, SSLF = 121404 ! (1100)2/10 ! 352.8 = 51.2 and SSPE = 99.2 ! 51.2 = 48.
9-104
.
MMPDS-06 1 April 2011 The mean square values are computed by dividing corresponding sums of squares by their degrees of freedom. The F1 and F2 statistics are then calculated as ratios of mean squares. The analysis of variance table is shown below. Degree of Freedom, DF
Sum of Square, SS
Mean Squares, MS
Fcalc
Regression
1
352.8
352.8
F1 = 28.5
Error
8
99.2
12.4
Lack of Fit
3
51.2
17.07
Pure Error
5
48.0
9.6
9
452.0
Source of Variation
Total
F2 = 1.78
Using this equation, the following values of í may be computed for the values of x listed previously. x
í
0.100
118.4
0.200 0.300
114.2 110.0
0.400 0.500
105.8 101.6
The root mean square error is computed as follows: '(y & yˆ )2 ' n & 2
Sy '
99.2 8
or
Sy '
Syy & b 2Sxx n & 2
452 & (&42)2(0.2) ' 3.52 8
'
R2 is computed as follows: 2
R '
b 2Sxx Syy
'
(&42)2(0.2) ' 0.78 452
9-105
.
MMPDS-06 1 April 2011 Thus, 78 percent of the variability in the y data about its average is explained by the linear relationship between y and x. The sum of squares for the regression, total and error lines are computed as follows: SSR = (-42)2 (0.20) = 352.8 SST = 452 SSE = 452 - 352.8 = 99.2. The F2 value of 1.78 with k - 2 = 3 and n - k = 5 degrees of freedom is less than the value of 5.41 from Table 9.6.4.9 corresponding to 3 numerator and 5 denominator degrees of freedom. This indicates that lack of fit can be considered insignificant. Thus, it is reasonable to assume that a linear regression adequately describes the data. The F1 value of 28.5 with 1 and n - 2 = 8 degrees of freedom is greater than the value of 5.32 from Table 9.10.2 corresponding to 1 numerator and 8 denominator degrees of freedom, so the slope of the regression is found to be significantly different from zero. 9.5.3 Combinability of Data — A test of significance is employed to make a decision on a statistical basis. In this section, three tests (k-sample Anderson-Darling test, “F” test, and “t” test) are described for use in determining whether the populations from which two or more samples are drawn are identical. The k-sample Anderson-Darling test is the most general and does not depend on a specific assumed distribution, and may be used to evaluate combinability of two or more data sets. The “F” and “t” tests should only be used to evaluate combinability of two samples that can be assumed to be normally distributed. The “F” test is used first to determine whether the two sample variances differ significantly or not (with a 5 percent risk of error). If the two sample variances do not differ significantly, the “t” test is used to determine whether the two sample means differ significantly. If either the two sample variances or the two sample means differ significantly (with a 5 percent risk of error), one may conclude (with a 9.75 percent joint risk of error) that the populations from which the two samples were drawn are not identical. Otherwise, the hypothesis that the two populations are identical is not rejected. The tests given are exact when: (1) The observations within each sample are taken randomly from a single population of possible observations, and (2) The characteristic measured is normally distributed within this population. To carry out a similar procedure without requiring the assumption of an underlying normal distribution, or if three or more samples are to be compared, the k-sample Anderson-Darling test should be employed. This test is a nonparametric procedure and simply tests the hypothesis that populations from which the samples are drawn are identical. 9.5.3.1 The k-Sample Anderson-Darling Test — The k-sample Anderson-Darling test is designed to test the hypothesis that populations from which two or more independent random samples were drawn are identical. The test is appropriately applied to determine whether two or more products differ with regard to strength distributions. The test is a nonparametric statistical procedure and, thus, requires no assumptions other than the samples are true independent random samples from their respective populations.
9-106
MMPDS-06 1 April 2011
Consider the products A1, A2, ..., Ak. Let X11, X12, ..., X1n1, denote a sample of n1 data points from product A1, let X21, X22, ..., X2n2 denote a sample of the n2 data points from product A2, and so forth. Furthermore, let N = n1 + n2 + ... + nk represent the total number of data points in the combined samples. Let L denote the total number of distinct data points in the combined samples and Z(1), Z(2), ..., Z(L) denote the distinct values in the combined data set ordered from least to greatest. The k-sample AndersonDarling statistic is defined by ADK '
N&1 N 2(k&1)
L (NFij & ni Hj)2 1 h j ni j'1 j Hj(N & Hj) & Nhj/4
j k
i'1
where hj = the number of values in the combined samples equal to Z(j) Hj = the number of values in the combined samples less than Z(j) plus one-half the number of values in the combined samples equal to Z(j) and Fij = the number of values in sample corresponding to product Ai which are less than Z(j) plus onehalf the number of values in the sample corresponding to product Ai which are equal to Z(j). Under the hypothesis of no differences in the sampled populations, the mean of ADK is approximately one and the variance is approximately 2
σN ' Var(ADK) '
aN 3 % bN 2 % cN % d (k&1)2 (N&1) (N&2) (N&3)
with a = (4g - 6) (k - 1) + (10 - 6g)S b = (2g - 4)k2 + 8Tk + (2g - 14T - 4)S - 8T + 4g - 6 c = (6T + 2g - 2)k2 + (4T - 4g + 6)k + (2T - 6)S + 4T d = (2T + 6)k2 - 4Tk where S ' j k
i'1
9-107
1 ni
MMPDS-06 1 April 2011
T ' j
N&1 i'1
1 i
and g ' j j N&2
N&1
i'1
j'i%1
1 (N&i)j
If ADK $1 % σN 1.645 %
0.678 k & 1
&
0.362 k & 1
one may conclude (with a 5 percent risk error) that samples were drawn from different populations. Otherwise, the hypothesis that samples were selected from identical populations is not rejected. For more information on the k-sample Anderson-Darling test, see Reference 9.5.3.1. 9.5.3.2 The F Test — The F test is used to determine whether the strength of two products differs with regard to variability. Consider two products, A and B. These might represent two different processes, thickness ranges, or test directions. The statistics for the samples drawn from these products are:
Sample size Sample standard deviation Sample mean
Product A nA sA ¯ X A
Product B nB sB ¯ X B
F is the ratio of the two sample variances, thus, F = sA2/sB2
[9.5.3.2]
If the true variances of Products A and B are identical at a significance level of α = 0.05, F should lie within the interval defined by F0.975 (for nA - 1 and nB - 1 degrees of freedom), and 1/F0.975 (for nB - 1 and nA - 1 degrees for freedom).* If F does not lie within this interval, it can be concluded that the two products differ with regard to their variability. Values of F0.975 are presented in Table 9.10.3.
* Since a two-sided interval is being defined for the population variance, the fractile of the F distribution corresponding to I-α/2 should be used, i.e., F0.975.
9-108
MMPDS-06 1 April 2011 Example of Test Computation — The following sample statistics are reported: Product A
Product B
Sample size
20
30
Sample standard deviation, ksi
4.0
5.0
100.0
102.0
Sample mean, ksi Perform an F test as follows: F = sA2/sB2 = 42/52 = 0.64 df = nA - 1 = 19 nB - 1 = 29 F0.975 (19,29) = 2.23 1/F0.975 (29,19) = 1/2.40 = 0.42
A
From Table 9.10.3
Since 0.64 lies within the interval of 0.42 to 2.23 one can conclude that there is no reason to believe that Products A and B differ with regard to their variability. 9.5.3.3 The t Test — The t test is used to determine whether two products differ with regard to average strength. If they do, one may conclude that the two products do not belong to the same population. In making the t test, it is assumed that the variances of two products are nearly equal, as first determined from the F test. If the F test shows that the variances are significantly different, there is no need to conduct the t test. Consider the same products, A and B. The statistics for samples drawn from these products are: Product A
Product B
Sample size
nA
nB
Sample standard deviation, ksi Sample mean, ksi
sA — XA
sB — XB
D-x is the absolute difference between the two sample means. ¯ & X ¯ * DX¯ ' * X A B
[9.5.3.3(a)]
If the true means of products A and B are identical, D-x should not exceed u, which is determined as indicated by the following equation for a significance level of α = 0.05.
u ' t0.975sp
nA % nB nAnB
9-109
[9.5.3.3(b)]
MMPDS-06 1 April 2011 where t0.975 has nA + nB ! 2 degrees of freedom* and 2
sp '
2
(nA & 1)sA % (nB & 1)sB
[9.5.3.3(c)]
nA % nB & 2
Values of t0.975 are found in Table 9.10.4. Example of Test Computation — The following sample statistics are the same as those in Section 9.5.3.2: Product A Sample size Sample standard deviation, ksi Sample mean, ksi
20
Product B 30
4.0 100.0
5.0 102.0
It was determined in Section 9.5.3.2 that the variances of Products A and B do not differ significantly. The t test computations to test the sample means are: df = nA + nB ! 2 = 48 t0.975 (for 48 df) = 2.011 (from Table 9.10.4) 2
sp '
2
(nA & 1)sA % (nB & 1)sB nA % nB & 2 nA % nB nAnB
u ' t0.975sp
nA % nB nAnB
'
'
(19)(4)2 % (29)(5)2 ' 4.63 ksi 48
20 % 30 ' 0.2887 (20)(30)
' (2.011)(4.63)(0.2887) ' 2.7 ksi
¯ & X ¯ * ' 2.0 ksi D¯x ' *X A B
Since D-x (2.0) is not greater than u (2.7), it may be concluded that there is no reason to believe that Products A and B differ with regard to their average strength. On the basis of both tests in this example, the conclusion would be that the two products were drawn from the same population.
* Since a two-sided interval is being defined from the population means, the fractile of the t distribution corresponding to 1-α/2 should be used, i.e., t0.975.
9-110
MMPDS-06 1 April 2011 9.5.4 Determining the Form of Distribution — The computational procedure selected to establish design-allowable values by statistical techniques is dependent upon distribution of strength measurements in the available sample. Both three-parameter Weibull and Pearson Type III distributions may be used. Some procedures in the Handbook still require that residuals from a model be normally distributed (such as determination of design allowables by regression analysis and detection of lower-tail truncation). As noted previously, references to normal, Weibull, or Pearson Type III distributions shall be interpreted as applying either to original measurements or to an appropriate transformation of them. This section contains a discussion and illustration of methods used to establish whether or not a population follows a normal, Weibull, or Pearson Type III distribution. Various goodness-of-fit test procedures are described in Sections 9.5.4.1 through 9.5.4.9. The purpose of each is to indicate whether an initial distribution assumption should be rejected. The methods presented are based on the “AndersonDarling” goodness-of-fit family of tests. These tests are objective and indicate (at 5 percent risk of error) whether the sample is drawn from the tested distribution. Unfortunately, these tests may reject the assumed distribution even though the distribution may provide a reasonable approximation within the lower tail. For this reason, the sequential Weibull procedure permits upper tail censoring when found to be appropriate, and the goodness-of-fit test described below allows for this. Nonetheless, some subjective reasoning should be employed after using a goodness-of-fit test. After a goodness-of-fit test has been performed (especially if the distributional assumption has been rejected), it is generally required that a cumulative probability plot of data be provided to graphically illustrate the degree to which the assumed distribution fits the data. Methods for development of normal probability plots (Section 9.5.4.2), Pearson probability plots (Section 9.5.4.6), and Weibull probability plots (Section 9.5.4.9) are presented. Sample size is denoted by n, sample observations by X1, ..., Xn, and sample observations ordered from least to greatest by X(1), ..., X(n). Data must be ungrouped. 9.5.4.1 “Anderson-Darling” Test for Normality — The “Anderson-Darling” test for normality is used to determine whether the curve which fits a given set of data can be approximated by a normal curve. The essence of the test is a numerical comparison of the cumulative distribution function for observed data with that for the fitted normal curve over the entire range of the property being measured. Let Z(i) ' X(i) & X /s i ' 1,...,n
— where X(i) is the ith smallest sample observation, X is the sample average, and s is the sample standard deviation. Equations for computing sample statistics are presented in Appendix A. The “Anderson-Darling” test statistic is AD ' j n
i ' 1
1 & 2i ln Fo Z(i) % ln 1 & Fo Z(n%1&i) n
& n
where Fo is the standard normal distribution function*. If AD > 0.752/ 1 % 0.75/n % 2.25/n 2
* The standard normal distribution function Fo is that function such that Fo(x) is equal to the area under the standard normal curve to the left of the value x.
9-111
MMPDS-06 1 April 2011
one may conclude (at 5 percent risk of error) that the population from which the sample was drawn is not normally distributed. Otherwise, the hypothesis that the population is normally distributed is not rejected. For further information on this test procedure, see References 9.5.4.1(a) and (b). The same procedure can be used to test the normality of the residuals e i ' yi & a % bxi
i ' 1,...,n
from a regression (see Section 9.5.2.1) assuming uniformity of variance of the residuals over the range of the independent variable. When calculating the test statistic AD, define Z(i) ' e(i)/s y i ' 1,...,n
where e(i), i = 1,...,n are the ordered residuals from smallest to largest and sy is the root mean square error of the regression defined in Section 9.5.5.1 or 9.5.5.2. The justification for this procedure may be found in Reference 9.5.4.1(c). 9.5.4.2 Normal Probability Plot —To graphically illustrate the degree to which a normal distribution fits a set of data, a normal probability plot may be formed by plotting the measured value of each — test point versus X + s Fo-1 (P/100) where Fo-1 is the inverse standard normal cumulative distribution function.* The line representing the fitted normal distribution is the line passing through the points with equal horizontal and vertical coordinates. If the horizontal axis is labeled with cumulative probabilities (P values) as in Table 9.10.5 rather than Fo-1 (P/100) values, the plot will be identical to a plot formed on normal probability paper. Figure 9.5.4.2 illustrates the use of a normal probability plot on Alclad 2524-T3 Aluminum Alloy Sheet and Plate data in the 0.063-0.128 inch thickness range. There are 309 measured test values with X = 45.24 and s = 1.923. There appears to be a systematic departure from the model (the measured values are higher than expected) in both tails, suggesting that the distribution of the measured values departs from a normal distribution. This model was rejected by the Anderson-Darling test for normality. 9.5.4.3 Three-Parameter Weibull Acceptability Test — The three-parameter Weibull acceptability test is designed to determine whether an acceptable proportion of a producer’s population is likely to exceed the specification limit for corresponding material property. Because this test is only used to screen data sets and is not used in the actual calculation of lower tolerance bounds, it is not required that the data be well-described by a Weibull distribution to apply this test. To carry out this test, an upper confidence bound (UCB) is calculated for the first percentile of the producer’s population. This UCB value is calculated in the same manner as a T99 value is calculated (in Section 9.5.5.2) with the following modifications: (1)
In solving for the threshold τ(θ) (Section 9.5.4.7.1), θ should be set equal to 0.10.
(2)
The value of V99 should be taken from Table 9.10.6 rather than Table 9.10.7 when using the formula for T99 (Equation [ 9.5.5.2(a)]) to calculate the UCB value.
* The point F0-1 (P/100) is that value such that the area under the standard normal curve to the left of Fo&1 (P/100) is P/100.
9-112
MMPDS-06 1 April 2011
Figure 9.5.4.2 Probability plot for a normal distribution fitted to a complete TYS data set for Alclad 2524-T3 aluminum alloy sheet in the 0.063-0.128 inch thickness range - rejected.
If UCB is greater than or equal to the specification limit, it is concluded that the producer’s data is acceptable. If UCB is less than the specification limit, it is concluded (with a 5 percent risk of error) that the producer’s data do not meet the specification minimum value. In statistical terms, this method tests (at 5 percent significance level) the hypothesis that at least 99 percent of the producer’s population is greater than the specification limit. If the hypothesis is not rejected (UCB greater than or equal to specification limit), then it is concluded that the producer’s data is acceptable. If the hypothesis is rejected (UCB less than the specification limit), it is concluded that the producer’s data is unacceptable. This technique is applicable only when data have not been censored from the sample. It also assumes that the data are distributed according to a three-parameter Weibull distribution (although normally distributed data and Pearson distributed data are also accommodated by this test). If the data sample is highly skewed, background data should be reviewed to determine whether the skewness is caused by a mixed population. If it is not, the Weibull test procedure can be applied. This test should be applied to both tensile yield and ultimate strengths (in appropriate grain directions), and if a producer’s data is unacceptable for either property, that producer’s data for both properties should be excluded for the purpose of computing T99 and T90 values.
9-113
MMPDS-06 1 April 2011 9.5.4.4 Modified Anderson-Darling Test for Pearsonality – This section describes a test to determine whether data from a population are satisfactorily described by the Pearson Type III (or gamma) distribution. First compute estimates of the population mean, standard deviation, and skewness (denoted by
4 2 x − µ H + σ q q 4 2 x − µ 1 − H + q q σ 4 2 x − µ + q q σ 2 Φ 3 − 1+ 8 8 Fµ , σ , q ( x ) = 9 ⋅ q2 q2 4 2 x − µ + σ 2 q q 1 − Φ 3 − 1+ 8 8 9⋅ 2 2 q q x−µ Φ σ
q > 01265 .
q < − 01265 . 2 8 9⋅ 2 q
0.025 < q ≤ 01265 . 9.5.4.4(b)
2 − 01265 ≤ q < − 0.025 . 8 9⋅ 2 q
q ≤ 0.025
X , S, and q), as described in Section 9.5.5.1. Then calculate the following Anderson-Darling statistic: AD ' & j n
i'1
(2i&1) 3n ln FX,S,q (X(i) ) & 2FX,S,q (X(i) ) & ¯ ¯ n 2
9.5.4.4(a)
where H(x) is the cumulative distribution function of a chi-square distribution with 8/q2 degrees of freedom. Note that F(x) is the cumulative distribution function of a chi-square distribution with 8/q2 degrees of freedom when q > 0.1265 , and a standard normal distribution when q ≤ 0.025 . Because of numerical computing inconsistencies for large degrees of freedom, a normal approximation to the chi-square distribution is recommended for 0.025 < *q* # 0.1265 . If the AD statistic is greater than the critical value of
0.3167 + 0.034454 ⋅ ln(n) ⋅ [exp(q ) − 1]
2
then the total data set is rejected by the Anderson-Darling test for Pearsonality.
9-114
9.5.4.4(c)
MMPDS-06 1 April 2011 9.5.4.5 The Pearson Backoff Option – If the data are rejected by the Pearson AD test, the backoff method may be applied. The following formula should be used to calculate the AD statistic of the backoff method:
ADbackoff (µ ) = where
n n n 1 n 2 2 2 i ln(bi+1,i ) − ln(bi,i ) − 2 i(bi+1,i − bi,i ) + bi+1,i − bi,i n i =1 2 i=1 i =1
Σ [
] Σ
Σ(
)
9.5.4.5(a)
j b i,j = min F µ , S , q ( x (i ) ), for j
(Notice that this formula has an argument representing the assumed mean of the distribution being tested against.) Calculate ADbackoff ( X − τ ) for J equal to 0.2, 0.4, 0.6, 0.8, and 1.0 multiples of ‘bof’ where bof = backoff factor, which is defined as bof = X 100 for strength properties
9.5.4.5(b) bof = X 50 for elongation and fracture toughness
where k99 values are given in Table 9.10.1 for various sample sizes. If any of these values is below the critical value of 2 , 0.03238 + 0.00001795 ⋅ ln(n) 2 ⋅ [exp(q ) + 0.2355] then Jbackoff, is defined as the smallest of these τ’s satisfying the inequality. (Note: In calculating the backoff, if q is negative and τ backoff > X − 2 ⋅ S / Q − X (n) , then the backoff method cannot be applied. S and Q are defined in Section 9.5.5.1.) If a backoff is identified, then T99 and T90 should be calculated by the following formulas:
T 99 = X − k 99 (q , n ) ⋅ S − τ
backoff
T 90 = X − k 90 (q , n ) ⋅ S − τ
backoff
9.5.4.5(c)
where k90(q,n) and k99(q,n) are defined in Section 9.5.5.1. 9.5.4.6 Pearson Probability Plot — To graphically illustrate the degree to which a Pearson Type III (or gamma) distribution fits a set of data, the following procedure for creation of a Pearson probability plot is recommended. This method is appropriate for distributions estimated using uncensored data. The rank of each point selected for plotting is the number of lower test points plus the plotted point plus one-half the number of other test points equal to the plotted point. Its cumulative probability, P (in percent), is equal to the rank multiplied by 100, divided by one more than the total number of test points:
9-115
MMPDS-06 1 April 2011
P (in percent) '
(rank)(100) n % 1
The measured value of each test point is plotted versus F-1 (P/100) where
q 2 −1 when q > 01265 . X + s ⋅ ⋅ H ( P / 100) − q 4 q 2 −1 when q < − 01265 . X + s ⋅ 4 ⋅ H 1 − ( P / 100) − q 3 2 2 2 −1 . ⋅ Fo ( P / 100) + 1 − − 1 0.025 < q ≤ 01265 ( P/ 100) = X + s ⋅ ⋅ 8 8 q 9⋅ 2 9⋅ 2 q q 3 2 2 2 − 1 X + s⋅ ⋅ − 1 ⋅ Fo (1 − P / 100) + 1 − − 01265 . ≤ q < − 0.025 8 8 q 9⋅ 2 9⋅ 2 q q X + s ⋅ F −1 ( P / 100) q ≤ 0.025 o
[
F −1
]
and X , s, and q are population parameter estimates obtained according to the procedures outlined in Section 9.5.5.1. H-1 is the cumulative distribution function of a chi-square distribution with 8/q2 degrees of freedom and Fo-1 is the inverse standard normal cumulative distribution function. A straight line is then drawn to represent the fitted Pearson distribution. This line may be established by plotting any two points with equal vertical and horizontal coordinates and drawing a line through these two points. The horizontal axis is then labeled with cumulative probabilities (P or P/100) rather than F-1 values. If the backoff option is used, the selected distribution can then be described as the best-fit distribution shifted by a small constant, τbackoff. In this case, the predicted values should also be shifted by the same constant. That is, plot the measured values versus F-1(P/100) - τbackoff . The plotted points should finally be compared with the line to determine whether there appears to be a reasonably good fit. If the backoff option is used, then only deviations where the data fall below the fitted line should be considered as relevant. Figure 9.5.4.6(a) illustrates the use of a Pearson probability plot on aluminum alloy sheet and plate data in the 0.063-0.128 inch thickness range. The estimates of the mean, standard deviation, and skewness parameters are 45.24, 1.92, and 0.12, respectively. There appears to be a systematic departure from the model (the measured values are higher than expected) in both tails, suggesting that the distribution of the measured values is not well approximated by a Pearson distribution. Appropriately, this model was rejected by the A-D test for Pearsonality.
9-116
MMPDS-06 1 April 2011 Figure 9.5.4.6(b) shows a probability plot for the same data, using the distribution estimated with the backoff option of the sequential Pearson procedure, which identified a backoff of 0.2 ksi. The only difference between the two plots is that the predicted values in Figure 9.5.4.6(a) are shifted 0.2 ksi to the left in Figure 9.5.4.6(b). Although the curve of data in Figure 9.5.4.6(b) is further away (on average) from the y=x reference line than the curve of data in Figure 9.5.4.6(a), only negative deviations from the reference line are recognized in the A-D goodness-of-fit test for a distribution estimated by the backoff method. In Figure 9.5.4.6(b), only a small proportion of the data are below the predicted values, resulting in an insignificant deviation. The “backoff” model was accepted by the A-D test.
9-117
MMPDS-06 1 April 2011
Figure 9.5.4.6(a). Probability plot for a Pearson distribution fitted to a complete TYS data set for an aluminum alloy sheet in the 0.063-0.128 inch thickness range rejected.
Figure 9.5.4.6(b). Probability plot for a Pearson distribution fitted to complete TYS data for an aluminum alloy plate in the 0.063-0.128 inch thickness range using 0.2 ksi backoff - accepted.
9-118
MMPDS-06 1 April 2011 9.5.4.7 Modified “Anderson-Darling” Test for Weibullness — The “Anderson-Darling” test for three-parameter Weibullness is used to determine whether the curve which fits a given set of data can be approximated by a three-parameter Weibull curve. The essence of the test is a numerical comparison of the cumulative distribution function for observed data with that for a fitted Weibull curve over the entire range of property being measured. This test differs from the original version of the Anderson-Darling test in that it emphasizes the lower tail. This method can be applied with complete or censored data. The first two steps produce estimates of the parameters of a three-parameter Weibull distribution. Be sure to acknowledge the appropriate degree of censoring in computing the threshold, shape, and scale parameters as described in Sections 9.5.4.7.1 and 9.5.4.7.2. Using the procedure outlined in 9.5.4.7.1, compute the threshold for the goodness-of-fit test, τ50. Then, using the method described in 9.5.4.7.2, compute the maximum likelihood estimates of the shape and scale parameters for {X(i) - τ50 : i=1,...,r} where r equals n for the uncensored data and r represents the smallest integer greater than or equal to 4n/5 for 20 percent censoring and n/2 for 50 percent censoring. Denote these estimates by β50 and α50, respectively. If desired, the moment estimators for mean, variance, and skewness of the Weibull distribution can be calculated from the equations in Section 9.5.4.7.3, though these are not required elsewhere in the sequential procedure. Calculation of the (censored or uncensored) A-D statistic is described in Section 9.5.4.7.4.
9.5.4.7.1 Estimating the Threshold Parameter — This section describes a method for estimating the threshold of a three-parameter Weibull distribution. The same approach is taken for estimating the threshold, whether the purpose is to test goodness-of-fit (Section 9.5.4.7), or to directly calculate T99 or T90 values (Section 9.5.5.2). This method applies to uncensored and upper-tail censored data; however, different columns of Table 9.10.8 are used. (References 9.5.4.7.1(a) and 9.5.4.7.1(b) provide details of this method for uncensored data.) Let K equal the greatest integer less than or equal to min {4n/15, (1-p)n/3}, where p represents the proportion of the upper tail that is censored (p equals 0, 0.2, or 0.5). Define the function R(τ) by R(τ)' j
Li(τ)/ j Li(τ)
3K&2
3K&2
i'K%1
where Li(τ)'
i'1
1 ln X(i%1)&τ &ln X(i)&τ Di
with 1 , n&1
D1 ' n ln 1 % n(n&1) 2
ln 1%
n(n&1)(n&2) 6
ln 1%
D2 '
D3 '
D4 '
n(n&1)(n&2)(n&3) 24
ln 1%
1 n(n&2)
,
2n & 3 (n&1)3 (n&3)
,
6n 4 & 48n 3 % 140n 2 & 176n % 81
9-119
n(n&4) (n&2)6
,
MMPDS-06 1 April 2011 and Di ' ln &ln 1 &
i % 0.5 n % 0.25
& ln &ln 1 &
i & 0.5 n % 0.25
¯ and S represent the sample mean and sample standard deviation, for i=5,6,...,3K-2. Finally, let X respectively. Determine γ using the appropriate column of Table 9.10.8. The first set of columns in Table 9.10.8 is provided for estimating the threshold, τ50, associated with the Anderson-Darling goodness-of-fit test described here. The second and third sets of columns are provided for estimating τ99 and τ90, which are needed to determine T99 and T90, as described in Section 9.5.5.2. Each set of columns includes a column for uncensored data, 20 percent upper-tail censored data, and 50 percent upper-tail censored data. The estimated threshold parameter, τ, is the solution to the equation R(τ) = γ. The function R(τ) is a monotonically decreasing continuous function of τ. A simple method for finding the solution is as follows. ¯ -100S) and H = 0.999999X(1). If R(L) # γ, then set τ = L or if R(H) $ γ then set τ = Start with L = min(0, X H. Otherwise reduce the (L,H) interval by calculating M = (L+H)/2 and setting L = M if R(M) $ γ or by ¯ 106, then set τ = M and stop. Otherwise, reduce the (L,H) interval setting H = M if R(M) < γ. If H - L # 2X/ again.
9.5.4.7.2 Estimating the Shape and Scale Parameters — This section describes a method for estimation of the shape and scale parameters of the two-parameter Weibull distribution based on data which may be censored in the upper tail. Estimates of the shape and scale parameters are based on the original data corrected for the estimated threshold, τ. That is, the calculations in this section are performed based on Z(1), ..., Z(n), where Z(i) = X(i)-τ, with τ estimated as in Section 9.5.4.7.1. The assumption is made here that if the data are censored, then only the r smallest observations in the sample are observed (1 # r # n), where r is some pre-specified number (often based on a percentage); this is called Type II censoring. Thus, the input to this procedure is a total sample size, n, a censored sample size, r, and the sample remaining after censoring Z(1), ..., Z(r). Define r
β
β
Σ Z(i) ln Z(i) % (n&r) Z(r) ln Z(r)
g(β) '
i'1
r
& β
β
Σ Z(i) % (n&r) Z(r)
1 1 r & Σ ln Z(i) β r i'1
i'1
Note:
When implementing the equation for g(β) in software, it may be necessary to divide each Z term that is raised to the β power by a normalizing factor, C, in order to avoid computational difficulties. The factor, C, can be any type of average calculated from the Z values (e.g., geometric mean of the uncensored Z values). Because the C-factor algebraically cancels out of the equation for g(β), its use does not change the meaning of the equation in any way.
The shape parameter estimate, β, is the solution to the equation g(β) = 0. The function g(β) is a monotonically increasing continuous function of β. A simple method for finding the solution is as follows. Let Sy denote the standard deviation of Yl, ..., Yr where Yi = ln (Zi) for i=1, ..., r. Calculate I = 1.28/Sy as an initial guess at the solution and calculate g(I). If g(I) > 0, then find the smallest positive integer k such that g(I/2k) < 0 and let L = I/2k and H = I/2k-1. If g(I) < 0, then find the smallest positive integer k such that g(2k I) > 0 and let L = 2k-1 I, and H = 2k I. Reduce the (L,H) interval by calculating M = (L+H)/2 and setting L = M if g(M) # 0 and/or by setting H = M if g(M) $ 0. If H-L # 2I/106, then set β = M and stop. Otherwise, reduce the (L,H) interval again.
9-120
MMPDS-06 1 April 2011 Once β has been determined, the scale parameter estimate is defined by
9.5.4.7.3 Calculating the Anderson-Darling Statistic — Once the parameters have been estimated in Sections 9.5.4.7.1 and 9.5.4.7.2, calculate the Anderson-Darling statistic by the following steps. For i=1,...,r, let X(i)&τ50
Fi' 1 & exp &
β50
,
α50
let Fn+1 = 1, and let C i'
2i&1 . n
Define the A-D statistic as
AD ' &j Ci ln Fi&2Fi % r
i'1
r2 n 2 ln Fr%1& 2r Fr%1% Fr%1 n 2
If
AD $
0.3951 % 4.186 x 10&5 n 0.2603 % 4.182 x 10&5 n 0.1761 % 1.842 x 10&5 n
(Uncensored) (20 percent censored) (50 percent censored)
[ 9.5.4.7.3 ]
one may conclude (at 5 percent risk of error) that the population from which the sample was drawn is not a three-parameter Weibull population. Otherwise, the hypothesis that the population is a three-parameter Weibull population is not rejected. Equation 9.5.4.7.3 was derived under the assumption that the threshold parameter is estimated, not known. For further information on this test procedure, see Reference 9.5.4.7.3. 9.5.4.8 The Weibull Backoff Option — Begin with the estimates τ50, α50, and β50 obtained according to the procedures outlined in Sections 9.5.4.7.1 and 9.5.4.7.2 for 50 percent censoring. Let Fτ(x) represent the cumulative distribution function of the three-parameter Weibull distribution with threshold parameter τ, and scale and shape parameters, α50 and β50, respectively:
Fτ(x) ' 1 & exp &
9-121
x&τ α50
β50
.
MMPDS-06 1 April 2011 Define the special “backoff” Anderson Darling statistic by ADB(τ) ' n j n
i'1
i n
2
(ln b i & ln ai) &
2i 1 2 2 (bi & a i) % (b i & ai ) , n 2
where ai = min{Fτ(x(i)), i/n}, bi = min{Fτ(x(i+1)), i/n} for i < n, and bn = 1. Calculate ADbackoff ( X − τ ) for J equal to 0.2, 0.4, 0.6, 0.8, and 1.0 multiples of ‘bof’ where bof = backoff factor, which is defined as bof = X 100 for strength properties
[9.5.4.5(b)]
bof = X 50 for elongation and fracture toughness
where ADB(τ50 - τbackoff) < 0.02005 -4.372 x 10-6 n .
[9.5.4.8]
If none of the five values satisfies Equation 9.5.4.8, the backoff procedure cannot be used to compute T99 and T90. Otherwise, τbackoff is subtracted from T99 and T90 as calculated from the complete sample. 9.5.4.9 Weibull Probability Plots —To graphically illustrate the degree to which a three-parameter Weibull distribution fits a set of data, the following procedure for creation of a Weibull probability plot is recommended. This method is appropriate for distributions estimated using censored or uncensored data. A method for displaying the fit using a distribution estimated by a backoff option is also described. The rank of each point selected for plotting is the number of lower test points plus the plotted point plus one-half the number of other test points equal to the plotted point. Its cumulative probability, P (in percent), is equal to the rank multiplied by 100, divided by one more than the total number of test points: (rank)(100) n % 1
P (in percent) '
The measured value of each test point is plotted versus F-1 (P/100) where F
&1
(P/100) ' τ50 % α50
& ln 1 & (P/100)
1 β50
and τ50, α50, and β50 are population parameter estimates obtained according to the procedures outlined in Sections 9.5.4.7.1 and 9.5.4.7.2 . A straight line is then drawn to represent the fitted Weibull distribution. This line may be established by plotting any two points with equal vertical and horizontal coordinates and drawing a line through these two points. The horizontal axis is then labeled with cumulative probabilities rather than F-1 values. If the backoff option is used, the selected distribution can then be described as the best-fit distribution shifted by a small constant, τbackoff. In this case, the predicted values should also be shifted by the same constant. That is, plot the measured values versus F-1(P/100) - τbackoff . The plotted points should finally be compared with the line to determine whether there appears to be a reasonably good fit. With sample sizes on the order of 100 test points, only those points lying between about
9-122
MMPDS-06 1 April 2011 10 and 90 percent probability should be considered in making this evaluation. With sample sizes of 1000 test points, these limits can be extended to about 1 and 99 percent. If the distribution was estimated using a method for censored data, then only the uncensored portion of the data used to estimate the distribution should be considered when assessing lack of fit. For instance, if the 20 percent censoring method is selected for use by the sequential Weibull method, then only the lower 80 percent of the data should be examined for agreement with the line of best fit. If the backoff option was used, then only the lower 50 percent of the data where the data fall below the fitted line should be considered as departures. Figure 9.5.4.9(a) illustrates the use of a Weibull probability plot on Alclad 2524-T3 aluminum alloy
Figure 9.5.4.9(a). Probability plot for a Weibull distribution fitted with 50 percent censored TYS data for Alcad 2524-T3 aluminum alloy sheet in the 0.063-0.128 inch thickness range - accepted.
sheet and plate data in the 0.063-0.128 inch thickness range. This is a probability plot based on a Weibull distribution estimated using the 50 percent censoring method. The estimates of the threshold, scale, and shape parameters based on 50 percent censoring are 40.87, 5.26, and 2.09, respectively. Notice that the lower tail does not exhibit serious departures from the model, but significant departures are apparent in the upper tail. But, as mentioned above, only the lower 50 percent of the data should be included in an assessment of this probability plot, because the rest are not used in fitting the model. The model estimated by this method was accepted by the Anderson-Darling test for Weibullness.
Figures 9.5.4.9(b) and 9.5.4.9(c) illustrate the value of the backoff method and the construction and interpretation of the associated probability plots. Shear yield strength data is used for illustration. There are 103 measured test values. The Weibull sequential procedure applied to the data resulted in rejection of the entire data set, the top 80 percent, and the top 50 percent for Weibullness. The 50 percent censoring probability plot is shown in Figure 9.5.4.9(b). The departures from the reference line in this figure were large enough to result in rejection by the Anderson-Darling test for Weibullness. The sequential procedure provides for a backoff option that conservatively reduces the estimated threshold parameter. Figure 9.5.4.9(c) shows
9-123
MMPDS-06 1 April 2011 a probability plot of the same data, using the distribution estimated with the backoff option of the sequential Weibull procedure, which identified a backoff of 0.31 ksi. The only difference between the two plots is that the predicted values in Figure 9.5.4.9(b) are shifted 0.31 ksi to the left in Figure 9.5.4.9(c). Although the curve of data in Figure 9.5.4.9(c) is further away (on average) from the y=x reference line than the curve of data in Figure 9.5.4.9(b), only negative deviations from the reference line are recognized in the AndersonDarling goodness-of-fit test for a distribution estimated by the backoff method. In Figure 9.5.4.9(c), only a small proportion of the data in the very middle of the distribution are below the predicted values, resulting in an insignificant departure from Weibullness
Figure 9.5.4.9(b). Probability plot for a Weibull distribution showing 50% censoring - rejected.
Figure 9.5.4.9(c). Probability plot for a Weibull distribution showing 50% censoring and backoff - accepted. 9.5.4.10 Detection of Lower-Tail Truncation – The following steps should be followed to test if there is significant evidence of lower-tail truncation. This procedure is based on the assumption that the underlying distribution is normal. Let xspec denote the specification minimum and suppose that n data points are observed. Follow the steps below if xi$ xspec for i=1 to n. n
1.
Calculate x =
∑ i =1
xi , s2 = n
n
∑ i =1
(x i − x )2 n
, and
9-124
s2 . (x − x spec )2
MMPDS-06 1 April 2011
2. Solve the following equation for ξ (or use the alternative approach described below). s2
(x − x )
2
spec
=
1 − Z (Z − ξ )
(Z − ξ )
2
where Z = Z (ξ ) =
f (ξ ) , where f and Φ are the probability 1 − Φ (ξ )
density function and cumulative density function for the standard normal distribution. Then, calculate as θ follows:
θ (ξ ) =
Z (ξ ) Z (ξ ) − ξ
3. Calculate
σˆ 2 = s 2 + θˆ ⋅ (x − x spec )2 , µˆ = x − θˆ ⋅ (x − x spec ), and ξˆ =
(x
− µˆ )
spec
σˆ
.
4. The estimated proportion truncated and the asymptotic variance of this estimator derived by Hansen and Zeger [Reference 9.5.4.10] are given by:
()
pˆ = Φ ξˆ , and
σ 2 ( pˆ ) =
()
()
() () () () ()
f 2 ξˆ φ 22 ξˆ − 2 ⋅ ξˆ ⋅ φ12 ξˆ + ξˆ 2 ⋅ φ11 ξˆ ⋅ n φ11 ξˆ ⋅ φ 22 ξˆ − φ122 ξˆ
where f(x) is the standard normal density function, and φ11, φ12, and φ22 are auxiliary functions defined as follows:
φ11 (x ) = 1 − Z (x ) ⋅ [Z (x ) − x ] φ 12 (x ) = Z (x ) ⋅ {1 − x ⋅ [Z (x ) − x ]} 5. Calculate
φ 22 (x ) = 2 + x ⋅ φ12 ( x )
z0 =
pˆ
σ 2 ( pˆ )
If z0≥z1-α, then reject H0 and conclude that there is significant evidence of censoring where z1-α is the (1-α)×100 percentile of the standard normal distribution.
9-125
MMPDS-06 1 April 2011
9.5.4.10.1 Effect of Sample Size and Percent Truncation on Power of the Test – Table 9.5.4.10.1(a) displays the expected number of data points truncated for various combinations of sample sizes (100, 200, 500, 1,000, 2,000) and the true censoring percentages (0.1%, 1%, 2%, 5%, 10%). Table 9.5.4.10.1(b) shows the probability of observing any truncation for each sample size and percent censoring combination. If the level of truncation is 1 percent or more and the sample size is 200 or greater, more than 86% of samples will have some truncation. As the percent of truncation gets smaller, a larger sample size is needed to detect it. When the proportion of truncation is in the range of 0.1%, the likelihood of observing any truncation is almost zero even with sample sizes of 2,000. However, these very low truncation levels are not a serious problem for determination of T90 and T99 statistics from very large samples because the nonparametric rank value associated with these statistics is much larger than the anticipated number of excluded observations (see Table 9.10.9). Table 9.5.4.10.1(a) Expected Number of Data Points Truncated
Actual Percentage 0.1% 1% 2% 5% 10%
Sample Size 100
200
500
1,000
2,000
<1 1 2 5 10
<1 2 4 10 20
<1 5 10 25 50
1 10 20 50 100
2 20 40 100 200
Table 9.5.4.10.1(b) Probability of Observing Lower-Tail Truncation
Actual Percentage 0.1% 1% 2% 5% 10%
Sample Size 100
200
500
1,000
2,000
9.5% 63.4% 86.7% 99.4% >99.9%
18.1% 86.6% 98.2% >99.9% >99.9%
39.4% 99.3% >99.9% >99.9% >99.9%
63.2% >99.9% >99.9% >99.9% >99.9%
86.5% >99.9% >99.9% >99.9% >99.9%
9.5.5 DIRECT COMPUTATION WITHOUT REGRESSION — This section details the procedure for calculating lower tolerance bounds (T99 and T90) for strength properties to be evaluated by Direct Analysis (see Section 9.5.1.1) and for which no significant regression relationship has been found with a material dimensional property. Current analysis procedures for computing lower tolerance bounds are described in Figure 9.5.5(a). Three methods are permitted: the sequential Pearson procedure, the sequential Weibull procedure, and the nonparametric procedure. These procedures collectively permit reasonable estimation of lower tolerance bounds for a broad range of types of strength data encountered in practice. The procedures are designed to be able to accurately determine tolerance bounds for strength data that follows a Weibull, three-parameter distribution or a Gamma, three-parameter distribution (called a Pearson Type III or just Pearson distribution) as long as these underlying distributions have skewness that ranges between minus one and one and a sufficient number of data points have been collected. A variety of other true underlying distributions (e.g., Normal) may also be accommodated with these two distribution families. The procedures have enhancements to make them insensitive to distributional departures appearing only in the upper-tail. They also include a last-resort option, called the "backoff", that permits conservative
9-126
MMPDS-06 1 April 2011 estimation even when the data do not readily fit the target distributions. When neither distributional procedure is successful, a nonparametric procedure can be used if there is adequate data. The remainder of this section provides an overview and a roadmap to these procedures. Figure 9.5.5(b) describes the procedure for translating T99 and T90 values to A and B values, and values for publication in the mechanical property tables in this Handbook. In what follows, certain procedures require artificial censoring of the measured data. That is, because the real engineering interest for design lies in lower percentiles of the distribution of a material’s properties, some of the following procedures ignore a portion of the observations in the upper tail. Specifically, we use the notation X(1)#X(2)#...#X(n) to denote the ordered sample, and will frequently refer to the censored sample: X(1)#X(2)#...#X(r). The ratio r/n represents the proportion of the sample which is uncensored. Alternatively, (1-r/n) represents the proportion of the sample which is censored. The terms r and n will be used throughout subsequent sections without redefinition. In the case of uncensored data, r=n. If the sequential Pearson analysis procedure is applied, the first step is to perform a modified Anderson-Darling goodness-of-fit test for Pearsonality as described in Section 9.5.4.4. If the assumption of Pearsonality is not rejected, the lower tolerance bounds may be computed using the methods described in Section 9.5.5.1. If the assumption of Pearsonality is rejected, then the Pearson backoff method (Section 9.5.4.5) should be attempted. This method decreases the estimate of the mean, while holding the standard deviation and skewness estimates constant, until the percentiles of the resulting model are sufficiently less than the sample percentiles. To avoid accepting an extremely inadequate fit, the decrease in the mean is limited to bof. The bof is defined as 1% of the sample mean for strength properties and 2% for elongation and fracture toughness. Section 9.5.4.5 describes the method for identifying a proper backoff, denoted by τbackoff, for the sequential Pearson method. If the appropriate backoff is less than or equal to bof, the lower tolerance bounds should be calculated by first computing bounds based on the complete sample as specified in Section 9.5.5.1, and then subtracting τbackoff. If an appropriate backoff less than or equal to bof is not identified, then the sequential Weibull procedures described in Section 9.5.5.2 or the nonparametric procedure described in Section 9.5.5.3 should be considered. In most cases it has been found that strength data fit a Pearson distribution better than a Weibull distribution. However, there are times when a Weibull distribution does provide a better fit. Probability plots are helpful in determining which procedure provides the best fit when there is a difference in the T99 and T90 values for the two methods. When the sequential Weibull procedure is applied, a modified Anderson-Darling goodness-of-fit-test is conducted as described in Section 9.5.4.7 for the uncensored sample. If the assumption of Weibullness is not rejected, the lower tolerance bound should be computed using methods described in Section 9.5.5.2 for complete samples. (The risk that one may conclude erroneously that a true Weibull distribution is nonWeibull is set at 5 percent.) If the assumption of Weibullness is rejected for the complete sample, then the next step is to test the lower 80 percent of the data for Weibullness by trimming the top 20 percent of the measurements and applying a censored version of the Anderson-Darling test. Use the version of the test described in Section 9.5.4.7 for 20 percent censoring. If this test is not rejected, then the lower tolerance bounds should be computed using the methods described in Section 9.5.5.2 for 20 percent censoring. If the assumption of Weibullness is rejected here, then 50 percent censoring should be attempted, in the same manner as described for 20 percent censoring.
9-127
MMPDS-06 1 April 2011 If the assumption of Weibullness is rejected, even when restricting the evaluation to the lower 50 percent of the data, then the Weibull backoff method (Section 9.5.4.8) should be attempted. This method decreases the Weibull threshold estimate from the preceding 50 percent censoring step while holding the shape and scale parameters constant, until the percentiles of the resulting model are sufficiently less than the sample percentiles. To avoid accepting an extremely inadequate fit, the decrease in the threshold is limited to bof. The bof is defined as 1% of the sample mean for strength properties and 2% for elongation and fracture toughness. Section 9.5.4.8 describes the method for identifying a proper backoff, denoted by τbackoff, for the sequential Weibull. If the appropriate backoff is less than or equal to bof, the lower tolerance bounds should be calculated by first computing bounds based on the 50 percent censored sample as specified in Section 9.5.5.2, and then subtracting τbackoff. If an appropriate backoff less than or equal to bof is not identified, then the sequential Pearson procedures described in Section 9.5.5.1 or the nonparametric procedure described in Section 9.5.5.3 should be considered. In those cases where sufficient data are available, one may choose to calculate the lower tolerance bounds by the nonparametric procedure. A T99 bound requires 299 data values and a T90 bound requires 29 data values.* The nonparametric procedure is described in Section 9.5.5.3. If the sample size is too small for the nonparametric method, the sequential Pearson procedure described in Section 9.5.5.1 or the sequential Weibull procedure described in Section 9.5.5.2, may still be considered. In those cases where sample sizes are insufficient to apply the nonparametric method, and the goodness-of-fit tests will not allow application of the sequential Weibull or sequential Pearson procedures, the lower tolerance bounds cannot be calculated.
*
However, according to current guidelines, a T90 value cannot be calculated for inclusion in MMPDS with fewer than 100 data values. See Section 9.2.4.2.
9-128
MMPDS-06 1 April 2011 Acceptable sample (Regression not required) (From Figure 9.5.1)
Pearson
Weibull
Test complete sample for Pearsonality (Section 9.5.4.4)
Test complete sample for Weibullness (Section 9.5.4.7) Accept
Accept
Reject
Test lower 80% for Weibullness
Reject
Accept
Reject
Test Pearson Backoff Option (Section 9.5.4.5)
Accept
Compute lower tolerance bounds using appropriately censored model estimates (Section 9.5.5.1)
Test lower 50% for Weibullness
Reject
Accept
Compute lower toleracnce bounds using appropriately censored model estimates (Section 9.5.5.2)
Accept
Test Weibull Lower 50% Backoff Option (Section 9.5.4.8)
Reject
Reject Try Weibull
If both methods are acceptable, compare Probability Plots (Sections 9.5.4.6 & 9.5.4.9)
Use values from method that provides the best fit to lower tail of data
Try Pearson
Pearson and Weibull rejected
Nonparametric
Is sample size sufficient for Nonparametric (n=299 or greater)
Compute lower tolerance bounds using ranked values (Section 9.5.5.3)
Figure 9.5.5(a). Procedure for Direct Computation of T99 and T90 When Regression is Not Required.
9-129
MMPDS-06 1 April 2011
Computed T 99 and T 90 Values
Were T99 and T 90 computed based on at least 100 data points?
No
A and B values may not be computed.
Collect more data
No Yes
Was a parametric method accepted? (Weibull or Pearson)
At least 299 data points?
No
Yes
Yes
T99 rounded Round values using ASTM E29 procedure. T90 rounded = B-Basis
B-Basis value is recorded in mechanical property table.
Is Spec Value (S) < T99 rounded?
No
T 99 rounded = A-Basis and is recorded in mechanical property table.
Yes S value = A-Basis and is recorded in "A" column of mechanical property table. Rounded T 99 value is recorded in a footnote.
Figure 9.5.5(b). Procedure for Converting T99 and T90 Values [from Figure 9.5.5(a)] to A- and B-Basis values, and Mechanical Property Table Values.
9-130
MMPDS-06 1 April 2011 9.5.5.1 Sequential Pearson Procedure —This procedure should be used when a lower tolerance bound (T99, T90) is to be computed directly (not paired with another property for computational purposes) and the population may be interpreted to signify either the property measured (TUS, etc.) or some transformation of the measured value that is normally distributed. This procedure is applicable to Ftu and Fty. It may also be used for Fcy, Fsu, Fbru, and Fbry if sufficient quantity of data is available. To compute lower tolerance bounds for a population from the Pearson Type III (or gamma) family of distributions, it is necessary to have estimates of the mean, standard deviation, and skewness of the population. In what follows, these are denoted respectively by X , S, and q. These estimates are also necessary for applying the Anderson-Darling (AD) test for Pearsonality (described in 9.5.4.4) and for the backoff part of the test (described in 9.5.4.5). Background information on the Pearson Type III distribution may be found in References 9.5.5.1(a) and 9.5.5.1(b). In what follows, X(1), X(2), …, X(n) represent the sorted observations, from smallest to largest. Calculate the sample mean and sample standard deviation as usual:
X=
S=
1 n ∑ Xi n i =1
1 n 2 ∑ Xi − X n −1 i =1
(
)
The skewness is calculated as follows. First calculate the sample skewness:
n 3 ∑ ( Xi − X ) n Q= • i =1 3 ( n −1) S3
If Q = 0, then let q = 0. If Q … 0, calculate the estimated threshold T = X − 2• S / Q
and use the following rules to define q: a. If Q > 0 and X(1) < T, then let
q = 2 • S / ( X − 099999 . X
b. If Q < 0 and X(n) > T, then let
q = 2 • S / ( X − 100001 . X
(1)
).
(n)
).
c. Otherwise, q = Q. If the data are not rejected by the Anderson-Darling test for Pearsonality (described in 9.5.4.4), then T99 and T90 should be calculated by the following formulae: T 99 = X − k 99 (q , n ) ⋅ S T 90 = X − k 90 (q , n ) ⋅ S
where
9-131
MMPDS-06 1 April 2011 k 99 (q,n ) = z 99 (q )
[
]
+ exp 2.556 − 1. 229 q + 0.987 q 2 − 0.6542 ⋅ ln (n ) + 0.0897 q ⋅ ln (n ) − 0.1864 q 2 ⋅ ln (n ) k 90 (q,n ) = z 90 (q )
[
]
+ exp 1 .541 − 0 . 943 q − 0.6515 q 2 − 0.6004 ⋅ ln (n ) + 0.0684 q ⋅ ln (n ) + 0.0864 q 2 ⋅ ln (n )
3 q2 q 2 z 99 (q ) = 1− 1− − 2.326348 ⋅ − 0.013133 q 2 − 0.003231 q 3 + 0.003139 q 4 + 0.001007 q 5 q 36 6
3 q2 q 2 z 90 (q ) = 1− 1− − 1.281552 ⋅ + 0.003814 q 2 − 0.002466 q 3 − 0.000633 q 4 + 0.000122 q 5 q 36 6
The above formulas for z99(q) and z90(q) should be used for q =/ 0. If q = 0, then z99(q) = 2.326348 and z90(q) = 1.281552. If the data are rejected by the Anderson-Darling test for Pearsonality, but accepted under the backoff option of the test (9.5.4.5) with a reduction in the mean of τbackoff, then the above formulas should be applied to compute then T99 and T90 with the following slight modification:
T99 = X − k99 (q , n ) ⋅ S − τ backoff , T90 = X − k90 (q , n ) ⋅ S − τ backoff . 9.5.5.2. Sequential Weibull Procedure — This section describes procedures required for modeling data with the three-parameter Weibull distribution. Section 9.5.4.7.1 describes a method for estimating the threshold parameter, τ. Section 9.5.4.7.2 describes a method for estimating the shape and scale parameters, β and α, respectively. Both methods permit estimation with upper-tail censored data. For a good exposition of such procedures, see Reference 9.5.4.1(a). This procedure should be used when a mechanical property value is to be computed directly (not paired with another property for computational purposes) and the population may be interpreted to signify either the property measured (TUS, etc.) or some transformation of the measured value that follows a three-parameter Weibull distribution. This procedure is applicable to Ftu and Fty. It may also be used for Fcy, Fsu, Fbru, and Fbry if a sufficient quantity of data is available. In order to compute the lower tolerance bounds for a three-parameter Weibull population, it is necessary to have (1) an estimate of population threshold, (2) estimates of population shape and scale parameters, and (3) tables of one-sided tolerance limit factors for the three-parameter Weibull distribution. The method for estimating the population threshold is presented in Section 9.5.4.7.1, and Section 9.5.4.7.2 contains the method for estimating population shape and scale parameters. Both of these procedures permit estimation with complete or censored data (20 or 50 percent censoring). A tabulation of tolerance limit factors by sample size, censoring level, and population proportion covered by the tolerance interval is presented in Table 9.10.7. For further information on these procedures and tabled values, see References 9.5.5.2.(a) and (b). Let X1,..,Xn denote sample observations in any order and let X(1),...,X(n) denote sample observations ordered from smallest to largest. The first step in calculating T99 and T90 for a three-parameter Weibull population is to obtain an estimate of the population threshold. The population threshold is theoretically the
9-132
MMPDS-06 1 April 2011 minimum achievable value for the property being measured. However, the real population is being empirically modeled by some Weibull population with a threshold. Since this empirical model is not perfect, there may be a small percentage of observations in the population that fall below the model threshold. Separate threshold estimates, denoted by τ99 and τ90, will be obtained for T99 and T90 using the methods described in Section 9.5.4.7.1. The second step in calculating mechanical properties for a three-parameter Weibull population is to obtain estimates of population shape and scale parameters for each property. Shape parameter estimates will be denoted by β99 and β90 and scale parameter estimates will be denoted by α99 and α90. Estimation of shape and scale parameters is performed using a maximum likelihood procedure for the two-parameter Weibull distribution, after subtracting off the estimated threshold. (The two-parameter Weibull is equivalent to the three-parameter Weibull with threshold zero.) Using the method outlined in Section 9.5.4.7.2, compute the maximum likelihood estimates of the shape and scale parameters for the censored or uncensored sample {X(i) - τ99 : i=1,...,r}, where r equals n for uncensored data and r represents the smallest integer greater than or equal to 4n/5 for 20 percent censoring and n/2 for 50 percent censoring. Denote these estimates by β99 and α99, respectively. Using the same procedure, compute estimates β90 and α90 based on the sample {X(i) - τ90 : i=1,...,r}. With population parameter estimates discussed above at hand, the computation of the lower tolerance bounds is carried out by use of the formulas: T99 ' τ99 % Q99 exp
& V99/ β99 n
,
[9.5.5.2(a)]
T90 ' τ90 % Q90 exp
& V90/ β90 n
,
[9.5.5.2(b)]
where Q99 Q90 V99
= = =
V90
=
α99 (0.01005)1/β99 α90 (0.10536)1/β90 the value in the V99 column of Table 9.10.8 corresponding to a sample of size n and the appropriate degree of censoring, and the value in the V90 column of Table 9.10.8 corresponding to a sample of size n and the appropriate degree of censoring.
Note that the level of censoring used in estimating the threshold, shape, and scale parameters must be used in determining V99 and V90. Also, because this censoring level is determined by the goodness-of-fit test (9.5.4.7), the same censoring level is used for both T99 and T90. If the property that follows a three-parameter Weibull distribution represents a transformation, the lower tolerance bounds (T99, T90) computed by the above formulas must be transformed back to the original units in which the mechanical property is conventionally reported. 9.5.5.3 Nonparametric Procedure — This procedure should be used when a mechanical-property value is to be computed directly (not paired with another property for computational purposes) and the form of the distribution of population is unknown (not Pearson Type III or three-parameter Weibull). Distribution should not be considered unknown (1) if tests show it to be Pearson or three-parameter Weibull, (2) if it can be transformed to a Pearson or three-parameter Weibull distribution, or (3) if it can be separated into Pearson or three-parameter Weibull subpopulations. This procedure is applicable to Ftu and Fty. It may also be used for Fcy, Fsu, Fbru, and Fbry if sufficient quantity of data is available.
9-133
MMPDS-06 1 April 2011 Nonparametric (or distribution-free) data analysis assumes a random selection of test points and uses only the ranks of individual test points and the total number of test points. If test points have been deleted from a sample, the random basis is violated; consequently, this procedure must not be used when there is reason to suspect that the sample may have been censored. As an example, assume that a sample consists of 299 test points selected in a random manner. The test point having the lowest value has rank 1, the test point having the next lowest value has rank 2, etc. Thus, an array of ranked test points might appear as follows: Rank of Test Point
Value of Test Point, ksi
1 2 3 4 5 299
73.3 74.1 75.2 75.3 75.6 85.7
For each rank from a sample of size, n, it is possible to predict, with 0.95 confidence, the least fraction of population that exceeds the value of the test point having rank r. Since only two fractions, or probabilities, are of interest in determination of T99 and T90 values, only the ranks of test points having the probability and confidence of T99 and T90 values are presented in Table 9.10.9. To use this table with a sample size of 299, for example, one would designate the value of the lowest (r=1) test measurement as T99 and the 22nd lowest (r=22) test measurement as T90. For sample sizes between tabulated values, interpolation is permissible. For sample sizes smaller than 299, T99 is smaller than the value of the lowest point and cannot be determined in this manner. 9.5.6 DIRECT COMPUTATION BY REGRESSION ANALYSIS — This section describes the procedure used to determine design allowables by regression analysis if it has been determined that a significant representation relationship exists (see Section 9.5.1.2). Thus a dimensional parameter x (such as x=t, 1/t, etc., where t is thickness) has been determined to be related to the property being considered. 9.5.6.1 PERFORMING THE REGRESSION — The following steps must be performed prior to determining design allowables by regression analysis: (1) Express the property as a simple linear (or quadratic) function of the dimensional parameter and obtain estimates of the coefficient using the least squares regression procedure in Section 9.5.2.1 (or Section 9.5.2.2); for example TUS = a + bx or (SUS/TUS) = a + bx + cx2 where x is thickness or area and a, b, and c are constants from the least squares equation. (2) Determine the root mean square error of regression (sy). See 9.5.2.1(h) and 9.5.2.2(e). The direct computational procedure takes into account errors in the model estimates. If a linear relationship has been determined, compute T99 for Ftu at x = xo, using Equation [9.5.6.1(a)]
9-134
MMPDS-06 1 April 2011
T99 ' a % bx0 & kN99 sy
[ 9.5.6.1(a)]
where a, b, and sy are computed in the regression of TUS data, k´99 is (1%∆) /n times the 95th percentile of the noncentral t distribution with noncentrality parameter 2.326/ (1%∆) /n and n - 2 degrees of freedom, and
∆ '
xo & Σ x/n 2
[9.5.6.1(b)]
.
Σ x & Σ x/n 2/n
The equation for computing a T90 is similar with k´90 being used in place of k´99. k´90 is (1%∆) /n times the 95th percentile of the noncentral t distribution with noncentrality parameter 1.282/ (1%∆) /n and n - 2 degrees of freedom, where ∆ is defined above. If calculation of the appropriate noncentral t percentile is not possible, the following approximations to k´99 and k´90 may be used: kN99 = 2.326 + exp{0.659 - 0.514 ln(n) + (0.481 - 1.42/n)ln(3.71 + ∆) + 6.58/n}
[ 9.5.6.1(c)]
kN90 = 1.282 + exp{0.595 - 0.508 ln(n) + (0.486 - 0.986/n)ln(1.82 + ∆) + 4.62/n}
[ 9.5.6.1(d)]
These approximations are accurate to within 1.0 percent for n > 10 and ∆ < 10. The square root of ∆ is the number of standard deviations between xo and the arithmetic mean of the x-values. Thus, a ∆ value of 10 would represent an extreme xo value, which is more than three standard deviations from the mean x-value. If a quadratic relationship has been determined, calculate T99 for Ftu at x = xo using Equation [9.5.6.1(e)] 2
T99 ' a%bxo%cx o & t0.95, n&3,
2.326
Q sy
[ 9.5.6.1(e)]
Q
where a, b, c, sy, and Q are computed by quadratic regression, and the 95th percentile of the noncentral t distribution with noncentrality parameter
t0.95,n&3, 2.326 Q
factor is the 2.326/ Q a n d
n-3 degrees of freedom. To calculate T90 in the presence of a quadratic relationship, use Equation 9.5.6.1(f) 2
T90 ' a%bx o%cxo & t0.95, n&3,
1.282
Q sy
[ 9.5.6.1(f)]
Q
where a, b, c, sy, and Q are computed by quadratic regression, and the 95th percentile of the noncentral t distribution with noncentrality parameter degrees of freedom.*
* Note that critical values for the noncentral t distribution are not tabulated in MMPDS.
9-135
t0.95,n&3, 1.282 Q
factor is the
1.282/ Q and n-3
MMPDS-06 1 April 2011 The procedures described above permit the determination of design allowables only for specific values of x. When it is desired to present a single allowable covering a range of product thickness (for example, 1.001- to 2.000-inch plate), the lowest allowable for the range should be used. Thus, if TUS(LT) decreases continuously with increasing thickness, the TUS(LT) corresponding to x = 2.000 inches would be presented in MMPDS. If the decrease is large, a decrease in product thickness interval can be made: for example, by splitting the 1.001- to 2.000-inch interval into two intervals of 1.001 to 1.500 and 1.501 to 2.000 inches. 9.5.7 INDIRECT COMPUTATION WITHOUT REGRESSION (REDUCED RATIOS/DERIVED PROPERTIES) — Ideally, it is desirable to determine Fcy, Fsu, Fbru, Fbry, as well as Ftu and Fty in other than specified test direction by direct computation as described in Sections 9.5.2, and, if sufficient quantity of data is available, direct computation procedures shall be used. Unfortunately, the cost of generating required data for these properties is usually prohibitive. Consequently, this section describes an indirect method of computation to determine the mechanical property values. A derived property is a mechanical property value determined by its relationship to an established tensile property (Ftu or Fty, A, B, or S-Basis). This indirect method of computation is applicable to Ftu and Fty in grain directions other than the specified testing direction, as delineated in the applicable material specification, and for all grain directions for Fcy, Fsu, Fbru, and Fbry. The procedure involves pairing of TUS, SUS, or BUS measurements with TUS measurements for which Ftu has been established or the pairing of TYS, CYS, and BYS measurements with TYS measurements for which Fty has been established. Average values for each lot shall be used when more than one measurement per lot is available. This technique is based on the premise that the mean ratio of paired observations representing related properties provides an estimate of the ratio of corresponding population means. The ratio consists of measurements of the property to be derived as the numerator and measurement of the established tensile property as the denominator. Thus, TUS or TYS in the specified testing direction always appears in the denominator of the ratio of observed values. The grain direction to be used for the denominator is the specified test direction as delineated in the applicable material specification. For most materials, routine quality control (certification) tests are usually conducted only in one grain direction even though the specification may contain mechanical property requirements for two or three grain directions. The typically specified or primary test directions for different product forms of each alloy system are shown in Table 9.2.3.2 and discussed in Section 9.5.7.1. Section 9.5.7.2 discusses the treatment of test specimen location. Section 9.5.7.3 discusses the treatment of clad plates, and Section 9.5.7.4 discusses the computation procedure for minimum design values. 9.5.7.1 Treatment of Grain Direction — Tensile allowables are usually listed according to grain direction in material specifications although some specifications do not indicate a grain direction, which implies isotropy. For MMPDS, it is recommended that tension allowables be shown for each grain direction. When the material is shown to be isotropic, then the same properties should be shown for each direction. Compression allowables are shown by grain direction similar to tension allowables. An example of computing compression allowables for heat treatable plate is shown below. The reduced ratio, R, for longitudinal grain direction, is determined from ratios, r, formed from paired observations for each lot of material, CYS(L)/TYS(LT). Although a longitudinal ratio is being obtained, the divisor is long transverse because this is the specified testing direction (refer to Table 9.2.3.2). The reduced ratio, R, for long transverse grain direction, is determined from ratios, r, formed from paired observations for each lot of material,
9-136
MMPDS-06 1 April 2011 CYS(LT)/TYS(LT). Similarly the reduced ratios, R, for short transverse grain direction, are determined from ratios, r, formed from paired observations for each lot of material, CYS(ST)/TYS(LT). The ratios, r, determined in the above manner are used in conjunction with Equation 9.5.7.4(b) to obtain a reduced ratio, R, for each grain direction. Equating the reduced ratios, design allowable values are determined from the resulting relationships, F (L) R ' cy Fty(LT) or Fcy(L) ' RFty(LT)
similarly
Fcy(LT) ' RFty(LT)
and Fcy(ST) ' RFty(LT) .
Shear and bearing allowables have usually been shown without reference to grain direction using the lowest reduced ratio for longitudinal, long transverse, and short transverse (when applicable). Beginning in 2006 with MMPDS-03, shear properties shall be shown using the grain orientation and loading direction as designated in ASTM B 769 or ASTM B 831. The required orientations for shear are L-S, T-S, and S-L (where applicable). Bearing properties shall be analyzed according to grain direction, and design allowables shall be shown for L, LT, and ST (where applicable) orientations. In computing the derived properties, paired ratios representing different grain directions shall not be combined in the determination of a reduced ratio, i.e. CYS(L)/TYS(LT) pairs should not be combined with CYS(LT)/TYS(LT) pairs to determine the reduced ratio. This is based on the premise that if the ratio for two paired measurements is to provide an estimate of population mean ratio, then paired measurements must represent the same grain direction as that of the corresponding population means. For aluminum die forgings, the longitudinal grain direction is defined as orientations parallel, within ±15E, to the predominate grain flow. The long transverse grain direction is defined as perpendicular, within ±15E, to the longitudinal (predominate) grain direction and parallel, within ±15E, to the parting plane. (Both conditions must be met.) The short transverse grain direction is defined as perpendicular, within ±15E, to the longitudinal (predominate) grain direction and perpendicular, within ±15E, to the parting plane. (Both conditions must be met.) When possible, compression, bearing, and shear tests for three grain directions shall be conducted. 9.5.7.2 Treatment of Test Specimen Location — Testing specifications require a change in test specimen location from t/2 for #1.500- to t/4 for >1.500-inch thickness for certain products. Although this change in specimen location may result in t/4 mechanical property ratios which are significantly different from t/2 ratios (different populations), as for aluminum plate, the t/2 and t/4 mechanical property ratios should be treated together for analysis to determine derived properties. 9.5.7.3 Treatment of Clad Aluminum Alloy Plate — For clad aluminum alloy plate, 0.500 inch and greater in thickness, tensile properties are determined using round tensile specimens; consequently, tensile properties represent core material. To present design values which represent the average tensile properties across the thickness of the clad plate, an adjustment must be made in the tensile yield and ultimate strength values (S- or A- and B-Basis), representing core strength, in the primary test direction(s). These strengths shall be reduced by a factor equal to twice the percentage of the nominal cladding thickness per side. These adjustments in the tensile yield and ultimate strengths shall be made prior to the computation of derived
9-137
MMPDS-06 1 April 2011 properties, except for short transverse properties. The following footnote, flagged to the appropriate thickness ranges, shall be incorporated into the design allowable table: “These values, except in the ST direction, have been adjusted to represent the average properties across the whole section, including X percent per side nominal cladding thickness.” 9.5.7.4 Computational Procedure — Four basic steps are involved in determining design allowable properties by indirect computation: (1) (2) (3) (4)
Determine the ratios of paired observations for each lot of material. Compute the statistics, r and s, for the ratios of paired observations. Determine the lower confidence interval estimate (reduced ratio) for the mean ratio. Use the reduced ratio as the ratio of the derived to the established design allowable.
The ratio of two paired observations is obtained by dividing the measurement of the property to be derived [for example, CYS (LT) for heat-treatable aluminum sheet] by the measurement for established tensile property [for example, TYS (LT)] in the specified testing direction. Equations for computing average and standard deviation of the ratios are the same as those in Appendix A. The ratio of the two population means [for CYS (LT) and TYS (LT), respectively] is expected to exceed the lower confidence limit defined as r & t1 & αs/
n
[ 9.5.7.4(a)]
where n r s t1&α
is the number of ratios is the average of n ratios is the standard deviation of the ratios is the 1-α fractile of the t distribution for n - 1 degrees of freedom. At the risk level of α = 0.05, the appropriate t value is t0.95.
Since the lower confidence interval estimate is used as the ratio between the design allowable properties, the reduced ratio, R, may be defined as R ' r & t0.95 s/ n .
[ 9.5.7.4(b)]
Values of t0.95 for various degrees of freedom, n - 1, are tabulated in Table 9.10.4. The reduced ratio may now be used as follows to establish the design allowable for the property to be derived, F (LT) allowable to be derived R ' cy ' . Fty(LT) established allowable in specified test direction The derived allowable property is computed by cross multiplying: Fcy (LT) = R Fty (LT) . The basis (A, B, or S), defined in Section 9.1.6, for computed or derived property is assumed to be the same as the basis for Fty or Ftu tensile property in the right-hand side of the equation. If only the S-Basis (integer) properties are available to compute the derived properties, these values must be used. However, the unrounded S-Basis Fty or Ftu values computed with the method in Section 9.4 must be used to compute the derived properties if there are 100 or more observations representing 10 heats, casts, or melts; this will ensure
9-138
MMPDS-06 1 April 2011 the proper statistical confidence in the derived values. The lower of either the S-Basis value computed from Section 9.4 or the T99 value must be used to compute the A-Basis derived properties. In a sample of ratios for a given product, effect of thickness on the ratio should be examined. If there is no effect of thickness, ratios for the various thicknesses can be pooled to compute the average and reduced ratio. If there is an effect of thickness, then a regression with thickness should be computed and the average and reduced ratios determined from the regression. See Section 9.5.8 for procedure. 9.5.8 INDIRECT COMPUTATION USING REGRESSION — Regression may also be used to determine reduced ratios when an allowable for a property, such as SUS, is computed indirectly from an already established allowable for TUS. The following assumptions are inherent to the reduced ratio procedure: (1)
The two properties must be distributed according to a bivariate normal distribution.
(2)
The coefficient of variation must be the same for the two properties within particular bounds.
(3)
The average of the ratio of the two properties must be well described by a linear function of the independent variable.
It is also important that paired data be available over the entire range of the dimensional parameter for which there is data for the direct property (TUS). Note that the confidence level associated with allowables computed using the reduced ratio technique may be somewhat below 95 percent. To compute the reduced ratio at x = xo’ in the case of linear regression, use Equation [9.5.8(a)],
Reduced Ratio ' a % bx0 & t0.95,n&2 sy
1%∆ n
[9.5.8(a)]
where ∆ is defined in Equation 9.5.6.1(b), a, b, and sy are computed in the regression of SUS/TUS data (discussed in Section 9.5.6.1), and t.95,n-2 is selected from Table 9.10.4 corresponding to n-2 degrees of freedom. The allowable for Fsu at xo is then computed as the product of the reduced ratio and the established allowable for Ftu: Fsu = (Reduced Ratio)(Ftu) . To compute the reduced ratio at x = xo’ in the case of quadratic regression, use Equation [ 9.5.8(b)], 2
Reduced Ratio ' a % bxo % cx o & t0.95,n&3 s y Q
[9.5.8(b)]
where a, b, c, sy, and Q are computed in the quadratic regression of SUS/TUS data (discussed in Section 9.5.6.1), and t.95,n-3 is selected from Table 9.10.3 corresponding to n-3 degrees of freedom. The allowable for Fsu at xo is then computed as the product of the reduced ratio and the established allowable for Ftu: Fsu = (Reduced Ratio)(Ftu) .
9-139
MMPDS-06 1 April 2011
This page is intentionally blank.
9-140
MMPDS-06 1 April 2011
9.6 ANALYSIS PROCEDURES FOR DYNAMIC AND TIME DEPENDENT PROPERTIES 9.6.1 LOAD AND STRAIN CONTROL FATIGUE DATA — Fatigue has been defined as “the process of progressive localized permanent structural change occurring in a material subjected to conditions that produce fluctuating stresses and strains at some point or points, and which may culminate in cracks or complete fracture after a sufficient number of fluctuations.” For many years, tests have been performed on specimens having simple geometries in attempts to characterize the fatigue properties of particular materials. Fatigue tests have been conducted for many reasons. Basic fatigue-life information may be desired for design purposes, or to evaluate the differences between materials. The effects of heat treatments, mechanical working, or material orientation may also be studied through comparative fatigue testing. Many types of machines and specimen designs have been used to develop fatigue data. Machine types include mechanical, electromechanical, hydraulic, and ultrasonic. Specimens have been designed for testing in cyclic tension and/or compression, bending, and torsion. Cyclic loading conditions have been produced by rotating bending, axial loading and cantilever bending. In- and out-of-phase biaxial and multiaxial fatigue conditions have also been examined using specially designed specimens. Tests have been conducted in a variety of simulated environments including temperatures ranging from cryogenic to near melting point levels. The fatigue data included in MMPDS are limited to constant-amplitude axial fatigue data on simple laboratory specimens tested according to ASTM E 606. Data obtained under both strain control and load (stress) control are included. Figure 9.6.1(a) shows examples of trends for stress-life and strain-life fatigue data. Generally, stress-life data for unnotched specimens are limited to stress levels that produce intermediate-to-long fatigue lives because of unstable cyclic creep and tensile failure that can occur at high stress ratios in load-control testing. This phenomenon is shown in Figure 9.6.1(b). Strain-life curves are often focused on strain ranges that produce short-to-intermediate fatigue lives because of strain rate and frequency limitations, that require long testing times to generate long-life fatigue data under strain control. However, there is no inherent limit to the life range that can be evaluated in strain-control testing. For fatigue to occur, a material must undergo cyclic plasticity, at least on a localized level. The relationship between total strain, plastic strain, and elastic strain is shown in Figure 9.6.1(c). Low-cycle fatigue tests involve relatively high levels of cyclic plasticity. Intermediate-life fatigue tests usually involve plastic strains of the same order as the elastic strains. Long-life fatigue tests normally involve very low levels of cyclic plasticity. These trends are shown in Figure 9.6.1(d). In the MMPDS fatigue analysis guidelines, engineering strain is denoted as e and true or local strain is denoted as ε. These symbols are used interchangeably within MMPDS for small strain values. The limited plasticity involved in intermediate and long-life fatigue tests often results in a similar stress-strain response for both fully reversed strain-control and fully reversed load-control tests. A fatigue test, under strain control that produces a stable maximum stress of X, should produce (on the average) a fatigue life that is comparable to that obtained for a sample tested under load control at a maximum stress of X. Strictly speaking, the results are likely to be most comparable in terms of crack initiation life and not total life. If the comparison is made in terms of total life, the load-control results will tend to be more conservative than those generated by strain-control testing. When a specimen cracks in a test under strain control, it will usually display a decrease in maximum tensile load. Under load control, the maximum tensile load will remain constant but stress will increase as the crack grows, resulting in a shorter period of crack growth before the specimen fails.
9-141
MMPDS-06 1 April 2011
Figure 9.6.1(a). Examples of stress-life and strain-life fatigue trends.
9-142
MMPDS-06 1 April 2011
Figure 9.6.1(b). Example of cyclic creep phenomenon that can occur in a load control test with a high tensile mean stress [Reference 9.6.1].
Figure 9.6.1(c). A typical hysteresis loop for a material tested in fatigue under strain control illustrating the relationship between stress and strain parameters.
9-143
MMPDS-06 1 April 2011
Figure 9.6.1(d). An example of a strain-life fatigue curve and the stress-strain response at short, intermediate, and long fatigue lives. A number of factors can significantly influence fatigue properties for a particular material—whether the data are developed under load or under strain control. The surface condition (such as surface roughness) of the test specimens is an important factor. The methods used for fabricating the specimens are also important—principally because such methods influence the state of surface residual stresses and residual stress profiles. Other factors such as mean stress or strain, specimen geometry (including notch type), heat treatment, environment, frequency and temperature can also be significant variables. In MMPDS, fatigue data are always presented in separate displays for different theoretical stress concentration factors. However, data sets may be presented for various combinations of variables if preliminary analyses indicate that the data sets are compatible. In any case, it is very important to fully document both the input data and their resulting illustrations in MMPDS with regard to variables that can influence fatigue.
The selection of the specific procedures and methods that are outlined in this guideline for fatigue data presentation should not be construed as an endorsement of these procedures and methods for life prediction of components. The selection was made for consistency in data presentation only. For the purpose of life prediction, other methods and models are also commonly employed. Depending on the material, component and loading history, other models may be more appropriate for the particular situation. It is beyond the scope of these guidelines to make recommendations with respect to a specific life prediction methodology (e.g., the construction of design allowable fatigue curves). 9.6.1.1 Data Collection and Interpretation — If a set of strain- or load-control data for a material of interest meet the minimum requirements, the data should be processed for analysis. Load-control data reports should clearly specify the net section stresses, stress ratios, and associated cycles to failure. Strain-control data reports should clearly specify the strain levels used, the stable stress response values, and the associated cycles to initiation and/or failure, along with a clear and concise definition of the failure criterion. Acceptable definitions of failure in a strain-control fatigue test report include: (1)
Total specimen separation
9-144
MMPDS-06 1 April 2011 (2)
Decrease of 50 percent in the maximum or stabilized tensile load value.
Acceptable definitions of crack initiation in a strain-control fatigue test report include: (1)
First significant deviation from the stabilized load range or a stabilized rate-of-change of the load range. Detection reliability is dependent upon the sensitivity of the monitoring equipment and consequently values as small as 1 to 5 percent are used in some cases, while values as great as 10 to 20 percent are used in other cases.
(2)
Verifiable results from a calibrated nondestructive inspection device, such as an electrical potential drop system.
The definition of crack initiation or failure used in a particular study must be clearly and quantitatively documented. Correlative information that is important for load or strain-control test data includes detailed specimen dimensions, fabrication procedures (and their sequence), surface finish, product form, environment, frequency, waveform, surface residual stresses, and temperature. Other useful information includes average material tensile properties, product dimensions, and manufacturer. All fatigue data that are not listed as invalid by the author of the test report will be prepared for analysis, except for specimens tested at a maximum stress level greater than the average tensile ultimate strength of the material. The identity of different sources should be retained to determine whether combinations of data are appropriate. If all conditions from the different sources are virtually identical, the data should be analyzed together. Data should be identified as invalid if defects in specimen preparation or testing procedures are discovered. Runouts should be designated differently from failure data, since runouts are given special consideration in the regression analysis used to define mean fatigue curves. Runouts are generally defined as tests that have accumulated some predetermined number of cycles and have been subsequently stopped to reduce test time. Tests which have been stopped due to distinct problems encountered during testing are termed interrupted tests. Typical problems include power failures, temperature deviations, and load spikes. Interrupted tests are generally valid up until time at which the problem occurred. In this context, interrupted tests are treated the same as runouts in determining the mean fatigue-life trends of a data collection. However, if the interruption occurs long before expected failure of the specimen, the information contributed by the interrupted test is minimal, and the data point should be discarded. Data from specimens which exhibit failures outside of the gage section may, in certain circumstances, be included in the analysis and treated as interrupted tests. Failures occurring just outside the gage section are essentially normal failures and should be included for analysis. In strain-control tests, however, the crack initiation is not sensed by the extensometer. Failures at threads, shoulders, or button heads may be indicative of a problem with the specimen design or test procedure. Strain-control fatigue data must be accompanied by sufficient information to construct a cyclic stress-strain curve. The cyclic stress-strain curve may be established based on incremental stress-strain results or multiple specimen data for which stable stress amplitudes are defined for the complete range of strain ranges. The method used to define the cyclic stress-strain curve must be recorded so that it can be included in the correlative information along with the strain-life fatigue data displays. 9.6.1.2 Analysis of Data — Once a collection of data is reviewed (see Section 9.6.1.1) and compiled for the material of interest, analysis of that data may begin. An outline of the analysis procedure that is normally followed is given in Figure 9.6.1.2. Each of the elements in the flow chart are discussed in the following sections.
9-145
MMPDS-06 1 April 2011 The same basic analysis procedure is used for strain- and load-control data except these data types are normally analyzed separately even if they represent the same material and product form. The only case where load- and strain-control data can be combined is the situation where some specimens have been switched from strain- to load-control testing. In this case, the load- and strain-control data may be analyzed on an equivalent strain basis. In all other cases, load-control data should be analyzed on an equivalent stress basis. Load-control data generated at different stress concentrations should always be analyzed separately. 9.6.1.3 Fatigue Life Models — To clarify the fatigue data trends for a specific stress or strain ratio, a linear regression model can be applied as follows: log(Ni or Nf) = A1 + A2 log(Smax or ∆ε).
[9.6.1.3(a)]
Note that fatigue life is specified as the dependent variable. The alternative approach, using stress or strain as the dependent variable, is sometimes used, but this procedure will not be employed in developing mean fatigue curves in MMPDS. The use of fatigue life or, more specifically, logarithm (base 10) of fatigue life as the dependent variable will be used since stress or strain is the controlled parameter in a fatigue experiment, and the resultant fatigue life is a random variable. If Equation 9.6.1.3(a) does not adequately describe long-life data trends, a nonlinear model (or a more complicated linear model) may be warranted. For example, long-life, load-control data might be modeled by the nonlinear expression log Nj = A1 + A2 log (Smax - A3)
[9.6.1.3(b)]
or by the more complicated equation [Reference 9.6.1.3] log Nf = A1 + A2 log Smax + A3
logSmax % A4 .
[9.6.1.3(c)]
These more complex forms should only be employed in instances where they are warranted based on a distinct fatigue limit at long lives and when the simpler linear model was inadequate. Standard least squares regression analysis and the procedure for detecting outliers in Section 9.6.1.6 require that the variance be relatively constant at all fatigue life values. Traditionally, the logarithm of fatigue life is approximated by a normal distribution. However, the variability or scatter of fatigue life is generally not constant, but increases with increasing fatigue life. To ensure the reliable use of the outlier detection procedure, a weighting scheme designed to produce a more uniform distribution of residuals is suggested in Section 9.6.1.5.
9-146
MMPDS-06 1 April 2011 F a t ig u e L if e M o d e ls (S e c t io n 9 . 6 . 1 . 3 )
E v a lu a t io n o f M e a n S t re s s a n d S t ra in E f f e c t s (S e c t io n 9 . 6 . 1 . 4 )
T re a t m e n t o f O u t lie rs (S e c t io n 9 . 6 . 1 . 6 )
Y es
R e m o v e O u t lie rs
O u t lie rs D etec ted?
Y es
No A s s e s s m e n t o f F a t ig u e L if e Model (S e c t io n 9 . 6 . 1 . 7 )
O t h e r M o d e ls ?
Is Model A dequate?
No
No
Y es
E lim in a t e D a t a f ro m C o n s id e ra t io n
R em ov e D ata S et
D a t a S e t C o m b in a t io n (S e c t io n 9 . 6 . 1 . 8 )
Is C o m b in a t io n V a lid
No
Y es T re a t m e n t o f R u n o u t s (S e c t io n 9 . 6 . 1 . 9 )
Tim e D e p e n d e n t E f f e c t s (S e c t io n 9 . 6 . 1 . 1 0 )
P re p a re D a t a f o r P re s e n t a t io n (S e c t io n 9 . 9 . 1 )
Figure 9.6.1.2. Flow chart of general fatigue analysis procedure.
9-147
MMPDS-06 1 April 2011 9.6.1.4 Evaluation of Mean Stress and Strain Effects—Commonly, load-controlled fatigue data generated over a range of stress ratios can be represented by the following equivalent stress-fatigue life formulation: log Nf = A1 + A2 log (Seq - A4)
[ 9.6.1.4(a)]
where A
Seq ' (∆S) 3(Smax)
1&A3
Seq ' Smax(1 & R)
A3
The equivalent stress model (and the related equivalent strain model) are derived from Reference 9.6.1.4(a). Equation 9.6.1.4(a) is nonlinear in its general form and must, therefore, normally be optimized through use of a nonlinear regression package. However, the above equation can be solved through a linear analysis, if A3 and A4 are optimized through an iterative solution. The parameter A3 normally lies in the range of 0.30 to 0.70, while A4 represents, in essence, the fatigue limit stress. In cases where the optimum value of A4 is negative or insignificant, it should be omitted. Unnotched data, especially aluminum alloy data, can frequently be represented without using the nonlinear A4 term. Parameter optimization is discussed more thoroughly in Section 9.6.1.5. If A4 is zero or set equal to zero, Equation 9.6.1.4(a) becomes linear in log Smax and log (1-R), and it can be written as follows: log Nf = A1 + A2 log Smax + B log (1-R)
[ 9.6.1.4(b)]
where B = A2A3. Thus, if A4 is zero, then A3 = B/A2 Strain-controlled fatigue data generated over a range of strain ratios often can be consolidated by the following equivalent strain formulation: log Nf = A1 + A2 log (εeq - A4)
[ 9.6.1.4(c)]
where A
εeq ' (∆ε) 3(Smax/E)
1&A3
.
Note that Equation 9.6.1.4(c) is very similar in form to Equation 9.6.1.4(a). It is important to note, however, that the maximum stress value used in Equation 9.6.1.4(c) is not a controlled quantity. It is a measured quantity and its magnitude depends primarily on the amount of cyclic softening or hardening that occurs in combination with mean stress relaxation. Although Smax can be predicted with reasonable accuracy if the cyclic response of the material is well established, using the stable measured values of Smax, when analyzing strain-control data for presentation in MMPDS, is preferred.
9-148
MMPDS-06 1 April 2011 The equivalent stress and strain approaches are very useful for computing mean fatigue life estimates for conditions intermediate to those for which the test data have been generated. Caution should be used, however, in making life predictions for stress/strain conditions beyond the range of those represented in the data base. Also, when only two stress/strain ratios are used in the equivalence formulation, fatigue life estimates at conditions other than those two ratios (either intermediate or beyond) may be unreliable. If the basic formulations just described do not realistically represent the data, alternative equivalent stress or strain formulations should be considered. Two formulations [References 9.6.1.4(b) and (c)], in particular, may apply in these specific instances where equivalent stress is defined as: Seq ' Sa % A3 Sm
[9.6.1.4(d)]
or A3
[9.6.1.4(e)]
Seq ' Sa % Sm
and equivalent strain is defined as: εeq ' εa % A3 Sm/E
[9.6.1.4(f)]
A3
[9.6.1.4(g)]
or εeq ' εa % (Sm/E)
where Seq Sa εa
= equivalent stress = alternating stress = alternating strain
εeq Sm E
= equivalent strain = mean stress = elastic modulus (from each test result).
Other data consolidation parameters may also be used provided they do not violate other guideline requirements, and they can be proven adequate. Adequacy may be assessed by employing the procedures described in Section 9.6.1.7. To evaluate the adequacy of one equivalent stress or strain formulation compared to another, it is useful to construct a plot of residuals versus stress or strain identifying individual stress or strain ratios. In this way the usefulness of a given formulation for modeling stress or strain ratio effects is visually apparent. 9.6.1.5 Estimation of Fatigue-Life Model Parameters — The fatigue-life model parameters are estimated to obtain the best-fit S/N or ε/N curve for the data. The procedure used to determine the parameters includes a statistical method for adjusting the fatigue model for the nonconstant variance commonly observed in long-life fatigue data. The motivation for this adjustment is the fact that constant variance is an inherent assumption in least squares regression analysis. To estimate the parameters in Equation 9.6.1.4(a) or Equation 9.6.1.4(c) and adjust the model to incorporate nonuniform variance, the following six-step procedure is performed.
9-149
MMPDS-06 1 April 2011 Step 1 - Initial Parameter Estimates. If A4 is assumed to be zero, then a linear least squares regression analysis is performed to obtain the initial parameter estimates for A1, A2, and A3. If A4 is to be estimated from the data, a nonlinear least squares regression analysis is performed to obtain the initial parameter estimates for A1, A2, A3, and A4. Runout observations above the minimum equivalent stress (strain) at which a failure occurred should be included in the calculation of the initial parameter estimates and residuals. To facilitate convergence of the nonlinear least squares fit when A4 is to be estimated from the data, the following procedure may be used to obtain starting values. Set A3 equal to 0.5 and calculate equivalent stress (strain) values for each observation. Set A4 equal to one-half the smallest equivalent stress (strain) not associated with a runout. Using these values of A3 and A4 as constants, obtain least squares estimates of A1 and A2 using a linear regression routine. Step 2 - Fitting the Variability Model. The magnitude of the residuals from these fatigue-life models typically increases with decreasing stress or strain as illustrated in Figure 9.6.1.5(a). The residuals plotted are the observed log(life) values minus the predicted log(life) values.
Figure 9.6.1.5(a). Example plot showing increasing magnitude of residuals with decreasing stress/strain levels.
To evaluate the fatigue-life model for nonuniform variance, it is useful to construct a model to estimate the standard deviation of log(life) as a function of equivalent stress (strain). If there is nonuniform variance, such a model can then be used to perform a weighted regression to estimate the fatigue life model parameters where the weight for each observations inversely proportional to its estimated variance.
9-150
MMPDS-06 1 April 2011 The suggested standard deviation model is *R* 2/π
' σo % σ1
1 ' g Seq Seq
[9.6.1.5(a)]
or *R* 2/π
' σo % σ1
1 ' h εeq εeq
[9.6.1.5(b)]
where R (observed log(life) minus predicted log(life)) represents the residuals from the fatigue life model fitted in Step 1. This model assumes that the standard deviation of log(life) is a linear function of the reciprocal of equivalent stress (strain). The absolute values of the residuals are divided by 2/π so that g(Seq) or h(εeq) is an estimate of the standard deviation of log(life). The intercept, σo, and the slope, σ1, are first estimated by ordinary least squares. If the least squares estimate of σo is negative, σo should be set to zero and σ1 should be estimated by performing a least squares regression through the origin (no intercept term). A 90 percent confidence interval for σ1 should also be obtained. If the lower bound of the confidence interval for σ1 is positive, there is evidence of nonuniform variance and one should proceed to Step 3A. If the confidence interval for σ1 contains zero, there is no evidence of nonuniform variance and one should proceed to Step 3B. If the upper bound of the confidence interval for σ1 is negative, this indicates abnormal behavior requiring further examination of the data set before proceeding with the analysis. Figure 9.6.1.5(b) is a plot of the absolute values of the residuals from Figure 9.6.1.5(a) versus the reciprocal of equivalent stress. The slope and vertical intercept of the least squares line displayed in this plot are the estimated parameters σ1 and σo. Step 3A - Fitting the Weighted Fatigue Model. Adjust the fatigue model for nonconstant variance by dividing each term in the model by g(Seq) or h(εeq), the estimated standard deviation of the dependent regression variable. If the four-parameter fatigue model is being used, the adjusted model becomes
log(N) 1 ' A1 g(Seq) g(Seq)
% A2
log(Seq &A4) g(Seq)
[9.6.1.5(c)]
or log(εeq & A4) log(N) 1 ' A1 % A2 g(εeq) g(εeq) g(εeq)
[9.6.1.5(d)]
where Seq and εeq are defined in Equations 9.6.1.4(a) and 9.6.1.4(c). Perform a nonlinear least squares regression analysis (no intercept) using the adjusted model to obtain new estimates of A1, A2, A3, and A4.
9-151
MMPDS-06 1 April 2011
Figure 9.6.1.5(b). Example plot showing the magnitude of the residuals versus the inverse of equivalent stress/strain levels.
When performing this regression, all runouts above the minimum Seq or εeq at which a failure occurred should be included in the analysis and treated as failures. The inclusion of runouts in this step should be determined based on equivalent stress (strain) values using the value of A3 estimated in Step 1. Assuming that the equivalent stress/strain model is valid, this qualifying stress/strain level allows the use of all runouts above stresses or strains at which failures have been observed. Below this level, there is no statistical evidence that discontinued tests would have failed. Therefore, runouts below the minimum Seq or εeq value at which a failure occurred are not assigned finite life values in estimating the parameters. It should be noted that the regression analysis performed using the adjusted model [Equation 9.6.1.5(c) or (d)] is equivalent to performing a weighted least squares regression analysis using the original fatigue life model [Equation 9.6.1.4(c)] and weights equal to 1/g2(Seq) or 1/g2(εeq). Also, it may be desirable in certain situations to fit alternative standard deviation models to the residuals from Step 1. In this case, simply redefine g(Seq) or g(εeq) to be equal to the desired model and follow Steps 1 through 3 above. Upon completion of Step 3A, proceed to Step 4. Step 3B - Fitting the Unweighted Fatigue Model. Using the initial estimate of A3 obtained in Step 1, calculate equivalent stress (strain) values for all observations including runouts. All runouts above the minimum equivalent stress (strain) at which a failure occurred should be included in the analysis and treated as failures. (See Step 3A for an explanation of this rationale.) Using the same regression techniques employed in Step 1, obtain least squares estimates of the parameters A1, A2, A3, and A4. Step 4 - Testing the Significance of Model Parameters. Obtain a 90 percent confidence interval for A4. If the lower bound of the confidence interval is negative, there is no evidence that A4 is different from zero. In this case, assume A4 is equal to zero and repeat Step 3A or 3B, eliminating A4 from the model.
9-152
MMPDS-06 1 April 2011 Next, obtain a 90 percent confidence interval for A2. If the upper bound of the confidence interval is negative, this indicates that the relationship between log(life) and equivalent stress (strain) is significant. If the upper bound of the confidence interval is positive, there is no evidence of a significant relationship between log(life) and equivalent stress (strain) and the data set should be examined further before proceeding with the analysis. Step 5 - Re-estimating A1 and A2. If a weighted least squares analysis was performed in Step 3A, A1 and A2 should be re-estimated to include the effect of the new value of A3 on the calculation of weights and the inclusion of runouts. First, recompute the weights g(Seq) or g(εeq) using the value of A3 obtained in Step 3A. Then perform a linear regression (no intercept) to obtain updated estimates of A1 and A2 in Equation 9.3.4.10(c) or (d) treating A3 as a constant. The inclusion of runouts in this linear regression should be determined based on equivalent stress (strain) values using the value of A3 obtained in Step 3A. Step 6 - Estimating the Standard Deviation and Calculating Standardized Residuals. The method for estimating the “standard deviation of log(life)” (SD) depends on whether there is evidence of nonuniform variance in the fatigue life data. If an unweighted regression was performed in Step 3B to obtain the model parameters, SD should be set equal to the root mean square error (RMSE) associated with the fitted and unweighted fatigue life model. In this case, SD may be calculated as
n
SD ' RMSE '
j Ri /(n&k)
[ 9.6.1.5(e)]
2
i ' 1
where k is the number of parameters estimated in Step 3, and Ì Ri ' log N i & log Ni
[9.6.1.5(f)]
Ì
where Ri is the residual, log Ni is the logarithm of observed number of cycles, and log Ni is the logarithm of predicted number of cycles associated with the ith observation. If a weighted regression was performed in Step 3A to obtain the model parameters, SD should be reported as linear function of the reciprocal of equivalent stress (strain). This function should be obtained by multiplying the fitted standard deviation model g(Seq) or g(εeq) from Step 2 by the root mean square error (RMSE) associated with the fitted and weighted fatigue life model to obtain an updated standard deviation model. In this case, SD may be calculated as SD ' RMSE( σ0 % σ1/Seq
[9.6.1.5(g)]
SD ' RMSE( σ0 % σ1/εeq
[9.6.1.5(h)]
or
9-153
MMPDS-06 1 April 2011 where n
RMSE ' j WRi /(n & k) , 2
[9.6.1.5(i)]
i 1
k is the number of parameters estimated in Step 3, and
WRi '
Ì log N i & log Ni
[9.6.1.5(j)]
g Seq,i or εeq,i
with WRi denoting the weighted residual and Seq,i(εeq,i) the equivalent stress (strain) associated with the “ith” observation. As a final step associated with the estimation of fatigue life model parameters, standardized residuals should be calculated for use in the judging the appropriateness of the fitted model. Standardized residuals are calculated as SRi ' Ri/SD
[9.6.1.5(k)]
where the form of the residual Ri is given in Equation 9.6.1.5(f) and the estimated standard deviation SD is given by either Equation 9.6.1.5(e) or 9.6.1.5(h), (j) or (k). Figure 9.6.1.5(c) is a plot of the standardized residuals for the same data plotted in Figure 9.6.1.5(d) but based on a standard deviation model to correct the nonuniform variance. Note that the pattern of nonconstant variance has been eliminated.
Figure 9.6.1.5(c). Example plot showing constant variance of standardized residuals.
Note - When performing any of the regression analyses described above to estimate the parameters A1, A2, A3, and A4, the estimate of A4 should be restricted to be greater than or equal to zero. Some regression programs allow such restrictions as an option. If such an option is not available and if
9-154
MMPDS-06 1 April 2011 the estimate of A4 is negative, set A4 equal to zero and refit the model treating A4 as a constant. Also note that the parameter estimates obtained from the regression analysis of Step 3A or 3B need not necessarily be reported as the final parameter estimates. If the data set includes runout observations, final estimates of the A1 and A2 parameters may be calculated using the maximum likelihood techniques presented in Section 9.6.1.9, provided that software for performing this procedure is available. 9.6.1.6 Treatment of Outliers — An outlying observation (or outlier) is one that appears to deviate markedly from other observations in the sample in which it occurs. Outliers may essentially be classified into two groups: (1) An extreme value of the random variable inherent in the data (in this case fatigue life). If this is true, the value should be retained in future analyses. (2) An unusual result caused by a gross deviation in material or prescribed experimental procedure or an error in calculating or recording any experimental data. An outlier of the second type is sometimes correctable by a review of the test sample and/or test records, which may provide sufficient evidence for rejection of the observation. An outlying value from a failure that occurred in the fillet of an unnotched fatigue test sample is an example of a potentially rejectable result based on physical evidence alone. The more difficult case is one where an observation is an obvious outlier and no physical reasons can be identified to justify its exclusion. Assuming uniform variance in the standardized residuals over the complete range in equivalent stress or strain, the problem of identifying certain observations as potential outliers should be addressed as follows. Calculate the studentized residuals,
Ti '
SRi 1 & hi
RMSE RMSE(i)
1/2
[9.6.1.6(a)]
for i = 1, ..., n where SRi is the standardized residual from Equation 9.6.1.5(k), RMSE is the root mean square error based on the entire sample as calculated in either Equation 9.6.1.5(e) or Equation 9.6.1.5(i), and RMSE(i) is the root mean square error based on the sample which excludes the ith observation as calculated by either Equation 9.6.1.5(e) or Equation 9.6.1.5(i). The value hi is calculated using the formula X1i ' X2j & 2 X1iX2i ' X1jX2j % X2j ' X1j 2
hi '
2
2
' X1j ' X2j & ' X1jX2j 2
2
2
2
[9.6.1.6(b)]
where X1i is the value of 1/SD for the ith specimen, X2i is the value of log(Seq-A4)/SD for the ith specimen and all summations are over j = 1, ..., n. Note that
9-155
MMPDS-06 1 April 2011 2
RMSE 2(i) '
n & k RMSE 2 & SR1 / l & hi (n & k &1)
[9.6.1.6(c)]
where RMSE is the root mean square error based on the entire sample as calculated in either Equation 9.6.1.5(e) or Equation 9.6.1.5(k) and k is the number of parameters estimated in Step 3 of Section 9.6.1.5. It can be shown that each Ti has a central t distribution with n-k-1 degrees of freedom. Applying the Bonferroni inequality [Reference 9.6.1.6] to obtain a conservative critical value leads to the following outlier test. Calculate the maximum absolute studentized residual
G ' max Ti
[9.6.1.6(d)]
and declare the data value corresponding to G to be an outlier if
G > t(α/2n, n & k & 1)
[9.6.1.6(e)]
where t(α/2n,n-k-1) is the upper α/2n percentile point of the central t distribution with n-k-1 degrees of freedom and α represents the significance level of the outlier test. Under the hypothesis that no outliers are present in the data, the probability is less than α that the data value corresponding to G will be falsely declared an outlier. In applying this test to fatigue life data, a significance level of α = 0.05 is used and the test is first applied to the entire sample. If an outlier is detected, the outlying observation is removed from the sample and the entire analysis is repeated on the smaller sample of n-1 observations starting with Step 1 of Section 9.6.1.5. (When a nonlinear least squares fit is performed in Step 1, use the current estimates for A1, A2, A3, and A4 as starting values rather than following the starting value algorithm.) This process of removing outliers and repeating the analysis continues until no outliers are detected in the remaining sample. For strain-control data, apply the procedure described above replacing Seq with εeq throughout. The data analyst may also wish to carry out the outlier test procedure using a significance level of α = 0.20 in order to identify additional observations that may warrant investigation. To identify even more suspect observations, a larger significance level may be used. Any data values identified by this procedure should be examined but retained in the data set unless physical evidence justifies their exclusion. 9.6.1.7 Assessment of the Fatigue Life Model — The fit of the fatigue model S/N curve to the data may be assessed in two ways—the adequacy of the equivalent stress/strain model and the adequacy of the fatigue life model. The equivalent stress model lack of fit test and the overall lack of fit test described below provide a reasonable assessment of the fatigue life model. When three or more stress (strain) ratios are used, the fit of the equivalent stress (strain) model may be tested by determining the relationship between the standardized residuals from Equation 9.6.1.5(k) and stress (strain) ratio. A difference in the means of the standardized residuals at each stress (strain) ratio indicates that the equivalent stress (strain) model is inadequate. To determine whether or not there is a statistically significant difference in the means of the standardized residuals at each stress (strain) ratio, an
9-156
MMPDS-06 1 April 2011 analysis of variance should be performed on the standardized residuals using stress (strain) ratio as the treatment variable. A statistical F-test should be used to determine if the effect of stress ratio is significant at the 5 percent level [Reference 9.6.1.7]. The equivalent stress (strain) model should be considered inadequate when the effect of stress (strain) ratio is significant according to the statistical F-test. The plot of the standardized residuals versus stress ratio shown in Figure 9.6.1.7(a) illustrates such a relationship between the standardized residuals and stress ratio. Since there would be no such relationship if the equivalent stress model were adequate, the plot indicates that the equivalent stress model must have been misspecified in this case. In addition to the lack of fit shown by differences in standardized residual means, other types of lack of fit could exist. Therefore, it would be prudent to examine stress-life plots in addition to performing the statistical test for lack of fit of the equivalent stress model.
Figure 9.6.1.7(a). Standardized residuals versus stress ratio.
If the equivalent stress (strain) model is inappropriate, then a new equivalent stress (strain) model should be selected. When a suitable stress (strain) model is not available, an alternative strategy is to present the data with best fit regression lines for each stress (strain) ratio. To be acceptable, each curve must meet minimum data requirements and satisfy significance checks as discussed in Section 9.6.1.5. This approach is less desirable than the equivalent stress (strain) modeling approach because it requires the estimation of fatigue trends using a graphical technique for intermediate conditions where no data exist. It should, therefore, be used only in cases where significant fatigue data collections cannot be handled by standard procedures. Once an equivalent stress (strain) model has been found that describes the general fatigue data trends for all stress (strain) ratios, an overall test of the fit of the fatigue model should be performed. The stress-life plot shown in Figure 9.6.1.7(b) is characteristic of an overall lack of fit. To identify such a lack of fit, the
9-157
MMPDS-06 1 April 2011 Durbin-Watson test may be used [Reference 9.6.1.7]. The statistic D should be computed according to the formula n
Di '
j
i ' 2
SRi & SRi & 1 2 n
j
i ' 1
[9.6.1.7(a)] 2 SRi
where SRi is the ith standardized residual [Equation 9.6.1.5(k)] ordered by increasing values of equivalent stress(strain). If D < 2 & 4.73/n 0.555
[9.6.1.7(b)]
conclude that there is a significant lack of fit at the 5 percent significance level. This equation was derived from the conservative critical value (dL) reported in Table A.6 of Montgomery and Peck [Reference 9.6.1.7]. When an overall lack of fit is determined from this test, the modeling procedure should be repeated with a more appropriate fatigue model.
Figure 9.6.1.7(b). Stress-life plot showing lack of fit.
9.6.1.8 Data Set Combination — In many cases, data from different sources, orientations, etc., may need to be combined for analysis. When data set combinations of this sort are performed, the validity of the combination should be tested with the method described below. The test is similar to that used to determine the adequacy of the equivalent stress (strain) model in the previous section.
9-158
MMPDS-06 1 April 2011 If there is a relationship between the standardized residuals from Equation 9.6.1.5(k) and the data set from which they were obtained, such as that shown in Figure 9.6.1.8, then the data sets should normally not be combined. To determine whether or not the mean of the standardized residuals is significantly different for any of the data sets, an analysis of variance should be performed on the standardized residuals using data set as the treatment variable. The analysis of variance F-test should be used to determine if the combined data sets are significantly different at the 5 percent level. When the data sets are found to be significantly different, at least one of the data sets should normally be removed from the data set combination. In this situation, the data analyst may wish to apply a standard multiple comparison procedure to the standardized residual data to determine which standardized residual means are significantly different from the others. For a discussion of standard multiple comparison procedures, see pages 185-201 of Winer [Reference 9.6.1.8]. There may be situations where differences between data sets are found to be statistically significant, yet these differences are so small as to be unimportant from an engineering standpoint. If a particular analysis reveals such a case, exceptions may be taken, if clearly noted and explained in the fatigue data proposal.
Figure 9.6.1.8. Standardized residual plot showing different mean trends between data sets.
9.6.1.9 Treatment of Runouts — It is difficult to incorporate information from runouts (or interrupted tests) when using the least squares criterion to fit fatigue life models to data since the failure times for these observations are not known. The runouts must be either ignored or treated as failures and neither of these alternatives adequately incorporates the information contained in the runout observations. Both of these approaches tend to produce smaller predicted lives at a given equivalent stress (strain) value than is appropriate. The treatment of runouts presented below is more appropriate but requires that two of
9-159
MMPDS-06 1 April 2011 the fatigue life model parameters be estimated by maximum likelihood techniques rather than by least squares procedures. The maximum likelihood procedure is employed to obtain new estimates for the parameters A1 and A2 in Equation 9.6.1.4(a) or 9.6.1.4(c). For the purpose of this analysis, fatigue life (cycles to failure) is assumed to be log normally distributed and the parameters A3 and A4 are considered to be constants which are equal to the values obtained using the procedures of Section 9.6.1.5. The estimated values of A1 and A2 obtained previously are used as initial values. The maximum likelihood procedure then determines the values of A1 and A2 which maximize the log-likelihood function n
L A1,A2,σ ' j
i ' 1
1 & d i [log f wi /σ % d i log S wi
[9.6.1.9(a)]
where f (w) '
1
exp
&
2π
w2 2
[9.6.1.9(b)]
is the standard normal density function, 4
S(w) '
m
f(t) dt
[9.6.1.9(c)]
w
is the survival function for the standard normal distribution, di is equal to 1 if the ith observation is a runout and zero otherwise, σ is a scale parameter to be estimated, and
wi '
log Seq & A4 log(N) 1 & A1 & A2 SD SD SD
[9.6.1.9(d)]
where N is the cycles to failure and SD is the standard deviation for the ith observation as calculated from Equation 9.6.1.5(e) or Equation 9.6.1.5(h). For more information on the maximum likelihood procedure, see Reference 9.6.1.9(a). For use in standard data analysis, the maximum likelihood procedure is conveniently implemented in some statistical software packages such as SAS [see Reference 9.6.1.9(b)]. When runouts are present, the fitted curve produced by maximum likelihood will generally predict longer average cycles to failure at given equivalent stress (strain) values than the fitted curve produced by least squares. Although it would be desirable to update all of the parameters in the fatigue model with maximum likelihood, algorithms to perform maximum likelihood on nonlinear models are not readily available. For this reason, the least squares estimates of the parameters A3 and A4 must be used.
9-160
MMPDS-06 1 April 2011 9.6.1.10 Recognition of Time Dependent Effects — All prior discussion has been based on the assumption that time dependent effects in the fatigue data sample of interest are negligible. When dealing with elevated temperature fatigue properties of materials (or room temperature fatigue properties in a corrosive environment, for example), this assumption may not be realistic. Analysis methods that are approved for use in MMPDS do not account for time-dependent effects. Therefore, every effort must be made to identify data that embody significant time-dependent effects. There are no absolute methods presently available for sensing time-dependent effects in fatigue data; however, there are some useful approximation techniques. One of the more useful approaches applied to “suspect” data is to include time-dependent terms in the regression model. If the terms are significant, there is reason to believe that the population contains time dependent data. Subdividing the data into subsets that do not show time dependent effect may be possible. If this is not possible, the data set should either be rejected or included with a disclaimer restricting usage of the data to predict performance at other frequencies or temperatures. One other possible indicator of time dependent effects is an abnormal equivalent stress (strain) model. If data for different stress or strain ratios do not fit the customary models (as described in Section 9.6.1.4), or abnormal optimum parameters are defined the problem may be caused by time dependent effects. In the case of the primary equivalent stress (strain) formulation equation the exponent normally is between zero and one. If the A3 exponent approaches or exceeds one, the influence of maximum stress on fatigue life is negligible. This is a very unusual result that usually indicates problems with the data sample. The problem may result from mixed sources, where the data from each source were generated at different stress (strain) ratios. Rejection of such data sets is discussed in Section 9.6.1.8. In the case of the primary equivalent stress model [Equation 9.6.1.4(a)], if the exponent (A3) approaches or is less than zero, it indicates the influence of maximum stress on fatigue life is “too strong”. This result implies that creep is affecting the data. If data are available for a material at a range of different temperatures, it may be possible to analyze these sets separately and make comparisons between best-fit mean trend lines for increasing temperatures. If the different mean trend lines are not consistent with the higher-temperature curves converging or diverging from the lower-temperature curves, there is probably a significant time-dependent effect in the data. The suspect data should either be excluded or included with a disclaimer as previously cited. If data are excluded for time-dependent effects, the preliminary analyses of those data should be included in the data proposal and reasons for their exclusion should be given. 9.6.2 FATIGUE CRACK GROWTH DATA — Fatigue-crack-propagation data, recorded in the form of crack-length measurements and cycle counts (aj, Ni) can be presented as crack-growth curve drawn through the data points as shown in Figure 9.6.2(a). Although data presented in this form indicate general trends, they are not generally useful for design purposes since a variety of stress levels, stress ratios, initial crack conditions, and environmental conditions are encountered. It has been found convenient to model fatigue-crack-propagation damage behavior as rate process and formulate a dependent variable based on the slope of this growth curve, or an approximation to it, namely, da ∆a • dN ∆N
9-161
[ 9.6.2(a)]
MMPDS-06 1 April 2011 Results obtained from the theory of linear elastic fracture mechanics have suggested that rate process at the crack tip might be represented as a function of a stress-intensity factor, K, which, in general form, may be written as K ' S a g(a,w) ,
[9.6.2(b)]
where g(a,w) is a geometric scaling function dependent on crack and specimen geometry, and S is nominal stress. As a result, the independent variable is usually considered as some function of K. At present, in MMPDS the independent variable is considered to be simply the range of the stress intensity factor, ∆K, and data are considered to be parametric on the stress ratio, R, such that da/dN . ∆a/∆N ' g(∆K,R) ,
[ 9.6.2(c)]
where ∆K = Kmax - Kmin. Values of maximum and minimum stress intensity factors, Kmax and Kmin, respectively, are computed with Equation 9.6.2(b) using respective maximum and minimum cyclic stresses. A crack growth rate curve, as shown in Figure 9.6.2(b), is obtained by plotting the locus of points (da/dN, ∆K) derived from the crack-growth curve [see Figure 9.6.2(a)] at selected values of crack length, a. Crack-growth-rate curves are generally plotted on log-log coordinates. Within the general curve shape described above, systematic variations in data point locations are observed. When data from tests conducted at several different stress ratios are present, the plot of crack-growth rate versus stress-intensity-factor range will be layered into distinct bands. Layering of data points may also occur as a result of variation in such parameters as test frequency, environment, temperature, and specimen grain direction. 9.6.2.1 Data Collection and Interpretation — Reporting of basic crack-growth data shall be as complete as possible. These data reports must include detailed listings of the crack length versus number of fatigue cycles for each specimen. Definition of the method used to measure crack lengths would also be helpful. In addition to reporting cyclic loading conditions, such as maximum cyclic load and/or stress levels, stress ratio, test frequency, and specimen dimensions, it is particularly important to identify environmental conditions associated with the tests. The number of specimens and number of respective heats should also be identified. Table 9.9.2 serves as an example of the type of information which should be available (or at least is desirable) for each collection of FCP data.
9-162
MMPDS-06 1 April 2011
Figure 9.6.2(a). Crack-growth curve.
Figure 9.6.2(b). Crack-growth-rate curve.
9-163
MMPDS-06 1 April 2011 9.6.3 FRACTURE TOUGHNESS DATA — Fracture toughness of a material is its ability to resist flaw propagation and fracture. This characteristic is a generic quality, somewhat elusive to assess quantitatively. Of several measures of fracture toughness which have evolved for appraising the sensitivity of metals to the presence of small flaws, those based on crack stress or strain analysis appear to be more meaningful for use in design applications. Significant quantification of fracture and flaw propagation behavior of high-strength metals has been achieved through the concept of stress intensity factors. Typical room temperature values and effect-of-temperature curves for critical stress intensity factors are presented in MMPDS for “information only” where data are available. Basic concepts, testing considerations, and interpretations of fracture toughness are briefly described in the following subsections. A primary factor in fracture behavior of a material is stress state, i.e., plane-stress or plane-strain. In accord with previous definitions, these stress states may be interpreted mechanically as a size or thickness effect within the material. The ideal plane-stress condition occurs in the two-dimensional (σz = 0) case, in which all stresses are restricted to one plane. Typically material loaded in plane-stress can accommodate extensive plastic deformation adjacent to the flaw prior to fracture, and at fracture exhibit a relatively high K value, as computed by a relationship such as Equation 9.6.2. At the opposite extreme is the ideal plane-strain case, in which the third dimension is essentially infinite so that bulk restraint of the material permits no out-of-plane strains. As a result, plastic deformation is restricted and the material fractures in a nearly elastic manner at a relatively low K value. In real materials, these ideal extremes can be closely approximated by “quasi” conditions of “thin” and “thick” bodies. Variation in stress intensity at fracture over these extremes, and the transition stage between, may be represented as shown previously in Figure 9.2.3.5.3(a). 9.6.3.1 Plane-Strain Fracture Toughness Data — For materials which are inherently brittle, or for structures and flaw configurations which are in triaxial tension due to their thickness or bulk restraint, quasi-plane-strain-stress conditions can be obtained in a finite-sized structural element. Triaxial stress state implicit to plane strain effectively embrittles the material by providing maximum restraint against plastic deformation. In this condition, component behavior is essentially elastic until fracture stress is reached and is readily amenable to analysis in terms of elastic fracture mechanics. This mode of fracture is frequently characteristic of the very high strength metals. 9.6.3.1.1 Data Collection and Interpretation — While a wide variety of fracture specimens are available for specified testing objectives, the notch-bend specimen and compact specimen generally offer the greatest convenience and material economics for testing. Details of recommended testing practice are presented in ASTM E 399. Individual plane strain fracture toughness test results must be submitted along with sufficient background information to verify compliance with all current ASTM E 399 validity criteria, along with the specimen dimensions and physical measurements sufficient to confirm that they satisfy the following 2 basic criteria within ASTM E 399:
W - a > 2.5 (KQ/Fty)2 and Pmax/PQ < 1.10. 9.6.3.2 Plane Stress and Transitional Fracture Toughness — It is convenient to consider critical stress-intensity factor values, varying with thickness or stress state, as indices of
9-164
MMPDS-06 1 April 2011 crack-damage resistance. The stress-intensity factor can be used as a consistent measure of crack damage, not only for fracture instability, but also for other levels of crack damage severity, provided the damage is consistently specified and detected. This concept implies that plane-stress and transitional-fracture toughness of metallic materials, while not necessarily a fixed value for the material, is a characteristic value for a given product form, thickness, grain direction, temperature, and strain rate. 9.6.3.2.1 Data Collection and Interpretation — Because of the complexity of crack behavior in plane-stress and transitional-stress states, test methods for evaluating material toughness have not been completely standardized; however, several useful methods do exist. Although each configuration generates nearly consistent results when data are properly evaluated, it is recommended that each general flaw configuration be interpreted and applied within its own design context. Middle Tension Panels — Because it simulates typical crack conditions in thin-sheet structures, the middle tension panel is a popular testing configuration for evaluating crack behavior. This specimen was illustrated earlier in Figure.9.2.3.5.3(b). The crack-tip plasticity and slow-stable growth of the crack which commonly occur with plane-stress or transitional stress state conditions may cause a deviation from abrupt fracture, which is normally associated with crack extension under ideal plane conditions, as illustrated earlier in Figure 9.2.3.5.3(c). Two limiting damage levels are noted in this figure. Point O is the threshold or onset of slow, stable tear where the crack slowly extends after reaching a threshold stress level. Point C is fracture instability. Both levels of crack damage can be associated with a different stress intensity factor, or damage index, for product forms and thicknesses of interest. These damage levels can be identified either directly with the K value as determined from instantaneous stress-crack length coordinate dimensions at these points, or approximately by the coordinates of Point A, which is residual strength, or apparent toughness concept of relating initial crack length to final fracture stress. The stress intensity factor, K, associated with any of these damage levels is determined from Equation 9.6.2(b) where, for this configuration, a = half-length of center-through crack g(a,w) = (π sec πa/W)½. The locus of data points can be represented by a parametric stress-intensity factor curve, as shown in Figure 9.2.3.5.3(d), where each curve represents a different stress-intensity factor formulation. The slow growth curve is superimposed on this figure to illustrate the general relationship between the threshold of stable crack extension, apparent instability, and fracture instability for a typical crack. Because of experimental difficulties associated with precise detection of threshold and instability points, points O and C, apparent toughness, or residual strength concept of crack damage is used in this presentation. This is the locus of data points “A”, noted earlier in Figure 9.2.3.5.3(d), which determine apparent fracture toughness. Kapp ' fc πao secπa o/W
See Reference 9.2.3.5.3 for additional information.
9-165
1 2
.
[ 9.6.3.2.1]
MMPDS-06 1 April 2011 9.6.3.2.2 Analysis of Data — Since precise definitions of damage mechanisms and their associated instability conditions have not been devised for crack behavior in plane-stress and transitional stress states, only general constraints can be suggested for screening data. To assure that crack damage or fracture instability occurs under predominantly linear elastic conditions the basic criterion is that net section stress must be less than 80 percent of tensile yield strength, TYS, actually representative of that material. Additional criteria may be imposed by stress and boundary constraints characteristic to specific specimen configurations. Middle Tension Panels — To maintain consistency with the Damage Tolerant Design Handbook [Reference 9.6.3.2.2], a related damage tolerance data document for Air Force contractors, a singular criterion, fc # 0.8 (TYS) (1 - 2a/W)
[9.6.3.2.2]
corresponding to the above net section stress requirement, is imposed on fracture data from middle tension panels. Data which satisfy this criterion are used with Equation 9.6.3.2.1 to define apparent fracture toughness. The validity of elastic fracture in a given set of data may also be substantiated by additional tests conducted to demonstrate that elastic fracture conditions have been achieved and that the associated K value is nearly constant. For example, once a tentative value of Kapp has been determined, it can be confirmed by testing additional panels of larger width (at least 50 percent larger) with the same initial crack length, or by testing the same panel width containing a smaller initial crack length (approximately two-thirds of the previous). These additional Kapp values must conform to the original tentative value. In any case, it is recommended that tests can be conducted at a variety of crack lengths and panel widths whenever practical to obtain a more complete characterization of panel behavior. 9.6.3.3 Crack Resistance (R-Curve)— The plane stress crack resistance of a material typically varies with the amount of crack growth, sheet thickness, and material toughness (energy required for crack growth). The toughness can be calculated two ways, with the physical crack size, which is called Kapp, and with an effective crack size (the physical crack size corrected with an estimated plastic zone size, ry), which is called KR. It is customary within the MMPDS Handbook to use the effective crack size and KR. It is also customary within the MMPDS Handbook to represent each curve in tabular form, where the physical crack size is adjusted by the addition of the estimated plastic zone size. 9.6.3.3.1 Data Collection and Interpretation — R-Curve data can be generated from middle-cracked tension (M(T)), compact tension (C(T)) specimen, or the crack-line wedge loaded (C(W)) specimen. Interlaboratory studies have been conducted that show C(T) specimens produce close agreement between laboratories and replicate specimens. The M(T) specimens can be sized to replicate wide thin hardware such as pressure vessel membranes or wing skins. Details of recommended testing procedures are presented in ASTM E 561. Submitted reports must include a plot of (KR) versus the effective crack extension (∆aeff) for each test performed. A second plot of the stress intensity calculated at a maximum applied force (Kapp) but using the physical crack extension (∆ao) instead of the effective crack extension (∆aeff) may also be included on the same figure (∆aeff equals ∆ao plus the estimated plastic zone size, ry.) The table for each specimen should summarize this data and follow the reporting requirements of ASTM E 561, paragraph 12.1.14 and Table3. At least 8 valid KR test results must be available to prepare a typical KR vs ∆aeff curve for inclusion in the MMPDS Handbook, as shown in Figure 9.6.3.3.1(a).
9-166
MMPDS-06 1 April 2011 The constructed mean KR vs ∆aeff curve must include identification of each specimen's thickness, the applicable panel width and the typical yield strength value used to estimate plastic zone sizes. First, each individual KR curve must be analyzed to identify the best-fit log-linear relationship between estimated physical crack extension, ∆apce and KR, as shown in Figure 9.6.3.3.1(b). Since estimates of physical crack extension are typically derived from compliance measurements and estimated plastic zone sizes, it is common to see a substantial increase in the variability of the ∆apce vs KR curve at its lower end. Small zero shifts in original compliance measurements commonly produce negative estimates of physical crack extension and/or severe nonlinearities in the typically log linear relationship between ∆apce vs KR. Therefore, each set of ∆aeff vs KR estimates must be reviewed to identify the physical crack extension offset, which produces the optimum log-linear relationship between ∆apce and KR. In this particular case, the optimum offset was 0.071 inch.
9-167
MMPDS-06 1 April 2011 2198-T8, T-L, 75F, 0.064 - 0.102 in. thick sheet 280 W = 29.9 in Fty = 77 ksi
240
KR, ksi-in 0.5 0
200
160
120
Mean Curve 0.064 0.072 0.072 0.073 0.073 0.079 0.087 0.102
80
40
0 0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
Delta a effective, in.
Figure 9.6.3.3.1(a) Example KR vs ∆aeff Data and Computed Typical Curve 2198 T-L I ntermediate T hickness Sheet
1.00
log delta a physical, in.
0.50
0.00
-0.50
-1.00
-1.50
-2.00 1.90
2.00
2.10 2.20 log KR, ksi-in0.50
2.30
Figure 9.6.3.3.1(b) Optimum Logarithmic ∆apce vs KR Curve
9-168
2.40
5.50
MMPDS-06 1 April 2011 A KR vs ∆aeff curve was created from Figure 9.6.3.3.1(b) by adding computed plastic zone sizes to estimates of physical crack extension, as shown in Figure 9.6.3.3.1(c). The non-optimized KR vs ∆aeff curve that results if the initial offset is not included is shown in Figure 9.6.3.3.1(d). 2 198-T8 , T-L, 75 F, 0.064 - 0.102 in. thick shee t
24 0
20 0
W = 29.9 in Fty = 77 k si
KR, k si-in 0.50
16 0
12 0
80
40
0 0.00
0.40
0.80
1.2 0
1.60
2 .00
2.40
2.80
3.20
3.6 0
Delta a effective, in.
Figure 9.6.3.3.1(c) Optimized KR vs ∆aeff Curve Developed from Figure 9.6.3.3.1(b) 21 98-T8, T-L, 75F, 0.064 - 0.102 in. thick sheet
240
200
W = 29.9 i n Fty = 77 ksi
KR, ksi-in 0.50
160
120
80
40
0 -0.40
0.00
0.40
0.80
1.20
1.60
2.00
2.4 0
Delta a e ffec tive, in.
Figure 9.6.3.3.1(d) Non-optimized KR vs ∆aeff Curve
9-169
2.80
3.20
3.60
MMPDS-06 1 April 2011 Figure 9.6.3.3.1(d) implies negative physical crack extensions for KR values less than 108 ksi-in0.50, as shown in Figure 9.6.3.3.1(e). Realistic, monotonically increasing physical crack extension values with increasing KR were obtained from Figures 9.6.3.3.1(b) and (c), as shown in Figure 9.6.3.3.1(f). 2198- T8, T-L, 75F, 0.064 - 0.102 in. thick sheet
180 W = 29.9 i n Fty = 77 ksi
160 140
KR, ksi-in 0.50
120 100 80 60 40 20 0 -0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50
0.60
Delta a physical, in.
Figure 9.6.3.3.1(e) Unrealistic KR vs ∆apce Curve Derived from Figure 9.6.3.3.1(c) 2 198-T8, T- L, 75F, 0.064 - 0.102 in. thick sheet
180 160
W = 29.9 in Fty = 77 ksi
140
KR, ksi-in0.50
120 100 80 60 40 20 0 -0.20
-0.10
0.00
0.10
0.20
0.30
0.40
0.50
Delta a physical, in.
Figure 9.6.3.3.1(f) Realistic KR vs ∆apce Curve Derived from Figure 9.6.3.3.1(b)
9-170
0.60
MMPDS-06 1 April 2011 The mean KR vs ∆apce curves shown in Figures 9.6.3.3.1(e) and (f) are reproduced in Figure 9.5.3.3.1(g). The differences between the 2 curves are substantial for small levels of physical crack extension. 21 98-T8, T- L, 75F, 0.064 - 0.102 in. thick sheet
200 180 160
KR, ksi-in 0.50
140 120 100 80 60 W = 29.9 in Fty = 77 ksi
40 20 0 0.00
0.10
0.20
0 .30
0 .40
0.50
0.60
0.70
0 .80
0.90
1.00
Delta a physical, in.
Figure 9.6.3.3.1(g) Comparison of Mean KR vs ∆apce Curves Shown in Figures 9.6.3.3.1(e) and (f)
After each individual R-curve is analyzed and the appropriate initial offsets are established, groupings of at least 8 R-curves must be developed for a limited range of panel thicknesses and widths, as shown earlier in Figure 9.6.3.3.1(a). The estimated physical crack extension data for each grouping must be analyzed together to establish the best-fit KR vs ∆apce curve, as shown in Figure 9.6.3.3.1(h). The equation for this best-fit KR vs ∆apce curve must then be used in combination with plastic zone size estimates for the full range of KR values to establish the typical KR vs ∆aeff for that data collection. If multiple panel widths and a wide range of panel thicknesses have been tested for a particular material, it may be appropriate to develop a series of different plots, with each plot containing all logically combinable specimens for sub-ranges of panel width and thickness.
9-171
MMPDS-06 1 April 2011 21 98 T- L Thin Sheet
1.00
log delta a physical, in.
0.50
0.00
-0.50
-1.00 0.064 in. <= t <= 0.102 in. Li near (0.064 in. <= t <= 0.102 i n.)
-1.50 1.90
2.00
2.10 2.20 0.50 log KR, ksi-in
2.30
2.40
Figure 9.6.3.3.1(h) Best-fit KR vs ∆apce Curve Used to Construct Typical KR vs ∆aeff Curve Shown in Figure 9.6.3.3.1(a)
9.6.4 CREEP AND CREEP-RUPTURE DATA — Creep is defined as time-dependent deformation of a material under an applied load. It is usually regarded as an elevated temperature phenomenon, although some materials creep at room temperature. If permitted to continue indefinitely, creep terminates in rupture. (First stage or logarithmic creep exhibited by many materials at lower temperatures is not the subject of this section.) Creep in service usually occurs under varying conditions of temperature and complex (multiaxial) stress, leading to an infinite number of stress-temperature-time combinations. Creep data for use in general design are usually obtained under conditions of constant uniform temperature and uniaxial stress. This type of data is the subject of this section. 9.6.4.1 Data Collection and Interpretation — After a desired group of creep and/or creep-rupture data have been experimentally developed or isolated in preproduction files, it is necessary to carefully collect and interpret these data in accordance with the following guidelines: State-of-the-art for interpreting these types of creep and rupture data requires that a certain amount of engineering judgment be allowed. The general approach will be to optimize one of several empirical equations that best follows the trend of data, using life (or time) as the dependent variable. Independent variables will include stress and temperature for rupture and isostrain creep curves, and will also include strain for isostrain creep curves. Rupture ductility can be an exception to the above because of complex behavior and data scatter. At least a cautionary note should be given in the introductory material on times and temperatures included in rupture data. Some materials exhibit such low elongation in certain time-temperature regions that normal, reasonable values of design creep strain cannot be achieved without risk of fracture.
9-172
MMPDS-06 1 April 2011 Interpretation of creep and rupture data should also include variables that are reflected in background data reporting requirements (discussed in the next subsection). Depending on the information content of the data, and the type of variable, it may be desirable to develop a series of equations, or to include additional physical variables in the regression analysis. The proposal should demonstrate that these additional variables have been evaluated and appropriately treated in the analysis. The individual interpreting the data should also take note of the following special types of data, and consider the following recommendations on their use: Specification Data—Virtually all alloys used for high-temperature applications are controlled and purchased by a process control variable generally called “spec point”. Therefore, there will often be large quantities of data available from quality control data records at the specification condition.
Data will contain many heats, and serve as an excellent measurement source of scatter. Therefore, in regression modeling, specification data are often the major source of scatter measurements. Slope measurements must come from the experimental design matrix. Specification data can also be used to (1) determine, through analysis-of-variance techniques, fractions of scatter due to heat-to-heat variations, etc., (2) determine, through distribution analysis, if data are normal, log normal, etc., and (3) find out, if data are not normal, what transformation is required. Outliers—These can be excluded only if tests are demonstrably invalid, or if the effect on the equation and statistical parameters is unreasonable. Since exclusion of outliers normally involves a certain degree of judgment, it should only be done by a knowledgeable, experienced individual. Discontinued Tests—These can be included if longer lived, or excluded if shorter lived, than average life of the data subset (lot, section thickness, etc.) to which they belong. Stepped-Tests—If load on the specimen had been increased or decreased after initial loading, this test result shall be excluded. Truncating Data—Certain equations, notably parametrics, often do not properly represent a mix of shorter and longer time data. These equations can severely overpredict creep and rupture lives less than ten to thirty hours. Similarly a preponderance of short time data can cause long lives to be overpredicted. Eliminating such data requires truncating the data (or subset). This is done by removing all data above (or below) a fixed stress level, even though normally acceptable data are excluded. Background Data Reporting—The significance and reliability of creep data generated at elevated temperatures for heat-resistant alloys are, to a major extent, a function of detailed factors which relate to the material, its processing, and its testing. Hence, it is necessary to evaluate not only the property data, but also correlative information concerning these factors. It is not possible to specify individual items of correlative information, or the minimum thereof, which must be provided with elevated temperature property data to make those data properly meaningful. Individual alloy systems, product forms, and testing practices can all be quite unique with regard to associated information which should be provided with the data. A certain minimum amount of information is required for all data, including:
9-173
MMPDS-06 1 April 2011 (1) (2) (3) (4) (5) (6) (7)
Identity of alloy Chemical composition of the specific material tested Form of product (sheet, forging, etc.) Heat-treatment condition Producer(s) Specification to which product was produced (AMS specifications are normally considered standard*) Date when part was made.
Lack of such information is sufficient basis for rejection of a particular data set. In addition, it is vital that the individual submitting data consider those factors which contribute to uniqueness of the alloy, processing, and/or testing, and give thought to information which is pertinent to that uniqueness. Thus, grain size can be a significant variable, not only between cast turbine blades, but within a single blade. Thermomechanical working processes may result in significantly different properties (not only higher, but lower as well); and test specimen design can affect resultant data. It is mandatory that knowledgeable personnel be involved when data are submitted for evaluation and potential use. Any correlative data that can be provided will aid the analyst in identifying valid reasons for rejection of data which may not fit the trends of other data (outliers). Such apparent outliers may be indicated through analysis of between-heat variance as described in Section 9.6.4.2. These examples illustrate the need for adequate information: (1)
Creep-rupture specimens are being machined from cast high-strength, nickel-base alloy turbine blades. At center span location, specimens are 0.070- to 0.090-inch diameter, while at the trailing edge, specimens are flat and 0.020-inch thick. Flat specimens are typically about one Larson-Miller parameter weaker than round specimens, which is attributable both to thickness effects of the thin specimens and to finer grain size at the trailing edge. In addition, trailing edge specimens exhibit more scatter. Hence, availability of associated information is vital when considering data from specimens machined from cast turbine blades.
(2)
Comparison of creep-rupture properties of Waspaloy and Superwaspaloy shows that the latter is much weaker at temperatures approaching the upper bounds of utility of the alloy. The significantly lower properties at higher temperatures are attributed to a finer grain size of Superwaspaloy and also to a recovery process that may well be occurring at these temperatures. This alloy is subjected to extensive thermomechanical working, and some strengthening gained by the associated warm working is lost at higher testing temperatures. This effect clearly indicates that processing history significantly affects levels of mechanical properties and, hence, must be adequately documented when property data are submitted.
9.6.4.2 Analysis of Data — After an acceptable data collection has been obtained and interpreted, it is possible to proceed in analyzing those data and developing mathematical models of creep and creep-rupture behavior. The objective of the procedures described in the following paragraphs is to calculate creep and rupture life as a function of test conditions and other significant variables. This calculation is done to provide an average curve and a measure of expected variability about the average. The approach that is discussed involves regression analysis to optimize the fit of an equation to the data set. The following
* Company specification data may be included with federal, military, and industry specification data if it is properly documented and can be shown to compare favorably in creep or stress-rupture behavior.
9-174
MMPDS-06 1 April 2011 information provides guidelines in the application of regression analysis to creep and rupture data and recommends approaches to specific problems that are frequently encountered. General—It is assumed that life or time is the dependent variable for rupture or isostrain creep equation analysis, respectively, and logarithmic transformation of the dependent variable is normally distributed. The data set will nearly always contain a variety of stresses and temperatures. If the data set is the product of a very well-balanced test design, good results may be obtained by independently fitting each temperature. Since this type of data set is often not available, and the approach sacrifices the opportunity for interpolation, the discussion will assume that at least temperature and stress are used as independent variables. In order to achieve good results, it may be necessary to consider other variables. Some variables are continuous physical variables that are incorporated into regression variables, e.g., section size. Other variables may occur as discrete subsets that require modifying the regression analysis (this is discussed under Subsets of Data). In such cases, it may be necessary to group data per subset for data reporting if regression analysis cannot easily accommodate the observed subsets. Selection of Equations—For isostrain and rupture time, as a function of stress and temperature, a number of relationships have been proposed. Some useful ones are: (1) log t = c + b1/T + b2X/T + b3X2/T + b4X3/T
[9.6.4.2(a)]
(2) log t = c + b1/T + b2X + b3X2 + b4X3
[9.6.4.2(b)]
(3) log t = c + b1 T + b2X + b3X2 + b4X3
[9.6.4.2(c)]
(4) log t = c + (T-Ta)(b1 + b2X + b3X2 + b4X3).
[9.6.4.2(d)]
These are the Larson-Miller, Dorn, Manson-Succop, and Manson-Haferd, respectively, where c b1 t T X
= = = = =
the regression constant coefficients (b1 through b4) time absolute temperature (Ta is the temperature of convergence of the isostress lines) log S (stress).
While all forms may be used to model a data set with varying degrees of goodness of fit, experience and practice indicate the Larson-Miller relationship adequately models most materials, and is usually the preferred equation form. If data for a given material is available at a variety of creep strain levels as well as the stress rupture point, only one model should be used to describe data trends for each strain level. The decision as to which of the four customary models is chosen should be based on a comparative analysis of data for the most comprehensive data collection, whether that collection be for a specific creep strain level or stress rupture point. In addition, the constant term found in the optimum analysis should be held the same for all creep strain levels. If this is done, it will be possible to construct a composite plot of stress versus parameter for all creep strain levels and the stress-rupture level. If none of these standard forms satisfactorily follows data trends, various combinations of stress and temperature may be tried. For example, terms can be selected from a matrix obtained using cross products
9-175
MMPDS-06 1 April 2011 of T-1, To, T1 with S-1, So and S1. Methods for generalizing and applying these equations are discussed in Reference 9.6.4.2. The exact form of the functions should reflect data and reasonable boundary conditions. Quadratic, quartic, etc., can be expected to give poor boundary conditions, e.g., zero life at zero stress, and should be avoided. Extrapolation by users of the equation is inevitable (though it is not recommended), so other general equations must be checked for unusual behavior beyond the data—this can be done, in many cases, by differentiating to obtain maxima and minima. In general, short times should give strengths approximately corresponding to tensile yield and ultimate strength; zero stress should predict infinite life. Metallurgical instabilities and transition regions may present difficulties in some analyses. Methods for handling such problems have been discussed in Reference 9.6.4.2. Optimum Fit—Guidelines for an optimum fit are: (1) Minimum number of terms. With two independent variables, σ and T, six regression variables are reasonable, each additional physical variable allowing two additional regression variables. (2) Reasonable curve characteristics for material behavior, including extrapolation. (3) Minimum standard error and maximum correlation coefficient (as long as 1 and 2 are not violated). Standard errors are typically between 0.1 and 0.2. (4) Uniform deviations (see a later paragraph on Weights for a brief discussion of nonuniform deviations and their analytical treatment). Subsets of Data—A non-normal or multimodal population, or an excessive standard error may indicate the presence of subsets. However, an apparently typical data set may contain subsets that should receive special consideration. One type can be treated by adding physical variables to the regression analysis. For example, different thicknesses of sheet material may give different average lives. Including sheet thickness in the regression should not only improve fit but also avoid the risk of misrepresenting behavior of the material. Section thickness, distance from surface, and grain size are other examples of subsets that can be treated as regression variables. Section thickness and distance from surface refer to location of the specimen in terms of geometry of the original material, e.g., finish work thickness, final heat thickness, etc. A second type is not typically subject to use as a regression variable. Examples of these are orientation (L, LT, and ST), or different heats (chemistry). A decision must be made whether to treat these as unique subsets to be analyzed separately (if properties are different) or as randomly distributed subsets. Orientation will usually be analyzed separately, while heats will usually be randomly distributed subsets. Other methods (e.g., fixed intercept, centered above mean values for each creep level) may be more suited for a given data set and may be tried. The specific procedure used must be indicated in the data package. The theory of treatment of randomly distributed subsets has been developed in Reference 9.2.5.2, while application to lots of material (actually “heats” in chemistry) is considered in Reference 9.6.4.2. Treating subsets as random affects calculation of both average curve and standard error. While effect on standard error may become insignificant as the number of subsets exceeds ten (depending on the relative contribution to total standard error), effect on the trend of the calculated average remains. Lots whose average lives are uniformly displaced (parallel) in logarithm of life, or are not significantly non-parallel, are discussed in Reference 9.6.4.2(a). There is no known published reference for treating non-parallel lots. Data
9-176
MMPDS-06 1 April 2011 permitting, individual lots can be fitted, within-lot variances pooled, and average and variance of lot averages calculated for selected stress-temperature combinations. After calculating total variance and desired lower level tolerance limit* ( X - ks) at each stress level, curves can be drawn and, if desired, equations be fit to X’s and ( X - ks) ’s. It should be noted that the equation for ( X - ks) is not likely to properly reflect uncertainty in coefficients obtained by normal fitting procedures. Alternately, all data for non-parallel lots can be pooled and variance weighted, providing sufficient lots are represented and average curve is reasonably similar to the first approach. Consistency in Creep and Stress Rupture Trends—When creep data are somewhat limited, an independent analysis of each creep strain level may produce inconsistent trends between different creep strain levels and stress rupture mean curve. There may be cases where very minor extrapolations will produce creep curves that cross over each other or the stress rupture curve. In some instances, this problem can be eliminated, without a significant loss in quality of fit at each creep strain level, by forcing a prescribed relationship to exist between creep curves and stress rupture curve. Parallelism in log(time) is the simplest relationship that can be assumed, but it is also a relationship that is often supported by data trends. A linearly increasing or decreasing separation of creep curves and stress rupture curve in log(time) as a function of stress is also a possibility, but it takes a large quantity of data to verify such trends. If large quantities of data are available, then it is generally preferable to analyze each creep strain level individually. Therefore, about the only practical relationship to assume between individual creep curves and the stress rupture curve is parallelism in log(time). Parallelism in log(time) can be achieved through the addition of a dummy variable to the stress rupture equation for each creep strain level being added to the regression analysis. For example, in the case of the Larson-Miller equation, which (in its third order form) is normally written as log t = c + b1/T + b2X/T + b3 X2/T + b4 X3/T,
[9.6.4.2(a)]
where t = time, hrs T = absolute temperature, ER X = log (stress), ksi, the equation can be modified to include additional terms for each creep level, as follows log t = c + b1/T + b2X/T + b3X2/T + b4X3/T + b5 Y1 + b6 Y2 + ...b4+i Yi
[9.6.4.2(e)]
where the value of Yi new terms are either 0 or 1. If a creep strain level 1 data point is considered, Y1 = 1 and all other Y’s are 0. Similarly, if a creep strain level 2 data point is considered, Y2 = 1 and all other Y’s are 0. If a stress rupture data point is considered, all the Y’s are 0. In this way, the optimized values of additional b’s represent average A in log(time) that each creep curve falls below the stress rupture curve. The usefulness of such an approach must be verified through an examination of quality of fit for each creep strain level compared to raw data trends. Weights—Rupture and isostrain creep curves will not normally require weights to obtain uniform variables. Analysis, including strain as a variable, frequently will. Variables other than strain, temperature, and stress will require evaluation for uniform variance. Reference 9.6.4.2(a) provides further discussion of weighting. * Tolerance limits used here are one-sided and are normally developed for tolerance levels of 90 or 99 percent at a confidence level of 95 percent.
9-177
MMPDS-06 1 April 2011 Rejection of Analyses—Regression analyses of specific creep or stress-rupture data sets should normally be rejected if the R2 statistic for analysis is <75 percent, or there are fewer data than five times the number of temperature levels, or there are <20 data points total available for regression. If data for several different creep strain levels are analyzed in combination with stress rupture data, R2 levels below 75 percent for one or two creep strain levels may be acceptable, if the overall R2 exceeds 75 percent. Separate analyses of low creep strain data may show relatively high variation with R2 values below 75 percent. In these cases, if there are sufficient data to produce significant regression coefficients at a 95 percent confidence level, the result may still be acceptable for inclusion in MMPDS.
9-178
MMPDS-06 1 April 2011
9.7 ANALYSIS PROCEDURES FOR STRUCTURAL JOINT PROPERTIES This section of the guidelines covers analysis procedures for determination of structural joint properties. Reference to the following related sections may be useful: Test Methods 9.2.3.6 Mechanically Fastened Joints 9.2.3.7 Fusion-Welded Joints Data Requirements 9.2.4.6 Mechanically Fastened Joints 9.2.4.8 Fusion-Welded Joints Examples of Data Analyses and Data Presentation 9.9.5 Mechanically Fastened Joints 9.9.6 Fusion-Welded Joints It is important to recognize that these guidelines for the analysis and presentation of fastener design allowable properties in MMPDS are substantially different than the version that has been used for at least 20 years. These new guidelines are based on standardized statistical procedures, and involve the development of B-Basis yield and ultimate load fastener allowables. Fastener tables included in prior handbooks will not be systematically reviewed or updated in accordance with these new guidelines. However, new fastener data proposals, or revisions to existing fastener allowable tables, will be based on the statistical procedures described in this section of the Handbook. These new procedures were adopted to: • Migrate toward a consistent level of statistical confidence in tabulated fastener design properties. • Provide a method that accounts for (but is not driven by) singularity points in the data. • Allow for greater confidence and accuracy in fastener design allowables as sample sizes increase. • Ensure that fastener data analysis procedures will provide repeatable, unbiased results when used by different analysts. Fastener tables approved prior to MMPDS-01 (equivalent to MIL-HDBK-5J) include ultimate load design allowables that are approximately equivalent to B-Basis design properties. The yield properties shown in these same tables cannot realistically be equated with B-Basis design properties; these previously established yield properties should be treated as conservative average fastener yield loads. To avoid confusion the basis of all fastener properties presented in Chapter 8 of MMPDS must be clearly delineated, as illustrated in Section 9.9.5. 9.7.1 MECHANICALLY FASTENED JOINTS — Some mechanical fasteners will not develop full bearing strengths of materials in which they are installed. Joint allowables for these fasteners must therefore be determined from test data. Fasteners for which allowable loads must be determined are: (1)
flush-head fasteners in dimpled or countersunk sheet,
(2)
fasteners with hollow or multiple-piece shanks,
9-179
MMPDS-06 1 April 2011 (3)
protruding-head fasteners with shear-type heads*, and
(4)
protruding-head bolts and rivets when thickness-to-diameter ratio (t/D) is less than 0.18.
These guidelines define data generation (quality/quantity), analysis methods, and presentation format applicable to mechanically fastened joint allowables. They reflect a need to (1) ensure that the aerospace industry is interested in new fastener systems which are incorporated in MMPDS, and (2) ensure that confirmatory data to substantiate allowable loads meet certain stated requirements that simplify the process of acceptance through coordination. To accomplish these needs, fastener systems proposed for inclusion in MMPDS may be introduced (sponsored) by airlines, airframe or engine prime contractors, and Government agencies (DoD, FAA, or NASA); i.e., one of the users. When introducing a new fastener, the sponsoring organization shall supply information specified in Section 9.2.4.6.1. The sponsoring organization is also expected to review the test program plan, actual testing, and data analysis. At least 25 percent of the specimen fabrication and testing shall be performed at a second facility. It also is expected that fasteners and fastener materials will be obtained from three production runs per diameter as documented in the report. The sponsoring organization shall submit a report documenting design allowables to the MMPDS Coordination Group for evaluation. (See Section 9.3.3.4.) Proposals not meeting the requirements described herein will be rejected or require more timeconsuming evaluation, inevitably delaying approval and release of proposed allowables. Therefore, use of these guidelines in preparing proposals for MMPDS is essential. In case of conflict, provisions of this document take precedence over reference documents for any tests or analyses made to provide, substantiate, or revise MMPDS fastener allowables. 9.7.1.1 Definitions — Terms used in Section 9.7.1 vary among users of this Handbook. To provide consistency, these terms are defined herein in accordance with the intent of MMPDS. (a) Deformable Shank Fasteners—A fastener whose shank is deformed in the grip area during normal installation processes. (b) Nominal Hole Diameters—Nominal hole diameters for deformable shank solid, blind rivet and blind fasteners shall be according to Table 9.7.1.1. When tests are made with hole diameters other than those tabulated, hole sizes used shall be noted in the report and on the proposed joint allowables table. (c) Nondeformable Shank Fasteners—A fastener whose shank does not deform in the grip area during normal installation processes. (d) Nominal Shank Diameter—Nominal shank diameter of fasteners with shank diameters equal to those used for standard size bolts and screws (NAS 618 sizes) shall be the decimal equivalents of stated fractional or numbered sizes. These diameters are those listed in the fourth column of Table 9.7.1.1. Nominal shank diameters for nondeformable shank blind fasteners are listed in the fifth column of Table 9.7.1.1. Nominal shank diameters for other fasteners shall be the average of required maximum and minimum shank diameters. (e) Yield Load—Joint yield loads for all fasteners are defined as loads which result in 0.04D permanent set in the joint when the fastener is tested in nominal hole size as defined in Table 9.7.1.1. For some fastening systems, tests in larger hole sizes, although within manufacturer’s * For example, protruding-head fasteners with reduced head heights similar to those shown for NAS 529 rivets.
9-180
MMPDS-06 1 April 2011 recommended hole size limits, may result in joint permanent sets greater than 0.04D* at yield load. There are many generically named fasteners for which joint allowables are provided. These fasteners are listed below, followed by the letter H or S. H signifies that, in the analysis, nominal hole diameter (as described above) is used. S signifies that, in the analysis, nominal shank diameter is used. (a) Solid rivets and blind fasteners whose shanks deform during installation. (H) (b) Solid rivets and blind fasteners whose shanks do not deform during installation. (S) (c) Threaded and swaged-collar fasteners whose shanks do not deform during installation. (S) (d) All interference-fit and close-tolerance fasteners. (S) 9.7.1.2 Yield Load Determination — The preferred method of determining yield load is by the secondary modulus method.** To obtain secondary modulus line, during the test the joint is unloaded from a load close to, and preferably above, estimated yield load to a load value in the range of about 10 to 20 percent of estimated yield load. The joint then is reloaded and secondary modulus is the slope of this second loading line. This procedure is described in NASM 1312-4 and is illustrated in Figures 9.7.1.2(a) through 9.7.1.2(e). If curves similar to Curves A and B in Figure 9.7.1.2(b) are obtained early in the test program, strain hardening will be presumed. In that case, unloading should be delayed in subsequent tests until after anticipated yield load. Curves showing strain hardening may be extrapolated a reasonable amount to determine yield load by the secondary modulus method as shown. The initial loading line is used to establish the intersection with the abscissa from which to measure yield offset. At times, minor irregularities occur on initial loading which necessitates redrawing of the lower part of the curve as a continuation of the normal curve, as shown in Curves C and D of Figure 9.7.1.2(c). Unusually shaped curves are sometimes obtained. Typical of these are the illustrations in Figure 9.7.1.2(d). Data which are typified by Curves A or B are unacceptable for analysis. When the secondary modulus has a straight-line portion of recognizable length, do as shown in Curve C. When the secondary curve has two straight parts, but is more in question (as in Curve D), and there are satisfactory curves available from similar group test specimens, use the slope which approximates other curves. Otherwise, the more conservative (steepest) shall be used. An acceptable alternate is to draw a straight line between end points of the off-loading-reloading loop and consider this as the secondary modulus line, as shown in Figure 9.7.1.2(e). The primary modulus method may be used as a last resort, if there is no straight-line portion or usable loop in the secondary modulus curve.
*
Or previous yield load criteria used prior to 1973. Applicable yield criteria are noted in footnote for design allowable table.
**
The primary modulus line has been used in the past, on occasion. It is the slope of the initial loading line and frequently is observed to have greater variability than the secondary modulus line.
9-181
MMPDS-06 1 April 2011
Table 9.7.1.1. Nominal Hole and Shank Diameters, Inches
Fastener Size, Functional or Numbered
a
Deformable Shank Fasteners
Nondeformable Shank Fasteners
Solid
Blind
Solid Shank
Blind
1/16 3/32 #4 1/8
0.067 0.096 … 0.1285
…
#6 5/32
… 0.159
#8 3/16
… 0.191
#10 #12 7/32 1/4
… … … 0.257
… 0.098 … 0.130 0.144 … 0.162 0.178 … 0.194 0.207 … … … 0.258 0.273
5/16 3/8 7/16 1/2 9/16 5/8 3/4 7/8 1 1-1/8 1-1/4 1-3/8 1-1/2
0.323 0.386 … … … … … … … … … … …
… 0.098 … 0.130 0.144 … 0.163 0.178 … 0.198 0.207 … … … 0.259 0.273 0.311 0.373 0.436 0.497 … … … … … … … … …
… … … … … … … … … … … …
0.112 0.125 0.138 0.156 0.164 0.188 0.190 0.216 0.219 0.250 0.312 0.375 0.438 0.500 0.562 0.625 0.750 0.875 1.000 1.125 1.250 1.375 1.500
In order to standardize test and analysis procedures, nondeformable shank fasteners shall be installed in net fit ±0.0005 inch holes.
9-182
MMPDS-06 1 April 2011
(5 )
Figure 9.7.1.2(a). Illustration of secondary-modulus method of yield strength determination. (1) (2) (3) (4) (5) (6)
Reduce load to 10-20 percent of yield load. Secondary-modulus line. The straight part of the loading side of the secondary-modulus loop indicating elastic behavior. Offset line. A line parallel to the secondary modulus line. Offset. Equal to permanent set value specified in yield definition in Section 9.7.1.1. Joint ultimate. Coupon failure.
Figure 9.7.1.2(b). Sample secondary modulus load-deflection curves. (1) Offset per 9.7.1.1. (2) Joint yield strength.
9-183
MMPDS-06 1 April 2011
Figure 9.7.1.2(c). Sample secondary-modulus load-deflection curves. (1) Offset per yield load definition given in Section 9.7.1.1. (2) Joint yield strength. (3) Disregarded irregularities, per Section 9.7.1.2.
Figure 9.7.1.2(d). Sample secondary-modulus load-deflection curves. (1) (2) (3) (4)
Offset, per 9.7.1.1 Joint yield strength. Disregarded irregularities, per 9.7.1.2. Disregarded second slope in secondary-modulus curve.
9-184
MMPDS-06 1 April 2011
Figure 9.7.1.2(e). Sample alternative secondary-modulus loaddeflection curve. 1. 2. 3. 4. 5.
Offset, per yield definition given in Section 9.7.1.1. Joint yield. Alternative secondary-modulus line. Joint ultimate. Coupon failure.
9.7.1.3 Shear Strength of Fastener — Each group of double-shear or single-shear results for a specific fastener type, size, and material shall be analyzed to determine an A-value, except driven rivets which shall be analyzed to obtain a B-value. Data shall be checked for their conformance to a Pearson distribution through use of the Anderson-Darling test described in Section 9.5.4.4. If the assumption of a Pearson distribution is not rejected: (a) For solid driven rivets, compute the B-value as shown in Section 9.5.5.1 and select the next lower shear strength from Table 8.1.1.1, if it is within 2 ksi of the computed value. If the computed B value is more than 2 ksi above the next lower value in Table 8.1.1.1, a new value may be proposed. (b) For other fasteners, compute the A-value as shown in Section 9.5.5.1 and select the next lower shear strength from Table 8.1.1.1. If the computed A-value is more than 5 ksi above the next lower value in Table 8.1.1.1, a new value may be proposed. If analysis of data shows a non-Pearson distribution, obtain additional observations (as required) and employ the nonparametric procedure as described in Section 9.5.5.3. Minimum shear strength shall then be selected as described in (a) and (b) above. The calculated design minimum shear values shall be equal to or greater than the values in Table 8.1.5(a) (for the appropriate stress level) and the specification value. (For example, the computed minimum shear value for a 0.190 diameter, 95 ksi fastener shall be greater than, or equal to, the allowable load value of 2,694 pounds.) The allowable load shall be the lower of the appropriate Table 8.1.5(a) value or the specification value.
9-185
MMPDS-06 1 April 2011 If Table 8.1.5(a) is not applicable (i.e., driven rivets, blind fasteners, and fasteners without shearload requirements in the specification), the allowable load values shall be converted to stresses for each diameter using nominal shank areas for S fasteners and nominal hole areas for H fasteners. The allowable stress for the fastener system shall be established as the lowest of the above calculated stresses, or the specification stress value, whichever is lower. Allowable fastener shear strength shall be the product of this stress and the appropriate (H or S) areas used above. The shear strengths that are calculated shall be clearly identified as either 90 percent (B-value) or 99 percent (A-value) allowables. 9.7.1.4 Sheet Critical and Transition Critical Strengths — The analysis of data in the bearing and transitional regions provides design allowable curves for yield and ultimate strength where sheet or plate material of the joint is generally critical. To accomplish the analysis, tables and graphs are required as detailed in this subsection. The use of computer programs to analyze data and to prepare tables of calculations and figures, as next described, is acceptable. However, all tables and figures subsequently described should be illustrated in the report. When using a computer program for analysis, some engineering judgments may still be necessary for certain data sets in the transition thickness range. Presentation and Analysis of Basic Test Data C The values of the functions t/D, Pu/D2, and Py/D2 shall be calculated from the basic t, D, Pu, and Py test data obtained on each specimen tested, using the values defined below:
(a)
t = measured sheet thickness, inch, for thinnest sheet gage of combination D = measured hole diameter, inch, for H-type fasteners, nominal shank diameter for Stype fasteners as defined in Section 9.7.1 Pu = test ultimate load, where ultimate load is the maximum load reached by the test specimen prior to load fall off (pounds per fastener). Note, the maximum load may occur after the first fall off in load. Py = test yield load, determined per Section 9.7.1, (pounds per fastener). A suggested format for reporting the basic data and the computed values of t/D, Pu/D2, and Py/D2 is shown in Figure 9.7.1.4(a). The average Pu/D2 and Py/D2 for each fastener diameter at each t/D shall be indicated in the table. Computation of P/D2 and t/D from Basic Data
Part Number
Test Specimen ID
Specimen thickness t (in.)
Diameter D (in.)
Yield Load Py (lbf)
Ultimate Load Pu (lbf)
Failure Code
Data Source
t, D, Pu, and Py, per Section. Figure 9.7.1.4(a). Suggested tabular layout for current T90 statistical method data.
9-186
MMPDS-06 1 April 2011 (b)
Regression Analysis to Determine Average Ultimate and Yield Load Curves—The general assumption inherent in a P/D2 versus t/D analysis procedures is that the dimensions of a fastener system are proportional to the fastener diameter. Therefore, a plot of the average Pu/D2 and Py/D2 values for each t/D tested is expected to yield a compact band of data points through which single ultimate and yield load curves can be determined. The following regression equation shall be used to represent average t/D trends: P/D2 = A0 + A1 * (t/D) + A2 * ln (t/D)
[9.7.1.3(d)]
where P = applied load, D = nominal hole or fastener shank diameter (as defined in Table 9.4.1.2), t = sheet thickness A0, A1 & A2 = the regression model coefficients, and “ln” represents the natural logarithm of the quantity in parentheses. An analysis of the data begins with the determination of whether the data is statistically combinable. Data Combinability C A procedure to determine the combinability of a data set is described in section 9.5.3. For fastener analysis applications, the variable k and n in section 9.5.3 are the number of fastener diameters and the number of distinct t/D levels of the combined dataset, respectively. If the data for different diameter ranges are not combinable based on an F and t test (at a 95% confidence level) the average regression trends for each diameter must be analyzed separately. In this case, the remaining t/D groups must still cover the t/D range that results in bearing, transitional and shear-type failures as described in section 9.2.4.6.3. Examples of this type of analysis are shown in Figures 9.7.1.4(b) and 9.7.1.4(c), for yield and ultimate loads, respectively. In this example both the yield and ultimate load t/D trends for the 3 different diameters were statistically combinable. Fastener shear failure and sheet critical conditions should be clearly identified and considered in the evaluation of combinability of fastener data for different diameters. Knife edge conditions are defined with respect to 100% of the fastener head height. Data obtained from different sources must also be identified. The objective in both cases is to establish realistic average ultimate-load and yield-load curves for the fastener system. With the ultimate-load curve, consideration will be given to all test data for which joint failure was by failure modes other than fastener shear. Also to be shown on these graphs are one or more horizontal lines representing fastener shear strength (more than one line occurs when shear strength in pounds is not proportional to shank area) and allowable sheet or plate ultimate bearing strength and bearing yield strength lines. For materials where bearing properties vary with thickness, bearing strengths plotted shall include the lowest value in the applicable thickness range and the values used shall be the S or A values.
9-187
MMPDS-06 1 April 2011 Nonshear-critical test data include all data below the fastener shear strength line and all data for joints that failed in sheet bearing, pullout, head failure, combinations of shear, or any other mode of failure, other than shear of fastener shanks, even though same data may lie above the fastener shear strength line. All shear-critical data should fall above the fastener shear strength line. Average t/D curves must not extend beyond the tested t/D range. 4.50 4.00
Aluminum (Fastener Designation) Blind Protruding Head Rivets (Alloy Designation) Sheet
3.50
Py / D2, x 10 -4
3.00 2.50 2.00 1.50 Diameter 1 Diameter 2
1.00
Diameter 3 Group Averages
0.50 0.00 0.00
New Average
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
t/D
Figure 9.7.1.4(b). Example of Trial Analysis to Compare Mean t/D Yield Load Trends for 3 Different Fastener Diameters.
6.00 5.50
Aluminum (Fastener Designation) Blind Protruding Head Rivets (Alloy Designation) Sheet
5.00 4.50
2
Pu / D , x 10
-4
4.00 3.50 3.00 2.50 2.00 Diameter 1 Diameter 2 Diameter 3 Group Averages New Average
1.50 1.00 0.50
0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40
t/D
Figure 9.7.1.4(c) Example of Trial Analysis to Compare Mean t/D Ultimate Load Trends for 3 Different Fastener Diameters
9-188
MMPDS-06 1 April 2011 For a historical purposes, Figures 9.7.1.4(d), 9.7.1.4(e) and 9.7.1.4(f) are shown for reference. This figure was reproduced by hand from the original figure. Further information on this historical methodology may be found in MIL-HDBK-5. This method was used for allowables generation for all fasteners included in the handbook prior to 2003.
9 Sh ear stren gth cut-off, xxx ksi
8
7 Averag e ultimate load
6
Pu/104 D2
5 Ultimate lo ad d esign curve
Ten tative d esign curve, averag e /1.15
4
5/32 Diameter
3
3/16 Diameter 1/4 Diameter 5/16 Diameter 5/32 Diameter Sh ear Failure
2
3/16 Diameter Sh ear Failure 1/4 Diameter Sh ear Failure 5/16 Diameter Sh ear Failure
1 Note: In this Figure in the bearing region, two test points fell below the tentative design curve. That portion of the curve was lowered slightly to accom m odate those points
0 0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
t/D
Figure 9.7.1.4 (d) Historical Establishment of a design curve for ultimate load.
In Figure 9.7.1.4(d), the tentative ultimate-load design-allowable curve(s) was compared with the test data. If the data all lie above the curve(s), the tentative curve was the design allowable curve. If some data lie below the tentative curve(s), they were reduced as necessary so that none of the plotted test data points are below the applicable curve. This historical reduced curve(s) was the ultimate-load design allowable curve, subjected to the sheet-bearing lines limitation.
9-189
MMPDS-06 1 April 2011
8 Sh ear stren gth cut-off, xxx ksi
7 5/32 Diameter
6
3/16 Diameter 1/4 Diameter 5/16 Diameter
Py/104 D2
5
4
3
Yield lo ad design curves, 1/4 an d 5/16 diameter 5/32 an d 3/16 diameter
2
1
0 0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
t/D Figure 9.7.1.4(e). Historical Establishment of a design curve for yield load.
In Figure 9.7.1.4(e), the historical establishment of a design curve for yield load, plots of the average yield-load for different diameters can be found. This curve was the yield-load allowable design curve and should be within the applicable fastener diameters.
9-190
MMPDS-06 1 April 2011
9 Sh ear stren gth cut-off, xxx ksi Ultimate l o ad d esign curve
8
Bearin g Yield Stren gth xxx ksi at e/D=2.0
7
Pu/104D2 & Py/104D2
6
Bearin g Ultimate Strength xxx ksi at e/D=2.0
5
4 Yield lo ad d esign curves, 1/4 an d 5/16 d iameter 5/32 an d 3/16 d iameter
3
2
1
0 0.0
0.2
0.4
0.6
t/D 0.8
1.0
1.2
1.4
Figure 9.7.1.4 (f) Historical Relationship of bearing strengths of sheet to design curves.
In Figure 9.7.1.4(f), the historical relationship of bearing strengths of sheet to design curves, plots of the bearing strengths and the ultimate and yield design curves can be found. If the sheetbearing lines fall partly below the design curves in the sheet-critical t/D range, they become the design curve in those regions.
9-191
MMPDS-06 1 April 2011 Regression Analysis to Determine Yield and Ultimate Load Allowable Curves—The Regression Analysis to Determine Yield and Ultimate Load Design Allowable Curves – The following statistical procedure must be used for definition of yield and ultimate load design allowable curves. This procedure involves generation a B-Basis allowables using a bi-linear regression of the yield and ultimate load data generated from tests conducted on jointed specimens. Terms used in these statistical calculations are defined as follows:
(c)
df
Degrees of Freedom
ln
Mathematical symbol for natural logarithm
ni
The number of observations in the ith t/D group
no
An adjustment made due to unequal sample sizes
q1, q2, q3, q4, q5, q6
The elements of the multiple regression ( X r T X r ) matrix
qa, qb, qc, qd, qe, qf, qk
Generic variables used in q1,q2,Yq6 definitions
sy 1282 . t 0.95, df , R( x)
Estimate of the standard deviation in average joint strengths
t/D
Sheet thickness/ fastener diameter ratio
xi & zi
Independent variables in multiple regression analysis
xij & yij
The jth variable value at the ith distinct level of t/D
y$ i
The ith multiple regression prediction
xi , yi & zi
The ith average value of xij ,yij & zij
xM , yM & zM
Independent & dependent variable average over Mr
−1
The 95th percentile of the non-central t distribution with df and R(x)
A0, A1, A2
Multiple regression coefficients
F.05(Mr-3,Nr-Mr)
The 5th percentile of the F distribution with degrees of freedom Mr-3 and Nr-Mr
HT90
Estimated bound on the ratio of MSE to MSPE
Hp
The Projection Matrix
Mr
The number of distinct levels of t/D in the regression model
MSE
Mean Square Error
MSPE
Mean Square Pure Error
Nr
Total Number of tests Q(x)
The ith diagonal element of the Projection Matrix Hp
R(x)
Parameter used in T90 calculation
T90(x)
Lower tolerance bound such that at least 90% of the population is expected to exceed T90 with 95% confidence
(x)
A generic variable for the input value
Xr
Matrix of multiple regression variables
9-192
MMPDS-06 1 April 2011 The following statistical procedure for calculating B-Basis (T90) values for fasteners is based on a multiple regression analysis of the average strength values at each t/D, using a log scale on the t/D axis. In estimating the lower tolerance bounds, the procedure uses an estimate of the standard deviation that incorporates variability within each t/D condition, and random variations between these t/D conditions. The fastener analysis statistical procedure consists of four distinct steps. These steps are required to estimate the T90 design allowable curve for a fastener data set: 1) Calculate the averages of the replicate tests. 2) Fit a multiple regression curve to the averages of the replicate tests. 3) Determine appropriate error, (MSE & MSPE), the standard deviation, sy, the upper tolerance bounds, HT90, and the associated degrees of freedom, df. 4) Determine the design allowable curve, T90. 1) Calculate averages of the replicate tests: n 1 ni P 1 i t P t 2 = and 2 = D i ni ∑ ij D i ni j =1 D ij j =1 D Or in general, 1 ni 1 ni xi = ∑ x and yi = n ∑ yij ni j = 1 ij i j =1 (Nominally, 3 tests are conducted, but use the appropriate divisor, ni, throughout)
∑
2) Fit a multiple regression curve to the averages of the replicate tests: The multiple regression model to the averages is
P t t 2 = A0 + A1 * + A2 * ln D i D i D i In general, we can express this model as
y$ i = A0 + A1 xi + A2 zi Where the "bar" over the variable denotes an average and the "hat" is the prediction, hence
t P t xi = , yi = 2 and zi = ln D i D i D i The multiple regression coefficients, A0, A1 and A2 are defined as
A0 = y M − A1 x M − A2 z M
Mr Mr Mr Mr 2 ∑ ( x i y i − M r y M x M ∑ ( z i − z M ) − ∑ ( z i y i ) − M r y M z M ∑ ( x i zi ) − M r z M x M i =1 i =1 i =1 i =1 A1 = 2 Mr Mr Mr ( xi − x M ) 2 ∑ ( zi − z M ) 2 − ∑ ( xi zi ) − M r x M z M ∑ i =1 i =1 i =1
9-193
MMPDS-06 1 April 2011
A2 =
Mr Mr ∑ ( zi yi ) − M r y M z M − A1 ∑ ( xi zi ) − M r x M z M i =1 i =1 Mr
∑ (z
− zM )
i
2
i =1 Mr
Mr
∑
where
xM =
xi
i =1
Mr
,
Mr
∑ yM =
yi
and
i =1
Mr
∑z zM =
i
i =1
Mr
and Mr is the number of distinct levels of t/D. The logarithm of t/D is used because it often improves the fit at the lower values of t/D. 3) Determine appropriate error, (MSE & MSPE), the standard deviation, sy, the upper tolerance bounds, HT90, and the associated degrees of freedom, df. a) Calculate the mean square error (MSE) of the regression: Mr
∑ (y
i
2 − y$ i )
i =1
MSE = ( RMSE ) 2 =
Mr − 3
b) Calculate the mean squared pure error (MSPE): Mr
ni
∑ ∑ (y MSPE =
ij
− yi
)
2
i =1 j =1
(Nr − Mr )
where Mr
Nr =
∑n
i
i =1
Nr is the total number of observations for all of the groups, ni the number of observations in the ith group, and as before, Mr is the total number of t/D groups in the data set. c) Calculate the standard deviation, sy, from the values of the mean squared error and the mean squared pure error:
sy =
n − 1 MSPE MSE + 0 no
1 n0 = N − Mr − 1 r
9-194
Where n0 is an
ni adjustment made due to unequal sample ∑ i =1 sizes and is defined as Nr Mr
2
MMPDS-06 1 April 2011
d) Calculate HT90(the upper confidence bound on the ratio of the variability between t/D conditions to the variability within t/D condition):
MSE 1 1 H T 90 = max ⋅ − ,0.0 MSPE F0.05 (M r − 3, N r − M r ) n 0 Note that F0.05(Mr-3, Nr-Mr) is the 5th percentile of a F Distribution with numerator degrees of freedom Mr-3 and denominator degrees of freedom Nr-Mr. Fifth percentiles of the F Distribution are tabulated in 9.10.10. Since we are ultimately interested in finding an upper confidence bound on HT90, a lower percentile of the F Distribution is desired as it falls in the denominator in the formula for HT90. We are specifically interested in the 5th percentile because we have assigned a 95% confidence factor to our T90 calculation. e) Calculate the degrees of freedom, df, from Satterthwaite’s approximation:
df =
(H T 90 + 1)2 2 2 (n0 − 1) 1
H T 90 + n n0 0 + Mr −3 Nr − M r
Where Mr, Nr and n0 are as defined above. The degrees of freedom is estimated using the upper confidence bound on the ratio of the variability between t/D conditions to the variability within t/D condition, instead of the point estimate of their ratio. This approach for estimating the degrees of freedom ensures that the level of confidence that T90 is below 90% of the fastener strengths, at each value of x, is 95% when the ratio of the variability between t/D conditions to the variability within t/D condition is large, and it is consistent with a similar approach used in CMH-17. 4) Determine the design allowable curve, T90 a) Calculate the elements, (q1, q2, q3, q4, q5 & q6), of the multiple regression matrix. The multiple regression matrix,
(X
T r
Xr )
−1
Mr = ∑ x ∑ z
(X
T r
∑ x ∑ z ∑ x ∑ xz ∑ xz ∑ z
Xr ) −1
2
2
−1
qa = qb q d
, is defined as qb qc qf
qd qf q e
−1
q1 = q2 q 3
q3 q5 q 6
q2 q4 q5
Where the "qi" elements are defined as
(
)
(
)
(
)
(
q1 = q k q c q e − q f 2 ; q 2 = q k q d q f − qb q e ; q 3 = q k qb q f − q c q d
(
2
)
(
q 4 = q k q a q e − q d ; q 5 = q k qb q d − q a q f ; q 6 = q k q a q c − q b 9-195
2
)
)
MMPDS-06 1 April 2011 and
1 x1 1 x 2 Xr = ... ... 1 x Mr
z1 z2 ... z Mr
and
∑ x; q = ∑ x = ∑ z ; q = ∑ z ; q = ∑ xz = [ ( q q q + 2q q q ) − ( q q 2
q a = M r ; qb = qd qk
c
2
e
a
c
f
e
b
d
f
c
d
2
+ q a q f 2 + qb 2 q e
)]
−1
b) Calculate Q(x), the ith diagonal element of the Projection Matrix. This value is a measure of the "nearness" of x to the center of the range of independent variables. Since the −1 Projection matrix is defined as H p = X r X r T X r X r T , the generic form of the ith diagonal of Hp can then be written as:
(
)
Q( x ) = q1 + 2q 2 x + 2q 3 z + q 4 x 2 + 2q5 xz + q 6 z 2
c) Calculate the parameter R(x). R(x) is an approximate upper confidence bound for the true ratio of Mean Squared Error (variance between) and the Mean Squared Pure Error (variance within). R(x) is defined as
1 H T 90 + n0 R( x ) = Q( x ) H T 90 + 1 Note that R and Q are both functions of x. Therefore, an iterative process is necessary to define the T90 curve for each t/D of interest. d) Calculate the design allowable curve T90:
1282 . * R( x ) * s y T90 ( x ) = y$ − t 0.95, df , R( x ) Or
1282 . * R( x ) * s y T90 ( x ) = A0 + A1 x + A2 z − t 0.95, df , R( x )
9-196
MMPDS-06 1 April 2011 The term in parentheses is the 95th percentile of the non-central t distribution with df degrees of freedom, and non-centrality parameter, 1282 . / R( x ) . A non-central statistical distribution is required due to the fact that regression relationship is being constructed, rather than characterizing a single, homogenous population. An example of this analysis procedure applied to ultimate fastener load test data is given in example problems III through V of section 9.9.5.1. Note that it is possible for the B-Basis design curve to fall above a small percentage of the actual test results as shown in the following example figures:
Figure 9.7.1.4(g) Example of Regression Analysis to Define B-Basis (T90) Fastener Yield Load Design Allowables.
9-197
MMPDS-06 1 April 2011
6.00 5.50
Aluminum (Fastener Designation) Blind Protruding Head Rivets Clad (Alloy Designation) Sheet
5.00 4.50
2
Pu / D , x 10
-4
4.00 3.50
Shear Cutoff
3.00 2.50 2.00 Individual Data
1.50
Group Averages
1.00
Regression Average
0.50
T90 Allowable
0.00 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40
t/D Figure 9.7.1.4 (h) Example of Regression Analysis to Define B-Basis (T90) Fastener Ultimate Load Design Allowables.
9-198
MMPDS-06 1 April 2011 9.7.1.5 Calculation of Allowable Loads C Allowable yield and ultimate loads shall be calculated for each thickness and diameter combination using the B-Basis lower bound curves described above. Allowable loads shall not be calculated for thickness/diameter combinations below the t/D range tested, or for diameters not tested. The fastener allowable table can then be populated for the standard sheet gauges contained in the dataset using the following equation. Fastener Allowable = T90(x) * D2*10000 Note that for fasteners included in the handbook prior to 2003, allowable ultimate loads were calculated as the average curve divided by 1.15, and fitted as required to envelope the test data. Yield loads were defined by the average of the test data. In these calculations, thickness (per Section 9.9.5, Note 11), and diameters to be used shall be the nominal shank diameter (per Section 9.7.1.1) for S-Type fasteners and recommended nominal hole diameters (per Section 9.7.1.1) for H-type fasteners. Figure 9.7.1.5 shows a suggested format for this set of calculations. Specimen
Yield Allowable
Thickness
Diameter
t (in.)
D (in.)
Ultimate Allowable
Load t/D
Py/D2x10-4(psi)
Py Allowable (lbf)
Load Pu/D2x10-4(psi)
Pu Allowable (lbf)
t,D, Pu, and Py, as described in 9.7.1.4 Figure 9.7.1.5 Suggested tabular layout for computing allowables from T90 design curves.
The analysis of joint allowable load data for the case where data are required for procuring or regulatory agency (not for publication use in MMPDS) for a limited range of sheet thickness and fastener diameter is as follows. An analysis similar to that described in Section 9.7.1.4 is required for data over the limited t/D range evaluated. In the special case where one sheet thickness and one fastener diameter have been tested in accordance with the requirements of Section 9.7.1.3, data shall be analyzed as follows: the ultimate-load calculations shall be made utilizing the statistical formulas listed in Section 9.7.1.3, where the k value is obtained from Table 9.10.1 for the appropriate number of test values (n) and 90% probability (B) value at a 95% confidence level. These ultimate-load values shall be compared with values computed from bearing ultimate strengths of the joint material. In each comparison, the lower of either (1) statistical value computed from joint test data, (2) computed B-Basis ultimate value from regression analysis, (3) computed bearing ultimate strength, or (4) fastener shear ultimate strength, shall be the ultimate-load design allowable. Similarly, the yield-load values shall be compared with values computed from bearing yield strengths of the joint material. These yield-load values shall be compared with values computed from bearing yield strengths of the joint material. In each comparison, the lower of either (1) statistical value computed from joint test data, (2) computed B-Basis yield value from regression analysis, (3) computed bearing yield strength, or (4) fastener shear yield strength, shall be the yield-load design allowable. The load values so calculated will be rounded to three or four significant figures as follows: (1) Load values less than 1000 will be rounded to 3 figures (load values less than 100, 2 figures). (2) Load values greater than 1000 will be rounded to 4 figures. Note that for fasteners included in this handbook prior to 2003, the fourth figure was rounded to a 0 or 5 9.7.2 FUSION-WELDED JOINT DATA — The purpose of this section of the guidelines is to provide a uniform procedure by which reliable design data on welded joints can be developed for use within the
9-199
MMPDS-06 1 April 2011 aerospace industry. Unlike most other guidelines procedures, for which reasonably complete concurrence has been found among the users of MMPDS, those relating to fusion-welding allowables are still subject to interpretation by users in view of their own welding processes. An additional consideration is that fusionwelding allowables are highly process-dependent. Design values will not be presented in MMPDS since their application will be limited to the process represented by data from which the allowables were derived. Consequently, it is the purpose of these guidelines to describe one of possibly many valid procedures, without excluding other procedures that may be authorized for determination of fusion-welding allowables. Basis for this discussion is presented in Reference 9.7.2. These guidelines generally reflect procedures currently used within the aerospace industry. They are applicable to all types of weldable materials and welding processes. However, recommended test coupon configurations and testing methods described herein have been limited to those used in evaluation of butt-type joints. A distinction is made in properties of weldments between those applicable to design and those used for welding development and process control. These guidelines are concerned with those properties applicable to design. The approach followed establishes coupon-derived design properties for weldments produced under known and defined conditions. Appropriate analysis must be conducted to adapt coupon-derived data to design of the structure being considered. This is accomplished by determining the state of stress for the component joint, and/or by relating structural hardware test results to coupon-derived design properties. This approach is consistent with techniques used to obtain design data for MMPDS, as defined in other sections of these guidelines. Current military welding specifications do not contain adequate requirements for defining a meaningful population of weldments. Due to this lack of applicable industry-wide specifications, the necessary specification information must be presented with coupon-derived weldment design data. Throughout the guidelines and in preparation of data, definitions of the American Welding Society will be used for terms relating to welding. The definitions utilized in MMPDS and in other sections of these guidelines will be used for other terms relating to material properties and statistical treatment of data. 9.7.2.1 Data Collection and Interpretation — Determination and presentation of properties of weldments requires adequate definition of pertinent welding parameters, including a description of base materials, welding process variables, and weld character. The most significant variables considered are divided into three basic categories: base materials, welding process variables, and weld character (see Figure 9.7.2.1). Variables listed are the minimum that must be identified and required by the specification. In summary, the primary concern of population definition for weldments is to describe welding conditions in a manner that will assure reproducibility of this same population and will be sufficiently detailed to allow proper data analysis. 9.7.2.1.1 Base Materials — Base material variables include appropriate stipulation of alloy, composition form, preweld and postweld heat treat conditions, filler material, and material thickness. 9.7.2.1.2 Welding Process Variables — The most difficult aspect is establishing welding variables. The variables must be sufficiently detailed to represent the population of weldments produced, as well as to assure reproducibility of welds within this population. Appropriate selection of variables to be stipulated must be based on an interpretation of their effect on weldment properties and desirability of control.
9-200
MMPDS-06 1 April 2011 BASE MATERIAL Alloy, Composition, Form, Pre- and Post-Weld Heat Treat Condition, Material Thickness, Filler Material WELDING PROCESS VARIABLES Joint Preparation Joint Type Edge Preparation Cleaning
Tooling Alignment Restraint Thermal Control
Welding Conditions Welding Process Welding Method Welding Position Heat Input (Weld Setting) Preheat Interpress Temperature Shielding Gas
Weld Repair Number of Repairs Type of Repair
WELD CHARACTER Inspection Methods NDT Visual Radiographic Magnetic Particle Ultrasonic DT Transverse Tensile Test
Acceptance Levels External Underfill and Undercut Cracks Pores Reinforcements Internal Pores Inclusions Cracks Tensile Properties Minimum and Minimum Average
Figure 9.7.2.1. Summary of population definition considerations.
Using the variable of thermal control tooling as an example, it may be found that various types of tooling influence tensile properties of a weld joint by their effect on cooling rate. However, the difficulty in adequately describing thermal-control tooling for more than a single application makes it desirable to treat tooling as a random and uncontrolled variable. This same judgment of effect on properties and desirability of control must be made for each welding process variable. 9.7.2.1.3 Weld Character — Appropriate levels of weld character must be prescribed in order to define a population of weldments. This includes a description of internal and external quality levels, as well as minimum joint strength requirements. In most specifications there are several weld classes which identify in detail the quality level requirements. In addition, means of determining weldment characteristics are established by stipulation of both nondestructive and destructive test methods.
9-201
MMPDS-06 1 April 2011 9.7.2.2 Data Analysis C Some concepts used for base-metal analyses lend themselves to analysis techniques for weldments. The procedures described in other sections of the guidelines may be used as a basis for analysis of mechanical property data for weldments in order to obtain A- and B-values. The procedures involve either direct statistical analysis of weldment data when sufficient data exist, or an indirect statistical analysis of ratios of paired properties. The data samples required for direct statistical analysis will usually limit its use to tensile ultimate strength of weldment coupons. The indirect analysis may be used to derive other properties of interest using smaller samples. One example is to derive the minimum shear strength for the cases where only tensile distribution is known; one would operate on the ratio SUS/TUS in this case. The indirect computation method also provides a tool for rational development of weld factors to be used in translating coupon-derived minimum properties to hardware design. In this case, ratio of hardware failure stress to control coupon failure stress is used.
9-202
MMPDS-06 1 April 2011
9.8 Examples of Data Analysis and Data Presentation For Static Properties Proposals presented to the MMPDS Coordination Group should include (1) new or revised table of room temperature allowables, (2) raw data used in the analysis, and (3) supporting analysis for the proposed design values.
9.8.1 DIRECT ANALYSES OF MECHANICAL PROPERTIES — Computational procedures described in earlier sections are demonstrated here. Several hypothetical sets of input data were created for these example problems. These datasets were created to represent quality assurance test data, representing one long transverse tensile test per lot, plus other tests from a portion of the lots, at a frequency of one test per lot. The example problems fall into two major categories. Problems I through VII illustrate techniques based on an underlying normal distribution. Problems VIII through XII illustrate techniques based on an underlying three-parameter Weibull distribution. The input data for these example problems are described below. Because entire data sets (as opposed to means and standard deviations) are required for Problems VIII through XII, the data points for groups (1) through (4) and group (6) are listed in Tables 9.8.1(a) through 9.8.1(c).
INFORMATION FOR EXAMPLE PROBLEMS Material Identification: Alloy X sheet, annealed. Specified Testing Direction: Long Transverse (LT) Specified Properties: # 0.125 inch — 0.126-0.249 inch —
Ftu (LT) = 140 ksi, Fty (LT) = 115 ksi; Ftu (LT) = 135 ksi, Fty (LT) = 110 ksi.
Available Test Results: Group (1). 300 observations of TUS(LT) for thickness range 0.020-0.125 inch from Supplier A; no variation with thickness. Go to Problems I, III, VIII, and X. Group (2). 300 observations of TYS(LT) for thickness range 0.020-0.125 inch from Supplier A; no variation with thickness. Go to Problems II and IX. Group (3). 30 observations of TUS(LT) for thickness range 0.020-0.125 inch from Supplier B; no variation with thickness. Go to Problems I and VIII. Group (4). 30 observations of TYS(LT) for thickness range 0.020-0.125 inch from Supplier B; no variation with thickness. Go to Problems II and IX. Group (5). 100 observations of TUS(LT) for thickness range 0.126-0.249 inch; no variation with thickness. Go to Problems III and X. Group (6). 30 observations of SUS(LT) for thickness range 0.020-0.249 inch; apparent decrease in SUS(LT) on increasing thickness; observations may be paired with TUS(LT) if desired. Go to Problem VII.
9-203
MMPDS-06 1 April 2011
Table 9.8.1(a). Group (1) Data Set Group (1) 139.608 140.638 140.711 140.988 141.873 141.940 142.105 142.478 142.597 142.694 143.309 143.502 143.620 143.644 143.674 143.720 143.844 143.865 143.867 143.997 144.221 144.320 144.463 144.508 144.612 144.651 144.837 144.864 144.890 144.973 145.076 145.110 145.122 145.165 145.214 145.229 145.270 145.277 145.325 145.399 145.416 145.577 145.600 145.693 145.709 145.721 145.741 145.872 145.921 145.925 145.966 145.978 146.069 146.136 146.220 146.285 146.301 146.367 146.479 146.500
146.534 146.651 146.667 146.699 146.710 146.714 146.766 146.825 146.857 146.876 146.941 146.944 146.970 147.087 147.198 147.284 147.291 147.326 147.334 147.353 148.686 148.691 148.695 148.701 148.714 148.724 148.854 148.868 148.884 148.891 148.919 148.952 148.957 148.982 149.016 149.045 149.103 149.107 149.158 149.180 149.183 149.187 149.321 149.416 149.473 149.571 149.581 149.605 149.605 149.606 149.653 149.707 149.731 149.755 149.798 149.810 149.812 149.894 149.996 150.124
147.442 147.489 147.497 147.653 147.752 147.765 147.785 147.803 147.911 147.942 147.952 147.961 147.980 148.001 148.012 148.029 148.038 148.048 148.049 148.051 148.059 148.074 148.091 148.118 148.122 148.197 148.201 148.236 148.267 148.292 148.304 148.334 148.339 148.355 148.368 148.567 148.584 148.620 148.678 148.684 150.194 150.310 150.315 150.340 150.377 150.415 150.423 150.427 150.459 150.579 150.722 150.731 150.739 150.773 150.830 151.019 151.042 151.075 151.111 151.211
9-204
151.229 151.234 151.283 151.323 151.388 151.425 151.428 151.433 151.471 151.557 151.599 151.609 151.628 151.641 151.670 151.785 151.837 151.876 151.962 151.992 152.015 152.037 152.081 152.101 152.143 152.150 152.151 152.157 152.199 152.207 152.270 152.332 152.352 152.448 152.656 152.736 152.802 152.840 152.882 152.907 152.920 152.929 153.007 153.029 153.049 153.102 153.118 153.206 153.279 153.286 153.296 153.298 153.478 153.504 153.543 153.576 153.648 153.695 153.707 153.715
153.792 153.844 153.846 153.855 153.914 153.992 154.021 154.064 154.068 154.077 154.110 154.128 154.149 154.219 154.242 154.297 154.359 154.382 154.508 154.541 154.571 154.781 154.858 155.012 155.077 155.102 155.116 155.231 155.267 155.311 155.336 155.359 155.386 155.422 155.469 155.604 155.627 155.641 155.785 155.823 155.863 155.904 156.078 156.088 156.379 156.616 156.716 156.740 156.924 157.053 157.341 157.357 157.614 157.763 157.980 158.021 158.154 158.518 159.377 162.717
MMPDS-06 1 April 2011
Table 9.8.1(b). Group (2) Data Set Group (2) 121.438 121.614 121.757 122.077 122.109 122.494 122.503 122.543 122.632 123.082 123.101 123.193 123.238 123.296 123.474 123.527 123.616 123.694 123.755 123.770 123.825 124.025 124.055 124.083 124.105 124.121 124.171 124.176 124.223 124.373 124.681 124.691 124.718 124.778 124.793 124.920 124.934 125.000 125.018 125.070 125.070 125.150 125.152 125.247 125.279 125.295 125.350 125.370 125.433 125.531 125.535 125.714 125.717 125.801 125.915 126.083 126.128 126.129 126.194 126.276
126.276 126.342 126.388 126.430 126.449 126.535 126.606 126.665 126.668 126.673 126.696 126.727 126.822 126.863 126.877 126.907 126.919 126.972 126.999 127.114 127.140 127.203 127.300 127.322 127.337 127.383 127.387 127.420 127.474 127.579 127.607 127.677 127.695 127.710 127.741 127.761 127.811 127.841 127.859 127.859 127.889 127.946 128.010 128.016 128.153 128.203 128.288 128.309 128.323 128.332 128.341 128.452 128.640 128.672 128.699 128.719 128.723 128.752 128.795 128.819
128.823 128.846 128.868 128.966 128.983 128.989 129.029 129.035 129.052 129.083 129.117 129.136 129.148 129.321 129.413 129.434 129.546 129.560 129.596 129.654 129.709 129.715 129.784 129.788 129.891 129.899 129.938 129.940 130.007 130.020 130.070 130.206 130.225 130.237 130.351 130.427 130.457 130.499 130.526 130.528 130.586 130.599 130.624 130.684 130.710 130.765 130.772 130.797 130.895 131.003 131.008 131.040 131.103 131.104 131.125 131.158 131.175 131.176 131.192 131.195
9-205
131.254 131.325 131.388 131.439 131.444 131.469 131.477 131.677 131.690 131.731 131.754 131.786 131.808 131.816 131.906 131.975 131.977 132.138 132.189 132.223 132.282 132.286 132.296 132.380 132.393 132.436 132.470 132.482 132.511 132.514 132.558 132.564 132.595 132.703 132.718 132.762 132.805 132.849 132.851 132.869 132.952 133.024 133.031 133.049 133.096 133.159 133.166 133.224 133.438 133.441 133.508 133.581 133.592 133.595 133.622 133.683 133.749 133.763 133.768 133.774
133.841 133.843 133.893 133.898 133.912 133.922 133.934 133.948 134.089 134.134 134.179 134.194 134.249 134.339 134.351 134.361 134.689 134.747 134.776 134.779 134.873 134.874 134.883 134.890 134.969 135.027 135.064 135.191 135.499 135.513 135.518 135.532 135.545 135.661 135.754 135.836 135.920 135.921 135.944 136.027 136.030 136.032 136.050 136.112 136.149 136.154 136.160 136.204 136.217 136.348 136.855 136.883 137.087 137.115 137.163 137.484 137.618 137.653 138.335 139.141
MMPDS-06 1 April 2011
Table 9.8.1(c). Groups (3), (4), and (5) Data Sets Group (3)
Group (4)
141.914 143.980 145.110 145.681 145.829 145.919 145.981 148.412 148.694 148.772 148.831 148.965 149.197 149.761 150.150 151.472 151.746 152.089 152.564 152.737 152.798 153.857 153.930 154.012 154.024 154.153 155.637 157.118 162.241 164.426
120.487 122.271 124.167 124.622 124.672 125.280 125.862 126.332 128.860 129.158 129.179 130.238 130.782 130.985 131.612 131.642 132.129 132.147 132.812 133.388 133.716 134.127 135.787 135.836 136.235 136.770 137.068 137.901 137.919 138.017
Group (5) 135.373 135.500 135.775 136.450 137.114 137.241 137.900 138.916 139.158 139.307 139.626 139.827 139.839 140.022 140.461 140.957 141.083 141.149 141.435 141.473 141.518 141.582 141.592 141.731 141.937 142.125 142.138 142.298 142.441 142.785 142.838 142.859 143.141 143.180 143.397 143.426 143.444 143.558 143.722 143.886 144.200 144.276 144.313 144.418 144.465 144.650 144.672 144.847 144.901 144.924
9-206
145.061 145.072 145.082 145.082 145.331 145.460 145.606 145.626 145.754 145.785 145.802 145.876 146.091 146.096 146.159 146.302 146.303 146.447 146.797 146.937 146.967 147.149 147.224 147.305 147.500 147.657 147.675 147.833 148.084 148.556 148.708 148.954 148.988 149.082 149.123 149.590 149.831 149.974 150.325 151.484 151.523 151.605 152.086 152.467 152.646 152.852 153.164 153.675 155.492 157.944
MMPDS-06 1 April 2011
EXAMPLE PROBLEMS BASED ON AN ASSUMED UNDERLYING NORMAL DISTRIBUTION* PROBLEM I Should the data in Groups (1) and (3) be combined? Other Information: Neither property varies with thickness. Sample statistics are: Subpopulation n s, ksi X , ksi Group (1) TUS (LT), 0.020 to 0.125 Group (3) TUS (LT), 0.020 to 0.125
300 30
150.0 151.0
4.00 5.00
Prob. I—Step 1. Test to determine whether the variances differ significantly (refer to Section 9.5.3.2): F = (s1)2/(s 3)2 = (4.00)2/(5.00)2 = 0.64 Degrees of freedom, numerator = n1 ! 1 = 300 ! 1 = 299. Degrees of freedom, denominator = n3 ! 1 = 30 ! 1 = 29. F0.975(299,29df) from Table 9.10.3 = 1.87 (approximately) 1/F0.975 (29,299df) = 1/1.69 = 0.59 Since the computed value of F(0.64) lies within the 0.95 confidence interval (0.59 to 1.87), conclude the variances do not differ significantly. Prob. I—Step 2. Test to determine whether the averages differ significantly (refer to Section 9.5.3.3): Difference between averages DX = 150.0 ! 151.0 = 1.0 ksi
u ' t0.975 Sp
n1 % n3 n1 n3
Degrees of freedom = n1 + n3 ! 2 = 300 + 30 ! 2 = 328 t0.975 (328 df) from Table 9.10.4 = 1.969 2
Sp '
*
2
(n1 & 2) s1 % (n3 & 1) s2 n1 % n3 & 2
'
(300 & 1)(4.00)2 % (30 & 1)(5.00)2 ' 4.10 ksi 300 % 30 & 2
The statistical tests described in Problems I through III apply specifically to the case where normality can be assumed. The more general Anderson-Darling procedure described in Problem IV can be applied to normal as well as non-normal distributions.
9-207
MMPDS-06 1 April 2011 u ' 1.969 x 4.10 x
n1 % n3 n1 n3
' 1.969 x 4.10 x
300 % 30 ' 1.54 ksi 300 x 30
Since the observed difference between the averages, X (1.0 ksi), is less than u (1.54 ksi), conclude the averages do not differ significantly. Prob. I—Step 3. Since there is no reason to conclude that the subpopulations represented by Groups (1) and (3) do not belong to the same population, combine these groups. Subpopulation
n
X , ksi
s, ksi
Group (1& 3) TUS (LT), 0.020-0.125, Suppliers A and B
330
150.1
4.10
Go to Problem IV. PROBLEM II Should the data in Groups (2) and (4) be combined? Other Information: Neither property varies with thickness. Sample statistics are: Subpopulation Group (2) TYS (LT), 0.020-0.125, Supplier A Group (4) TYS (LT), 0.020-0.125, Supplier B
n
X , ksi
s, ksi
300 30
130.0 131.0
4.00 5.00
The steps involved in this problem are identical to those in Problem I and similar conclusions were obtained from the input, namely, that Groups (2) and (4) should be combined. The sample statistics for the combined groups are: Subpopulation
n
X , ksi
s, ksi
Group (2& 4) TYS (LT), 0.020-0.125, Suppliers A and B
330
130.1
4.10
Go to Problem V. PROBLEM III Should the data in Groups (1) and (5) be combined? Other Information: Neither property varies with thickness. Sample statistics are: Subpopulation Group (1) TUS (LT), 0.020-0.125 Group (5) TUS (LT), 0.126-0.249
n
X , ksi
s, ksi
300 100
150.0 145.0
4.00 4.47
Prob. III—Step 1. Test to determine whether the variances differ significantly.
9-208
MMPDS-06 1 April 2011 F = (s1)2/(s5)2 = (4.00)2/(4.47)2 = 0.80 Degrees of freedom, numerator = n1 ! 1 = 300 ! 1 = 299. Degrees of freedom, denominator = n5 ! 1 = 100 ! 1 = 99. F0.975 (299,99df) from Table 9.10.3 = 1.46 (approximately) 1/F0.975(99,299df) = 1/1.43 = 0.700. Since the computed value of F (0.80) lies within the 0.95 confidence interval (0.700 to 1.46), conclude that the variances do not differ significantly.
Prob. III—Step 2. Test to determine whether the averages differ significantly. Difference between averages, DX = (150.0 ! 145.0) = 5.0 ksi
u ' t0.975Sp
n1 % n5 n1 n5
Degrees of freedom = n1 + n6 5 ! 2 = 300 + 100 ! 2 = 398. t0.975 (398 df) from Table 9.10.4 = 1.968. 2
Sp '
2
(n1 & 1)s1 % (n5 & 1)s5 n1 % n5 & 2 u ' (1.968)(4.20)
'
n1 % n5 n1 n5
(300 & 1)(4.00)2 % (100 & 1)(4.47)2 ' 4.20 ksi 300 % 100 & 2
' (1.968)(4.20)
300 % 100 ' 0.95 ksi (300)(100)
Since the observed difference between the averages DX (5.0 ksi) is greater than u (0.95 ksi), conclude that the averages differ significantly and that the subpopulations represented by Groups (1) and (5) do not belong to the same population. Prob. III—Step 3. Do not combine the sample statistics for these groups. Go to Problem VI.
9-209
MMPDS-06 1 April 2011 PROBLEM IV What computational method should be used for the combined observations of Groups (1) and (3)? Other Information: This property does not vary with thickness. Sample statistics for the combined observations are: Population n s, ksi X , ksi Group (1& 3) TUS (LT), 0.020-0.125
330
150.1
4.10
Form of the distribution has not been determined. The sample is large enough to permit direct computation of A and B values by any of the three available methods. Consequently, all three computational methods will be attempted: sequential Weibull, sequential Pearson, and nonparametric. Prob. IV—Step 1. Test to determine whether the distribution is Weibull. The Anderson-Darling test for Weibullness will be employed in this example. Use the formula: Z(i) = (X(i) ! 150.1)/4.10, the values of Z(1), ..., Z(330) must be calculated. The first three values are Z(1) = -2.56, Z(3) = -2.31, and Z(3) = -2.29. Now F0(Z(1)), ..., F0(Z(330)) must be calculated by finding the area under the standard normal curve to the left of each Z value. The first three values are Fo(Z(1)) = 0.0052, Fo(Z(2)) = 0.0104, and Fo(Z(3)) = 0.0110. The Anderson-Darling test statistic is then calculated as 330
AD ' j
i ' 1
1 & 2i [ln(Fo(Z(i))) % ln(1 & Fo(Z(331 &i)))] & 330 ' 0.693. 330
The computed value of the test statistic is then compared to the critical value 0.750 = 0.752/[l + 0.75/330 + 2.25/(330)2] Since the computed value of 0.693 is less than the critical value of 0.750, the hypothesis of normality is not rejected. Prob. IV—Step 2. Compute Ftu (LT), 0.020 to 0.125, for Alloy X, using procedures for the normal distribution. Population Group (1 & 3) TUS (LT), 0.020 to 0.125
n
X , ksi
s, ksi
330
150.1
4.10
kA = 2.512 kB = 1.410 Ftu(LT), A-Basis = X - kAs = 150.1 - 2.512 x 4.10 = 139.8 or 140 ksi (rounded per Section 9.5.4.1) Ftu(LT), B-Basis = X - kBs = 150.1 - 1.410 x 4.10 = 144.3 or 144 ksi (rounded per Section 9.5.4.1)
9-210
MMPDS-06 1 April 2011 PROBLEM V What computational method should be used for the combined observations of Groups (2) and (4)? Other Information: This property does not vary with thickness. Sample statistics for the combined observations are: Population n s, ksi X , ksi Group (2 & 4) TYS(LT), 0.20 to 0.125
330
130.1
4.10
Form of the distribution has not been determined. The sample is large enough to permit direct computation of A and B-values. Consequently, the computational method to be used will be determined by whether or not the observations are normally distributed. Prob. V—Step 1. Test to determine whether or not the distribution is normal. The value of the AndersonDarling test statistic for normality is 1.315 for Group (2 & 4). Since 1.315 is greater than the critical value of 0.750, the underlying distribution cannot be assumed to be normal. Thus, the underlying distribution will be treated as a three-parameter Weibull or an unknown distributional form. Prob. V—Step 2. Compute Fty(LT), 0.020-0.125, using procedures for the unknown distribution. This procedure requires the ranking of observations from lowest to highest. Referring to Table 9.10.9, it is found that for a sample size of 330, the lowest observation (rank = 1) is an A-value and the 24th lowest (rank = 24) is a B-value. The 24 lowest observations are shown below: Rank 1 2 3 4 5 6 7 8
TYS, ksi 120.5 121.4 121.6 121.8 122.1 122.1 122.3 122.5
Rank 9 10 11 12 13 14 15 16
TYS, ksi 122.5 122.5 122.6 123.1 123.1 123.2 123.2 123.3
Rank 17 18 19 20 21 22 23 24
TYS, ksi 123.5 123.5 123.6 123.7 123.8 123.8 123.8 124.0
Consequently, from these data the following allowables have been computed for Alloy X: Fty(LT), A-Basis = 120.5 ksi. Fty(LT), B-Basis = 124.0 ksi. PROBLEM VI What computational procedure should be used for the observations in Group (5)? The data in Group (5) represent a borderline situation. They cannot be combined with data for lesser thicknesses because there is significant difference between the TUS(LT) averages for the two thickness ranges, as shown in Problem III. The sample size is just barely adequate for direct computation if the distribution is found to be normal. If the distribution is not normal, the properties for this product would be presented on an S-Basis, pending the accumulation of more data. The test for normality would be conducted as described in Problem IV, and will not be illustrated here.
9-211
MMPDS-06 1 April 2011
EXAMPLE PROBLEMS BASED ON AN ASSUMED UNDERLYING THREE-PARAMETER WEIBULL DISTRIBUTION PROBLEM VII Should the data in Groups (1) and (3) be combined? Other Information. Neither property varies with thickness. (Refer to Sections 9.5.1 and 9.5.3.) The k-sample Anderson-Darling test will be employed in this example to determine whether or not the data in Groups (1) and (2) should be combined. There are 328 distinct values in the combined data from both groups and these are ordered from least to greatest to obtain Z(1),...,Z(328). All values of hj are equal to 1 except for h34 = 2 and h160 = 2. Taking Group (2) to be the first (A1)-sample and Group (1) to be the second (A2)-sample, the first 24 Z-values are listed in the table below with the corresponding H- and F-values. Zj
Hj
Fij
Zj
Hj
Fij
Zj
Hj
Fij
139.61
0.5
0
142.48
8.5
1
143.72
16.5
1
140.64
1.5
0
142.60
9.5
1
143.84
17.5
1
140.71
2.5
0
142.69
10.5
1
143.86
18.5
1
140.99
3.5
0
143.31
11.5
1
143.87
19.5
1
141.87
4.5
0
143.50
12.5
1
143.98
20.5
1.5
141.91
5.5
0.5
143.62
13.5
1
144.00
21.5
2
141.94
6.5
1
143.64
14.5
1
144.22
22.5
2
142.10
7.5
1
143.67
15.5
1
144.32
23.5
2
The k-sample Anderson-Darling test statistic is calculated as
ADK '
328 328 (330F1j & 300Hj)2 (330 F2j & 30H j)2 1 1 1 % ' 0.821 j hj j hj 330(1) 300 j ' 1 Hj(330 & Hj) & 330h j/4 30 j ' 1 Hj(330 & Hj) & 330hj/4
The computed value of the test statistic is compared to the critical value of 2.488 ' 1 % 0.759 1.645 %
0.678 1
&
0.362 1
.
Since the computed value of 0.821 is less than the critical value of 2.488, the hypothesis that the populations from which these groups were drawn are identical is not rejected. Thus Groups (1) and (3) will be combined for the computation of allowables. Go to Problem X.
9-212
MMPDS-06 1 April 2011 PROBLEM VIII Should the data in Groups (2) and (4) be combined? Other Information: Neither property varies with thickness. The value of the k-sample Anderson-Darling test statistic for Groups (2) and (4) is 2.147. Since 2.147 is less than the critical value of 2.488, the hypothesis that the populations from which these groups were drawn are identical is not rejected. Thus, Groups (2) and (4) will be combined for the computation of allowables. Go to Problem XI. PROBLEM IX Should the data in Groups (1) and (5) be combined? Other Information: Neither property varies with thickness. The k-sample Anderson-Darling test will be employed in this example. Taking Group (5) to be the first sample (A1) and Group (1) to be the second sample (A2), the k-sample Anderson-Darling test statistic is calculated as: ADK '
398 398 (400 F1j & 100 Hj)2 (400 F2j & 300 Hj)2 1 1 1 h % h ' 44.195 j j 400(1) 100 j ' 1 j Hj(400 & Hj) 400 h j/4 300 j ' 1 j Hj (400 & Hj) & 400 h j/4
Since the computed value of 44.195 is greater than the critical value of 2.486 ' 1 % 0.758
1.645 %
0.678 1
&
0.362 1
,
the hypothesis that the populations from which these groups are drawn are identical is rejected. Thus Groups (1) and (5) will not be combined for the calculation allowables. PROBLEM X What computational method should be used for the combined observations of Groups (1) and (3)? Other Information: This property does not vary with thickness. Form of the distribution has not been determined. The sample is large enough to permit direct computation of A and B-values. Consequently, the computational method will be determined by whether or not the observations may be assumed to follow a threeparameter Weibull distribution.
9-213
MMPDS-06 1 April 2011 Prob. X—Step 1. Test to determine whether the distribution is a three-parameter Weibull distribution. The Anderson-Darling test for three-parameter Weibullness will be employed in this example. Preliminary calculations give K = 88 W5 0 = 0.665 S = 4.10 X = 150.1 X(1) = 139.608 H = 139.6079 L = !259.9 262
R(τ) ' j
i ' 89
262
Li(τ) j Li(τ)
.
i ' 1
It can be verified that R (!259.9) > 0.665 and R(139.6079) < 0.665. Solving the equation R(τ) = 0.665 with the initial interval (!259.9, 139.6079) gives τ50 = 138.70. The function G50 (β50) then becomes 330
G50 (β50) '
1 j ln (Xi & 138.70) 330 i ' 1
Xi & 138.70
β50
α50
& 1 &
1 β50
where 330
α50
1 ' 10.53 j 330 i ' 1
Xi & 138.70
β50 1/β50
10.53
Solving the equation G50 (β50) = 0 gives β50 = 3.02 which in turn gives α50 = 12.75. The values of Z(1), ..., Z(330) are obtained using the formula Zi '
X(i) & 138.70
3.02
12.75
.
The first three Z-values are Z(1) = 0.000345, Z(2) = 0.00339, and Z(3) = 0.00378. The Anderson-Darling test statistic is calculated as 330
AD ' j
i ' 1
1 & 2i ln 1 & exp(&Z(i)) % ln exp(&Z(331 & i)) &330 ' 0.491 330
.
The computed value of the test statistic is compared to the critical value 0.749 ' 0.757/(1 % 1/5 330)
.
Since the computed value of 0.491 is less than the critical value of 0.749, the hypothesis that the observations follow a three-parameter Weibull distribution is not rejected.
9-214
MMPDS-06 1 April 2011 Prob. X—Step 2. Compute Ftu (LT), 0.020-0.125, for Alloy X, using procedures for the three-parameter Weibull distribution. Preliminary calculations give K = 88
WA = 0.698
Wβ = 0.678
X = 150.1
S = 4.10 H = 139.6079
X(1) = 139.608 L = -259.9 262
262
R(τ) ' j
Li (τ) j Li(τ)
i ' 89
i ' 1
Solving the equation R(τ) = 0.698 with the interval (-259.9, 139.6079) gives τA = 136.43. Solving R(τ) = 0.678 gives τB = 137.98. Solving the equation GA(βA) = 0 gives βA = 3.63 which in turn gives αA = 15.14. Solving the equation GB(βB) = 0 gives βB = 3.22 which in turn gives αB = 13.52. Using the formulas from Section 9.5.2.2 the allowables are calculated as follows: QA = 15.14 (0.01005)1/3.63 = 4.263 QB = 13.52 (0.10536)1/3.22 = 6.719 A = 136.43 + 4.263 exp (-7.259/3.63 330 ) = 140.2 B = 137.98 + 6.716 exp (-4.103/3.22 330 ) = 144.2 PROBLEM XI What computational method should be used for the combined observations of Groups (2) and (4)? Other Information: This property does not vary with thickness. Form of the distribution has not been determined. The sample is large enough to permit direct computation of A and B values. Consequently, the computational method will be determined by whether or not the observations may be assumed to follow a threeparameter Weibull distribution. Prob. XI—Step 1. Test to determine whether the distribution is a three-parameter Weibull distribution. The Anderson-Darling test for three-parameter Weibullness will be employed in this example. Preliminary calculations give K = 88 X = 130.1 W5 0 = 0.665
X(1) = 120.487
S = 4.10
H = 120.4869
L = -279.9 262
R(τ) ' j
262
i ' 89
Li (τ) j Li(τ) i ' 1
Solving the equation R(τ) = 0.665 with initial interval (-279.9, 120.4869) gives τ50 = 119.58. Solving the equation G50(β50) = 0 gives β50 = 2.84 which in turn gives α50 = 11.81.
9-215
MMPDS-06 1 April 2011 The values Z(1),...,Z(330) are obtained using these estimates. The value of the Anderson-Darling test statistic is 1.392. Since the computed value of 1.392 is greater than the critical value of 0.749, the hypothesis that the observations follow a three-parameter Weibull distribution is rejected. Prob. XI—Step 2. Compute Fty(LT), 0.020 to 0.125, using procedures for an unknown distribution. This computation has been carried out in Problem V, Step 2. 9.8.2 INDIRECT ANALYSES OF MECHANICAL PROPERTIES PROBLEM XII What computational procedure should be used for the observations in Group (6)? Other Information: SUS(LT) decreases with increasing thickness, while TUS(LT) does not vary with thickness. Sample statistics are: Population n s, ksi X , ksi Group (6) SUS(LT), 0.020 to 0.249
30
not determined
The sample size for these data is too small to permit direct computation. Thus, the procedure that should be used is indirect computation by pairing observations of SUS(LT) with observations of TUS(LT). Also, since a thickness effect was suspected in the original data, a regression against thickness should be made and checked for significance. Prob. XII—Step 1. Pair SUS(LT) with TUS(LT). Ratios of SUS(LT)/TUS(LT) are as follows: SUS(LT)/ TUS(LT)
Thickness, inch
SUS(LT)/ TUS(LT)
Thickness, inch
0.700 0.680 0.660 0.660 0.670 0.680 0.650 0.670 0.690 0.650 0.660 0.670 0.640 0.660 0.680
0.020 0.020 0.020 0.030 0.030 0.030 0.040 0.040 0.040 0.060 0.060 0.060 0.070 0.070 0.070
0.640 0.650 0.660 0.630 0.650 0.670 0.640 0.630 0.620 0.610 0.630 0.650 0.600 0.610 0.620
0.090 0.090 0.090 0.100 0.100 0.100 0.150 0.150 0.150 0.180 0.180 0.180 0.240 0.240 0.240
9-216
MMPDS-06 1 April 2011 Prob. XII—Step 2. Determine regression equation in the form [SUS(LT)TUS(LT)] N=rN=a + bx, where x = thickness, using least-squares techniques. (Note—in this example, the letter r, rather than y, is used to denote the dependent variable and the prime (N) is used to indicate that the ratio is determined by regression.) The following sums were obtained from analysis of the ratios plotted in Figure 9.8.1.2.1. Number of ratios, n = 30 3(x) = 3(x2) = 3(r) = 3(r2) = 3(xr) = (3x)2 =
2.94 0.4260 19.53 12.7319 1.8723 8.6436
(3r)2 (3x) (3r) Sxx Sxr Srr
= = = = =
381.4209 57.4182 0.1379 0.0416 0.0179
Referring to the equations presented in Section 9.5.6: Slope, b '
Sxr Sxx
'
&0.0416 ' &0.302 0.1379
Figure 9.8.1.2.1. Ratios of input data for Problem VII.
9-217
MMPDS-06 1 April 2011 Standard Error of Estimate, SEE '
'
Srr & b 2Sxx (n & 2)
0.0179 & (&0.302)2(0.1379) (30 & 2) SEE ' 0.014
The equation of the regression line is rN = 0.6806 - 0.302x. The regression line is shown in Figure 9.8.1.2.1. Prob. XII—Step 3. Perform an analysis of variance to check the significance and linearity of the regression. Since there are 30 ratios, the analysis of variance approach rather than the method involving the computation of confidence limits on the slope term can be used to evaluate linearity. The only information missing from Step 2 required for the analysis of variance is the values of T, or the summed values of r for each x. They are as follows: x1
T1
x1
T1
0.02 0.03 0.04 0.06 0.07
2.04 2.01 2.01 1.98 1.98
0.09 0.10 0.15 0.18 0.24
1.95 1.95 1.89 1.89 1.83
Using these values, the analysis of variance, which is illustrated in Section 9.5.6.3, can be completed as follows: Sum of Squares Source of Variation Regression Error Lack of Fit Pure Error Total
0.0126 0.0053 0.0004 0.0049 0.0179
Degrees of Freedom 1 28 8 20 29
Mean Squares 0.0126 0.0002 0.00005 0.00024
Fcalc 63.0 0.208
The second calculated F statistic of 0.208 with k - 2 = 8 and n - k = 20 degrees of freedom is less than the value of 2.45 from Table 9.10.2 corresponding to 8 numerator and 20 denominator degrees of freedom. Thus, the deviation from linearity is not significant. The first F statistic of 63.0 with 1 and 28 degrees of freedom is greater than the value of 4.20 from Table 9.10.2 corresponding to 1 numerator and 28 denominator degrees of freedom, so the slope of the regression is found to be significantly different from zero.
9-218
MMPDS-06 1 April 2011 Prob. XII—Step 4. Compute the reduced ratio for SUS(LT)/TUS(LT). In performing this step, the reduced ratio will be computed at each of four thicknesses (0.020, 0.062, 0.125, and 0.249 inch). This is done by determining the lower confidence limit for the regression line at the desired thicknesses, using the equation from Section 9.5.3. The computation will be worked in detail for x0 = 0.020 inch:
Reduced ratio ' [SUS(LT)/TUS(LT)]N & t0.95sNr
(x0 & 'x/n)2 1 % n ('x 2) & ('x)2/n
[SUS(LT)/TUS(LT)]N = rN = 0.681 - 0.302x0 (from Step 2, Problem VII) = 0.681 - 0.302 x 0.020 = 0.6746. t0.95 (for n - 2 = 30 - 2 = 28 degrees of freedom) = 1.701 (from Table 9.10.4) sNr = 0.014 (from Step 2) (x0 & 'x/n)2 1 % ' n ('x 2) & ('x)2/n
1 (0.020 & 2.94/30)2 % ' 0.2783 30 0.4260 & 8.6436/30
Reduced ratio = 0.6746 - 1.701 x 0.014 x 0.2783 = 0.668. The corresponding ratios for the other thicknesses are tabulated in Step 5. See Figure 9.8.1.2.1 for lower confidence limit curve. Prob. XII—Step 5. Compute Fsu. This computation will be illustrated for a thickness of 0.020 inch, using the reduced ratio from Step 4. Ftu(LT) Ftu(LT) Fsu(LT) Fsu(LT)(A-Basis) Fsu(LT)(B-Basis)
From Problem IV,
= = = = =
140 ksi (A-Basis) 144 ksi (B-Basis) Reduced Ratio x Ftu(LT) 0.668 x 140 = 93.5 ksi 0.668 x 144 = 96.2 ksi.
For the four thicknesses listed, Fsu(LT), ksi t, inch
Reduced Ratio
A-Basis
B-Basis
S-Basis
0.020 0.062 0.125 0.249
0.668 0.657 0.638 0.595
93.5 92.0 89.3 ...
96.2 94.6 91.9 ...
... ... ... 80.3
Since Fsu is shown to decrease with increasing thickness, only the lowest value applicable to the range should be presented in MMPDS. By dividing the 0.020 to 0.125 thickness range into two ranges, a somewhat higher Fsu(LT) value may be presented for thinner material as shown below.
9-219
MMPDS-06 1 April 2011 The results of the computations in Problems I through VII have produced the following results (fractions greater than 0.75 are raised to the next higher ksi, while less fractions are dropped): Thickness, inch
<0.020 Basis Ftu(LT), ksi Fty(LT), ksi Fsu, ksi
0.1260.249
0.020-0.062
0.063-0.125
S
A
B
A
B
S
140 115 ...
140 120 92
144 124 94
140 120 89
144 124 92
135 110 80
Since SUS(LT) data were not available for thickness <0.020 inch, a design value is not presented for this range. 9.8.3 TABULAR DATA PRESENTATION — The proposal for the incorporation of design allowables into MMPDS shall contain supporting data and computations for all design properties. Depending on quantity and availability, data may be tabulated, plotted, or referenced (to readily available technical reports, specifications, etc.). Computations should indicate adequately the manner in which design values were computed and shall be presented in an orderly manner. Data sources shall be identified. All minimum mechanical property data analyses must be performed in English units. Strength data recorded in metric units should be converted to English units, to the nearest 0.01 ksi, before data analyses are undertaken. If desired by the data supplier, metric equivalent tables and figures can be included as part of the working data submitted with a data proposal, but the tables and/or figures proposed for inclusion in MMPDS will contain only English units. 9.8.3.1 Mechanical Properties — The table of room temperature design values shall be presented in the format indicated in Figure 9.8.3.1(a) for conventional metallic materials. This format has been designed to accommodate most of these materials; however, some modifications may be required. For example, the format shown in Figure 9.8.3.1(b) shall be used for aluminum alloy sheet laminates which are generally anisotropic and have limited ductility. Design values for these hybrid materials are presented for several mechanical properties which differ from those shown for conventional metallic materials. Unused lines (for example, ST properties for sheet) are deleted. Guidance in the use of these formats may be obtained by examining tables throughout this document and by referral to the applicable procurement specification. The following instructions should be followed for the items located in Figure 9.8.3.1(a): (1) Table number: If this is a revision of an existing table, use the same table number; otherwise, use a new table number in the proper sequence. (2) Material designation: Use a numeric designation where available (for example, 7075 aluminum alloy). Avoid the use of trade names. Include products following the material designation, except products may be omitted from the title if there are many products covered by the table. (3) Specification: Refer to a public specification (industry, Military, or Federal), followed by a type or class designation, if appropriate. Do not refer to proprietary specifications.
9-220
MMPDS-06 1 April 2011 Table (1). Design Mechanical and Physical Properties of (material designation) (2) (products). Specification . . . . . . . . . . . . . . . . (3) Form ................... Condition (or Temper) ...... (4) 2 Cross Sectional Area, in. . . . . . . (5) Location Within Casting . . . . . . (6) Thickness or Diameter, in. . . . . . . (7) Basis ................... S A B (8) S Mechanical Properties: Ftu, ksi: L ................... 120 124 LT (or T) (9) . . . . . . . . . . 120 YY (10) YY ST . . . . . . . . . . . . . . . . . . YY Fty, ksi: L ................... LT (or T) . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fcy, ksi: L ................... LT (or T) . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fsu, ksi: L-S . . . . . . . . . . . . . . . . . T-S . . . . . . . . . . . . . . . . . S-L . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 1.5) (11) L ................... LT . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fbrua, ksi: (e/D = 2.0) L ................... LT . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fbrya, ksi: (e/D = 1.5) L ................... LT . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Fbrya, ksi: (e/D = 2.0) L ................... LT . . . . . . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . e, percent (S-basis): L ................... LT (or T) . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . RA, percent (S-basis): L ................... LT (or T) . . . . . . . . . . . . . ST . . . . . . . . . . . . . . . . . . Continued on next page.
9-221
MMPDS-06 1 April 2011
Table (1). Design Mechanical and Physical Properties of (material designation) (2) (products). (continued) E, 103 ksi . . . . . . . . . . . . . . . Ec, 103 ksi . . . . . . . . . . . . . . . G, 103 ksi . . . . . . . . . . . . . . . µ .................... Physical Properties: ω, lb/in.3 .................................... C, Btu/(lb)(E°F) .......................... (12) K, Btu/[(hr)(ft3)(E° F)/ft] ............ α, 10-6 in./in./E°F ........................ (13)Issued: MM-YYYY, MMPDS-XX, Item XX-XX, Last Revised: MM-YYYY, MMPDS-XX, Item XX-XX. (14) (footnotes)
Figure 9.8.3.1(a). Format for room temperature property table.
9-222
MMPDS-06 1 April 2011 Table 7.5.X.X(b). Design Mechanical and Physical Properties of (sheet material designation) Aluminum Alloy, Aramid Fiber Reinforced, Sheet Laminate Specification . . . . . . . . . . . . . . . . . . Form . . . . . . . . . . . . . . . . . . . . . . . . . Laminate Lay-Up . . . . . . . . . . . . . . . Nominal Thickness, in. . . . . . . . . . . Basis . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Propertiesa: Ftu, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fty, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fcy, ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Fsu, ksi . . . . . . . . . . . . . . . . . . . . . . Fsy, ksi . . . . . . . . . . . . . . . . . . . . . . Fbru, ksi: L (e/D = 1.5) . . . . . . . . . . . . . . . . LT (e/D = 1.5) . . . . . . . . . . . . . . . L (e/D = 2.0) . . . . . . . . . . . . . . . . LT (e/D = 2.0) . . . . . . . . . . . . . . . Fbry, ksi: L (e/D = 1.5) . . . . . . . . . . . . . . . . LT (e/D = 1.5) . . . . . . . . . . . . . . . L (e/D = 2.0) . . . . . . . . . . . . . . . . LT (e/D = 2.0) . . . . . . . . . . . . . . . εt, percent: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . E, 103 ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Ec, 103 ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . G, 103 ksi: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . µ: L ......................... LT . . . . . . . . . . . . . . . . . . . . . . . . Physical Properties: ω, lb/in.3 . . . . . . . . . . . . . . . . . . . . C, K, and α . . . . . . . . . . . . . . . . . .
2/1 0.032 S
Aramid fiber reinforced sheet laminate 3/2 4/3 0.053 0.074 S S
5/4 0.094 S
Issued : MMM-YYYY, MIL-HDBK-5X, Item XX-XX; Last Revised: MMM-YYYY, MMPDS-02, Item XX-XX
a Design values were computed using nominal thickness of sheet laminate.
Figure 9.8.3.1(b). Format for room temperature property table for aluminum alloy fiber reinforced sheet laminate.
9-223
MMPDS-06 1 April 2011 (4)
Condition: Use a standard temper designation where applicable. Otherwise, use an easily recognized description, including pertinent details if these are not available in the reference specification. Examples: T651, TH1050, Aged (1400EF), Mill Annealed.
(5)
Cross-sectional area: Use only when applicable.
(6)
Location within casting: Applicable only to castings. Specify “Non-designated area,” or “Designated area,” as applicable.
(7)
Design values shall be presented only for the thicknesses covered in the material specification.
(8)
Basis: For each product and size, use two columns covering A- and B-Basis properties or one column covering S-Basis properties. A-values that are higher than the corresponding Svalues are presented only in footnotes to the table. In such instances, A-values are replaced by S-values in the body of the table. When A-values are presented for some properties and S-values are presented for other properties for the same product, values shall be shown in a column labeled A-Basis, and individual S-values shall be identified by appropriate footnotes. Elongation, total strain at failure, and reduction of area values are presented on an S-Basis only. When other properties are presented on an A- and B-Basis, add “(S-Basis)” after “e, percent,” or “εt percent” and “RA, percent.”
(9)
Grain direction: Show design values for grain directions “L, LT, and ST” or for grain directions “L and T” for the properties Ftu, Fty, Fcy, e, and RA. For anisotropic materials sheet and plate, present design values for grain directions “L, 45E, and LT” for Ftu, Fty, and Fcy. For aluminum alloy sheet laminates, show design values for L and LT grain directions of aluminum alloy sheet for all mechanical properties. Grain directions are not applicable to castings. The T grain direction should be footnoted with the definition used in the specification identified at the top of the mechanical property table. For example, the T grain direction for aluminum die forgings covered in MIL, Federal and some AMS specifications will read as follows: “For die forgings, T indicates any grain direction not within ±15 degrees of being parallel to the forging flow lines.” For updated AMS specifications with the preferred narrower definition of the T grain direction, the footnote should read as follows: “For die forgings, T indicates a grain direction within ±15 degrees of being perpendicular to the forging flow lines.” Specimens to test the transverse properties should be located as close to the short transverse direction as possible. Transverse Fcy values for aluminum die forgings shall be shown as Fcy(T). If the values are based upon short transverse or long transverse test data, add this information to the above footnote.
(10)
Missing values: For table entries that are missing or not applicable, show a series of three dots aligned with the numbers in that column.
(11)
Bearing values: Add footnote “Bearing values are dry pin values per Section 1.4.7.1” when bearing allowables are based on data from clean pin tests. Supporting information supplied with the proposal should describe the bearing test cleaning procedures used in testing.
9-224
MMPDS-06 1 April 2011 (12)
Physical properties: Include a section for physical properties even if properties are not available. If physical property data are presented in an effect-of-temperature curve, use table entry, “See Figure X.X.X.0” to refer to the illustration.
(13)
Documentation: Effective with tables added or revised in MMPDS-02. This information will be added to earlier tables as possible. Include the handbook release date, handbook revision, and agenda item with which the table was first initiated and similar information for the last time a technical change was made to the table. Revisions are not indicated for editorial changes.
(14)
Footnotes: Use footnotes to indicate anything unusual or restrictive concerning the property description, properties, or individual values; to present supplementary values; or to reference other tables or sections of text. When A-values have been replaced by S-values, the following wording is suggested: “A-Basis value is specification minimum. The rounded T99 value is as follows: (list values).”
In addition, the proposal shall contain supporting data and computations for all design properties. Depending on quantity and availability, data may be tabulated, plotted (by cumulative-probability curves or histograms), or referenced (to readily available technical reports, specifications, etc.). Computations should indicate adequately the manner in which design values were computed and shall be presented in an orderly manner. Data sources shall be identified. 9.8.3.2 Modulus of Elasticity and Poisson’s Ratio — The following room temperature elasticity values are presented in the room temperature property tables as typical values:
Property Modulus of Elasticity In tension In compression In shear Poisson’s Ratio
Units
Symbol
Recommended ASTM Test Procedures
1000 ksi 1000 ksi 1000 ksi (Dimensionless)
E Ec G µ
E 111 E 111 E 143 E 132
If the material is not isotropic, the applicable test direction must be specified. Deviations from isotropy must be suspected if the experimentally determined Poisson’s ratio differs from the value computed by the formula
µ '
E¯ & 1 2G
[9.8.3.2(a)]
where ÷ is the average of E and Ec. Given E, Ec, and G, µ may be computed by this equation. Likewise, given E, Ec, and µ, G may be computed from the equation: E¯ G ' [9.8.3.2(b)] 2(µ % 1) In the event Ec is not available, E may be substituted for ÷ in the above equations to provide an estimate of either µ or G.
9-225
MMPDS-06 1 April 2011 9.8.3.3 Physical Properties — Density, specific heat, thermal conductivity, and mean coefficient of thermal expansion are physical properties normally included in MMPDS. Physical properties are presented in the room temperature property table if they are not presented in effect-of-temperature curves. The basis for physical properties is “typical.” Table 9.8.3.3 displays units and symbols used in MMPDS, and also recommended ASTM test procedures for measuring these properties. Since modifications of procedures are employed in measuring physical properties, methods used for values proposed for inclusion in MMPDS should be reported in the supporting data proposal. For specific heat and thermal conductivity values reported in the room temperature property table, the reference temperature of measurement is also shown [for example, for 2017 aluminum the specific heat is 0.23 (at 212EF)]. For tabulated values of mean thermal expansion, temperature range of the coefficient is shown [for example, 12.5 (70 to 212EF)]. The reference temperature of 70EF is established as standard for mean coefficient of thermal expansion curves.
Table 9.8.3.3. Units and Symbols Used to Present Physical Property Data and ASTM Test Procedures Property
Unit
Symbol
Recommended ASTM Test Procedures
lb/in.
ω
C 693
Btu/lb-EF
C
D 2766
K
C 714a
α
E 831
3
Density Specific heat Thermal conductivity
2
Btu(hr-ft -EF/ft)
Mean coefficient of thermal expansion 10-6(in./in./EF)
a ASTM C 714 is a test for thermal diffusivity from which thermal conductivity can be computed.
9.8.4 ROOM TEMPERATURE GRAPHICAL MECHANICAL PROPERTY DATA 9.8.4.1 Typical Stress-Strain — The stress-strain and tangent-modulus data appearing in MMPDS are described as “typical” stress-strain and compression tangent-modulus curves. The term typical indicates that representative stress-strain data for products covered have been adjusted to reflect precision typical values of the elastic modulus, and product average values of the 0.2 percent offset yield strength in tension or compression. Curves extend to strain somewhat beyond the 0.2 percent offset yield strength. Curves described as “full range” stress-strain curves are also included in MMPDS. These curves extend through maximum load and beyond to rupture. Mathematical representations of curves are covered in Section 9.8.4.6. All curves will be prominently marked “typical”. With regard to tension data, only stress-strain curves are shown; however, compression data should include stress-strain curves and tangent-modulus curves. The Ramberg-Osgood n exponent should appear on all stress-strain curves if n is shown to apply in the approximate range from proportional limit to yield strength. The procedures and methods to be used are described in the following paragraphs. Two alternative procedures are described for determining typical stress-strain curves. (1) The “strain-departure” method, which assumes no parametric relationship between stress and plastic strain, utilizes the full stress-strain curve. (2) The Ramberg-Osgood method, which assumes an exponential relationship between stress and plastic strain. Its use requires as few as two points from the original stress-strain curve, once the exponential relationship has been found to be applicable.
9-226
MMPDS-06 1 April 2011 Generally, the two methods yield nearly identical results for those portions of the curve lying between proportional limit and yield stress. For plastic strains greater than about 0.002 in./in. and for bimetallic or clad products, only the strain-departure method is applicable. Stress tangent-modulus curves may be derived graphically from compressive stress-strain curves, or computed, if the Ramberg-Osgood method is used.
9.8.4.1.1 Strain Departure Method — These steps, as illustrated in Table 9.8.4.1.1, should be followed to establish a typical tensile or compressive stress-strain curve using the strain-departure method: (1) The straight-line (modulus) portion of each curve should be extended as in Figure 9.8.4.1.1(a), and the 0.002 (0.2%) offset yield strength should be indicated. (2) At appropriate departures or offsets from the modulus line, load should be determined accurately, converted to stress, and recorded. Sufficient departure measurements should be made to accurately describe the curve to just beyond yield load for each load-strain curve. (3) At each strain departure, the stresses should be averaged. (4) When a product average yield strength value is available, the average stresses at each departure should be converted to product average stresses. (5) Elastic strains should be computed for each departure. (Elastic Strain equals Total Stress/ Elastic Modulus.) (6) Elastic strains (computed) and plastic strains (departure) should be added to obtain total strain for each departure. Table 9.8.4.1.1. Example of Use of Strain Departures to Establish Typical Stress-Strain Curve Stress, ksi Departure (D) µ in./in.
Test #1
Test #2
Test #3
0 20 40 100 500 1000 2000 2200
43.81 49.77 51.41 54.31 60.16 62.67 64.95 65.26
42.75 48.81 50.98 53.96 60.37 62.85 65.06 65.38
41.20 45.14 47.82 51.24 57.10 59.45 61.80 62.12
a b c d e f
Strain, µ in./in. Averagea (σA) 42.59 47.91 50.17 53.17 59.21 61.66 63.94f 64.25
Average of Tests 1, 2, and 3. σT = (Product average yield strength ÷ average yield strength) x σA. εE = σT/E. εT = εE + D. Product average yield strength. Average yield strength.
9-227
Product Avg.b (σT)
Elasticc (εE)
Totald (εT)
42.63 47.95 50.12 53.22 59.27 61.72 64.00e 64.31
4022 4524 4728 5021 5592 5823 6038 6067
4022 4544 4768 5121 6092 6823 8038 8267
MMPDS-06 1 April 2011
Figure 9.8.4.1.1(a). Measuring loads by strain departure method.
The following guidelines should be used to plot a typical stress-strain curve. The graph axis should be laid out such that there are 10 minor divisions for every major division with every tenth (major) division accented. The ordinate (Y-axis) is used for stress and should be scaled in units of ksi to the major division, as appropriate, to produce a total scale length of approximately 5 major divisions. The abscissa (X-axis) is used for total strain and should be scaled in units of in./in. to the major division, as appropriate, to produce a total scale length of approximately 6 major divisions. The final step is plotting the values in Table 9.8.4.1.1 to produce the typical stress-strain curve as shown in Figure 9.8.4.1.1(b). In addition to plotting the graphs by hand, they may be plotted with computer software programs. In the latter case, input the stress-strain pairs (σT and εT) from Table 9.8.4.1.1 into the computer and then curve fit the data. In all cases, the elastic section must be linear up to the proportional limit. It is recommended that the Ramberg-Osgood equation be used to fit the data from the proportional limit to just beyond the 0.2% yield stress. If not, a power-law polynomial second order may be used to fit the data points. The stress-strain curve should extend slightly beyond the 0.2% yield strength. To complete the figure, the Ramberg-Osgood number from Section 9.8.4.1.2 and the typical yield strength (TYS) product average must be contained in a table within the figure. If more than one curve is contained in the figure, information such as the grain direction (L, LT, and ST), and/or temperature for each curve must be indicated in the figure. Figure 9.8.4.1.1(c) shows the proper format of a figure for presentation in Chapters 2 through 7.
9-228
MMPDS-06 1 April 2011
Figure 9.8.4.1.1(b). Plotted data from Table 9.8.4.1.1.
50
TYPICAL Longitudinal 40
Stress, ksi
Long Transverse 30
20
Ramberg-Osgood Longitudinal Long Transverse
10
TYS (ksi) 43 42
23 19
Thickness 0.072 -0.249 in. 0
0
2
4
6
8
10
12
Strain, 0.001 in./in.
Figure 9.8.4.1.1(c). Typical stress-strain curves showing the proper presentation format.
9-229
MMPDS-06 1 April 2011
9.8.4.1.2 Ramberg-Osgood Method — This method, which is based on the work of Ramberg and Osgood [Reference 9.8.4.1.2(a)], and Hill [Reference 9.8.4.1.2(b)], assumes that an exponential relationship exists between stress and plastic strain, as expressed by
ep ' 0.002
f
n
[9.8.4.1.2(a)]
f0.2ys
where f f0.2ys ep n
is stress, is the 0.2 percent yield stress, is plastic strain, is the Ramberg-Osgood parameter**.
While this relationship may not be exact, it is sufficiently accurate for use up to the yield strength for many materials, but cannot be employed to compute full-range stress-strain curves. Since total strain equals elastic strain plus plastic strain, etotal ' f/E % 0.002
f f0.2ys
n
[9.8.4.1.2(b)]
where E is the typical value of modulus of elasticity from the room temperature property tables. Equation 9.8.4.1.2(b) can be programmed for determination and plotting by a computer, given only values for E, n, and f0.2ys. To obtain typical curves, TYS or CYS is used for f0.2ys. TYS and CYS values are based on product averages when available; in other cases, average values from original stress-strain curves are used. The Ramberg-Osgood parameter, n, shall be determined analytically in development of typical stress-strain curves for MMPDS. As the first step in the analytical determination of n, a series of values of stress and strain departure (plastic strain) must be obtained from each original stress-strain curve. These may be determined by the method of strain-departure described in Section 9.8.4.1.1 or the alternate method outlined below: (1) Determine the indicated modulus of elasticity for the individual stress-strain curves. (2) For each curve, construct two lines parallel to the modulus line and intersecting the stress-strain curve at plastic strains of approximately 0.020 and 0.20 percent. The lines will bound the zone where stress-plastic strain pairs are determined. This zone also eliminates the small plastic strain region where nonlinearities in stress versus plastic strain sometimes exist. (3) Digitize each stress-strain curve over the range bounded in Step 2. A series of approximately ten to 12 pairs of stress-total pairs should be taken at nearly equal intervals within this range. A resolution of 0.25 ksi stress and 0.01 percent strain is desirable here. (4) Compute plastic strains from each collection of total strains, using the individual curve’s modulus to subtract out elastic strains.
**
The Ramberg-Osgood parameter, n, should not be confused with the strain hardening coefficient, which is also denoted by the letter n. The one is the reciprocal of the other. Values of the Ramberg-Osgood parameter usually lie within the range of 2 to 40. It should be noted that an occasional practice in the aircraft industry, but not followed in MMPDS, is to subtract a small increment of strain from Equation 9.8.2.1.1.2(a) in order to compensate for the existence of a proportional limit.
9-230
MMPDS-06 1 April 2011 Once the stress and plastic strain values are tabulated for available stress-strain curves, it is possible to proceed with determination of the Ramberg-Osgood parameter. To determine n analytically, Equation 9.8.4.1.2(a) is rearranged to solve for stress, f, the dependent variable. 1/n
f ' Aep
[9.8.4.1.2(c)]
where A '
f0.2ys (0.002)1/n
[9.8.4.1.2(d)]
Taking the natural logarithm of Equation 9.8.4.1.2(c), a transformed equation is obtained which can be analyzed by the method of linear least squares. ln f ' ln A % 1/n ln ep
[9.8.4.1.2(e)]
The solution for n is the same as that for a linear regression least-squares estimate of the slope, b, as shown in Section 9.6.3.1, Equation 9.8.4.1.2(d) where b = 1/n, therefore, ('x)2 N n ' 'x 'y 'xy & N
'x 2 &
[9.8.4.1.2(f)]
where x = ln ep y = ln f N = number of data points. Correspondingly, A can be obtained from Equation 9.8.4.1.2(d) as 1 'x n N
'y & ln A '
[9.8.4.1.2(g)]
Values for stress and strain departure may be input for solution of Equation 9.8.4.1.2(f) by either of two methods. In one method, x = ln ep and y = ln f are input for each value of stress and strain departure for each stress-strain curve used in the analysis. N is the total number of points obtained from stress-departure analysis of all specimens from all heats that are analyzed. Care should be taken to ensure that the same number of data points are collected from each curve. In the other method, average stress (f) is determined for all available curves at designated values of strain departure (ep). In this case, x and y in Equation 9.8.4.1.2(f) are ln ep and ln f, respectively, and N is the number of strain departure points. Again, the same number of data points should be computed for each stress-strain curve. Some investigators may analyze the results of each individual specimen by the method outlined by Equations 9.8.4.1.2(c) through 9.8.4.1.2(g) and record individual values of the parameter n. In these cases, an alternate approach must be used to combine results and establish n. This technique is called the method of computed strain-departure.
9-231
MMPDS-06 1 April 2011 In the method of computed strain-departure, results from individual specimen analyses are used to compute stress levels [from Equation 9.8.4.1.2(c)] at specific strain-departure levels for all specimens. In so doing, the original data are used to analytically perform the method of strain-departure of Section 9.8.4.1.1 which should be used as a guideline for doing this analysis. Once these computed stress values are obtained, they can be used to calculate the exponent, n, by Equation 9.8.4.1.2(f) using either of the two methods that are described above for the case when data are recorded by the method of strain-departure. An approximate value of the Ramberg-Osgood parameter can be found graphically, although this approach shall not be used to construct stress-strain curves for MMPDS. Graphically determined stress-strain curves must be verified by computer analysis according to previously described techniques before inclusion in MMPDS. A graphical procedure is described in the following paragraphs and is illustrated in Figure 9.8.4.1.2. (1) Plot at least three pairs of stress-plastic strain points from each original stress-strain curve on log-log graph paper. As illustrated in Figure 9.8.4.1.2, the ordinate is conventionally used for log stress, the abscissa is log plastic strain (strain departure method is described in Section 9.8.4.1.1), and the slope is 1/n. (2) A straight line then is drawn through the plotted points and the slope (l/n) is computed as shown in the figure.
Figure 9.8.4.1.2. Graphical approximation of Ramberg-Osgood Parameter, n.
When using the above-described approaches, it is recommended that a check be made to determine how well the value of n reproduces the stress-strain curve in the approximate range from the proportional limit (defined as 0.02% ys) to f0.2ys. This can be done by constructing the stress-strain curve using Equation 9.8.4.1.2(b), and comparing an original stress-strain curve through the yield strength with the computed curve. In checking an original stress-strain curve with the computed curve, some judgment must be exercised in the vicinity of the proportional limit since the Ramberg-Osgood relationship may not precisely represent original stress-strain curves in this area. Stress deviations greater than about 5 percent between the two curves suggest that the Ramberg-Osgood relation is not applicable.
9-232
MMPDS-06 1 April 2011
9.8.4.1.3 Extension of the Ramberg-Osgood Method — In some situations it has been found that the traditional Ramberg-Osgood analysis method does not provide an adequate representation of the initial yield behavior for a material. An example of such a case is given in Figure 9.8.4.1.3(a). In this
100 95
Stress, ksi
90 85 80
706643-1B-L-1 0.050 inch Elastic Response
75
0.2% Plastic Strain Ramberg Osgood Based on Initial Plasticity, n
70
RO Curve Based on Secondary Plasticity RO Curve Based on Initial & Secondary Plasticity
65
Actual TYS, 0.2% Total Plastic Strain RO Curve Based on TYS and n
60 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.015 Strain, in./in., %
Figure 9.8.4.1.3(a) Illustration of Stress-Strain Response That Cannot be Accurately Represented with the Traditional Ramberg Osgood Equation
case the raw stress-strain data are shown in comparison with three different analytical representations of the initial yield behavior. With increasing load beyond purely linear elastic response this material tends to yield very gradually up to a point, and then yield very rapidly beyond that point. This abrupt change in yield behavior takes place prior to the accumulation of 0.02% in plastic strain, which is typically used to establish a material’s yield strength. The problem can be seen even more clearly in Figure 9.8.4.1.3(b), where the logarithms of stress versus plastic strain are plotted for plastic strains up to 0.2%. The traditional Ramberg Osgood relationship is based on the assumption that the trends of log stress vs log plastic strain up to the yield point will be linear; which, in this case they clearly are not. In fact, the trends of log stress vs log plastic strain are actually approximately bi-linear. The slope of the curve is very modest during initial yielding, which equates to a low Ramberg Osgood value. The slope of the curve increases dramatically after initial yielding, which equates to a very high Ramberg Osgood value. Obviously, no single Ramberg Osgood value realistically fits the yield behavior of this material from the proportional limit up the yield point. If a low Ramberg Osgood value is selected based on small plastic strains it will represent the region of initial yielding well and fit the region of larger scale yielding poorly. Conversely, if a high Ramberg Osgood value is selected based on larger plastic strains it will represent the region of larger scale yielding best and fit the region of small scale yielding poorly.
9-233
MMPDS-06 1 April 2011
2.00
1.98
Log Maximum Stress, ksi
1.96
1.94
1.92
1.90
Initial Plasticity Region 1.88
Secondary Plasticity Region Log Linear Segments Total Plastic Strain Curve
1.86
1.84 -5.00
-4.50
-4.00
-3.50
-3.00
-2.50
-2.00
Log Plastic Strain
Figure 9.8.4.1.3(b) Illustration of Bi-Log-Linear Stress-Strain Response Determined from Stress-Strain Curve Shown in Figure 9.8.4.1.3(a)
Figure 9.8.4.1.3(b) shows that an accurate representation of the yield behavior for this material up to TYS must include two log-linear segments. A methodology for smoothly blending two log-linear segments is described in the following paragraphs. The traditional Ramberg-Osgood formulation may be extended to include 2 elements of plasticity
ε total = ε e + ε p + ε p 1
2
where
εp
1
f = K1 10
n1
and
f ε p2 = K2 10
n2
An illustration of the output generated with this approach is given in Figure 9.8.4.1.3(c). In situations where a bi-log-linear relationship best characterizes the relationship between stress and plastic strain it is customary within the MMPDS to also show the best-approximation, traditional Ramberg Osgood fit, alongside of the bi-log-linear fit, and to report the best-fit parameters for both equations.
9-234
MMPDS-06 1 April 2011
100 90 80 70
Stress, ksi
60 50 40 30 L: n1= 13.5 , n2= 204.8 , K1= 2.193 , K2= 1.969 , TYS= 90.2
20
LT: n1= 7.3 , n2= 67.0 , K1= 2.417 , K2= 2.006 , TYS= 92.1 10 ST: n1= 5.2 , n2= 40.9 , K1= 2.553 , K2= 2.017 , TYS= 88.5 0 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 Strain, in./in.
Figure 9.8.4.1.3(c) Typical Stress-Strain Curves Defined in Terms of a Bi-Log-Linear Relationship Between Stress and Plastic Strain
9.8.4.2 Compression-Tangent-Modulus Curves — In deriving tangent-modulus curves graphically from typical compressive stress-strain curves, a number of points are marked off on the latter curves, particularly where the curve departs from linearity and in regions of greatest curvature. At each point on the curve, a line is drawn tangent to the curve as shown in Figure 9.8.4.2(a). The slope of each line is the tangent modulus corresponding to the stress coordinate of the point of tangency. The traditional RambergOsgood relationship, Equation 9.8.4.2(b), etotal ' f/E % 0.002
n
f f0.2ys
[9.8.4.2(a)]
also may be employed to determine the compression tangent-modulus curve. Tangent modulus is the first derivative of stress with respect to strain, df/de, or Et '
1 1 0.002n f % E f0.2ys f0.2ys
n & 1
[ 9.8.4.2(b)]
This equation can be programmed for determination and plotting by a computer, given only values for E, n, and f0.2%ys. To obtain typical curves, average CYS is used for f0.2%ys.
9-235
MMPDS-06 1 April 2011
Figure 9.8.4.2(a). Determining tangent modulus and secant modulus. .
200
Long Transverse
RT
1/2 - Hr exposure 200 F 160 400 F
Stress, ksi
600 F
Ramberg-Osgood
120 800 F
n (RT) = 13 n (200 F) = 15 n (400 F) = 14 n (600 F) = 10 n (800 F) = 11 n (1000 F) = 5.7
1000 F
80
40
0
TYPICAL
0
4
8
12
16
20
3
Compressive Tangent Modulus, 10 ksi Figure 9.8.4.2(b). Typical compressive tangent-modulus curves.
9-236
24
MMPDS-06 1 April 2011 60 TYPICAL Longitudinal
50
Long Transverse
Stress, ksi
40
30
20
10
Longitudinal Long Transverse
Ramberg - Osgood 17 17
CYS (ksi) 47 46
Thickness = 0.072 - 0.249 in. 0 0
2
4
6
8
10
12
Strain, 0.001 in./in. 3 Compressive Tangent Modulus, 10 ksi
Figure 9.8.4.2(c). Typical compressive stress-strain and compressive tangentmodulus within the same figure.
60
TYPICAL 50
Longitudinal
Stress, ksi
40
Long Transverse 30
20
Ramberg-Osgood Longitudinal Long Transverse
16.8 16.7
10
Thickness 0.072 - 0.249 in. 0
0
2
4
6
8
10
12
3
Compressive Tangent Modulus, 10 ksi
Figure 9.8.4.2(d). Typical compression tangent-modulus curves for clad aluminum alloy sheet showing the primary and secondary modulus.
9-237
MMPDS-06 1 April 2011 The following guidelines should be used to plot a compression tangent-modulus curve. For mathematical representations of compression tangent modulus curves see Section 9.8.4.6. The graph axis should be laid out such that there are 10 minor divisions for every major division with every tenth (major) division accented. The ordinate (Y-axis) scale is plotted in the same manner as that used for the stress-strain curves in Section 9.8.4.1.1. The abscissa (X-axis) scale is usually made equal to 2, 4, or 5 x 103 ksi per major division, depending on material, to produce a total scale length of approximately 6 major divisions. The compression tangent-modulus curve is illustrated in Figure 9.8.4.2(b) where stress is plotted (on the ordinate) versus tangent modulus (on the abscissa). In addition to plotting the graphs by hand, they may be plotted with computer software programs. In the latter case, input the stress-modulus pairs (σT and Εt) from Equation 9.8.4.2(b) into the computer or program the computer with the equation and then curve fit the data. If it will not lead to confusion, stress tangent-modulus curves may be superimposed on the corresponding stress-strain figures as illustrated in Figure 9.8.4.2(c). If, however, several stress-strain curves appear in one figure, it is advisable to present stress tangent-modulus curves in a separate figure, as illustrated in Figure 9.8.4.2(b). The compression tangent-modulus curves for clad material should show a primary and secondary modulus as indicated in Figure 9.8.4.2(d). The stress-strain curves of clad material may indicate two modulus lines due to the cladding. The primary modulus is due to the combined modulus of both clad and base materials. However, the clad material is typically weaker than the base material and will yield at a low stress; therefore not contributing to the modulus at higher stresses. At this point, the secondary modulus becomes predominate. The compression tangent-modulus curves should show the primary and secondary modulus and indicated in Figure 9.8.4.2(d). To complete the figure, the Ramberg-Osgood number from Section 9.8.4.1.2 must be contained in a table within the figure. If more than one tangent modulus curve is contained in the figure, information such as the grain direction (L, LT, and ST), and/or temperature for each curve must be indicated in the figure. Figures 9.8.4.2(b), 9.8.4.2(c), and 9.8.4.2(d) show the proper format for presentation in Chapters 2 through 7. Stress-secant modulus curves for the traditional Ramberg-Osgood equation are not presently used in MMPDS. Secant or “chord” modulus is determined as illustrated in Figure 9.8.4.2(a) and is plotted in the same manner as the tangent modulus. The equation for secant modulus is:
f f Es' ' e f f %0.002( )n E fy
[ 9.8.4.2 (c)]
at the point of stress. In situations where a bi-log-linear relationship best characterizes the relationship between stress and plastic strain it is customary within the MMPDS to also show the best-approximation, traditional RambergOsgood fit, alongside of the bi-log-linear fit, and to report the best-fit parameters for both equations. 9.8.4.3 Full-Range Tensile Stress-Strain Curves — Preparation of each typical full-range tensile stress-strain curve requires multiple, representative, original full-range stress-strain curves for each grain orientation and thickness range that displays similar characteristics. Full-range tensile stress-strain data for at least one lot of material shall be provided, but data from three lots are preferred. If data for less than three lots are submitted, the full-range stress-strain curve shall be labeled “BASED ON ONE LOT” or “BASED ON TWO LOTS”, as appropriate.
9-238
MMPDS-06 1 April 2011 The procedure for developing typical full-range tensile stress-strain curves is based upon strain departures obtained from several original test curves, and the product average tensile strength, yield strength, and elongation established from production data. Properties of material tested for determining strain departures should be in reasonable agreement with the product average properties. These steps, as illustrated in Table 9.8.4.3 and Figures 9.8.4.3(a) and 9.8.4.3(b), should be followed in developing typical full-range tensile stress-strain curves. (1) From each stress-strain test curve, measure strain departures (D) between the extension of the modulus line and the curve at stresses determined by taking appropriate percentages of the differences between ultimate stress and yield stress added to the yield stress.
σ(1,n) ' TYS % % (TUS & TYS) where TUS and TYS are values for each test. Also identify the proportional limit for each test. The proportional limit is defined as the stress level below, which the stress-strain curve is linear; as determined by σ=Eε where σ is the stress, E is Young’s Modulus, and ε is the strain.
9-239
Table 9.8.4.3. Example of Strain-Departure Method to Establish Typical Full-Range Stress-Strain Curves Test 1 Percent
Stress, ksi σ1
Strain Departurec in./in. (D1)
Test 2 Stress, ksi σ2
Strain Departurec in./in. (D2)
Average Stress,d ksi σA
Strain Departured in./in. (DA)
Typical Stress, ksi σT
Strain Departurei in./in. (DT)
Elastic Strainj in/in. (εE)
Total Straink in./in. (εT)
59.6l
0.0000
0.0058
0.0058
0.0020 0.0100 0.0199 0.0302 0.0444 0.0633 0.0843
62.0e 64.0e 66.0e 68.0e 70.0e 71.5e 72.0e
0.0020 0.0100 0.0200 0.0303 0.0446 0.0636 0.0847
0.0061 0.0063 0.0065 0.0067 0.0069 0.0070 0.0071
0.0081 0.0163 0.0265 0.0370 0.0515 0.0706 0.0918
0.0843 0.0988 0.1107 0.1294
72.0g 71.1g 68.5g 63.4f
0.0847 0.0992 0.1112 0.1300 (Elong.)
0.0071 0.0070 0.0067 0.0062
0.0918 0.1062 0.1179 0.1362
Yield Stress to Ultimate Stress Proportional Limit (PL)
56.5 58.8a 61.0a 63.2a 65.4a 67.7a 69.3a 69.9a
100(TUS) 90 60 0(FS)
b
0.0020 0.0106 0.0204 0.0302 0.0452 0.0640 0.0848
60.9a 63.0a 65.2a 67.4a 69.5a 71.1a 71.7a
0.0020 0.0094 0.0194 0.0302 0.0436 0.0626 0.0838
59.8 62.0 64.2 66.4 68.6 70.2 70.8
Ultimate Stress to Fracture Stress (FS)
a b c d e f g h i j k l
69.9 69.0b 66.3b 60.9b
0.0848 0.0962 0.1058 0.1210
71.7b 70.9b 68.5b 63.7b
0.0838 0.1014 0.1156 0.1378
70.8 70.0 67.4 62.3
σ1,n = TYS + % (TUS-TYS) where TUS and TYS are values for each test. σ1,n = TUS - (1 - %) @ (TUS-FS) or σ(1,n) = FS + % (TUS-FS) where TUS and FS are values for each test. D = Departure (plastic strain) from modulus line at corresponding stresses. Averages (σ and D) of Tests 1 and 2. σT = TYSProd. Avg. + % (TUSProd. Avg. - TYSProd. Avg.). σT(FS) = (TUSProd. Avg./TUSAvg.) @ σAvg.(FS). σT = TUSProd. Avg. - (1 - %) @ (TUSProd. Avg. - σT(FS)) or σT = σT(FS)+% (TUSProd.Avg. - σT(FS)). Average proportional limit. DT = [((DA - 0.002) x (Product Average Elongation -0.002)) ÷ (DA at FS - 0.002)] + 0.002. εE = σT ÷ E (E = 10.2 x 103 ksi in this example). εT = D T + εE. σT (PL) = (TYSProd. Avg./TYSAvg.) @ σAvg.(PL).
MMPDS-06 1 April 2011
9-240
0(TYS) 20 40 60 80 95 100(TUS)
57.5h
58.5
MMPDS-06 1 April 2011
Figure 9.8.4.3(a). Strain departure method for determining average full-range stressstrain curve.
Figure 9.8.4.3(b). Method of adjusting average to typical full-range stress-strain curve.
9-241
MMPDS-06 1 April 2011 (2) For departures beyond ultimate stress, the stresses are determined by taking the percentage of the difference between the fracture stress and ultimate stress and subtracting it from the ultimate stress.
σ(1,n) ' TUS & (1 & %) @ (TUS & FS) or
σ(1,n) ' FS % % (TUS & FS) where TUS and FS are values for each specimen.
(3) For each percentage, average the stresses and strain departures, σA and DA, respectively. (4) Compute typical stresses between TYS and TUS using product average yield strengths.
σT ' TYSProd.Avg. % % TUSProd.Avg. & TYSProd.Avg.
(5) Compute typical fracture stress, σT(FS), as follows:
σT(FS) '
TUSProd. Avg. TUSAvg.
σAvg.(FS)
.
(6) Compute typical stresses between TUS and FS using product average ultimate strength and typical fracture stress.
σT ' TUSProd.Avg. & (1 & %) @ TUSProd.Avg. & σT (FS) or
σT ' σT (FS) % % TUSProd.Avg. & σT (FS)
(7) Adjust the average departures, DA, to typical departures, DT, as follows:
DT '
(DA & 0.002)(Prod. Avg. Elong. & 0.002) (DA at Fracture Stress & 0.002)
%0.002 .
(8) Compute elastic strains, εE, by dividing typical stresses by typical modulus.
9-242
MMPDS-06 1 April 2011
εE '
σT E
(9) Obtain total strain, εT, by adding DT and εE. (10) Calculate the average proportional limit from the stress strain curves and compute the typical proportional limit. σT (PL) ' TYSProd. Avg. / TYSAvg. @ σAvg. (PL) The final step is plotting the full-range stress-strain curves. The following guidelines should be followed to plot the stress-strain curve. There should be 10 minor divisions for every major division with every tenth (major) division accented. The ordinate (Y-axis) is used for stress and should be in units of 5, 10, 20, or 50 ksi to the major division. The abscissa (X-axis) is used for strain and should be in units of 0.01, 0.02, 0.05, or 0.1 in./in. to the major division. In addition to plotting the graphs by hand, they may be plotted with computer software programs. In the latter case, input the stress-strain pairs (σT and εT) from Table 9.8.4.3 into the computer and then curve fit the data. The elastic section must be linear up to the proportional limit. It is recommended that a powerlaw polynomial second order be used to fit the data from the proportional limit to fracture stress. The fullrange stress-strain curve should be solid up to maximum stress and dashed from maximum stress to rupture. The fracture point should be indicated with an X. Only one typical full-range stress-strain figure is usually plotted per page and it is sized to fill as much of the page as possible, as illustrated in Figure 9.8.4.3(c). If more than one curve is contained in the figure, information such as the direction (ST, LT, and L), and/or temperature for each curve must be indicated. Many full-range stress-strain curves are generated using 2 different strain rates, a relatively low strain rate up through yield and a much higher strain rate from that point through failure. This change in strain rate sometimes affects the shape of the full-range stress-strain curve. In these situations the full-range stressstrain curves must be “broken” at the point where a strain rate change was made, as shown in Figure 9.8.4.3(c). The strain rate associated with each segment of the curve must be identified. All new full-range stress-strain curves submitted for inclusion in the MMPDS Handbook must include documentation regarding the strain rate(s) used at specific points during the test. The applicable
range of strain rates must be identified in those cases where several different strain rates were used to generate the individual curves to be used to construct a single, typical full-range stress-strain curve. 9.8.4.4 Minimum Stress-Strain and Stress Tangent-Modulus Curves — Minimum stress-strain and stress tangent-modulus curves are not presented in MMPDS, but these are sometimes required by the designer. Procedures for preparing minimum curves are identical to those for preparing typical curves, except for choice of yield-strength values. Product average, or average values of yield strength, are used to determine typical curves; minimum values (Fty or Fcy A- or B-Basis) are used to determine minimum curves. Average values of precision elastic modulus (E or Ec) are used. 9.8.4.5 Biaxial Stress-Strain Behavior — Procedures for analyzing and presenting biaxial stress-strain properties may be added to the guidelines at a later date. In the interim, procedures described in Reference 9.8.4.5 may be used as a general guide.
9-243
MMPDS-06 1 April 2011
Figure 9.8.4.3(c). A typical full-range stress-strain curve showing a break at the point of change in strain rate.
9.8.4.6 Mathematical Representation of Stress-Strain Curves — As an aid to computer analyses, the stress-strain curves for most materials can be represented mathematically. This method of representing stress-strain curves may be used for any stress-strain response that can be well characterized by the Ramberg-Osgood Method, and should be used as a supplement to a curve drawn by the RambergOsgood Method. To represent the stress-strain curves for a particular alloy using this method, a data summary like the one shown in Figure 9.8.4.6 should be constructed.
9-244
MMPDS-06 1 April 2011 Table (table number). Typical Stress-Strain Parameters for (material designation) Tension Temper/Product Form
Condition
Temperature, EF
Grain Direction
n
TYS, ksi
L
32
LT
Compression nc
CYS, ksi
57
17
57
17
57
13
60
L
27
62
15
62
LT
20
60
17
65
9.5
60
8.0
62
4.0
54
1000 hr. exposure
6.4
46
½ hr. exposure
8.2
47
10
20
6.0
16
7.0
22
4.3
9
6.0
8
13
7
TUS
0.02-0.039 in. thickness RT 0.04-0.249 in. thickness ½ hr. exposure 200 F 100 hr. exposure ½ and 2 hr. exposure T6 Clad Sheet
300 F
100 hr. exposure
400 F
LT
1000 hr. exposure ½ hr. exposure
500 F
½ hr. exposure 10 hr. exposure
600 F
100 hr. exposure T62 Clad Plate
T651 Plate
0.250 - 2.000 in. thickness
0.250 - 2.000 in. thickness
RT
T6 Forging
RT
2.001 - 3.000 in. thickness
29
64
27
69
LT
29
64
27
70
L
30
66
15
68
LT
19
65
18
66
L
31
62
25
60
RT
T6 Bar, Rod and Shapes > 3 in. thickness
T652 Hand Forging
L RT
RT
L
70
LT
68
L
18
62
67
17
63
LT
18
62
66
18
65
ST
13
60
22
67
23
62
15
64
26
68
14
72
L
29
64
17
68
LT
29
64
32
68
L
32
64
74
16
68
LT
18
64
70
18
68
0.125 - 0.499 in. thickness T6 Extrusion
RT
L
> 0.500 in. thickness T62 Extrusion
T651X Extrusion
< 0.499 in. thickness
0.500 - 0.749 in. thickness
71
RT
RT
Figure 9.8.4.6. Example of stress-strain parameter table.
9-245
MMPDS-06 1 April 2011 The parameters in the table are defined as follows: Tension n
=
Ramberg-Osgood parameter for small plastic strains in tension from the proportional limit up to the yield stress.
TYS =
Typical yield stress in tension.
TUS =
Typical ultimate stress in tension.
Compression nc
=
CYS =
Ramberg-Osgood parameter for small plastic strains in compression up to the yield stress. Typical yield stress in compression.
Equation 9.8.4.6(a) shows the relationship between the plastic strain and stress values that hold for many materials up to that material’s yield stress. The problem with this equation is that the Ramberg-Osgood parameter (n) typically changes for plastic strains greater than 0.002. Therefore, the variation of plastic strain typically must be expressed with two different equations. For stress values in the range between the proportional limit and yield stress, plastic strain can often be expressed by
ep ' 0.002 ( f / TYS )n
[9.8.4.6]
where f
=
any stress value between the proportional limit and tensile yield stress
TYS
=
the 0.2 percent typical yield stress
ep
=
the plastic strain.
In any tabular representation of these data for a given alloy (covering all production thickness and product forms), significant information may be missing. Therefore, only 50 percent of the data are required to be available before a table may be included in MMPDS. The data in this table may also be used to calculate other useful quantitites. A table with all elements defined can be used to calculate the proportional limit in tension and compression, and the shear “yield” stress. Each of these calculations are covered below. 9.8.4.6.1 Proportional Limit Stress in Tension and Compression — If the proportional limit stress is equated with a plastic strain level of 0.0002 or a 0.02 percent deviation from linearity, and the Ramberg-Osgood relationship is found to be valid for small plastic strains, then the proportional limit stress (fp.l.) can be approximated from Equation 9.8.4.6(a) as follows:
fp.l. ' TYS ( 0.10 )
1 n
9-246
[9.8.4.6.1]
MMPDS-06 1 April 2011 The same basic formulation could be used to define a proportional limit stress in compression, replacing TYS and CYS and n in tension with nc in compression in Equation 9.8.4.6(b). 9.8.4.6.2 Shear Yield Stress — An estimate of the shear yield stress can be obtained from the equation:
Fsy '
where (p) Fty(L) Fty(LT) Fcy(L) Fcy(LT) Fsu Ftu(L) Ftu(LT)
= = = = = = = =
Fty(L) % Fty(LT) % Fcy(L) % Fcy(LT) 4
x
2Fsu Ftu(L) % Ftu(LT)
[9.8.4.6.2]
Primary load direction for shear Tensile yield stress, longitudinal direction Tensile yield stress, long transverse direction Compressive yield stress, longitudinal direction Compressive yield stress, long transverse direction Shear ultimate stress Tensile ultimate stress, longitudinal direction Tensile ultimate stress, long transverse direction.
9.8.4.6.3 Compression Tangent Modulus Curves — A mathematical procedure for construction of tangent modulus curves from compression stress-strain curves is given in Section 9.8.4.2. The compression stress-strain curve (up to the yield stress) may be constructed by adding the elastic strain component to the plastic strain component given in Equation 9.8.4.6(a). Calculation of the first derivative of stress with respect to strain gives tangent modulus values for specific values of total strain. Within MMPDS the tangent modulus curve is normally computed only up to the yield stress on the stress-strain curve. If tangent modulus values are desired at stress levels above the yield stress, a single function describing the relationship between stress and plastic strain over the range of interest should be used [rather than two separate functions as shown in Equations 9.8.4.6 and 9.8.4.6.1]. 9.8.5 ELEVATED TEMPERATURE GRAPHICAL MECHANICAL PROPERTIES — Effects of temperature and of thermal exposure on strength and certain other properties are presented graphically. Methods for determining these curves differ and are described below. 9.8.5.1 Strength Properties — Tensile ultimate and yield strengths, compressive yield strength, shear ultimate strength, and bearing ultimate and yield strengths at temperatures other than room temperature (80EF) are shown as percentages of room-temperature value for that property. Use of percentage curves allows a single curve to be used in place of multiple curves when more than one room-temperature value is presented for a property, as for example, differing A- and B-design values for each of several thickness ranges. In instances where related properties differ in their response to temperature, additional curves are provided and are labeled to indicate specific properties and forms to which they apply.
9-247
MMPDS-06 1 April 2011 No significance level is attached to these curves. For practical purposes, however, the product of a room-temperature A or B design value and an appropriate percentage value from the curve may be regarded as an A or B design value at the indicated temperature. 9.8.5.1.1 Determination of Working Curves — Working curves for each product form, heat treat condition, property, and grain direction should be constructed. Separate curves should be examined to determine if certain data can be combined. For example, it may be possible to combine data for sheet and plate, T73 and T7351 tempers, tensile and compressive yield strengths, or longitudinal and long transverse grain directions. The dimensional units of these working curves shall be in terms of percentages of corresponding room temperature value for the property. A percentage may be determined for each lot by dividing the average value of individual measurements (other than at room temperature) by the room temperature average value for the same lot of material in the same testing direction (for isotropic materials, testing direction may be ignored), then multiplying by 100 to convert from a fraction to a percentage. If data for only one exposure time is available the individual curve method must be used, as described below. If data for multiple exposure times are available the extended individual curve method should be used. If the combined effects of exposure time and temperature are to be determined the extended multiple curve method should be used. Individual Curve Method. Mechanical property values are plotted as a function of temperature for each exposure period, as shown in Figure 9.8.5.1.1(a). Different trial polynomials are fit to the data to find the lowest order polynomial that provides a good fit to the overall data trends. In this example case a simple 2nd order polynomial provided an adequate fit to the data trends. Plots of the residuals (deviations of individual data points from the regression line) should also be plotted as a function of temperature, as shown in Figure 9.8.5.1.1(b). The initial assumption (null hypothesis) is that the scatter in the data does not vary with temperature. If there is visual evidence that this is not the case, the residuals can be evaluated statistically to determine whether there is evidence, at a 95% confidence level, that the variability in the data is non-uniform. This can be done by an analysis of the absolute value of the residuals, as shown in Figure 9.8.5.1.1(c). If the slope of a linear regression through the absolute value of the residuals is significant (and positive), at a 95% confidence level, the scatter in the data should not be considered constant and this factor must be taken into account when established the 95% lower confidence limits on the regression curve. In this particular example, the scatter in the regression residuals does not increase with increasing temperature. However, in the next example shown in Figure 9.8.5.1.1(d), which involves elongation.
9-248
MMPDS-06 1 April 2011
Figure 9.8.5.1.1(a) Example Effect of Temperature Plot
Figure 9.8.5.1.1(b) Example Effect of Temperature Regression Residuals Plot
9-249
MMPDS-06 1 April 2011
Figure 9.8.5.1.1(c) Example Analysis of the Absolute Values of the Regression Residuals
Figure 9.8.5.1.1(d) Example Elongation Residuals Plotted as a Function of Exposure Temperature
9-250
MMPDS-06 1 April 2011 data, there is clearly non-uniform variability in the residuals, with the elevated temperature data showing increasing scatter with increasing temperature. Non-uniform residuals such as these must be accounted for in the following manner. Obtain an initial estimate of the variability in properties through a linear regression analysis of the absolute values of the residuals, as shown in Figure 9.8.5.1.1(e) by setting the intercept value in the regression model to zero. Use the slope of the regression line as an inverse weight factor for the absolute value of the residuals, and perform a new linear regression on the weighted residuals. Check the significance of the slope of the weighted residuals. Ideally, the linear regression line for the weighted residuals will be flat (show no effect of temperature). If necessary, refine the weight factor estimate to achieve an insignificant slope in the regression as shown in Figure 9.8.5.1.1(f). Normalize the calculated weight function to the room temperature case, where the weight factor is set to 1. Calculate all other weight factors for elevated temperatures based on the linear function determined for the residuals. Apply these weight factors, WF, in the determination of reduced ratio values along the reduced ratio curve as follows:
R where
=
r − WF t 0.95 , n − k −1 SEE
n
[9.8.5.1.1(a)]
r = ratio of estimated average property at temperature (from the regression) to its room temperature value, t0.95,n-k-1 = 95% confidence t-statistic with degrees of freedom = n - k - 1, where n = sample size, and k = order of the regression model, and SEE = standard error of estimate of the regression.
After the reduced confidence limit values are determined (by subtracting the reduction factor from the mean curve over the range of temperatures) convert them to percentages of the room temperature value (since RT = 100%), and plot the result as a function of temperature. The effect-of-temperature curve that resulted from a transformation of the residuals for the example elongation data is shown in Figure 9.8.5.1.1(g). Then normalize this curve to the baseline case of room temperature = 100% (or the typical RT value if actual values are to be plotted), as shown in Figure 9.8.5.1.1(h). When performing this procedure on tensile property data (not elongation data) check to make sure that the following conditions are met: 1) Percentage curves for a designated exposure temperature may not show increasing percentage values with increasing exposure time. 2) Percentage curves for a designated exposure time may not show increasing percentage values with increasing exposure temperature.
9-251
MMPDS-06 1 April 2011 If either or both of these criteria are not met the initial percentage estimates that exceeded the lower time or temperature value must be set equal to that found for the lower time or temperature.
Figure 9.8.5.1.1(e) Example of the Absolute Value of Elongation Residuals Plotted as a Function of Exposure Temperature
Figure 9.8.5.1.1(f) Example of the Absolute Value of the Weighted Elongation Residuals Plotted as a Function of Exposure Temperature
9-252
MMPDS-06 1 April 2011
Figure 9.8.5.1.1(g) Corrected Estimate of Effect of Temperature on Elongation Values
Figure 9.8.5.1.1(h) Resultant Effect of Temperature Curve for Example Elongation Properties
9-253
MMPDS-06 1 April 2011 Extended Individual Curve Method. In situations where effect-of-temperature data are available for multiple exposure times, the data must also be analyzed as a function of the exposure time (or the logarithm of exposure time) at each temperature to verify that the average properties at a given temperature do not increase with increasing exposure time. An example of such a plot is given in Figure 9.8.5.1.1(i). If the average properties do increase with increasing exposure time the curves should be truncated as shown in Figure 9.8.5.1.1(j), to ensure that Condition 1 is satisfied. The flat portion of each temperature curve represents the region where the effects of temperature dominate and the adverse effects of exposure time may be considered negligible. The portion of each temperature curve that falls below the "plateau" may be used to establish the time- and temperature-dependent portions of the effect of temperature curves. Low-order polynomial fits to each of the time-decreasing portions of each curve should then be determined. Individual curves must exhibit no minima within the range of times being considered; if they do exhibit minima a lower order polynomial must be used. This family of curves should be interrogated at the time periods used in the effect-of-exposure experimental program. Each point will either represent an estimate of the time-independent part of the effect-of-temperature curve (if it falls on the flat portion of one of the master curves shown in Figure 9.8.5.1.1(j) or an estimate of the time-dependent part of the effect of temperature curve (if it falls on the downward sloping portion of one of the master curves). The estimated effect of exposure time values obtained at each temperature should be used to construct a family of effect-of-temperature curves as shown in Figure 9.8.5.1.1(k). If there is a substantial gap in the data between room temperature and the lowest temperature tested the trends in this region may be estimated based on the values obtained at the lowest two temperatures tested. This can be done by determining the transition temperature that produces a smooth second order transition of temperature effects into the 100% baseline. The formula is:
[9.8.5.1.1(b)] where and
[9.8.5.1.1(c)] T1 = lowest elevated temperature tested T2 = second lowest elevated temperature tested PT1 = average percent of room temperature property measured at T1 PT2 = average percent of room temperature property measured at T2.
This formula is valid only when the computed T0 value is greater than room temperature. If the computed T0 value is less than room temperature another model must be found that intersects 100% at room temperature.
9-254
MMPDS-06 1 April 2011
Figure 9.8.5.1.1(I) Example Plot of Properties as a Function of Exposure Time at Different Exposure Temperatures
Figure 9.8.5.1.1(j) Master Curves for Each Temperature Developed Through Truncation of the Curves Shown in Figure 9.8.5.1.1(i)
9-255
MMPDS-06 1 April 2011
Figure 9.8.5.1.1(k) Example Effect of Temperature Curves Developed from the Master Curves Shown in Figure 9.8.5.1.1(j)
Figure 9.8.5.1.1(l) Larson-Miller Analysis of Effect of Exposure on Fty Data
9-256
MMPDS-06 1 April 2011
Extended Multiple Curve Method. The extended multiple curve method requires the determination of the synergistic effects of time and temperature on properties. A Larson-Miller analysis of the data should be performed to model the data trends in regimes where synergistic effects of time and temperature are evident (where decreasing property trends are seen with increasing time at a single temperature). The Larson-Miller analysis assumes an Arrhenius-type relationship between time and temperature such that properties at different combinations of time and temperature may be consolidated by the following parameter: P = T (log t + C) where
T = t = C =
exposure temperature in degrees Rankine time in hours an optimized constant
Figure 9.8.5.1.1(l) shows the results of such an analysis on a collection of room temperature tensile yield strength data developed following a range of different elevated temperature exposures. It is important when performing these analyses to include only those datasets for which exposure time produces a significant effect on the properties obtained. Inclusion of some marginal datasets may be helpful to control the shape of the upper portion of the curve. For example in Figure 9.8.5.1.1(l), even though the results generated following 2000 hours of exposure at 275F (dataset plotted at a Larson-Miller parameter of approximately 1.976 x 104) were affected primarily by temperature, the inclusion of this dataset was beneficial to help produce a curve that transitioned smoothly into the 100% baseline. The trends of the data plotted in terms of property versus Larson-Miller parameter should be modeled by the lowest order polynomial that adequately represents the data trends. The best-fit polynomial must not display any minima within the range of available data. If it does, the order of the polynomial should be reduced to eliminate those minima. The optimum regression equation should be used to construct estimated effect of temperature curves for each relevant temperature, as shown in Figure 9.8.5.1.1(m). Regions where the properties are not influenced by exposure time (e.g. the 300F curve up to about 1000 hours, as shown in Figure 9.8.5.1.1(m) may be represented by dashed lines. Make sure that the Larson-Miller equation chosen represents the general trends of the data. The Larson-Miller equation should then be used to construct effect of exposure working curves, as shown in Figure 9.8.5.1.1(n)
. 9.8.5.1.2 Preparation of Finished Curves — An example of a finished effect of temperature curve was shown in Figure 9.8.5.1.1(k). When there is limited overlap, single percentage curves, representing Ftu and Fty may be located on a single illustration. Likewise, single curves representative of Fcy and Fsu may be located on one illustration and curves for Fbru and Fbry may also be placed on a single illustration.
9-257
MMPDS-06 1 April 2011
Figure 9.8.5.1.1(m) Larson-Miller Representation of Effect of Temperature on the Tensile Yield Strength of an Aluminum Alloy
Figure 9.8.5.1.1(n) Estimated Effect of Exposure on the Tensile Yield Strength (at Temperature) of an Aluminum Alloy
9-258
MMPDS-06 1 April 2011 9.8.5.2 Elongation and Reduction of Area — Elongation and reduction of area are presented as “typical” values at each temperature. If ductility values follow a log-normal distribution, they should be converted to logarithms before averaging. In most cases, the median (middle-most value) will be nearly identical to the average determined in this manner. Ductility values are not converted to percentages of the room-temperature value. Hence, a best smooth curve drawn through the typical values at each temperature is merely redrawn without data points for presentation in the document, as shown in Figure 9.8.5.2. Separate curves may be required for products differing in ductility. As with strength data, care must be taken to avoid biasing the curve by the inclusion of large quantities of data from some lots and small quantities from others. Use of lot-average values in place of individual measurements is highly recommended. 9.8.5.3 Modulus of Elasticity — The elastic modulus may vary with test direction and product form. Data should be examined before plotting, and if differences are observed, separate working curves should be prepared for each variable. The percentage curve for modulus of elasticity is a best-fit smooth curve drawn through the average of all percentages at each temperature, where individual percentage values are obtained as described in Section 9.8.5.1.1. As with strength data, temperatures should be so selected that the shape of the curve is defined adequately. Figure 9.8.5.3 illustrates a finished percentage curve representing two moduli, E and Ec, for which working curves were similar enough to permit their combination into a single curve.
Figure 9.8.5.3. Percentage curve representing two elastic moduli.
9-259
MMPDS-06 1 April 2011 9.8.5.4 Physical Properties — When data are adequate to present curves showing specific heat, thermal conductivity, and mean coefficient of thermal expansion over a range of temperatures, graphical presentation is used in place of tabular presentation described in Section 9.8.3.3. Working curves are first prepared for each property with the actual data plotted over the range of test temperatures.
Figure 9.8.5.4(a) shows a typical working curve. A best-fit smooth curve is drawn through the plotted points to depict the overall trend of data. The smooth curves from the specific heat, thermal conductivity, and thermal expansion working curves are then shown in a single figure as illustrated in Figure 9.8.5.4(b). The reference temperature for thermal expansion should be shown on the figure. In Figure 9.8.5.4(b) the reference temperature of 70EF indicates that the mean coefficient of expansion between 70EF and the indicated temperature is plotted. Figure 9.8.5.4(a) Typical working curve for thermal conductivity.
9-260
MMPDS-06 1 April 2011
Figure 9.8.5.4(b). Typical curves for physical properties.
9.8.5.5 Effect of Thermal Exposure on Room Temperature Strength — Curves described in this section are presented (1) when the material exhibits a decrease in room-temperature strength as a result of unstressed exposure to elevated temperatures, and (2) when data are not presented in the form of parametric curves (see “Complex-Exposure” in Section 9.8.5.8). Supporting data expressed as percentages of the “no-exposure” strength are plotted with percent of room-temperature strength as the ordinate and exposure temperature as the abscissa. Separate plots are required for each exposure time. Typical exposure times are ½, 10, 100, and 1000 hours. Design curves are drawn in the same manner as for effect of temperature on strength; humps that may appear in the design curve should be leveled off in drawing the final curve. The following restrictions are placed on effect-of-exposure curves for strength properties at room temperature: (1) Percentage curves for a designated exposure temperature may not show increasing percentage values with increasing exposure time. (2) Percentage curves for a designated exposure time may not show increasing percentage values with increasing exposure temperature. A typical effect-of-exposure curve is illustrated in Figure 9.8.5.5.
9-261
MMPDS-06 1 April 2011
Figure 9.8.5.5. Effect of exposure at elevated temperatures on room-temperature properties.
9.8.5.6 Effect of Thermal Exposure on Elevated Temperature Strength — The effect of thermal exposure on elevated-temperature strength is presented in one of two manners, depending upon whether or not the exposure temperature equals the test temperature. In the case of simple exposure, exposure temperature and test temperature are assumed to be identical. For complex exposure, exposure temperature and test temperature need not be the same. When either of these curves is presented in MMPDS, it includes all information normally presented in elevated temperature curves described in Section 9.8.5.1; thus, these curves replace the elevated temperature curves. 9.8.5.7 Simple Exposure — The curves are prepared in the same manner as basic elevated temperature curves described in Section 9.8.5.1. Separate design curves are prepared for each exposure time, and presented in a single figure. Typical exposure times for the curves are ½, 10, 100, and 1000 hours. The following additional restrictions are placed on effect-of-exposure curves for strength properties at elevated temperatures: (1) Percentage curves for a designated exposure (test) temperature may not show increasing percentage values with increasing exposure time. (2) Percentage curves for a designated exposure time may not show increasing percentage values with increasing exposure (test) temperature. A typical set of curves for exposure at test temperature is illustrated in Figure 9.8.5.7.
9-262
MMPDS-06 1 April 2011
Figure 9.8.5.7. Simple-exposure curves.
9.8.5.8 Complex Exposure — In these curves, thermal-exposure variables, time, and temperature are combined into an exposure parameter, which is plotted as the abscissa. The ordinate is expressed in the same manner as in effect-of-temperature curves. Separate percentage curves are presented for each test temperature. In addition, each figure contains a nomograph for use in converting exposure time and temperature to the exposure parameter. The exposure parameter may be of the form P = (TF + 460) (C + log t), where TF is exposure temperature in degrees F, C is a constant, and t is exposure time in hours. There are a number of ways to determine the values of C. The simplest method is to select (by interpolation of test data) two exposure conditions that produce the same strength at some designated test temperature, set two parameters equal to each other, and solve for C. For example, assume that the following data are obtained:
9-263
MMPDS-06 1 April 2011 Exposure Temp, Time, hr EF 1000 400 1 500 10 500
TUS at 400 EF, ksi 80.0 83.0 78.0
Plot 500EF data as stress versus log time; a straight line between (83, log 1) and (78, log 10) crosses 80 ksi at log 4 (hours). Thus, 4 hours’ exposure at 500EF is equal to 1000 hours’ exposure at 400EF: (400 + 460) (C + 3) = (500 + 450) (C + 0.602), C = 20. This exercise should be repeated for several pairs of exposure conditions to obtain an average value for C. Alternatively, several equivalent exposure conditions may be plotted as log exposure time (ordinate) versus 1/(TF + 460) (abscissa). A best-fit straight line is drawn through the plotted points and its slope determined. C is then found from the relationship C = m/(TF + 460) - log t, where m is slope and (1/TF + 460) and log t are coordinates of any point on the line. This method is amenable to data-regression procedures described in Section 9.5.6, from which a least-squares estimate of C is obtained. Separate data plots are prepared for each test temperature, using percent of “no-exposure” room temperature strength as the ordinate, and P = (TF + 460) (C + lot t) as the abscissa. Design curves are then drawn as described in Section 9.8.5.1.1. A typical complex-exposure curve is illustrated in Figure 9.8.5.8. It should be noted that the abscissa scale is not shown in the figure since the time-temperature nomograph is used directly to locate the position on the abscissa.
9-264
50 0
45 0
30 0
0 25
20
35 0 Ex po Te s u m re p. F 40 0
100
Test Temperature, F 80
0
MMPDS-06 1 April 2011
10000
300
400
100
500
65 0
60
40
600
10
20
1
700
0
0.1
Figure 9.8.5.8. Complex-exposure curves.
9-265
Exposure Time, hours
1000
60 0
80
70 0
Percentage of Room Temperature Fty
55 0
200
MMPDS-06 1 April 2011
This page is intentionally blank.
9-266
MMPDS-06 1 April 2011
9.9 EXAMPLES OF DATA FOR DYNAMIC AND TIME DEPENDANT PROPERTIES 9.9.1 FATIGUE — Separate data presentations are made for strain-controlled and load-controlled data. The only case where load-controlled data can be presented with strain-controlled data is when long-life tests have been switched from strain to load control in accordance with recommended procedures (see Section 9.2.5.1). Separate plots should be constructed for each material, notch concentration (in the case of load-controlled data), temperature, or other documented parameters that have been demonstrated to cause significant variations in fatigue behavior. Load-controlled data presentations should consist of a family of at least three stress ratio or mean stress curves, with at least six data points per curve covering two orders of magnitude in life. (See exceptions noted in Section 9.2.3.5.1). The basic data should be included on each plot, with separate symbols used for each stress ratio or mean stress. Runouts should be identified with an arrow (6). The analytically defined mean S/N curves for each stress ratio or mean stress should also be included on each plot. These curves should not be extrapolated beyond existing data. The fatigue curve for each stress ratio should be constructed based on the following criteria: (1) The curve should start at the greatest maximum stress for that specific stress ratio. Unnotched fatigue curves should not extend above the average tensile ultimate strength of the material. (2) The curve shall terminate at the lowest maximum stress or longest life value, whichever is most limiting for that specific stress ratio. In addition to the stress-life plot [such as shown in Figure 9.9.1.1(e)], a tabulation of test and material conditions should also be included. At a minimum the following information should be included with an S/N plot: (1) Material (2) Product Form, Grain Direction, Thickness, Processing History, Fabrication Sequence (3) Test Parameters - Loading - Test Frequency - Temperature - Environment (4) Average Tensile Properties (5) Specimen Details - Notch Description - Specimen Dimensions (6) Surface Condition/Surface Residual Stresses/Finish - Finish - Residual Stress Data (7) Equivalent Stress Equation - Life Equation With Parameter Estimates - Standard Deviation of log(Life) - Adjusted R-Squared Statistic - Sample Size (8) Reference Numbers (9) No. of Heats/Lots The following cautionary note should be included with each equivalent stress equation: [Caution: The equivalent stress model may provide unrealistic life predictions for maximum stresses and stress ratios
9-267
MMPDS-06 1 April 2011 beyond those represented above.] In calculating the “standard deviation of log(life)” and the adjusted R-squared statistic, all quantities should be computed using the final estimates of the fatigue model parameters and excluding runout observations. The method for reporting the “standard deviation of log(life)” (SD) depends on whether there is evidence of nonuniform variance in the fatigue life data. If an unweighted fatigue model was fitted to the data, the single SD value from Equation 9.6.1.5(e) should be reported. If a weighted fatigue model was fitted to the data, SD should be reported as the linear function of the reciprocal of equivalent stress (strain) as calculated from Equation 9.6.1.5(g) or 9.6.1.5(h). If an unweighted fatigue life model was fitted to the data, the adjusted R-squared statistic is R 2 ' 1 & (RMSE)2/(RTE)2
[9.9.1(a)]
where n
2
j Di /(n & 1)
RTE '
i ' 1
Di ' log Ni & log(N) n
1 j log Ni n i'1
log(N) '
If a weighted fatigue life model was fitted to the data, the adjusted R-squared statistic may be calculated as R 2 ' 1 & (RMSE)2/(RTE)2
where n
2
j WDi / (n & 1)
RTE '
i ' 1
WDi '
log Ni & log(N) g Seq,i or εeq,i n
log(N) '
j log Ni / g Seq,i or εeq,i
i ' 1
n
j
i ' 1
1/g Seq,i or εeq,i
and RMSE is as calculated in Equation 9.6.1.5(i).
9-268
[9.9.1(b)]
MMPDS-06 1 April 2011 Strain-controlled data presentations should consist of a plot of log(strain range) versus log(life) and a separate graph displaying the monotonic and cyclic stress-strain response for the material. Normally the fatigue curves should be based on at least six data points for each of three or more strain ratios, and the data should cover at least two orders of magnitude in life. As with the load-controlled data, the individual data points should be included on each plot, with separate symbols used for each strain ratio. If runouts are included in the data, they should be identified with an arrow (6). Data points that are based on tests that were switched from strain to load control should be identified clearly. The mean curves should extend from slightly above the greatest strain value to slightly below the least strain value. Plotting the strain-life curves for different strain ratios is not as straightforward as plotting stress-life curves. The equivalent strain models cannot be written explicitly in terms of Rε. Therefore, other information must be used to model the data trends for the various strain ratios. The mean-stress relaxation behavior for each strain ratio must be identified and mathematically defined. In general, the onset of mean stress relaxation occurs at smaller strain amplitudes for larger strain ratios. This behavior is shown in the mean stress relaxation plot of Figure 9.8.3(a). The elastic response (dashed lines) predicts much higher mean stresses than those actually observed, suggesting that mean stress relaxation has occurred. The regression line correlating the relaxed mean stresses with strain amplitude intersects the elastic response lines at larger strain amplitudes for smaller strain ratios. The elastic response line for the higher strain ratio (Rε = 0.6) intersects the mean stress relaxation line at approximately ∆ε/2 = 0.0007. The elastic response line for the lower strain ratio (Rε = 0.0) intersects the mean stress relaxation at approximately ∆ε/2 = 0.002. This information can be used to construct reasonable mean curves for each strain ratio for which fatigue data are available. Considering the primary equivalent strain relation [Equation 9.6.1.4(c)] εeq ' ∆ε
A3
Smax/E
1 & A3
,
Smax can be written as Smax ' Sm % Sa
where Sm is the relaxed mean stress and Sa is the stress amplitude found from the cyclic stress-strain curve. Given the mean stress relaxation data, both Sm and Sa can be estimated for a particular strain amplitude and strain ratio. Once Smax is defined, based on Sa and Sm, εeq can be calculated and a fatigue life can be determined. Through this procedure an approximate mean curve can be constructed for each strain ratio as shown in Figure 9.9.1(a).
9-269
MMPDS-06 1 April 2011
Figure 9.9.1(a). Example strain-life, cycle stress-strain, and mean stress relaxation curves.
9-270
MMPDS-06 1 April 2011 If the stress amplitude (Sa) and the mean stress relaxation pattern can reasonably be assumed to be independent of strain ratio, the following procedure may be used to construct mean curves for each strain ratio by expressing Sa as a function of the strain range and Sm as a function of strain range and strain ratio. Using the data corresponding to a strain ratio of Rε = -1 only, fit the regression equation log Smax ' α1 % β1 log ∆ε/2 & Smax/E
In some cases it may be necessary to exclude small plastic strain observations from the regression because of the scatter (and likely unreliability) in these values. In other words, it is recommenced that the cyclic stress-strain curve be defined, through at least squares regression treating stress as the dependent variable, with consideration given to a cutoff in cyclic plastic strain. A cutoff of approximately 0.0001 in plastic strain amplitude is often useful. Assuming that stress amplitude is independent of strain ratio and provided that the estimate of the parameter β1 is greater than zero, a mean value for stress amplitude can be determined as a function of strain range by solving the formula Sa / E % Sa/k
l n
[9.9.1(c)]
' ∆ε/2
for Sa where ÷ is the average elastic modulus for all specimens tested and n ' β1 and k ' Alog α1
.
If the estimate of the parameter β1 is less than or equal to zero, the data set should be examined further before proceeding with the analysis. Using the data corresponding to all strain ratios other than Rε = -1, fit the regression equation Sm ' α2 % β2 (∆ε/2)
using weighed least squares to give higher weight to the observations which exhibit partial mean stress relaxation. If there is no way to directly calculate Sm from the data reported in the data set, an Sm value for use in fitting the above regression equation may be calculated by solving Equation 9.9.1(c) for Sa and subtracting this value from the reported Smax value. The weighting function w ' *Sm*/S ( 1 & Sm/S ( 2
where S ( ' 1 % Rε / 1 & Rε E ∆ε/2
9-271
MMPDS-06 1 April 2011 appears to work well in general. Assuming that the mean stress relaxation pattern is independent of strain ratio and provided that the estimate of the parameter β2 is less than zero, a mean value for Sm can be determined as a function of strain range and strain ratio according to the formula β3 ∆ε/2 Sm ' α2 % β2 ∆ε/2 0
∆ε/2 <α2/ β3 & β2 α2/ β3 & β2 < ∆ε/2 < & α2/β2 & α2/β2< ∆ε/2
where β3 ' 1 % Rε / 1 & Rε E
.
If the estimate of parameter β2 is greater than or equal to zero, the data set should be examined further before proceeding with the analysis. Mean curves determined according to the above procedures exhibit the following characteristics: (1) At large strain ranges, enough plastic strain is available to relax at the mean stress to zero, regardless of the strain ratio. Therefore, all strain ratios result in equivalent predicted fatigue lives. (2) At strain ranges corresponding to mean stresses represented by the relaxation regression line, strain ratios other than Rε = -1 (zero mean stress) result in equivalent predicted fatigue lives. (3) At low strain ranges, the individual strain ratios assume their elastic mean stress response and diverge from each other. The above procedure is used for plotting the strain-life curves in MMPDS when multiple strain ratios are involved.1 The curves generally represent the mean data trends closely. In addition to the strain-life plot, stress-strain curves and mean stress relaxation curves should be presented as shown in Figure 9.9.1(a). A tabulation of test and material conditions should also be included as shown in Figure 9.9.1(b). This information should include: (1) Material (2) Product Form, Grain Direction, Thickness, Processing History, Fabrication Sequence (3) Test Parameters - Strain Rate and/or Frequency - Wave Form - Temperature - Environment (4) Average Tensile Properties (5) Stress-Strain Equation - Monotonic (if available and appropriate) - Cyclic (6) Specimen Details 1
In the general case, data generated at different strain ratios will not necessarily follow the same mean stress relaxation pattern. If different patterns for each strain ratio are evident in a particular case, it is suggested that a family of mean stress relaxation curves be constructed.
9-272
MMPDS-06 1 April 2011
(7)
(8)
(9) (10)
- Specimen Type - Specimen Dimensions - Fabrication Sequence Surface Condition/Surface Residual Stresses/Finish - Finish - Residual Stress Data Equivalent Strain Equation - Life Equation with Parameter Estimates - Standard Deviation of log(Life) - Adjusted R-Squared Statistic - Sample Size Reference Numbers No. of Heats/Lots.
The following cautionary note should be included with each equivalent strain equation: [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.] Correlative Information for Figure 9.3.4.16(a) Product Form:
Die forging, 2 inch thick
Reference:
Thermal Mechanical Processing History: Annealed at 1800EF, water quench Properties: TUS, ksi
TYS, ksi
E, ksi
Temp.,EF
155-160
135-140
29,000
250
3.4.5.6.8(a)
Test Parameters: Strain Rate/Frequency - 180 cpm Wave Form - Sinusoidal Temperature - 250EF Atmosphere - Air No. of Heats/Lots: 2
Stress-Strain Equations: Monotonic Proportional Limit = 111 ksi σ = 289 (εp)0.138 Cyclic (Companion Specimens) Proportional Limit = 92 ksi (∆ε/2) = 156 (∆εp/2)0.046 Mean Stress Relaxation σm = 114.0-24562(∆ε/2)
Equivalent Strain Equation: Log Nf = -6.56-4.20 log (εeq-0.0022) εeq = (∆ε)0.46 (Smax/E)0.54 Standard Error of Estimate, Log (Life) = 0.123 Standard Deviation, Log (Life) = 0.465 Adjusted R2 Statistic = 93% Sample Size = 33 [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
Specimen Details: Uniform gage test section 0.250 inch diameter Polished with increasingly finer grits of emery paper to surface roughness of 10 RMS with polishing marks longitudinal.
Figure 9.9.1(b). Example of correlative information and analysis results for a strain control fatigue data presentation.
9.9.1.1 Load Control — A large collection of 300M alloy die forging fatigue data is presented in Figure 9.9.1.1(a). The required steps for the analysis of the data set are presented below.
9-273
MMPDS-06 1 April 2011 Data Requirements (See Section 9.2.4.8)—The data set consists of four stress ratios (R = -1.0, -0.33, 0.05, 0.2). Each stress ratio includes at least twenty-three nonrunout observations, easily satisfying the minimum sample size requirement of six tests per stress ratio. Data Collection (See Section 9.6.1.1) — The data shown in Figure 9.9.1.1(a) were compiled from four sources. Each source reports the results of fatigue testing programs conducted within two years of each other (1968-1970). The failure criteria for all tests is reported as complete separation of the specimen. Those tests which did not fail are identified on the S/N plot with an arrow (6). These runout observations are treated differently in the regression analysis which define the mean fatigue curves (see Section 9.6.1.9). Evaluation of Mean Stress Effects (See Section 9.6.1.4)—The collection of data consists of four stress ratios, and therefore, an equivalent-stress formation was used to consolidate the data. Equation 9.6.1.4(a), log Nf ' A1 % A2 log Seq & A4
where
Seq ' Smax 1 & R
A3
,
is the initial model attempted for fitting the data, and it proved adequate throughout the analysis. Estimation of Fatigue Life Model Parameters — Least Squares (See Section 9.6.1.5) — The initial least-squares regression (runouts excluded) results in the following fatigue-life equation parameters: A1 A2 A3 A4
= = = =
23.7 -8.41 0.366 0.0.
The fatigue-limit parameter (A4) of zero seems somewhat inconsistent with the data shown in Figure 9.9.1.1(a). A visual examination of the S/N plot reveals a tendency for the data to asymptotically approach some limiting value. The zero fatigue limit term suggests that some problem may exist within the data collection. A plot of the residuals for the fatigue model using these parameters is shown in Figure 9.9.1.1(b). The parameters obtained after the model is adjusted for nonconstant variance are: A1 A2 A3 A4
= = = =
23.4 -8.38 0.40 13.5.
9-274
MMPDS-06 1 April 2011
Figure 9.9.1.1(a). S/N plot of unnotched 300M die forging fatigue data, transverse orientation.
Figure 9.9.1.1(b). Residual plot before model has been adjusted for nonconstant variance.
9-275
MMPDS-06 1 April 2011 Note that a fatigue limit term of 13 ksi has now been estimated. However, a check on the significance of the A4 term revealed that it was clearly insignificant. All of the runouts in the data collection were above this equivalent stress level and, therefore, all runouts were used in the regression procedure. A plot of the residuals after the fatigue life model has been adjusted is shown in Figure 9.9.1.1(c). Note the relative shift in the magnitude of the residuals at the higher and lower Seq values compared to Figure 9.9.1.1(b).
Figure 9.9.1.1(c). Standardized residual plot after model has adjusted for nonconstant variance.
Treatment of Outliers (See Section 9.6.1.6) — None of the observations were identified as outliers. The critical studentized residual at the 5 percent significance level for this data set of 114 observations is 3.63. The largest standardized residual was 3.23, resulting from a runout observation. Assessment of the Fatigue Life Model (See Section 9.6.1.7) — The equivalent stress model is not able to consolidate the R = -0.33 stress ratio with the other stress ratios. The F-test performed on the residuals of the stress ratios proves significant at the 5 percent level for R = -0.33. This indicates that the mean of the residuals for R = -0.33 differs significantly from the mean of the residuals from the other ratios. The plot of stress ratios versus residuals, as shown in Figure 9.9.1.1(d), illustrates that the mean of the residuals for R = -0.33 is significantly different than those for the other stress ratios. A close examination of the original S/N plot shown in Figure 9.9.1.1(a) reveals that the R = -0.33 data tend to overlap the R = -1.0 data: at the lower maximum stress levels (about 100 ksi), the R = -1.00 data actually show longer average fatigue lives than do the R = -0.33 data, when the reverse would be expected. The Durbin-Watson D statistic for determining lack of fit is 1.61, indicating a poor fit of the model to the data. The critical value of D for a sample of 114 observations [Equation 9.6.1.7(a)] is 1.66. This incompatibility among stress ratios indicates that either a problem exists with the data or with the assumed equivalent stress model. The data sources were re-examined to possibly determine if some difference in specimen preparation or testing procedure among the sources may have caused the inconsistencies. Unfortunately, no significant differences were discovered that would provide sufficient reason to exclude the suspect R = -0.33 data due to testing methods alone. The problem is confounded because all of the R = -0.33 data comes from a single source which does not include other stress ratios. This precludes examining source to source variability.
9-276
MMPDS-06 1 April 2011
Figure 9.9.1.1(d). Residual plot of stress ratios. Note the low mean value of R = -0.33.
In situations such as this where a data set for a single source is determined to statistically deviate from the fatigue trends exhibited by the bulk of the data, it should be evaluated for exclusion. Engineering judgement suggests that the R = -0.33 data be excluded from the data collection based on the following: (1) Unrealistic fatigue limit (2) Lack of fit for fatigue life model based upon Durbin-Watson statistic (3) Stress ratio incompatibility. The modified data collection is now reanalyzed. For the sake of brevity, the details of the analysis procedure for Sections 9.2.4.8 (Data Requirements) and 9.6.1.3 (Fatigue Life Models) through 9.6.1.7 (Fatigue Life Models) will be omitted. It is interesting to note, however, that the fatigue limit term (A4) resulting from the least squares regression with the R = -0.33 data excluded is 94.2 ksi. This result more realistically represents the longer life fatigue trends compared to the previous (insignificant) estimate of 13.5 ksi. With the suspect data removed, the equivalent stress model is determined to be acceptable at the 5 percent level. The Durbin-Watson D statistic also is increased to 2.18 indicating that the model now provides an adequate fit to the data. Dataset Combination (See Section 9.6.1.8) — With the exclusion of the source containing the R = -0.33 data, the remaining data set combination is determined acceptable at the 5 percent level. Treatment of Runouts (See Section 9.6.1.9) — The data collection includes seven runout observations. The maximum likelihood procedure has the effect of essentially shifting these runouts to the fatigue lives at which they most likely would have failed. The resulting fatigue life model parameters should reflect the slight increase in estimated fatigue life over the least squares parameters, particularly in the long life region. In general, the maximum likelihood regression will result in a higher intercept term (A1) and a steeper (more negative) slope (A2). The A3 and A4 terms are taken as constants to reduce the problem to a linear analysis.
9-277
MMPDS-06 1 April 2011 The parameters resulting from the least squares regression are: A1 =
14.54
A2 =
-5.04
A3 =
0.385
A4 =
94.2.
The maximum likelihood parameters conform to the expected trends for A1 and A2: A1 =
14.79
A2 =
-5.16
A3 =
0.385
A4 =
94.2.
Note the increase in A1 and the decrease (more negative slope) in A2. Presentation of Fatigue Analysis Results C The stress-life fatigue data listed in Table 9.9.1.1 were used to construct Figure 9.9.1.1(e), which is typical of the S/N fatigue curves included in a MMPDS load-control fatigue data proposal.
9-278
MMPDS-06 1 April 2011 Table 9.9.1.1. Fatigue Data Used to Construct Figure 9.9.1.1(e). Max. Mean Fatigue Max. Grain Stress DNF Grain Stress Stress, Stress, Life, Stress, Orient Ratio (1) Orient Ratio ksi ksi Cycles ksi T T T T T T T T L L L T L L L T T T L T T T T T T T T T T T T T T T T T T T T T L L L L L L L L L L L L
70.0 74.0 80.0 85.0 90.0 95.0 100.0 100.0 235.0 210.0 200.0 196.0 190.0 175.0 160.0 150.0 150.0 140.0 130.0 150.0 155.0 130.0 140.0 110.0 140.0 120.0 130.0 110.0 130.0 115.0 120.0 130.0 110.0 125.0 120.0 110.0 125.0 100.0 120.0 100.0 96.5 287.0 284.0 275.0 275.0 266.0 266.0 250.0 250.0 250.0 243.0 243.0
-2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
-35.00 -37.00 -40.00 -42.50 -45.00 -47.50 -50.00 -50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 150.68 149.10 144.38 144.38 139.65 139.65 131.25 131.25 131.25 127.58 127.58
1,023,000 6,175,000 306,000 74,000 66,000 1,250,000 58,000 62,000 659 1,273 1,286 1,383 4,443 7,488 8,183 17,000 25,000 26,000 27,133 35,000 47,000 61,000 70,000 105,000 117,000 130,000 137,000 156,000 187,000 211,000 228,000 293,000 442,000 574,000 655,000 1,025,000 1,929,000 2,562,000 5,089,000 5,582,000 8,800,000 1,717 1,512 1,962 2,567 2,138 2,400 2,000 3,718 4,387 3,293 3,434
1 1
1
1
9-279
L L L L L L L L L L L L L L L L L L L L L L L L L T T T T T T T T T T T T T T T T T T T T T T T T T T T
243.0 220.0 220.0 200.0 200.0 180.0 180.0 160.0 160.0 160.0 150.0 150.0 150.0 140.0 240.0 260.0 240.0 235.0 220.0 200.0 200.0 180.0 160.0 148.0 140.0 260.0 250.0 240.0 230.0 220.0 220.0 210.0 210.0 210.0 200.0 200.0 200.0 190.0 190.0 190.0 180.0 180.0 180.0 180.0 170.0 170.0 170.0 165.0 160.0 160.0 160.0 150.0
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Mean Stress, ksi
Fatigue Life, Cycles
127.58 115.50 115.50 105.00 105.00 94.50 94.50 84.00 84.00 84.00 78.75 78.75 78.75 73.50 132.00 143.00 132.00 129.25 121.00 110.00 110.00 99.00 88.00 81.40 77.00 156.00 150.00 144.00 138.00 132.00 132.00 126.00 126.00 126.00 120.00 120.00 120.00 114.00 114.00 114.00 108.00 108.00 108.00 108.00 102.00 102.00 102.00 99.00 96.00 96.00 96.00 90.00
3,475 10,000 11,000 22,000 22,000 31,000 33,000 110,000 112,000 405,000 650,000 2,758,000 3,080,000 2,081,000 10,300 12,900 15,100 6,002 26,100 11,435 41,900 37,500 200,400 84,500 10,017,200 4,000 9,000 13,000 13,000 10,000 29,000 29,000 46,000 59,000 33,000 63,000 98,000 22,000 47,000 84,000 52,000 58,000 63,000 416,000 52,000 259,000 10,282,000 123,000 59,000 2,220,000 2,575,000 2,575,000
DN F (1)
1
1
1
1 1 1
MMPDS-06 1 April 2011 9.9.1.2 Strain Control —A collection of iron alloy bar strain-controlled fatigue data at 70EF is given in Table 9.9.1.2. The required steps for the analysis of the data set are presented below. The guideline sections relating to each step in the analysis are noted. Data Requirements (See Section 9.2.4.8) — The data set includes three strain ratios (Rε = -1.0, 0.0, 0.6) each consisting of at least eight nonrunout data points. This satisfies the minimum recommended sample size for analysis. Two runouts (Nf = 105 and 106_ at Rε = -1 are included in the data set. Data Collection (See Section 9.6.1.1)—The specimen design for the test program is reported as uniform-gage section with a diameter of 0.20 inches. Failure is defined as complete separation. The tensile properties are presented in the correlative information. No information is available regarding the fabrication sequence for the specimens. Fabrication information is important, although in this case it is not considered sufficient cause to reject the data set for analysis. The test data at the Rε = -1.0 strain ratio provide information regarding this material’s cyclic stress-strain response. The cyclic stress-strain curve constructed from the data is shown in Figure 9.9.1.2(a). The monotonic curve (dashed) is estimated from the reported yield and ultimate strengths.
9-280
MMPDS-06 1 April 2011
Figure X.X.X.X.X(a). Best-fit S/N curves for unnotched 300M alloy forging, Ftu = 280 ksi, longitudinal and transverse directions.
Correlative Information for Figure X.X.X.X.X Product Forms: Die forging, 10 x 20 inches CEVM Die forging, 6-1/2 x 20 inches CEVM RCS billet, 6 inches CEVM Forged Bar, 1.25 x 8 inches CEVM Properties:
TUS, ksi 274-294
TYS, ksi 227-247
Test Parameters: Loading - Axial Frequency - 1800 to 2000 cpm Temperature - RT Atmosphere - Air No. of Heat/Lots: 6
Temp., EF RT
Specimen Details: Unnotched 0.200 - 0.250-inch diameter Surface Condition: Heat treat and finish grind to a surface finish of RMS 63 or better with light grinding parallel to specimen length, stress relieve References:
Equivalent Stress Equation: Log Nf = 14.8-5.38 log (Seq-63.8) Seq = Sa + 0.48 Sm Std. Error of Estimate, Log (Life) = 55.7 (1/Seq) Standard Deviation, Log (Life) = 1.037 R2 = 82.0 Sample Size = 104 [Caution: The equivalent stress model may provide unrealistic life predictions for stress ratios beyond those represented above.]
2.3.1.4.8(a), 2.3.1.4.8(c), 2.3.1.4.8(d), 2.3.1.4.8(e)
Figure 9.9.1.1(e). Example S/N curve and correlative information.
9-281
MMPDS-06 1 April 2011
Table 9.9.1.2. Iron Alloy Strain-Controlled Fatigue Data at 70E EF Specimen Smax Cycles to Strain Number ∆ε (ksi) Failure Ratio 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0.600 0.600 0.600 0.970 1.000 1.000 1.500 1.500 0.600 0.600 0.597 0.600 0.600 0.400 0.393 0.400 0.400 0.400 0.750 0.750 0.750 0.500 0.500 0.500 0.400 0.400 0.400 0.440 0.330
71.1 77.8 79.2 117.2 110.7 112.8 126.9 127.1 116.6 124.2 118.2 128.3 122.6 106.4 101.9 102.1 93.7 101.2 139.4 137.3 113.0 124.5 140.6 138.4 158.0 146.1 119.1 65.8 50.0
10223 10396 8180 605 672 642 209 340 3958 3895 3919 4050 2470 16388 22896 15388 38648 11960 1099 1544 966 4665 4342 4240 7460 11134 10876 100000* 1000000*
-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 -1.00 -1.00
* Did not fail.
Evaluation of Mean Stress and Strain Effects (See Section 9.6.1.4)—The data set consists of three strain ratios and therefore an equivalent-strain formulation is used to consolidate the data on the basis of equivalent strain. Equation 9.6.1.4(c), log Nf ' A1 % A2 log εeq & A4
where εeq ' ∆ε
A3
Smax/E
1 & A3
,
is the initial model attempted for fitting the data and proves to be adequate throughout the analysis.
9-282
MMPDS-06 1 April 2011
Figure 9.9.1.2(a). Stable cyclic and monotonic stress-strain curves for iron alloy at 70E EF.
Estimation of Fatigue Life Model Parameters - Least Squares (See Section 9.6.1.5)—The initial least-squares regression results in the following fatigue-life equation parameters: A1
=
-4.62
A2
=
-3.28
A3
=
0.610
A4
=
0.00198.
A plot of the residuals for the fatigue model using these parameters is shown in Figure 9.9.1.2(b). These residuals do not exhibit the characteristic pattern of increasing residual magnitudes with decreasing equivalent stress or strain levels shown in Figure 9.6.1.5(a). Rather, the variance appears to be relatively uniform. During Step 2 of the parameter estimation procedure, a negative, but insignificant, estimate of the residual model slope, σ1, was obtained. This result indicates the residuals are already uniformly distributed and a constant variance model can be used. The constant variance model, in effect, does not weight the fatigue life model, so the initial parameter estimates are retained.
9-283
MMPDS-06 1 April 2011
Figure 9.9.1.2(b). Residual plot of fatigue-life model for initial parameter estimates.
Treatment of Outliers (See Section 9.6.1.6) — After the data have been checked for uniformity of variance, they can be screened to determine if any outliers are present. The critical studentized residual at the 5 percent significance level for this sample of 27 observations is found to be 3.53. Any of the observations with the absolute value of the studentized residuals being greater than 3.53 would be considered outliers. The largest studentized residual from the data was 2.09; therefore, none of the observations are identified as statistically significant outliers. Assessment of the Fatigue Life Model (See Section 9.6.1.7) — The equivalent strain formulation is marginally acceptable at the 5 percent level. The lack of fit test for the fatigue-life model results in a Durbin-Watson D statistic of 1.042. The critical value of D for a sample size of 27 is 1.241 [Equation 9.6.1.7(b)]. Since the Durbin-Watson statistic is less than the critical value, the equivalent strain model must be considered questionable in terms of its compensation for effects of strain ratio. However, no other model was found to perform better and a review of the plotted data revealed very low scatter compared to the predicted trends. Therefore, engineering judgement was used, and the proposed model was accepted. Data Set Combination (See Section 9.6.1.8) — All of the data for this analysis came from a single source; therefore, this test is not applicable. Treatment of Runouts (See Section 9.6.1.9) — The data set being considered includes two runout observations. The parameters A1 and A2 are therefore reestimated using the maximum likelihood regression to account for censored life values. The maximum likelihood estimates are: A1 =
-5.07
9-284
MMPDS-06 1 April 2011 A2 =
-3.47
A3 =
0.610
A4 =
0.00198.
The change in parameters A1 and A2 shift the predicted lives to greater values than the least squares parameter estimates. Presentation of Fatigue Analysis Results — The presentation of the strain-life curve and correlative information shown in Figure 9.9.1.2(c) is typical of a MMPDS strain-control fatigue data proposal. Regarding the mean stress relaxation plot, note that a single regression has been performed to represent both the Rε = 0.6 and Rε = 0.0 strain ratios. Although it would be expected that higher strain ratios would result in higher stabilized mean stresses, the limited amount of data precludes performing separate regressions for each strain ratio. It can be seen from the strain-life plot that using the single regression does represent the mean fatigue trends fairly well. 9.9.2 FATIGUE CRACK GROWTH— When preparing fatigue crack growth data proposals for submittal to the MMPDS Coordination Group, several steps must be taken. First, various factors potentially influencing crack-propagation rates should be documented in a fatigue crack growth Data Proposal as shown in Table 9.9.2(a). Second, data for individual test conditions should be plotted and compared so that a determination can be made as to whether combinations of test conditions are appropriate. If data are available for a range of specimen thicknesses, it may be desirable to treat such data in separate plots, if fatigue crack growth rate behavior is influenced by thickness. Similarly, potential effects of environment, buckling restraints, specimen width, specimen type, crack orientation, temperature, and frequency should be evaluated; and, where visible differences in fatigue crack growth rate trends exist, separate plots must be developed. In some cases, it may be necessary (or helpful) to include working figures of trial combinations of fatigue crack growth data so that reviewers of the data proposal can more easily see reasons for particular data combinations. If a collection of fatigue crack growth data (involving one or more figures) is approved, working curves and background data sheet will be retained in MMPDS files and only the final data plot will be incorporated in the Handbook. Fatigue crack growth data are presented in the Handbook on double logarithmic graphical displays of crack-growth rate, da/dN, µ-in./cycle, versus stress-intensity factor range, ∆K. Data points are presented along with the best-fit regression line that represents median behavior at each stress ratio. A sample display is presented in Figure 9.9.2 and a sample table of mean crack growth rates at specific levels of ∆K is given in Table 9.9.2(b). Since data are not necessarily generated at predesignated stress ratio levels, stress ratio increments which are used on a given display are selected to present the most complete portrayal of available data. Data are summarized in graphical and tabular displays in the appropriate chapters of MMPDS
9-285
MMPDS-06 1 April 2011
Figure 9.9.1.2(c). ε/N curve and correlative information for iron alloy at 700E EF.
9-286
MMPDS-06 1 April 2011
Correlative Information for Figure 9.3.4.17(c) Product Form:
Bar, 1 inch thick
Thermal Mechanical Processing History: Not available Properties: TUS, ksi 175-180
TYS, ksi 150-155
E, ksi Temp.,EF 27,500 70
Stress-Strain Equations: Monotonic Proportional Limit = 150 ksi σ = 280 (εp)0.12 Cyclic (Companion Specimens) Proportional Limit = 105 ksi (est.) (∆σ/2) = 196 (∆εp/2)0.076 Mean Stress Relaxation σm = 125.4-25666(∆ε/2) Specimen Details:
Uniform gage test section 0.200 inch diameter
Reference: 3.4.5.6.8(a) Test Parameters: Strain Rate/Frequency - 180 cpm Wave Form - Sinusoidal Temperature - 70EF No. of Heats/Lots: 4 Equivalent Strain Equation: Log N = -5.07-3.47 log (εeq-0.00198) εeq = (∆ε)0.61 (Smax/E)0.39 Standard Error of Estimate, Log(Life) = 0.111 Standard Deviation, Log (Life) = 0.555 Adjusted R2 Statistic = 96% Sample Size = 29 [Caution: The equivalent strain model may provide unrealistic life predictions for strain ratios and ranges beyond those represented above.]
Figure 9.9.1.2(c). ε/N curve and correlative information for iron alloy at 700E EF — Continued.
9-287
MMPDS-06 1 April 2011 Table 9.9.2. Sample Listing of Fatigue-Crack-Growth Background Data
Materials: Alloy Designation or Specification: Product Form: Heat Treatment: Heat Number(s):
Ti-6Al-4V Titanium MIL-T-9046, Type III, Composition C Plate Mill Annealed Ingot 295338
Chemistry (% by weight):
C N Fe Al V O H
Data Source(s):
Feddersen, C. E., and Hyler, W. S., “Fracture and Fatigue-Crack Propagation Characteristics of 1/4 Inch Mill Annealed Ti-6Al-4V Titanium Alloy Plate”, Report No. G9706, Battelle (1971).
Specimen Description: Type: Thickness: Width: Crack Orientation: Location w-r-t Product Thickness: Surface Finish:
0.02 0.010 0.18 6.4 4.2 0.127 81 (PPM)
M (T) Panel 0.250 inch 9, 16, 32 inches L-T Through-thickness specimen Not Indicated
Test Conditions: No. of Specimens: Maximum Stress or Load: Stress Ratio: Cyclic Frequency: Environment: Temperature: Buckling Restraints?: Crack Monitoring Technique:
9 7 5, 10, 30 ksi 5, 10, 30, 50 ksi 0.10 0.40 1-25 Hz 50% relative humidity 68 ± 2EF Yes Optical
Additional Comments:
1.
Frequency was varied from 1 to 25 Hz according to the magnitude of stress range, no frequency effects were noted in this environment.
2.
From 20 to 70 crack readings were made on each specimen.
3.
No panel width effects on FCG rates were evident.
9-288
6 10, 30, 50 ksi 0.70
MMPDS-06 1 April 2011
Figure X.X.X.X Fatigue crack propagation data for 0.090-inch thick 7075T6 aluminum alloy sheet with buckling restraint. Specimen Thickness: 0.090 inch Specimen Width:1.5 - 12.0 inches Temperature: Specimen Type: M(T)
Environment: RT Orientation:
Lab Air L-T
Figure 9.9.2. Sample display of fatigue-crack-growth rate data.
9-289
MMPDS-06 1 April 2011
Table 9.9.2(b). Example Crack-Growth Rate Look-Up Table for Figure 9.9.2
∆K, ksiin0.50 3.55 3.76 3.98 4.22 4.47 4.73 5.01 5.31 5.62 5.96 6.31 6.68 7.08 7.50 7.94 8.41 8.91 9.44 10.00 10.59 11.22 11.89 12.59 13.34 14.13
Stress Ratio 0.10 0.67 da/dN, in./cycle 2.91E-08 3.69E-08 4.68E-08 5.92E-08 7.47E-08 9.42E-08 1.18E-07 1.49E-07 1.87E-07 2.34E-07 2.92E-07 3.64E-07 4.53E-07 5.64E-07 6.99E-07 8.66E-07 1.07E-06 1.32E-06 1.63E-06 2.00E-06 2.46E-06 3.02E-06 3.69E-06 4.51E-06 4.09E-06 5.50E-06
∆K, ksiin0.50 14.96 15.85 16.79 17.78 18.84 19.95 21.13 22.39 23.71 25.12 26.61 28.18 29.85 31.62 33.50 35.48 37.85 39.81 42.17 44.67 47.32 50.12 53.09 56.23 59.57
9-290
Stress Ratio 0.10 0.67 da/dN, in./cycle 4.79E-06 6.70E-06 5.59E-06 6.53E-06 7.62E-06 8.89E-06 1.04E-05 1.21E-05 1.40E-05 1.63E-05 1.90E-05 2.20E-05 2.56E-05 2.97E-05 3.44E-05 3.98E-05 4.61E-05 5.33E-05 6.16E-05 7.11E-05 8.21E-05 9.47E-05 1.09E-04 1.26E-04 1.45E-04 1.67E-04
MMPDS-06 1 April 2011 9.9.3 FRACTURE TOUGHNESS — To assure proper evaluation of plane stress and traditional fracture toughness data, adequate documentation of test results must be included with any data submittals for MMPDS. The minimum quantity of experimental information considered appropriate for data proposals on the subject is described in Section 9.2.4.10. 9.9.3.1 Plane Strain — (See Section 9.6.3.1) Room temperature values of KIc are tabulated in the introductory comments for each chapter. This table shall include the range (minimum, average, and maximum) in KIc values, alloy, product form, heat treat condition, TYS range, product thickness, number of test specimens, number of lots, test specimen thickness range, and grain direction represented by data. Where data are available, effect of temperature on KIc is presented graphically in the appropriate alloy section. It is preferable that data incorporated in MMPDS represent a minimum of three specimens each from a minimum of five lots of material for each test direction. 9.9.3.2 Plane Stress — (See Section 9.6.3.2) Plane stress and transitional fracture toughness data and other crack damage information are presented in each alloy chapter. Data are categorized by product form, grain direction, thickness (or thickness range), temperature, and strain rate. The presentation format is dependent upon the flaw and structural configuration as described in the following paragraphs. Middle-Tension Panel Data — Apparent fracture instability data for middle-tension panels are presented on the graphical format of maximum gross stress versus initial crack length as illustrated in Figure 9.9.3.2. These data plots are presented as information and not as design allowables; hence, additional testing is necessary to substantiate design allowables over the range of crack lengths of interest.
Figure 9.9.3.2. Format for the presentation of middletension panel data.
The data in such graphical display satisfy the screening criterion of Equation 9.6.3.2. The apparent stability fracture toughness value Kapp associated with each curve is a simple average of test values determined according to Equation 9.6.3.2.1
9-291
MMPDS-06 1 April 2011 The average apparent toughness curve is presented over a range extending from the short crack length associated with a net section stress of 80 percent of tensile yield strength to either the largest crack length contained in the data, or one-third the panel width, whichever is greater. Since slow, stable tear may occur during the loading of a cracked panel, an approximate measure of crack extension possible prior to fracture is useful to assess conditions of fracture instability. Where data are available, the average ratio, ∆ (2a)/(2ao), of crack extension prior to fracture to initial crack length is indicated in the field of the graphical display. This ratio is determined through 2ac & 2a o a ∆2a ' ' c & 1 ' 2a o 2ao ao
2
Kc
Kapp
& 1 ,
where Kc ' fc πa csecπac/W 1/2
is the average stress intensity factor associated with critical fracture instability as determined by the reporting investigator. Where data for a material include a thickness range from essentially plane stress to plane strain fracture toughness data will be summarized also as a display of thickness effect similar to Figure 9.9.3.2. From this figure, K values for the appropriate thickness, t, can be selected and residual strength curve similar to Figure 9.9.3.2 can be constructed. At present, since these are not design allowable data, requirements on the quantity of information necessary will not be specified. Data displays will be prepared for those materials, product forms and thicknesses where a sufficient number of tests at various crack and specimen sizes are available to establish a distinct trend. Correlative information will be appended below such graphical displays to indicate range of test panel sizes, crack lengths, and number of heats or lots of the material from which determination of Kapp was determined. 9.9.4 CREEP AND CREEP RUPTURE — Creep-rupture proposals developed for review and possible inclusion in MMPDS should contain the following information and meet associated criteria. Data Reporting—The background information shall meet the requirements of Section 9.2.4.11. Test results shall be listed in a manner such that all data are identifiable in terms of material and test background information as well as test conditions used in generating data. Analysis Reporting—The analysis report will display the following; (a) Trials—Equations tried and reason for ejecting. (b) Data rejected—Reason. (c) Best-fit details—Listing of data, calculated values, and deviations. All data are to be clearly traceable in terms of data reporting requirements. (d) Standard error or total variance and correlation coefficient. (e) Subset variance—If random subsets are used, report both the pooled within-subset variance and the between-subset variances as well as the total variances.
9-292
MMPDS-06 1 April 2011 (f) Constants—Report the average regression constant and regression constants for any subsets. (g) Coefficients—Report the numerical value of the coefficient of each regression variable and its standard error. (h) Equation—Exhibit the equation used; with the coefficients, b1, traceable to the numerical listing in above item (g). (i) Deviation—Exhibit plots of deviations in life versus calculated life for each temperature and, as far as possible, identify according to subsets. It is also possible to provide a summary table of deviations. As an example of isostrain creep or rupture, divide the life range of data in five equal logarithmic increments and, for each temperature, give the algebraic sum of deviation with that increment. If random subsets are used, deviations summed are to be those from within the respective subsets. (j) Data and Curve Comparison—Display data against the calculated average curve. Encode data with symbols as the deviation plots. Scale coordinates such that the curves have an apparent slope of about -1.0. Use scales appropriate for the most significant form of the regression variable, usually log(stress) versus log(life), with life (dependent variable) on the abscissa and stress on the ordinate. (k) Curve Extrapolation Tests—Exhibit the average curve from one to 105 hours for corresponding temperature levels. Representative curves may be used including extreme values of independent variables represented in data. Further, calculation of desired tolerance limit (e.g., probability level) should be performed to assist in determining validity of the extrapolation. The above recommendations apply to incorporation of new creep and/or stress-rupture curves in MMPDS. The use of creep nomographs has been discontinued. Creep nomographs in MMPDS will be replaced as data are reanalyzed and new analytically defined creep and stress rupture curves are developed. The presentation for MMPDS will include one or more pages of correlative information, equations, and curves as needed. Requirements on each will vary with the problem and should be reasonably obvious from data, background information, and analytical results. An example of a typical data presentation is shown in Figure 9.9.4. Note that raw data are displayed along with mean trend lines, on a semi-logarithmic plot of stress versus time. Supportive data describing alloy, specimen details, and analysis results are also presented. Table 9.9.4 provides even more detailed, but necessary, information on such factors as heat treatment details and inverse matrix (which can be used in conjunction with other analysis results to compute lower level tolerance limits for the data). Some creep data are still presented in creep nomographs. For these cases, the analysis and presentation were based primarily on Reference 1.4.8.2.1(b). The presentation of creep data in the form of a nomograph is not in compliance with the above guidelines. 9.9.4.1 Creep-Rupture Example Problem —By a slight chemical change and modification of heat, the former Alloy 325 is now believed to have an increased stress-rupture life of 20 percent to 30 percent. It is desired to fully characterize these properties over the 1600E to 1900EF range. Average creep life is to be from 10 hours to 1,000 hours. Nineteen stress rupture tests from two heats of new alloy averaged 37.4 hours at 30 ksi/1800EF, s(log 10) = 0.150. Figure 9.9.4.1(a) is a log-log mean life plot of predicted stress rupture properties of modified Alloy 325 based on a predicted value. A 1750EF line has been added to the original plot. From this log-log
9-293
MMPDS-06 1 April 2011 plot, it can be seen that only three temperatures need to be tested because there are stress levels in common with the 1600EF line, and the same is true for the 1750E and 1900EF lines. Next, three temperature lines are bracketed with the 10-hours to 1000-hours life range. See Figure 9.9.4.1(b). Stress levels are then chosen to give the desired life. There are 25 tests required with this procedure. All 25 could be run, or 3 tests could be randomly eliminated from the center cells of the matrix (see circled cells). If 3 are deleted this would leave 22 tests, which are near the minimum of 20. These tests could be conducted and these data added to the 19 specific data points at 30 ksi/1800EF. This quantity would constitute the data set. Table 9.9.4.1 shows the results of a simulated sampling. A Larson-Miller analysis of data produced the curves in Figures 9.9.4.1(c) and (d). Data plotted with the temperature lines of Figure 9.9.4.1(d) confirm a good fit over the range of data. The approach described in this example can be used for any creep or rupture experimental design.
9-294
MMPDS-06 1 April 2011
Figure 9.9.4. Average isothermal stress rupture curves for alloy XYZ forging.
Correlative Information for Figure 9.9.4 Makeup of Data Collection: Public Specifications—AMS 5663 Heat Treatment—2, 21 [See Table 9.3.6.7(a)] Number of Vendors—Not specified Number of Heats—7 Number of Test Laboratories = 3 Number of Tests = 347 Specimen Description: Type—Unnotched round bar Gage Length—N.A. Gage Thickness—1/4"—3/8"
Stress Rupture Equation: Log t = c + b1 T + b2 X + b3 X2 + b4 X3 T = ER, X = log (stress, ksi) c = 186.27 b1 = -0.01778 b2 = -255.25 b3 = 146.28 b4 = -28.65 Analysis Details: Inverse Matrix—See Table 9.3.6.7(a) Standard Deviation = 0.63 Standard Error of Estimate = 0.29 Within Heat Variance = 0.071 Ratio of Between to Within Heat Variance = (at spec pt.) < 0.10
9-295
Table 9.9.4. Supplemental Data Pertaining to the Stress Rupture Behavior of Alloy XYZ Forging Heat Treatment Details
Heat Treatment No.
Cycle No.
Temperature, EF
Time, Hours
2
1 2 3
1800 1325 1150
1 8 8
AC, WQ FC (100 EF/hr) AC
21
1 2 3
1700-1850 1325 1150
1 8 8
AC FC (100EF/hr) AC
Cool
9-296
MMPDS-06 1 April 2011
Stress Rupture Equation and Inverse Matrix for the Creep Stress = 0.10, 0.20, 0.50, and 5.00% and Stress Rupture Conditions log t = c + b1T + b2X + b3X2 + b4X3 + b5Y1 + b6Y2 + b7Y3 + b8Y4 + b9Y5 where
Column Row 1 2 3 4 5 6 7 8 9
Y1 Y2 Y3 Y4
= = = =
1; Y2, Y3, Y4, Y5 = 0 for Creep Strain = 0.10% Data 1; Y1, Y3, Y4, Y5 = 0 for Creep Strain = 0.20% Data 1; Y1, Y2, Y4, Y5 = 0 for Creep Strain = 0.50% Data 1; Y1, Y2, Y3, Y5 = 0 for Creep Strain = 5.00% Data Y1, Y2, Y3, Y4, Y5 = 0 for Stress Rupture Data
1
2
3
4
5
6
7
8
9
1.809E+00 -1.108E-03 -1.978E+00 6.499E-01 -5.748E-02 -1.606E+00 -1.444E+00 -1.015E+00 -9.777E-01
-1.108E-03 6.834E-07 1.212E-03 -3.979E-04 3.517E-05 9.843E-04 8.852E-04 6.219E-04 5.993E-04
-1.978E+00 1.212E-03 3.482E+00 -1.657E+00 2.032E-01 1.634E+00 1.359E+00 6.886E-01 5.921E-01
6.499E-01 -3.979E-04 -1.657E+00 9.145E-01 -1.220E-01 -4.892E-01 -3.610E-01 -6.305E-02 3.594E-03
-5.748E-02 3.517E-05 2.032E-01 -1.220E-01 1.697E-02 3.801E-02 2.248E-02 -1.245E-02 -2.618E-02
-1.606E+00 9.843E-04 1.634E+00 -4.892E-01 3.801E-02 1.471E+00 1.303E+00 9.401E-01 9.124E-01
-1.444E+00 8.852E-04 1.359E+00 -3.610E-01 2.248E-02 1.303E+00 1.222E+00 8.806E-01 8.600E-01
-1.015E+00 6.219E-04 6.886E-01 -6.305E-02 -1.245E-02 9.401E-01 8.806E-01 7.491E-01 6.987E-01
-9.777E-01 5.993E-04 5.921E-01 3.594E-03 -2.618E-02 9.124E-01 8.600E-01 6.987E-01 1.195E+00
MMPDS-06 1 April 2011
Figure 9.9.4.1(a). Estimated stress rupture curves for Alloy 325 (MOD).
Figure 9.9.4.1(b). Experimental design matrix for creep rupture.
9-297
MMPDS-06 1 April 2011
Figure 9.9.4.1(c). Alloy 325 (MOD) stress rupture typical life.
Figure 9.9.4.1(d). Alloy 325 (MOD) stress rupture typical life.
9-298
MMPDS-06 1 April 2011 Table 9.9.4.1. Results of Simulated Sampling of Creep-Rupture Data ksi
1600EF
ksi
1750EF
ksi
1900EF
63 59 54 52 45 42 39 36
19.0 hrs. 11.1 hrs. 36.3 hrs. 170.7 hrs. 148.0 hrs. 376.0 hrs. 806.9 hrs. 878.0 hrs.
42 39 36 32 29 27 22 20
8.8 hrs. 35.5 hrs. 52.3 hrs. 71.8 hrs. 121.9 hrs. 355.9 hrs. 389.0 hrs. 2912.4 hrs.
25 22 17 15 12 10 * *
27.6 hrs. 23.9 hrs. 65.4 hrs. 140.3 hrs. 257.5 hrs. 623.5 hrs.
*
No interest. SPECIFICATION DATA @ 30 KSI 1800 EF Hours 41.4 16.5 35.0 33.6 32.6
33.1 70.5 27.4 37.5 33.4 48.6 51.3 29.0 42.7 26.4 B (n = 19, X = 37.4, s(log 10) = 0.150)
36.1 34.9 74.2 47.5
9.9.5 Mechanically Fastened Joints — The final table of allowable loads must be presented in a format suitable for use in MMPDS, as illustrated in Figures 9.9.5(a) and 9.9.5(b). Figure 9.9.5(a) is the approved format for fastener tables approved prior to December 31, 2002, while Figure 9.9.5(b) is the required format for fastener tables approved after December 31, 2002. The distinguishing factor between these two tables is the statistical basis associated with the ultimate and yield loads. Refer to Section 9.7 for a detailed discussion of the currently approved statistical analysis procedures for mechanical fasteners. The following notes apply to the circled numbers in Figures 9.9.5(a) and 9.9.5(b). (1)
Omit table number. (Secretariat will assign table number.)
(2)
Head type: 100E Flush Head, 100E Flush Shear Head, Protruding Head, Protruding Shear Head, etc. The shear designation is applied to 100E or protruding head fasteners with heads similar in size to those on Hi-Shear rivets, shear-type lock-bolts, shear-head Hi-Lok, TaperLok, or similar fasteners.
(3)
Fastener material: steel, aluminum alloy, Monel, A286, nickel alloy, etc.
(4)
Type of fastener: blind rivet, rivet, bolt, blind bolt, screw, tapered fastener, etc.
(5)
Type of hole: machine countersunk or dimpled. (Omit for protruding head fasteners.)
(6)
Sheet material: consistent with other MMPDS tables.
(7)
“Rivet” for blind or conventional rivets, “Fastener” for other type fasteners.
9-299
MMPDS-06 1 April 2011 (8)
Add footnote indicator to part numbers and indicate in a footnote the vendor(s) whose part number is shown if the fastener is not covered by an MS or NAS part number. Include fastener shear strength, material temper, and nut or collar identification.
(9)
Sheet or plate material and heat treatment or condition.
(10)
Nominal fastener diameter. For H-category fasteners, show nominal fractional hole size and, in parentheses, show actual nominal hole size in decimal equivalent. For S-category fasteners, show nominal fractional shank diameter and, in parentheses, show actual fastener shank diameter in decimals [i.e., a l/8-inch-diameter NAS1740 rivet would be listed as 1/8 (0.144)].
(11)
Select standard sheet and plate thickness from the following: 0.008 0.010 0.012
0.016 0.020 0.025
0.032 0.040 0.050
0.063 0.071 0.080
0.090 0.100 0.125
0.160 0.190 0.250
0.312 0.375 0.500
0.625 0.750 0.875
(12)
Present design allowable values starting at first sheet thickness below knife-edge condition and continuing through the first value equal to or greater than shear strength value. Allowable loads shall not exceed shear strength. Add footnote indicator to ultimate strength values when yield is less than two-thirds of ultimate loads as indicated in Item (17).
(13)
Use the words: “Rivet shear strength” or “Fastener shear strength” conforming to Item (7) nomenclature.
(14)
Fastener single-shear allowable loads in pounds.
(15)
Present yield strength values for the same thickness and diameters for which ultimate strength values are provided.
(16)
For those countersunk head fasteners for which design values are applicable to thin sheet thicknesses, such that the countersink extends into the bottom sheet, a horizontal line shall be drawn in each column of the joint allowables table above the first ultimate strength design value for which the countersink still is contained within the top sheet. For these cases, footnote (f) will be used, as indicated in Item (17).
(17)
Add all applicable footnotes from the list of standard notes shown below. All footnotes shall be designated by lower case letters. (a) “Yield value is less than two-thirds of the indicated ultimate strength value.” (Place footnote indicator next to applicable ultimate strength value.) (b) “These allowables apply to double-dimpled sheets and to the upper sheet dimpled into a machine-countersunk sheet. The thickness of the machine-countersunk sheet must be at least one tabulated gage thicker than the upper dimpled sheet.” (Place footnote indicator next to the words “Ultimate Strength, lbs” at the top of the table.) (c) “Data supplied by ABC Corporation.” When applicable add: “Confirmatory data provided by XYZ Company.” (Place footnote indicator next to part number.) (d) “Shear strength based on areas computed from nominal hole diameters or nominal shank diameters, as applicable (indicate Table 8.1.2(a), or list hole diameters), and Fsu = (indicate shear strength).” Indicate the source of the shear strength (MIL or NAS
9-300
MMPDS-06 1 April 2011 specifications or data analysis). The footnote indicator is placed next to the words “Fastener shear strength” indicated by Item 13 above. The shear strength shall not be greater than the strength required in the controlling specification or standard. (e) “Allowables based on nominal hole diameters of (list hole diameters).” This footnote is used when shear strength is controlled by MIL or NAS specifications, and Table 8.1.2(a) hole diameters are not used. (f)
“Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency.”
(g) “Permanent set at yield load: 4% of nominal diameter (see Section 9.7.1.1).” (h) “Fasteners installed in clearance (or interference) holes.” Indicate actual range of fastener-hole fits (interference-clearance) from test program. (i)
“System maximum tensile strength as tested in steel fixture.” This footnote is used when table contains fastener tensile strength values. (Place footnote indicator next to the words “Fastener tensile strength, lbs”.)
(18) When applicable, add line below yield strength section to present “Fastener tensile strength, lbs”. List the appropriate value for each fastener diameter. (19) For flush head fasteners, add line below yield strength section to present “Head height (ref.), in.” List appropriate value for each fastener diameter.
9-301
MMPDS-06 1 April 2011 ± 1 ± 2 ± 3 ± 4 Table XXXX(b). Static Joint Strength of Flush Head 6061-T8 Aluminum Alloy Rivets in Machine-± ± 5 Countersunk Clad Aluminum Alloy Sheet ± 6 Rivet Type ± 7 ..........................................
NASXXXXa (Fsu = AAA ksi) ± 8
Sheet Material .........................................
Clad 7075-T6 ± 9
Rivet Diameter, in. ................................. (Nominal Hole Diameter, in.)b ...............
3/32 ± 10 (0.096)
1/8 ± 10 (0.1285)
5/32 ± 10 (0.159)
3/16 ± 10 (0.191)
1/4 ± 10 (0.257)
Ultimate Strength, lbs (Estimated Lower Bound) Sheet thickness: 0.032 ...................................................
± 12 182c,d
...
0.040 ...................................................
227
± 12 304
0.050 ...................................................
246
381
d
...
...
...
...
...
...
± 12 471 d
...
...
0.063 ...................................................
...
441
594
± 12 714
0.071 ± 11 ...............................................
...
...
670
805
...
0.080 ...................................................
...
...
675
907
...
d
...
± 12 1375
± 16 d
0.090 ...................................................
...
...
...
974
0.100 ...................................................
...
...
...
...
1525
0.125 ...................................................
...
...
...
...
1765
441 ± 14
675 ± 14
974 ± 14
1765 ± 14
Fastener shear strength ± 13 ...................... e
246 ± 14
f
Yield Strength , lbs (Conservatively Adjusted Average) Sheet thickness, in.: 0.032 ...................................................
119 ± 15
0.040 ...................................................
188
224 ± 15
0.050 ...................................................
246
307
0.063 ...................................................
...
0.071 ± 11 ...............................................
...
...
...
...
...
...
...
...
349 ± 15
...
...
414
481
539 ± 15
...
...
563
637
...
0.080 ...................................................
...
...
655
748
0.090 ...................................................
...
...
...
870
1060 ± 15
0.100 ...................................................
...
...
...
...
1230
0.125 ...................................................
...
...
...
...
1640
Fastener tensile strength , lbs ± 18 .............
275
495
755
1090
1975
Head height (ref.), in. ± 19 .........................
0.039
0.049
0.059
0.070
0.091
g
...
a Data supplied by ABC Corporation and DEF Company, Confirmatory data provided by XYZ Company. b Fasteners installed in clearance holes (.00XX-.00YY) (Ref. 8.1.X). c Yield value is less than 2/3 of indicated ultimate strength value. ± 17 d Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. e Rivet shear strength is documented in NAS XXZZ as AAA ksi. f Permanent set at yield load: 4% of nominal diameter (Ref. 9.4.1.3.3). g System maximum tensile strength as tested in steel fixture. NOTE: See Section 9.4.1.6 for format recommendations indicated by circled numbers.
Figure 9.9.5(a). Sample format for MMPDS (non B-Basis) allowable joint strength tables published prior to December 31, 2002.
9-302
MMPDS-06 1 April 2011 ± 1 ± 2 ± 3 ± 4 Table XXXX(b). B-Basis Static Joint Strength of Flush Head 6061-T8 Aluminum Alloy Rivets in Machine-± ± 5 Countersunk Clad Aluminum Alloy Sheet ± 6 Rivet Type ± 7 ..........................................
NASXXXXa (Fsu = AAA ksi) ± 8
Sheet Material .........................................
Clad 7075-T6 ± 9
Rivet Diameter, in. ................................. (Nominal Hole Diameter, in.)b ...............
3/32 ± 10 (0.096)
1/8 ± 10 (0.1285)
5/32 ± 10 (0.159)
3/16 ± 10 (0.191)
1/4 ± 10 (0.257)
Ultimate Strength, lbs (B-Basis) Sheet thickness: 0.032 ...................................................
± 12 xxxc, d
...
0.040 ...................................................
xxx
± 12 xxx
0.050 ...................................................
xxx
xxx
d
...
...
...
...
...
...
± 12 xxx d
...
...
0.063 ...................................................
...
xxx
xxx
± 12 xxx
0.071 ± 11 ...............................................
...
...
xxx
xxx
...
0.080 ...................................................
...
...
xxx
xxx
...
d
...
± 12 xxxx
± 16 d
0.090 ...................................................
...
...
...
xxx
0.100 ...................................................
...
...
...
...
xxxx
0.125 ...................................................
...
...
...
...
xxxx
xxx ± 14
xxx ± 14
xxx ± 14
xxxx ± 14
Fastener shear strength ± 13 ...................... e
xxx ± 14
f
Yield Strength , lbs (B-Basis) Sheet thickness, in.: 0.032 ...................................................
xxx ± 15
0.040 ...................................................
xxx
xxx ± 15
0.050 ...................................................
xxx
xxx
0.063 ...................................................
...
0.071 ± 11 ...............................................
...
...
...
...
...
...
...
...
xxx ± 15
...
...
xxx
xxx
xxx ± 15
...
...
xxx
xxx
...
0.080 ...................................................
...
...
xxx
xxx
0.090 ...................................................
...
...
...
xxx
xxxx ± 15
0.100 ...................................................
...
...
...
...
xxxx
0.125 ...................................................
...
...
...
...
xxxx
Fastener tensile strength , lbs ± 18 .............
xxx
xxx
xxx
xxxx
xxxx
Head height (ref.), in. ± 19 .........................
x.xxx
x.xxx
x.xxx
x.xxx
x.xxx
g
...
a Data supplied by ABC Corporation and DEF Company, Confirmatory data provided by XYZ Company. b Fasteners installed in clearance holes (.00XX-.00YY) (Ref. 8.1.X). c Yield value is less than 2/3 of indicated ultimate strength value. ± 17 d Values above line are for knife-edge condition and the use of fasteners in this condition is undesirable. The use of knife-edge condition in design of military aircraft requires specific approval of the procuring agency. e Rivet shear strength is documented in NAS XXZZ as AAA ksi. f Permanent set at yield load: 4% of nominal diameter (Ref. 9.4.1.3.3). g System maximum tensile strength as tested in steel fixture. NOTE: See Section 9.4.1.6 for format recommendations indicated by circled numbers.
Figure 9.9.5(b). Sample format for MMPDS allowable joint strength tables published after December 31, 2002.
9-303
MMPDS-06 1 April 2011 Fastener allowables tables which do not meeting the sunset conformance criteria, or for which no confirmatory data is provided have their design data removed as show in Figure 9.9.5(c) (see Section 9.2.4.7).
Figure 9.9.5(c). Sample format for MMPDS Sunset Allowable Joint Strength Table.
9-304
MMPDS-06 1 April 2011 9.9.5.1 Example Problems for Three Diameter Blind Fastener Dataset C Example data sets for a 3 diameter blind rivet are summarized in Tables 9.9.5.1(a), 9.9.5.1(b) and 9.9.5.1(c). A minimum of three sets of data are required in order to establish a fastener system allowables table in MMPDS. These data sets represent test results from the primary manufacturer or sponsor of the fastening system, and test observations performed at a second, independent source. Problems I through V illustrate the typical tasks associated with generating a fastener allowables table. Additional information associated with fastener systems is summarized in Tables 9.9.5.1(d) and 9.9.5.1(e). These tables are not directly involved in allowables calculations, but must be submitted along with the data package. Group (1): 76 observations of lap shear test specimen results, from two independent sources. The results are based upon the NASM1312-4 coupon design, and span the failure modes from sheet bearing to fastener shear. Group (2): 45 observations of fastener shear strength test results, from the manufacturer of the fastener. The results are based upon the NASM1312-20 coupon design. Each diameter associated with the table must have its shear strength established. Group (3): 11 records of sheet material ultimate, yield and elongation properties corresponding to the gauges used in developing the allowables table. Note that for alloys all ready published in MMPDS that have 'A' and 'B' allowables established, the strength certifications and quality control documents supplied by the manufacturer of the material are typically sufficient to establish sheet properties. New or unpublished alloys require determination of tensile and bearing properties in accordance with Section 9.5 guidelines. Generally, fastener system allowables tables are targeted towards a particular shear strength level and sheet combination, based upon market requirements, or the needs of a particular development program or aircraft. This example problem corresponds to a hypothetical blind fastener system. The fastener incorporates a multi-piece, bulb forming design on the blind side. The configuration is based upon a stainless steel pin, aluminum sleeve and a NAS 1097 reduced shear head. Three diameters will be characterized in this example. Table 9.9.5.1(d) summarizes the design of experiments. Note that a distribution of Min, Max and Nominal grip ranges are incorporated into the matrix. Table 9.9.5.1(e) summarizes the specification and hole drilling requirements. Fastener performance is dependent upon hole preparation and fabrication technique; therefore hole size limits are established either in the procurement specification or the parts standard drawing. This information is required in the data package submitted for review.
9-305
MMPDS-06 1 April 2011 Table 9.9.5.1(a). Group (1) NASM1312-4 Lap Shear Test Observations Test Specimen
B-4-032-1 B-4-032-2 B-4-032-3 B-4-040-4 B-4-040-5 B-4-040-6 A-4-050-1 A-4-050-2 A-4-050-3 A-4-050-4 A-4-071-5 A-4-071-6 A-4-071-7 A-4-071-8 A-4-090-9 A-4-090-10 A-4-090-11 A-4-125-12 A-4-125-13 A-4-125-14 A-4-125-15
Part Number
Sheet Gauge
XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-02 XX-YYYY-4-03 XX-YYYY-4-03 XX-YYYY-4-03 XX-YYYY-4-03 XX-YYYY-4-03 XX-YYYY-4-03 XX-YYYY-4-03 XX-YYYY-4-04 XX-YYYY-4-04 XX-YYYY-4-04 XX-YYYY-4-04
0.0318 0.0318 0.0318 0.0395 0.0395 0.0393 0.0487 0.0488 0.0487 0.0487 0.0704 0.0705 0.0705 0.0705 0.0914 0.0904 0.0904 0.1250 0.1250 0.1249 0.1248
Diameter Yld Load (lb) 1 /8 Diameter 0.1300 0.1300 0.1302 0.1310 0.1310 0.1299 0.1300 0.1320 0.1320 0.1299 0.1305 0.1310 0.1310 0.1290 0.1303 0.1301 0.1290 0.1320 0.1315 0.1320 0.1300
Ult. Load (lb) Failure Type
Grip
185 191 185 234 241 246 321 316 311 316 432 438 433 434 465 469 471 502 517 499 506
269 270 258 288 303 310 371 366 356 364 512 500 509 507 582 578 588 788 764 767 779
1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 2c/1a 2c/1a 2c/1a 2c/1a 2c/1a 2c/1a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a
Min Min Min Nom Nom Nom Nom Nom Nom Nom Nom Nom Nom Nom Max Max Max Max Max Max Max
227 253 229 236 290 307 297 298 525 513 537 687 688 691 708 711 721 713
359 359 352 357 443 444 442 443 729 733 739 852 856 865 981 979 990 983
1b/1b 1b/1b 1b/1b 1b/1b 1a/2c 1a/2c 1a/2c 1a/2c 2c/2c 2c/2c 2c/2c 2c/2c 2c/2c 2c/2c 2c/2c 2c/2c 2c/2c 2c/2c
Min Min Min Min Nom Nom Nom Nom Max Max Max Nom Nom Nom Max Max Max Max
5
/32 Diameter
A-5-032-16 A-5-032-17 A-5-032-18 A-5-032-19 A-5-040-20 A-5-040-21 A-5-040-22 A-5-040-23 B-5-063-7 B-5-063-8 B-5-063-9 A-5-080-24 A-5-080-25 A-5-080-26 A-5-090-27 A-5-090-28 A-5-090-29 A-5-090-30
XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-02 XX-YYYY-5-03 XX-YYYY-5-03 XX-YYYY-5-03 XX-YYYY-5-03 XX-YYYY-5-03 XX-YYYY-5-03 XX-YYYY-5-03
0.0319 0.0320 0.0320 0.0318 0.0398 0.0398 0.0398 0.0398 0.0627 0.0628 0.0627 0.0794 0.0795 0.0794 0.0890 0.0891 0.0891 0.0893
0.1620 0.1630 0.1625 0.1640 0.1620 0.1620 0.1640 0.1635 0.1620 0.1630 0.1630 0.1620 0.1620 0.1630 0.1620 0.1622 0.1640 0.1625
9-306
MMPDS-06 1 April 2011 Test Specimen A-5-125-31 A-5-125-32 A-5-125-33 A-5-160-34 A-5-160-35 A-5-160-36
Part Number Sheet Gauge XX-YYYY-5-04 0.1220 XX-YYYY-5-04 0.1220 XX-YYYY-5-04 0.1211 XX-YYYY-5-06 0.1601 XX-YYYY-5-06 0.1605 XX-YYYY-5-06 0.1604
Diameter 0.1620 0.1620 0.1639 0.1627 0.1640 0.1635
Yld Load (lb) 767 754 758 771 777 781
Ult. Load (lb) Failure Type 1090 4a/4a 1082 4a/4a 1079 4a/4a 1211 4a/4a 1177 4a/4a 1169 4a/4a
Grip Max Max Max Min Min Min
3
/16 Diameter
A-6-040-37 A-6-040-38 A-6-040-39 A-6-050-40 A-6-050-41 A-6-050-42 A-6-050-43 B-6-063-10 B-6-063-11 B-6-063-12 B-6-080-13 B-6-080-14 B-6-080-15 A-6-090-44 A-6-090-45 A-6-090-46 A-6-090-47 A-6-100-48 A-6-100-49 A-6-100-50 A-6-100-51 A-6-125-52 A-6-125-53 A-6-125-54 A-6-125-55 A-6-160-57 A-6-160-58 A-6-160-59 A-6-190-60 A-6-190-61 A-6-190-62
XX-YYYY-6-02 XX-YYYY-6-02 XX-YYYY-6-02 XX-YYYY-6-02 XX-YYYY-6-02 XX-YYYY-6-02 XX-YYYY-6-02 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-03 XX-YYYY-6-04 XX-YYYY-6-04 XX-YYYY-6-04 XX-YYYY-6-04 XX-YYYY-6-05 XX-YYYY-6-05 XX-YYYY-6-05 XX-YYYY-6-05 XX-YYYY-6-06 XX-YYYY-6-06 XX-YYYY-6-06 XX-YYYY-6-06 XX-YYYY-6-06 XX-YYYY-6-06
0.0420 0.0420 0.0400 0.0488 0.0490 0.0488 0.0487 0.0630 0.0630 0.0630 0.0794 0.0794 0.0795 0.0890 0.0880 0.0880 0.0886 0.0990 0.1001 0.1040 0.1040 0.1230 0.1230 0.1230 0.1235 0.1590 0.1590 0.1590 0.1870 0.1870 0.1810
0.1950 0.1950 0.1945 0.1945 0.1955 0.1952 0.1959 0.1955 0.1950 0.1960 0.1930 0.1925 0.1960 0.1955 0.1950 0.1960 0.1955 0.1945 0.1944 0.1930 0.1925 0.1951 0.1960 0.1958 0.1931 0.1944 0.1949 0.1946 0.1945 0.1933 0.1929
9-307
322 254 266 399 385 416 400 544 589 555 766 821 788 848 815 852 838 989 1022 1028 1013 989 993 1018 1000 1122 1089 1110 1150 1120 1128
513 518 525 599 639 607 615 782 790 759 988 1002 1015 1068 1033 1088 1063 1264 1233 1257 1251 1257 1246 1269 1257 1838 1800 1767 1928 1917 1948
1b/1b 1b/1b 1b/1b 1a/2c 1a/2c 1a/2c 1a/2c 1b/1b 1b/1b 1b/1b 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a
Min Min Min Nom Nom Nom Nom Min Min Min Nom Nom Nom Max Max Max Max Nom Nom Nom Nom Min Min Min Min Min Min Min Max Max Max
MMPDS-06 1 April 2011 Table 9.9.5.1(b). Group (2) NASM1312-20 Shear Test Observations 1 /8 Diameter W/O #1 W/O #2 W/O #3 -03 Grip -04 Grip -06 Grip 879 940 994 911 932 1007 899 899 1116 882 963 1005 901 922 1006 5 /32 Diameter W/O #4 W/O #5 W/O #6 -05 Grip -06 Grip -07 Grip 1551 1546 1579 1537 1534 1600 1523 1546 1585 1504 1559 1591 1516 1584 1569 3 /16 Diameter W/O #7 W/O #8 W/O #9 -04 Grip -06 Grip -07 Grip 1895 1844 1971 1904 1917 1934 1953 1863 1894 1935 1904 1971 1931 1864 1911
Table 9.9.5.1(c). Group (3) Fastener Data Set Sheet Properties Lot No. 1 2 3 4 5 6 7 8 9 10 11
Nom. Gauge Minimum UTS (ksi) 0.032 63.2 0.040 62.4 0.050 59.4 0.063 64.7 0.071 64.1 0.080 61.7 0.090 61.2 0.100 63.7 0.125 66.2 0.160 65.0 0.190 64.6
9-308
0.2% YTS (ksi) 42.1 39.6 40.2 44.4 41.6 44.9 46.0 43.8 48.1 46.7 42.9
% elongation in 2.0" 16.5 18.0 15.0 16.0 15.0 17.6 15.0 17.0 16.5 16.0 17.5
MMPDS-06 1 April 2011 Table 9.9.5.1(d). Fastener Data Set Experiment Design Sheet
Fastener
Test Source
Gauge
Grip
0.032
Min
Secondary
Primary
0.040
Nom/Min
Secondary
Primary
0.050
Nom
Primary
0.063
Max/Min
0.071
Nom
0.080
Nom
0.090
Max
0.100
Nom
0.125
Max/Min
0.160
Min
0.190
Max
1
5
/8 Diam.
/32 Diam
Secondary
No. of Tests 3
/16 Diam.
per Sheet 7
Primary
10
Primary
8
Secondary
6
Primary Primary Primary
4 Primary
Secondary
6
Primary
Primary
11
Primary
4
Primary
Primary
11
Primary
Primary
6
Primary
3
Total
76
Table 9.9.5.1(e). Fastener Data Set Specification Requirements Fastener Specification Requirements 50 ksi Shear Strength System Nom. Hole i (in) Hole Limits Shear Strength (lbs) Tensile Strength (lbs) 0.130 0.129 - 0.132 664 250
1
/8 Diameter
5
/32 Diameter
0.162
0.160 - 0.164
1030
390
3
/16 Diameter
0.194
0.192 - 0.196
1480
560
9-309
MMPDS-06 1 April 2011 Problem I What are the A-Basis values of fastener shear strength for each diameter in the data package? The first step in determining the fastener shear strength of each diameter is to determine whether the data set conforms to a Pearson distribution through the use of the Anderson-Darling test as described in section 9.5.4.4. Starting with the NASM 1312-20 shear test observations in Table 9.9.5.1(b), we first sort our data from smallest to largest:
1/8 Diameter Xi
5/32 Diameter Xi
3/16 Diameter
879 882 899 899 901 911 922 932 940 963 994 1005 1006 1007 1116
1504 1516 1523 1534 1537 1546 1546 1551 1559 1569 1579 1584 1585 1591 1600
1844 1863 1864 1894 1895 1904 1904 1911 1917 1931 1934 1935 1953 1971 1971
Xi
Next, we compute the sample mean from the following equation where n = the number of samples:
X =
1 n
n
∑X
i
i =1
and the standard deviation from
S=
1 n ( X i − X )2 ∑ n − 1 i =1
9-310
MMPDS-06 1 April 2011 Applying these equations to our example diameters we then have: n
X
(lbf)
S
1/8 Diameter
15
950
65.0
5/32 Diameter
15
1,555
29.2
3/16 Diameter
15
1,913
37.9
Next, the sample skewness can be calculated from the following equation: n
Q=
∑ n i =1 • ( n − 1) 3
( X i − X )3 S3
For cases where Q=0, let q=0. For cases when Q … 0.0, the estimated threshold value is then calculated as:
T = X −2
S Q
Where the following rules then apply to define q: a) If Q > 0.0 and X(1) < T, then q= 2S/(X - 0.99999 X(1)) b) If Q < 0.0 and X(n) > T, then q= 2S/(X - 1.00001X(n)) c) Otherwise q = Q For our example, we have Q
T
q
1/8 Diameter
1.07
829
1.07
5/32 Diameter
-0.10
2148
-0.10
3/16 Diameter
-0.12
2538
-0.12
Next, the Anderson-Darling statistic is expressed in equation 9.5.4.4(a): n
AD = −
(2i − 1)
∑ i =1
n
3n ln FX ,S ,q ( X (i ) ) − 2 FX ,S ,q ( X (i ) ) − 2
(
)
Where F(x) is the cumulative distribution function of a chi-square distribution with 8/q2 degrees of freedom when q > 0.1265, and a standard normal distribution when |q| # 0.025. Because of numerical computing inconsistencies for large degrees of freedom, a normal approximation to the chi-square distribution is recommended for 0.025 < |q| # 0.1265.
9-311
MMPDS-06 1 April 2011 If the Anderson Darling statistic, AD, is greater than the critical value of
0.3167 + 0.034454 ⋅ ln(n) ⋅ [exp(q ) − 1]
2
then the total data set is rejected by the Anderson-Darling test for Personality. If data is rejected then additional observations are required and the Nonparametric Procedure in section 9.5.5.3 must be performed to determine the T99 value. If data is not rejected then the T99 value may be computed as per section 9.5.5.1. To evaluate the AD statistic, F(x) must first be obtained. Here, F(x) is obtained from equation 9.5.4.4(b):
4 2 x − µ H + σ q q 4 2 x − µ 1 − H + σ q q 4 2 x− µ + q q σ 2 Φ 3 − 1+ 8 8 Fµ , σ , q ( x ) = 9⋅ 2 q2 q 4 2 x−µ + σ q q 2 1 − Φ 3 − 1+ 8 8 9⋅ 2 2 q q Φ x − µ σ
q > 01265 .
q < − 01265 . 2 8 9⋅ 2 q
2 8 9⋅ 2 q
0.025 < q ≤ 01265 .
. − 01265 ≤ q < − 0.025
q ≤ 0.025
Where H(x) is the cumulative distribution function of a chi-square distribution with with 8/q2 degrees of freedom and Φ(x) is the normal distribution function. Note that for our example, µ= X , σ=S,q=q and x = X(i). For the 1/8 Diameter, q>0.1265 and F(x) is 4 2 x − µ therefore Fµ ,σ ,q ( x ) = H + σ q q
9-312
MMPDS-06 1 April 2011
4 2 X (i ) − X F X , S ,q ( X ( i ) ) = H + S q q
Which we can write
4 2 x − µ + σ q q 2 Fµ ,σ ,q ( x ) = 1 − Φ 3 − 1+ 8 8 9 ⋅ q2 q2
X − X 4 2 + (i ) q q S 2 FX ,S ,q ( X (i ) ) = 1 − Φ 3 − 1+ 8 8 9 ⋅ q2 q2
Thus for our example, the values for F(x) are 1/8 Diameter
5/32
3/16
F(x)
F(x)
F(x)
0.827 0.805 0.676 0.676 0.660 0.584 0.503 0.434 0.384 0.262 0.149 0.121 0.118 0.116 0.011
0.043 0.093 0.138 0.234 0.266 0.374 0.374 0.440 0.549 0.681 0.794 0.840 0.849 0.893 0.942
0.038 0.097 0.101 0.305 0.314 0.401 0.401 0.474 0.537 0.680 0.708 0.717 0.857 0.942 0.942
9-313
2 8 9 ⋅ 2 q
For the 5/32 and 3/16 Diameters, 0.1265 # q < -0.025 and F(x) is therefore
2 8 Which we can 9 ⋅ 2 q write
MMPDS-06 1 April 2011 Next the Anderson-Darling statistic can then be evaluated. For our example we have AD
ADcrit
1/8 Diameter
17.35
0.66
5/32 Diameter
0.08
0.32
3/16 Diameter
0.10
0.32
Based on our procedure, the data set for the 1/8 Diameter must be rejected. Therefore, additional observations are required and the Nonparametric Procedure in section 9.5.5.3 must be performed to determine the T99 value. For our example, we will assume that the T99 value from this method was obtained and is 764 lbs. For the other two diameters, since there data sets were not rejected, we can proceed with the T99 calculation from section 9.5.5.1 as is express as
T99 = X − k 99 ( q , n ) ⋅ S where
2.556 − 1.229 q + 0.987 q 2 − 0.6542 ⋅ ln( n) k 99 ( q , n) = z99 ( q ) + exp 2 + 0.0897 q ⋅ ln( n ) − 0.1864 q ⋅ ln( n) and
2 q2 q z99 (q ) = 1 − 1 − − 2.326348 ⋅ q 36 6 + 0.003139 q 4 + 0.001007 q 5
3
− 0.013133 q 2 − 0.003231q 3
Appling these equations to our example we can obtain the A-Basis shear strength values, T99, for our example diameters. Thus z99
k99
T99
1/8 Diameter
NA
NA
764
5/32 Diameter
2.40
4.82
1414
3/16 Diameter
2.42
4.90
1727
9-314
MMPDS-06 1 April 2011 Next, to compute the shear strength on a stress basis, we have
FSU =
PS = AS
T99
π
Diameter 2 4
For our example, we then have
Ps=T99(lbs)
As(in2)
FSU (ksi)
1/8 Diameter (0.130)
764
0.0133
57.4
5/32 Diameter (0.162)
1414
0.0206
68.6
3/16 Diameter (0.194)
1727
0.0296
58.3
Note that the specification hole diameter is used in this example for FSU calculations, due to the fact that this is a hole filling, blind rivet system. Other fastener styles may employ the shank diameter. Refer to section 9.7.1.1 for guidance on the proper diameter for allowables table calculations. Summarizing shear strength results for all of the diameters in the table, we have the following:
A-Basis Shear Strength (lbs) / (ksi)
Specification Requirement (lbs) / (ksi)
Table 8.1.1.1 Requirement (ksi)
1/8 Diameter
764 / 57.4
664 / 50.0
50.0
5/32 Diameter
1,414 / 68.6
1,030 / 50.0
3/16 Diameter
1,727 / 58.3
1,480 / 50.0
Referring to Table 8.1.1.1, the shear strength associated with the stainless steel/aluminum material combination for blind rivets is 50 ksi, which is lower than the A-Basis values computed for each diameter. Therefore, the table header will reference 50 ksi shear strength for the fastener. The following notes apply for these results: 1.
2.
In the event the A-Basis value(s) do not meet the specification requirements, a review of the entire dataset would be initiated by the FTG. Possible actions would include a revision to the specification requirements to establish a realistic, guaranteed shear strength level. (This scenario does not apply to the hypothetical data set). Due to the fact that the shear strengths are 5 ksi or greater than the value in Table 8.1.1.1, a new value could be proposed.
The results of this problem have established the limiting shear strength of the fastener, also referred to as the shear cut-off. The shear cut-off of the fastener is one limiting failure mode of fastened joints, and will be referred to in subsequent analyses establishing the allowables table for the fastener/sheet combination.
9-315
MMPDS-06 1 April 2011 Problem II How is the dataset contained in group (1) non-dimensionalized? Strength allowables for a fastening system are based upon the assumption that the diameters in production are geometrically proportional, i.e. different diameters of the same fastener belong to the same population. Additionally, typical aerospace fastened joints encompass multiple failure modes encompassing bearing of the sheets to failure of the fastener. Thus, basic factors in determining the strength of the joint are the thickness of the sheet and diameter of the rivet. To obtain the benefit of a non-dimensional analysis, the independent variable is set to the ratio of t/D. The dependent variable is established in terms of a unit shear strength parameter, P/D2. Recall for a given rivet material at ultimate loads, the following relationship is true:
PULT
D2
= FSU
π 4
Equating the above two parameters combines the integrated effects of the primary variables associated with fastened joints. Note that it is implied that the load P refers to the failure load of the specimen.
[P D ]= K [ t D ] 2
r
Kr is determined experimentally for expediency. The number of combinations of sheets and diameters and the extraneous variables affecting the performance of fastened joints is quite large, and must be determined by testing. It is interesting to note that if Kr is a constant, a linear relationship exists, the slope of which is the bearing strength of the sheet material. Thus the non-dimensional formulation inherently incorporates the competing failure modes of the joint.
[P D ]= Const .[ t D ] 2
Multiplying through by D2, yields the following:
P = (Const .) tD = FBU t D The non-dimensional form of the dataset is presented in a tabular format, as illustrated in Figure 9.9.5.1(a).
9-316
Py/D2 x 10-4 (psi) 1.0947 1.1302 1.0913 1.1054 1.3636 1.4043 1.4579 1.4086 1.8994 1.8136 1.7849 1.8727 1.8426 2.5367 2.5523 2.5232 2.61 2.5555 2.7388 2.7709 2.8304 2.7800 2.8811 2.9898 2.8639 2.9941 2.9322
Ult. Load (lb) 269 270 258 288 303 310 371 366 356 364 512 500 509 507 582 578 588 788 764 767 779
Pu/D2 x 10-4 (psi) 1.5917 1.5976 1.5219 1.5704 1.6782 1.7656 1.8371 1.7603 2.1953 2.1006 2.0432 2.1591 2.1245 3.0064 2.9136 2.966 3.0467 2.9832 3.4279 3.4149 3.5334 3.4588 4.5225 4.4182 4.402 4.6095 4.488
Failure Type 1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 1a/1a 2c/1a 2c/1a 2c/1a 2c/1a 2c/1a 2c/1a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a
MMPDS-06 1 April 2011
9-317
Figure 9.9.5.1(a) Group (1) Data in Non-Dimensional Format Yield Load 1/8 Diameter Sheet Gauge Diameter t/D (lb) Test Specimen Part Number B-4-032-1 XX-YYYY-4-02 0.0318 0.13 0.2446 185 B-4-032-2 XX-YYYY-4-02 0.0318 0.13 0.2446 191 B-4-032-3 XX-YYYY-4-02 0.0318 0.1302 0.2442 185 Avg = 0.2445 B-4-040-4 XX-YYYY-4-02 0.0395 0.131 0.3015 234 B-4-040-5 XX-YYYY-4-02 0.0395 0.131 0.3015 241 B-4-040-6 XX-YYYY-4-02 0.0393 0.1299 0.3025 246 Avg = 0.3019 A-4-050-1 XX-YYYY-4-02 0.0487 0.13 0.3746 321 A-4-050-2 XX-YYYY-4-02 0.0488 0.132 0.3697 316 A-4-050-3 XX-YYYY-4-02 0.0487 0.132 0.3689 311 A-4-050-4 XX-YYYY-4-02 0.0487 0.1299 0.3752 316 Avg = 0.3721 A-4-071-5 XX-YYYY-4-03 0.0704 0.1305 0.5395 432 A-4-071-6 XX-YYYY-4-03 0.0705 0.131 0.5382 438 A-4-071-7 XX-YYYY-4-03 0.0705 0.131 0.5382 433 A-4-071-8 XX-YYYY-4-03 0.0705 0.129 0.5463 434 Avg = 0.5405 A-4-090-9 XX-YYYY-4-03 0.0914 0.1303 0.7015 465 A-4-090-10 XX-YYYY-4-03 0.0904 0.1301 0.6949 469 A-4-090-11 XX-YYYY-4-03 0.0904 0.129 0.7008 471 Avg = 0.6990 A-4-125-12 XX-YYYY-4-04 0.125 0.132 0.947 502 A-4-125-13 XX-YYYY-4-04 0.125 0.1315 0.9506 517 A-4-125-14 XX-YYYY-4-04 0.1249 0.132 0.9462 499 A-4-125-15 XX-YYYY-4-04 0.1248 0.13 0.96 506 Avg = 0.9509
Ult. Load (lb) 359 359 352 357 443 444 442 443 729 733 739 852 856 865 981 979 990 983 1090 1082 1079 1211 1177 1169
Pu/D2 x 10-4 Failure Type (psi) 1.3679 1b/1b 1.3512 1b/1b 1.333 1b/1b 1.3261 1b/1b 1.3446 1.688 1a/2c 1.6918 1a/2c 1.6434 1a/2c 1.6572 1a/2c 1.6701 2.7778 2c/2c 2.7589 2c/2c 2.7814 2c/2c 2.7727 3.2465 2c/2c 3.2617 2c/2c 3.2557 2c/2c 3.2546 3.738 2c/2c 3.7212 2c/2c 3.6808 2c/2c 3.7239 2c/2c 3.716 4.1533 4a/4a 4.1228 4a/4a 4.0166 4a/4a 4.0976 4.5748 4a/4a 4.3761 4a/4a 4.373 4a/4a 4.4413
MMPDS-06 1 April 2011
9-318
Figure 9.9.5.1(a) Group (1) Data in Non-Dimensional Format 5/32 Diameter Part Number Sheet Diameter t/D Yield Load Py/D2 x 10-4 Test Specimen Gauge (lb) (psi) A-5-032-16 XX-YYYY-5-02 0.0319 0.162 0.1969 227 0.865 A-5-032-17 XX-YYYY-5-02 0.032 0.163 0.1963 253 0.9522 A-5-032-18 XX-YYYY-5-02 0.032 0.1625 0.1969 229 0.8672 A-5-032-19 XX-YYYY-5-02 0.0318 0.164 0.1939 236 0.8787 Avg = 0.196 0.8908 A-5-040-20 XX-YYYY-5-02 0.0398 0.162 0.2457 290 1.105 A-5-040-21 XX-YYYY-5-02 0.0398 0.162 0.2457 307 1.1698 A-5-040-22 XX-YYYY-5-02 0.0398 0.164 0.2427 297 1.1043 A-5-040-23 XX-YYYY-5-02 0.0398 0.1635 0.2434 298 1.1148 Avg = 0.2444 1.1235 B-5-063-7 XX-YYYY-5-02 0.0627 0.162 0.387 525 2.0005 B-5-063-8 XX-YYYY-5-02 0.0628 0.163 0.3853 513 1.9308 B-5-063-9 XX-YYYY-5-02 0.0627 0.163 0.3847 537 2.0212 Avg = 0.3857 1.9841 A-5-080-24 XX-YYYY-5-03 0.0794 0.162 0.4901 687 2.6177 A-5-080-25 XX-YYYY-5-03 0.0795 0.162 0.4907 688 2.6216 A-5-080-26 XX-YYYY-5-03 0.0794 0.163 0.4871 691 2.6008 Avg = 0.4893 2.6134 A-5-090-27 XX-YYYY-5-03 0.089 0.162 0.5494 708 2.6978 A-5-090-28 XX-YYYY-5-03 0.0891 0.1622 0.5493 711 2.7025 A-5-090-29 XX-YYYY-5-03 0.0891 0.164 0.5433 721 2.6807 A-5-090-30 XX-YYYY-5-03 0.0893 0.1625 0.5495 713 2.7014 Avg = 0.5479 2.6956 A-5-125-31 XX-YYYY-5-04 0.122 0.162 0.7531 767 2.9226 A-5-125-32 XX-YYYY-5-04 0.122 0.162 0.7531 754 2.873 A-5-125-33 XX-YYYY-5-04 0.1211 0.1639 0.7389 758 2.8217 Avg = 0.7483 2.8724 A-5-160-34 XX-YYYY-5-04 0.1601 0.1627 0.984 771 2.9126 A-5-160-35 XX-YYYY-5-04 0.1605 0.164 0.9787 777 2.8889 A-5-160-36 XX-YYYY-5-04 0.1604 0.1635 0.981 781 2.9216 Avg = 0.9812 2.9077
Py/D2 x 10-4 (psi) 0.8468 0.668 0.7031 0.7393 1.0547 1.0073 1.0918 1.0423 1.049 1.4233 1.549 1.4447 1.4723 2.0564 2.2156 2.0512 2.1077 2.2187 2.1433 2.2178 2.1934 2.1933 2.6143 2.7043 2.7598 2.7337 2.703 2.5983 2.5849 2.6554 2.6819 2.6301
Ult. Load (lb) 513 518 525 599 639 607 615 782 790 759 988 1002 1015 1068 1033 1088 1063 1264 1233 1257 1251 1257 1246 1269 1257
Pu/D2 x 10-4 (psi) 1.3491 1.3623 1.3878 1.3664 1.5834 1.6719 1.593 1.6025 1.6127 2.046 2.0776 1.9757 2.0331 2.6524 2.704 2.6421 2.6662 2.7943 2.7166 2.8322 2.7812 2.7811 3.3412 3.2627 3.3746 3.3768 3.3388 3.3023 3.2434 3.3101 3.372 3.307
Failure Type 1b/1b 1b/1b 1b/1b 1a/2c 1a/2c 1a/2c 1a/2c 1b/1b 1b/1b 1b/1b 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 1a/2c 4a/4a 4a/4a 4a/4a 4a/4a
MMPDS-06 1 April 2011
9-319
Figure 9.9.5.1(a) Group (1) Data in Non-Dimensional Format Part Number Sheet Gauge Diameter t/D Yield Load 3/16 Diameter (lb) Test Specimen A-6-040-37 XX-YYYY-6-02 0.042 0.195 0.2154 322 A-6-040-38 XX-YYYY-6-02 0.042 0.195 0.2154 254 A-6-040-39 XX-YYYY-6-02 0.04 0.1945 0.2057 266 Avg = 0.2121 A-6-050-40 XX-YYYY-6-02 0.0488 0.1945 0.2509 399 A-6-050-41 XX-YYYY-6-02 0.049 0.1955 0.2506 385 A-6-050-42 XX-YYYY-6-02 0.0488 0.1952 0.25 416 A-6-050-43 XX-YYYY-6-02 0.0487 0.1959 0.2486 400 Avg = 0.25 B-6-063-10 XX-YYYY-6-03 0.063 0.1955 0.3223 544 B-6-063-11 XX-YYYY-6-03 0.063 0.195 0.3231 589 B-6-063-12 XX-YYYY-6-03 0.063 0.196 0.3214 555 Avg = 0.3223 B-6-080-13 XX-YYYY-6-03 0.0794 0.193 0.4114 766 B-6-080-14 XX-YYYY-6-03 0.0794 0.1925 0.4125 821 B-6-080-15 XX-YYYY-6-03 0.0795 0.196 0.4056 788 Avg = 0.4098 A-6-090-44 XX-YYYY-6-03 0.089 0.1955 0.4552 848 A-6-090-45 XX-YYYY-6-03 0.088 0.195 0.4513 815 A-6-090-46 XX-YYYY-6-03 0.088 0.196 0.449 852 A-6-090-47 XX-YYYY-6-03 0.0886 0.1955 0.4532 838 Avg = 0.4522 A-6-100-48 XX-YYYY-6-04 0.099 0.1945 0.509 989 A-6-100-49 XX-YYYY-6-04 0.1001 0.1944 0.5149 1022 A-6-100-50 XX-YYYY-6-04 0.104 0.193 0.5389 1028 A-6-100-51 XX-YYYY-6-04 0.104 0.1925 0.5403 1013 Avg = 0.5258 A-6-125-52 XX-YYYY-6-05 0.123 0.1951 0.6304 989 A-6-125-53 XX-YYYY-6-05 0.123 0.196 0.6276 993 A-6-125-54 XX-YYYY-6-05 0.123 0.1958 0.6282 1018 A-6-125-55 XX-YYYY-6-05 0.1235 0.1931 0.6396 1000 Avg = 0.6314
Figure 9.9.5.1(a) Group (1) Data in Non-Dimensional Format 3/16 Diameter (Continued) Part Number Sheet Gauge Diameter t/D Yield Load Test Specimen (lb) A-6-160-57 XX-YYYY-6-06 0.159 0.1944 0.8179 1122 A-6-160-58 XX-YYYY-6-06 0.159 0.1949 0.8158 1089 A-6-160-59 XX-YYYY-6-06 0.159 0.1946 0.8171 1110 Avg = 0.8169 A-6-190-60 XX-YYYY-6-06 0.187 0.1945 0.9614 1150 A-6-190-61 XX-YYYY-6-06 0.187 0.1933 0.9674 1120 A-6-190-62 XX-YYYY-6-06 0.181 0.1929 0.9383 1128 Avg = 0.9557
Py/D2 x 10-4 (psi) 2.9689 2.8668 2.9311 2.9223 3.0399 2.9975 3.0314 3.0229
Ult. Load (lb) 1838 1800 1767 1928 1917 1948
Pu/D2 x 10-4 (psi) 4.8635 4.7386 4.6661 4.7561 5.0965 5.1305 5.2351 5.154
Failure Type 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a 4a/4a
MMPDS-06 1 April 2011
9-320
MMPDS-06 1 April 2011 Problem III How are the average and T90 curves calculated for the data in Group (1)? The allowable strength of typical aerospace fastened joints encompasses multiple failure modes base upon either the strength of the sheets or the strength of the fastener. The calculations summarized in Problem I established the shear cut-off of the fastener, employing NASM1312-20 type of test specimens. (Note that typically the shear strength of the fastener is established in steel test plates.) Separate test specimens i.a.w. NASM1312-4, employing the sheet material of interest, are used to determine the joint allowables tables published in MMPDS. Four distinct statistical calculations are required to estimate the T90 curve for a fastener data set: 1. 2. 3. 4.
Define a regression through the average strengths of the t/D groups. Estimate the standard deviation of the data set accommodating two sources of variability, (between and within t/D groups). Estimate the statistical degrees of freedom. Estimate the T90 curve from the average regression.
A regression analysis is employed to calculate P/D2 values as a function of t/D.
(1)
P
D2
( D )+ A ln ( t D )
= A0 + A1 t
2
Subsequent calculations will be performed to determine the coefficients A0, A1 and A2 corresponding to T90 (B-Basis) values of unit shear strength as a function of t/D. The statistical procedure is based upon a regression analysis of the average strengths of each t/D group, employing a ln transformation of the t/D values. The first step is to calculate the averages of the strength tests:
yi =
1 n ∑ yij n j =1
where i refers to the ith t/D group, and j the number of observations within the group. We will fit a polynomial to the average values of the strength measurements. The assumed model takes the following form:
yˆ i = a + bx i + cz i where
( D ) of the i
xi = ln t
th
t/D level
z i = exp( xi ) The following standard formulae are used to estimate the parameters a, b and c, by a least squares fit. Refer to Section 9.7.1.4. Note that M = the number of distinct t/D groups in the data set.
9-321
MMPDS-06 1 April 2011 a = ~y − b x − c z M M M M 2 ~ ~y z ( x z ) − M z x ( ) ( ) ( ) x y − M y x z − z − z y − M ∑ ∑ ∑ ∑ i i i i i i i i =1 i =1 i =1 i =1 b= 2 M M M (xi − x )2 ∑ (z i − z )2 − ∑ (xi z i ) − M x z ∑ i =1 i =1 i =1
M M ~ ∑ ( z i y i ) − M y z − b ∑ ( xi z i ) − M x z i =1 c = i =1 M 2 ∑ (zi − z ) i =1
where M
∑x x=
M
i
i =1
M
; ~y =
∑y
M
∑z
i
i =1
and z =
M
i
i =1
M
The above formulae complete step one of the four statistical tasks by defining the average group strength regression curve. Step two is to estimate the standard deviation, i.e. the accuracy of the regression. Two sources of variability need to be accounted for; 1) variability of average strength between t/D groups, 2) variability of observations within a t/D group. The following formulae estimate the standard deviation, sy, from these two sources. The mean squared error associated with between t/D group variability in average strength is calculated as follows: M
∑ (y MSE = ( RMSE ) 2 =
i
− yˆ i
)
2
i =1
(M
− 3)
where yˆ i = a + bx i + cz i xi and zi are as defined above. Within t/D group variability is estimated from the mean squared pure error of the observations. M
ni
∑∑ (y
ij
− yi
)
2
i =1 j =1
MSPE =
(N − M )
where M
N=
∑n
i
i =1
N is the total number of observations for all of the groups, ni the number of observations in the ith group, and as before, M is the total number of t/D groups in the data set.
9-322
MMPDS-06 1 April 2011 The standard deviation is then estimated from the values of the mean squared error and mean squared pure error.
n −1 s y = MSE + 0 MSPE n0 where M ni2 ∑ 1 n0 = N − i =1 M −1 N
The variables M and ni have the same definitions as above. At this point in the analysis, we have completed the following statistical tasks: 1. A regression through the average strength of each t/D group has been defined. 2. The standard deviation of the dataset has been estimated. We are now ready to estimate the degrees of freedom of the dataset, again accommodating two sources of variability. The initial step is to calculate the variable H, which is an upper confidence bound on the ratio of between group and within group variability. H is defined by the following:
MSE 1 1 H = max ⋅ − ,0.0 MSPE F0.05 (M − 3, N − M ) n0
Note that F0.05(M-3, N-M) is the 5th percentile of a F Distribution with numerator degrees of freedom M-3 and denominator degrees of freedom N-M. Fifth percentiles of the F Distribution are tabulated in 9.10.10. Since we are ultimately interested in finding an upper confidence bound on H, a lower percentile of the F Distribution is desired as it falls in the denominator in the formula for H. We are specifically interested in the 5th percentile because we have assigned a 95% confidence factor to our T90 calculation. The degrees of freedom, df, are estimated from Satterthwaite's approximation:
df =
(H + 1)2 2 2 (n0 − 1) 1
H + n n0 0 + M −3 N −M
where M, N and n0 are as defined above. At this point, step three of four statistical calculations have been performed, df has been estimated, and we are ready to calculate the T90 expression for the data set. The initial step is to calculate the parameter Q(x) for the regression. (Note: this Q is not related to the skewness of the population.) Referring to Section 9.5.2.2 for detailed definitions, we have the following:
9-323
MMPDS-06 1 April 2011
∑ z; c = ∑ x d = ∑ z; e = ∑ z ; f = ∑ xz k = [( ace + 2bdf ) − ( cd + af 2
a = M;b =
2
2
)
q 2 = k ( df − be)
q 4 = k ( ae − d 2 )
q 5 = k (bd − af )
q1 = k ( ce − f
2
2
+ b 2 e)
]
−1
q 3 = k (bf − cd ) q 6 = k ( ac − b 2 )
Q( x ) = q1 + 2q 2 x + 2q 3 z + q 4 x 2 + 2q5 xz + q 6 z 2 Next, the parameter R(x) is calculated. Note that R and Q are both functions of x. Therefore an iterative process is necessary to define the T90 curve for each t/D of interest.
1 H+ n0 R ( x) = H +1 ( 2)
Q( x)
1.282 T90 ( x ) = a + bx + cz − t (0.95, df , ) ⋅ R( x) ⋅ s y R( x)
The term in parentheses is the 95th percentile of the non-central t distribution with df degrees of freedom, and non-centrality parameter 1.282/(R(x))½. A non-central statistical distribution is required due to the fact that we're constructing a regression relationship, rather than characterizing a single, homogeneous population. Summarizing the calculations performed to this point, we have completed the following: 1. Define a regression through the average strengths of the t/D groups. 2. Estimate the standard deviation of the data set accommodating two sources of variability, (between and within t/D groups). 3. Estimate the statistical degrees of freedom. 4. Estimate the T90 curve from the average regression. Performance of these calculations is best done via computer programming. Figure 9.9.5.1(b) illustrates the regression and T90 calculation plots resulting from a fastener analysis tool developed by the MMPDS Industrial Steering Group, (ISG). Note that the failure modes associated with the test observations are captured in the plot, and that at least one test group of each diameter attains the specification shear strength summarized in Table 9.9.5.1(e). Additionally, tensile failure of the sleeve element near the head of reduced shear head style rivets, (or near the bulb of other head styles), is common in blind rivets. Although not explicitly shear, tensile dominated or combinations of tensile + shear failure modes of the fastener are also designated with solid symbols.
9-324
MMPDS-06 1 April 2011
6
Ultimate P/D2 x 10-4
5
Bearing Ultimate Strength, 121 ksi at e/D = 2.0
4
Shear Strength Cut-Off, 50 ksi
3
1/8 Diameter - Fastener Failure 1/8 Diameter 5/32 Diameter - Fastener Failure 5/32 Diameter 3/16 Diameter - Fastener Failure 3/16 Diameter T90 Curve Regression Curve
2
1
0 0.0
0.2
0.4
0.6
0.8
1.0
1.2
t/D
Figure 9.9.5.1(b). Ultimate Non-Dimensional Regression and T90 Curves for Group (1) Data
Problem IV What plots of the data in Group (1) are required to be submitted with the data package? Individual graphs for each diameter of the average load points at each t/D tested will be presented along with the overall plot of the data as shown in Figure 9.9.5.1(b). The supplemental graphs will distinguish the test sources of the data set, and plot symbols of the group averages of the diameter along with the regression and T90 curves of the entire data set. Additionally, the knife-edge t/D condition for each diameter will be indicated by a short vertical line at the appropriate t/D for each fastener. Examples of these plots are shown in Figures 9.9.5.1(c) through 9.9.5.1(e). Note that for 1/8 Diameter, no knife edge data was submitted in this example. Knife edge concerns are not associated with protruding head fasteners; however, the minimum t/D allowed for fastener datasets is t/D = 0.18, which should be indicated on the group average plots for protruding head systems. Although ultimate plots are illustrated in this example, analogous plots to those shown in Figures 9.9.5.1(b) through 9.9.5.1(e) of the yield data are also required.
9-325
MMPDS-06 1 April 2011
6 Source A, Shear Failure
Ultimate P/D2 x 10
-4
5
Bearing Ultimate Strength, 121 ksi at e/D = 2.0
4
Shear Strength Cut-Off, 50 ksi
3
2
Data Source A Data Source B
1
T90 Curve Regression Curve
0 0.0
0.2
0.4
0.6
0.8
1.0
1.2
t/D Figure 9.9.5.1(c). 1/8 Diameter Group Average Ultimate Plot 6
Source A, Shear Failure
Ultimate P/D2 x 10
-4
5
Bearing Ultimate Strength, 121 ksi at e/D = 2.0
4
Shear Strength Cut-Of f, 50 ksi
3
Data Source A
2
Data Source B T90 Curve
1
Regression Curve Knif e Edge 0 0.0
0.2
0.4
0.6
0.8
t/D
Figure 9.9.5.1(d). 5/32 Diameter Group Average Ultimate Plot
9-326
1.0
1.2
MMPDS-06 1 April 2011
6 Source A, Shear Failure
Ultimate P/D2 x 10 -4
5
Bearing Ultimate Strength, 121 ksi at e/D = 2.0
4
Shear Strength Cut-Off, 50 ksi
3
Data Source A
2
Data Source B T90 Curve
1
Regression Curve
Knife Edge 0 0.0
0.2
0.4
0.6
0.8
1.0
1.2
t/D
Figure 9.9.5.1(e). 3/16 Diameter Group Average Ultimate Plot
Figure 9.9.5.1(f) is a summary plot of the yield and ultimate allowable curves overlaid by the bearing and shear cut-off limiting curves. The numbers 1. through 6. indicate t/D inflection or end points in the allowable curves, and must be shown for reference. The following comments are applicable to Figure 9.9.5.1(f): 1.
2.
In the event a limiting bearing curve falls below its corresponding T90 curve, that portion of the allowable curve will be defined by the lower, bearing curve over affected t/D region, defined by further inflection points. (This scenario is not applicable to the example data set.) The three diameters in this example are adequately defined by single yield and ultimate curves. However, some data sets may have individual curves for one or more of the diameters. In this case, the individual design curves for each diameter would be delineated in Figure 9.9.5.1(f). (Not applicable to this example data set.)
9-327
MMPDS-06 1 April 2011
6
5
Ultimate / Yield P/D2 x 10-4
Ultimate Allow able Curve Bearing Ultimate Strength, 121 ksi at e/D = 2.0
4
2.
Bearing Yield Strength, 82 ksi at e/D = 2.0
3
3. Shear Strength Cut-Off, 50 ksi
5. 2 Yield Allow able Curve 1 1. 4.
0 0.0
0.2
0.4
0.6
0.8
1.0
1.2
t/D
Figure 9.9.5.1(f). Example Data Set Yield and Ultimate Allowable Curves
Problem V How are the values calculated for the fastener allowables table for Group (1)? Fastener allowables tables are populated using the T90 regression expressions, i.e. equation (1) for ultimate and yield. The ISG software does not perform a closed form solution to calculate the T90 curve, but rather determines a point to point solution iteratively at constant t/D intervals spanning the range of the data set, as defined by the inflection and start/end points identified in Figure 9.9.5.1(f). An accurate fit to the points defining the T90 curves shown in Figure 9.9.5.1(f) can be calculated using the regression data analysis tool in Excel®. (Note that the Data Analysis set of tools are an Excel® "add in" feature.) The dependent variable of T90 P/D2 values are set up as a single column, and the independent variable t/D is set up as two adjacent columns of t/D and ln(t/D). The independent variables are highlighted and input as 'X' data, and the dependent variable as 'Y' data. The regression tool will calculate the best fit coefficients A0, A1 and A2, and provide measures of the accuracy of the fit. Performing these calculations in Excel®, we have the following for ultimate loads:
( 3)
PU
(4)
PU
D2
D2
( D )+ 1.734 ln ( t D )
( D ) ≤ 0.900
= 3 .175 + 1 .050 t
for 0 .196 ≤ t
= 3 .925
for
9-328
( t D ) > 0.900
Points 1. to 2. Points $2.
MMPDS-06 1 April 2011 For yield loads, the table allowables are calculated from the following:
(5 )
PY
(6)
PY
D2
D2
( D )+ 2.982 ln ( t D )
= 5 .770 − 3 .097 t
( D ) ≤ 0.900
for 0 .196 ≤ t
( D ) > 0.900
for t
= 2 .673
Points 4. to 5. Points $5.
The fastener allowables table will be populated for the standard sheet gauges contained in the data set using equations (3) through (6). Figure 9.9.5.1(g) illustrates the allowables table for the example Group (1) data. Refer to section 9.9.5 for the details associated with the format, headings and footnotes. Several comments regarding the allowables table are in order: 1. 2.
Knife edge conditions are defined with respect to 100% of the fastener head height. Yield criteria is 0.04D permanent set.
Summarizing, problems I through V illustrate the typical tasks and calculations associated with fastener allowable tables in the MMPDS Handbook
9-329
MMPDS-06 1 April 2011 Table 8.X.X.X.X. B-Basis Static Joint Strength of Blind, 100E E Flush Shear Head Locked Aluminum Alloy Rivets in Machine Countersunk Clad Aluminum Alloy Sheets Rivet Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NASXXXXa (Fsu = 50 ksi)
Sheet Material . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clad 2024-T3
Rivet Diameter, in. . . . . . . . . . . . . . . . . . . . . . . . . (Nominal Hole Diameter, in.)b . . . . . . . . . . . . . . . .
1/8 (0.130)
5/32 (0.162)
3/16 (0.194)
Ultimate Strength, lbs (B-Basis) Sheet thickness, in.: 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fastener Shear Strengthe . . . . . . . . . . . . . . . . . . . .
169 246 325 410 456 503 552 596 664 ----664
149 c,d 264 383 510 578 648 719 784 928 1030 --1030
--246c,d 412 589 683 780 877 966 1163 1395 1480 1480
Yield Strengthf, lbs (B-Basis) Sheet thickness, in.: 0.032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.071 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.090 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Head Height (Ref.). in. . . . . . . . . . . . . . . . . . . . . . .
141 222 294 358 386 410 429 442 452 ----0.028
87 221 346 461 515 563 605 637 687 701 --0.037
a b c d
--162 353 534 620 700 772 830 931 998 1006 0.046
Data supplied by ABC Corporation. Fasteners installed in holes with diameters 0.130, 0.162, and 0.194 ± 0.0002. Yield critical value - yield is <2/3 of indicated ultimate value. Values above line are for knife edge condition. Use of fasteners in this condition is undesirable. The use of knife-edge condition in the design of military aircraft requires specific approval of the procuring agency. e Rivet shear strength is documented in NASXXXX. f Permanent set at yield load: 4% of nominal diameter. (Ref. 9.7.1.1)
Figure 9.9.5.1(g). Allowables Tables for Example Group (1) Data.
9-330
MMPDS-06 1 April 2011 9.9.6 Fusion-Welded Joints — The welding conditions of major significance to potential users of the data should be shown in the data presentation for each basic population of weldments considered. Among these variables, the following are the minimum that should be specified, where applicable: (1) Alloys (2) Weld-heat-treat conditions (3) Filler materials (4) Welding processes (5) Weld repairs (6) Joint thicknesses (7) Joint types (8) Weld quality levels (9) Welding methods, i.e., manual or mechanized. Since data presented are based on coupon-derived results, it is also necessary to provide comments on use of data in structural design. 9.9.6.1 Additional Information — When weldment data are presented, they should include comments to aid designers in selecting appropriate welding processes or conditions. In addition, comments alerting a designer to possible fabrication problems or environmental effects should be included. These may include: (1) Potential weld heat-treating sequences for the alloy (2) Applicable welding methods (3) Comments on weldment properties (4) Discussion of pertinent welding process variables, such as heat input sensitivity or restrictions, preheat requirements, atmospheric contamination, and significant metallurgical phenomena. 9.9.6.2 Room-Temperature Properties — Data on room-temperature properties of weldments are presented in tabular form illustrated in Figure 9.9.6.2. The figure describes base material, welding variables, and weld character conditions that the data represent, as well as properties of interest. Precautionary notes for use of data in design are presented in footnotes and are discussed in Section 9.9.6.4.
9-331
MMPDS-06 1 April 2011
Figure 9.9.6.2. Typical format for presentation of room-temperature properties of weldments.
9.9.6.3 Data on Effect of Temperature — A typical effect-of-temperature curve of weldment properties is shown in Figure 9.9.6.3. This type of curve should be presented in conjunction with room-temperature properties, referencing welding conditions and precautionary notes of the room-temperature case.
Figure 9.9.6.3. Typical effect of temperature presentation.
9-332
MMPDS-06 1 April 2011 9.9.6.4 Use of Design Data — In footnotes to coupon-derived design data, it is necessary to present precautionary notes on the use of data in structural design. It is recognized that structures may not fail under load in the same manner as a coupon. This lack of one-to-one correlation may be due to differences either in weldment character resulting from potentially higher variability of production welding, or state of stress. Coupon-structure ratios are used to account for these differences. The coupon-derived basic weld allowable accounts for a sizeable portion of the variability in welded joints; coupon-structure ratio accounts for the remainder. Since the state of stress (and to some extent, distribution of stress) is accounted for in the coupon-structure ratio, it is probable that each general structural configuration will have a unique coupon-structure ratio. For example, the coupon-structure ratio for a tank which must resist internal pressure would be different from the ratio for a welded joint in a sandwich panel.
9-333
MMPDS-06 1 April 2011
This page is intentionally blank.
9-334
MMPDS-06 1 April 2011
9.10 STATISTICAL TABLES A number of tables of statistical values that are required for analyses described in the MMPDS Guidelines are presented in this section. For tables containing various fractiles or confidence levels, only applicable portions are reproduced herein. Table 9.10.1 was reproduced by permission from Reference 9.10.1. Tables 9.10.2 through 9.10.6 were reproduced or adapted from tables in Reference 9.1.5, with the addition of a few individual values from various other sources. Tables 9.10.7 through 9.10.10 were created specifically for MMPDS.
9-335
MMPDS-06 1 April 2011 Table 9.10.1. One-Sided Tolerance Limit Factorsa, k, for the Normal Distribution, 0.95 Confidence, and n-1 Degrees of Freedom Note: These P values should only be used for substantiation of S-basis minimum properties (see Section 9.4). Weibull, Pearson, or nonparametric procedures should be used when calculating T90 and T99 values to determine A- and B-basis minimum static properties (see Section 9.5).
n
P = 0.99
n
P = 0.99
n
P = 0.99
n
P = 0.99
30
3.064
31
3.048
61
2.802
91
2.704
121
2.648
32
3.034
62
2.798
92
2.701
122
2.646
33
3.020
63
2.793
93
2.699
123
2.645
34
3.007
64
2.789
94
2.697
124
2.643
35
2.995
65
2.785
95
2.695
125
2.642
36
2.983
66
2.781
96
2.692
126
2.640
37
2.972
67
2.777
97
2.690
127
2.639
38
2.961
68
2.773
98
2.688
128
2.638
39
2.951
69
2.769
99
2.686
129
2.636
40
2.941
70
2.765
100
2.684
130
2.635
41
2.932
71
2.762
101
2.682
131
2.634
42
2.923
72
2.758
102
2.680
132
2.632
43
2.914
73
2.755
103
2.678
133
2.631
44
2.906
74
2.751
104
2.676
134
2.630
45
2.898
75
2.748
105
2.674
135
2.628
46
2.890
76
2.745
106
2.672
136
2.627
47
2.883
77
2.742
107
2.671
137
2.626
48
2.876
78
2.739
108
2.669
138
2.625
49
2.869
79
2.736
109
2.667
139
2.624
50
2.862
80
2.733
110
2.665
140
2.622
51
2.856
81
2.730
111
2.663
141
2.621
52
2.850
82
2.727
112
2.662
142
2.620
53
2.844
83
2.724
113
2.660
143
2.619
54
2.838
84
2.721
114
2.658
144
2.618
55
2.833
85
2.719
115
2.657
145
2.617
56
2.827
86
2.716
116
2.655
146
2.616
57
2.822
87
2.714
117
2.654
147
2.615
58
2.817
88
2.711
118
2.652
148
2.613
59
2.812
89
2.709
119
2.651
149
2.612
60
2.807
90
2.706
120
2.649
150
2.611
9-336
MMPDS-06 1 April 2011 Table 9.10.1. One-Sided Tolerance Limit Factorsa, k, for the Normal Distribution, 0.95 Confidence, and n-1 Degrees of Freedom (concluded) Note: These P values should only be used for substantiation of S-basis minimum properties (see Section 9.4). Weibull, Pearson, or nonparametric procedures should be used when calculating T90 and T99 values to determine A- and B-basis minimum static properties (see Section 9.5). n P = 0.99 n P = 0.99 n P = 0.99 n P = 0.99
151
2.610
176
2.587
205
2.566
330
2.512
152
2.609
177
2.587
210
2.563
340
2.509
153
2.608
178
2.586
215
2.560
350
2.506
154
2.607
179
2.585
220
2.557
360
2.504
155
2.606
180
2.584
225
2.555
370
2.501
156
2.605
181
2.583
230
2.552
390
2.496
157
2.604
182
2.583
235
2.549
400
2.494
158
2.603
183
2.583
240
2.547
425
2.489
159
2.602
184
2.581
245
2.544
450
2.484
160
2.601
185
2.580
250
2.542
475
2.480
161
2.600
186
2.580
255
2.540
500
2.475
162
2.600
187
2.579
260
2.537
525
2.472
163
2.599
188
2.578
265
2.535
550
2.468
164
2.598
189
2.577
270
2.533
575
2.465
165
2.597
190
2.577
275
2.531
600
2.462
166
2.596
191
2.576
280
2.529
625
2.459
167
2.595
192
2.575
285
2.527
650
2.456
168
2.594
193
2.575
290
2.525
675
2.454
169
2.593
194
2.574
295
2.524
700
2.451
170
2.592
195
2.573
300
2.522
750
2.447
171
2.592
196
2.572
305
2.520
800
2.443
172
2.591
197
2.572
310
2.518
850
2.439
173
2.590
198
2.571
315
2.517
900
2.436
174
2.589
199
2.570
320
2.515
1000
2.430
175
2.588
200
2.570
325
2.514
4
2.326
The following equations may be used to compute k factors in lieu of using table values: k99 = 2.326 + exp [1.34 - 0.522 ln(n) + 3.87/n] k90 = 1.282 + exp [0.958 - 0.520 ln(n) + 3.19/n] These approximations are accurate to within +/- 0.002 of the table values for n greater than or equal to 30.
9-337
Table 9.10.2. 0.950 Fractiles of the F Distribution Associated with n1 and n2 Degrees of Freedom n2a
n1, degrees of freedom for numerator 2
3
4
5
6
7
8
9
10
12
15
20
24
30
40
60
120
4
2 3 4
199.5 19.00 9.55 6.94
215.7 19.16 9.28 6.59
224.6 19.25 9.12 6.39
230.2 19.30 9.01 6.26
234.0 19.33 8.94 6.16
236.8 19.35 8.89 6.09
238.9 19.37 8.85 6.04
240.5 19.38 8.81 6.00
241.9 19.40 8.79 5.96
243.9 19.41 8.74 5.91
245.9 19.43 8.70 5.86
248.0 19.45 8.66 5.80
249.0 19.45 8.64 5.77
250.1 19.46 8.62 5.75
251.1 19.47 8.59 5.72
252.2 19.48 8.57 5.69
253.2 19.49 8.55 5.66
254.3 19.51 8.53 5.63
5 6 7 8 9
6.61 5.99 5.59 5.32 5.12
5.79 5.14 4.74 4.46 4.26
5.41 4.76 4.35 4.07 3.86
5.19 4.53 4.12 3.84 3.63
5.05 4.39 3.97 3.69 3.48
4.95 4.28 3.87 3.58 3.37
4.88 4.21 3.79 3.50 3.29
4.82 4.15 3.73 3.44 3.23
4.77 4.10 3.68 3.39 3.18
4.74 4.06 3.64 3.35 3.14
4.68 4.00 3.57 3.28 3.07
4.62 3.94 3.51 3.22 3.01
4.56 3.87 3.44 2.15 2.94
4.53 3.84 3.41 3.12 2.90
4.50 3.81 3.38 3.08 2.86
4.46 3.77 3.34 3.04 2.83
4.43 3.74 3.30 3.01 2.79
4.40 3.70 3.27 2.97 2.75
4.37 3.67 3.23 2.93 2.71
10 11 12 13 14
4.96 4.84 4.75 4.67 4.60
4.10 3.98 3.89 3.81 3.74
3.71 3.59 3.49 3.41 3.34
3.48 3.36 3.26 3.18 3.11
3.33 3.20 3.11 3.03 2.96
3.22 3.09 3.00 2.92 2.85
3.14 3.01 2.91 2.83 2.76
3.07 2.95 2.85 2.77 2.70
3.02 2.90 2.80 2.71 2.65
2.98 2.85 2.75 2.67 2.60
2.91 2.79 2.69 2.60 2.53
2.85 2.72 2.62 2.53 2.46
2.77 2.65 2.54 2.46 2.39
2.74 2.61 2.51 2.42 2.35
2.70 2.57 2.47 2.38 2.31
2.66 2.53 2.43 2.34 2.27
2.62 2.49 2.38 2.30 2.22
2.58 2.45 2.34 2.25 2.18
2.54 2.40 2.30 2.21 2.13
15 16 17 18 19
4.54 4.49 4.45 4.41 4.38
3.68 3.63 3.59 3.55 3.52
3.29 3.24 3.20 3.16 3.13
3.06 3.01 2.96 2.93 2.90
2.90 2.85 2.81 2.77 2.74
2.79 2.74 2.70 2.66 2.63
2.71 2.66 2.61 2.58 2.54
2.64 2.59 2.55 2.51 2.48
2.59 2.54 2.49 2.46 2.42
2.54 2.49 2.45 2.41 2.38
2.48 2.42 2.38 2.34 2.31
2.40 2.35 2.31 2.27 2.23
2.33 2.28 2.23 2.19 2.16
2.29 2.24 2.19 2.15 2.11
2.25 2.19 2.15 2.11 2.07
2.20 2.15 2.10 2.06 2.03
2.16 2.11 2.06 2.02 1.98
2.11 2.06 2.01 1.97 1.93
2.07 2.01 1.96 1.92 1.88
20 21 22 23 24
4.35 4.32 4.30 4.28 4.26
3.49 3.47 3.44 3.42 3.40
3.10 3.07 3.05 3.03 3.01
2.87 2.84 2.82 2.80 2.78
2.71 2.68 2.66 2.64 2.62
2.60 2.57 2.55 2.53 2.51
2.51 2.49 2.46 2.44 2.42
2.45 2.42 2.40 2.37 2.36
2.39 2.37 2.34 2.32 2.30
2.35 2.32 2.30 2.27 2.25
2.28 2.25 2.23 2.20 2.18
2.20 2.18 2.15 2.13 2.11
2.12 2.10 2.07 2.05 2.03
2.08 2.05 2.03 2.01 1.98
2.04 2.01 1.98 1.96 1.94
1.99 1.96 1.94 1.91 1.89
1.95 1.92 1.89 1.86 1.84
1.90 1.87 1.84 1.81 1.79
1.84 1.81 1.78 1.76 1.73
25 26 27 28 29
4.24 4.23 4.21 4.20 4.18
3.39 3.37 3.35 3.34 3.33
2.99 2.98 2.96 2.95 2.93
2.76 2.74 2.73 2.71 2.70
2.60 2.59 2.57 2.56 2.55
2.49 2.47 2.46 2.45 2.43
2.40 2.39 2.37 2.36 2.35
2.34 2.32 2.31 2.29 2.28
2.28 2.27 2.25 2.24 2.22
2.24 2.22 2.20 2.19 2.18
2.16 2.15 2.13 2.12 2.10
2.09 2.07 2.06 2.04 2.03
2.01 1.99 1.97 1.96 1.94
1.96 1.95 1.93 1.91 1.90
1.92 1.90 1.88 1.87 1.85
1.87 1.85 1.84 1.82 1.81
1.82 1.80 1.79 1.77 1.75
1.77 1.75 1.73 1.71 1.70
1.71 1.69 1.67 1.65 1.64
30 40 60 120 4
4.17 4.08 4.00 3.92 3.84
3.32 3.23 3.15 3.07 3.00
2.92 2.84 2.76 2.68 2.61
2.69 2.61 2.53 2.45 2.37
2.53 2.45 2.37 2.29 2.21
2.42 2.34 2.25 2.18 2.10
2.33 2.25 2.17 2.09 2.01
2.27 2.18 2.10 2.02 1.94
2.21 2.12 2.04 1.96 1.88
2.16 2.08 1.99 1.91 1.83
2.09 2.00 1.92 1.83 1.75
2.01 1.92 1.84 1.75 1.67
1.93 1.84 1.75 1.66 1.57
1.89 1.79 1.70 1.61 1.52
1.84 1.74 1.65 1.55 1.46
1.79 1.69 1.59 1.50 1.39
1.74 1.64 1.53 1.43 1.32
1.68 1.58 1.47 1.35 1.22
1.62 1.51 1.39 1.25 1.00
9-338
a n2 = degrees of freedom for denominator.
MMPDS-06 1 April 2011
1
161.4 18.51 10.13 7.71
1
Table 9.10.3. 0.975 Fractilesa of the F Distribution Associated with n1 and n2 Degrees of Freedom, F.975 (n1, n2)
δ , degrees of freedom for numerator 1
δ
b 2
2
3
4
5
6
7
8
9
10
12
15
20
24
30
40
60
120
4
1 2 3 4
647.8 38.51 17.44 12.22
799.5 39.00 16.04 10.65
864.2 39.17 15.44 9.98
899.6 39.25 15.10 9.60
921.8 39.30 14.88 9.36
937.1 39.33 14.73 9.20
948.2 39.36 14.62 9.07
956.7 39.37 14.54 8.98
963.3 39.39 14.47 8.90
968.6 39.40 14.42 8.84
976.7 39.41 14.34 8.75
984.9 39.43 14.25 8.66
993.1 39.45 14.17 8.56
997.2 39.46 14.12 8.51
1001 39.45 14.08 8.46
1006 39.47 14.04 8.41
1010 39.48 13.99 8.36
1014 39.99 13.95 8.31
1018 39.50 13.90 8.26
5 6 7 8 9
10.01 8.81 8.07 7.57 7.21
8.43 7.26 6.54 6.06 5.71
7.76 6.60 5.89 5.42 5.08
7.39 6.23 5.52 5.05 4.72
7.15 5.99 5.29 4.82 4.48
6.98 5.82 5.12 4.65 4.32
6.85 5.70 4.99 4.53 4.20
6.76 5.60 4.90 4.43 4.10
6.68 5.52 4.82 4.36 4.03
6.62 5.46 4.76 4.30 3.96
6.52 5.37 4.67 4.20 3.87
6.43 5.27 4.57 4.10 3.77
6.33 5.17 4.47 4.00 3.67
6.28 5.12 4.42 3.95 3.61
6.23 5.07 4.36 3.89 3.56
6.18 5.01 4.31 3.84 3.51
6.12 4.96 4.25 3.78 3.45
6.07 4.90 4.20 3.73 3.39
6.02 4.85 4.14 3.67 3.33
10 11 12 13 14
6.94 6.72 6.55 6.41 6.30
5.46 5.26 5.10 4.97 4.86
4.83 4.63 4.47 4.35 4.24
4.47 4.28 4.12 4.00 3.89
4.24 4.04 3.89 3.77 3.66
4.07 3.88 3.73 3.60 3.50
3.95 3.76 3.61 3.48 3.38
3.85 3.66 3.51 3.39 3.29
3.78 3.59 3.44 3.31 3.21
3.72 3.53 3.37 3.25 3.15
3.62 3.43 3.28 3.15 3.05
3.52 3.33 3.18 3.05 2.95
3.42 3.23 3.07 2.95 2.84
3.37 3.17 3.02 2.89 2.79
3.31 3.12 2.96 2.84 2.73
3.26 3.06 2.91 2.78 2.67
3.20 3.00 2.85 2.72 2.61
3.14 2.94 2.79 2.66 2.55
3.08 2.88 2.72 2.60 2.49
15 16 17 18 19
6.20 6.12 6.04 5.98 5.92
4.77 4.69 4.62 4.56 4.51
4.15 4.08 4.01 3.95 3.90
3.80 3.73 3.66 3.61 3.56
3.58 3.50 3.44 3.38 3.33
3.41 3.34 3.28 3.22 3.17
3.29 3.22 3.16 3.10 3.05
3.20 3.12 3.06 3.01 2.96
3.12 3.05 2.98 2.93 2.88
3.06 2.99 2.92 2.87 2.82
2.96 2.89 2.82 2.77 2.72
2.86 2.79 2.72 2.67 2.62
2.76 2.68 2.62 2.56 2.51
2.70 2.63 2.56 2.50 2.45
2.64 2.57 2.50 2.44 2.39
2.59 2.51 2.44 2.38 2.33
2.52 2.45 2.38 2.32 2.27
2.46 2.38 2.32 2.26 2.20
2.40 2.32 2.25 2.19 2.13
20 21 22 23 24
5.87 5.83 5.79 5.75 5.72
4.46 4.42 4.38 4.25 4.32
3.86 3.82 3.78 3.75 3.72
3.51 3.48 3.44 3.41 3.38
3.29 3.25 3.22 3.18 3.15
3.13 3.09 3.05 3.02 2.99
3.01 2.97 2.93 2.90 2.87
2.91 2.87 2.84 2.81 2.78
2.84 2.80 2.76 2.73 2.70
2.77 2.73 2.70 2.67 2.64
2.68 2.64 2.60 2.57 2.54
2.57 2.53 2.50 2.47 2.44
2.46 2.42 2.39 2.36 2.33
2.41 2.37 2.33 2.30 2.27
2.36 2.31 2.27 2.24 2.21
2.29 2.25 2.21 2.18 2.15
2.22 2.18 2.14 2.11 2.08
2.16 2.11 2.08 2.04 2.01
2.09 2.04 2.00 1.97 1.94
25 26 27 28 29
5.69 5.66 5.63 5.61 5.59
4.29 4.27 4.24 4.22 4.20
3.69 3.67 3.65 3.63 3.61
3.35 3.33 3.31 3.29 3.27
3.13 3.10 3.08 3.06 3.04
2.97 2.94 2.92 2.90 2.88
2.85 2.82 2.80 2.78 2.76
2.75 2.73 2.71 2.69 2.67
2.68 2.65 2.63 2.61 2.59
2.61 2.59 2.57 2.55 2.53
2.51 2.49 2.47 2.45 2.43
2.41 2.39 2.36 2.34 2.32
2.30 2.28 2.25 2.23 2.21
2.24 2.22 2.19 2.17 2.15
2.18 2.16 2.13 2.11 2.09
2.12 2.09 2.07 2.06 2.03
2.05 2.03 2.00 1.98 1.96
1.98 1.95 1.93 1.91 1.89
1.91 1.88 1.85 1.83 1.81
30 40 60 120 4
5.57 5.42 5.29 5.15 5.02
4.18 4.05 3.93 3.80 3.69
3.59 3.46 3.34 3.23 3.12
3.25 3.13 3.01 2.89 2.79
3.03 2.90 2.79 2.67 2.57
2.87 2.74 2.63 2.52 2.41
2.75 2.62 2.51 2.39 2.29
2.65 2.53 2.41 2.30 2.19
2.57 2.45 2.33 2.22 2.11
2.51 2.39 2.27 2.16 2.05
2.41 2.29 2.17 2.05 1.94
2.31 2.18 2.06 1.94 1.83
2.20 2.07 1.94 1.82 1.71
2.14 2.01 1.88 1.76 1.64
2.07 1.94 1.82 1.69 1.57
2.01 1.88 1.74 1.61 1.48
1.94 1.80 1.67 1.53 1.39
1.87 1.72 1.58 1.43 1.27
1.79 1.64 1.48 1.31 1.00
a See following page for footnote. b n2 = degrees of freedom for denominator
MMPDS-06 1 April 2011
9-339
1
MMPDS-06 1 April 2011 Table 9.10.3. 0.975 Fractilesa of the F Distribution Associated with n1 and n2 degrees of Freedom F.975 (n1,n2) (Continued) a The following equation may be used to compute 0.975 fractiles of the F distribution in lieu of using table values:
F.975 . exp
2δ
1 %
z 2 &1 4σ2 & 3 3
% 2σz
1 %
σ2(z 2 & 3) 6
1/2
where z δ σ2 γ1 γ2
= = = = =
1.96 0.5 [1/(γ2 - 1) - 1/(γ1 - 1)] 0.5 [(1/(γ2 - 1) + 1(γ1 - 1)] degrees of freedom for numerator degrees of freedom for denominator.
This approximation is accurate to within 0.4% for γ1 $ 10 and γ2 $ 16. See Reference 9.10.3.
Table 9.10.4. 0.95 and 0.975 Fractilesa of the t Distribution Associated with df Degrees of Freedom df 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 a
t.95 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725
t.975 12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086
df 21 22 23 24 25 26 27 28 29 30 40 50 60 80 100 120 200 500 4
t.95 1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.697 1.684 1.676 1.671 1.664 1.660 1.658 1.653 1.648 1.645
t.975 2.080 2.074 2.069 2.064 2.060 2.056 2.052 2.048 2.045 2.042 2.021 2.009 2.000 1.990 1.984 1.980 1.972 1.965 1.960
The following equations may be used to compute 0.95 and 0.975 fractiles of the t distribution in lieu of using table values: t.95 . 1.645 + exp [0.377 - 0.990 ln(γ) + 1.15/γ] t.975 . 1.96 + exp [0.779 - 0.980 ln(γ) + 1.57/γ] where γ is the degrees of freedom (df). These approximations are accurate to within 0.5% for γ $ 4.
9-340
MMPDS-06 1 April 2011 Table 9.10.5. Area Under the Normal Curve from -4 4 to the Mean + Zp Standard Deviationsa,b Zp
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
.0 .1 .2 .3 .4
.5000 .5398 .5793 .6179 .6554
.5040 .5438 .5832 .6217 .6591
.5080 .5478 .5871 .6255 .6628
.5120 .5517 .5910 .6293 .6664
.5160 .5557 .5948 .6331 .6700
.5199 .5596 .5987 .6368 .6736
.5239 .5636 .6026 .6406 .6772
.5279 .5675 .6064 .6443 .6808
.5319 .5714 .6103 .6480 .6844
.5359 .5753 .6141 .6517 .6879
.5 .6 .7 .8 .9
.6915 .7257 .7580 .7881 .8159
.6950 .7291 .7611 .7910 .8186
.6985 .7324 .7642 .7939 .8212
.7019 .7357 .7673 .7967 .8238
.7054 .7389 .7704 .7995 .8264
.7088 .7422 .7734 .8023 .8289
.7123 .7454 .7764 .8051 .8315
.7157 .7486 .7794 .8078 .8340
.7190 .7517 .7823 .8106 .8365
.7224 .7549 .7852 .8133 .8389
1.0 1.1 1.2 1.3 1.4
.8413 .8643 .8849 .9032 .9192
.8438 .8665 .8869 .9049 .9207
.8461 .8686 .8888 .9066 .9222
.8485 .8708 .8907 .9082 .9236
.8508 .8729 .8925 .9099 .9251
.8531 .8749 .8944 .9115 .9265
.8554 .8770 .8962 .9131 .9279
.8577 .8790 .8980 .9147 .9292
.8599 .8810 .8997 .9162 .9306
.8621 .8820 .9015 .9177 .9319
1.5 1.6 1.7 1.8 1.9
.9332 .9452 .9554 .9641 .9713
.9345 .9463 .9564 .9649 .9719
.9357 .9474 .9573 .9656 .9726
.9370 .9484 .9582 .9664 .9732
.9382 .9495 .9591 .9671 .9738
.9394 .9505 .9599 .9678 .9744
.9406 .9515 .9608 .9686 .9750
.9418 .9525 .9616 .9693 .9756
.9429 .9535 .9625 .9699 .9761
.9441 .9545 .9633 .9706 .9767
2.0 2.1 2.2 2.3 2.4
.9772 .9821 .9861 .9893 .9918
.9778 .9826 .9864 .9896 .9920
.9783 .9830 .9868 .9898 .9922
.9788 .9834 .9871 .9901 .9925
.9793 .9838 .9875 .9904 .9927
.9798 .9842 .9878 .9906 .9929
.9803 .9846 .9881 .9909 .9931
.9808 .9850 .9884 .9911 .9932
.9812 .9854 .9887 .9913 .9934
.9817 .9857 .9890 .9916 .9936
2.5 2.6 2.7 2.8 2.9
.9938 .9953 .9965 .9974 .9981
.9940 .9955 .9966 .9975 .9982
.9941 .9956 .9967 .9976 .9982
.9943 .9957 .9968 .9977 .9983
.9945 .9959 .9969 .9977 .9984
.9946 .9960 .9970 .9978 .9984
.9948 .9961 .9971 .9979 .9985
.9949 .9962 .9972 .9979 .9985
.9951 .9963 .9973 .9980 .9986
.9952 .9964 .9974 .9981 .9986
3.0 3.1 3.2 3.3 3.4
.9987 .9990 .9993 .9995 .9997
.9987 .9991 .9993 .9995 .9997
.9987 .9991 .9994 .9995 .9997
.9988 .9991 .9994 .9996 .9997
.9988 .9992 .9994 .9996 .9997
.9989 .9992 .9994 .9996 .9997
.9989 .9992 .9994 .9996 .9997
.9989 .9992 .9995 .9996 .9997
.9990 .9993 .9995 .9996 .9997
.9990 .9993 .9995 .9997 .9998
a For negative values of Zp, subtract the tabular value from unity. b The following equation may be used to compute the probabilities in lieu of using table values: where
p . 0.5 {1 - [1 + (A + BZp)C]D + [1 + (A - BZp)C]D}
A = 0.644693 B = 0.161984 C = 4.874 D = -6.158 This approximation is accurate to within 0.07% of the true probabilities, see Reference 9.10.5.
9-341
MMPDS-06 1 April 2011
Table 9.10.6. One-Sided Tolerance-Limit Factors for the Three-Parameter Weibull Acceptability Test with 95 Percent Confidence
Sample Size 10 15 20 25 30 35 40 50 75 100 150 200 300 400 500 750 1,000 2,000 5,000 10,000
V99 -4.46 -4.77 -4.98 -5.12 -5.23 -5.32 -5.40 -5.51 -5.71 -5.82 -5.97 -6.05 -6.17 -6.23 -6.27 -6.29 -6.34 -6.39 -6.51 -6.55 -6.65
4
9-342
MMPDS-06 1 April 2011
Table 9.10.7 One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution with 95 Percent Confidence
V99 for T99
V90 for T90
N
Uncensored
20% Censored
50% Censored
Uncensored
20% Censored
50% Censored
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
12.330 11.885 11.520 11.214 10.955 10.730 10.535 10.362 10.208 10.071 9.946 9.834 9.731 9.636 9.549 9.469 9.394 9.325 9.260 9.199 9.142 9.089 9.038 8.990 8.945 8.902 8.862 8.823 8.786 8.751 8.717 8.685 8.654 8.624 8.596 8.569 8.543 8.517 8.493
16.508 15.700 15.053 14.522 14.078 13.700 13.374 13.090 12.840 12.617 12.417 12.238 12.074 11.926 11.789 11.664 11.548 11.441 11.341 11.248 11.160 11.078 11.002 10.929 10.861 10.796 10.735 10.676 10.621 10.568 10.518 10.470 10.424 10.380 10.338 10.298 10.259 10.221 10.186
29.921 27.134 25.086 23.514 22.266 21.251 20.406 19.692 19.080 18.548 18.082 17.669 17.300 16.969 16.670 16.398 16.150 15.922 15.712 15.518 15.338 15.170 15.014 14.868 14.730 14.601 14.479 14.364 14.256 14.153 14.055 13.962 13.873 13.789 13.708 13.631 13.558 13.487 13.419
6.763 6.529 6.337 6.177 6.040 5.922 5.820 5.729 5.649 5.577 5.512 5.453 5.399 5.349 5.304 5.262 5.223 5.187 5.153 5.121 5.091 5.063 5.037 5.012 4.989 4.966 4.945 4.925 4.906 4.887 4.870 4.853 4.837 4.822 4.807 4.793 4.779 4.766 4.753
8.466 8.067 7.747 7.485 7.266 7.079 6.918 6.778 6.655 6.545 6.447 6.358 6.278 6.204 6.137 6.075 6.018 5.966 5.916 5.870 5.828 5.787 5.750 5.714 5.680 5.648 5.618 5.590 5.562 5.537 5.512 5.488 5.466 5.444 5.423 5.404 5.385 5.366 5.349
13.182 12.004 11.138 10.474 9.946 9.516 9.159 8.857 8.597 8.372 8.174 8.000 7.843 7.703 7.577 7.461 7.356 7.260 7.171 7.088 7.012 6.941 6.875 6.813 6.754 6.700 6.648 6.599 6.553 6.510 6.468 6.429 6.391 6.356 6.321 6.289 6.258 6.228 6.199
9-343
MMPDS-06 1 April 2011 Table 9.10.7. One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution with 95 Percent Confidence (Continued)
V99 for T99 N
Uncensored
20% Censored
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
8.469 8.447 8.425 8.404 8.383 8.364 8.344 8.326 8.308 8.290 8.273 8.257 8.241 8.225 8.210 8.195 8.181 8.167 8.153 8.140 8.127 8.114 8.102 8.090 8.078 8.067 8.055 8.044 8.034 8.023 8.013 8.003 7.993 7.983 7.974 7.964 7.955 7.946 7.938 7.929 7.921
10.151 10.118 10.086 10.055 10.025 9.996 9.968 9.940 9.914 9.889 9.864 9.840 9.817 9.794 9.772 9.751 9.730 9.709 9.690 9.671 9.652 9.634 9.616 9.598 9.581 9.565 9.549 9.533 9.517 9.502 9.487 9.473 9.459 9.445 9.431 9.418 9.405 9.392 9.380 9.367 9.355
V90 for T90 50% Censored 13.354 13.292 13.232 13.174 13.118 13.064 13.012 12.962 12.914 12.867 12.822 12.778 12.735 12.694 12.654 12.615 12.577 12.541 12.505 12.470 12.436 12.404 12.372 12.340 12.310 12.280 12.252 12.223 12.196 12.169 12.143 12.117 12.092 12.067 12.043 12.020 11.997 11.975 11.952 11.931 11.910
9-344
Uncensored
20% Censored
50% Censored
4.741 4.729 4.718 4.707 4.696 4.686 4.676 4.666 4.657 4.648 4.639 4.631 4.622 4.614 4.606 4.599 4.591 4.584 4.577 4.570 4.563 4.557 4.550 4.544 4.538 4.532 4.526 4.520 4.515 4.509 4.504 4.499 4.494 4.489 4.484 4.479 4.474 4.470 4.465 4.461 4.456
5.332 5.315 5.300 5.284 5.270 5.255 5.242 5.228 5.216 5.203 5.191 5.179 5.168 5.157 5.146 5.135 5.125 5.115 5.106 5.096 5.087 5.078 5.069 5.061 5.053 5.044 5.036 5.029 5.021 5.014 5.006 4.999 4.992 4.986 4.979 4.973 4.966 4.960 4.954 4.948 4.942
6.171 6.145 6.119 6.095 6.071 6.048 6.026 6.005 5.985 5.965 5.946 5.927 5.909 5.892 5.875 5.858 5.842 5.827 5.811 5.797 5.782 5.769 5.755 5.742 5.729 5.716 5.704 5.692 5.681 5.669 5.658 5.647 5.637 5.626 5.616 5.606 5.596 5.587 5.578 5.568 5.559
MMPDS-06 1 April 2011 Table 9.10.7. One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution with 95 Percent Confidence (Continued)
V99 for T99 N
Uncensored
20% Censored
90 91 92 93 94 95 96 97 98 99 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160
7.912 7.904 7.896 7.888 7.881 7.873 7.866 7.859 7.851 7.844 7.837 7.824 7.811 7.798 7.786 7.774 7.762 7.751 7.740 7.729 7.719 7.709 7.699 7.690 7.680 7.671 7.663 7.654 7.646 7.637 7.629 7.622 7.614 7.606 7.599 7.592 7.585 7.578 7.571 7.565 7.558
9.344 9.332 9.321 9.309 9.298 9.288 9.277 9.267 9.257 9.247 9.237 9.217 9.199 9.181 9.163 9.146 9.130 9.114 9.099 9.084 9.069 9.055 9.041 9.028 9.015 9.002 8.989 8.977 8.965 8.954 8.943 8.932 8.921 8.910 8.900 8.890 8.880 8.871 8.861 8.852 8.843
V90 for T90 50% Censored 11.889 11.869 11.849 11.829 11.810 11.791 11.773 11.755 11.737 11.720 11.703 11.669 11.637 11.606 11.576 11.546 11.518 11.491 11.464 11.439 11.414 11.389 11.366 11.343 11.320 11.299 11.278 11.257 11.237 11.217 11.198 11.180 11.161 11.144 11.126 11.109 11.093 11.077 11.061 11.045 11.030
9-345
Uncensored
20% Censored
50% Censored
4.452 4.448 4.444 4.440 4.436 4.432 4.428 4.424 4.420 4.417 4.413 4.406 4.399 4.393 4.387 4.380 4.374 4.369 4.363 4.357 4.352 4.347 4.342 4.337 4.332 4.327 4.323 4.318 4.314 4.310 4.306 4.302 4.298 4.294 4.290 4.286 4.283 4.279 4.276 4.272 4.269
4.936 4.930 4.925 4.919 4.914 4.909 4.904 4.899 4.894 4.889 4.884 4.874 4.865 4.857 4.848 4.840 4.832 4.824 4.816 4.809 4.802 4.795 4.788 4.782 4.775 4.769 4.763 4.757 4.751 4.746 4.740 4.735 4.730 4.724 4.719 4.715 4.710 4.705 4.700 4.696 4.692
5.551 5.542 5.534 5.525 5.517 5.509 5.502 5.494 5.486 5.479 5.472 5.458 5.444 5.431 5.418 5.406 5.394 5.382 5.371 5.360 5.349 5.339 5.329 5.319 5.310 5.301 5.292 5.283 5.275 5.266 5.258 5.250 5.243 5.235 5.228 5.221 5.214 5.207 5.200 5.194 5.187
MMPDS-06 1 April 2011 Table 9.10.7. One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution with 95 Percent Confidence (Continued)
V99 for T99 N
Uncensored
20% Censored
162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284
7.552 7.546 7.540 7.534 7.528 7.522 7.517 7.511 7.506 7.501 7.495 7.490 7.485 7.480 7.475 7.471 7.466 7.461 7.457 7.452 7.443 7.435 7.427 7.419 7.411 7.404 7.396 7.389 7.382 7.375 7.369 7.363 7.356 7.350 7.344 7.339 7.333 7.327 7.322 7.317 7.312
8.834 8.826 8.817 8.809 8.801 8.793 8.785 8.777 8.770 8.762 8.755 8.748 8.741 8.734 8.727 8.720 8.714 8.707 8.701 8.695 8.683 8.671 8.659 8.648 8.638 8.627 8.617 8.607 8.597 8.588 8.579 8.570 8.562 8.553 8.545 8.537 8.529 8.522 8.514 8.507 8.500
V90 for T90 50% Censored 11.015 11.001 10.987 10.973 10.959 10.946 10.932 10.920 10.907 10.894 10.882 10.870 10.859 10.847 10.836 10.825 10.814 10.803 10.793 10.782 10.762 10.742 10.724 10.705 10.687 10.670 10.653 10.637 10.621 10.606 10.591 10.576 10.562 10.548 10.535 10.522 10.509 10.497 10.485 10.473 10.461
9-346
Uncensored
20% Censored
50% Censored
4.266 4.263 4.260 4.257 4.254 4.251 4.248 4.245 4.242 4.239 4.237 4.234 4.231 4.229 4.226 4.224 4.221 4.219 4.217 4.214 4.210 4.206 4.201 4.197 4.193 4.189 4.186 4.182 4.178 4.175 4.171 4.168 4.165 4.162 4.159 4.156 4.153 4.150 4.147 4.145 4.142
4.687 4.683 4.679 4.675 4.671 4.667 4.663 4.659 4.656 4.652 4.649 4.645 4.642 4.638 4.635 4.632 4.629 4.625 4.622 4.619 4.613 4.608 4.602 4.597 4.591 4.586 4.581 4.576 4.572 4.567 4.563 4.559 4.554 4.550 4.546 4.542 4.539 4.535 4.531 4.528 4.524
5.181 5.175 5.169 5.163 5.157 5.151 5.146 5.140 5.135 5.130 5.125 5.120 5.115 5.110 5.105 5.100 5.096 5.091 5.087 5.082 5.074 5.066 5.058 5.050 5.042 5.035 5.028 5.021 5.014 5.008 5.002 4.995 4.990 4.984 4.978 4.972 4.967 4.962 4.957 4.952 4.947
MMPDS-06 1 April 2011 Table 9.10.7. One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution with 95 Percent Confidence (Continued)
V99 for T99 N
Uncensored
20% Censored
288 292 296 300 310 320 330 340 350 360 370 380 390 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000 1100 1200 1300
7.307 7.302 7.297 7.292 7.281 7.270 7.260 7.250 7.241 7.232 7.223 7.215 7.207 7.200 7.182 7.166 7.151 7.138 7.125 7.114 7.103 7.093 7.083 7.074 7.066 7.058 7.050 7.043 7.037 7.030 7.024 7.018 7.013 7.007 7.002 6.997 6.993 6.988 6.972 6.957 6.945
8.493 8.486 8.479 8.473 8.457 8.442 8.428 8.415 8.402 8.390 8.378 8.367 8.356 8.346 8.321 8.299 8.279 8.261 8.244 8.228 8.213 8.199 8.186 8.174 8.162 8.152 8.141 8.132 8.123 8.114 8.106 8.098 8.090 8.083 8.076 8.069 8.063 8.057 8.034 8.015 7.998
V90 for T90 50% Censored 10.450 10.439 10.428 10.417 10.392 10.368 10.345 10.323 10.302 10.282 10.263 10.245 10.227 10.211 10.172 10.136 10.104 10.074 10.047 10.021 9.997 9.975 9.955 9.935 9.917 9.900 9.884 9.868 9.854 9.840 9.827 9.814 9.802 9.791 9.780 9.769 9.759 9.750 9.714 9.684 9.657
9-347
Uncensored
20% Censored
50% Censored
4.139 4.137 4.134 4.132 4.126 4.121 4.115 4.110 4.106 4.101 4.097 4.092 4.088 4.084 4.075 4.067 4.060 4.053 4.046 4.040 4.035 4.030 4.025 4.020 4.016 4.012 4.008 4.004 4.001 3.998 3.994 3.991 3.989 3.986 3.983 3.981 3.978 3.976 3.968 3.960 3.954
4.521 4.518 4.514 4.511 4.504 4.496 4.489 4.483 4.477 4.471 4.465 4.459 4.454 4.449 4.437 4.427 4.417 4.408 4.400 4.392 4.385 4.378 4.372 4.366 4.360 4.355 4.350 4.345 4.341 4.337 4.332 4.329 4.325 4.321 4.318 4.315 4.312 4.309 4.298 4.288 4.280
4.942 4.937 4.933 4.928 4.917 4.907 4.898 4.888 4.880 4.871 4.863 4.855 4.848 4.841 4.825 4.810 4.796 4.783 4.772 4.761 4.751 4.742 4.733 4.725 4.717 4.710 4.703 4.697 4.690 4.685 4.679 4.674 4.669 4.664 4.659 4.655 4.651 4.646 4.632 4.619 4.608
MMPDS-06 1 April 2011 Table 9.10.7. One-Sided Tolerance Factors for the Three-Parameter Weibull Distribution with 95 Percent Confidence (Continued)
V99 for T99 N
Uncensored
20% Censored
1400 1500 1600 1700 1800 1900 2000 3000 4000 5000 6000 7000 8000 9000 10000 15000 20000 25000 30000
6.934 6.924 6.914 6.906 6.899 6.892 6.886 6.841 6.815 6.797 6.784 6.773 6.765 6.758 6.753 6.733 6.722 6.714 6.708
7.983 7.969 7.957 7.946 7.936 7.926 7.918 7.858 7.822 7.798 7.781 7.767 7.756 7.747 7.739 7.713 7.698 7.688 7.680
V90 for T90 50% Censored 9.633 9.612 9.593 9.575 9.560 9.545 9.532 9.438 9.383 9.346 9.319 9.298 9.281 9.267 9.255 9.215 9.192 9.176 9.164
Uncensored
20% Censored
50% Censored
3.948 3.943 3.938 3.934 3.930 3.927 3.923 3.901 3.887 3.878 3.871 3.866 3.862 3.859 3.856 3.846 3.840 3.836 3.833
4.273 4.266 4.260 4.255 4.250 4.246 4.241 4.212 4.195 4.183 4.175 4.168 4.163 4.159 4.155 4.142 4.135 4.130 4.126
4.597 4.589 4.580 4.573 4.567 4.560 4.555 4.515 4.492 4.477 4.465 4.456 4.449 4.443 4.438 4.422 4.412 4.405 4.400
The values provided in Table 9.10.7 are calculated by the following formula: 2
d
&1
ckn
a11%2a01g(p)%a00g(p)2%c 2(a01&a00a11)/n 1&c 2a00/n
1/2
% n
1/2
g(p)&kn
g(p)%c 2a01/n 1&c 2a00/n
where d=0.7796968, c=1.645, kn=(n/(n-1))½, p is the percentile being estimated (T99: p=0.01, T90: p=0.10), and g(p)=0.45 + 0.7797 ln(-ln(1-p)). The constants a00, a01, and a11 depend on the level of censoring, and are given below. The statistical methodology employed here is discussed in detail in Reference 9.10.7.
Constant
Uncensored
20% Censored
50% Censored
a00 a01 a11
0.6079 -0.4740 0.9775
0.9282 -0.4562 0.9841
1.7162 -0.0428 1.2169
9-348
MMPDS-06 1 April 2011 Table 9.10.8. γ-values for Computing Threshold of Three-Parameter Weibull Distribution Anderson-Darling Test Uncensored or 20% Censored n
γ50,0 or γ50,20
10
0.50000
15
0.60692
20
50% Censored
γ50,50
T99
T90
Uncensored
20% Censored
50% Censored
γ90,50
γ90,0
γ90,20
0.79644
0.85391
0.50000
0.75277
0.78329
0.62147
0.57859
0.73316
25
0.63033
0.60692
30
0.64057
0.62147
35
0.64379
40
Uncensored
20% Censored
50% Censored
γ99,50
γ99,0
γ99,20
0.85162
0.86596
.
0.97146
0.81292
0.81934
0.86090
0.75477
0.91726
0.79728
0.80072
0.83039
0.72186
0.73795
0.86979
0.78583
0.78741
0.80818
0.71316
0.72479
0.83400
0.77155
0.77185
0.79208
0.62147
0.70831
0.71771
0.81708
0.76529
0.76477
0.78734
0.64630
0.63033
0.70472
0.71247
0.79441
0.76006
0.75893
0.77634
45
0.64997
0.63629
0.70113
0.70736
0.77717
0.75255
0.75101
0.76759
50
0.65135
0.64057
0.69900
0.70434
0.76374
0.74903
0.74714
0.76046
55
0.65252
0.64379
0.69724
0.70187
0.75306
0.74592
0.74376
0.75451
60
0.65440
0.64630
0.69522
0.69914
0.74440
0.74113
0.73882
0.74947
65
0.65516
0.64630
0.69401
0.69748
0.73985
0.73881
0.73632
0.74809
70
0.65583
0.64832
0.69296
0.69605
0.73347
0.73670
0.73406
0.74395
75
0.65697
0.64997
0.69163
0.69433
0.72810
0.73331
0.73062
0.74033
80
0.65745
0.65135
0.69084
0.69327
0.72352
0.73164
0.72885
0.73713
85
0.65789
0.65252
0.69013
0.69233
0.71959
0.73009
0.72721
0.73428
90
0.65865
0.65353
0.68917
0.69113
0.71618
0.72753
0.72464
0.73172
95
0.65898
0.65353
0.68860
0.69040
0.71433
0.72625
0.72330
0.73107
100
0.65929
0.65440
0.68808
0.68973
0.71157
0.72505
0.72206
0.72882
105
0.65983
0.65516
0.68735
0.68884
0.70912
0.72303
0.72004
0.72678
110
0.66007
0.65583
0.68692
0.68829
0.70694
0.72201
0.71899
0.72491
115
0.66030
0.65643
0.68652
0.68779
0.70499
0.72105
0.71799
0.72319
120
0.66071
0.65697
0.68593
0.68709
0.70323
0.71940
0.71636
0.72160
125
0.66090
0.65697
0.68559
0.68667
0.70229
0.71857
0.71551
0.72122
130
0.66107
0.65745
0.68528
0.68628
0.70079
0.71778
0.71469
0.71978
135
0.66139
0.65789
0.68479
0.68571
0.69942
0.71640
0.71334
0.71844
140
0.66154
0.65828
0.68452
0.68537
0.69817
0.71570
0.71263
0.71718
145
0.66167
0.65865
0.68425
0.68506
0.69702
0.71503
0.71195
0.71601
150
0.66193
0.65898
0.68385
0.68459
0.69597
0.71385
0.71080
0.71491
155
0.66205
0.65898
0.68361
0.68431
0.69541
0.71325
0.71019
0.71466
160
0.66216
0.65929
0.68339
0.68404
0.69448
0.71268
0.70961
0.71364
165
0.66237
0.65957
0.68304
0.68365
0.69361
0.71166
0.70862
0.71268
170
0.66247
0.65983
0.68284
0.68341
0.69281
0.71114
0.70810
0.71177
175
0.66256
0.66007
0.68266
0.68319
0.69206
0.71064
0.70760
0.71091
180
0.66273
0.66030
0.68235
0.68285
0.69135
0.70975
0.70673
0.71010
185
0.66282
0.66030
0.68218
0.68265
0.69100
0.70930
0.70628
0.70992
190
0.66289
0.66051
0.68201
0.68245
0.69036
0.70886
0.70584
0.70915
195
0.66304
0.66071
0.68174
0.68215
0.68977
0.70806
0.70507
0.70842
200
0.66311
0.66090
0.68159
0.68198
0.68921
0.70766
0.70467
0.70773
205
0.66318
0.66107
0.68145
0.68181
0.68868
0.70727
0.70428
0.70706
210
0.66331
0.66123
0.68121
0.68155
0.68818
0.70656
0.70360
0.70643
215
0.66337
0.66123
0.68108
0.68140
0.68793
0.70620
0.70324
0.70630
220
0.66342
0.66139
0.68095
0.68125
0.68747
0.70585
0.70289
0.70570
225
0.66353
0.66154
0.68073
0.68101
0.68704
0.70521
0.70228
0.70512
230
0.66358
0.66167
0.68061
0.68088
0.68663
0.70489
0.70196
0.70456
.
9-349
.
MMPDS-06 1 April 2011 Table 9.10.8. γ-values for Computing Threshold of Three-Parameter Weibull Distribution (continued) Anderson-Darling Test Uncensored or 20% Censored
50% Censored
T99
T90
20% Censored
50% Censored
20% Censored
50% Censored
n
γ50,0 or γ50,20
γ50,50
γ90,0
γ90,20
γ90,50
γ99,0
γ99,20
γ99,50
235
0.66364
0.66181
0.68049
0.68075
0.68623
0.70457
0.70165
0.70403
240 245 250 255 260 265 270 275 280 285 290 295 300 310 320 330 340 350 360 370 380 390 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 825 850 875 900 925 950 975 1000
0.66373 0.66378 0.66382 0.66391 0.66395 0.66399 0.66406 0.66410 0.66413 0.66420 0.66423 0.66426 0.66433 0.66438 0.66446 0.66454 0.66459 0.66466 0.66472 0.66476 0.66482 0.66487 0.66490 0.66501 0.66511 0.66519 0.66526 0.66534 0.66539 0.66545 0.66550 0.66554 0.66559 0.66563 0.66567 0.66570 0.66574 0.66576 0.66579 0.66582 0.66584 0.66587 0.66589 0.66591 0.66593 0.66595 0.66597
0.66193 0.66193 0.66205 0.66216 0.66227 0.66237 0.66247 0.66247 0.66256 0.66265 0.66273 0.66282 0.66289 0.66297 0.66311 0.66324 0.66331 0.66342 0.66353 0.66358 0.66368 0.66378 0.66382 0.66399 0.66417 0.66430 0.66441 0.66452 0.66461 0.66470 0.66480 0.66487 0.66494 0.66500 0.66506 0.66511 0.66517 0.66522 0.66526 0.66531 0.66534 0.66538 0.66542 0.66546 0.66549 0.66552 0.66554
0.68030 0.68019 0.68009 0.67991 0.67981 0.67971 0.67955 0.67946 0.67937 0.67922 0.67914 0.67906 0.67892 0.67877 0.67857 0.67838 0.67825 0.67807 0.67790 0.67779 0.67764 0.67749 0.67739 0.67707 0.67678 0.67655 0.67631 0.67608 0.67589 0.67569 0.67551 0.67536 0.67519 0.67503 0.67490 0.67476 0.67463 0.67452 0.67440 0.67428 0.67419 0.67408 0.67398 0.67389 0.67380 0.67371 0.67363
0.68053 0.68041 0.68029 0.68010 0.67999 0.67989 0.67971 0.67961 0.67951 0.67935 0.67926 0.67917 0.67902 0.67886 0.67864 0.67844 0.67830 0.67811 0.67794 0.67781 0.67765 0.67749 0.67739 0.67706 0.67675 0.67651 0.67626 0.67602 0.67583 0.67562 0.67543 0.67528 0.67511 0.67495 0.67481 0.67467 0.67454 0.67442 0.67430 0.67418 0.67409 0.67398 0.67387 0.67379 0.67369 0.67360 0.67353
0.68586 0.68568 0.68533 0.68500 0.68468 0.68438 0.68409 0.68396 0.68368 0.68342 0.68317 0.68293 0.68269 0.68237 0.68195 0.68156 0.68130 0.68095 0.68063 0.68041 0.68012 0.67984 0.67965 0.67912 0.67858 0.67816 0.67778 0.67743 0.67711 0.67682 0.67652 0.67627 0.67604 0.67583 0.67563 0.67545 0.67524 0.67508 0.67493 0.67478 0.67464 0.67451 0.67437 0.67425 0.67414 0.67403 0.67393
0.70399 0.70370 0.70341 0.70288 0.70261 0.70235 0.70186 0.70161 0.70137 0.70093 0.70070 0.70047 0.70006 0.69964 0.69906 0.69851 0.69815 0.69764 0.69716 0.69684 0.69639 0.69596 0.69568 0.69477 0.69395 0.69328 0.69258 0.69193 0.69140 0.69083 0.69030 0.68986 0.68939 0.68895 0.68859 0.68819 0.68781 0.68750 0.68715 0.68683 0.68656 0.68626 0.68597 0.68573 0.68547 0.68521 0.68500
0.70109 0.70080 0.70052 0.70002 0.69975 0.69949 0.69903 0.69879 0.69855 0.69813 0.69790 0.69768 0.69729 0.69688 0.69633 0.69580 0.69545 0.69497 0.69451 0.69420 0.69378 0.69337 0.69310 0.69224 0.69146 0.69083 0.69017 0.68955 0.68906 0.68852 0.68802 0.68762 0.68718 0.68676 0.68642 0.68605 0.68570 0.68541 0.68509 0.68479 0.68454 0.68426 0.68400 0.68377 0.68353 0.68330 0.68310
0.70352 0.70342 0.70293 0.70246 0.70200 0.70157 0.70114 0.70106 0.70066 0.70026 0.69988 0.69951 0.69916 0.69875 0.69809 0.69747 0.69711 0.69654 0.69600 0.69570 0.69520 0.69472 0.69446 0.69356 0.69258 0.69185 0.69117 0.69054 0.68995 0.68940 0.68879 0.68832 0.68788 0.68746 0.68706 0.68669 0.68626 0.68593 0.68561 0.68531 0.68502 0.68474 0.68442 0.68417 0.68393 0.68369 0.68347
Uncensored
9-350
Uncensored
MMPDS-06 1 April 2011
Anderson-Darling Test Uncensored or 20% Censored n 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 3000 4000 5000 6000 7000 8000 9000 10000
50% Censored
γ50,0 or γ50,20 0.66603 0.66609 0.66613 0.66617 0.66620 0.66623 0.66626 0.66628 0.66630 0.66632 0.66643 0.66649 0.66653 0.66655 0.66657 0.66658 0.66659 0.66660
T99
T90
Uncensored
20% Censored
50% Censored
Uncensored
20% Censored
50% Censored
γ50,50
γ90,0
γ90,20
γ90,50
γ99,0
γ99,20
γ99,50
0.66565 0.66574 0.66581 0.66587 0.66592 0.66597 0.66601 0.66605 0.66608 0.66611 0.66630 0.66639 0.66644 0.66648 0.66651 0.66653 0.66654 0.66656
0.67332 0.67305 0.67282 0.67261 0.67241 0.67225 0.67209 0.67194 0.67181 0.67168 0.67080 0.67027 0.66990 0.66963 0.66942 0.66924 0.66910 0.66898
0.67322 0.67295 0.67271 0.67250 0.67231 0.67214 0.67198 0.67184 0.67171 0.67158 0.67071 0.67019 0.66983 0.66956 0.66935 0.66919 0.66905 0.66893
0.67354 0.67321 0.67294 0.67269 0.67246 0.67227 0.67209 0.67193 0.67179 0.67165 0.67072 0.67017 0.66981 0.66953 0.66933 0.66916 0.66902 0.66890
0.68414 0.68339 0.68275 0.68216 0.68162 0.68116 0.68072 0.68032 0.67997 0.67963 0.67725 0.67584 0.67487 0.67415 0.67360 0.67315 0.67278 0.67247
0.68231 0.68162 0.68103 0.68049 0.68000 0.67958 0.67918 0.67882 0.67849 0.67819 0.67604 0.67477 0.67390 0.67326 0.67277 0.67237 0.67204 0.67176
0.68262 0.68188 0.68126 0.68069 0.68017 0.67973 0.67931 0.67893 0.67859 0.67827 0.67604 0.67474 0.67385 0.67321 0.67271 0.67230 0.67197 0.67169
The values of γ in Table 9.10.8 can be derived as percentiles of the beta distribution as follows. Let k be the greatest integer less than or equal to the minimum of 4n/15 and (1-p)n/3, where n represents the sample size and p represents the proportion of the sample being censored. When determining the γ value for an Anderson-Darling test (when calculating τ50), let θ=0.50. When calculating τ90 or τ99 let θ '
exp(M) 1 % exp(M)
where
M '
0.425384 & 0.74068p % 8.12668/n 0.58478 & 0.97165p
for calculating τ90
1.778 % 2.748/ n % p(7.051/ n & 1.253) 0.959
for calculating τ99.
The value of γ in Table 9.10.8 represents the θth percentile of the beta distribution with parameters 2k-2 and k. Note: The sequential Weibull procedure which makes use of Table 9.10.8 has only been validated for sample sizes between 50 and 1000.
9-351
MMPDS-06 1 April 2011
Table 9.10.9. Ranks, r, of Observations, n, for an Unknown Distribution Having the Probability and Confidence of T99 and T90 Values T99 Value n
r99
n
#298 299 473 628 773 913 1049 1182 1312 1441 1568 1693 1818 1941 2064 2185 2305 2425 2546 2665 2784 2902 3020 3137 3254 3371 3487 3603 3719 3834 3949 4064 4179 4293 4407 4521
a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
4635 4749 4862 4975 5088 5201 5314 5427 5539 5651 5764 5876 5988 6099 6211 6323 6434 6545 6657 6768 6879 6990 7100 7211 7322 7432 7543 7653 7763 7874 7984 8094 8204 8314 8423 8533
r99 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
T90 Value n
r99
8643 8753 8862 8972 9081 9190 9300 9409 9518 9627 9736 9845 9954 10063 10172 10281 10390 10498 10607 10716 10824 10933 11041 11150 11258 11366 11475 11583 11691
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
n
r90
n
r90
n
r90
#28 29 46 61 76 89 103 116 129 142 154 167 179 191 203 215 227 239 251 263 275 298 321 345 368 391 413 436 459 481 504 526 549 571 593 615
b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
638 660 682 704 726 781 836 890 945 999 1053 1107 1161 1269 1376 1483 1590 1696 1803 1909 2015 2120 2226 2331 2437 2542 2647 2752 2857 2962 3066 3171 3276 3380 3484 3589
52 54 56 58 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330
2693 3797 3901 4005 4109 4213 4317 4421 4525 4629 4733 4836 4940 5044 5147 5251 5354 5613 5871 6130 6388 6645 6903 7161 7418 7727 8036 8344 8652 8960 9268 9576 9884 10191 10499
340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 525 550 575 600 625 650 675 700 730 760 790 820 850 880 910 940 970 1000
a T99 value is lower than value of lowest observation. b T90 value is lower than value of lowest observation.
The following equations may be used to compute ranks in lieu of using table values or for n values greater than these presented in the table:
r99 ' n/100 & 1.645 99n/10000 % 0.29 % 19.1/n , for n $ 299
9-352
MMPDS-06 1 April 2011 rounded to the nearest integer. For n less than 299, the T99 value does not exist. This approximation is exact for all but 23 values of n in the range of the table (299 # n # 11691), which is an error rate of about 0.2%. For this small percentage of n values, the approximation gives an r value 1 below the actual r, resulting in a conservative T99 value. For T90 values, the approximation is
r90 ' n/10 & 1.645 9n/100 % 0.23 , for n $ 29 rounded to the nearest integer. For n less than 29, the T90 value does not exist. The approximation is exact for all but 12 values of n in the range of the table (29 # n # 10499), and errs conservatively by one rank for this small percentage (0.1%).
9-353
MMPDS-06 1 April 2011 Table 9.10.10. 0.05 Fractiles of the F Distribution Associated with n1 (numerator) and n2 (denominator) Degrees of Freedom n2 1 2 3 4
n1 1 0.006193 0.005012 0.004636 0.004453
2 0.054017 0.052632 0.052180 0.051957
3 0.098737 0.104689 0.107798 0.109683
4 0.129724 0.144004 0.151713 0.156538
5 0.151334 0.172827 0.184862 0.192598
6 0.167018 0.194429 0.210214 0.220572
7 0.178845 0.211086 0.230053 0.242700
8 0.188053 0.224267 0.245931 0.260562
9 0.195413 0.234935 0.258896 0.275248
5 6 7 8 9
0.004345 0.004274 0.004224 0.004187 0.004157
0.051823 0.051734 0.051671 0.051624 0.051587
0.110945 0.111849 0.112527 0.113055 0.113478
0.159845 0.162255 0.164090 0.165534 0.166701
0.198007 0.202008 0.205092 0.207541 0.209535
0.227927 0.233434 0.237718 0.241150 0.243961
0.251793 0.258667 0.264058 0.268404 0.271985
0.271187 0.279284 0.285676 0.290858 0.295148
0.287219 0.296406 0.303698 0.309638 0.314575
10 11 12 13 14
0.004134 0.004116 0.004099 0.004087 0.004076
0.051557 0.051533 0.051513 0.051496 0.051482
0.113824 0.114112 0.114356 0.114565 0.114746
0.167662 0.168469 0.169155 0.169746 0.170261
0.211190 0.212587 0.213780 0.214812 0.215714
0.246308 0.248297 0.250004 0.251486 0.252785
0.274988 0.277544 0.279746 0.281663 0.283348
0.298760 0.301846 0.304512 0.306841 0.308892
0.318747 0.322322 0.325421 0.328133 0.330527
15 16 17 18 19
0.004066 0.004057 0.004050 0.004043 0.004037
0.051469 0.051458 0.051448 0.051439 0.051432
0.114905 0.115045 0.115169 0.115280 0.115380
0.170712 0.171112 0.171469 0.171788 0.172077
0.216508 0.217214 0.217844 0.218411 0.218923
0.253932 0.254954 0.255868 0.256693 0.257439
0.284840 0.286171 0.287367 0.288445 0.289424
0.310713 0.312340 0.313804 0.315128 0.316330
0.332657 0.334564 0.336282 0.337838 0.339253
20 21 22 23 24
0.004032 0.004027 0.004023 0.004019 0.004015
0.051425 0.051419 0.051413 0.051408 0.051403
0.115471 0.115553 0.115628 0.115697 0.115761
0.172338 0.172576 0.172794 0.172994 0.173179
0.219388 0.219813 0.220202 0.220559 0.220889
0.258119 0.258739 0.259309 0.259833 0.260318
0.290316 0.291132 0.291882 0.292573 0.293213
0.317428 0.318433 0.319358 0.320212 0.321003
0.340547 0.341733 0.342826 0.343836 0.344771
25 26 27 28 29
0.004012 0.004009 0.004006 0.004003 0.004001
0.051399 0.051395 0.051391 0.051387 0.051384
0.115819 0.115874 0.115924 0.115971 0.116014
0.173349 0.173507 0.173654 0.173790 0.173918
0.221195 0.221478 0.221742 0.221988 0.222218
0.260767 0.261184 0.261573 0.261935 0.262275
0.293806 0.294357 0.294872 0.295352 0.295803
0.321736 0.322420 0.323057 0.323654 0.324213
0.345641 0.346451 0.347207 0.347915 0.348580
30 40 50 60 120 ∞
0.003998 0.003982 0.003972 0.003965 0.003949 0.003932
0.051381 0.051359 0.051346 0.051337 0.051315 0.051293
0.116055 0.116355 0.116537 0.116659 0.116968 0.117282
0.174038 0.174917 0.175454 0.175817 0.176738 0.177680
0.222434 0.224025 0.225002 0.225663 0.227353 0.229093
0.262594 0.264951 0.266406 0.267394 0.269930 0.272561
0.296225 0.299363 0.301309 0.302634 0.306049 0.309617
0.324738 0.328647 0.331082 0.332745 0.337049 0.341574
0.349204 0.353865 0.356781 0.358777 0.363964 0.369450
9-354
MMPDS-06 1 April 2011 Table 9.10.10. 0.05 Fractiles of the F Distribution Associated with n1 (numerator) and n2 (denominator) Degrees of Freedom n2
n1 10
12
15
20
24
30
40
60
120
∞
1
0.201426
0.210649
0.220115
0.229819
0.234760
0.239758
0.244813
0.249926
0.255094
0.260311
2
0.243735
0.257381
0.257381
0.286301
0.293873
0.301584
0.309432
0.317419
0.325544
0.333798
3
0.269668
0.286509
0.304193
0.322748
0.332360
0.342199
0.352268
0.362571
0.373111
0.383877
4
0.287517
0.306827
0.327271
0.348908
0.360193
0.371799
0.383734
0.396006
0.408624
0.421581
5
0.300676
0.321970
0.344674
0.368883
0.381584
0.394702
0.408252
0.422249
0.436710
0.451633
6
0.310832
0.333765
0.358363
0.384767
0.398694
0.413134
0.428109
0.443645
0.459769
0.476488
7
0.318932
0.343247
0.369464
0.397771
0.412775
0.428386
0.444637
0.461565
0.479209
0.497591
8
0.325557
0.351054
0.378674
0.408653
0.424614
0.441274
0.458680
0.476879
0.495927
0.515861
9
0.331084
0.357606
0.386455
0.417918
0.434737
0.452346
0.470803
0.490173
0.510526
0.531921
10
0.335769
0.363189
0.393125
0.425917
0.443510
0.461983
0.481406
0.501859
0.523434
0.546210
11
0.339794
0.368008
0.398914
0.432902
0.451201
0.470465
0.490778
0.512239
0.534962
0.559051
12
0.343291
0.372213
0.403989
0.439062
0.458005
0.477997
0.499137
0.521541
0.545347
0.325421
13
0.346359
0.375915
0.408478
0.44454
0.464076
0.484740
0.506648
0.529937
0.554769
0.581309
14
0.349073
0.379201
0.412479
0.449447
0.469528
0.490817
0.513443
0.537564
0.563371
0.591062
15
0.351492
0.382139
0.416069
0.453870
0.474457
0.496326
0.519626
0.544533
0.571266
0.600065
16
0.353661
0.384781
0.419309
0.457879
0.478936
0.501348
0.525279
0.550930
0.578549
0.608415
17
0.355618
0.387171
0.422249
0.461531
0.483026
0.505946
0.530473
0.556828
0.585294
0.616191
18
0.357392
0.389343
0.424929
0.464873
0.486777
0.510174
0.535263
0.562289
0.591565
0.623460
19
0.359009
0.391327
0.427383
0.467944
0.490230
0.514077
0.539697
0.567361
0.597415
0.630276
20
0.360488
0.393145
0.429639
0.470775
0.493422
0.517691
0.543815
0.572088
0.602889
0.636688
21
0.361847
0.394819
0.431720
0.473395
0.496380
0.521050
0.547652
0.580645
0.608026
0.642736
22
0.363099
0.396364
0.433645
0.475827
0.499131
0.524179
0.551236
0.584534
0.612858
0.648455
23
0.364257
0.397795
0.435433
0.478091
0.501696
0.527103
0.554593
0.588195
0.617415
0.653874
24
0.365330
0.399125
0.437096
0.480203
0.504093
0.529841
0.557744
0.591649
0.621722
0.659021
25
0.366329
0.400363
0.438649
0.482179
0.506340
0.532411
0.560709
0.594914
0.625799
0.663918
26
0.367261
0.401520
0.440101
0.484031
0.508449
0.534828
0.563503
0.598006
0.629667
0.668586
27
0.368131
0.402602
0.441462
0.485772
0.510433
0.537107
0.566143
0.600939
0.633343
0.673043
28
0.368946
0.403617
0.442741
0.487410
0.512304
0.539258
0.568640
0.603725
0.636841
0.677305
29
0.369712
0.404571
0.443945
0.488956
0.514070
0.541293
0.571006
0.606376
0.640176
0.681387
30
0.370432
0.405469
0.445080
0.490416
0.515741
0.543221
0.573253
0.627245
0.643359
0.685300
40
0.375819
0.412222
0.453664
0.501550
0.528554
0.558101
0.590738
0.641432
0.668806
0.717316
50
0.379201
0.416490
0.459140
0.508743
0.536901
0.567898
0.602408
0.641432
0.686568
0.740616
60
0.381523
0.419434
0.462940
0.513780
0.542782
0.574854
0.610780
0.651757
0.699784
0.758627
120
0.387579
0.427169
0.473024
0.527338
0.558771
0.594017
0.634272
0.681539
0.739707
0.818619
∞
0.394022
0.435492
0.484049
0.542521
0.576994
0.616393
0.662695
0.719746
0.797450
0.989651
9-355
MMPDS-06 1 April 2011
This page is intentionally blank.
9-356
MMPDS-06 1 April 2011
REFERENCES 9.1.5
Natrella, M.G., Experimental Statistics, National Bureau of Standards Handbook 91 (August 1, 1963).
9.2.3.5.3
Feddersen, C.E., “Evaluation and Prediction of the Residual Strength of Center-Cracked Tension Panels”, Damage Tolerance in Aircraft Structures, ASTM STP 486, American Society for Testing and Materials (1971).
9.2.5.1(a)
“Manual on Statistical Planning and Analysis for Fatigue Experiments”, ASTM STP 588 (1975).
9.2.5.1(b) ASTM Special Technical Publication No. 91-A, “A Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data”, Supplement to Manual on Fatigue Testing, STP No. 91 (1963). 9.2.5.1(c)
Landgraf, R.W., Morrow, J., and Endo, T., “Determination of the Cyclic Stress-Strain Curve”, Journal of Materials, JMLSA, Vol. 4, No. 1, March 1969, pp. 176-188.
9.2.5.2
Mandel, J. and Paule, R., “Interlaboratory Evaluation of a Material With Unequal Numbers of Replicates”, Analytical Chemistry, Vol. 42, No. 11, pp. 1194-1197 (September 1979), correction in Vol. 43, No. 10 (August 1971).
9.5.2.4
Neter, J. and Wasserman, W., “Applied Linear Statistical Models”, Richard D. Irwin (1974), pp. 160-165.
9.5.3.1
Scholz, F.W., and Stephens, M.A., “K-Sample Anderson-Darling Tests”, J. Amer. Statist. Assoc., 82, pp. 918-924 (Sept. 1987).
9.5.4.1(a)
Lawless, J.F., Statistical Models and Methods for Lifetime Data, John Wiley and Sons (1982), pp. 452-460.
9.5.4.1(b) D’Agostina, R.B. and Stephens, M.A., “Goodness-of-Fit Techniques,” Marcel Dekker, p. 123 (1987). 9.5.4.1(c)
Pierce, D.A. and Kopecky, K.J., “Testing Goodness of Fit for the Distribution of Errors in Regression Models”, Biometrika, 66, pp. 1-5 (1979).
9.5.4.7.1(a) Jones, R.A. and Scholz, F.W., “A and B-Allowables for the Three Parameter Weibull Distribution”, Boeing Computer Services Company Technical Report No. 10 (October 1983). 9.5.4.7.1(b) Jones, R.A., and Scholz, F.W., “Tolerance Limits for the Three Parameter Weibull Distribution”, Boeing Computer Service Company Technical Report No. 11 (1983). 9.5.4.10
Hansen, J.N. And Zeger S., “The Asymptotic Variance of the Estimated Proportion Truncated from a Normal Population”, Technometrics, Vol 22, 271-274, (1980).
9.5.5.1(a)
Abramowitz, M. and Stegun, I.A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 930 (1972).
9.5.5.1(b) Vogel, R.M. and McMartin, D.E., Probability Plot Goodness-of-Fit and Skewness Estimation Procedures for the Pearson Type 3 Distribution, Water Res., 27 (12), pp. 3149-3158 (1991).
9-357
MMPDS-06 1 April 2011 9.6.1
Landgraf, R.W., “The Resistance of Metals to Cyclic Deformation”, Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, 1970, pp. 3-36.
9.6.1.3
Sjodahl, L.H., “Extensions of the Multiple Heat Regression Technique Using Centered Data for Individual Heats”, Progress in Analysis of Fatigue and Stress Rupture (Data), MPC-Vol. 23, 1984, pp. 47-86.
9.6.1.4(a)
Walker, E.K, “The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum”, Effect of Environment and Complex Load History on Fatigue Life, ASTM STP 462 (1970) pp. 1-14.
9.6.1.4(b) Stulen, F.L., “Fatigue Life Data Displayed by a Single Quantity Relating Alternating and Mean Stresses”, AFML-TR-65-121 (1965). 9.6.1.4(c)
Topper, T.H., and Sandor, B.I., “Effects of Mean Stress and Prestrain on Fatigue-Damage Summation”, Effects of Environment and Complex Load History on Fatigue Life, ASTM STP 462, 1970, pp. 93-104.
9.6.1.6
Snedecor, G.W. and Cochran, W.G., Statistical Methods, Seventh Edition, The Iowa State University Press, Ames, Iowa (1980), pp. 115-116.
9.6.1.7
Montgomery, D.C. and Peck, E.A., Introduction to Linear Regression Analysis, Wiley, New York (1982).
9.6.1.8
Winer, B.J., Statistic Principles in Experimental Design, 2nd Ed., McGraw-Hill, New York (1971).
9.6.1.9(a)
Kalbfleisch, J.D. and Prentice, R.L., The Statistical Analysis of Failure Time Data, Wiley, New York (1982).
9.6.1.9(b) SAS Users Guide: Statistical Version 5 ed., Cary, N.C.: SAS Institute, Inc. (1985). 9.6.3.2.2
Skinn, D.A., Gallagher, J.P., Berens, A.P., Huber, P.D. and Smith, J., “Damage Tolerant Design Handbook”, Volumes 1-5, WL-TR-94-4052, 4053, 4054, 4055 and 4056, May 1994.
9.6.4.2
“Characterization of Materials for Service at Elevated Temperatures”, Report No. MPC-7, Presented at 1978 ASME/CSME Montreal Pressure Vessel and Piping Conference, Montreal, Quebec, Canada (June 25-29, 1978).
9.7.2
Hood, D., et al., “An Investigation of the Generation and Utilization of Engineering Data on Weldments”, AFML-TR-68-268 (October 1968).
9.8.4.1.2(a) Ramberg, W. and Osgood, W.R., “Description of Stress Strain Curves by Three Parameters”, National Advisory Committee for Aeronautics, Technical Note 902 (July 1943). 9.8.4.1.2(b) Hill, H.N., “Determination of Stress-Strain Relations from Offset Yield Strength Values”, National Advisory Committee for Aeronautics, Technical Note 927 (February 1944). 9.8.4.5
Burt, C.W., et al., “Mechanical Properties of Aerospace Structural Alloys Under Biaxial-Stress Conditions”, AFML-TR-66-229 (August 1966).
9-358
MMPDS-06 1 April 2011 9.10(a)
Owen, D.B., “Factors for One-Sided Tolerance Limits and for Variables and Sampling Plans”, Sandia Corporation Monograph SCR-607 (March 1963).
9.10(b)
Johnson, N.L. and Kotz, S., Distributions in Statistics—Continuous Univariate Distributions—1, John Wiley & Sons, p. 176 (1970).
9.10(c)
Abramovitz, M., and Stegun, I.A., Handbook of Mathematical Functions, National Bureau of Standards, AMS 55, pp. 927, 945, 947 (1970).
9.10(d)
Jones, R.A., Osslander, M., Scholz, F.W., and Shorack, G.R., “Tolerance Bounds for Log-Gamma Regression Models”, Technometrics, Vol. 27, No. 2, pp. 109-118 (May 1985).
9-359
MMPDS-06 1 April 2011
This page is intentionally blank.
9-360
MMPDS-06 1 April 2011
APPENDIX A A.0 GLOSSARY A.1 ABBREVIATIONS a ac ao A
— — — —
Aε Ai AD
— — —
AISI AMS Ann AN ASTM b bof br B
— — — — — — — — —
Btu BUS BYS c cpm C CEM CRES C(T) CYS d D or d df e
— — — — — — — — — — — — — —
ee ef ep ePL, eu ey e/D
— — — — — — —
Amplitude; crack or flaw dimension; measure of flaw size, inches. Critical half crack length. Initial half crack length. Area of cross section, square inches; ratio of alternating stress to mean stress; subscript “axial”; A basis for mechanical-property values (see Section 1.4.1.1 or Section 9.1.6); “A” ratio, loading amplitude/mean load; or area. Strain “A” ratio, strain amplitude/mean strain. Model parameter. Anderson-Darling test statistic, computed in goodness-of-fit tests for normality or Weibullness. American Iron and Steel Institute. Aerospace Materials Specification (published by Society of Automotive Engineers, Inc.). Annealed. Air Force-Navy Aeronautical Standard. American Society for Testing and Materials. Width of sections; subscript “bending”. Backoff factor (in Pearson and Weibull T90 and T99 calculations) Subscript “bearing”. Biaxial ratio (see Equation 1.3.2.(h)); B-basis for mechanical-property values (see Section 1.4.1.1 or Section 9.1.6). British thermal unit(s). Individual or typical bearing ultimate strength. Individual or typical bearing yield strength. Fixity coefficient for columns; subscript “compression”. Cycles per minute. Specific heat; Celsius; Constant. Consumable electrode melted. Corrosion resistant steel (stainless steel). Compact tension. Individual or typical compressive yield strength. Mathematical operator denoting differential. Diameter, or Durbin Watson statistic; hole or fastener diameter; dimpled hole. Degrees of freedom. Elongation in percent, a measure of the ductility of a material based on a tension test; unit deformation or strain; subscript “fatigue or endurance”; the minimum distance from a hole, center to the edge of the sheet; Engineering strain. Elastic strain. Infinitesimal gage length strain at failure Plastic strain. Proportional limit strain Ultimate strain Strain at yield Ratio of edge distance (center of the hole to edge of the sheet) to hole diameter (bearing A-1
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) E Ec Es Et ELI ER ESR f fb fc fpl fs ft ft F FA Fb Fbru Fbry Fc Fcc Fcu Fcy Ff FH Fpl, Fs Fsp Fst Fsu Fsy Ftp Ftu Fty g G Gpa hr H Hp HT90 HIP
strength). — Modulus of elasticity in tension or compression; average ratio of stress to strain for stress below proportional limit. — Modulus of elasticity in compression; average ratio of stress to strain below proportional limit. — Secant modulus of elasticity, Eq. 9.8.4.2(c). — Tangent modulus of elasticity. — Extra low interstitial (grade of titanium alloy). — Equivalent round. — Electro-slag remelted. — Internal (or calculated) tension stress; stress applied to the gross flawed section; creep stress. — Internal (or calculated) primary bending stress. — Internal (or calculated) compressive stress; maximum stress at fracture: gross stress limit (for screening elastic fracture data). — Proportional limit. — Internal (or calculated) shear stress. — Internal (or calculated) tensile stress. — Foot: feet. — Design stress; Fahrenheit; Ratio of two sample variances. — Design axial stress. — Design bending stress; modulus of rupture in bending. — Design ultimate bearing stress. — Design bearing yield stress. — Design column stress. — Design crushing or crippling stress (upper limit of column stress for local failure). — Design ultimate compressive stress. — Design compressive yield stress at which permanent strain equals 0.002. — Failure stress which has a statistical basis and may be corrected for temperature — Design hoop stress. — Proportional limit which has a statistical basis and may be corrected for temperature — Design shear stress. — Design proportional limit in shear. — Design modulus of rupture in torsion. — Design ultimate stress in pure shear (this value represents the average shear stress over the cross section). — Design shear yield stress. — Design proportional limit in tension. — Design tensile ultimate stress. — Design tensile yield stress at which permanent strain equals 0.002. — Gram(s). — Modulus of rigidity (shear modulus). — Gigapascal(s). — Hour(s). — Subscript “hoop”. — The projection matrix — Estimated bound on the ratio of MSE to MSPE — Hot isostatically pressed. A-2
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) i in. I J k
— — — — —
k99, k90
—
kA,B ksi K
— — —
Kapp Kc
— —
Kf KIc KN Kt lb ln log L LT m mm M Mr Mc Mg MIG MPa MS M.S. MSE MSPE M(T) n
— — — — — — — — — — — — — — — — — — — — — — —
ni no N Nf Ni* Nt*
— — — — — —
Slope (due to bending) of neutral plane of a beam, in radians (1 radian = 57.3 degrees). Inch(es). Axial moment of inertia. Torsion constant (= Ip for round tubes); Joule. Tolerance limit factor for the normal distribution and the specified probability, confidence, and degrees of freedom; Strain at unit stress. One-sided tolerance limit factor for T99 and T90, respectively (see Section 9.10.1 and 9.10.7). k factor for A basis or B basis, respectively (see Section 9.10.1 and 9.10.7). Kips (1,000 pounds) per square inch. A constant, generally empirical; thermal conductivity; stress intensity; Kelvin; correction factor. Apparent plane stress fracture toughness or residual strength. Critical plane stress fracture toughness, a measure of fracture toughness at point of crack growth instability. Fatigue notch factor, or fatigue strength reduction factor. Plane strain fracture toughness. Empirically calculated fatigue notch factor. Theoretical stress concentration factor. Pound. Natural (base e) logarithm. Base 10 logarithm. Length; subscript “lateral”; longitudinal (grain direction). Long transverse (grain direction). Subscript “mean”; meter; slope. Millimeter(s). Applied moment or couple, usually a bending moment. The number of distinct levels of t/D in the regression model. Machine countersunk. Megagram(s). Metal-inert-gas (welding). Megapascal(s). Military Standard. Margin of safety. Mean Square Error Mean Square Pure Error Middle tension. Number of individual measurements or pairs of measurements; subscript “normal”; cycles applied to failure; shape parameter for the standard stress-strain curve (Ramberg-Osgood parameter); number of fatigue cycles endured. The number of observations in the ith t/D group An adjustment made due to unequal sample sizes Fatigue life, number of cycles to failure; Newton; normalized. Fatigue life, cycles to failure or total number of tests. Fatigue life, cycles to initiation. Transition fatigue life where plastic and elastic strains are equal.
* Different from ASTM. A-3
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) NAS p psi P Pa Pm Pmax Pmin Pu Py q Q Q(x) Q&T r
— — — — — — — — — — — — — — —
r R
— —
Rb Rc Rε Rs Rt R(x) RA R.H. RMS RT s s2 S
— — — — — — — — — — — — —
Sa Se Seq* Sf sm Smax Smin Spl Sr Su Sy
— — — — — — — — — — —
National Aerospace Standard. Subscript “polar”; subscript “proportional limit”. Pounds per square inch. Load; applied load (total, not unit, load); exposure parameter; probability. Load amplitude. Mean load. Maximum load. Minimum load. Test ultimate load, pounds per fastener. Test yield load, pounds per fastener. Fatigue notch sensitivity; sample skewness. Static moment of a cross section. the ith diagonal element of the Projection Matrix Hp Quenched and tempered. Radius; root radius; reduced ratio (regression analysis); ratio of two pair measurements; rank of test point within a sample. average ratio of paired measurements. Load (stress) ratio, or residual (observed minus predicted value); stress ratio, ratio of minimum stress to maximum stress in a fatigue cycle; reduced ratio. Stress ratio in bending. Stress ratio in compression; Rockwell hardness - C scale. Strain ratio, εmin/εmax. Stress ratio in shear or torsion; ratio of applied load to allowable shear load. Ratio of applied load to allowable tension load. Parameter used in T90 calculation Reduction of area. Relative humidity. Root-mean-square (surface finish). Room temperature. Estimated population standard deviation; sample standard deviation; subscript “shear”. Sample variance. Shear force; nominal engineering stress, fatigue; S-basis for mechanical-property values (see Section 1.4.1.1). Stress amplitude, fatigue. Fatigue limit. Equivalent stress. Fatigue limit; typical failure stress, non-basis, room temperature value. Mean stress, fatigue. Highest algebraic value of stress in the stress cycle. Lowest algebraic value of stress in the stress cycle. Typical proportional limit, non-basis, room temperature value Algebraic difference between the maximum and minimum stresses in one cycle. Typical ultimate stress, non-basis, room temperature value Root mean square error or estimate of the standard deviation in average joint strengths; typical yield stress, non-basis, room temperature value.
* Different from ASTM. A-4
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) SAE SCC SEE SR ST STA SUS SYS t
— — — — — — — — —
t/D T
— —
TF T90
— —
T99
—
TIG TUS TUS (Su)* TYS u U V99,V90
— — — — — — —
W x X Xr y
— — — — — —
Y
—
z Z
— —
x
Society of Automotive Engineers. Stress-corrosion cracking. Estimate population standard error of estimate. Studentized residual. Short transverse (grain direction). Solution treated and aged. Individual or typical shear ultimate strength. Individual or typical shear yield strength. Thickness; subscript “tension”; exposure time; elapsed time; tolerance factor for the “t” distribution with the specified probability and appropriate degrees of freedom. Sheet thickness to fastener diameter ratio Transverse direction; applied torsional moment; transverse (grain direction); subscript “transverse”. Exposure temperature. Statistically based lower tolerance bound for a mechanical property such that at least 90 percent of the population is expected to exceed T90 with 95 percent confidence. Statistically based lower tolerance bound for a mechanical property such that at least 99 percent of the population is expected to exceed T99 with 95 percent confidence. Tungsten-inert-gas (welding). Individual or typical tensile ultimate strength. Tensile ultimate strength. Individual or typical tensile yield strength. Subscript “ultimate”. Factor of utilization. The tolerance limit factor corresponding to T99, T90 for the three-parameter Weibull distribution, based on a 95 percent confidence level and a sample of size n. Width of center-through-cracked tension panel; Watt. Distance along a coordinate axis. Sample mean based upon n observations. Value of an individual measurement; average value of individual measurements. Matrix of multiple regression variables. Deflection (due to bending) of elastic curve of a beam; distance from neutral axis to given fiber; subscript “yield”; distance along a coordinate axis. Nondimensional factor relating component geometry and flaw size. See Reference 1.4.12.2.1(a) for values. Distance along a coordinate axis. Section modulus, I/y.
A.2 SYMBOLS α α99, α90 α50 β
— (1) Coefficient of thermal expansion, mean; constant. (2) Significance level; probability (risk of erroneously rejecting the null hypothesis (see Section 9.5.3)). — Shape parameter estimates for a T99 or T90 value based on an assumed three-parameter Weibull distribution. — Shape parameter estimate for the Anderson-Darling goodness-of-fit test based on an assumed three-parameter Weibull distribution. — Constant.
A-5
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) β99, β90 β50 ∆ε or εr* ∆εe ∆εp ∆S (Sr)* ∆σ ε εeq* εm εmax εmin εt δ Φ ρ µ
σ
— Scale parameter estimate for a T99 or T90 value based on an assumed three-parameter Weibull distribution. — Scale parameter estimate for the Anderson-Darling goodness-of-fit test based on an assumed three-parameter Weibull distribution. — strain range, εmax - εmin. — Elastic strain range. — Plastic strain range. — Stress range. — True or local stress range. — True or local strain. — Equivalent strain. — Mean strain, (εmax + εmin)/2. — Maximum strain. — Minimum strain. — Total (elastic plus plastic) strain at failure determined from tensile stress-strain curve. — Deflection. — Angular deflection. — Radius of gyration; Neuber constant (block length). — Poisson’s ratio, Pearson distribution sample mean. — True or local stress; or population standard deviation.
A.3 DEFINITIONS A-Basis.—The lower of either a statistically calculated number, or the specification minimum (S-basis). The statistically calculated number indicates that at least 99 percent of the population of values is expected to equal or exceed the A-basis mechanical design property, with a confidence of 95 percent. Alternating Load.—See Loading Amplitude. B-Basis.—At least 90 percent of the population of values is expected to equal or exceed the B-basis mechanical property allowable, with a confidence of 95 percent. Backoff Factor.—A value equal to a material’s average yield or ultimate strength divided by 100, or a material’s average elongation or fracture toughness divided by 50. The maximum allowable downward shift in the cumulative distribution function when attempting to fit a Pearson or Weibull distribution to that material property. Cast.—Cast consists of the sequential ingots which are melted from a single furnace change and poured in one or more drops without changes in the processing parameters. (The cast number is for internal identification and is not reported.) (See Table 9.2.4.2). Casting.—One or more parts which are melted from a single furnace change and poured in one or more molds without changes in the processing parameters. (The cast number is for internal identification and is not reported.) (See Table 9.2.4.2).
* Different from ASTM. A-6
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) Confidence.—A specified degree of certainty that at least a given proportion of all future measurements can be expected to equal or exceed the lower tolerance limit. Degree of certainty is referred to as the confidence coefficient. For MMPDS, the confidence coefficient is 95 percent which, as related to design properties, means that, in the long run over many future samples, 95 percent of conclusions regarding exceedance of A and B-values would be true. Confidence Interval.—An interval estimate of a population parameter computed so that the statement “the population parameter lies in this interval” will be true, on the average, in a stated proportion of the times such statements are made. Confidence Interval Estimate.—Range of values, computed with the sample that is expected to include the population variance or mean. Confidence Level (or Coefficient).—The stated portion of the time the confidence interval is expected to include the population parameter. Confidence Limits*.—The two numeric values that define a confidence interval. Constant-Amplitude Loading.—A loading in which all of the peak loads are equal and all of the valley loads are equal. Constant-Life Fatigue Diagram.—A plot (usually on Cartesian coordinates) of a family of curves, each of which is for a single fatigue life, N—relating S, Smax, and/or Smin to the mean stress, Sm. Generally, the constant life fatigue diagram is derived from a family of S/N curves, each of which represents a different stress ratio (A or R) for a 50 percent probability of survival. NOTE— MMPDS does not present fatigue data in the form of constant-life diagrams. Creep.—The time-dependent deformation of a solid resulting from force. Note 1—Creep tests are usually made at constant load and temperature. For tests on metals, initial loading strain, however defined, is not included. Note 2—This change in strain is sometimes referred to as creep strain. Creep-Rupture Curve.—Results of material tests under constant load and temperature; usually plotted as strain versus time to rupture. A typical plot of creep-rupture data is shown below. The strain indicated in this curve includes both initial deformation due to loading and plastic strain due to creep.
* Different from ASTM. A-7
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued)
Figure A.1. Typical creep-rupture curve.
Creep-Rupture Strength.—Stress that will cause fracture in a creep test at a given time, in a specified constant environment. Note: This is sometimes referred to as the stress-rupture strength. Creep-Rupture Test.—A creep-rupture test is one in which progressive specimen deformation and time for rupture are measured. In general, deformation is much larger than that developed during a creep test. Creep-Strain.—The time-dependent part of the strain resulting from stress, excluding initial loading strain and thermal expansion. Creep Strength.—Stress that causes a given creep in a creep test at a given time in a specified constant environment. Creep Stress.—The constant load divided by the original cross-sectional area of the specimen. Creep Test.—A creep test has the objective of measuring deformation and deformation rates at stresses usually well below those which would result in fracture during the time of testing. Critical Stress Intensity Factor.—A limiting value of the stress intensity factor beyond which continued flaw propagation and/or fracture may be expected. This value is dependent on material and may vary with type of loading and conditions of use. Cycle.—Under constant-amplitude loading, the load varies from the minimum to the maximum and then to the minimum load. The symbol n or N (see definition of fatigue life) is used to indicate the number of cycles. Deformable Shank Fasteners.—A fastener whose shank is deformed in the grip area during normal installation processes.
A-8
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) Degree of Freedom.—Number of degrees of freedom for n variables may be defined as number of variables minus number of constraints between them. Since the standard deviation calculation contains one fixed value (the mean) it has n - 1 degrees of freedom. Degrees of Freedom.—Number of independent comparisons afforded by a sample. Discontinued Test.—See Runout. Elapsed Time.—The time interval from application of the creep stress to a specified observation. Fatigue.—The process of progressive localized permanent structural change occurring in a material subjected to conditions that produce fluctuating stresses and strains at some point or points, and which may culminate in cracks or complete fracture after a sufficient number of fluctuations. NOTE—fluctuations in stress and in time (frequency), as in the case of “random vibration.” Fatigue Life.—N—the number of cycles of stress or strain of a specified character that a given specimen sustains before failure of a specified nature occurs. Fatigue Limit.—Sf—the limiting value of the median fatigue strength as N becomes very large. NOTE—Certain materials and environments preclude the attainment of a fatigue limit. Values tabulated as “fatigue limits” in the literature are frequently (but not always) values of SN for 50 percent survival at N cycles of stress in which Sm = 0. Fatigue Loading.—Periodic or non-periodic fluctuating loading applied to a test specimen or experienced by a structure in service (also known as cyclic loading). Fatigue Notch Factor*.—The fatigue notch factor, Kf (also called fatigue strength reduction factor), is the ratio of the fatigue strength of a specimen with no stress concentration to the fatigue strength of a specimen with a stress concentration at the same number of cycles for the same conditions. NOTE—In specifying Kf, it is necessary to specify the geometry, mode of loading, and the values of Smax, Sm, and N for which it is computed. Fatigue Notch Sensitivity.—The fatigue notch sensitivity, q, is a measure of the degree of agreement between Kf and Kt. NOTE—the definition of fatigue notch sensitivity is q = (Kf - 1)/(Kt - 1). Heat.—All material identifiable to a single molten metal source. (All material from a heat is considered to have the same composition. A heat may yield one or more ingots. A heat may be divided into several lots by subsequent processing.) Heat.—Heat is material which, in the case of batch melting, is cast at the same time from the same furnace and is identified with the same heat number; or, in the case of continuous melting, is poured without interruption. (See Table 9.2.4.2) Heat.—Heat is a consolidated (vacuum hot pressed) billet having a distinct chemical composition. (See Table 9.2.4.2)
* Different from ASTM. A-9
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) Hysteresis Diagram.—The stress-strain path during a fatigue cycle. Isostrain Lines.—Lines representing constant levels of creep. Isothermal Lines.—Lines of uniform temperature on a creep or stress-rupture curve. Interrupted Test*.—Tests which have been stopped before failure because of some mechanical problem, e.g., power failure, load or temperature spikes. Loading Amplitude.—The loading amplitude, Pa, Sa, or εa represents one-half of the range of a cycle. (Also known as alternating load, alternating stress, or alternating strain.) Loading Strain.—Loading strain is the change in strain during the time interval from the start of loading to the instant of full-load application, sometimes called initial strain. Loading (Unloading) Rate.—The time rate of change in the monotonically increasing (decreasing) portion of the load-time function. Load Ratio.—The load ratio, R, A, or Rε, Aε, or Rσ, Aσ, is the algebraic ratio of the two loading parameters of a cycle; the two most widely used ratios are R '
P minimum load ' min maximum load Pmax
or Rσ '
Smin Smax
or Rε ' εmin/εmax
and A '
Aε '
P S loading amplitude ' a or a mean load Pm SM
ε strain amplitude ' a or εmax & εmin / εmax % εmin mean strain εM
NOTE—load ratios R or Rε are generally used in MMPDS.
* Different from ASTM. A-10
.
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) Longitudinal Direction.—Parallel to the principal direction of flow in a worked metal. For die forgings this direction is within ±15E of the predominate grain flow. Long-Transverse Direction.—The transverse direction having the largest dimension, often called the “width” direction. For die forgings this direction is within ±15E of the longitudinal (predominate) grain direction and parallel, within ±15E, to the parting plane. (Both conditions must be met.) Lot.—All material from a heat or single molten metal source of the same product type having the same thickness or configuration, and fabricated as a unit under the same conditions. If the material is heat treated, a lot is the above material processed through the required heat-treating operations as a unit. Master Creep Equation.—An equation expressing combinations of stress, temperature, time and creep, or a set of equations expressing combinations of stress, temperature and time for given levels of creep. Master Rupture Equation.—An equation expressing combinations of stress, temperature, and time that cause complete separation (fracture or rupture) of the specimen. Maximum Load.—The maximum load, Pmax, Smax, εmax is the load having the greatest algebraic value. Mean Load.—The mean load, Pm, is the algebraic average of the maximum and minimum loads in constantamplitude loading:
Pm '
Sm '
εm '
Pmax % Pmin 2 Smax % Smin 2 εmax % εmin 2
, or
, or
,
or the integral average of the instantaneous load values. Median Fatigue Life.—The middlemost of the observed fatigue life values (arranged in order of magnitude) of the individual specimens in a group tested under identical conditions. In the case where an even number of specimens are tested, it is the average of the two middlemost values (based on log lives in MMPDS). NOTE 1—The use of the sample median instead of the arithmetic mean (that is, the average) is usually preferred. NOTE 2—In the literature, the abbreviated term “fatigue life” usually has meant the median fatigue life of the group. However, when applied to a collection of data without further qualification, the term “fatigue life” is ambiguous. Median Fatigue Strength at N Cycles.—An estimate of the stress level at which 50 percent of the population would survive N cycles. NOTE—The estimate of the median fatigue strength is derived from a particular point of the fatigue-life distribution, since there is no test procedure by which a frequency
A-11
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) distribution of fatigue strengths at N cycles can be directly observed. That is, one can not perform constant-life tests. Melt.—Melt is a single homogeneous batch of molten metal for which all processing has been completed and the temperature has been adjusted and made ready to pour castings. (For metal-matrix composites, the molten metal includes unmelted reinforcements such as particles, fibers, or whiskers.) (See Table 9.1.6.2) Minimum Load.—The minimum load, Pmin, Smin, or εmin, is the load having the least algebraic value. Nominal Hole Diameters.—Nominal hole diameters for deformable shank fasteners shall be according to Table 9.4.1.2(a). When tests are made with hole diameters other than those tabulated, hole sizes used shall be noted in the report and on the proposed joint allowables table. Nominal Shank Diameter.—Nominal shank diameter of fasteners with shank diameters equal to those used for standard size bolts and screws (NAS 618 sizes) shall be the decimal equivalents of stated fractional or numbered sizes. These diameters are those listed in the fourth column of Table 9.7.1.1. Nominal shank diameters for nondeformable shank blind fasteners are listed in the fifth column of Table 9.7.1.1. Nominal shank diameters for other fasteners shall be the average of required maximum and minimum shank diameters. Nondeformable Shank Fasteners.—A fastener whose shank does not deform in the grip area during normal installation processes. Outlier*—An experimental observation which deviates markedly from other observations in the sample. An outlier is often either an extreme value of the variability in the data, or the result of gross deviation in the material or experimental procedure. Peak.—The point at which the first derivative of the load-time history changes from a positive to a negative sign; the point of maximum load in constant-amplitude loading. Plane Strain.—The stress state in which all strains occur only in the principal loading plane. No strains occur out of the plane, i.e., εz = 0, and σz … 0. Plane Stress.—The stress state in which all stresses occur only in the principal loading plane. No stresses occur out of the plane, i.e., σz = 0, and εz … 0. Plastic Strain During Loading.—Plastic strain during loading is the portion of the strain during loading determined as the offset from the linear portion to the end of a stress-strain curve made during load application. Plane-Strain Fracture Toughness.—A generic term now generally adopted for the critical plane-strain stress intensity factor characteristic of plane-strain fracture, symbolically denoted KIc. This is because in current fracture testing practices, specification of the slowly increasing load test of specimen materials in the plane-strain stress state and in opening mode (I) has been dominant.
* Different from ASTM. A-12
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) Plane-Stress and Transitional Fracture Toughness.—A generic term denoting the critical stress intensity factor associated with fracture behavior under nonplane-strain conditions. Because of plasticity effects and stable crack growth which can be encountered prior to fracture under these conditions, designation of a specific value is dependent on the stage of crack growth detected during testing. Residual strength or apparent fracture toughness is a special case of plane-stress and transitional fracture toughness wherein the reference crack length is the initial pre-existing crack length and subsequent crack growth during the test is neglected. Population.—All potential measurements having certain independent characteristics in common; i.e., “all possible TUS(L) measurements for 17-7PH stainless steel sheet in TH1050 condition”. Precision.*—The degree of mutual agreement among individual measurements. Relative to a method of test, precision is the degree of mutual agreement among individual measurements made under prescribed like conditions. The lack of precision in a measurement may be characterized as the standard deviation of the errors in measurement. Primary Creep.—Creep occurring at a diminishing rate, sometimes called initial stage of creep. Probability.—Ratio of possible number of favorable events to total possible number of equally likely events. For example, if a coin is tossed, the probability of heads is one-half (or 50 percent) because heads can occur one way and the total possible events are two, either heads or tails. Similarly, the probability of throwing a three or greater on a die is 4/6 or 66.7 percent. Probability, as related to design allowables, means that chances of a material-property measurement equaling or exceeding a certain value (the onesided lower tolerance limit) is 99 percent in the case of a A-basis value and 90 percent in the case of a Bbasis value. Range.—Range, ∆P, Sr, ∆ε, εr, ∆σ is the algebraic difference between successive valley and peak loads (positive range or increasing load range) or between successive peak and valley loads (negative range or decreasing load range), see Figure 9.3.4.3. In constant-amplitude loading, for example, the range is given by ∆P = Pmax - Pmin. Rate of Creep.—The slope of the creep-time curve at a given time determined from a Cartesian plot. Residual.*—The difference between the observed fatigue (log) life and the fatigue (log) life estimated from the fatigue model at a particular stress/strain level. Runout.*—A test that has been terminated prior to failure. Runout tests are usually stopped at an arbitrary life value because of time and economic considerations. NOTE—Runout tests are useful for estimating a pseudo-fatigue-limit for a fatigue data sample. Sample.—A finite number of observations drawn from the population. Sample.—The number of specimens selected from a population for test purposes. NOTE—The method of selecting the sample determines the population about which statistical inferences or generalization can be made.
* Different from ASTM. A-13
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) Sample Average (Arithmetic Mean).—The sum of all the observed values in a sample divided by the sample size (number). It is a point estimate of the population mean. Sample Mean.—Average of all observed values in the sample. It is an estimate of population mean. A mean is indicated by a bar over the symbol for the value observed. Thus, the mean of n observations of TUS would be expressed as: j (TUS ) i i'1 ' n n
TUS '
TUS1 % TUS2 % ... % TUSn n
Sample Median.—Value of the middle-most observation. If the sample is nearly normally distributed, the sample median is also an estimate of the population mean. Sample Median.—The middle value when all observed values in a sample are arranged in order of magnitude if an odd number of samples are tested. If the sample size is even, it is the average of the two middlemost values. It is a point estimate of the population median, or 50 percentile point. Sample Point Deviation.—The difference between an observed value and the sample mean. Sample Standard Deviation.*—The standard deviation of the sample, s, is the square root of the sample variance. It is a point estimate of the standard deviation of a population, a measure of the "spread" of the frequency distribution of a population. NOTE—This value of s provides a statistic that is used in computing interval estimates and several test statistics. Sample Variance.*—Sample variance, s2, is the sum of the squares of the differences between each observed value and the sample average divided by the sample size minus one. It is a point estimate of the population variance. NOTE—This value of s2 provides both an unbiased point estimate of the population variance and a statistic that is used on computing the interval estimates and several test statistics. Some texts define s2 as “the sum of the squared differences between each observed value and the sample average divided by the sample size”, however, this statistic underestimates the population variance, particularly for small sample sizes. Sample Variance.—The sum of the squared deviations, divided by n - 1, and, based on n observations of TUS, expressed as n
2
STUS '
2 j TUSi & TUS i'1
n & 1
n
'
n
2
nj (TUSi)2 & j TUSi i'1
i'1
n(n & 1)
S-Basis.—The S-value is the minimum property value specified by the governing industry specification (as issued by standardization groups such as SAE Aerospace Materials Division, ASTM, etc.) or federal or military standards for the material. (See MIL-STD-970 for order of preference for specifications.) For cer* Different from ASTM. A-14
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) tain products heat treated by the user (for example, steels hardened and tempered to a designated Ftu), the S-value may reflect a specified quality-control requirement. Statistical assurance associated with this value is not known. Secondary Creep.—Creep occurring at a constant rate, sometimes called second stage creep. Short-Transverse Direction.—The transverse direction having the smallest dimension, often called the “thickness” direction. For die forgings this direction is within ±15E of the longitudinal (predominate) grain direction and perpendicular, within ±15E, to the parting plane. (Both conditions must be met.) When possible, short transverse specimens shall be taken across the parting plane. Significance Level (As Used Here).—Risk of concluding that two samples were drawn from different populations when, in fact, they were drawn from the same population. A significance level of α = 0.05 is employed through these Guidelines.* Significance Level.—The stated probability (risk) that a given test of significance will reject the hypothesis that a specified effect is absent when the hypothesis is true. Significant (Statistically Significant).—An effect or difference between populations is said to be present if the value of a test statistic is significant, that is, lies outside of predetermined limits. NOTE—An effect that is statistically significant may not have engineering importance. S/N Curve for 50 Percent Survival.**—A curve fitted to the median values of fatigue life at each of several stress levels. It is an estimate of the relationship between applied stress and the number of cycles-to-failure that 50 percent of the population would survive. NOTE 1—This is a special case of the more general definition of S/N curve for P percent survival. NOTE 2—In the literature, the abbreviated term “S/N Curve” usually has meant either the S/N curve drawn through the mean (averages) or through the medians (50 percent values) for the fatigue life values. Since the term “S/N Curve” is ambiguous, it should be used only when described appropriately. NOTE 3—Mean S/N curves (based on log lives) are shown in MMPDS. S/N Diagram.—A plot of stress against the number of cycles to failure. The stress can be Smax, Smin, or Sa. The diagram indicates the S/N relationship for a specified value of Sm, A, or R and a specified probability of survival. Typically, for N, a log scale (base 10) is used. Generally, for S, a linear scale is used, but a log scale is used occasionally. NOTE—Smax-versus-log N diagrams are used commonly in MMPDS. Standard Deviation.—An estimate of the population standard deviation; the square root of the variance, or n
n
STUS'
2 j TUSi & TUS i'1
n & 1
'
n
nj TUSi 2 & j TUSi 2 i'1
i'1
n(n & 1)
* This is appropriate, since a confidence level of 1 - α = 0.95 is used in establishing A and B-values. ** Different from ASTM. A-15
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) Stress Intensity Factor.—A physical quantity describing the severity of a flaw in the stress field of a loaded structural element. The gross stress in the material and flaw size are characterized parametrically by the stress intensity factor, K ' f a Y, ksi & in.1/2
Stress-Rupture Test—A stress-rupture test is one in which time for rupture is measured, no deformation measurement being made during the test. Tertiary Creep.—Creep occurring at an accelerating rate, sometimes called third stage creep. Theoretical Stress Concentration Factor (or Stress Concentration Factor).—This factor, Kt, is the ratio of the nominal stress to the greatest stress in the region of a notch (or other stress concentrator) as determined by the theory of elasticity (or by experimental procedures that give equivalent values). NOTE—The theory of plasticity should not be used to determine Kt. Tolerance Interval.—An interval computed so that it will include at least a stated percentage of the population with a stated probability. Tolerance Level.—The stated probability that the tolerance interval includes at least the stated percentage of the population. It is not the same as a confidence level, but the term confidence level is frequently associated with tolerance intervals. Tolerance Limits.—The two statistics that define a tolerance interval. (One value may be “minus infinity” or “plus infinity”.) Total Plastic Strain.—Total plastic strain at a specified time is equal to the sum of plastic strain during loading plus creep. Total Strain.—Total strain at any given time, including initial loading strain (which may include plastic strain in addition to elastic strain) and creep strain, but not including thermal expansion. Transition Fatigue Life.*—The point on a strain-life diagram where the elastic and plastic strains are equal. Transverse Direction.—Perpendicular to the principal direction of flow in a worked metal; may be defined as T, LT or ST. Typical Basis.—A typical property value is an average value and has no statistical assurance associated with it. UPC - Upper confidence bound of dataset. Waveform.—The shape of the peak-to-peak variation of a controlled mechanical test variable (for example, load, strain, displacement) as a function of time.
* Different from ASTM. A-16
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued) A.4 Conversion of U.S. Units of Measure Used in MMPDS to SI Units
To Convert From U. S. Unit
Multiply bya
Area
in.2
645.16c
Force
lb
Length
in.
Stress
ksi
6.895
Megapascal (MPa)d
Stress intensity factor
ksi in.
1.0989
Megapascal meter (MPa @ m ½ )d
Modulus
103 ksi
6.895
Gigapascal (GPa)d
Quantity or Property
Temperature
EF
Density (ω)
lb/in.3
4.4482 25.4c
F + 459.67 1.8 27.680
SI Unitb Millimeter2 (mm2) Newton (N) Millimeter (mm)
Kelvin (K) Megagram/meter3 (Mg/m3)
Specific heat (C)
Btu/lb@F (or Btu@lb-1@F-1)
4.1868c
Joule/(gram@Kelvin) (J/g@K) or (J@g-1 @K-1)
Thermal conductivity (K)
Btu/[(hr)(ft2)(F)/ft] (or Btu@hr-1@ft-2@F-1@ft)
1.7307
Watt/(meter@Kelvin) W/(m@K) or (W@m-1@K-1)
1.8
Meter/meter/Kelvin m/(m@K) or (m@m-1@K-1)
Thermal expansion (α)
in./in./F (or
[email protected]@F-1)
a Conversion factors to give significant figures are as specified in ASTM E 380, NASA SP-7012, second revision. NBS Special Publication 330, and Metals Engineering Quarterly. Note: Multiple conversions between U.S. and SI units should be avoided because significant round-off errors may result. b Prefix Multiple Prefix Multiple giga (G) 109 milli (m) 10-3 mega (M) 106 micro (µ) 10-6 3 kilo (k) 10 c Conversion factor is exact. d One Pascal (Pa) = one Newton/meter2.
A-17
MMPDS-06 1 April 2011
APPENDIX A - Glossary (continued)
This page is intentionally blank.
A-18
MMPDS-06 1 April 2011
APPENDIX B B.0 Alloy Index Alloy Name 188 188 230 230 250 250 354 355 356 356 356 359 2013 2014 2014 2014 2014 2014 2014 2014 2014 2014 2014 2017 2017 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2025 2026 2027 2050 2056 2090 2098 2098 2099
Form/Application Bar and Forging Sheet and Plate Bar and Forging Plate, Sheet and Strip Bar Sheet and Plate Casting Permanent Mold Casting Investment Casting Permanent Mold Casting Sand Casting Casting Extrusion Bar and Rod, Rolled or Cold Finished Bare Sheet and Plate Bare Sheet and Plate Clad Sheet and Plate Extruded Bar, Rod and Shapes Extrusion Forging Forging Forging Rolled or Drawn Bar, Rod and Shapes Bar and Rod, Rolled or Cold-Finished Rolled Bar and Rod Bar and Rod, Rolled or Cold-Finished Bare Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Clad Sheet and Plate Extruded Bar, Rod and Shapes Extrusion Extrusion Extrusion Rolled or Drawn Bar, Rod and Wire Tubing Tubing, Hydraulic, Seamless, Drawn Die Forging Bars, Rods, and Profiles Plate Plate Clad Sheet Sheet Plate Sheet Extrusion
Key: Underline indicates inactive for new design.
B-1
Specification AMS 5772 AMS 5608 AMS 5891 AMS 5878 AMS 6512 AMS 6520 AMS-A-21180 AMS 4281 AMS 4260 AMS 4284 AMS 4217 AMS-A-21180 AMS 4326 AMS 4121 AMS 4028 AMS 4029 AMS-QQ-A-250/3 AMS-QQ-A-200/2 AMS 4153 AMS 4133 AMS-A-22771 AMS-QQ-A-367 AMS-QQ-A-225/4 AMS 4118 AMS-QQ-A-225/5 AMS 4120 AMS 4035 AMS 4037 AMS-QQ-A-250/4 AMS-QQ-A-250/5 AMS-QQ-A-200/3 AMS 4152 AMS 4164 AMS 4165 AMS-QQ-A-225/6 AMS-WW-T-700/3 AMS 4086 AMS 4130 AMS 4338 AMS 4213 AMS 4413 AMS 4298 AMS 4251 AMS 4327 AMS 4457 AMS 4287
Section 6.4.2 6.4.2 6.3.9 6.3.9 2.5.1 2.5.1 3.9.1 3.9.2 3.9.4 3.9.4 3.9.4 3.9.8 3.2.1 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.3 3.2.3 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.2.9 3.2.10 3.2.11 3.2.11 3.2.12
MMPDS-06 1 April 2011
APPENDIX B Alloy Name 2124 2124 2219 2219 2219 2219 2219 2297 2397 2519 2618 2618 2618 4130 4130 4130 4130 4130 4130 4130 4130 4130 4130 4130 4130 4130 4130 4130 4130 4135 4135 4135 4140 4140 4140 4140 4140 4140 4340 4340 4340 4340 4340 4340 4340 5052 5052 5052
Form/Application Plate Plate Extrusion Extrusion Hand Forging Sheet and Plate Sheet and Plate Plate Plate Plate Die and Hand Forgings Die Forging Forging Bar Bar Bar and Forging Bar and Forging Bar and Forging Bar and Forging Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Tubing Tubing Tubing Tubing Tubing Tubing (normalized) Welding Wire Sheet, Strip and Plate Tubing Tubing Bar and Forging Bar and Forging Bar and Forging Sheet, Strip and Plate Tubing Welding Wire Bar and Forging Bar and Forging Bar and Forging Sheet, Strip and Plate Sheet, Strip and Plate Tubing Tubing Sheet and Plate Sheet and Plate Sheet and Plate
Key: Underline indicates inactive for new design.
B-2
Specification AMS 4101 AMS-QQ-A-250/29 AMS 4162 AMS 4163 AMS 4144 AMS 4031 AMS-QQ-A-250/30 AMS 4330 AMS 4328 MIL-DTL-46192 AMS 4132 AMS-A-22771 AMS-QQ-A-367 AMS 6346 AMS 6346 AMS 6348 AMS 6370 AMS 6528 AMS-S-6758 AMS 6345 AMS 6350 AMS 6351 AMS 6361 AMS 6362 AMS 6371 AMS 6373 AMS 6374 AMS 6360 AMS 6457 AMS 6352 AMS 6365 AMS 6372 AMS 6349 AMS 6382 AMS 6529 AMS 6395 AMS 6381 AMS 6452 AMS 6414 AMS 6415 AMS-S-5000 AMS 6359 AMS 6454 AMS 6414 AMS 6415 AMS 4015 AMS 4016 AMS 4017
Section 3.2.13 3.2.13 3.2.14 3.2.14 3.2.14 3.2.14 3.2.14 3.2.15 3.2.16 3.2.18 3.2.20 3.2.20 3.2.20 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 8.2.2 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 8.2.2 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 3.5.1 3.5.1 3.5.1
MMPDS-06 1 April 2011
APPENDIX B Alloy Name 5052 5083 5083 5083 5083 5086 5086 5454 5454 5456 5456 5456 12.5Cr-1.0Ni-15.5Co2.0Mo 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6061 6151 6151 6156 7010 7010 7040 7049 7049 7049 7049 7050
Form/Application Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Extruded Bar, Rod and Shapes Extruded Bar, Rod and Shapes Sheet and Plate Extruded Bar, Rod and Shapes Sheet and Plate Extruded Bar, Rod and Shapes Sheet and Plate Sheet and Plate Bar and Forging
Specification AMS-QQ-A-250/8 AMS 4056 AMS-QQ-A-250/6 ASTM B 928 AMS-QQ-A-200/4 AMS-QQ-A-200/5 ASTM B209 AMS-QQ-A-200/6 AMS-QQ-A-250/10 AMS-QQ-A-200/7 AMS-QQ-A-250/9 ASTM B 928 AMS 5933
Section 3.5.1 3.5.2 3.5.2 3.5.2 3.5.2 3.5.3 3.5.3 3.5.4 3.5.4 3.5.5 3.5.5 3.5.5 2.6.11
Bar and Rod, Cold Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Extruded Rod, Bar Shapes and Tubing Extruded Rod, Bars, and Shapes Extruded Rod, Bars, and Shapes Extrusion Extrusion Extrusion Forging Forging Forging Hand Forging Rolled Bar, Rod and Shapes Sheet and Plate Sheet and Plate Sheet and Plate Tubing Seamless, Drawn Tubing Seamless, Drawn Tubing Seamless, Drawn Tubing Seamless, Drawn Tubing Seamless, Drawn Die Forging Forging Clad Sheet Plate Plate Plate Extrusion Forging Forging Plate Bare Plate
AMS 4116 AMS 4115 AMS 4117 AMS 4128 AMS-QQ-A-200/8 AMS 4150 AMS 4173 AMS 4160 AMS 4161 AMS 4172 AMS 4127 AMS-A-22771 AMS-QQ-A-367 AMS 4248 AMS-QQ-A-225/8 AMS 4025 AMS 4026 AMS 4027 AMS 4080 AMS 4081 AMS 4082 AMS 4083 AMS-WW-T-700/6 AMS 4125 AMS-A-22771 AMS 4405 AMS 4204 AMS 4205 AMS 4211 AMS 4157 AMS 4111 AMS-QQ-A-367 AMS 4200 AMS 4050
3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.2 3.6.3 3.6.3 3.6.4 3.7.1 3.7.1 3.7.2 3.7.3 3.7.3 3.7.3 3.7.3 3.7.4
Key: Underline indicates inactive for new design.
B-3
MMPDS-06 1 April 2011
APPENDIX B Alloy Name 7050 7050 7050 7050 7050 7050 7050 7050 7055 7055 7055 7055 7055 7056 7068 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7075 7085 7085 7085 7140 7140 7149 7149 7150 7150 7150 7150 7175
Form/Application Bare Plate Die Forging Die Forging Extruded Shape Extruded Shape Extruded Shape Forging Hand Forging Extrusion Extrusion Extrusion Plate Sheet Plate Extrusion Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Bare Plate Bare Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Clad Sheet and Plate Clad Sheet and Plate Clad Sheet and Plate Die Forging Extruded Bar, Rod and Shapes Extrusion Extrusion Forging Forging Forging Forging Rolled or Drawn Bar and Rod Plate Die Forging Hand Forging Plate Plate Extrusion Forging Bare Plate Extrusion Extrusion Plate Die and Hand Forging
Key: Underline indicates inactive for new design.
B-4
Specification AMS 4201 AMS 4107 AMS 4333 AMS 4340 AMS 4341 AMS 4342 AMS-A-22771 AMS 4108 AMS 4324 AMS 4336 AMS 4337 AMS 4206 AMS 4267 AMS 4407 AMS 4331 AMS 4122 AMS 4123 AMS 4124 AMS 4186 AMS 4078 AMS 4044 AMS 4045 AMS-QQ-A-250/12 AMS 4315 AMS 4049 AMS-QQ-A-250/13 AMS 4316 AMS 4141 AMS-QQ-A-200/11, 15 AMS 4166 AMS 4167 AMS 4126 AMS 4147 AMS-A-22771 AMS-QQ-A-367 AMS-QQ-A-225/9 AMS 4329 AMS 4403 AMS 4414 AMS 4401 AMS 4408 AMS 4343 AMS 4320 AMS 4306 (T6151) AMS 4307 (T61511) AMS 4345 (T77511) AMS 4252 (T7751) AMS 4149 (T74)
Section 3.7.4 3.7.4 3.7.4 3.7.4 3.7.4 3.7.4 3.7.4 3.7.4 3.7.5 3.7.5 3.7.5 3.7.5 3.7.5 3.7.6 3.7.7 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.8 3.7.9 3.7.9 3.7.9 3.7.10 3.7.10 3.7.3 3.7.3 3.7.11 3.7.11 3.7.11 3.7.11 3.7.12
MMPDS-06 1 April 2011
APPENDIX B Alloy Name 7175 7175 7175 7175 7249 7249 7349 7449 7449 7449 7475 7475 7475 7475 7475 7475 7475 8630 8630 8630 8630 8735 8735 8735 8740 8740 8740 8740 15-5PH 15-5PH 15-5PH 17-4PH 17-4PH 17-4PH 17-4PH 17-4PH 17-7PH 2024-T3 ARAMID Fiber Reinforced 2424 (Bare) 2424 (Clad) 2524 (T3) 280 (300) 300M (0.42C) 300M (0.42C) 300M (0.42C) 300M (0.42C) 300M (0.4C)
Form/Application Die Forging Extrusion Forging Hand Forging Extrusion Hand Forging Extrusion Plate Plate Extruded Profile Bare Plate Bare Plate Bare Plate Bare Sheet Bare Sheet Clad Sheet Clad Sheet Bar and Forging Bar and Forging Tubing Tubing Bar and Forging Sheet, Strip and Plate Tubing Bar and Forging Bar and Forging Sheet, Strip and Plate Tubing Bar, Forging, Ring and Extrusion (CEVM) Investment Casting Sheet, Strip and Plate (CEVM) Bar, Forging and Ring Investment Casting (H1000) Investment Casting (H1100) Investment Casting (H900) Sheet, Strip and Plate Plate, Sheet and Strip Sheet Laminate Sheet Sheet Sheet and Plate Bar Bar and Forging Bar and Forging Tubing Tubing Bar and Forging
Key: Underline indicates inactive for new design.
B-5
Specification AMS 4148 (T66) AMS 4344 (T73511) AMS-A-22771 AMS 4179 (T7452) AMS 4293 AMS 4334 AMS 4332 AMS 4250 AMS 4299 AMS 4305 AMS 4089 (T7651) AMS 4090 (T651) AMS 4202 (T7351) AMS 4084 (T61) AMS 4085 (T761) AMS 4100 (T761) AMS 4207 (T61) AMS 6280 MIL-S-6050 AMS 6281 AMS 6355 AMS 6320 AMS 6357 AMS 6282 AMS 6322 AMS 6327 AMS 6358 AMS 6323 AMS 5659 AMS 5400 AMS 5862 AMS 5643 AMS 5343 AMS 5342 AMS 5344 AMS 5604 AMS 5528 AMS 4254
Section 3.7.12 3.7.12 3.7.12 3.7.12 3.7.13 3.7.13 3.7.14 3.7.15 3.7.15 3.7.15 3.7.16 3.7.16 3.7.16 3.7.16 3.7.16 3.7.16 3.7.16 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.6.7 2.6.7 2.6.7 2.6.9 2.6.9 2.6.9 2.6.9 2.6.9 2.6.10 7.5.1
AMS 4273 AMS 4270 AMS 4296 AMS 6514 AMS 6257 AMS 6419 AMS 6257 AMS 6419 AMS 6417
3.2.17 3.2.17 3.2.19 2.5.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1
MMPDS-06 1 April 2011
APPENDIX B Alloy Name 300M (0.4C) 4330V 4330V 4330V 4330V 4330V 4330V 4335V 4335V 4335V 4335V 4335V 4335V 5Cr-Mo-V 5Cr-Mo-V 6013 (T4) 6013 (T6) 7049/7149 7049/7149 7475-T761 ARAMID Fiber Reinforced 9Ni-4Co-0.20C 9Ni-4Co-0.30C A201.0 A-286 A-286 A-286 A-286 A-286 A356.0 A356.0 A357.0 A357.0 AerMet 100 AF1410 AISI 1025 AISI 1025 AISI 1025 - N AISI 1025 - N AISI 301 AISI 301 AISI 301 AISI 301 AISI 301 AISI 301 AISI 302 AISI 302 AISI 302
Form/Application Tubing Bar and Forging Bar and Forging Tubing Tubing Bar and Forging Tubing Bar and Forging Bar and Forging Sheet, Strip and Plate Sheet, Strip and Plate Tubing Tubing Bar and Forging (CEVM) Sheet, Strip and Plate Sheet Sheet Forging Forging Sheet Laminate Sheet, Strip and Plate Bar and Forging, Tubing Casting (T7 Temper) Bar, Forging and Tubing Bar, Forging and Tubing Bar, Forging, Tubing and Ring Bar, Forging, Tubing and Ring Sheet, Strip and Plate Casting Casting Casting Casting Bar and Forging Bar and Forging Bar Sheet, Strip, and Plate Seamless Tubing Tubing Plate, Sheet and Strip Sheet and Strip (125 ksi) Sheet and Strip (150 ksi) Sheet and Strip (175 ksi) Sheet and Strip (185 ksi) Sheet, Strip and Plate Sheet and Strip (125 ksi) Sheet and Strip (150 ksi) Sheet and Strip (175 ksi)
Key: Underline indicates inactive for new design.
B-6
Specification AMS 6417 AMS 6411 AMS 6427 AMS 6411 AMS 6427 AMS 6340 AMS 6340 AMS 6429 AMS 6430 AMS 6433 AMS 6435 AMS 6429 AMS 6430 AMS 6487 AMS 6437 AMS 4216 AMS 4347 AMS-A-22771 AMS-QQ-A-367 AMS 4302
Section 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.4.1 2.4.1 3.6.1 3.6.1 3.7.3 3.7.3 7.5.2
AMS 6523 AMS 6526 AMS-A-21180 AMS 5734 AMS 5737 AMS 5731 AMS 5732 AMS 5525 AMS 4218 AMS-A-21180 AMS 4219 AMS-A-21180 AMS 6532 AMS 6527 ASTM A 108 AMS 5046 AMS 5075 AMS-T-5066 AMS 5901 AMS 5517 AMS 5518 AMS 5902 AMS 5519 AMS 5513 AMS 5903 AMS 5904 AMS 5905
2.4.2 2.4.3 3.8.1 6.2.1 6.2.1 6.2.1 6.2.1 6.2.1 3.9.5 3.9.5 3.9.6 3.9.6 2.5.3 2.5.2 2.2.1 2.2.1 2.2.1 2.2.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1
MMPDS-06 1 April 2011
APPENDIX B Alloy Name AISI 302 AISI 302 AISI 304 AISI 304 AISI 304 AISI 304 AISI 316 AISI 316 Al-62Be AM100A AM100A AM-350 AM-355 AM-355 AM-355 AZ31B AZ31B AZ31B AZ31B AZ31B AZ61A AZ61A AZ91C/AZ91E AZ91C/AZ91E AZ91C/AZ91E AZ92A AZ92A AZ92A Beryllium, Standard Grade Beryllium, Standard Grade Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener C355.0
Form/Application Sheet and Strip (185 ksi) Sheet, Strip and Plate Sheet and Strip (150 ksi) Sheet and Strip (175 ksi) Sheet and Strip (185 ksi) Sheet, Strip and Plate (125 ksi) Sheet, Strip and Plate Sheet, Strip and Plate (125 ksi) Preform, HIPed Investment Casting Permanent Mold Casting Sheet and Strip Bar, Forging and Forging Stock Plate Sheet and Strip Extrusion Forging Plate Sheet and Plate Sheet and Plate Extrusion Forging Investment Casting Sand Casting Sand Casting Investment Casting Permanent Mold Casting Sand Casting Bar, Rod, Tubing and Machined Shapes
Specification AMS 5906 AMS 5516 AMS 5911 AMS 5912 AMS 5913 AMS 5910 AMS 5524 AMS 5907 AMS 7911 AMS 4455 AMS 4483 AMS 5548 AMS 5743 AMS 5549 AMS 5547 ASTM B 107 ASTM B 91 AMS 4376 AMS 4375 AMS 4377 AMS 4350 ASTM B 91 AMS 4452 AMS 4437 AMS 4446 AMS 4453 AMS 4484 AMS 4434 AMS 7906
Section 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 7.6.1 4.3.1 4.3.1 2.6.1 2.6.2 2.6.2 2.6.2 4.2.1 4.2.1 4.2.1 4.2.1 4.2.1 4.2.2 4.2.2 4.3.2 4.3.2 4.3.2 4.3.3 4.3.3 4.3.3 7.2.1
Sheet and Plate
AMS 7902
7.2.1
Flush Head Flush Head Protruding Head Flush Head Flush Head Protruding Head Flush Head Protruding Head Flush Head Protruding Head Flush Head Flush Head Flush Head Flush Head Flush Head Flush Head Casting
MS21140 MS90353 NASM20600 NASM20601 NAS1379 NAS1398 NAS1399 NAS1720 NAS1721 NAS1738 NAS1739 NAS1921 NAS1670-L NAS1674-L NASM21140 NASM90353 AMS-A-21180
8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 3.9.3
Key: Underline indicates inactive for new design.
B-7
MMPDS-06 1 April 2011
APPENDIX B Alloy Name Copper Beryllium Copper Beryllium Copper Beryllium Copper Beryllium Copper Beryllium Copper Beryllium Copper Beryllium Copper Beryllium Copper-Nickel-Tin Copper-Nickel-Tin CP Titanium CP Titanium CP Titanium CP Titanium CP Titanium CP Titanium Custom 450 Custom 450 Custom 455 Custom 455 Custom 465 D357.0 D6AC D6AC D6AC D6AC E357.0 EZ33A F357.0 Ferrium S53 Hastelloy X Hastelloy X HR-120 HSL180 Hy-Tuf Hy-Tuf Inconel Alloy 600 Inconel Alloy 600 Inconel Alloy 600 Inconel Alloy 600 Inconel Alloy 625 Inconel Alloy 625 Inconel Alloy 706 Inconel Alloy 706 Inconel Alloy 706 Inconel Alloy 706 Inconel Alloy 706 718 Alloy
Form/Application Bar and Rod (TD04) Bar and Rod (TF00) Bar and Rod (TH04) Bar, Rod, Shapes and Forging (TB00) Mechanical tubing (TF00) Sheet (TB00, TD01, TD02, TD04) Strip (TB00) Strip (TD02) Bar, Rod, Tubes (TX 00) Bar and Rod (TX TS) Bar Extruded Bars and Shapes Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Bar, Forging, Tubing, Wire and Ring (air melted) Bar, Forging, Tubing, Wire and Ring (CEM) Bar and Forging Tubing (welded) Bar, Wires and Forgings Sand Composite Casting Bar and Forging Bar and Forging Sheet, Strip and Plate Tubing Casting Sand Casting Casting Bar Bar and Forging Sheet and Plate Sheet, Strip and Plate Bar and Forging Bar and Forging Tubing Bar and Rod Forging Plate, Sheet and Strip Tubing, Seamless Bar, Forging and Ring Sheet, Strip and Plate Bar, Forging and Ring Bar, Forging and Ring Bar, Forging and Ring Sheet, Strip and Plate Sheet, Strip and Plate Bar and Forging; Creep Rupture
Key: Underline indicates inactive for new design.
B-8
Specification AMS 4651 AMS 4533 AMS 4534 AMS 4650 AMS 4535 ASTM B 194 AMS 4530 AMS 4532 AMS 4596 AMS 4597 AMS 4921 AMS-T-81556 AMS 4900 AMS 4901 AMS 4902 AMS 4940 AMS 5763 AMS 5773 AMS 5617 AMS 5578 AMS 5936 AMS 4241 AMS 6431 AMS 6439 AMS 6439 AMS 6431 AMS 4288 AMS 4442 AMS 4289 AMS 5922 AMS 5754 AMS 5536 AMS 5916 AMS 5933 AMS 6425 AMS 6425 ASTM B 166 ASTM B 564 AMS 5540 AMS 5580 AMS 5666 AMS 5599 AMS 5701 AMS 5702 AMS 5703 AMS 5605 AMS 5606 AMS 5662
Section 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.3 7.3.3 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 5.2.1 2.6.3 2.6.3 2.6.4 2.6.4 2.6.5 3.9.7 2.3.1 2.3.1 2.3.1 2.3.1 3.9.7 4.3.5 3.9.6 2.5.4 6.3.1 6.3.1 6.3.10 2.6.11 2.3.1 2.3.1 6.3.2 6.3.2 6.3.2 6.3.2 6.3.3 6.3.3 6.3.4 6.3.4 6.3.4 6.3.4 6.3.4 6.3.5
MMPDS-06 1 April 2011
APPENDIX B Alloy Name 718 Alloy 718 Alloy 718 Alloy 718 Alloy 718 Alloy 718 Alloy 718 Alloy Inconel Alloy X-750 Inconel Alloy X-750 L-605 L-605 Manganese Bronzes Manganese Bronzes MLX17 MP159 Alloy MP159 Alloy MP35N Alloy MP35N Alloy N-155 N-155 N-155 N-155 PH13-8Mo PH13-8Mo PH15-7Mo QE22A Magnesium Renéé 41 Renéé 41 Renéé 41 - STA Steels Solid Rivet Solid Rivet Solid Rivet Solid Rivet Solid Rivet Solid Rivet Solid Rivet Swaged Collar Fastener Swaged Collar Fastener Swaged Collar Fastener Swaged Collar Fastener Threaded Fastener Threaded Fastener Ti-10V-2Fe-3Al (Ti10-2-3)
Form/Application Bar and Forging; Creep Rupture Bar and Forging; Short-Time Investment Casting Sheet, Strip and Plate; Creep Rupture Sheet, Strip and Plate; Short-Time Tubing; Creep Rupture Tubing; Short-Time Bar and Forging; Equalized Sheet, Strip and Plate; Annealed Bar and Forging Sheet Casting Casting Bar, Forging Bar (solution treated and cold drawn) Bar (solution treated, cold drawn and aged) Bar (solution treated and cold drawn) Bar (solution treated, cold drawn and aged) Bar and Forging Bar and Forging Sheet Tubing (welded) Bar, Forging, Ring and Extrusion (VIM+CEVM) Bar, Forging, Ring and Extrusion (Extra-Tough) Plate, Sheet and Strip Sand Casting Bar and Forging Plate, Sheet and Strip Bar and Forging Welding Electrode Protruding Head Flush Head Flush Head Flush Head Flush Head Flush Head Flush Head
Specification AMS 5663 AMS 5664 AMS 5383 AMS 5596 AMS 5597 AMS 5589 AMS 5590 AMS 5667 AMS 5542 AMS 5759 AMS 5537 AMS 4860 AMS 4862 AMS 5937 AMS 5842 AMS 5843 AMS 5844 AMS 5845 AMS 5768 AMS 5769 AMS 5532 AMS 5585 AMS 5629 AMS 5934 AMS 5520 AMS 4418 AMS 5713 AMS 5545 AMS 5712 MIL-E-22200/10 NAS1198 NASM14218 NASM14219 NASM20426 NASM20427 MS14218E MS14219E
Flush Head
NAS1436
Flush Head
NAS1442
Flush Head
NAS7024
Flush Head
NAS7032
Flush Head Flush Head Forging
NAS4452 NAS4445 AMS 4984
Key: Underline indicates inactive for new design.
B-9
Section 6.3.5 6.3.5 6.3.5 6.3.5 6.3.5 6.3.5 6.3.5 6.3.6 6.3.6 6.4.1 6.4.1 7.3.1 7.3.1 2.6.12 7.4.2 7.4.2 7.4.1 7.4.1 6.2.2 6.2.2 6.2.2 6.2.2 2.6.6 2.6.6 2.6.8 4.3.6 6.3.7 6.3.7 6.3.7 8.2.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.2 8.1.4 8.1.4 8.1.4 8.1.4 8.1.5 8.1.5 5.5.3
MMPDS-06 1 April 2011
APPENDIX B Alloy Name Ti-10V-2Fe-3Al (Ti10-2-3) Ti-13V-11Cr-3Al Ti-13V-11Cr-3Al Ti-13V-11Cr-3Al Ti-15V-3Cr-3Sn-3Al (Ti-15-3)-3-3 Ti-4Al-2.5V-1.5Fe Ti-4.5Al-3V-2Fe-2Mo Ti-4.5Al-3V-2Fe-2Mo Ti-5Al-2.5Sn Ti-5Al-2.5Sn Ti-5Al-2.5Sn Ti-5Al-2.5Sn Ti-5Al-2.5Sn Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-6V-2Sn Ti-6Al-6V-2Sn Ti-6Al-6V-2Sn Ti-6Al-6V-2Sn Ti-6Al-6V-2Sn Ti-6Al-6V-2Sn Ti-8Al-1Mo-1V Ti-8Al-1Mo-1V Ti-8Al-1Mo-1V Ti-8Al-1Mo-1V Waspaloy Waspaloy Waspaloy Waspaloy Waspaloy Waspaloy ZE41A Magnesium
Form/Application Forging
Specification AMS 4986
Section 5.5.3
Bar and Forging Bar and Forging Sheet, Strip and Plate Sheet and Strip
AMS 6925 AMS 6926 AMS 4917 AMS 4914
5.5.1 5.5.1 5.5.1 5.5.2
AMS 6946 AMS 4964 AMS 4899 AMS 4926 AMS 6900 AMS-T-81556 AMS 4966 AMS 4910 AMS 4975 AMS 4976 AMS 4919 AMS 4967 AMS 4928 AMS 4962 AMS 4920 AMS 4934 AMS 4935 AMS 4992 AMS 4911 AMS 4904 AMS 6930 AMS 6931 AMS 6945 AMS 4965 AMS 4971 AMS 4978 AMS 4979 AMS-T-81556 AMS 4918 AMS 4990 AMS 6910 AMS 4973 AMS 4915 AMS 4916 AMS 5706 AMS 5707 AMS 5708 AMS 5709 AMS 5704 AMS 5544 AMS 4439
5.4.4 5.4.3 5.4.3 5.3.1 5.3.1 5.3.1 5.3.1 5.3.1 5.3.3 5.3.3 5.3.3 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.1 5.4.2 5.4.2 5.4.2 5.4.2 5.4.2 5.4.2 5.3.2 5.3.2 5.3.2 5.3.2 6.3.8 6.3.8 6.3.8 6.3.8 6.3.8 6.3.8 4.3.7
Cold and Hot Rolled Sheet, Strip, and Plate Bars, Wires, Forgings and Rings Sheet Bar Bar and Forging Extruded Bar and Shapes Forging Sheet, Strip and Plate Bar Forging Sheet, Strip and Plate Bar Bar and Die Forging Casting Die Forging Extrusion Extrusion Investment Casting Sheet, Strip and Plate Sheet, Strip and Plate Bar Bar Plate Bar Bar and Forging Bar and Forging Bar and Forging Extruded Bar and Shapes Sheet, Strip and Plate Sheet, Strip and Plate Bar and Forging Forging Sheet, Strip and Plate Sheet, Strip and Plate Bar, Forgings and Ring Bar, Forgings and Ring Bar, Forgings and Ring Bar, Forgings and Ring Forging Plate, Sheet and Strip Sand Casting
Key: Underline indicates inactive for new design.
B-10
MMPDS-06 1 April 2011
APPENDIX B Alloy Name ZK60A-F ZK60A-T5 ZK60A-T5 ... ... ... ... ...
Form/Application Extrusion Die and Hand Forging Extrusion Sleeve Bolt Threaded Fasteners Threaded Fasteners Wire Rope Wire Strand
Key: Underline indicates inactive for new design.
B-11
Specification ASTM B 107 AMS 4362 AMS 4352 MIL-B-8831/4 AS 8879 MIL-S-7742 MIL-DTL-83420 MIL-DTL-87161
Section 4.2.3 4.2.3 4.2.3 8.1.6 8.1.5 8.1.5 8.3 8.3
MMPDS-06 1 April 2011
APPENDIX B
This page is intentionally blank.
Key: Underline indicates inactive for new design.
B-12
MMPDS-06 1 April 2011
APPENDIX C
C.0 Specification Index Specification AMS 5015 AMS 4016 AMS 4017 AMS 4025 AMS 4026 AMS 4027 AMS 4028 AMS 4029 AMS 4031 AMS 4035 AMS 4037 AMS 4044 AMS 4045 AMS 4049 AMS 4050 AMS 4056 AMS 4078 AMS 4080 AMS 4081 AMS 4082 AMS 4083 AMS 4084 (T61) AMS 4085 (T761) AMS 4086 AMS 4089 (T7651) AMS 4090 (T651) AMS 4100 (T761) AMS 4101 AMS 4107 AMS 4108 AMS 4111 AMS 4115 AMS 4116 AMS 4117 AMS 4118 AMS 4120 AMS 4121 AMS 4122 AMS 4123 AMS 4124 AMS 4125 AMS 4126 AMS 4127 AMS 4128 AMS 4130 AMS 4132
Alloy Name 5052 5052 5052 6061 6061 6061 2014 2014 2219 2024 2024 7075 7075 7075 7050 5083 7075 6061 6061 6061 6061 7475 7475 2024 7475 7475 7475 2124 7050 7050 7049 6061 6061 6061 2017 2024 2014 7075 7075 7075 6151 7075 6061 6061 2025 2618
Key: Underline indicates inactive for new design.
Form/Application Sheet and Plate Sheet and Plate Sheet and Plate Sheet and Plate Sheet and Plate Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Bare Sheet and Plate Clad Sheet and Plate Bare Plate Bare Sheet and Plate Bare Plate Tubing Seamless, Drawn Tubing Seamless, Drawn Tubing Seamless, Drawn Tubing Seamless, Drawn Bare Sheet Bare Sheet Tubing, Hydraulic, Seamless, Drawn Bare Plate Bare Plate Clad Sheet Plate Die Forging Hand Forging Forging Bar and Rod, Rolled or Cold Finished Bar and Rod, Cold Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold-Finished Bar and Rod, Rolled or Cold-Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Bar and Rod, Rolled or Cold Finished Die Forging Forging Forging Bar and Rod, Rolled or Cold Finished Die Forging Die and Hand Forgings
C-1
Section 3.5.1 3.5.1 3.5.1 3.6.2 3.6.2 3.6.2 3.2.2 3.2.2 3.2.16 3.2.4 3.2.4 3.7.8 3.7.8 3.7.8 3.7.4 3.5.2 3.7.8 3.6.2 3.6.2 3.6.2 3.6.2 3.7.17 3.7.17 3.2.4 3.7.17 3.7.17 3.7.17 3.2.13 3.7.4 3.7.4 3.7.3 3.6.2 3.6.2 3.6.2 3.2.3 3.2.4 3.2.2 3.7.8 3.7.8 3.7.8 3.6.3 3.7.8 3.6.2 3.6.2 3.2.5 3.2.22
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 4133 AMS 4141 AMS 4144 AMS 4147 AMS 4148 (T66) AMS 4149 (T74) AMS 4150 AMS 4152 AMS 4153 AMS 4157 AMS 4160 AMS 4161 AMS 4162 AMS 4163 AMS 4164 AMS 4165 AMS 4166 AMS 4167 AMS 4172 AMS 4173 AMS 4179 (T7452) AMS 4186 AMS 4200 AMS 4201 AMS 4202 (T7351) AMS 4204 AMS 4205 AMS 4206 AMS 4207 (T61) AMS 4211 AMS 4213 AMS 4215 AMS 4216 AMS 4217 AMS 4218 AMS 4219 AMS 4229 AMS 4241 AMS 4248 AMS 4250 AMS 4251 AMS 4252 (T7751) AMS 4254 AMS 4260 AMS 4267 AMS 4270 AMS 4273
Alloy Name 2014 7075 2219 7075 7175 7175 6061 2024 2014 7049 6061 6061 2219 2219 2024 2024 7075 7075 6061 6061 7175 7075 7049 7050 7475 7010 7010 7055 7475 7040 2027 C355.0 6013 (T4) 356 A356.0 A357.0 A201.0 D357.0 6061 7449 2090 7150 2024-T3 ARAMID Fiber Reinforced 356 7055 2424 (Clad) 2424 (Bare)
Key: Underline indicates inactive for new design.
Form/Application Forging Die Forging Hand Forging Forging Die Forging Die and Hand Forging Extruded Rod, Bars, and Shapes Extrusion Extrusion Extrusion Extrusion Extrusion Extrusion Extrusion Extrusion Extrusion Extrusion Extrusion Extruded Rod, Bars, and Shapes Extruded Rod, Bars, and Shapes Hand Forging Bar and Rod, Rolled or Cold Finished Plate Bare Plate Bare Plate Plate Plate Plate Clad Sheet Plate Plate Casting Sheet Sand Casting Casting Casting Casting Sand Composite Casting Hand Forging Plate Sheet Plate Sheet Laminate Investment Casting Sheet Sheet Sheet
C-2
Section 3.2.2 3.7.8 3.2.16 3.7.8 3.7.13 3.7.13 3.6.2 3.2.4 3.2.2 3.7.3 3.6.2 3.6.2 3.2.16 3.2.16 3.2.4 3.2.4 3.7.8 3.7.8 3.6.2 3.6.2 3.7.13 3.7.8 3.7.3 3.7.4 3.7.17 3.7.1 3.7.1 3.7.5 3.7.17 3.7.2 3.2.7 3.9.3.0(b) 3.6.1 3.9.4 3.9.5 3.9.6 3.8.1.0(b) 3.9.7 3.6.2 3.7.16 3.2.10 3.7.12 7.5.1 3.9.4 3.7.5 3.2.19 3.2.19
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 4281 AMS 4284 AMS 4287 AMS 4288 AMS 4289 AMS 4293 AMS 4296 AMS 4298 AMS 4299 AMS 4302 AMS 4305 AMS 4306 (T6151) AMS 4307 (T61511) AMS 4315 AMS 4316 AMS 4320 AMS 4324 AMS 4325 AMS 4326 AMS 4327 AMS 4328 AMS 4329 AMS 4330 AMS 4331 AMS 4332 AMS 4333 AMS 4334 AMS 4336 AMS 4337 AMS 4338 AMS 4340 AMS 4341 AMS 4342 AMS 4343 AMS 4344 (T73511) AMS 4345 (T77511) AMS 4347 AMS 4350 AMS 4352 AMS 4362 AMS 4375 AMS 4376 AMS 4377 AMS 4401 AMS 4403 AMS 4405 AMS 4407
Alloy Name 355 356 2099 E357.0 F357.0 7249 2524 (T3) 2056 7449 7475-T761 ARAMID Fiber Reinforced 7449 7150 7150 7075 7075 7149 7055 7150 2013 2098 2397 7085 2297 7068 7349 7050 7249 7055 7055 2026 7050 7050 7050 7149 7175 7150 6013 (T6) AZ61A ZK60A-T5 ZK60A-T5 AZ31B AZ31B AZ31B 7140 7085 6156 7056
Key: Underline indicates inactive for new design.
C-3
Form/Application Permanent Mold Casting Permanent Mold Casting Extrusion Casting Casting Extrusion Sheet and Plate Clad Sheet Plate Sheet Laminate
Section 3.9.2 3.9.4 3.2.12 3.9.7 3.9.6 3.7.14 3.2.21 3.2.9 3.7.16 7.5.2
Extruded Profile Bare Plate Extrusion Bare Sheet and Plate Clad Sheet and Plate Forging Extrusion Extrusion Extrusion Plate Plate Plate Plate Extrusion Extrusion Die Forging Hand Forging Extrusion Extrusion Bars, Rods, and Profiles Extruded Shape Extruded Shape Extruded Shape Extrusion Extrusion Extrusion Sheet Extrusion Extrusion Die and Hand Forging Sheet and Plate Plate Sheet and Plate Plate Die Forging Clad Sheet Plate
3.7.16 3.7.12 3.7.12 3.7.8 3.7.8 3.7.3 3.7.5 3.7.12 3.2.1 3.2.11 3.2.18 3.7.8 3.2.17 3.7.7 3.7.15 3.7.4 3.7.14 3.7.5 3.7.5 3.2.6 3.7.4 3.7.4 3.7.4 3.7.3 3.7.13 3.7.12 3.6.1 4.2.2 4.2.3 4.2.3 4.2.1 4.2.1 4.2.1 3.7.11 3.7.9 3.6.4 3.7.6
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 4408 AMS 4413 AMS 4414 AMS 4418 AMS 4429 AMS 4434 AMS 4437 AMS 4439 AMS 4442 AMS 4446 AMS 4452 AMS 4453 AMS 4455 AMS 4457 AMS 4483 AMS 4484 AMS 4530 AMS 4532 AMS 4533 AMS 4534 AMS 4535 AMS 4596 AMS 4597 AMS 4650 AMS 4651 AMS 4860 AMS 4862 AMS 4899 AMS 4900 AMS 4901 AMS 4902 AMS 4904 AMS 4910 AMS 4911 AMS 4914 AMS 4915 AMS 4916 AMS 4917 AMS 4918 AMS 4919 AMS 4920 AMS 4921 AMS 4926 AMS 4928 AMS 4934 AMS 4935 AMS 4940
Alloy Name 7140 2050 7085 QE22A Magnesium EV31A AZ92A AZ91C/AZ91E ZE41A Magnesium EZ33A AZ91C/AZ91E AZ91C/AZ91E AZ92A AM100A 2098 AM100A AZ92A Copper Beryllium Copper Beryllium Copper Beryllium Copper Beryllium Copper Beryllium Copper-Nickel-Tin Copper-Nickel-Tin Copper Beryllium Copper Beryllium Manganese Bronzes Manganese Bronzes Ti-4.5Al-3V-2Fe-2Mo CP Titanium CP Titanium CP Titanium Ti-6Al-4V Ti-5Al-2.5Sn Ti-6Al-4V Ti-15V-3Cr-3Sn-3Al (Ti-15-3)-3-3 Ti-8Al-1Mo-1V Ti-8Al-1Mo-1V Ti-13V-11Cr-3Al Ti-6Al-6V-2Sn Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-4V CP Titanium Ti-5Al-2.5Sn Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V CP Titanium
Key: Underline indicates inactive for new design.
Form/Application Plate Plate Hand Forging Sand Casting Sand Casting Sand Casting Sand Casting Sand Casting Sand Casting Sand Casting Investment Casting Investment Casting Investment Casting Sheet Permanent Mold Casting Permanent Mold Casting Strip (TF00) Strip (TH02) Bar and Rod (TF00) Bar and Rod (TH04) Mechanical tubing (TF00) Bar, Rod, Tube (TX 00) Bar and Rod (TXTS) Bar, Rod, Shapes and Forging (TF00) Bar and Rod (TF04) Casting Casting Sheet Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet and Strip Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Die Forging Bar Bar Bar and Die Forging Extrusion Extrusion Sheet, Strip and Plate
C-4
Section 3.7.11 3.2.8 3.7.9 4.3.6 4.3.4 4.3.3 4.3.2 4.3.7 4.3.5 4.3.2 4.3.2 4.3.3 4.3.1 3.2.11 4.3.1 4.3.3 7.3.2 7.3.2 7.3.2 7.3.2 7.3.2 7.3.3 7.3.3 7.3.2 7.3.2 7.3.1 7.3.1 5.4.3 5.2.1 5.2.1 5.2.1 5.4.1 5.3.1 5.4.1 5.5.2 5.3.2 5.3.2 5.5.1 5.4.2 5.3.3 5.4.1 5.2.1 5.3.1 5.4.1 5.4.1 5.4.1 5.2.1
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 4962 AMS 4964 AMS 4965 AMS 4966 AMS 4967 AMS 4971 AMS 4973 AMS 4975 AMS 4976 AMS 4978 AMS 4979 AMS 4983 AMS 4984 AMS 4986 AMS 4990 AMS 4992 AMS 5046 AMS 5075 AMS 5342 AMS 5343 AMS 5344 AMS 5383 AMS 5400 AMS 5510 AMS 5512 AMS 5513 AMS 5516 AMS 5517 AMS 5518 AMS 5519 AMS 5520 AMS 5524 AMS 5525 AMS 5528 AMS 5532 AMS 5536 AMS 5537 AMS 5540 AMS 5542 AMS 5544 AMS 5545 AMS 5547 AMS 5548 AMS 5549 AMS 5578
Alloy Name Ti-6Al-4V Ti-4.5Al-3V-2Fe-2Mo Tii-6Al-4V Ti-5Al-2.5Sn Ti-6Al-4V Ti-6Al-6V-2Sn Ti-8Al-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-6V-2Sn Ti-6Al-6V-2Sn Ti-10V-2Fe-3Al (Ti10-2-3) Ti-10V-2Fe-3Al (Ti10-2-3) Ti-10V-2Fe-3Al (Ti10-2-3) Ti-6Al-6V-2Sn Ti-6Al-4V AISI 1025 AISI 1025 - N 17-4PH 17-4PH 17-4PH 718 Alloy 15-5PH AISI 303 AISI 303 AISI 301 AISI 302 AISI 301 AISI 301 AISI 301 PH15-7Mo AISI 316 A-286 17-7PH N-155 Hastelloy X L-605 Inconel Alloy 600 Inconel Alloy X-750 Waspaloy Renéé 41 AM-355 AM-350 AM-355 Custom 455
Key: Underline indicates inactive for new design.
Form/Application Casting Bars, Wires, Forgings and Rings Bar Forging Bar Bar and Forging Forging Bar Forging Bar and Forging Bar and Forging Forging
Section 5.4.1 5.4.3 5.4.1 5.3.1 5.4.1 5.4.2 5.3.2 5.3.3 5.3.3 5.4.2 5.4.2 5.5.3
Forging
5.5.3
Forging
5.5.3
Sheet, Strip and Plate Investment Casting Sheet, Strip, and Plate Seamless Tubing Investment Casting (H1100) Investment Casting (H1000) Investment Casting (H900) Investment Casting Investment Casting Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet and Strip (125 ksi) Sheet and Strip (150 ksi) Sheet and Strip (185 ksi) Plate, Sheet and Strip Sheet, Strip and Plate Sheet, Strip and Plate Plate, Sheet and Strip Sheet Sheet and Plate Sheet Plate, Sheet and Strip Sheet, Strip and Plate; Annealed Plate, Sheet and Strip Plate, Sheet and Strip Sheet and Strip Sheet and Strip Plate Tubing (welded)
5.4.2 5.4.1 2.2.1 2.2.1 2.6.9 2.6.9 2.6.9 6.3.5 2.6.7 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.6.8 2.7.1 6.2.1 2.6.10 6.2.2 6.3.1 6.4.1 6.3.2 6.3.6 6.3.8 6.3.7 2.6.2 2.6.1 2.6.2 2.6.4
C-5
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 5580 AMS 5585 AMS 5589 AMS 5590 AMS 5596 AMS 5597 AMS 5599 AMS 5604 AMS 5605 AMS 5606 AMS 5608 AMS 5617 AMS 5629 AMS 5643 AMS 5659 AMS 5662 AMS 5663 AMS 5664 AMS 5666 AMS 5667 AMS 5701 AMS 5702 AMS 5703 AMS 5704 AMS 5706 AMS 5707 AMS 5708 AMS 5709 AMS 5712 AMS 5713 AMS 5731 AMS 5732 AMS 5734 AMS 5737 AMS 5743 AMS 5754 AMS 5759 AMS 5763 AMS 5768 AMS 5769 AMS 5772 AMS 5773 AMS 5842 AMS 5843 AMS 5844 AMS 5845 AMS 5862 AMS 5878
Alloy Name Inconel Alloy 600 N-155 718 Alloy 718 Alloy 718 Alloy 718 Alloy Inconel Alloy 625 17-4PH Inconel Alloy 706 Inconel Alloy 706 188 Custom 455 PH13-8Mo 17-4PH 15-5PH 718 Alloy 718 Alloy 718 Alloy Inconel Alloy 625 Inconel Alloy X-750 Inconel Alloy 706 Inconel Alloy 706 Inconel Alloy 706 Waspaloy Waspaloy Waspaloy Waspaloy Waspaloy Renéé 41 - STA Renéé 41 A-286 A-286 A-286 A-286 AM-355 Hastelloy X L-605 Custom 450 N-155 N-155 188 Custom 450 MP159 Alloy MP159 Alloy MP35N Alloy MP35N Alloy 15-5PH 230
Key: Underline indicates inactive for new design.
Form/Application Tubing, Seamless Tubing (welded) Tubing; Creep Rupture Tubing; Short-Time Sheet, Strip and Plate; Creep Rupture Sheet, Strip and Plate; Short-Time Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet and Plate Bar and Forging Bar, Forging Ring and Extrusion (VIM+CEVM) Bar, Forging and Ring Bar, Forging, Ring and Extrusion (CEVM) Bar and Forging; Creep Rupture Bar and Forging; Creep Rupture Bar and Forging; Short-Time Bar, Forging and Ring Bar and Forging; Equalized Bar, Forging and Ring Bar, Forging and Ring Bar, Forging and Ring Forging Bar, Forgings and Ring Bar, Forgings and Ring Bar, Forgings and Ring Bar, Forgings and Ring Bar and Forging Bar and Forging Bar, Forging, Tubing and Ring Bar, Forging, Tubing and Ring Bar, Forging and Tubing Bar, Forging and Tubing Bar, Forging and Forging Stock Bar and Forging Bar and Forging Bar, Forging, Tubing, Wire and Ring (air melted) Bar and Forging Bar and Forging Bar and Forging Bar, Forging, Tubing, Wire and Ring (CEM) Bar (solution treated and cold drawn) Bar (solution treated, cold drawn and aged) Bar (solution treated and cold drawn) Bar (solution treated, cold drawn and aged) Sheet, Strip and Plate (CEVM) Plate, Sheet and Strip
C-6
Section 6.3.2 6.2.2 6.3.5 6.3.5 6.3.5 6.3.5 6.3.3 2.6.9 6.3.4 6.3.4 6.4.2 2.6.4 2.6.6 2.6.9 2.6.7 6.3.5 6.3.5 6.3.5 6.3.3 6.3.6 6.3.4 6.3.4 6.3.4 6.3.8 6.3.8 6.3.8 6.3.8 6.3.8 6.3.7 6.3.7 6.2.1 6.2.1 6.2.1 6.2.1 2.6.2 6.3.1 6.4.1 2.6.3 6.2.2 6.2.2 6.4.2 2.6.3 7.4.2 7.4.2 7.4.1 7.4.1 2.6.7 6.3.9
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 5891 AMS 5901 AMS 5902 AMS 5903 AMS 5904 AMS 5905 AMS 5906 AMS 5907 AMS 5910 AMS 5911 AMS 5912 AMS 5913 AMS 5916 AMS 5922 AMS 5933 AMS 5933 AMS 5934 AMS 5936 AMS 5937 AMS 6257 AMS 6257 AMS 6280 AMS 6281 AMS 6282 AMS 6320 AMS 6322 AMS 6323 AMS 6327 AMS 6340 AMS 6340 AMS 6345 AMS 6346 AMS 6346 AMS 6348 AMS 6349 AMS 6350 AMS 6351 AMS 6352 AMS 6357 AMS 6358 AMS 6359 AMS 6360 AMS 6361 AMS 6362 AMS 6365 AMS 6370 AMS 6371
Alloy Name 230 AISI 301 AISI 301 AISI 302 AISI 302 AISI 302 AISI 302 AISI 316 AISI 304 AISI 304 AISI 304 AISI 304 HR-120 Ferrium S53 12.5Cr-1.0Ni-15.5Co2.0Mo HSL180 PH13-8Mo Custom 465 MLX17 300M (0.42C) 300M (0.42C) 8630 8630 8735 8735 8740 8740 8740 4330V 4330V 4130 4130 4130 4130 4140 4130 4130 4135 8735 8740 4340 4130 4130 4130 4135 4130 4130
Key: Underline indicates inactive for new design.
Form/Application Bar and Forging Plate, Sheet and Strip Sheet and Strip (175 ksi) Sheet and Strip (125 ksi) Sheet and Strip (150 ksi) Sheet and Strip (175 ksi) Sheet and Strip (185 ksi) Sheet, Strip and Plate (125 ksi) Sheet, Strip and Plate (125 ksi) Sheet and Strip (150 ksi) Sheet and Strip (175 ksi) Sheet and Strip (185 ksi) Sheet, Strip and Plate Bar Bar and Forging Bar and Forging Bar, Forging, Ring, and Extrusion Bar, Wires and Forgings Bar Forging Bar and Forging Tubing Bar and Forging Tubing Tubing Bar and Forging Bar and Forging Tubing Bar and Forging Bar and Forging Tubing Sheet, Strip and Plate Bar Bar Bar and Forging Bar and Forging Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Tubing (normalized) Tubing Tubing Tubing Bar and Forging Tubing
C-7
Section 6.3.9 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 2.7.1 6.3.10 2.5.4 2.6.11 2.6.11 2.6.6 2.6.5 2.6.12 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 6372 AMS 6373 AMS 6374 AMS 6381 AMS 6382 AMS 6395 AMS 6411 AMS 6411 AMS 6414 AMS 6414 AMS 6415 AMS 6415 AMS 6417 AMS 6417 AMS 6419 AMS 6419 AMS 6425 AMS 6425 AMS 6427 AMS 6427 AMS 6429 AMS 6429 AMS 6430 AMS 6430 AMS 6431 AMS 6431 AMS 6433 AMS 6435 AMS 6437 AMS 6439 AMS 6439 AMS 6452 AMS 6454 AMS 6457 AMS 6487 AMS 6512 AMS 6514 AMS 6520 AMS 6523 AMS 6526 AMS 6527 AMS 6528 AMS 6529 AMS 6532 AMS 6900 AMS 6910 AMS 6925 AMS 6926
Alloy Name 4135 4130 4130 4140 4140 4140 4330V 4330V 4340 4340 4340 4340 300M (0.4C) 300M (0.4C) 300M (0.42C) 300M (0.42C) Hy-Tuf Hy-Tuf 4330V 4330V 4335V 4335V 4335V 4335V D6AC D6AC 4335V 4335V 5Cr-Mo-V D6AC D6AC 4140 4340 4130 5Cr-Mo-V 250 280 (300) 250 9Ni-4Co-0.20C 9Ni-4Co-0.30C AF1410 4130 4140 AerMet 100 Ti-5Al-2.5Sn Ti-8Al-1Mo-1V Ti-13V-11Cr-3Al Ti-13V-11Cr-3Al
Key: Underline indicates inactive for new design.
Form/Application Tubing Tubing Tubing Tubing Bar and Forging Sheet, Strip and Plate Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Bar and Forging Tubing Sheet, Strip and Plate Sheet, Strip and Plate Sheet, Strip and Plate Bar and Forging Sheet, Strip and Plate Welding Wire Sheet, Strip and Plate Welding Wire Bar and Forging (CEVM) Bar Bar Sheet and Plate Sheet, Strip and Plate Bar and Forging, Tubing Bar and Forging Bar and Forging Bar and Forging Bar and Forging Bar and Forging Bar and Forging Bar and Forging Bar and Forging
C-8
Section 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.3.1 2.4.1 2.3.1 2.3.1 8.2.2 2.3.1 8.2.2 2.4.1 2.5.1 2.5.1 2.5.1 2.4.2 2.4.3 2.5.2 2.3.1 2.3.1 2.5.3 5.3.1 5.3.2 5.5.1 5.5.1
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS 6930 AMS 6931 AMS 6945 AMS 6946 AMS 7902 AMS 7906 AMS 7911 AMS-A-21180 AMS-A-21180 AMS-A-21180 AMS-A-21180 AMS-A-21180 AMS-A-21180 AMS-A-22771 AMS-A-22771 AMS-A-22771 AMS-A-22771 AMS-A-22771 AMS-A-22771 AMS-A-22771 AMS-A-22771 AMS-QQ-A-200/11, 15 AMS-QQ-A-200/2 AMS-QQ-A-200/3 AMS-QQ-A-200/4 AMS-QQ-A-200/5 AMS-QQ-A-200/6 AMS-QQ-A-200/7 AMS-QQ-A-200/8 AMS-QQ-A-225/4 AMS-QQ-A-225/5 AMS-QQ-A-225/6 AMS-QQ-A-225/8 AMS-QQ-A-225/9 AMS-QQ-A-250/10 AMS-QQ-A-250/12 AMS-QQ-A-250/13 AMS-QQ-A-250/29 AMS-QQ-A-250/3 AMS-QQ-A-250/30 AMS-QQ-A-250/4 AMS-QQ-A-250/5 AMS-QQ-A-250/6 AMS-QQ-A-250/8 AMS-QQ-A-250/9 AMS-QQ-A-367
Alloy Name Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-4Al-2.5V-1.5Fe Beryllium, Standard Grade Beryllium, Standard Grade Al-62Be 354 359 A201.0 A356.0 A357.0 C355.0 2014 2618 6061 6151 7050 7075 7175 7049/7149 7075 2014 2024 5083 5086 5454 5456 6061 2014 2017 2024 6061 7075 5454 7075 7075 2124 2014 2219 2024 2024 5083 5052 5456 2014
Key: Underline indicates inactive for new design.
Form/Application Bar Bar Plate Cold and Hot Rolled Sheet, Strip, and Plate Sheet and Plate
Section 5.4.1 5.4.1 5.4.1 5.4.4 7.2.1
Bar, Rod, Tubing and Machined Shapes
7.2.1
Preform, HIP Casting Casting Casting (T7 Temper) Casting Casting Casting Forging Die Forging Forging Forging Forging Forging Forging Forging Extruded Bar, Rod and Shapes Extruded Bar, Rod and Shapes Extruded Bar, Rod and Shapes Extruded Bar, Rod and Shapes Extruded Bar, Rod and Shapes Extruded Bar, Rod and Shapes Extruded Bar, Rod and Shapes Extruded Rod, Bar Shapes and Tubing Rolled or Drawn Bar, Rod and Shapes Rolled Bar and Rod Rolled or Drawn Bar, Rod and Wire Rolled Bar, Rod and Shapes Rolled or Drawn Bar and Rod Sheet and Plate Bare Sheet and Plate Clad Sheet and Plate Plate Clad Sheet and Plate Sheet and Plate Bare Sheet and Plate Clad Sheet and Plate Bare Sheet and Plate Sheet and Plate Sheet and Plate Forging
7.6.1 3.9.1 3.9.8 3.8.1 3.9.5 3.9.6 3.9.3 3.2.2 3.2.22 3.6.2 3.6.3 3.7.4 3.7.8 3.7.13 3.7.3 3.7.8 3.2.2 3.2.4 3.5.2 3.5.3 3.5.4 3.5.5 3.6.2 3.2.2 3.2.3 3.2.4 3.6.2 3.7.8 3.5.4 3.7.8 3.7.8 3.2.13 3.2.2 3.2.16 3.2.4 3.2.4 3.5.2 3.5.1 3.5.5 3.2.2
C-9
MMPDS-06 1 April 2011
APPENDIX C
Specification AMS-QQ-A-367 AMS-QQ-A-367 AMS-QQ-A-367 AMS-QQ-A-367 AMS-QQ-A-367 AMS-S-6758 AMS-T-5066 AMS-WW-T-700/3 AMS-WW-T-700/6 AS 8879 ASTM A 108 ASTM A 582 ASTM B 107 ASTM B 107 ASTM B 166 ASTM B 194 ASTM B 209 ASTM B 564 ASTM B 928 ASTM B 928 ASTM B 91 ASTM B 91 MIL-B-8831/4 MIL-E-22200/10 MIL-DTL-46192 MIL-DTL-83420 MIL-DTL-87161 MIL-S-6050 MIL-S-7742 MIL-T-81556 MIL-T-81556 MIL-T-81556 MS14218E MS14219E MS21140 MS90353 NAS1198 NAS1379 NAS1398 NAS1399 NAS1436
Alloy Name 2618 6061 7049 7075 7049/7149 4130 AISI 1025 - N 2024 6061 ... AISI 1025 AISI 303 AZ31B ZK60A-F Inconel Alloy 600 Copper Beryllium 5086 Inconel Alloy 600 5083 5456 AZ31B AZ61A ... Steels 2519 ... ... 8630 ... CP Titanium Ti-5Al-2.5Sn Ti-6Al-6V-2Sn Solid Rivet Solid Rivet Blind Fastener Blind Fastener Solid Rivet Blind Fastener Blind Fastener Blind Fastener Swaged Collar Fastener
Form/Application Forging Forging Forging Forging Forging Bar and Forging Tubing Tubing Tubing Seamless, Drawn Threaded Fastener Bar Sheet, Strip Extrusion Extrusion Bar and Rod Sheet (TF00, TH01, TH02, TH04) Sheet and Plate Forging Bare Sheet and Plate Sheet and Plate Forging Forging Sleeve Bolt Welding Electrode Plate Wire Rope Wire Strand Bar and Forging Threaded Fastener Extruded Bars and Shapes Extruded Bar and Shapes Extruded Bar and Shapes Flush Head Flush Head Flush Head Flush Head Protruding Head Flush Head Protruding Head Flush Head Flush Head
NAS1442
Swaged Collar Fastener
Flush Head
NAS1670-L
Blind Fastener
Flush Head
Key: Underline indicates inactive for new design.
C-10
Section 3.2.22 3.6.2 3.7.3 3.7.8 3.7.3 2.3.1 2.2.1 3.2.4 3.6.2 8.1.5 2.2.1 2.7.1 4.2.1 4.2.3 6.3.2 7.3.2 3.5.3 6.3.2 3.5.2 3.5.5 4.2.1 4.2.2 8.1.6 8.2.2 3.2.20 8.3 8.3 2.3.1 8.1.5 5.2.1 5.3.1 5.4.2 8.1.2 8.1.2 8.1.3 8.1.3 8.1.2 8.1.3 8.1.3 8.1.3 8.1.4 Swaged Collar Fastener Swaged Collar Fastener
MMPDS-06 1 April 2011
APPENDIX C
Specification NAS1674-L NAS1720 NAS1721 NAS1738 NAS1739 NAS1921 NAS4452 NAS4445 NAS7024 NAS7032 NASM14218 NASM14219 NASM20426 NASM20427 NASM20600 NASM20601 NASM21140 NASM90353
Alloy Name Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Blind Fastener Threaded Fastener Threaded Fastener Swaged Collar Fastener Swaged Collar Fastener Solid Rivet Solid Rivet Solid Rivet Solid Rivet Blind Fastener Blind Fastener Blind Fastener Blind Fastener
Form/Application Flush Head Protruding Head Flush Head Protruding Head Flush Head Flush Head Flush Head Flush Head Flush Head Flush Head Flush Head Flush Head Flush Head Flush Head Protruding Head Flush Head Flush Head Flush Head
Section 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.3 8.1.5 8.1.5 8.1.4 8.1.4 8.1.2 8.1.2 8.1.2 8.1.2 8.1.3 8.1.3 8.1.3 8.1.3
C.1 Cross Reference of Canceled MIL Specifications MIL Specification MIL-S-5000
Alloy Name
Temper
4340
N, Q & T
MIL-S-5000 MIL-S-5000 MIL-S-18728 MIL-S-8879
4340 4340 8630 ...
MIL-T-6735
4135
MIL-T-6735
4135
MIL-T-6735
4135
MIL-T-6736
4130
MIL-T-6736
4130
MIL-T-6736 MIL-T-6736 MIL-T-6736 MIL-T-6736
4130 4130 4130 8630
Normalized or Stress Relieved HT 125 HT 150 Annealed, HT 180 All
6061
T4, T6
CP Titanium CP-1 CP Titanium CP-2
Annealed Annealed
MIL-T-7081 MIL-T-9046 MIL-T-9046
Product Form Bar and Forging
Bars, Forging, Tubing Normalized and Tempered Bars, Forging, Tubing Normalized Sheet, Strip, and Plate ... Threaded Fasteners Tubing Normalized or Stress Relieved HT 125, 150, 180, 200
Tubing
AMS 6365
Tubing
None Similar AMS 6360, AMS 6361, AMS 6362
Tubing
Key: Underline indicates inactive for new design.
C-11
Superseding Spec. AMS 6415 & AMS 6484 AMS 6415 AMS 6484 AMS 6345 AS 8879 No superseding spec Similar AMS 6365
Tubing
AMS 6360
Tubing Tubing Tubing Tubing
AMS 6361 AMS 6362 None None AMS 4081, AMS 4083 AMS 4901 AMS 4900
Tubing Sheet, Strip, and Plate Sheet, Strip, and Plate
MMPDS-06 1 April 2011
APPENDIX C
MIL Specification MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9046 MIL-T-9047 MIL-T-9047 MIL-T-9047 MIL-T-9047 MIL-T-9047 MIL-T-9047 MIL-T-9047 MIL-W-6858 MS14218 MS14219 MS20426 MS20427 MS20600 MS20601 MS21140 MS90353 QQ-A-250/1 QQ-A-250/2 QQ-A-250/7 QQ-A-250/9 QQ-A-250/11
Alloy Name
Temper
CP Titanium CP-3 CP Titanium CP-4 Ti-5Al-2.5Sn Ti-8Al-1Mo-1V Ti-8Al-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-4V Ti-6Al-4V Ti-6Al-6V-2Sn Ti-6Al-6V-2Sn Ti-13V-11Cr-3Al Ti-13V-11Cr-3Al CP Titanium Ti-5Al-2.5Sn Ti-8Al-1Mo-1V Ti-6Al-4V Ti-6Al-4V Ti-13V-11Cr-3Al Ti-13V-11Cr-3Al
Annealed Annealed Annealed Single Annealed Duplex Annealed Triplex A Annealed STA Annealed STA Annealed STA Annealed Annealed Duplex Annealed Annealed STA Annealed STA
Solid Rivet Solid Rivet Solid Rivet Solid Rivet Blind Fastener Blind Fastener Blind Fastener Blind Fastener 1100 3003 5086 5456 6061
QQ-A-250/11
6061
QQ-A-250/11
6061
QQ-A-250/24 QQ-A-250/25
7075 7075
H321 Annealed Solution treated and naturally aged Solution and precipitation heat treated T76, T7651 T76, T7651
Key: Underline indicates inactive for new design.
C-12
Product Form
Sheet and Plate Sheet and Plate Sheet and Plate
Superseding Spec. AMS 4902 AMS 4940 AMS 4915 AMS 4915 AMS 4916 no superseding spec AMS 4911 AMS 4904 AMS 4918 AMS 4990 AMS 4917 no superseding spec AMS 4921 AMS 6900 AMS 6910 AMS 6931 AMS 6930 AMS 6925 AMS 6926 AWS D17.1 NASM14218 NASM14219 NASM20426 NASM20427 NASM20600 NASM20601 NASM21140 NASM90353 ASTM B209 ASTM B209 ASTM B 209 ASTM B 928 AMS 4025
Sheet and Plate
AMS 4026
Sheet and Plate
AMS 4027
Sheet, Strip, and Plate Sheet, Strip, and Plate Sheet, Strip, and Plate Sheet and Plate Sheet and Plate Sheet, Strip, and Plate Sheet and Plate Sheet, Strip, and Plate Sheet, Strip, and Plate Sheet, Strip, and Plate Sheet, Strip, and Plate Sheet, Strip, and Plate Bar Bar Bar Bar Bar Bar Bar Welding Wire Flush Head Flush Head Flush Head Flush Head Protruding Head Flush Head Flush Head Flush Head
Sheet and Plate Clad Sheet and Plate
AMS 4315 AMS 4316
MMPDS-06 1 April 2011
APPENDIX D D.0 Testing Standards AMS 2355
Quality Assurance Sampling and Testing of Aluminum Alloys and Magnesium Alloys, Wrought Products, Except Forging Stock, and Rolled, Forged, or Flash Welded Rings
AMS 2370
Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Wrought Products and Forging Stock
AMS 2371
Quality Assurance Sampling and Testing, Corrosion and Heat Resistant Steels and Alloys, Wrought Products and Forging Stock
ASTM B 117
Standard Practice for Operating Salt Spray (Fog) Apparatus (vol. 03.02)
ASTM B 557
Method of Tension Testing Wrought and Cast Aluminum – and Magnesium-Alloy Products (vol. 02.02, 02.03, 03.01)
ASTM B 769
Test Method for Shear Testing of Aluminum Alloys (vol. 02.02)
ASTM B 831
Standard Test Method for Shear Testing of Thin Aluminum Alloy Products (vol. 02.02)
ASTM C 693
Test Method for Density of Glass by Buoyancy (vol. 15.02)
ASTM C 714
Test Method for Thermal Diffusivity of Carbon and Graphite by a Thermal Pulse Method (vol. 15.01)
ASTM D 2766
Test Method for Specific Heat of Liquids and Solids (vol. 05.02)
ASTM E 8
Test Methods of Tension Testing of Metallic Materials (vol. 01.02, 02.01, 02.03, 03.01)
ASTM E 9
Compression Testing of Metallic Materials at Room Temperature (vol. 03.01)
ASTM E 21
Recommended Practice for Elevated Temperature Tension Tests of Metallic Materials (vol. 03.01)
ASTM E 29
Standard Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications (vol. 14.02)
ASTM E 83
Method of Verification and Classification of Extensometers (vol. 03.01)
ASTM E 111
Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus (vol. 03.01)
ASTM E 132
Test Method for Poisson’s Ratio at Room Temperature (vol. 03.01)
ASTM E 139
Recommended Practice for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials (vol. 03.01)
ASTM E 143
Test Method for Shear Modulus at Room Temperature (vol. 03.01)
D-1
MMPDS-06 1 April 2011
APPENDIX D - Testing Standards (continued) ASTM E 238
Method for Pin-Type Bearing Test of Metallic Materials (vol. 03.01)
ASTM E 399
Test Method for Plane-Strain Fracture Toughness of Metallic Materials (vol. 02.02, 03.01)
ASTM E 466
Recommended Practice for Constant Amplitude Axial Fatigue Tests of Metallic Materials (vol. 03.01)
ASTM E 561
Recommended Practice for R-Curve Determination (vol. 03.01)
ASTM E 606
Recommended Practice for Constant-Amplitude Low-Cycle Fatigue Testing (vol. 03.01)
ASTM E 647
Test Method for Measurement of Fatigue Crack Growth Rates (vol. 03.01)
ASTM E 739
Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data (vol. 03.01)
ASTM E 831
Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis.
ASTM G 34
Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test) (vol. 03.02)
ASTM G 47
Test Method for Determining Susceptibility to Stress-Corrosion Cracking of HighStrength Aluminum Alloy Products (vol. 02.02, 03.02)
ASTM G 64
Standard Classification of Resistance to Stress-Corrosion Cracking of Heat-Treatable Aluminum Alloys (vol. 03.02)
NASM 1312-4
Fastener Test Methods - Method 4 Lap Joint Shear
NASM 1312-8
Fastener Test Methods- Method 8 Tensile Strength
NASM 1312-13
Fastener Test Methods- Method 13 Double Shear Test
NASM 1312-20
Fastener Test Methods- Method 20 Single Shear
NASM 33522
Rivets, Blind, Structural, Mechanically Locked and Friction Retainer Spindle, (Reliability and Maintainability) Design and Construction Requirement
D-2
MMPDS-06 1 April 2011
APPENDIX E E.0
Subject Index for Pearson Distribution, 9-114 for Weibull Distribution, 9-121 Beams, Properties of Aluminum, 3-739 Magnesium, 4-63 Steel, 2-283 Titanium, 5-195 Bearing Failure, 1-39 Bearing Properties, ii, 1-18, 3-7, 9-64, 9-137, 9-187 Bearing Data Analysis Procedures, 9-136, 9-139 Bearing Testing Standards, 9-16 Bearings, 8-177 Bending Failure, 1-39 Biaxial Properties, 1-25 Modulus of Elasticity, 1-26 Ultimate Stress, 1-27 Yield Stress, 1-26 Biaxial Stress-Strain Curves, 1-19, 1-20, 2-19, 9-244 Brittle Fracture, 1-21 Analysis, 1-22 Cast, Definition of, 9-35, A-6 Censored Data Analysis, 9-119, 9-120, 9-127, 9-133, 9-134, 9-284, 9-341, 9-347 Clad Aluminum Plate, Design Values for, 9-137 Coefficient of Thermal Expansion, 9-10, 9-16, 9-20, 9-21, 9-31, 9-36, 9-226, 9-260, A-5 Columns, 1-6, 1-41 Aluminum, 1-42, 3-740 Local Instability, 1-41 Magnesium, 1-42, 4-63 Primary Instability, 1-41 Stable Sections, 1-41 Steel, 2-283 Test Results, 1-42, 1-48 Yield Stress, 1-36 Combinability of Data, 9-106 Anderson-Darling k-Sample Test, 9-106 F Test, 9-108 t-Test, 9-109 Compression Testing, 9-16, D-1 Compressive Failure, 1-39 Compressive Properties, 1-17, 9-13, 9-16, 9-18,
A-Basis, 1-9, 1-45, 9-11, 9-13, 9-30, 9-37, 9-136, 9-225, A-6 AMS Specifications, 1-9, 9-15, 9-19, 9-30, 9-73, 9-174, C, D Anderson-Darling Test k-Sample Test, 9-106 Normality, 9-111 Pearsonality, 9-114 Weibullness, 9-119 Applicability of Procedures, 9-7 Approval Procedures, 9-7 ASTM Standards, 9-12, 9-15, 9-20 A 370, 9-17, 9-20 B 117, 2-166 B 557, 9-17, 9-20 B 769, 1-18, 9-20, 9-137 B 831, 1-18, 9-20, 9-137 C 693, 9-16, 9-21, 9-226 C 714, 9-17, 9-21, 9-226 D 2766, 9-17, 9-21, 9-226 E 8, 1-11, 1-53, 9-16, 9-17, 9-20, 9-44 E 9, 1-17, 9-16, 9-20 E 21, 9-17 E 29, 9-14 E 83, 9-16, 9-20, 9-36 E 111, 9-16, 9-20, 9-36, 9-225 E 132, 9-17, 9-20, 9-225 E 139, 1-21, 9-16, 9-27 E 143, 9-16, 9-225 E 238, 1-19, 3-8, 9-16, 9-20, 9-24 E 399, 1-28, 9-17, 9-22, 9-29, 9-164 E 466, 1-23, 9-17, 9-21 E 561, 1-32, 9-17, 9-23, 9-32 E 606, 1-23, 9-16, 9-21, 9-38, 9-57, 9-141 E 647, 1-36, 9-16, 9-21 E 739, 9-52, D-2 E 831, 9-16, 9-21, 9-226 G 34, 9-16 G 47, 9-33 G 64, 3-19, 3-21, D-2 B-Basis, 1-9, 1-57, 8-39, 9-11, 9-13, 9-30, 9-46, 9-65, 9-179, A-6 Backoff Factor, 9-85, 9-115, 9-122, 9-127, A-1, A-6 Backoff Method E-1
MMPDS-06 1 April 2011
APPENDIX E - Subject Index (continued) 9-19, 9-20, 9-31, 9-35 Computational Procedures, 9-7, 9-81, 9-203 Derived Properties, 9-35, 9-136, 9-138, 9-139 Nonparametric, 9-126, 9-133 Normal Distribution, 9-111, 9-112 Pearson Distribution, 9-111, 9-114, 9-131 Population Specification, 9-81 Unknown Distribution, 9-133 Weibull Distribution, 9-111, 9-119, 9-122, 9-132 Confidence, 9-13, A-7 Confidence Interval, A-7 Confidence Interval Estimate, A-7 Confidence Level, A-7 Confidence Limit, A-7 Confirmation of Legacy Alloys, 9-75 Constant Amplitude Loading, A-7 Constant Life Fatigue Diagram, A-7 Coordination Group Activities, 9-10, 9-15 Crack Growth Rate Calculation, 9-21 Creep Definition, 1-21, A-7 Creep/Stress Rupture, 1-21, 9-172, 9-292 Data Analysis, 9-59, 9-174, 9-292 Data Generation, 9-16, 9-59, 9-172 Data Requirements, 9-27, 9-31, 9-41, 9-173 Equations, 9-175 Example Problems, 9-293 Experimental Design, 9-59 Presentation of Data, 1-22, 9-293 Terminology, 9-172, A-7, A-16 Cross-Index Table, 9-8 Cross Reference of Canceled MIL Specifications, C-11 Data Basis, 9-12 Data Presentation, 9-203, 9-267 Creep-Rupture, 9-293 Elevated Temperature Curves, 9-247 Fatigue, 9-267, 9-273, 9-280 Fatigue Crack Growth, 1-29, 9-285 Fracture Toughness, 9-291 Fusion-Welded Joints, 9-330 Mechanically Fastened Joints, 9-299, Room-Temperature Design Values, 9-220, 9-225 R-curve, 1-25 Tabular, 9-220 Typical (Full-Range) Stress-Strain, 9-238
Typical Stress-Strain, 9-226 Data Requirements, 9-29 Creep/Stress Rupture, 9-31, 9-41, 9-59 Derived Properties, 9-31, 9-34, 9-35 Directly Calculated, 9-31 Elastic Properties, 9-31, 9-36 Elevated Temperature Properties, 9-31, 9-37 Experimental Design, 9-52 Fatigue, 9-32, 9-38 Fatigue Crack Growth, 9-32, 9-41, 9-52 Fracture Toughness, 9-32, 9-41 Fusion-Welded Joints, 9-52, 9-60 Mechanically Fastened Joints, 9-31, 9-42 Mechanical Properties, 9-11, 9-15, 9-29 Modulus, 9-31, 9-36 New Materials, 9-11, 9-29 Physical Properties, 9-31, 9-36 Stress-Strain, 9-33, 9-36 Data Submission Formats, 9-63 A- and B-Basis, 9-64 Derived Properties, 9-64 Fasteners, 9-68 Stress-Strain Curves, 9-68 Other Properties, 9-69 Software, 9-63 Definition of Terms, A-6 Creep/Stress Rupture, 9-172, A-7 Fatigue, 9-141, A-9 Fracture Toughness, 9-164 Heat, Melt and Cast, 9-35, A-6, A-9, A-12 Mechanically Fastened Joints, 9-179 Mechanical Properties, 9-18 Symbols, A-5 Degrees of Freedom, A-8, 9-101, 9-192, 9-336, 9-337, 9-338, 9-339, 9-340, 9-352 Fastener Analysis, 9-192, 9-195 F-test, 9-108 Regression, 9-101,9-103 t-test, 9-109 Density, 9-9, 9-16, 9-20, 9-31, 9-36, 9-226, A-17 Derived Properties, 1-9, 9-35, 9-64, 9-136 Design Mechanical Properties, 9-81 By Regression, 9-134 Determining Form of Distribution, 9-111 Determining Population, 9-81 Direct Computation, 9-126 E-2
MMPDS-06 1 April 2011
APPENDIX E - Subject Index (continued) Non Parametric, 9-133 Pearson, 9-114, 9-131 Weibull, 9- 121, 9-132 Example Problems, 9-203 Presentation, 9-220 Validating, 9-74 Dimensionally Discrepant Castings, 9-15 Direct Computation of Allowables, 9-81, 9-126, 9-203 Nonparametric Method, 9-133 Pearson Distribution, 9-119, 9-131 Regression, by, 9-134 Weibull Distribution, 9-132 Distribution, Form of, 9-111 Documentation Requirements, 9-7 Elastic Properties, 9-36, 9-225 Element Properties Aluminum, 3-739 Magnesium, 4-63 Steel, 2-283 Titanium, 5-195 Elevated Temperature Curves, 1-21, 9-247 Data Requirements, 9-37 Presentation, 9-247 Working Curves, 9-247 Elongation, 1-9, 1-17, 9-259 Environmental Effects, 1-19, 1-21, 1-23 Examples of Computation Procedures Complex Exposure, 9-263 Creep/Stress Rupture, 9-292 Design Allowables, 9-203 Fatigue, 9-267, 9-273, 9-280 Fatigue Crack Growth, 9-285 F-Test, 9-108, 9-207 Fusion-Welded Joints, 9-330 Linear Regression, 9-134 Strain-Departure Method, 9-227 t-Test, 9-109, 9-207 F-Distribution Fractiles, 9-336, 9-337 F-Test, 9-108 Failure, 1-39 General, 1-39 Identification code, fastener, 9-70, 9-71 Instability, 1-40 Material, 1-39 Types, 1-39 Fastened Joints, 9-299, 9-303 Fasteners, 8-3, 8-10, 8-40, 9-15, 9-27, 9-42,
9-68, 9-179 Data Format, 9-68 H-Type, 9-186, 9-199 S-Type, 9-186, 9-199 Sunset Clause, 9-41 Fatigue, 9-10, 9-21, 9-52, 9-141, 9-267 Data Analysis, 9-141, 9-145, 9-158 Data Generation, 9-16, 9-21, 9-32, 9-38, 9-52, 9-144, 9-267 Data Requirements, 9-16, 9-21, 9-32, 9-136, 9-263, 9-273, 9-280 Experimental Design, 9-52 Example Problems, 9-267, 9-273, 9-280 Life Models, 9-146, 9-149, 9-156, 9-268, 9-274, 9-276, 9-283 Load Control, 9-16, 9-32, 9-38, 9-52, 9-141, 9-267, 9-273 Outliers, 9-155, 9-276, 9-284 Presentation of Data, 1-23, 9-267, 9-280, 9-285 Properties, 1-22 Runouts, 9-145, 9-159, 9-269, 9-274 Strain Control, 9-16, 9-32, 9-38, 9-53, 9-141, 9-269, 9-280 Terminology, 9-52, Appendix A Test Planning, 9-52 Time Dependent Effects, 9-159 Fatigue Crack Growth, 1-36, 9-21, 9-52, 9-161, 9-285 Crack-Growth Analysis, 1-37, 9-52, 9-141, 9-161 Data Analysis, 1-37, 9-52, 9-141, 9-144, 9-145, 9-162 Data Generation, 1-37, 9-32, 9-41, 9-144, 9-162 Data Requirements, 9-16, 9-32, 9-41, 9-144 Presentation of Data, 1-37, 9-285 Rate Testing, 1-36 Flow stress, 1-53 Forgings, Definition of Grain Directions in, 1-23, 9-19, 9-20 Fracture Toughness, 1-27 Analysis, 1-28, 1-30, 9-165, 9-291 Apparent Fracture Toughness, 1-31 Brittle Fracture, 1-27 Crack Resistance, 1-32, 9-166 Critical Plane-Strain, 1-28 Data Analysis, 9-127, 9-164, 9-291 E-3
MMPDS-06 1 April 2011
APPENDIX E - Subject Index (continued) Data Generation, 9-22, 9-29, 9-32, 9-41, 9-165 Data Requirements, 9-22, 9-29, 9-32, 9-41 Definitions, 9-164 Environmental Effects, 1-29 Examples, 9-291 Middle Tension Panels, 1-31, 9-23, 9-41, 9-165, 9-291 Plane Stress, 1-29, 9-22, 9-32, 9-164, 9-291, A-12 Plane Strain, 1-22, 9-22, 9-32, 9-164, 9-291, A-12 Presentation of Data, 9-291 R-curve, 1-32, 9-166 Testing Standards, 9-17 Transitional Stress States, 1-29, 9-22, 9-164 Full-Range Stress-Strain Curves, 9-68, 9-238 Fusion-Welded Joints, 9-28, 9-52, 9-199, 9-330 Data Analysis, 9-52, 9-200, 9-202 Data Generation, 9-52, 9-60 Data Requirements, 9-52, 9-60, 9-199 Experimental Design, 9-60 Presentation of Data, 9-330 Test Methods, 9-28 Goodness-of-Fit Tests, 9-111 Anderson-Darling, 9-111 Normality, 9-111 Pearsonality, 9-114 3 Parameter Weibull Acceptability, 9-112 Weibullness, 9-112 Grain Direction, Treatment of, 9-136 Grouped Data Analysis, 9-30, 9-111 Heat, Definition of, 9-35 Heat Requirements, 9-11, 9-29, 9-31 Indirect Design Allowables, 9-11, 9-81, 9-136, 9-216 Procedure, 9-138 Without Regression, 9-136 With Regression, 9-139 Instability, 1-19, 1-34, 1-35 Bending, 1-34 Combined Loadings, 1-34 Compression, 1-34 Local, 1-41 Torsion, 1-34 International System of Units, 1-3 k-Sample Anderson-Darling Test, 9-106 Larson-Miller Analysis, 9-59, 9-174, 9-177,
9-257, 9-294 Legacy Alloys, 9-75 Load Control, 9-16, 9-32, 9-38, 9-52, 9-141, 9-148, 9-267, 9-273 Location of Test Specimens, 9-18 Lot Requirements, 9-11 Material Failures, 1-33 Bearing, 1-33 Bending, 1-33 Combined Stress, 1-33 Compression, 1-33 Shear, 1-33 Stress Concentrations, 1-33 Tension, 1-33 Material Requirements, 9-15 Material Specifications, 9-15 Maximum Likelihood Estimation, 9-160 Mean Stress/Strain Effects, Evaluation of, 9-274 Mechanical Properties, 9-73 Computation of Design Allowables, 9-81 Derived Properties, 9-35, 9-136, 9-139 Example Problems, 9-203, 9-216 Presentation, 9-220 Terminology for, 9-18 Test Matrix, Derived Property, 9-31, 9-65 Mechanically Fastened Joints, 8-3, 9-27, 9-179 Data Analysis, 9-179, 9-199, 9-202 Data Requirements, 9-42, 9-68 Definitions, 9-180 Example Problems, 9-203, 9-207, 9-299 Presentation of Data, 9-299 Shear Strength Analysis, 9-185 Test Methods, 9-27 Yield Load Determination, 9-181 Melt, Definition of, 9-35 Metallurgical Instability, 1-25 Modulus of Elasticity, 1-15, 1-20, 9-16, 9-20, 9-31, 9-36, 9-63, 9-225, 9-259, A-2 Modulus of Rigidity, 1-18, 9-225, A-2 NASM 1312, 9-15, 9-16, 9-27, 9-44, 9-68, 9-181, D-2 Nomenclature, 1-3 Nonlinear Static Analysis, Allowables Based Flow Stress, 1-53 Nonparametric Data Analysis, 9-30, 9-106, 9-126, 9-133 Normal Curve Statistics, 9-111, 9-181, 9-341 E-4
MMPDS-06 1 April 2011
APPENDIX E - Subject Index (continued) Normality, Assessment of, 9-111 Orientation, Specimen, 9-23, 9-19, 9-20, 9-137 Outliers, Treatment of, 9-155, 9-173 Pearson Method, 9-30, 9-126 Anderson-Darling, 9-114 Backoff, 9-114 Procedure, 9-126 Probability Plot, 9-115 Physical Properties, 9-12, 9-20, 9-31, 9-226, 9-260 Poisson’s Ratio, 1-6, 1-10, 9-17, 9-20, 9-32, 9-225, A-6 Population, 9-60, 9-61, 9-81 Presentation of Data, 9-203 Creep/Stress Rupture, 9-292, 9-295 Design Allowables, 9-220 Effect of Temperature Curves, 9-247, 9-262 Fatigue, 9-267, 9-281, 9-286 Fatigue Crack Growth, 9-285 Fracture Toughness, 9-291 Fusion-Welded Joints, 9-330 Mechanically Fastened Joints, 9-299 Physical Properties, 9-225, 9-226, 9-260 Stress-Strain, 9-226, 9-235, 9-238 Primary Test Direction, 9-19 Probability, A-13 Probability Plots, 9-111 Normal, 9-112 Pearson, 9-115 Weibull, 9-122 Proportional Limit, A-2 Shear, 1-13 Stress, 1-12, 9-226 Tension and Compression, 1-11, 9-226 Pulleys, 8-177 R-curve, 9-166 Ramberg-Osgood Method, 1-7, 1-45, 9-12, 9-36, 9-226, 9-230, 9-246 Extension of, 9-233 Ranking of Observations, 9-211, 9-350 Ratioed Values, 1-10 Ratioing of Mechanical Properties, 9-76, 9-136 Reduced Ratios, 9-76 By Regression, 9-139 Without Regression, 9-136 Reduction in Area, 1-17, 1-13, 9-14, 9-17, 9-18, 9-32, 9-259 Reduction of Column Test Results, 1-36, 1-41 Regression, 9-84
Combinability, 9-106 Direct Computation, 9-134 Determining Design Allowables, 9-81 Determining Reduced Ratios, 9-139 Example Computations, 9-216 Least Squares, 9-96, 9-134 Linear, 9-96 Quadratic, 9-97 Tests for Adequacy of, 9-84, 9-100 Tests for Equality, 9-93, 9-103 Rounding, 9-14 Runouts, Treatment of, 9-57, 9-145, 9-152, 9-159, 9-267, A-13 S-Basis, 1-9, 9-12, 9-15, 9-29, 9-73, 9-76 Separately Cast Test Bars, 9-15 Shear Failure, 1-39 Shear Properties, 1-18, 9-13, 9-18, 9-137 Shear Strain, 1-11 Shear Properties, Fasteners, 9-47, 9-185, 9-187 Shear Test Procedures, 1-33, 9-11, 9-17, 9-19, 9-20, 9-32, 9-34, 9-35, 9-64 Shear Test Procedures, Fasteners, 9-27, 9-29, 9-31, 9-432, 9-44,9-68 Shear Ultimate Stress, 1-18 Shear Yield Stress, 1-18, 9-247 Significance, A-15 Skewness, 1-11, 9-75, 9-113, 9-114, 9-119, 9-126, 9-131 Specific Heat, 9-17, 9-20, 9-32, 9-226, 9-260 Specification Requirements, 9-15 Specifying the Population, 9-81 Specimen Location, 9-18, 9-137 Standards, Testing, Appendix D Statistical Procedures, Handbook Overview, 9-10 Statistically Calculated Values, 1-10 Statistics Symbols, A-5 Tables, 9-333 Terms/Definitions, A-6 Strain, 1-11 Rate, 1-11 Shear, 1-11 Strain Departure Method, 9-226, 9-227, 9-230, 9-239 Stress, 1-5, 1-10 Stress-Strain Curves, 1-12, 9-12, 9-226 E-5
MMPDS-06 1 April 2011
APPENDIX E - Subject Index (continued) Biaxial, 1-19, 9-243 Compression Tangent Modulus, 1-13, 9-235, 9-247 Data Requirements, 9-34, 9-36, 9-68 Example Computation, 9-227, 9-230, 9-235, 9-238 Full-Range, 9-238 Mathematical Representation, 9-230, 9-240, 9-244 Minimum, 9-243 Modulus Segments, Primary and Secondary, 1-13 Presentation, 9-226, 9-229 Ramberg-Osgood, 9-226, 9-230, 9-233 Strain-Control, 9-280 Strain-Departure, 9-204, 9-205, 9-218 Typical, 1-12, 9-36, 9-226 Stress Rupture, 1-15, 1-16, 9-175, 9-293, A-16 Submission of Data, 9-63 Sunset Clause, Fastener, 9-46 Symbols and Definitions, 1-3, A-5 Creep/Stress Rupture, 9-172, A-7 Fatigue, 9-141, A-9 Fracture Toughness, 9-162 General, 1-3, A-5, A-6 Mechanically Fastened Joints, 9-179, 9-180 Mechanical Properties, 9-18 Physical Properties, 9-20, 9-226 Statistics, A-5, A-6 t-Distribution Fractiles, 9-340 t-Test, 9-109 Tabular Data Presentation, 9-220 Tangent Modulus Curves, 9-227, 9-235, 9-247 Temperature Effects, 1-20, 9-226, 9-247 Tensile Properties, 1-11 Tensile Proportional Limit, 1-16 Tensile Ultimate Stress, 1-17 Tensile Yield Stress, 1-17 Terminology Creep Rupture, 1-15, 9-172 Fatigue, 1-16, 9-141 Mechanical Property, 9-18 Test Methods, 9-15, 9-16, 9-21 Test Specimens, 9-15, 9-43 Duplication, 9-31, 9-34 Location, 9-18 Orientation, 9-18, 9-34 Primary Test Direction, 9-18
Testing Procedures, 9-15 Bearing, 9-16, 9-20 Compression, 9-16, 9-20 Creep/Stress Rupture, 9-16, 9-27, 9-41, 9-59 Direction, 9-18 Dynamic & Time Dependent Properties, 9-38 Elastic Properties, 9-16 Fatigue, 9-16, 9-21, 9-38, 9-52 Fatigue Crack Growth, 9-16, 9-21, 9-41 Fusion-Welded Joints, 9-28, 9-52, 9-60 Fracture Toughness, 9-16, 9-22 Mechanically Fastened Joints, 9-27, 9-43 Mechanical Properties, 9-17, 9-18 Modulus, 9-20, 9-36 Physical Properties, 9-16, 9-20 Shear, 9-16, 9-20 Short Transverse, 9-19, 9-20 Specimen Location, 9-18 Stress-Strain, 9-36, 9-226 Tension, 9-16, 9-20 Testing Standards, 9-16, 9-18 Tests of Significance, 9-81, 9-106 Definitions, A-15 F-Test, 9-108 t-Test, 9-109 Test Standards, 9-16, 9-18 Thermal Conductivity, 9-10, 9-20, 9-226, 9-260 Thermal Expansion, 9-10, 9-20, 9-226, 9-260 Thermal Exposure, 9-12, 9-247, 9-261, 9-262 Complex, 9-263 Simple, 9-262 Thin Walled Sections, 1-5, 1-43 Tolerance Bounds, 1-9, 9-81, A-16 T90, 9-11 T99, 9-11 Tolerance Interval, A-16 Tolerance Level, A-16 Tolerance Limit Factors, A-3, A-16 Normal, One-Sided, 9-336 Weibull, One-Sided, 9-341, 9-342 Torsion, Properties Aluminum, 3-742 Magnesium, 4-66 Steel, 2-286 Truncation, Lower Tail, 9-111, 9-124, 9-125 Typical Basis, 9-12 Ultimate Stress E-6
MMPDS-06 1 April 2011
APPENDIX E - Subject Index (continued) Bearing, 1-14, 1-33 Biaxial, 1-21 Compression, 1-13 Shear, 1-13, 1-14, 1-33 Tensile, 1-12, 1-19, 9-239, 9-242 Ungrouping of Data, 9-30, 9-111 Units, 1-3, 9-10, 9-18, 9-21, 9-68, 9-73. 9-220, 9-226, A-17 Validating Properties, 9-74 Weibull Procedure, 9-11, 9-111, 9-132, 9-210 Weibull Acceptability Test, 9-112 Weibull Back-Off, 9-121 Weibull Distribution Estimating, 9-111 Threshold Estimation Factors, 9-119, 9-120, 9-121, 9-128 Weibullness, Assessment of, 9-119, 9-123, 9-127, 9-210, 9-214 Weibull Probability Plot, 9-119, 9-122 Wire Rope, 8-177 Working Curves, Determination of, 9-248 Yield Load Determination, 9-181 Yield Stress Bearing, 1-14 Biaxial, 1-20, 2-45 Compression, 1-13, 9-247 Shear, 1-14, 9-247 Tensile, 1-12 Tensile Proportional Limit, 1-12, 9-227, 9-246
E-7
MMPDS-06 1 April 2011
APPENDIX E - Subject Index (continued)
This page is intentionally blank.
E-8