A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9
Design Criteria - Concentrator
10 11
A.1 Ore Physical Characteristics
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Data Sources O C P D
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
Comments
1,800
mm
O
100 99.5 99 98 94 81 55 30 15 5.5 3.5 64
% % % % % % % % % % % mm
O O O O O O O O O O O
10.4 9.8 14.6 10.5 11.4 13.0
kWh/t kWh/t kWh/t kWh/t kWh/t kWh/t
T T T T C P
weighted Based on a mix of 60% GRD and 40% Volcanic Breccia
Rev. Ref
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Run-of-Mine ore top size ROM % passing sieve of: 1,200 mm 1,000 mm 800 mm 750 mm 600 mm 380 mm 200 mm 100 mm 50 mm 10 mm 6 mm P20
indicated by Mining group, per Orica simulations
1
27 28 29 30 31 32
A.2 Primary Crushing
35 36
Bond impact work index Diorite sulphide Microdiorite breccia Granodiorite sulphide Volcanic breccia average Design impact work index
37
Design factor for impact work index
20
%
P
Accounting for variability and higher hardness of recirculated material
38
Modified design impact work index
15.6
kWh/t
P
Based on mix of GRD and Volcanics and 20% design factor
39
Worst-case impact work index
25.0
kWh/t
P
Lack of confidence in historical testwork data due to limitations of measuring apparatus for very hard ores. Based on Boddington benchmarking through comparison of other indices.
33 34
MacPherson testwork report; Dec. 1998
0
40 41 42
Number of primary crushers Type of Primary crusher
43 44
2 gyratory
Primary crusher design availability
P P
49 50
Indicated life of crusher mantle Indicated life of crusher concave liners Indicated life of crusher spider liners Primary crusher design utilization Nominal throughput
19 79 4 6 8 75 4,444
h/d % mo mo mo % t/h
P C V V P P C
Accounting for lost availability for truck waiting time, inspections per crusher
A A 0 1 1 A A
51
Design throughput
4,889
t/h
C
per crusher
A
52
Indicated volumetric capacity at OSS = 191 mm
5,045
t/h
V
Per Bruno software, for this OSS and fine ROM feed (F80 = 372 mm)
B
53
Indicated volumetric capacity at OSS = 203 mm
5,315
t/h
V
Per Bruno software, for this OSS and fine ROM feed (F80 = 380 mm)
B
54 55
Ore haul truck capacity
56 57
Dump hopper capacity
360 310 2.0 620 600 2.0 620 750 1,800 800 1,220 Yes
wet t wet t trucks t t trucks t t mm mm mm
O O P C D D C D O O, C P P
72
Open side setting nominal Closed side setting nominal Open side setting design Closed side setting design Primary crusher ROM feed F80
191 140 203 152 372
mm mm mm mm mm
P C P, V C O, C
73
Design primary crusher ROM feed F80
380
mm
74
Primary crusher discharge P80
152
mm
C
Nominal. Range between 131 and 200 mm for ROM feeds with variable PSDs. Bruno Simulations
A
75
Primary crusher discharge P80
161
mm
C
Design, Bruno simulations
A
76
Primary crusher discharge P99
399 425 45 6
mm
P
Nominal. Bruno simulations Design. Bruno simulations
A
45 46 47 48
Indicated Selected
58 59 60 61 62 63 64 65 66 67 68 69 70 71
Nominal Net
Surge hopper capacity Indicated Selected ROM top size ROM d99 Crusher cavity feed top size Hydraulic rock breaker installed?
77 78
Primary crusher discharge P20
79
Primary crusher discharge Cumulative Passing 10 mm
mm %
1 1 1 1 1 1
Indicated top size for the MK-II gyratory one per crusher per Bruno simulation per Bruno c/w 51-mm stroke for MK-II gyratory per Bruno simulation, FLS and Krupp Bids Nominal. Estimated by Mine blasting consultant
A A 0 A A B
1
80
300279383.xls
Page 1 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
81
Design Criteria - Concentrator Calculated crushing duty power required - design hardness
82
Calculated crushing duty power required - worst-case hardness
83 84
No-load power, per crusher Crusher drive losses Calculated power draw per crusher - design Calculated power draw per crusher - worst-case
89 90
9
85 86 87 88
91 92 93 94
Data Sources O C P D
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value 480
Unit kW
Source C
At nominal throughput.
Comments
771
kW
C
At nominal throughput.
150 8 684 1,001
kW % kW kW
V P C C
Indicated by Bruno
Indicated crusher size Indicated crusher motor power base
60” x 113” 1,000 kW
V V
FLSmidth VO model or Metso Superior MK-II or equiv.
Crusher motor selected
1,200
kW
P, V
Ore Bulk Density – Crushed ROM Unpacked Packed
1.68 1.68
t/m3 t/m3
At nominal throughput At nominal throughput
Rev. Ref A 0 0 A 0
To cover worst-case hardness scenario and provide additional throughput capability for stockpile replenishment with softer ores.
0
P P
Wet basis, For volume calculations Wet basis, For mechanical/power calculations
A A
baghouse
O
Collected dust from dump pocket, feeder discharge and transfer point to stockpile feed conveyor discharged onto sacrificial conveyors
A
No No 0.02
%
O R D
80,000 72,000 9.18
t t h
P, O T C
40 65
º º
2 apron 6 4 6 2,157 baghouse
each
110 7,719
% t/h
95 96 97 98 99 100
Dust control system Wet scrubber for crusher dump pocket Foggers for transfer points Dust generation rate at transfer points in Primary Crushing
A.3 Coarse Ore Stockpiling and Reclaiming Stockpile live capacity, requested 103 Stockpile live capacity, provided 101 102 104 105 106 107 108 109 110 111 112 113 114 115
Crushed ore angle of repose – design Draw down angle – design Number of reclaim lines Reclaim feeder type Number of feeders Design number of operating feeders Normal number of operating feeders Throughput capacity per feeder Dust control system
each each each tph
Jenike and Johanson analysis indicates live capacity = 72,000 tonnes (worst case minimum) at nominal throughput
A B B
T T
J&J Testwork J&J Testwork
A A
P P P P P C O
3 per line; 2 operated, one stand-by for design capacity. Normal operation will be 3 operating.
116 117
A
US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdfDetails dust collection calculations are in M4
At design throughput with 4 feeders operating. dust collected from transfer points between reclaim feeders and reclaim conveyors; dust dropped onto reclaim conveyors
A A
A.4 Comminution Circuits
118 119 120 121 122 123 124
Peak throughput design factor Design throughput for design ore Dust control system Foggers for transfer points Dust generation rate at transfer points
baghouse No
P C O R
0.02
% of feed stream
P
3 16 16 96.9 2.5 to 3.7 2.5 to 3.7 24 85 15.6
wk h h % wk wk wk % kWh/t
O P P P V V P P P
125
10% above normal tonnage for soft ore A A US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf Details dust collection calculations are in M40000-3100-134-CAL0005.
A
126 127
A.4.1 Secondary Crushing Circuit
128
137
Scheduled shutdown frequency Scheduled shutdown duration Duration of shutdown for bowl/mantle liner replacement Crushing Section Availability Indicated life of crusher bowl Indicated life of crusher mantle liners Indicated life of crusher spider liners Secondary crushing circuit utilization Modified design crushing work index
138
Worst-case impact work index
25.0
kWh/t
P
139
Ore abrasive wear
1.5
kg/t
T
129 130 131 132 133 134 135 136
Boddington benchmarking - full line down at once Boddington benchmarking c/w 12 hr at low altitude and no winter drop-in complete spare bowl and mantle assemblies provided Metso estimate Metso estimate
Based on a 60% granodiorite, 40% volcanics mining mix Lack of confidence in historical testwork data due to limitations of measuring apparatus for very hard ores. Based on Boddington benchmarking through comparison of other indices.
A A A C C A
0 A
140
300279383.xls
Page 2 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 141
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator A.4.1.1 Cone Crushers
Data Sources O C P D
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
Comments
Rev. Ref
8 8 2 6 148 399 154 425 47
ea. ea. ea. ea. mm mm mm mm mm
P P P P, O P,C P,C P,C P,C P,C
0
%
P,C
2.5 35 45
% mm mm
O P P V
566
kW
C
at nominal throughput
700
kW
C
at design throughput
0
910
kW
C
at nominal throughput
0
100 8
kW %
V P
Indicated by Bruno
724
kW
C
869
kW
P,C
1,098
kW
P,O
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
Number of secondary crushers to be installed Number of crushers provided for in layout plans Number of Lines Number of Operating Crushers - at design hardness, design throughput Nominal Feed Size F80 Nominal Feed Size F99 (Top Size) Design Feed Size F80 Design Feed Size F99 (Top Size) Design Feed Size F20 Design Feed Cumulative % Passing 10 mm (Indication of amount of fines in feed) Crusher feed moisture content Crusher Closed Side Setting (CSS) - nominal feed conditions Crusher Closed Side Setting (CSS) - design feed size conditions @ nominal tonnage Liner profile
medium
No future expansion required 3 operating and 1 standby per line. Bruno simulation result Bruno simulation result Bruno simulation result Bruno simulation result Bruno simulation result.
A A A A A A
Bruno simulation result.
1
Boddington benchmarking.
A 0
157
167 168
Theoretical crushing power required - design ore hardness (per crusher) Theoretical crushing power required - design ore hardness (per crusher) Theoretical crushing power required - worst-case ore hardness (per crusher) No-load power, per crusher Crusher drive losses Indicated power draw (per nominal tonnage - design crusher) hardness design tonnage - design hardness nominal tonnage - worst-case hardness Crusher model (indicated) Installed motor power (per crusher) Contingency on power draw design throughput
169
Operated crushers at worst-case hardness, nominal throughput
158 159 160 161 162 163 164 165 166
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
MP1250 series 932 kW 7.2 %
O V C
A 0 Based on benchmarked hardness against Boddington data
0
Standard head cone crusher or equivalent
A
Relative to available power
7.1
#
7,843 8,627
tph tph
C C
peak 10% above average value - soft ore
1,477 1,826
tph tph
M C
peak 10% above average value - soft ore
A A
1,682
tph
V
Metso data
0
13.9
%
C
Relative to average throughput at nominal CSS of 35mm
2,225
tph
V
Mean of vendor published range for MP1000 x 1.25 for MP1250.
50.6
%
C
Relative to average throughput at maximum CSS of 45mm
Crusher Product Size P80 @ nominal feed size Crusher Product Size P99 (Top Size) @ nominal feed size Crusher Product Size P80 @ design feed size Crusher Product Size P99 (Top Size) @ design feed size Crusher Product Size P20 Crusher Product cumulative % passing 10 mm
39 68 39 68 7 17
mm mm mm mm mm %
C C V V C C
Bruno simulation result. Bruno result Metso Simulation Metso Simulation Bruno simulation result. Bruno simulation result.
Type of crusher feeder Number of crusher feeders
8
ea.
P P
One per crusher
1.68 1.68 20 359 2154 2872 35 60 4.9 16.2 0.06
t/m3 t/m3 min m3 m3 m3 º º m3 sec %
Crusher circuit throughput (fresh feed basis) Average Design Throughput per crusher (total crusher feed c/w circulating load) Average Design Indicated maximum capacity at 35 mm CSS (per crusher) @ nominal feed size Capacity contingency vs. nominal throughput Maximum capacity at 45 mm CSS (per crusher) @ design feed size Contingency on nominal throughput
Secondary Crusher Feed Bins Design bulk ore SG - volume requirement Unpacked Mechanical (Packed) Crusher Feed Surge Bin residence time Cone Crusher Feed Surge Bin Total Surge Bin Capacity Total Surge Bin Capacity Crushed ore angle of repose – design Draw down angle – design Cone Crusher Feed Hopper Cone Crusher Feed Hopper residence time Dust generation rate at transfer points in Secondary Crushing
205
300279383.xls
Belt feeder
0
P
P C C C T T V C, V D
A
A 0 0 A 1
Wet Basis. For volume calculations For mechanical/power calculations
A A A
Live volume, per crusher, 6 operating crushers Live Volume, 6 crushers Live Volume, 8 crushers Jenike and Johanson Testing Jenike and Johanson Testing Live volume, per crusher M40000-3100-110-CAL-0004 Based on supplier design of feed chute. US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf
B B B A A A A A
Page 3 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 206
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator A.4.1.2 Secondary Dry Screening
Data Sources O C P D Value
Unit
Source
tph tph tph
C C C C C
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
Recycle ratio (screen vs. fresh feed tonnage) Average Design Total design processing rate Design screen undersize at max rate Design screen oversize at max rate
1.13 1.27 12,451 9,804 2,647
Dry Screen Feed Bins Design bulk ore SG - volume requirement
Dry Screening Feed Surge Bin residence time Dry Screening Surge Bin Capacity Crushed ore angle of repose – design Draw down angle – design Screen feeder type
1.68 1.68 15 min 2,924 m3 40.0 º 75.0 º Vibrating pan feeder
Number of vibrating dry screens Design processing rate per dry screen Type of screen Screen deck width (indicated) Screen deck length (indicated) Number of decks per screen Peak capacity per screen Screen motor rating Screening efficiency Required Unit screen capacity (at average throughput)
6 ea. 3,264 tph Multi-slope 4.3 m 8.5 m 2 ea. 3,450 tph 75 kW 90 % 81 t/h/m2
Screen panels square aperture Screen cut point Bed depth at discharge Dry screen undersize P80 Dry screen undersize P20 Dry screen undersize Cumulative % Passing 10 mm Average undersize stream flow rate (per screen)
300279383.xls
P T, P T, P P C
Bruno simulations indicated circulating load Bruno simulations indicated circulating load for worst case scenario 25% allowance for instantaneous peaks, at design circulating load 25% allowance for peaks 25% allowance for instantaneous peaks, at design circulating load
A B A A A
Wet Basis, unpacked. For volume calculations For mechanical/power calculations
A A A
Live Volume Jenike and Johanson Testing Jenike and Johanson Testing
A A A
Schenck indicated.
A
P V C P,V P,V P,V V V V V C
45 38 41
mm mm mm
P C V
30 7 26 1,307
mm mm % tph
O,C O,C C C
aka Banana screen Schenck indicated. Schenck indicated.
A A A
Schenck indicated. Schenck indicated. 0 Based on vendor indicated deck dimensions and design tonnage
Bruno indication for nominal throughput Bruno indication at nominal throughput. Confirmed by vendor. Bruno indication Bruno indication Bruno indication Fresh feed to crushing circuit rate
1
Page 4 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
250 251
Scheduled shutdown frequency Scheduled shutdown duration Duration of shutdown for roll replacement Cumulative daily shutdown for roll/edge block checks Tertiary crusher availability
3 16 30 2 88.6
wk hr hr hr %
O P P, V P P
Boddington benchmarking - full line down at once Boddington benchmarking c/w 12 hr at low altitude and no winter drop-in complete roll assemblies provided Boddington benchmarking, per crusher
A A B A A
252
Indicated roll life
6,000
op. hours
T, V
based on 150 kt/d, 1.55 circulating load
A
adjusted for actual throughput and circulating load
A A
9 245 246 247 248 249
Design Criteria - Concentrator A.4.2 Tertiary Crushing Circuit
Data Sources O C P D
per design conditions
253 254 255 256 257 258 259 260 261 262 263 264 265 266
per testwork conditions
Philosophy for design grinding production rate when 1 line of HPGR is bypassed. Tertiary crushing circuit utilization Recycle ratio (per Polysius testwork scale-up) Recycle ratio (crusher throughput vs. fresh feed) Recycle ratio (crusher throughput vs. fresh feed) Wet screen close-out size Recycle ratio (at 10 mm close-out size) Expected recycle ratio at maximum circuit feed size Average processing rate (at crushers) Maximum processing rate (at crushers) Dust generation rate at transfer points in Tertiary Crushing
5,200 op. hours 36,491 kt Nominal tonnage ball mill tonnage with high circulating load. 85 1.85 1.65 2.00 10.0 1.65 2.00 14,510 18,818 0.003
%
C C P
tph tph %
O V C O P C, V, P C C P D
mm
267 268
Comments
Process requirement for maintaining production and inventory in fine ore silos.
Rev. Ref
1
A For 6 mm tested close-out size Calcul Benchmarking to Boddington
Boddington Benchmarking Based on benchmarked recycle ratio At maximum allowable rolls speed US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf
1 1 1 1
A
A.4.2.1 HPGR Crushing
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
Specific grinding force (indicated) Specific throughput rate (m-dot) (indicated) Scaled-up specific throughput rate (m-dot) Specific energy input (indicated) Scaled-up specific energy input ATWAL Abrasion Test (indicated)
3.5 227 300 1.80 1.44 16
N/mm2 ts/(m3h) ts/(m3h) kWh/t kWh/t g/t
T T T T T T
From testwork From test work results Benchmarking From testwork Benchmarking From Polysius testwork
A
Number of High Pressure Rolls Crushers Number of lines Required throughput rate (per crusher, fresh feed) Required throughput rate (per crusher, fresh feed)
6 2 2,418 3,136
ea. ea. tph tph
V P C C
2 lines, each with 3 operating HPGRs Average instantaneous rate Design
A B B
Rolls diameter (indicated) Rolls width (indicated) Maximum allowable rotational speed Maximum allowable rolls speed (mechanical) Max rolls speed (slippage rule of thumb) Nominal rolls speed for required throughput Design rolls speed for design throughput Contingency on throughput (Mechanical limit) Contingency on throughput (Process limit)
2.40 1.65 21.0 2.64 2.40 2.40 2.55 10.0 0.0
m m RPM m/s m/s m/s m/s % %
V V V C P C C C C
From Polysius report From Polysius report Calculated from vendor simulation report At maximum RPM allowed to limit potential mechanical damage Process limit at which slippage becomes a problem At indicated m-dot and recycle ratio At Boddington benchmarking m-dot and recycle rate. At nominal rolls speed required for average throughput At nominal rolls speed required for average throughput
Installed power - per crusher Power consumed per crusher Contingency on power
5,500 3,666 50.0
kW kW %
V C C
Polysius basis Including 95% electrical drive efficiency At average throughput rate
6
ea.
P P
One per rolls crusher
Crushed ore angle of repose – design Draw down angle – design Average % moisture (w/w) of HPGR feed
1.42 1.68 1.88 15 4,704 3,650 40 75 4.7
t/m3 t/m3 t/m3 min t m3 º º %
HPGR Feed Hopper surge residence time HPGR Feed Hopper live surge capacity HPGR feed size P80 HPGR feed size P20 HPGR feed cumulative % passing 6 mm HPGR feed size P99 (top size) HPGR product P80 HPGR product P20 HPGR product cumulative % passing 6 mm HPGR product cumulative % passing 10 mm
20 25 26 9 15 45 17.8 0.7 53 64
sec t mm mm % mm mm mm % %
Type of feeder Number of crusher feeders HPGR ore Bin Design bulk HPGR feed SG - volume requirements Unpacked Mechanical (power) Structural HPGR Surge Bin residence time required HPGR Surge Bin capacity
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
300279383.xls
Belt feeder
T, C T, C T, C T, C P C C
A
A A
Wet basis, packed For volume calculations For mechanical/power calculations For structural design calculations at design throughput i.e. 10% above average Live tonnage at design throughput rates Live volume at design throughput rates Jenike and Johanson Testing Jenike and Johanson Testing
A A A 1
One per crusher at design throughput rate Polysius simulations Polysius simulations Polysius simulations
A A A A A
Used in simulations at 10 mm cut size. Used in simulations at 10 mm cut size. Used in simulations at 10 mm cut size. Used in simulations at 10 mm cut size.
1 1 1 1
A A A A
C P, V C P,V,C P,V,C P,V,C P,V V,T,C V,T,C V,T,C V,T,C
Page 5 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 322
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator A.4.2.2 Fine Ore Storage
Data Sources O C P D Value
Unit
Source
9,607
tph
C
60,000 19.4 Silos 6
tonnes hrs
O C
1.37 1.68 1.88 4.7 40.0 75.0
t/m3 t/m3 t/m3 % º º
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
323 324 325
Capacity of twin HPGR product conveyors
326 327
Fine Ore Storage Storage live capacity
328 329 330 331 332 333 334 335 336 337
c/w half of HPGR down Type of storage Number of silos Bulk density of HPGR product Unpacked Mechanical Structural Bin feed moisture content (% w/w) Crushed ore angle of repose – design Draw down angle – design
T, C T, C T, C T, C C
Each. At design throughput rate A A A
Wet basis, packed For volume calculations For mechanical/power calculations For Structural design calcuations
A A A 1
Jenike and Johanson Testing Jenike and Johanson Testing
A A
aka Banana screen Vendor indicated maximum range At nominal circuit throughput rate Forward-reverse re-pulping dead boxes in chute To match ball mill utilization
0
Calculated based on Schenck indicated deck dimensions Calculated based on Schenck indicated deck dimensions
0 0
for dewatering efficiency
A A A
338 339
A.4.2.3 Wet Vibrating Screens
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
Number of units Type of screen Max throughput per screen (indicated) Average processing rate per screen Feed arrangement Wet Screening Utilization Deck panels aperture Required Unit screen capacity (average throughput) Selected Unit screen capacity (average throughput) Screening area required Selected screen deck width Length to width minimum ratio Screen deck length (indicated) Screen deck length (retained) Number of decks per screen Wet screening efficiency (used in simulations) Wet screening efficiency (expected) Screen motor rating Expected bed depth at discharge Wet screen feed repulping box water consumption, nominal tonnage Wet screen feed repulping box water consumption, design tonnage Screen Sprays
12
ea. Multi-slope 1,300 tph 1,209 tph Belt feeder - Repulper 95 % 10.0 mm 36 t/h/m2 33 t/h/m2 34 m2 4.3 m 2:1 7.9 m 8.5 m 1 ea. 88 % 92 % 55 kW 69 mm 0.50
m3/t
C
0.40
m3/t
C
368 369
type number of bars per screen number of sprays per bar flowrate per spray Flowrate per screen Total screen spray water Pressure
duck bills 3 6 22.0 396.0 4752.0 200.0
370
type of water used
Process
364 365 366 367
P P,V V C P P P C C C P,V P P,V P,V P V P, V V C
ea. m3/hr m3/hr m3/hr kPa
Schenck indicated. Single deck screens with spray bars Used in Polysius simulations Schenck indicated. Schenck indicated. Large volume water required for complete disagglomeration of flakes. Cerro Verde benchmarking is 0.5 to 0.58 m3/t.
P
Required as flowrate is too high for water balance. Ludowici states sprays will work with process water.
1
C V, O, P P P
Benchmarking to Cerro Verde and Boddington, HPGR Simulations. Assumed
374
mm mm % w/w % w/w
375
Wet screen undersize product solids content
40.0
% w/w
P
Water added at screen sprays for proper screening and minimal additional water addition to prevent sanding of low-angle discharge chute.
376
Pulp to individual ball mill pumpbox from wet screens
2,604
m3/h
C
300279383.xls
1
Ludowici Ludowici
P P V V C C V
7.4 5.4 8.0 5.0
372 373
1
A A A 1 1 1 1 0
Wet screen undersize product P80 Calculated (worst case) Wet screen undersize product P80 Selected Wet screen oversize product moisture content, design Wet screen oversize product moisture content, nominal
371
0 0
0 1 1
Page 6 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Data Sources O C P D
Design Criteria - Concentrator
Value
Unit
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Source
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
377 378
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES GRINDING, FLOTATION, DEWATERING AREAS - Document M40000-0000-110-DSC-0001
379
Project
Cerro Casale Feasibility
380
Project No
M40000
O
Owner’s (CMC) Input
V
Vendor-supplied data
381
Client Date Revision
Compañía Minera Casale 17-Jun-11
C P D
Calculated AMEC – Process input AMEC – Other disciplines input
T M R
Testwork Mass balance Regulatory/permitting requirement
382 383
Data Sources
1
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
Design Criteria - Concentrator B.1.1 Ore Reserves Characteristics Predominant Mineralogy Copper Minerals Distribution Chalcopyrite Bornite Chalcocite Digenite Covellite Native copper Total proportion of Cu-bearing minerals Gangue Minerals Silica K-feldspars Amphiboles Pyrite Molybdenite Sphalerite Fe/Mn oxides Sulphates Carbonates Apatite Zircon Micas Chlorite Ti oxides Clays
300279383.xls
Value
Unit
Source
61.5 11.3 3.2 23.7 0.4 na 0.91
% % % % % % %
T T T T T T T T
27.98 33.83 0.92 1.83 0.09 0.05 4.06 1.18 0.55 0.35 0.35 20.83 3.27 1.05 2.73
% % % % % % % % % % % % % % %
T T T T T T T T T T T T T T T
Comments
Rev. Ref
Year 1-5 Composite
Year 1-5 Composite
Page 7 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 415
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Data Sources O C P D
Design Criteria - Concentrator
Value
Design Clay Content
3.2
Unit %
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Source T
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
SGS Report "Gold Deportment Study in Cyclone O/F, 1st Cl. Scav. Tail and Ro Tail Samples from Cerro Casale Project" January 22, 2009; on Year 1-5 composite sample
416 417
Principal Sulphide Lithologies
418
Diorite Porphyry sulphide DSU DSL
419 420
423 424
Granodiorite porphyry sulphide Microdiorite breccia Volcanic conglomerate sulphide Other volcanics
425 426
Microdiorite breccia split as:
427 428
VCGL + VO
429 430
Mine Plan Tonnage - Lithological Distribution
421 422
total
Year 3 to Year 7
431 432 433 434 435 436 437 438
sulphide ore mixed ore
Porphyry sulphide Upper Porphyry sulphide Lower Porphyry sulphide Granodiorite porphyry sulphide Volcanic conglomerate sulphide + others Microdiorite breccia - mixed Microdiorite breccia - sulphide
439
Year 8 to Year 12
440 441 442 443 444 445 446 447
Porphyry sulphide Upper Porphyry sulphide Lower Porphyry sulphide Granodiorite porphyry sulphide Volcanic conglomerate sulphide + others Microdiorite breccia - mixed Microdiorite breccia - sulphide
448
Year 13 to EOM
449
455 456
Porphyry sulphide Upper Porphyry sulphide Lower Porphyry sulphide Granodiorite porphyry sulphide Volcanic conglomerate sulphide + others Microdiorite breccia - mixed Microdiorite breccia - sulphide
457 458
Ore moisture content - average
450 451 452 453 454
29.1
%
O
6.9 22.2 17.0 13.2 21.5 19.3 100.0 12.8 0.3 40.8
% % % % % % % % % %
C C O O O O C O O O
A (%)
B (%)
81.1 3.2 2.7 6.5 6.5 100.0
22.4 49.7 72.1 6.6 2.2 0.9 18.3 100.0
A (%)
B (%)
50.4 11.9 21.7 8.0 8.0 100.0
0 26.2 26.2 18.2 38.5 0.3 16.9 100.0
A (%)
B (%)
3.4 25.8 64.8 3.0 3.0 100.0 2.5
1.8 3.0 4.8 22.5 65.7 0.0 6.9 100.0 % w/w
O O O O O O O
2.62 t/m3 2.59 t/m3 2.66 t/m3 2.76 t/m3 3.61 t/m3 5.32 * %Cu/100 + 2.77
T T T T C C
proportions in CC_2011_MinePlan_CEJV_04-Mar-11 - by reserves tonnage rock code: DP (rock type was divided between upper (DSU) and lower (DSL) in 2000 FS report)
rock code: GRD rock code: MDBX rock code: VCGL rock code: VO rock code: MDBX sul rock code: MDBX mix
0 0 1 1 1 1 1 1 1 1 1
A: per composite samples prepared for testwork B: per CC_2011_MinePlan_CEJV_04-Mar-11 (Year 3 is first year of plant feed) O O O O O O O
1 1 1 1 1 1 1 A: per composite samples prepared for testwork B: per CC_2011_MinePlan_CEJV_04-Mar-11
O O O O O O O
1 1 1 1 1 1 1 A: per composite samples prepared for testwork B: per CC_2011_MinePlan_CEJV_04-Mar-11 1 1 1 1 1 1 1
O
459 460 461 462 463 464 465 466 467 468 469 470 471
Average specific gravity for DP Average specific gravity for MDBX Average specific gravity for GRD Average specific gravity for VCGL average Solids Specific Gravity Estimate Ore abrasion index for DP Ore abrasion index for MDBX Ore abrasion index for GRD Ore abrasion index for VCGL average
0.34 0.47 0.41 0.30 0.38
g g g g g
assumed equal for the VO component of the volcanic rocks For comminution circuits. Linear regression with testwork data. For flotation circuits.
T T T T C
472
300279383.xls
Page 8 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 473
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Data Sources O C P D
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Design Criteria - Concentrator B.1.2 Average Head Grades
Value
Unit
Source
Comments
Rev. Ref
Gold (Au) Copper (Cu) Cyanide-Soluble Copper (CuCN)
0.640 0.247
g/t %
O O
Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11
1 1
Silver (Ag) Sulphur (S)
na 1.40 2.57
% g/t %
O O
not available in geological block model Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11 2004 FS ore composites
1
Average Gold Head Grade per Lithology Diorite sulphide DSU DSL Microdiorite breccia - Mixed Microdiorite breccia - Sulphide Granodiorite sulphide Volcanic sulphide
0.621 0.540 0.580 0.763 0.742 0.712 0.590
g/t g/t g/t g/t g/t g/t g/t
O O O O O O O
Average Copper Head Grade per Lithology Diorite sulphide DSU DSL Microdiorite breccia - Mixed Microdiorite breccia - Sulphide Granodiorite sulphide Volcanic sulphide
0.21 0.21 0.24 0.21 0.29 0.31 0.23
% g/t g/t % % % %
O O O O O O O
Average Silver Head Grade per Lithology Diorite sulphide DSU DSL Microdiorite breccia - Mixed Microdiorite breccia - Sulphide Granodiorite sulphide Volcanic sulphide
1.33 1.30 1.34 2.51 2.07 1.77 1.08
g/t g/t g/t g/t g/t g/t g/t
O O O O O O O
Average Gold Head Grade per Periods Year 3-7 Year 8-12 Year 13+
0.612 0.658 0.645
g/t g/t g/t
O O O
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11
1 1 1 1 1 1 1 1
Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11
1 1 1 1 1 1 1 1
Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11
1 1 1 1 1 1 1 1
Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11
1 1 1 1
Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11
1 1 1 1
Mine Plan CC_2011_MinePlan_CEJV_04-Mar-11
1 1 1 1
512 513
Average CuT Head Grade per Periods
514 515
Year 3-7 Year 8-12 Year 13+
0.228 0.249 0.256
% % %
O O O
Average Silver Head Grade per Periods Year 3-7 Year 8-12 Year 13+
1.48 1.33 1.41
g/t g/t g/t
O O O
516 517 518 519 520 521 522
300279383.xls
Page 9 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.1.3 Design Head Grades 524 Gold per Mine Plan FSU V2 wSP using 80th percentile of grade 525 distribution per block 526 Per PFS ore reserves grade vs. tonnage 9
Data Sources O C P D
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
Comments
0.97
g/t Au
O,C
20% above peak year grade of 0.812 g/t in Year 8
0.96
g/t Au
O,C
marginal grade of tonnage fraction to cover 85% of reserves tonnage
Rev. Ref
523
Adjusted for equivalent metal units of high head with nominal tonnage.
527
Retained design grade
0.873
g/t Au
P
528
Total Copper per Mine Plan FSU V2 wSP using 80th percentile of grade distribution per block per PFS ore reserves grade vs. tonnage
0.40
%CuT
O,C
20% above peak year grade of 0.33 % in Year 11
0.39
%CuT
O,C
marginal grade of tonnage fraction covering 85% of reserves tonnage
0.355
%CuT
P
2.28
g/t Ag
O,C
2.08
g/t Ag
P
19 360 24
years d/y h
O P P
Plant Capacity Average Design Hourly - average Hourly – design Yearly
160,000 176,000 7,018 7,719 57.6
t/d t/d t/h t/h Mt/a
O P, O C C C
Grinding/Flotation Planned Shutdown - Weighted
h/week
h/y
529 530 531 532 533 534
retained design grade Silver per Mine Plan FSU V2 wSP using 80th percentile of grade distribution per block retained design grade
Adjusted equivalent metal units of 160 ktpd at 0.39%Cu. 20% above peak year grade of 1.903 g/t in Year 11 Adjusted for equivalent metal units of high head with nominal tonnage.
0
0
0
535
B.2 General Plant Operating Requirements Design Life Operation Schedule 539 Operating hours per day 536 537 538
Projected mine life (partial operations in first and last years) For weather-related interruptions to ore supply
540 541 542 543 544 545 546 547 548 549
Maintenance shutdowns
1.5
78
P
550
Full plant shutdowns
0.9
48.75
P
2.4
126.8
C
8,513 98.5
h/y %
C C
156 96.7 149 95.0 8,208
h/y % h/y % h/y
P C C O C
Total
551 552 553
Grinding/Flotation Availability
554
nominal 10% above average nominal, operated basis
A A
nominal hours weighing based on 100% plant capacity 18 hours per grinding line, each line down once per 12 weeks for cyclone feed pump maintenance. Six lines. 24 hours per 24 weeks. Combined with individual grinding line shutdown
A A
555 556 557 558 559 560 561
Grinding/Flotation/CIL Circuits Unplanned Shutdown Weighted Operational delays Operational Utilization External Interruptions Overall Grinding/Flotation/CIL Circuits Utilization
hours weighing based on 100% plant capacity Accounts for material handling issues Based on operational hours divided by total hours per year for lack of ore, power supply, concentrate or water pipeline issues A A
562
300279383.xls
Page 10 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 563 564 565 566 567 568 569 570 571
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator
Correlated Autogenous Work Index DP MDBX GRD VCGL average
581 582
Design Ore Equivalent
583 584
JKTech parameters – Rock Type Composites
574 575 576 577 578 579
589
A b Axb ta
590 591
Mia SG
588
592 593 594 595 596 597 598 599
Source
16.5 18.5 18.1 17 17.2
kWh/t kWh/t kWh/t kWh/t kWh/t
T T T T/P C
Yr 8 - 12 94.28 0.21 20.1 0.29 30.36 16.67 2.65
Yr 13 - 18 97.61 0.22 21.8 0.24 30.86 16.09 2.72
units
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
assumed equivalent for VO weighted
Source T T T T T T T
kWh/t kWh/t t/m3
Yr 1 - 5 Blend
P
DP 93.7 0.2 18.7 0.3 30.9 2.62
585 586 587
Unit
V T M R
MacPherson testwork report on Placer Dome samples; Dec. 1998
580
573
Value
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
B.3 Grinding Parameters
JKTech parameters – Production Composites Yr 3 - 7 A 93.25 b 0.21 Axb 19.2 ta 0.3 Mia 30.41 BMWi 16.94 SG 2.62
572
Data Sources O C P D
Bond Rod Mill Work Index at nominal 1,190 µm DP MDBX GRD VCGL average
GRP 94.4 0.23 21.7 0.24 32.0 2.66
MDBX Mix 79.7 0.3 23.9 0.4 23.0 2.56
MDBX Sul 96.8 0.18 17.4 0.33 30.3 2.62
19.3 22.1 18.8 19.3 14.4
kWh/t kWh/t kWh/t kWh/t kWh/t
T T T T C
VCGL 100 0.22 22 0.22 30.7 2.76
Source T T T T T T
Placer Dome Samples
weighted
600
Bond Ball Mill Work Index (@ P80), Average
601
DP (@ 116 µm)
17.3
kWh/t
T
602
MDBX mixed (@ 109 µm)
14.8
kWh/t
T
603
MDBX sulphide (@ 118 µm)
14.8
kWh/t
T
604
GRD (@114 µm)
15.3
kWh/t
T
605
VCGL (@ 112 µm)
16.0
kWh/t
T
606 607
average Design ball mill work index
11.9 16.94
kWh/t kWh/t
C P
608 609
Bond Ball Mill Work Index (@ P80) Average + 1 Standard Deviation
610
DP (@ 116 µm)
17.9
kWh/t
T
611
GRD (@114 µm)
16.1
kWh/t
T
612
VCGL (@ 112 µm)
16.2
kWh/t
T
95 6 475 7.4
% ea. % mm
P, O P P C, P
5.4
mm
P, V
Benchmarking Cerro Verde & Boddington, HPGR vendor simulations.
1
120 11.3 1,170 1,287
micron % tph tph
O V,P,C C C
Benchmarking Boddington. Worst case. Design Per ball mill Per ball mill, 10% above average
A A A
for average of mapping samples CC-3, 5, 6, 7, 8; 17 kWh/t for composite sample for rock type composite sample for average of mapping samples CC-12, 14, 15; 15.6 kWh/t for composite sample @ 114 µm for average of mapping samples CC-17, 18, 21; 18.3 kWh/t for composite sample @ 114 µm for average of mapping samples CC-22 to 25; 15.8 kWh/t for composite sample @ 111 µm weighted per design ore - Year 1 - 5 composite
for average of mapping samples CC-3, 5, 6, 7, 8; 17 kWh/t for composite sample for average of mapping samples CC-17, 18, 21; 18.3 kWh/t for composite sample @ 114 µm for average of mapping samples CC-22 to 25; 15.8 kWh/t for composite sample @ 111 µm
613 614 615 616 617 618 619
B.3.1 Grinding Circuit Grinding circuit utilization Number of identical parallel grinding lines Design (max) circulating load Grinding circuit feed – T80 Worst case Benchmarking
620 621 622 623 624
Targeted grinding circuit product P80 Fresh grinding circuit feed passing 120 µm Fresh feed from wet screens
average design
A To accommodate high granodiorite content in Y11+ mining mixes A
625
300279383.xls
Page 11 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 626
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.3.2 Ball Milling
Data Sources O C P D Value
Unit
Source
6 78
ea. % solids
P P P O
16.94 0 16.94 5 12.82 12.5 0.0 1.12 95.1 96.9
kWh/t % kWh/t % kWh/t kWh/t %
Worst case scenario Net ball mill grinding power required Net ball mill power consumption per ball mill, at mill shell at motor leads
14.8 17.3 17.9
kWh/t MW MW
Design Net ball mill grinding power required Net ball mill power consumption per ball mill, at mill shell at motor leads
14.4 16.9 17.4
Indicated grinding mill dimensions Diameter (ID) Length (EGL)
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
Mill Type Ball Mill motor type Number of Ball Mills Ball Mill Discharge Density Testwork indicated ball mill work index Design factor on ball mill work index Design Bond Ball Mill Work Index Reduction in ball mill work index Gross power requirement per ball mill, at shell Worse Case Gross power requirement per ball mill, at shell Design Deduction for Fines in Ball Mill Feed EF4 Ball Mill Feed Oversize Efficiency factor Gearless drive train efficiency
642 643 644 645 646 647
Ball mill gearless
O P C T C C O C P, V V
wet overflow, c/w safety trommel screen
JKSimMet Simulation for design ore, defined as per composite for Year 1-5
per Bond's standard grinding theory Including transformer & cycloconverter At motor leads
A A A A 1 A 0 A 0
C C C
at motor leads For average throughput, design ore For average throughput, design ore
0 0 0
kWh/t MW MW
C C C
at motor leads For average throughput, design ore For average throughput, design ore
1 1 1
7.92 13.9
m m
P P
26 feet 45.5 feet EGL
1
78 80 33 30 33 17.3 18.0 0.6 33 30
% critical % critical % v/v % v/v % v/v MW MW % % %
P P V V V V, P C C V V
Vendor metso power draw curve, at mill shell - new liners Vendor (Metso) power draw tables, at mill shell - worn liners Based on Metso data Vendor (Metso) power draw tables; at mill shell gearless drive At average throughput, with design ore c/w new liners, Metso c/w worn liners, Metso
A A 1 1 1 1 0 1 1 1
Ni-hard 1074 5.7
t g/kWh
P V P
79.7 1072 198.5 180.5 5.0 4.6 2.0 460 920 50.8 + 76.2 1270
g/kWh g/t t/d t/d days days units t t mm t
T, P, C C C C O C P P C P P
10.0 0.71 0.66 7.4 5.4
mm mm mm mm mm
P P,V C P,V P,V
%
for microcracking induced by HPGR crushing
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
Mill nominal rotational speed Maximum rotational speed Required mill ball charge Maximum ball charge for mill geometry Power draw per ball mill at maximum ball charge Installed power per ball mill Contingency on power draw vs. required Maximum ball charge for drawing installed power
Ball mill liner material Estimated ball mill liner set weight, per mill Ball mill liners wear rate
673
Factor for improved steel metallurgy
674 675
Ball mill ball design consumption Ball mill ball design consumption Ball mill ball design usage Ball mill ball nominal usage Storage capacity minimum Storage capacity selected Number of storage/metering bins Inventory per bin selected Total Bin Inventory selected Ball diameter Ball charge total weight, per mill
676 677 678 679 680 681 682 683 684 685 686
689 690
Ball mill feed material top size P99 Ball mill product material size P80 Worst Case Ball mill product material size P80 Design Ball mill feed material size P80 Worst case Ball mill feed material size P80 Design
691 692
Reagents added
687 688
0.7
secondary collector, lime
Outotec Based on Bond correlations, with design ore To account for improved steel metallurgy since Bond developed equation. Bond Abrasion formula with adjustment for metallurgy of steel. at design tonnage and design power at nominal tonnage total, on site inventory
live capacity one third-two-thirds split between 2 and 3" balls at load for maximum ball charge
JKSimMet Simulation JKSimMet Simulation
A 1
1 1 1 1 1 0 0 0 0 0 0
1 0 1
T,P
693
300279383.xls
Page 12 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.3.3 Classification
Data Sources O C P D Value
Classification equipment type Cyclone overflow pulp density Cyclone overflow P80 Nominal Circulating Load (indicated) Nominal Circulating Load used in mass balance Design Circulating Load Cyclone underflow slurry density Nominal cyclone feed data Cyclone feed slurry density Cyclone feed flowrate - solids - slurry Design cyclone feed data Cyclone feed slurry density Cyclone feed flowrate - solids - slurry
Unit
Hydrocyclones 34 % solids 120 μm 314 % 314 % 475 % 75 % solids
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Source P P T P,V O,P P V
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
set as rougher flotation pulp density JKSimMet simulation result modified from JKSimMet simulation result To accommodate harder ore types FLSmidth
58 4,842 4,835
% solids t/h m3/h
M C C
At nominal throughput and circulating load Per cyclopak at nominal throughput and circulating load
63.7 6,725 5,699
% solids t/h m3/h
C C C
At Design throughput and circulating load Per cyclopak
6
each
P
one per ball mill
1
711 712 713 714 715 716 717 718 719 720 721 722 723
Number of cyclopak Cyclone data – per cyclopak Diameter Model number of cyclones required number installed, per cyclopak (including spares) operating pressure Cyclone feed pumpbox retention time Cyclone feed pumpbox live volume Installed cyclone feed spare pump?
nominal design
840 mm Krebs DS33 gMax 8 units 9 units 11 units 70-85 kPag 2.0 190 No
min m3
P P P,V P,V P P,V P C P, O
typical Krebs Cyclone sizing chart (909 m3/h per cyclone). To be confirmed with suppliers.
A
One cyclopak per pump box spare in warehouse
724
300279383.xls
Page 13 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 725 726 727 728 729 730 731 732 733 734 735 736
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Data Sources O C P D
Design Criteria - Concentrator B.4 Flotation B.4.1 Metallurgical Production: Cu Life of Mine Summary Copper Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
Value
Unit
Source
90.0 4.7 5.4 3.5 1.9 0.9 0.5 9.1 90.9
% % % % % % % % %
M M M M M M M M C
Cu concentrate grade – average
27.1
%Cu
M
83.8 9.4
% %
M M
6.7
%
M
4.8 1.4
%
M
0.9
%
M
0.6 15.1 84.9
% % %
M M C
25.2
%CuT
M
1,197 2,395
t/d t/d
M M
Mine Life
Units
Source
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
CIL circuit feed
Rev. Ref
1 0 0
C/W 85% SART recovery
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
Years 3 - 7 Summary Copper Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered Cu concentrate grade – average Cu concentrate production Nominal Design
average ore type mix & feed grade basis 1 1 CIL circuit feed
1 0
c/w 85% SART recovery 0 0 Peak value. (Differs from design criteria for concentrate pipeline.)
755 756
DP DSU Ore Summary Copper Distribution - % by mass
Years 3-7: For Cu Head < 0.13%, y= -67004.4(Cu Head)^2 + 1873.2(Cu Head) 62.708 For Cu Head > 0.025%Cu, y=124.09(Cu Head) + 51.121 Years 8+ y=11.446Ln(Cu Head) + 101.855
757
To Copper Concentrate
78.9
%
T, C
758 759
To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
12.8 8.3 5.4 1.5 0.9 0.6 19.1 80.9
% % % % % % % %
M M M M M M M M
1 1 1 1 1 1 1 1
767
Cu concentrate grade – average
25.0
%CuT
M
1
768 769
DP DSL Ore Summary Copper Distribution - % by mass
Mine Life
Units
Source
760 761 762 763 764 765
1
766
Years 3-7: For Cu Head < 0.13%, y= -67004.4(Cu Head)^2 + 1873.2(Cu Head) 62.708 For Cu Head > 0.025%Cu, y=124.09(Cu Head) + 51.121 Years 8+ y=11.446Ln(Cu Head) + 101.855
770
To Copper Concentrate
85.7
%
T, C
771 772
To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
5.3 9.0 5.9 1.5 0.9 0.6 12.1 87.9
% % % % % % % %
M M M M M M M M
1 1 1 1 1 1 1 1
780
Cu concentrate grade – average
25.0
%CuT
M
1
781 782
DP Ore Summary Copper Distribution - % by mass
Mine Life
Units
Source
773 774 775 776 777 778
1
779
783
To Copper Concentrate
80.7
%
T, C
784 785
To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
10.8 8.5 5.5 1.5 0.9 0.6 17.2 82.8
% % % % % % % %
M M M M M M M M
Cu concentrate grade – average
25.0
%CuT
M
Mine Life 92.3 6.1 1.6 1.0 1.2 0.7
Units % % % % % %
Source M M M M M M
786 787 788 789 790 791
Years 3-7: For Cu Head < 0.13%, y= -67004.4(Cu Head)^2 + 1873.2(Cu Head) 62.708 For Cu Head > 0.025%Cu, y=124.09(Cu Head) + 51.121 Years 8+ y=11.446Ln(Cu Head) + 101.855
1
1 1
792 793 794 795 796 797 798 799 800 801
GRD Ore Summary Copper Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails
300279383.xls
Page 14 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 802 803 804
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
Data Sources O C P D Value 0.5 7.9 92.1
Unit % % %
Source M M M
30.5
%CuT
T, C
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Comments
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement Rev. Ref
805 806
Cu concentrate grade – average
y=44.356(Cu Head) + 16.81
0
807
300279383.xls
Page 15 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator
Data Sources O C P D Value
Unit
Source
Mine Life
Units
Source
808
MDBX Sul Ore Summary Copper Distribution - % by mass
809
To Rougher Concentrate
810
To Copper Concentrate
94.2
%
T, C
811 812
To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
2.1 3.7 2.4 1.4 0.8 0.5 5.3 94.7
% % % % % % % %
M M M M M M M M
Cu concentrate grade – average
27.0
%CuT
M
Mine Life
Units
Source
93.0 1.0 6.0 3.9 1.4 0.9 0.6 5.8 94.2
% % % % % % % % %
M M M M M M M M M
%CuT
T, C
813 814 815 816 817 818 819 820
T, C
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
y= MAX{Final Cu Rec /0.975, MIN[-13.855(Cu Head)^2 + 20.296(Cu Head) -1.989, 5.444]/100/(Cu Head)} For Cu Head < 0.68%Cu, y=-43.204(Cu Head)^2 + 58.8(Cu Head) + 78.007 For Cu Head >=0.68%Cu, y=97.6%
Rev. Ref
1 1
0
821 822 823 824 825 826 827 828 829 830 831 832
VCGL, VO Sul Ore Summary Copper Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
833 834
Cu concentrate grade – average
27.6
835
838
Rougher Tail Years 3-7 Years 8-12 Years 11+
%Cu 0.024 0.009 0.008
M M M
839
DP
0.025
T, C
840
DP DSU DP DSL GRD VCGL MDBX Mix MDBX Sul
0.030 0.015 0.021 0.002 0.044 0.007
M M T T M M
836 837
841 842 843 844 845 846 847 848
DP Rougher Concentrate %Cu
849 850
1st Cleaner Tail Grade
T, C 0.5 0.72
%Cu %Cu
1 1 1
y=48.878*(Cu Head) + 16.149
1
1 1 1 Years 3-7 if Cu Head < 0.3 then y=0.0053-0.0171*ln(Cu Head) else y = 0.0259
1 1 1
y=-0.0105+0.1273*(Cu Head) y=0.0249+0.007*ln(Cu Head) 0 1 Years 8+ y=8.8528*(Cu Head) - 0.1661 Design Nominal
0
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
Copper Recovery Cleaner Circuit Copper Recovery Years 3-7 Years 8-12 Years 11+ DP DP DSU DP DSL GRD VCGL MDBX Mix MDBX Sul
92.6 94.6 95.2 90.5 90.5 90.4 98.3 93.9 96.5 96.2
1st Cleaner Stage Copper Recovery Years 3-7 Years 8-12 Years 11+ DP DP DSU DP DSL GRD VCGL MDBX Mix MDBX Sul
76.4 81.4 85.3 73.1 44.4 77.1 85.7 85.5 35.4 68.9
2nd Cleaner Stage Copper Recovery Years 3-7 Years 8-12 Years 11+ DP DP DSU DP DSL GRD VCGL MDBX Mix MDBX Sul
88.5 88.2 83.4 87.3 79.9 89.8 89.8 79.9 79.9 94.2
3rd Cleaner Stage Copper Recovery Years 3-7 Years 8-12 Years 11+ DP DP DSU DP DSL GRD
94.5 93.9 89.0 93.5 85.9 99.8 92.8
300279383.xls
%
as ratio of %Cu in stage conc vs. %Cu in stage feed M, P M, P M, P P,T M M P,T P,T P,T P,T
%
1 1 1 1 1 1
as ratio of %Cu in stage conc VS. %Cu in stage feed M M M M M M M M M M
%
1 1 1 1 1 1 1 1 1 1 as ratio of %Cu in stage conc VS. %Cu in stage feed
M M M M M M M M M M %
1 1 1 1 1 1 1 1 1 1 as ratio of %Cu in stage conc VS. %Cu in stage feed
M M M M M M M
1 1 1 1 1 1 1 Page 16 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 897 898 899
Design Criteria - Concentrator VCGL MDBX Mix MDBX Sul
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Data Sources O C P D Value 85.9 95.9 99.8
Unit
Source M M M
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Comments
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement Rev. Ref 1 1 1
900
300279383.xls
Page 17 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 901
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator
Data Sources O C P D Value
Unit
Source
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
as ratio of %Cu in stage conc vs. %Cu in stage feed, used in mass balancing
Copper upgrading factor in flotation stages
902
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
1st Cleaner Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
4.92 4.15 3.62 5.47 3.71 3.83 4.18 3.42
M M M M M M M M
1 1 1 1 1 1 0 1
2nd Cleaner Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
2.33 2.45 2.38 2.40 2.45 2.19 2.00 2.54
M, P M, P M, P P,T P,T P,T P,T P,T
1 1 1 1 1 1 0 1
3rd Cleaner Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
1.29 1.31 1.30 1.22 1.31 1.22 1.22 1.33
M, P M, P M, P P,T P,T P,T P,T P,T
0 0 0
921 922 923 924 925 926 927 928 929 930 931
300279383.xls
Page 18 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.4.2 Metallurgical Production: Au 933 Life of Mine Summary Gold Distribution - % by mass 934 To Copper Concentrate 9
Data Sources O C P D Value
Unit
Source
64.9
%
M
28.0
%
M
7.1
%
M
0.8 6.9
% %
M M
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
932
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered Total plant silver recovery - average
-
%
M
28.2 6.9 71.8 32.9
% % % %
M M M M
Years 3-7 Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered Total plant silver recovery - average
61.9 25.0 13.1 0.8 5.7 32.4 5.7 67.6 81.5
% % % % % % % % % %
M M M M M M M M C P
DP Ore Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
Mine Life 60.8 23.3 15.9 1.0 5.0 34.2 5.0 65.8
Units % % % % % % % % %
Source T, C M M M M M M M C
DP DSU Ore Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
Mine Life 60.1 24.2 15.7 1.0 5.0 34.9 5.0 65.1
Units % % % % % % % % %
Source T, C M M M M M M M C
DP DSL Ore Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
Mine Life 60.7 23.5 15.8 1.0 5.0 34.3 5.0 65.7
Units % % % % % % % % %
Source T, C M M M M M M M C
300279383.xls
0
1
1
Based on available testwork data average ore type mix & feed grade basis
CIL circuit feed
1 1 1
Based on available testwork data y=11.183e0.0205(Final Concentrate Cu Recovery) * (if (Au Head) > 0.3, 1, (Au Head)/0.3) Rougher Tails Au grade = 0.1955(Au Head) + 0.657
y=11.183e0.0205(Final Concentrate Cu Recovery) * (if (Au Head) > 0.3, 1, (Au Head)/0.3) Rougher Tails Au grade = 0.1955(Au Head) + 0.657
y=11.183e0.0205(Final Concentrate Cu Recovery) * (if (Au Head) > 0.3, 1, (Au Head)/0.3) Rougher Tails Au grade = 0.1955(Au Head) + 0.657
Page 19 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1 Value
Unit
Source
GRD Ore Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
Mine Life 67.7 23.9 8.4 0.6 6.0 26.3 6.0 73.7
Units % % % % % % % % %
Source M M M M M M M M M
1002
MDBX Sul Ore Summary Gold Distribution - % by mass To Copper Concentrate
Mine Life 64.7
Units %
Source T, C
1003
To Flotation Scavenger Tailings
28.2
%
T, C
1004
To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
7.1 0.6 6.6 28.7 6.6 71.3
% % % % % % %
M M M M M M M
MDBX Mix Ore Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered Total Gold Recovered
Mine Life 55.5 22.0 22.5 0.8 6.6 37.9 6.6 62.1
Units % % % % % % % % %
Source T, C M M M M M M M M
1024
VCGL, VO Sul Ore Summary Gold Distribution - % by mass
Mine Life
Units
Source
1025
To Copper Concentrate
67.0
%
T, C
1026
To Flotation Scavenger Tailings
22.8
%
M
1027 1028
To First Cleaner Scavenger Tailings To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
10.2 0.7 8.8 24.2 8.8 75.8
% % % % % % %
M M M M M M M
9
Design Criteria - Concentrator
Data Sources O C P D
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
989 990 991 992 993 994 995 996 997 998 999
Final Concentrate Gold Grade = 34.846*(Au Head) + 33.913 Rougher Tails Au grade = 0.248(Au Head)^0.7855
1 1
y= 1.7253(Final concentrate Cu recovery) - 87.156 Rougher Tails Au recovery = 1.862(rougher tails Cu recovery) + 12.301
1
1000 1001
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
1029 1030 1031 1032 1033 1034
300279383.xls
1 1
y= 57.4*(if Au Head >0.5, 1, (Au Head)/0.5) Rougher tails Au grade = 0.18 gpt
For final concentrate Cu recovery < 90.6, y= if((Au Head) > 0.3, 1, (Au Head)/0.3*(-1.3883*(Final Cu Recovery)^2 + 251.83(final Cu recovery) -11347) For final Cu Recovery => 90.6%, y = 73.14% At a rougher mass pull of 9%, rougher concentrate Au grade = 9.5938(Au Head) - 0.6035
1 1 1
Page 20 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Data Sources O C P D
Design Criteria - Concentrator Rougher Tail Years 3-7 Years 8-12 Years 11+ DP DP DSU DP DSL GRD VCGL MDBX Mix MDBX Sul
Value gpt Au 0.17 0.18 0.17 0.16 0.15 0.16 0.19 0.15 0.19 0.23
Cleaner Circuit Gold Recovery Years 3-7 Years 8-12 Years 11+ DP DP DSU DP DSL GRD VCGL MDBX Mix MDBX Sul
82.5 84.4 86.9 79.3 79.3 79.3 89.0 86.8 71.1 90.1
Unit
Source
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
M M M M M M M M M M %
Rev. Ref 0 0 0 0 1 1 1 0 1
as ratio of gold in stage conc vs. gold in stage feed M, P M, P M, P P,T M M P,T P,T P,T P,T
1 1 1 1 1
as ratio of gold in stage conc vs. gold in stage feed, used in mass balancing
Gold upgrading factor in flotation stages
1060
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
1 Cleaner st
1061 1062 1063 1064 1065 1066 1067 1068
Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
3.17 2.99 2.91 3.65 3.77 3.29 2.05 3.10
M M M M M M M M
0 0 1 1 1 1 0 1
Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
2.11 2.19 2.09 2.18 2.11 2.29 2.05 1.99
M, P M, P M, P P,T P,T P,T P,T P,T
0 0 1 1 1 0 1
Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
1.33 1.35 1.31 1.24 1.27 1.22 1.30 1.33
M, P M, P M, P P,T P,T P,T P,T P,T
1069 1070
2nd Cleaner
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
3rd Cleaner 1 1
1089
300279383.xls
Page 21 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1090
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.4.3 Metallurgical Production: Ag
Data Sources O C P D Value
Unit
Source
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
Cleaner Circuit Silver Recovery Years 3-7 Years 8-12 Years 11+ DP DP DSU DP DSL GRD VCGL MDBX Mix MDBX Sul
% 78.1 81.1 82.4 72.8 72.8 72.8 82.1 82.3 41.6 88.1
as ratio of silver in stage conc vs. silver in stage feed M M M M M M M M M M
0 0 1 1 1
1103 1104
as ratio of silver in stage conc vs. silver in stage feed, used in mass balancing
Silver upgrading factor in flotation stages
1105
1st Cleaner
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
3.5 4.0 3.5 4.0 4.0 3.4 5.1 4.1
M M M M M M M M
0 0 0 0 0 0 0 0
Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
1.6 1.5 1.4 1.6 1.5 1.4 1.3 1.3
M, P M, P M, P P,T P,T P,T P,T P,T
0 0 0 0 0 0
Years 3-7 Years 8-12 Years 11+ DP GRD VCGL MDBX Mix MDBX Sul
1.2 1.1 1.1 1.2 1.1 1.1 1.1 1.1
M, P M, P M, P P,T P,T P,T P,T P,T
0 0 0 0 0 0 0 0
2nd Cleaner
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
300279383.xls
3rd Cleaner
Page 22 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.4.4 Flotation Parameters Year 1-5 Rougher Retention Time Required. Residence Time Scale Up Factor Scaled-up rougher retention time Optimum laboratory rougher flotation time Indicated residence time scale-up factor Pilot Plant 1st Cleaner/1st Cleaner Scavenger Retention Time Required. Residence Time Scale Up Factor 1st cleaner retention time 1st cleaner scavenger retention time Second cleaner retention time Third cleaner retention time Rougher flotation feed tonnage, design Mass recovery to rougher concentrate
1151 1152
1st Cleaner Scavenger Feed
1153 1154
2nd Cleaner Feed
1155 1156
3rd Cleaner Feed
1157
Data Sources O C P D Source
40.0 1.0 40 15 2.7
minutes
T P C T C
Based on analysis of pilot plant cell by cell recovery data
34 1 20 14 5 5
minutes
T P C
Based on analysis of pilot plant cell by cell recovery data
min minutes
min min min min
T T
7,719
tph
nominal
11.3
%
T,P
design % solids solids SG % solids solids SG % solids solids SG
11.3 24.4 2.89 15.8 3.20 21.7 3.79
% % t/m3 % t/m3 % t/m3
T,P O, P, M M O, P, M M O, P, M M T, C
1160
Flotation air holdup volume allowance
1163
1166
Required flotation cell volume Rougher 1st Cleaner 1st Cleaner Scavenger
1167
1168
1164 1165
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Unit
Solids specific Gravity in flotation
1161 1162
V T M R
Value
1158 1159
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Comments
Rev. Ref
Based on analysis of pilot plant data Based on analysis of pilot plant data Based on analysis of pilot plant data
DP Ore DP Ore at design throughput at design throughput at design throughput at design throughput at design throughput at design throughput
A
Function (SolidsSGfromCuGrade) of copper assay SolidsSGfromCuGrade = 5.32 * CuGr / 100 + 2.77 Solids SG = 5.1548*(%Cu)+2.7525
12
%
P
13,067 1,699 855
m3 m3 m3
C C C
at design throughput and nominal head grade at design throughput and design metal units at design throughput and design metal units
2nd Cleaner
147
m3
C
at design throughput and design metal units, based on lip loading and froth carrying capacity
3rd Cleaner
38
m3
C
at design throughput and design metal units, based on lip loading and froth carrying capacity
44.1 21.2 16.4 17.1 19.9
min min min min min
C C C C C
1169
1174 1175
Flotation stages retention time provided Rougher 1st Cleaner 1st Cleaner Scavenger 2nd Cleaner 3rd Cleaner
1176 1177
Flotation cells type retained
1170 1171 1172 1173
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
Target froth removal rate range for design Froth removal efficiency of internal launders Target carrying rate range for design Rougher 1st Cleaner Scavenger Cleaners
1191
Rougher flotation cells configuration cell size No. of lines No. of cells per line cell line arrangement
1192
launder configuration
1193
Estimated Lip Loading Rate
1194
Estimated Carry Rate
1188 1189 1190
Tank forced aeration
P O
Max 1.5 0.75
t/h/m m/m
V P
0.5 to 1.5 0.3 to 0.8 1.0 to 2.0
t/h/m2 t/h/m2 t/h/m2
V V V
300 m3 6 each 8 each 1+1+1+1+1+1+1+1 Cell 1: Peripheral and radial Cells 2-8: Peripheral 1.50 t/h/m
P P C P
as proportion of requirement 110.2% 105.9% 116.9% 341.0% 397.8% for minimum lip length requirements Outotec Reference\Flotation\Minerals Engineering International Online - Froth Flotation Latest News.mht recognizing crowding limitations with double lip for minimum open cell area requirements Outotec Reference\Flotation\Minerals Engineering International Online - Froth Flotation Latest News.mht
matching number of grinding lines
P C
Assuming 7.13 m as diameter for cells, at design production Assuming 7.13 m as diameter for cells, at design production Value can be increase through adjustment of froth crowder
1.50
t/h/m2
C
30
% solids
P
1195 1196 1197
Rougher concentrate lip density
1198
1st Cleaner flotation cells configuration cell size No. of lines No. of cells per line cell line arrangement launder configuration Estimated Lip Loading Rate Estimated Carry Rate 1st Cleaner concentrate lip density
1199 1200 1201 1202 1203 1204 1205 1206
200 m3 1 each 10 each 1+1+1+1+1+1+1+1+1+1 Cell 1: peripheral + radials Cells 2 - 10: Peripheral 1.50 t/h/m 2.00 t/h/m2 17.1 % solids
P P C P P C C P
Cell 2-10: peripheral Assuming 7 m as diameter for cells, at design production Assuming 7 m as diameter for cells, at design production Value can be increase through adjustment of froth crowder
A A
1207
300279383.xls
Page 23 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator 1st Cleaner Scavenger flotation cells configuration cell size No. of lines No. of cells per line cell line arrangement launder configuration Estimated Lip Loading Rate Estimated Carry Rate 1st Cleaner Scavenger concentrate lip density 2nd Cleaner flotation cells configuration cell size No. of lines No. of cells per line cell line arrangement launder configuration Estimated Lip Loading Rate Estimated Carry Rate 2nd Cleaner concentrate lip density 3rd Cleaner cell size No. of lines No. of cells per line cell line arrangement launder configuration Estimated Lip Loading Rate Estimated Carry Rate 3rd Cleaner concentrate lip density Rougher Flotation pH Cleaner Flotation pH Flotation Air Superficial Velocity, Jg Rougher Cleaners
Data Sources O C P D Value
Unit
200 m3 1 each 5 each 1+1+1+1+1 Cell 1: peripheral + radials Cells 2 - 5: Peripheral 0.1 t/h/m 0.1 t/h/m2 27 % solids
100 1 5
m3 each each
1+2+2 Cell 1 - 2: peripheral + radials Cells 3-5: Peripheral 1.3 t/h/m 0.8 t/h/m2 23 % solids
30 1 5
m3 each each
1+2+2 Cell 1-3: peripheral + radials Cells 4-5: peripheral 1.50 t/h/m 2.00 t/h/m2 25 % solids 9.2 10.5 - 11
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Source P P C P P C C P
P P C P P C C P
P P C P P C C P
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
Assuming 7 m as diameter for cells, at design production Assuming 7 m as diameter for cells, at design production Value can be increase through adjustment of froth crowder
A A
Assuming 5.6 m as diameter for cells, at design production Assuming 5.6 m as diameter for cells, at design production Value can be increase through adjustment of froth crowder
A A 0
Cell 3-5: peripheral Assuming 3 m as diameter for cells, at design production Assuming 3 m as diameter for cells, at design production Value can be increase through adjustment of froth crowder
A A
T T
1.4 2.5
cm/s cm/s
P P
2.5 4.2 4.2 5.8 7.5
% v/v % v/v % v/v % v/v % v/v
P P P P
1244
B.4.6 Water Process water to Rougher Launder Process water to 1st Cleaner Launder 1248 Process water to 1st Cleaner Scavenger Launder 1249 Process water to 2nd Cleaner Launder 1250 Process water to 3rd Cleaner Launder 1245 1246 1247
% of Concentrate volume % of Concentrate volume % of Concentrate volume % of Concentrate volume % of Concentrate volume
1251 1253
B4.7 Reagents Reagents added
1254
Rougher
lime, primary & secondary collectors, frother
T
1255
Regrinding
lime, cellulose, secondary collector
P
1256 1257
1st Cleaner 1st Cleaner Scavenger
secondary collector, frother secondary collector, frother
T T
1258
2nd Cleaner
lime, cellulose, secondary collector, frother
T
1259
3 Cleaner
lime, cellulose, secondary collector, frother
P
1252
rd
1260
300279383.xls
Page 24 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1261 1262
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B4.8 Flotation Pumping Flotation pumpbox minimum design retention time
Data Sources O C P D Value
Unit
Source
1.5
min
P
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
Froth factors - pumps Grinding circuit cyclone feed Regrinding circuit cyclone feed Rougher Concentrate and all cleaner tails Cleaners Froth factors – launders and pumpboxes Grinding Ball Mill Cyclone Overflow Ball Mill Cyclone Underflow Rougher Concentrate Rougher tails Concentrate scavenger flotation Tails Thickener Underflow Scavenger Concentrate 3rd Cleaner Concentrate 2nd Cleaner flotation Concentrate 1st Cleaner Concentrate Regrind Area Concentrate to Regrinding Mills Cyclone Overflow Cyclone Underflow
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
calculated considering volume between height covering minimum pump NPSH requirements and 85% pumpbox level as maximum normal control range
1.00 1.25 1.50 2.00
P P P P
1.00 1.00 1.25 1.25 2.00 1.00 2.00 3.00 3.00 3.00
P P P P P P P P P P
1 1 1 1 1 1 1 1 1 1
1.25 1.25 1.00
P P P
1 1 1
1st Cleaner Feed Pumpbox Design feed flowrate Indicated pumpbox volume
4428 332
m3/h m3
M C
unaerated Froth Factor applied as direct multiplier
1 1
1st Cleaner Concentrate Pumpbox Design feed flowrate Indicated pumpbox volume
1688 127
m3/h m3
M C
unaerated Froth Factor applied as direct multiplier
1 1
1st Cleaner Tailings Pumpbox Design feed flowrate Indicated pumpbox volume
3052 95
m3/h m3
M C
unaerated - nominal + 10% Froth Factor applied as direct multiplier
1 1
2nd Cleaner Concentrate Pumpbox Design feed flowrate Indicated pumpbox volume
434 33
m3/h m3
M C
unaerated Froth Factor applied as direct multiplier
1 1
2nd Cleaner Tailings Pumpbox Design feed flowrate Indicated pumpbox volume
1278 40
m3/h m3
M C
unaerated Froth Factor applied as direct multiplier
1 1
3rd Cleaner Concentrate Pumpbox Design feed flowrate Indicated pumpbox volume
289 22
m3/h m3
M C
unaerated Froth Factor applied as direct multiplier
1 1
1312
Regrind Mills Distributor feed pumpbox Design feed flowrate Indicated pumpbox volume
697 22
m3/h m3
P M C
1st Cleaner Scavenger Concentrate unaerated - nominal + 10% Froth Factor applied as direct multiplier
1 1
1313 1314
Standby pumps
Yes
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
O
0
1315
300279383.xls
Page 25 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1316 1317 1318 1319 1320
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.5 Flotation Concentrate Regrinding Mill type Mill product P80 Mill product P80 Selected Mill feed F80
Data Sources O C P D Value
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Unit
Source
25 30 85
μm μm μm
O T O, T, C P
Yr 8-12 Yr 3-7
11.75 8.55
kWh/t kWh/t
T, P T, P
Yr 8-12
1,053
t/h
M
Yr 3-7
1,101
t/h
M
Regrind mill drive efficiency Required regrinding power input
95 13,024
% kW
P,V C
Indicated regrind ball mill dimensions ball mill diameter ball mill length Liner material
5.5 12.2 rubber
m m
P P P
Installed motor rated capacity Number of installed regrinding mills indicated Number of installed regrinding mills selected Indicated power requirement coverage
6.71 2 1 51.5
MW each each %
V C O C
Ball size – dia. Required ball loading Ball charge weight, per mill Fraction of critical speed
20 35 517 76
mm % v/v t %
P V V P
cyclone 150 200 56-60
% % % solids
P P P P,V
42.6 3,302 5,588
% solids t/h m3/h
M M M
2
each
P
380 14 16
mm units units
P P,V P
Cyclone feed pumpbox retention time Number of pumpbox Design feed flowrate, per pumpbox Cyclone feed pumpbox volume required
2 1 5,587 0.0
min ea m3/h m3
P P M C
2nd and 3rd Cleaner Tails Distributor Retention time Design feed flowrate Indicated pumpbox volume
s m3/h m3
P P M C
3-way split into regrind mills cyclone feed pumpboxes
45 2062 39
0.15
g
P
Assumed value for sulphides reduction of empirical equation stated consumption for improved ball metallurgy Bond equation installed motor power - 5% for drive efficiency
Ball Mill
Comments
Result with 1 ball mill. design
Rev. Ref
B 0
1321 1322
Regrind required mill power
1323 1324
Regrind circuit fresh feed design tonnage
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
Classification equipment type Nominal Circulating Load Design Circulating Load Cyclone underflow slurry density Design cyclone feed data Cyclone feed slurry density Cyclone feed flowrate
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
solids slurry
Number of cyclopak Cyclone data – per cyclopak diameter number required, maximum number installed (including spares)
at shaft
at motor leads For 2 ball mills and P80 = 25 microns. 18 ft 40 ft A 9000 hp per ball mill Required for P80 = 25 microns. Client´s Request
0
FLSmidth and Metso FLSmidth
0 0
Totals for both cyclopaks unaerated
0 unaerated per pumpbox - Froth factor applied
1365 1366 1367 1368 1369 1370
1380 1381
Regrind mill ball design consumption Bond abrasion index Consumption reduction for ball alloy and heat treatment Unit consumption Regrind mill power draw Design ball usage Regrinding Design ball usage Lime Grinding Design ball usage Regrinding + Lime Ball Consumption, ROM basis Ball Consumption, fresh feed basis Storage capacity
1382 1383
Ball diameter
1371 1372 1373 1374 1375 1376 1377 1378 1379
30
%
P
0.057 6365 8.8 0.10 8.9 55.4 353 5 44 20
kg/kWh kW tpd per mill tpd per mill
C P C C
g/t g/t days t mm
C C P P P
unaerated – 1.25 froth factor
0 0 0 0 0 0 0 0 0 0 0
1384
300279383.xls
Page 26 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.6 Flotation Concentrate Dewatering 1386 Copper concentrate production rate 1387 Nominal 1388 Design
Data Sources O C P D
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
Concentrate P80 Concentrate thickener feed slurry density
54.1 75.0 72.6 60 23.3
t/h t/h t/h µm % solids
M M M T M
average Yr 1-5 feed grade nominal throughput@design feed grades, Year 1-10 nominal throughput@design feed grades, Year 11-19 Yr 1-5 composite pilot plant testwork Average Yr 1-5
Thickener internal dilution implemented? Limiting rise rate
Yes 1.2
m3/h/m2
P T
0.5 scale-up factor applied
9
Comments
Rev. Ref
1385
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
B.6.1 Concentrate Thickening at Plant Underflow solids, weight percent Unit rate – conventional basis Yield stress Selected thickener type Indicated thickener diameter Selected thickener diameter Overflow clarity target Flocculant addition Froth Control Water Addition Thickener overflow standpipe retention time Thickener overflow standpipe volume
70 % solids 0.125 m²/t/d 100 Pa Conventional 16.9 m <17 m
D P,T T P C P
< 15 20 25 3 12.0
g/l g/t m3/h min m3
P T,P P P C
98 36 64 68
% m3/h % solids % solids
T T, O O O
pipeline design basis Minimum limit to unit rate for sizing conventional thickeners at targeted U/F density, unsheared
A 1
nominal throughput @ design feed grades, year 1 - 10
anionic, 15% charge density
1409 1410
B.6.2 Concentrate Pipeline Utilization of concentrate transfer system Minimum slurry flow rate in pipeline Operating slurry density range of pipeline, minimum 1413 Operating slurry density range of pipeline, maximum 1414 1411 1412
Testwork indicated continuous operation required to prevent settling From testwork and Brass/Techint interpretation Brass-Techint Brass-Techint
1 1 0
1415 1416
B.6.3 Concentrate Thickening at Port
1417
Service
1418
Port Thickener Feed solids, weight percent Underflow solids, weight percent Unit rate – conventional basis Yield stress Selected thickener type Indicated thickener diameter Selected thickener diameter
1419 1420 1421 1422 1423 1424
For intermittent batch flushing of pipeline and collection of sumps, polishing filter rejects, filtrate, sand filter rejects, and emergency pond reclaim. 51.9 % solids M Design for flushing of pipeline. 65 % solids P 0.26 m²/t/d T 200 Pa T at targeted U/F density, unsheared Conventional P 16.9 m C nominal throughput @ design feed grades, year 1 - 10 <17 m P
0
1
1425 1426 1427 1428 1429 1430
Overflow clarity target Flocculant addition Froth Control Water Addition Thickener overflow tank retention time Thickener overflow standpipe volume
< 15 15 25 11 9.9
g/l g/t m3/h min m3
P T,P P P C
4.1 2.12 26 1,311
M C P C
Copper Concentrate 65% Solids (Plant site)
hours m3
P P C C O O C
Tanks half full at design feed rate.
0 0
Based on 64% Solids
0 0 0 0
anionic, 15% charge density
1431
B.6.4 Concentrate Pipeline Storage Tanks Dry Solid SG Slurry SG 1435 Plantsite tanks Retention time 1436 Indicated Volume Required 1432 1433 1434
Based on 65% Solids
1437 1438 1439 1440 1441 1442 1443 1444
Portsite tanks Retention time Inventory in Tank Total Tank volume Slurry SG Slurry density Slurry flowrate Indicated Volume Required
12 50 24 1.94 64 55 1,063
hours % Hours % solids m3/h m3
1445 1446 1447 1448 1449 1450 1451
Number of agitated storage tanks at plant site at port site Recommended H:D ratio Retained tank diameter Calculated tank height - live fraction
2 2 1:1 10 8
each each m m
P P P P C
1452
300279383.xls
Page 27 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Value
Unit
Source
11.6 10.5 9.0 2.19 42
% % % t/m3 mm
P P P T T
1464
Indicated filtration cycle duration pump ramping up and down feed pumping diaphragm pressing cake blow (drying)
10.0 0.5 1.5 1 3.0
min min min min min
C P,V V V V
1465
extended blowing time allowance
0.0
min
V
1466
filter opening cake discharge/cloth wash filter closing valves opening/closing delays
0.5 2.0 0.5 1.0
min min min min
P,V V P,V P,V
85 75 11.8 469.1 151.9 192.0
% % % kg/h/m2 m2 m2
P V C C V V
For design tonnage Based on indicated filtration cycle duration For Nominal concentrate generation rate For Design concentrate generation rate
P O
Type Larox PF 96/96 M60
9 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
1467 1468 1469
Design Criteria - Concentrator B.6.5 Filtration Flow moisture limit of concentrate Maximum Moisture content for sea shipping Targeted concentrate residual moisture Bulk density of dry cake Cake thickness
Data Sources O C P D
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
SGS Lakefield result for Year 6 to 10 concentrate SGS Lakefield result for Year 6 to 10 concentrate Calculated from Larox test report Larox test report
1 1 1 Provision to accommodate gradual blinding of cloth in field application, Included in cake blow.
1 1
1470
1476
Filtration circuit utilization rate Filtration circuit utilization rate taken Excess installed filtration capacity Unit filtration rate required Minimum filtration area required nominal Minimum filtration area required design
1477 1478
Filter type
1471 1472 1473 1474 1475
1479 1480
2 6 16 96 192 96 192
each m2 each m2 m2 m2 m2
P P,V P V V V V
Total filtration area provided Unit filtration rate provided by installation
192 590.0
m2 kg D.S./m2h
C C
Indicated cake discharged per cycle, per filter - dry basis Instantaneous cake discharge rate, per filter - dry basis
9,393 282
kg tph
C C
Drying air pressure Drying airflow rate Pressing air pressure Slurry feed pressure Instantaneous filter feed flowrate
800 230 1,600 600 297.9
kPag Nm3/min kPag kPag m3/h
P,V P,V P,V P C
1501 1502
Number of compressors installed
3
1503
Cloth wash water consumption (average) Other filtered water to pressure filter (average) Solids recovery to filtrate Total Water Reporting to Port Site Water Treatment average maximum
1481 1482 1483 1484 1485 1486 1487
Number of filtration units provided Nominal individual plate area Number of installed plates, per filter Filtration area provided, per filter Filtration area provided Expanded area potential per filter Expanded area potential
pressure horizontal plates
1 1 1
1.5 m x 4.01 m 1 1 1 1 1
1488 1489 1490
1
1491 1492 1493 1494 1495 1496 1497 1498 1499
dry basis, excludes allowance for delays between cycles
Filter feed pump output required for this application
0
1500
1504 1505 1506 1507 1508
P
1 operated per filter, one stand-by
0.5 1.2 0.5
m3/cycle/filter m3/cycle/filter %
V V P
Outotec Outotec
878 1,105
m³/d m³/d
M M
At Design Concentrate Production (75 tph) Based on Yrs 1 - 5
60,000 45 800
t degrees t/h
O P O
benchmarking of 5 sites, value is average + one std deviation
B.6.7 Port Site Sand Filters Feed stream Filtration Rate (Feed slurry) Solids content in sand filter feed effluent Solids content in sand filter filtrate water Backwash as percentage of feed volume, nominal Backwash as percentage of feed volume, design
Portsite thickener overflow 19.5 m3/h/m2 200 mg/l 10 mg/l 3.5 % 5 %
P P P P P
B.6.8 Port Site Polishing Filters Feed stream Filtration rate Solids content in feed Solids content in polishing filter rejects Filtration Efficiency Reduction of TSS ratio Filtrate content in polishing filter filtrate Backwash water volume Back wash pressure Backwash cycle frequency Backwash duration Backwash Air requirement
Sand Filter filtrate TBD 10 mg/l TBD 70 % 0.2 fraction 2 mg/l 1.1 m3/cycle <20 psi 18 to 36 hours 45 minutes 40 Nm3/cycle
V C V P V C V V V V V
1 1
1509
B.6.6 Concentrate Shiploading Concentrate shed design capacity Concentrate stockpile angle of repose 1513 Concentrate load-out rate 1510 1511 1512
A
1514 1515 1516 1517 1518 1519 1520 1521
SME Mineral Processing Handbook, Equipment maximum SME Mineral Processing Handbook, Equipment maximum SME Mineral Processing Handbook, Equipment maximum From SME Mineral Processing Handbook P 9-17
0 B B B 0 0
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
The Nalco Water Handbook, page 6.43 To be confirmed in equipment selection process To be confirmed in equipment selection process To be confirmed in equipment selection process To be confirmed in equipment selection process To be confirmed in equipment selection process To be confirmed in equipment selection process To be confirmed in equipment selection process
0 0 0 0 0 0 0 0 0 0 0 0
1536
300279383.xls
Page 28 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.7 Flotation Tailings Dewatering B.7.1 Rougher Tailings Thickening Average feed tonnage Design feed tonnage Rougher Tailings Dry SG Rougher tailings P80 Rougher tails slurry density Froth control spray water (PW)
Data Sources O C P D Value
Unit
Source
6,316 6,870 2.77 150 34.5 50
t/h t/h
M P M P M P
µm % m³/h
Target underflow density Target underflow density Years 8-12 Thickener type Yield stress Internal feed dilution slurry density Equivalent settling rate
% solids % solids high rate 70 Pa 25 % solids 0.75 t/h/m²
P T P T,P T T
Number of units Indicated thickener diameter Selected thickener diameter Limiting rise rate Actual rise rate Overflow clarity Flocculant addition per ton rougher tails Thickener O/F standpipe retention time Thickener U/F pumpbox retention time Thickener U/F pumpbox volume Evaporation
2 76.4 80 1.9 0.91 < 50 32.5 na 2.35 290 0.84
each m m m³/h/m² m³/h/m² g/l g/t min min m3 m3/h
P C P T C P T,P P P C C
750.5 776.4 2.78 20 27 16.3 1.7
t/h t/h µm % % m³/h/m²
M P M T M M T
high rate 60
Pa
P T,P
Pre-leach Thickener Target underflow density Internal feed dilution slurry density Equivalent settling rate
50 18 0.2
% solids % solids t/h/m²
O T T,P
Indicated thickener diameter Selected thickener diameter Actual rise rate Flocculant addition Froth control spray water addition Evaporation
70 70 0.83 20 30 0.64
m m m³/h/m² g/t m3/h m3/h
C P C T,P P C
Pre-leach thickener overflow flowrate Overflow standpipe retention time
3,349 na
m3/h min
M P
3 ~2
days batches/day
O P
B.7.2 Cleaner Scavenger Tailings Thickening Average solids feed rate Design solids feed rate First cleaner tailings specific gravity Cleaner tailings P80 Average Cleaner tails slurry density Design Cleaner tails slurry density Limiting rise rate Thickener type Yield stress
64 62
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
Assuming 10% rougher mass pull peak tonnage; 11% rougher weight recovery
Per Thickener Required to meet permitted fresh water extraction limit Outotec Testwork at targeted U/F density, unsheared
1
0.5 scale-up factor applied per volume of supernatant crossing through solids bed anionic, 15% charge density
c/w O/F from cleaner tails thickener at Design throughputs 0
Worst case scenario for flotation recovery
Base Case Design Case 0.5 scale-up factor applied
at targeted U/F density, unsheared
1
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
Based on design throughput at settling rate per volume of supernatant crossing through solids bed anionic, 15% charge density Assumed 0
1588 1589 1590
design
1591
B.8 Reagents Handling. B.8.1 General Reagents Systems Configuration Holding tank / Warehouse 1594 inventory 1595 Mixing tank 1592
(except for packaged flocculant systems)
1593
1596
Distribution tank
P
volume sufficient for mixing frequency of 2 batches/day (not applicable to lime, Cellulose and liquid reagents added neat) storage for ~ 1.5 batches (not applicable to lime, Cellulose and liquid reagents added neat)
1597
300279383.xls
Page 29 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.8.2 Potassium Amyl Xanthate (PAX) 1599 Role 1600 Consumption 9
Data Sources O C P D Value
Unit
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Source
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
1598
1601 1602 1603 1604 1605 1606
Design factor Design peak consumption Form of supply Reagent SG
primary collector 30 g/t 5,280 kg/d 1.2 6,336 kg/d 1000 kg 1.35 t/m³ na
T T C P C V V P
2000 Feasibility operated basis, based on design throughput rate operated basis, based on design throughput rate + 20% safety factor lined tote bags of pellets
1607 1608
Holding tank
not required
1609
Mixed solution strength
15
% w/w
P
1610
Design solution consumption
40.60
m³/d
C
Mixed reagent quantity per batch Solution SG Mixing tank capacity
3,000 1.040 3 19.2 11.4 18 30.4
kg t/m³ bags m3 hours hours m3
C C P C P P C
net volume at design consumption at design consumption net volume
Distribution tank capacity
1
m3
P
head tank; net volume
Addition points and consumptions to Rougher Line #1 to Rougher Line #2 to Rougher Line #3 to Rougher Line #4 to Rougher Line #5 to Rougher Line #6
30 30 30 30 30 30
g/t g/t g/t g/t g/t g/t
T T T T T T
per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line
1611 1612 1613 1614 1615 1616 1617 1618
Holding tank capacity
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
B.8.3 Aero 3477 Promoter (A3477) Role Consumption Design factor Design peak consumption Form of supply
1638
secondary collector 33 g/t 5,808 kg/d 1.2 6,970 kg/d 22 m3 24.3 t 1.105 t/m³ 41 @ 0ºC cP 11 @ 30ºC
T T C P C O C V
1639
Reagent SG
1640
Viscosity
1641 1642
Holding tank capacity
1.30 28.6 4.5
trucks m3 days
P C C
Mix solution strength Design solution consumption
100 6.31
% w/w m³/d
P C
Distribution tank capacity
1.5 5.7
m3 h
P C
24 24 24 24 24 24 6 6 6 6 6 6 1.0 0.6 0.8 0.4 0.2
g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t
T,P T,P T,P T,P T,P T,P T,P T,P T,P T,P T,P T,P T T T T T
1643 1644 1645 1646 1647
2000 Feasibility operated basis, 176000 tpd operated basis Tanker Truck of liquid
P
1 1 0
Sufficient to receive contents of a full truck when at low level (30%) Live capacity at design consumption
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
Addition Points and Consumptions Ball Mill/Cyclone feed pump box #1 Ball Mill/Cyclone feed pump box #2 Ball Mill/Cyclone feed pump box #3 Ball Mill/Cyclone feed pump box #4 Ball Mill/Cyclone feed pump box #5 Ball Mill/Cyclone feed pump box #6 to Rougher Line #1 to Rougher Line #2 to Rougher Line #3 to Rougher Line #4 to Rougher Line #5 to Rougher Line #6 Regrind mill Cyclone Feed Pumpbox #1 to 1st Cleaner Flotation Cell #1 to 1st Cleaner Scavenger flotation to 2nd Cleaner Flotation Cell #1 to 3rd Cleaner Flotation Cell #1
300279383.xls
head tank; net volume
per ton of fresh feed to this grinding line per ton of fresh feed to this grinding line per ton of fresh feed to this grinding line per ton of fresh feed to this grinding line per ton of fresh feed to this grinding line per ton of fresh feed to this grinding line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of fresh feed to this Rougher line per ton of plant feed per ton of plant feed per ton of plant feed per ton of plant feed per ton of plant feed
Page 30 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.8.5 Frother - MIBC 1672 Role 1673 Consumption 9
Data Sources O C P D Value
Unit
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Source
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
1671
1674 1675 1676 1677
Design factor Design peak consumption Form of supply
1678
frothing agent 10.05 1,769 1.2 2,123 22 17.732 0.806 5
kg/d m3 t t/m³ cP
T T C P C O C V P
g/t kg/d
2000 Feasibility operated basis, 176000 tpd operated basis Tanker Truck of liquid
1679 1680 1681
Reagent SG Viscosity
1682
Holding tank capacity
1.25 27.5 10.4
trucks m3 days
P C C
Mix solution strength Viscosity Design solution consumption
100 5.2 2.63
% w/w MmPa·s m³/d
P P C
MSDS
Distribution tank capacity
14 1.5
hours m3
P C
at design consumption net volume
5.8 5.8 5.8 5.8 5.8 5.8 3 3 3 3 3 3 0.5 0.45 0.2 0.1
g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t g/t
T T T T T T T T T T T T T T T T
per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of feed to Row per ton of plant feed per ton of plant feed per ton of plant feed per ton of plant feed
P P T C C P C V
packaged preparation system
1683 1684 1685 1686 1687 1688 1689 1690 1691
B
1 1 0
at design consumption
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
Addition Points and Consumptions to Rougher Flotation Line #1, Cell #1 to Rougher Flotation Line #2, Cell #1 to Rougher Flotation Line #3, Cell #1 to Rougher Flotation Line #4, Cell #1 to Rougher Flotation Line #5, Cell #1 to Rougher Flotation Line #6, Cell #1 to Rougher Flotation Line #1, Cell #4 to Rougher Flotation Line #2, Cell #4 to Rougher Flotation Line #3, Cell #4 to Rougher Flotation Line #4, Cell #4 to Rougher Flotation Line #5, Cell #4 to Rougher Flotation Line #6, Cell #4 to 1st Cleaner Flotation, Cell #1 to 1st Cleaner Scavenger Flotation, Cell #1 to 2nd Cleaner Flotation, Cell #1 to 3rd Cleaner Flotation, Cell #1
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
B.8.6 Cellulose Role Consumption
Design factor Design peak consumption Form of supply Mix solution strength Viscosity
1729 1730 1731 1732 1733 1734 1735
of rougher concentrate of plant feed at design concentrate production rate – operated basis for ore variability operated basis per lined tote bag of free flowing powder
2 15.0 to 20.0
% w/w cP
P P
in agitated preparation tank included in vendor package
Design solution consumption Distribution tank capacity
197 11.25 92.2
m³/d hours m³
C P C
Assumed solution SG of 1.0 at design consumption net volume
Mixing system utilization Batch preparation duration Number of batches per day Batch size
54 60 13.0 15.2
% min ea. m³
P P,V C C
at design consumption net volume
Addition Points and Consumptions Regrind Mills Cyclone Feed Pumpbox 1st Cleaner Concentrate Pumpbox 2nd Cleaner Concentrate Pumpbox
100 35 15
g/t g/t g/t
P P P
of rougher concentrate of rougher concentrate of rougher concentrate
1725 1726 1727 1728
clay depression 150 g/t 16.95 g/t 2,959 kg/d 1.33 3,936 kg/d 700 kg
0
1736
300279383.xls
Page 31 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.8.7 Plant Site Flocculant - Magnafloc 351 Role Consumption Concentrate Cleaner Tails Rougher Tails
Design factor Design peak consumption Form of supply Mix solution strength Mix solution viscosity Diluted solution strength Diluted solution viscosity Design solution consumption Distribution tank capacity
Data Sources O C P D Value
Unit
sedimentation 20 g/t 45 g/t 32.5 g/t 34.1 g/t 6233.2 kg/d 1.2 7479.9 kg/d free-flowing powder
Source P P P P P C C
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments packaged preparation system
Rev. Ref
of concentrate of cleaner tails of rougher tailings of plant feed at design throughput and head grades at design concentrate production rate – operated basis
C V
operated basis 700 kg lined tote bags in agitated preparation tank included in vendor package
0.5 100 0.05 22 1496.0 8.0 496
% w/w cP % w/w cP m³/d hours m³
P P P P C P C
Number of mix systems Mixing system utilization Batch preparation duration Number of batches per day Batch size
2 13 125 3.0 85.0
% min ea. m³
P P,V C C
Addition Points and Consumptions Concentrate Thickener Pre-leach Flotation Tails Thickener Post leach Flotation Tails Thickener Rougher Tailings Thickener #1 Rougher Tailings Thickener #2
20 20 25 32.5 32.5
g/t g/t g/t g/t g/t
P P P P P
of concentrate of cleaner tailings of cleaner tailings of rougher tailings to this thickener of rougher tailings to this thickener
P P P C C
packaged preparation system
C V
operated basis 700 kg lined tote bags in agitated preparation tank included in vendor package
as added to addition points after in-line dilution
0 B 0
Assuming solution SG = 1 at design consumption net volume
at design consumption net volume
1 0 0 0 0
1768
B.8.9 Filter Plant (Port) Flocculant - Magnafloc 336 Role 1771 Consumption 1769 1770 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
Design factor Design peak consumption Form of supply
sedimentation 15 g/t 0.15 g/t 27 kg/d 1.2 32.4 kg/d powder
Mix solution strength Mix solution viscosity Diluted solution strength Diluted solution viscosity Design mix solution consumption Distribution tank capacity
0.2 37.4 0.02 20.0 16.2 12 8.1
% w/w cP % w/w cP m³/d hours m³
P P P P C P C
Mixing system utilization Batch preparation duration Number of batches per day Batch size
50 60 12 1.35
% min ea. m³
P P,V C C
15
g/t
P
1791
Addition Points and Consumptions
1792
Concentrate Thickener
of concentrate of plant feed at design concentrate production rate – operated basis
as added to addition points after in-line dilution
0 B 0
at design consumption net volume
at design consumption net volume
of concentrate
1793
300279383.xls
Page 32 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
Design Criteria - Concentrator B.8.11 Quicklime - CaO Role Consumption Flotation circuit Cleaner tails leach circuit Cyanide destruction Heap Leach SART circuit
Value
pH modifier
g/t g/t g/t g/t g/t g/t
T B,C B,C
Available CaO provided Consumption at quicklime supply quality Design factor Design Usage Mix solution strength Mix solution strength for HL trucks
76 686.4 1.2 823.6 15 25
% CaO t/d
O C P C P P
Slurry viscosity
1828 1829 1830 1831 1832 1833
Design
1834 1835
Solution consumption
1836 1837
Bulk quicklime SG Lime storage silo capacity
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
@100% available CaO basis per tonne of plant feed per tonne of flotation tails of CIL cleaner tails of oxide ore of oxide ore
t/d % w/w % w/w
C
100% - 19 mm granulated powder 3.25 t/m³ 2.23 t/m³
V V C
75 % elevated temperature 46 t/h 1.09 t/m³
P P C C
cP
Slurry Density, % w/w Viscosity, cP 11.00 7.1 to 7.9 16.00 26 to 29 22.00 30 to 42 15.00 24.45 25.00 33.94 25.00 50.00 5037 m³/d
P
10% of plant tonnage, 95% plant utilization. 5% bleed VS. daily irrigation volume, 95% utilization 150 kt/d of oxide ore placement, 100 ktpd irrigation rate. 100 kt/d of oxide ore treatment rate, 95% utilization rate on a plant operated basis
Rev. Ref
B B
B B B B B
Based on 160,000 tpd, 95% utilization
27 t bulk carrier c/w pneumatic discharge system
An Overview Of Lime Slaking And Factors That Affect The Process By: Mohamad Hassibi Chemco Systems, L.P. February 2009
V V V C C P C
Coloma, Guillermo of INA-Antofagasta
t/m³ d t m³
C P C C
net volume
12 2518
hours m³
P C
net volume
Plant lime distribution pumped volume
1049
m3/h
P,C
Addition Points in Concentrator Lime to Ball Mill #1 Lime to Ball Mill #2 Lime to Ball Mill #3 Lime to Ball Mill #4 Lime to Ball Mill #5 Lime to Ball Mill #6 Lime to Regrind Mill Cyclone Pump box Lime to Cleaner Tailings Leach Circuit Lime to Cyanide Destruction
320 320 320 320 320 320 274 2000 150
g/t g/t g/t g/t g/t g/t g/t g/t g/t
T T T T T T T T P
Grinding Media Consumption Grinding Media Usage
140 96.1
g/t lime k/d
P C
Distribution tank capacity – at plant
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
1.44 3 2471 1716
1838 1839
V T M R
per tonne of plant feed equivalent
45 to 700
1827
1845 1846
P P T T P P P
351 71 163 1,882 631 3097
Form of supply Reagent SG Hydrated lime solids SG
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
Source
Consumption – per ton of sulphide ore, operated basis Flotation circuit Cleaner tails leach circuit Cyanide destruction Heap Leach SART circuit total
1826
1842 1843 1844
Unit
kg/t kg/t kg/t kg/t kg/t
1825
1840 1841
Data Sources O C P D
0.351 1.30 3.0 2.28 1.01
Lime slaking circuit availability Slaker type Slaker capacity Solution SG
1823 1824
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
0 0 0 0 0 0 0 0
B
5 times volume at peak consumption
per tonne of plant feed per tonne of plant feed per tonne of plant feed per tonne of plant feed per tonne of plant feed per tonne of plant feed per tonne of rougher concentrate per tonne of flotation cleaner tails (Year 1 to 5 consumption) per tonne of flotation cleaner tails (CIL tails) 1 1
1859 1860 1861
B.8.14 Antiscalant Role
1862
Generic chemical formulation
1863
Consumption
1864 1865 1866 1867 1868
Design factor Design consumption
scale inhibitor
P
polycarboxylate / polyacrylate
P
0.5 1.5 264 1.2 317
g/m3 g/t kg/d
of process water of plant feed at design throughput
kg/d
P C C P C
m³ kg % w/w
O C V
tote bins of liquid
1869 1870
Form of supply
1871 1872
Supply solution strength
1 1200 100
1873 1874 1875
Solution SG Viscosity Design solution consumption
1.2 5 0.26
t/m³ cP m³/d
V P C
0.671 60 20 1.22 101.3 30
g/m3 kPa ºC g/m3 kPa ºC
P O P P O P
1 1
0
1876
B.9 Air Systems Air density at mine site Atmospheric pressure at mine site Design temperature at mine site 1881 Air density at port site 1882 Atmospheric pressure at port site 1883 Design temperature at port site 1877 1878 1879 1880
M40000-0000-131-SPC-0001
B
M40000-0000-131-SPC-0001
B
1884
300279383.xls
Page 33 of 73
A
B
C
D
E
F
G
H
I
J
K
L
1 2
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001
3
Project Project No Client Date Revision
4 5 6 7 8 9 1885 1886 1887 1888 1889 1890 1891 1892 1893
Cerro Casale Feasibility M40000 Compañía Minera Casale 17-Jun-11 1
Design Criteria - Concentrator B.9.1 Gyratory Crushers Installed capacity, per crusher Discharge air pressure Power efficiency Number of unit, per crusher Peak flow design factor Indicated motor size Motor size retained Receiver capacity
Data Sources O C P D Value
Unit
Source
850 800 78 1 1.2 81 90 5
Nm3/h kPa %
V V P P P C P P
B.9.2 Ore Reclaim Tunnels Installed capacity Discharge air pressure Power efficiency Number of units, per area Peak flow design factor Indicated motor size Motor size retained Receiver capacity
850 700 78 1 1.2 76 90 2
Nm3/h kPa %
B.9.4 Plant Air Consumption points carbon fines filter general purpose plant air total Peak flow design factor Installed capacity
190 850 1,040 1.2 1,248
Nm3/h Nm3/h Nm3/h Nm3/h
P P C P C
Discharge air pressure Power efficiency Number of operated units Indicated motor power Motor size retained Receiver capacity
700 78 1 93 112 5
kPag % ea kW kW m3
P P P C P P
B.9.5 Flotation Air Rougher cells 1st Cleaner cells 1st Cleaner Scavenger cells 2nd Cleaner cells 3rd Cleaner cells total Peak flow design factor Indicated capacity
87,336 14,981 9,557 5,117 1,842 118,833 1.2 142,600
Nm3/h Nm3/h Nm3/h Nm3/h Nm3/h Nm3/h
V V V V V C P C
138 71.25 5 1 30,000 891 800 4000 nr
kPa % ea. ea. Nm3/h kW kW/unit kW total
C V V V P C V C P
kW kW m3
Owner’s (CMC) Input Calculated AMEC – Process input AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
packaged with crusher supply
2 units in total
160 2 units, one per crusher
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
kW kW m3
P P P P P P C P P
for pneumatic tools
3 units, one per coarse ore reclaim tunnel, one for fine ore stockpile
3 units, one per coarse ore reclaim tunnel, one for fine ore stockpile
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
one operated, one stand-by
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
1936
Discharge air pressure Power efficiency Number of operated units Number of spares Installed capacity, per unit Indicated motor power Motor size retained
1937 1938
Receiver capacity
1932 1933 1934 1935
Nm3/h
60 kPa atm, 20 C temp, 7 m Diameter cells 60 kPa atm, 20 C temp, 7 m Diameter cells 60 kPa atm, 20 C temp, 7 m Diameter cells 60 kPa atm, 20 C temp, 5.6 m Diameter cells 60 kPa atm, 20 C temp, 3 m Diameter cells
116
0 0 0 0 0 0
kPa minimum requirement 0 0
70 kPa, 570 Im3/min airflow
0 0
1939 1941
B.9.6 Filtration Air System at Port Cake drying
1942
Instantaneous flowrate required
6,800
Nm3/h
V
1943
Peak flow design factor Indicated capacity Discharge air pressure Power efficiency Number of operated units Installed capacity, per unit Indicated power requirements Indicated motor power Receiver capacity
1.0 6,800 800 78 2 3,400 388 400 85
Nm3/h kPag % ea Nm3/h kW kW m3
P V V P P C C P V
per filter vendor package
1,000 1,500 2 500 75 7
Nm3/h kPag ea Nm3/h kW m3
V V V V C V V
500 700 nr 10
Nm3/h kPa kW m3
P P P P
intermittent use
1940
1944 1945 1946 1947 1948 1949 1950 1951
2 operated, one stand-by
each of 2 receivers
1952 1953 1954 1955 1956 1957 1958 1959
Diaphragm pressing Instantaneous flowrate required Discharge air pressure Number of operated units Installed capacity, per unit Motor power installed Receiver capacity
one per filter
each of 2 receivers
1960 1961 1962 1963 1964 1965
B.9.7 Port Air System Installed capacity Discharge air pressure Motor size retained Receiver capacity
provided by filter compressors
1966
300279383.xls
Page 34 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Do Project Cerro Casale Feasibility Data Sources Project No M40000 O Owner’s Client Compañía Minera Casale C Calculat Date 40711 P AMEC – P Revision 1 D AMEC – Ot Design Criteria - Concentrator Nominal Design
Value 1,244 1,800
Unit t/d t/d
Source M M
Comm
Years 8 - 12 Summary Copper Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings
89.4 4.5
% %
M M
To First Cleaner Scavenger Tailings
6.1
%
M
CIL circuit feed
To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
4.0 1.4 0.9 0.6 8.0 92.0
% % % % % %
M M M M M C
c/w 85% SART rec
Cu concentrate grade – average Cu concentrate production Nominal
31.3
%CuT
T
1,279
t/d
M
average ore type m
Years 13+ Summary Copper Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings
92.9 2.4
% %
M M
To First Cleaner Scavenger Tailings
4.7
%
M
CIL circuit feed
To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
3.0 1.4 0.8 0.5 5.0 95.0
% % % % % %
M M M M M C
c/w 85% SART rec
Cu concentrate grade – average Cu concentrate production Nominal
33.3
%CuT
T
1,212
t/d
M
Mine Life
Units
Source
VO Sul Ore Summary Copper Distribution - % by mass
average ore type m
Units
To Copper Concentrate To Flotation Scavenger Tailings
% %
0.0 Mine Life
% %
M M
To First Cleaner Scavenger Tailings
%
93.0
%
M
To CIL Tailings Solids To CIL Tailings Solution - total To CIL Tailings Solution – to tails To CIL Tailings Solution – to SART To Combined Tailings Total Copper Recovered
% % % % % %
60.5 6.0 3.9 1.4 66.2 33.8
% % % % % %
M M M M M M
%CuT
27.3
%CuT
M
Cu concentrate grade – average Years 8-12 Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings
63.6 24.7
% %
M M
To First Cleaner Scavenger Tailings
11.7
%
M
To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
0.7 7.0 29.5 7.0 70.6
% % % % % %
M M M M M C
average ore type m
Years 11+ Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings
67.3 23.0
% %
M M
To First Cleaner Scavenger Tailings
9.6
%
M
To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails To Combined Tailings To Dore Total Gold Recovered
0.7 7.6 25.1 7.6 74.9
% % % % % %
M M M M M C
VO Sul Ore Summary Gold Distribution - % by mass To Copper Concentrate To Flotation Scavenger Tailings
Mine Life 67.6 22.1
Units
Source
% %
M M
To First Cleaner Scavenger Tailings
10.3
%
M
To CIL Tailings Solids To CIL Carbon To CIL Tailings Solution – to tails
1.3 7.4 -
% % %
M M M
CIL circuit feed
average ore type m
CIL circuit feed
To Combined Tailings To Dore Total Gold Recovered
25.1 7.4 74.9
% % %
M M M
Rougher concentrate solids
nominal 5130 t/h C design 822 t/h P,C 1st Cleaner Feed solids 1218.6 t/h M % solids 24.9 % O, P, M 3 solids SG 2.85 t/m M 1st Cleaner Scavenger Feed solids 1029.2 t/h M 2nd Cleaner Feed solids 190.4 t/h M 3rd Cleaner Feed solids 71.3 t/h M Cyclone overflow pulp density 24 % solids P Cyclone overflow P80 25 μm T,O Ball mill discharge density 57 % solids P 3 Water addition (total) to each wet screen #DIV/0! m /h C 3 total flow, per screen ### m /h C Maximum throughput required per screen #REF! tph C % of ore to cleaner scav tails HL deposition rate HL leach rate HL Irrigation System Utilization Proportion of lime to trucks
150000 100000 95 80
% tpd tpd % %
MaximumConcentra at peak t Rougher Scavenger Concen Cleaner (desig at designTails throughp at design throughp at nominal through at design throughp at design throughp
Into chute for repul
To match maximum
NDLING AREA - Document M40000-0000-110-DSC-0001-1 V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
average ore type mix & feed grade b
CIL circuit feed
c/w 85% SART recovery
average ore type mix & feed grade b
CIL circuit feed
c/w 85% SART recovery
Rev.
Ref
average ore type mix & feed grade b
CIL circuit feed
average ore type mix & feed grade b
CIL circuit feed
MaximumConcentrate at peak tonnage Rougher + 1st Cleaner Scavenger Concentrate + 2nd Cleaner (design) at designTails throughput. at design throughput. Function of Cu grade at nominal throughput + 10% at design throughput A at design throughput A
Into chute for repulping and to spray A To match maximum throughput capab
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.3 Ore Reserves Characteristics Predominant Mineralogy Copper Minerals Distribution Chalcopyrite Bornite Chalcocite Digenite Covellite Native copper Total proportion of Cu-bearing minerals Gangue Minerals Silica K-feldspars Amphiboles Pyrite Molybdenite Sphalerite Fe/Mn oxides Sulphates Carbonates Apatite Zircon Micas Chlorite Ti oxides Clays
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input Value
Unit
Source
61.5 11.3 3.2 23.7 0.4 na 0.91
% % % % % % %
T T T T T T T T
27.98 33.83 0.92 1.83 0.09 0.05 4.06 1.18 0.55 0.35 0.35 20.83 3.27 1.05 2.73
% % % % % % % % % % % % % % %
T T T T T T T T T T T T T T T
3.2
%
T
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
Year 1-5 Composite
Year 1-5 Composite
Design Clay Content
Principal Sulphide Lithologies Diorite Porphyry sulphide
29.5
%
D
Granodiorite porphyry sulphide Microdiorite breccia Volcanic conglomerate sulphide Other volcanics
16.6 12.9 19.6 21.4 100.0 12.6 0.3
% % % % % % %
D D D D C D D
A (%)
B (%)
81.1 3.2 2.7 6.5 6.5 100.0
75.1 6.7 17.6 0.6 0.0 100.0
A (%)
B (%)
50.4 11.9 21.7 8.0 8.0 100.0
32.1 17.6 21.6 25.7 3.0 100.0
A (%)
B (%)
3.4 25.8 64.8 3.0 3.0 100.0
8.1 20.3 6.1 24.5 41.0 100.0
total Microdiorite breccia split as:
V T M R
sulphide ore mixed ore
SGS Report "Gold Deportment Study in Cyclone O/F, 1st Cl. Scav. Tail and Ro Tail Samples from Cerro Casale Project" January 22, 2009; on Year 1-5 composite sample proportions in FSU mine plan V_2 c/w stockpile - by reserves tonnage rock code: DP (rock type was divided between upper (DSU) and lower (DSL) in 2000 FS report) rock code: GRD rock code: MDBX rock code: VCGL rock code: VO rock code: MDBX sul rock code: MDBX mix
Mine Plan Tonnage - Lithological Distribution Year 3 to Year 7 Porphyry sulphide Granodiorite porphyry sulphide Volcanic conglomerate sulphide + others Microdiorite breccia - mixed Microdiorite breccia - sulphide Year 8 to Year 12 Porphyry sulphide Granodiorite porphyry sulphide Volcanic conglomerate sulphide + others Microdiorite breccia - mixed Microdiorite breccia - sulphide Year 13 to EOM Porphyry sulphide Granodiorite porphyry sulphide Volcanic conglomerate sulphide + others Microdiorite breccia - mixed Microdiorite breccia - sulphide
300279383.xls
A: per composite samples prepared for testwork B: per FSU mine plan V_2 wSP (Year 3 is first year of plant feed) O/D O/D O/D O/D O/D A: per composite samples prepared for testwork B: per FSU mine plan V_2 wSP O/D O/D O/D O/D O/D A: per composite samples prepared for testwork B: per FSU mine plan V_2 wSP O/D O/D O/D O/D O/D
Page 41 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input
Design Criteria - Concentrator 4.4 Ore Physical Characteristics
Value
Unit
Source
Ore moisture content - average
2.5
% w/w
O
1,800
mm
D
100 99.5 99 98 94 81 55 30 15 3.5 64
% % % % % % % % % % mm
D D D D D D D D D D
Run-of-Mine ore top size ROM % passing sieve of: 1,200 mm 1,000 mm 800 mm 750 mm 600 mm 380 mm 200 mm 100 mm 50 mm 6 mm P20 Average specific gravity for DP Average specific gravity for MDBX Average specific gravity for GRD Average specific gravity for VCGL average Solids Specific Gravity Estimate Ore abrasion index for DP Ore abrasion index for MDBX Ore abrasion index for GRD Ore abrasion index for VCGL average
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
indicated by Mining group, per Orica simulations
2.62 t/m3 2.59 t/m3 2.66 t/m3 2.76 t/m3 2.65 t/m3 5.32 * %Cu/100 + 2.77
T T T T C C
0.34 0.47 0.41 0.30 0.38
g g g g g
T T T T C
g/t % % g/t %
D D
Silver (Ag) Sulphur (S)
0.613 0.242 na 1.48 2.57
D O
Average Gold Head Grade per Lithology Diorite sulphide Microdiorite breccia - Mixed Microdiorite breccia - Sulphide Granodiorite sulphide Volcanic sulphide
0.557 0.734 0.740 0.708 0.575
g/t g/t g/t g/t g/t
O O O O O
Average Copper Head Grade per Lithology Diorite sulphide Microdiorite breccia - Mixed Microdiorite breccia - Sulphide Granodiorite sulphide Volcanic sulphide
0.20 0.20 0.29 0.30 0.23
% % % % %
O O O O O
Average Silver Head Grade per Lithology Diorite sulphide Microdiorite breccia - Mixed Microdiorite breccia - Sulphide Granodiorite sulphide Volcanic sulphide
1.32 2.45 2.06 1.73 1.30
g/t g/t g/t g/t g/t
O O O O O
Average Gold Head Grade per Periods Year 3-7 Year 8-12 Year 13+
0.648 0.668 0.567
g/t g/t g/t
D D D
Year 3-7 Year 8-12 Year 13+
0.246 0.255 0.233
% % %
D D D
Average Silver Head Grade per Periods Year 3-7 Year 8-12 Year 13+
1.37 1.71 1.39
g/t g/t g/t
D D D
assumed equal for the VO component of the volcanic rocks For comminution circuits. Linear regression with testwork data. For flotation circuits.
4.5 Ore Chemical Characteristics 4.5.1 Average Head Grades Gold (Au) Copper (Cu) Cyanide-Soluble Copper (CuCN)
Mine Plan FSU V2 wSP
Mine Plan FSU V2 wSP
Mine Plan FSU V2 wSP
Mine Plan FSU V2 wSP
Average CuT Head Grade per Periods
300279383.xls
Mine Plan FSU V2 wSP Mine Plan FSU V2 wSP not available in geological block model Mine Plan FSU V2 wSP 2004 FS ore composites
Mine Plan FSU V2 wSP
Mine Plan FSU V2 wSP
Page 42 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.5.2 Design Head Grades Gold per FS mine plan V_8 Per PFS ore reserves grade vs. tonnage Retained design grade Total Copper per FS mine plan V_8 per PFS ore reserves grade vs. tonnage retained design grade Silver per FS mine plan V_8 retained design grade 4.6 General Plant Operating Requirements Design Life Operation Schedule Operating hours per day Plant Capacity Average Design Hourly - average Hourly – design Yearly Grinding/Flotation Planned Shutdown - Weighted Maintenance shutdowns Full plant shutdowns Total Grinding/Flotation Availability
Grinding/Flotation/CIL Circuits Unplanned Shutdown Weighted Operational delays Operational Utilization External Interruptions Overall Grinding/Flotation/CIL Circuits Utilization
300279383.xls
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
Comments
Rev. Ref
0.97
g/t Au
D,C
20% above peak year grade of 0.812 g/t in Year 8
0.96
g/t Au
D,C
marginal grade of tonnage fraction to cover 85% of reserves tonnage
0.96
g/t Au
P
0.40
%CuT
D,C
20% above peak year grade of 0.33 % in Year 11
0.39
%CuT
D,C
marginal grade of tonnage fraction covering 85% of reserves tonnage
0.39
%CuT
P
2.28 2.28
g/t Ag g/t Ag
D,C P
19 360 24
years d/y h
D P P
Projected mine life (partial operations in first and last years) For weather-related interruptions to ore supply
160,000 176,000 7,018 7,719 57.6
t/d t/d t/h t/h Mt/a
O P C C C
nominal 10% above average nominal, operated basis
h/week
h/y
1.5
78
20% above peak year grade of 1.903 g/t in Year 11
A A
nominal hours weighing based on 100% plant capacity
P
18 hours per grinding line, each line down once per 12 weeks for cyclone feed pump maintenance. Six lines.
A
24 hours per 24 weeks. Combined with individual grinding line shutdown
A
0.9
48.75
P
2.4
126.8
C
8,513 98.5
h/y %
C C
156 96.7 149 95.0 8,208
h/y % h/y % h/y
P C C O C
hours weighing based on 100% plant capacity Accounts for material handling issues Based on operational hours divided by total hours per year for lack of ore, power supply, concentrate or water pipeline issues A A
Page 43 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.7 Primary Crushing Bond impact work index Diorite sulphide Microdiorite breccia Granodiorite sulphide Volcanic breccia average Design impact work index
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
Comments
10.4 9.8 14.6 10.5 11.4 13.0
kWh/t kWh/t kWh/t kWh/t kWh/t kWh/t
T T T T C P
weighted Based on a mix of 60% GRD and 40% Volcanic Breccia
Rev. Ref
MacPherson testwork report; Dec. 1998
Design factor for impact work index
20
%
P
Accounting for variability and higher hardness of recirculated material
Modified design impact work index
15.6
kWh/t
P
Based on mix of GRD and Volcanics and 20% design factor
Number of primary crushers Type of Primary crusher Primary crusher design availability
2 gyratory
P P
Indicated life of crusher mantle Indicated life of crusher concave liners Indicated life of crusher spider liners Primary crusher design utilization Nominal throughput Design throughput
19 79 6 12 12 75 4,444 4,889
h/d % mo mo mo % t/h t/h
P C P P P P C C
Accounting for lost availability for truck waiting time, inspections per crusher per crusher
Indicated volumetric capacity at OSS = 181 mm
5,230
t/h
V
Per Bruno software, for this OSS and fine ROM feed (F80 = 380 mm)
Indicated volumetric capacity at OSS = 220 mm
7,020
t/h
V
Per Bruno software, for this OSS and fine ROM feed (F80 = 380 mm)
360 600 1.7 750 2.1
t t Trucks t Trucks
D D C D C
1,800 800 1,220 Yes
mm mm mm
D D P P
Open side setting nominal Closed side setting nominal Open side setting design Closed side setting design Primary crusher ROM feed F80
191 140 203 152 372
mm mm mm mm mm
P C P C D
Design primary crusher ROM feed F80
372
mm
Primary crusher discharge P80
152
mm
C
Nominal. Range between 131 and 200 mm for ROM feeds with variable PSDs. Bruno Simulations
A
Primary crusher discharge P80
161
mm
C
Design, Bruno simulations
A
Primary crusher discharge P99
399 425 45 3.5
mm
P
Nominal. Bruno simulations Design. Bruno simulations
A
480 486 150 8 684 692
kW kW kW % kW kW
C C V P C C
At nominal throughput. At design throughput. Indicated by Bruno
A A
At nominal throughput and with modified design work index
A A
Indicated crusher size Indicated crusher motor power base
60” x 113” 1,000 kW
V V
FLSmidth VO model or Metso Superior MK-II or equiv.
Ore Bulk Density – Crushed ROM Unpacked Packed
1.60 1.60
P P
Wet basis, For volume calucations Wet basis, For mechanical/power calcuations
A A
baghouse
O
Collected dust from dump pocket, feeder discharge and transfer point to stockpile feed conveyor discharged onto sacrificial conveyors
A
No No
O R
Ore haul truck capacity Dump hopper capacity Surge hopper capacity
ROM top size ROM d99 Crusher cavity feed top size Hydraulic rock breaker installed?
Primary crusher discharge P20 Primary crusher discharge Cummulative Passing 6 mm Calculated crushing duty power required No-load power, per crusher Crusher drive losses Calculated power draw per crusher - nominal - design
Dust control system Wet scrubber for crusher dump pocket Foggers for transfer points Dust generation rate at transfer points in Primary Crushing
300279383.xls
0.02
A A A A A A A A
per volume fixed at PFS per volume fixed at PFS
Indicated top size for the MK-II gyratory one per crusher per Bruno simulation per Bruno c/w 51-mm stroke for MK-II gyratory per Bruno simulation
A A A A A
Nominal. Estimated by Mine blasting consultant
A
mm %
t/m3 t/m3
%
D
A US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf
Page 44 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.8 Coarse Ore Stockpiling and Reclaiming Stockpile live capacity
Crushed ore angle of repose – design Draw down angle – design Number of reclaim lines Reclaim feeder type Number of feeders Design number of operating feeders Throughput capacity per feeder Dust control system
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input Value
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Unit
Source
Comments
Rev. Ref
80,000
t
P
Jenike and Johanson analysis indicates live capacity = 72,000 tonnes
A
10.2
h
P
at nominal throughput
A
40 65
º º
P,T P,T
J&J Testwork J&J Testwork
A A
2 apron
each
P A
6
each
P
4 2,157 baghouse
each tph
P C O
110 7,719
% t/h
P C
3 per line; 2 operated, one stand-by for design capacity. Normal operation will be 3 operating. At design throughput with 4 feeders operating. dust collected from transfer points between reclaim feeders and reclaim conveyors; dust dropped onto reclaim conveyors
A A
4.9 Comminution Circuits Peak throughput design factor Design throughput for design ore Dust control system Foggers for transfer points Dust generation rate at transfer points
baghouse No
10% above normal tonnage for soft ore A
O R
0.02
% of feed stream
P
3 16 16 96.9 6 6 24 85 15.6 1.5
wk hr hr % wk wk wk % kWh/t kg/t
O P P P V, P V, P P P P T
A US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf
A
4.9.1 Secondary Crushing Circuit Scheduled shutdown frequency Scheduled shutdown duration Duration of shutdown for bowl/mantle liner replacement Crushing Section Availability Indicated life of crusher bowl Indicated life of crusher mantle liners Indicated life of crusher spider liners Secondary crushing circuit utilization Modified design crushing work index Ore abrasive wear
300279383.xls
Boddington benchmarking - full line down at once Boddington benchmarking c/w 12 hr at low altitude and no winter drop-in complete spare bowl and mantle assemblies provided Metso estimate and benchmarking Metso estimate and benchmarking
A A A A A A
Based on a 60% granodiorite, 40% volcanics mining mix A
Page 45 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.9.1.1 Cone Crushers
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input Value
Unit
Number of secondary crushers to be installed Number of crushers provided for in layout plans Number of Lines Number of Operating Crushers Crusher model (indicated) Nominal Feed Size F80 Nominal Feed Size F99 (Top Size) Design Feed Size F80 Design Feed Size F99 (Top Size) Design Feed Size F20 Design Feed Cummulative % Passing 6 mm Crusher feed moisture content
8 ea. 8 ea. 2 ea. 6 ea. MP1250 series 148 mm 399 mm 154 mm 425 mm 47 mm 0 mm 2.5 %
Crusher Closed Side Setting (CSS) - nominal feed conditions
35
Crusher Closed Side Setting (CSS) - design feed size conditions @ nominal tonnage Liner profile Theoretical crushing power required at nominal throughput (per crusher) Theoretical crushing power required at design throughput (per crusher) No-load power, per crusher Crusher drive losses
45
Source
P P P P, O O P,C P,C P,C P,C P,C P,C O
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
No future expansion required 3 operating and 1 standby per line. Standard head cone crusher or equivalent Bruno simulation result. Confirmed with JKSimMet. Bruno simulation result Bruno simulation result. Confirmed with JKSimMet. Bruno simulation result Bruno simulation result. Confirmed with JKSimMet. Bruno simulation result. Confirmed with JKSimMet.
A A A A A A A A
A
mm
P
mm
P
Boddington benchmarking.
P
To be confirmed Bruno indicated 558 kW for same conditions.
medium
Rev. Ref
537
kW
C
625
kW
C
100 8
kW %
V P
Indicated power draw (per crusher)
693
kW
T,V
At average throughput but for design mining mix of 60% granodiorite
A
Indicated power draw (per crusher)
789
kW
T,V
At design throughput
A
Installed motor power (per crusher) Contingency on power draw Contingency on power draw
932 34.5 18.2
kW % %
V C C
Relative to available power Relative to available power
7,843 8,627
tph tph
C C
peak 10% above average value - soft ore
1,477 1,682
tph tph
M C
1,765
tph
V
Mean of vendor published range for MP1000 x 1.25 for MP1250.
19.5
%
C
Relative to average throughput at nominal CSS of 35mm
2,225
tph
V
Mean of vendor published range for MP1000 x 1.25 for MP1250.
50.6
%
C
Relative to average throughput at maximum CSS of 45mm
Crusher Product Size P80 @ nominal feed size
41
mm
C
Bruno simulation result.
Crusher Product Size P99 (Top Size) @ nominal feed size
68
mm
C
Bruno result
Crusher Product Size P99 (Top Size) @ design feed size
41
mm
C
Bruno simulation result.
A
Crusher Product Size P99 (Top Size) @ design feed size
68
mm
C
Bruno result
A
Crusher Product Size P20 Crusher Product cummulative % passing 6 mm
7 17
mm %
C C
Bruno simulation result. Bruno simulation result.
A A
8
ea.
P P
One per crusher
1.68 1.68 20 334 2670 35
t/m3 t/m3 min m3 m3 º
Draw down angle – design
60
º
Cone Crusher Feed Hopper
4.5
m
V
Cone Crusher Feed Hopper residence time Dust generation rate at transfer points in Secondary Crushing
16.2
sec
C, V
0.06
%
D
average throughput design throughput
Crusher circuit throughput (fresh feed basis) Average Design Throughput per crusher (total crusher feed c/w circulating load) Average Design Maximum capacity at 35 mm CSS (per crusher) @ nominal feed size Contingency on nominal throughput Maximum capacity at 45 mm CSS (per crusher) @ design feed size Contingency on nominal throughput
Type of crusher feeder Number of crusher feeders Secondary Crusher Feed Bins Design bulk ore SG - volume requirement Unpacked Mechanical (Packed) Crusher Feed Surge Bin residence time Cone Crusher Feed Surge Bin Total Surge Bin Capacity Crushed ore angle of repose – design
300279383.xls
Belt feeder
P
3
P C C
Indicated by Bruno
A A A
A
A
Wet Basis. For volume calculations For mechanical/power calcualtions
A A A
Live volume, per crusher, 6 operating crushers Live Volume, 8 crushers Jenike and Johanson Testing
A A A
Jenike and Johanson Testing
A
Live volume, per crusher
A
M40000-3100-110-CAL-0004 Based on sullpier design of feed chute. US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf
A A
Page 46 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.9.1.2 Primary Vibrating Dry Screens Recycle ratio (screen vs. fresh feed tonnage) Average Design Total design processing rate Design screen undersize at max rate Design screen oversize at max rate
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input Value
1.13 1.17 11,471 9,804 1,667
Source
tph tph tph
C C C C C
Bruno simulations indicated circulating load Bruno simulations indicated circulating load 25% allowance for instantaneous peaks, at design circulating load 25% allowance for peaks 25% allowance for instantaneous peaks, at design circulating load
A A A A A
P
Wet Basis, unpacked. For volume calcuations For mechancial/power calucations
A A A
Live Volume Jenike and Johanson Testing Jenike and Johanson Testing
A A A
Schenck indicated.
A
Dry Screening Feed Surge Bin residence time Dry Screening Surge Bin Capacity Crushed ore angle of repose – design Draw down angle – design Screen feeder type
1.68 1.68 15 min 2,924 m3 40.0 º 75.0 º Vibrating pan feeder
Number of vibrating dry screens Design processing rate per dry screen Type of screen Screen deck width (indicated) Screen deck length (indicated) Number of decks per screen Peak capacity per screen Screen motor rating Screening efficiency Unit screen capacity (at average throughput)
6 ea. 3,120 tph Multi-slope 4.3 m 8.5 m 2 ea. 3,450 tph 75 kW 90 % 78 t/h/m2
Dry screen undersize P80 Dry screen undersize P20 Dry screen undersize Cummulative % Passing 6 mm Average undersize stream flow rate (per screen)
300279383.xls
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Unit
Dry Screen Feed Bins Design bulk ore SG - volume requirement
Screen panels square aperture Screen cut point Bed depth at discharge
V T M R
P C
Comments
Rev. Ref
P V C P,V P,V P,V V V V P C
45 38 41
mm mm mm
P C V
30 30 17 1,307
mm mm % tph
O,C O,C O,C C
aka Banana screen Schenck indicated. Schenck indicated.
A A A
Schenck indicated. Schenck indicated. Based on vendor indicated deck dimensions and design tonnage
Bruno indication for nominal throughput Bruno indication at nominal throughput. Confirmed by vendor. Bruno indication Bruno indication Bruno indication Fresh feed to crushing circuit rate
Page 47 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.9.2 Tertiary Crushing Circuit
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Value
Unit
Source
Scheduled shutdown frequency
3
wk
O
Boddington benchmarking - full line down at once
A
Scheduled shutdown duration
16
hr
P
Boddington benchmarking c/w 12 hr at low altitude and no winter
A
30 2 88.6 6,000 5,600 39,298
hr hr % op. hours op. hours kt
P, V P P T, V C C
drop-in complete spare bowl and mantle assemblies provided Boddington benchmarking, per crusher
A A A A A A
Duration of shutdown for roll replacement Cumulative daily shutdown for roll/edge block checks Tertiary crusher availability Indicated roll life per testwork conditions per design conditions
Nominal tonnage ball mill Philosophy for design grinding production rate when 1 line of tonnage with high circulating HPGR is bypassed. load.
Rev. Ref
based on 150 kt/d, 1.55 circulating load adjusted for actual throughput and circulating load Process requirement for maintaning production and inventory in fine ore silos.
Tertiary crushing circuit utilization Recycle ratio (per Polysius testwork scale-up) Recycle ratio (crusher throughput vs fresh feed) Wet screen close-out size Recycle ratio (at 10 mm close-out size)
85 1.85 2.00 10.0 1.51
For design purpose. From benchmarking against Cerro Verde
A
Expected recycle ratio at maximum throughput
2.10
P
For design purpose - coarser product expected at larger floating gap
A
2.10 14,510 18,818 0.003
Boddington Benchmarking Based on benchmarked recycle ratio At maximum allowable rolls speed US EPA AP 42 Fifth edition http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s24.pdf
A
tph tph %
C C P D
Specific grinding force (indicated) Specific throughput rate (m-dot) (indicated) Scaled-up specific throughput rate (m-dot) Specific energy input (indicated) Scaled-up specific energy input ATWAL Abrasion Test (indicated)
3.5 227 300 1.80 1.44 16
N/mm2 ts/(m3h) ts/(m3h) kWh/t kWh/t g/t
T T T T T T
From testwork From test work results Benchmarking From testwork Benchmarking From Polysius testwork
Number of High Pressure Rolls Crushers Number of lines Required throughput rate (per crusher, fresh feed) Required throughput rate (per crusher, fresh feed) Number of HPGRs provided for in layout
6 2 2,418 3,136 8
ea. ea. tph tph ea.
V P C P
2 lines, each with 3 operating HPGRs Average instantaneous rate Design For future expansion
Rolls diameter (indicated) Rolls width (indicated) Maximum allowable rotational speed Maximum allowable rolls speed (mechanical) Max rolls speed (slippage rule of thumb) Nominal rolls speed for required throughput Design rolls speed for design throughput Contingency on throughput (Mechanical limit) Contingency on throughput (Process limit)
2.40 1.65 21.0 2.64 2.40 2.40 2.55 10.0 0.0
m m RPM m/s m/s m/s m/s % %
V V V C P C C C C
From Polysius report From Polysius report Calculated from vendor simulation report At maximum RPM allowed to limit potential mechanical damage Process limit at which slippage becomes a problem At indicated m-dot and recycle ratio At Boddington benchmarking m-dot and recylce rate. At nominal rolls speed required for average throughput At nominal rolls speed required for average throughput
Installed power - per crusher Power consumed per crusher Contingency on power
5,500 3,666 50.0
kW kW %
V C C
2 x 2,750 kW motors Including 95% electrical drive efficiency At average throughput rate
ea.
P P
One per rolls crusher
Expected recycle ratio at maximum circuit feed size Average processing rate (at crushers) Maximum processing rate (at crushers) Dust generation rate at transfer points in Tertiary Crushing
%
Comments
mm
O V V P P
A For 6 mm tested close-out size Based on Cerro Verde experience at 6 mm close-out size
A
4.9.2.1 HPGR Crushing
Type of feeder Number of crusher feeders HPGR ore Bin Design bulk HPGR feed SG - volume requirements Unpacked Mechanical HPGR Surge Bin residence time required HPGR Surge Bin capacity
Belt feeder 6
Crushed ore angle of repose – design Draw down angle – design Average % moisture (w/w) of HPGR feed
1.42 1.68 15 4,704 3,650 40 75 4.7
min t m3 º º %
HPGR Feed Hopper surge residence time HPGR Feed Hopper live surge capacity HPGR feed size P80 HPGR feed size P20 HPGR feed cummulative % passing 6 mm HPGR feed size P99 (top size) HPGR product P80 HPGR product P20
20 25 26 9 15 45 14.7 1.4
sec t mm mm % mm mm mm
300279383.xls
T, C T, C T, C P C C
A A
A A A
A A
Wet basis, packed For volume calcuations For mechanical/power calcuations at design throughput i.e. 10% above average Live tonnage at design throughput rates Live volume at design throughput rates Jenike and Johanson Testing Jenike and Johanson Testing
A A A
One per crusher at design throughput rate Polysius simulations Polysius simulations Polysius simulations
A A A A A
Used in simulations at 10 mm cut size. Tests indicated 9 mm for 6 mm screen cut size. at 10 mm cut size. Tests indicated 9 mm for 6 Used in simulations mm screen cut size.
A A
A A A A
C P, V C P,V,C P,V,C P,V,C P,V V,T,C V,T,C
Page 48 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator HPGR product cummulative % passing 6 mm
300279383.xls
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input Value 46
Unit %
Source V,T,C
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments Used in simulations at 10 mm cut size. Tests indicated 9 mm for 6 mm screen cut size.
Rev. Ref A
Page 49 of 73
DESIGN CRITERIA FOR CONCENTRATOR FACILITIES MATERIAL HANDLING AREA - Document M40000-0000-110-DSC-0001-1 Project Project No Client Date Revision
Cerro Casale Feasibility M40000 Compañía Minera Casale 24-Oct-10 A
Design Criteria - Concentrator 4.9.2.2 Fine Ore Bins Capacity of twin HPGR product conveyors Fine Ore Storage Storage live capacity c/w half of HPGR down Type of storage Number of silos Bulk density of HPGR product Unpacked Mechanical Bin feed moisture content (% w/w) Crushed ore angle of repose – design Draw down angle – design
Data Sources O Owner’s (CMC) Input C Calculated P AMEC – Process input D AMEC – Other disciplines input Value
Unit
Source
9,607
tph
C
60,000 19.4 Silos 6.0
tonnes hrs
O C
ton/m3
C
% º º
C
1.37 1.68 4.7 40.0 75.0
V T M R
Vendor-supplied data Testwork Mass balance Regulatory/permitting requirement
Comments
Rev. Ref
Each. At design throughput rate A A A
Wet basis, packed For volume calculations For mechanical/power calucations
A A A
Jenike and Johanson Testing Jenike and Johanson Testing
A A
4.9.2.3 Secondary Wet Vibrating Screens Number of units Type of screen Max throughput per screen (indicated) Average processing rate per screen Feed arrangement
12
ea. Multi-slope 1,300 tph 1,209 tph Belt feeder - Repulper
Deck panels aperture Unit screen capacity (average throughput) Estimated Max unit screen capacity Screening area required Selected screen deck width Length to width minimum ratio Screen deck length (indicated) Screen deck length (retained) Number of decks per screen Wet screening efficiency (used in simulations) Wet screening efficiency (expected) Screen motor rating Expected bed depth at discharge Screen Sprays type number of bars per screen number of sprays per bar flowrate per spray type of water used Wet screen undersize product P80 Wet screen oversize product moisture content Wet screen feed repulping box overflow solids content Wet screen undersize product solids content Pulp to individual ball mill pumpbox from wet screens
300279383.xls
10.0 43 46 3.6 2:1 7.9 8.5 1 88 92 55 69 duck bills 3 5 4
mm t/h/m2 t/h/m2 m2 m m m ea. % % kW mm
P C C C P,V P P,V P,V P V P V C
m3/hr
P P P P, V
mm % w/w % w/w % w/w m3/h
V,T P P P C
ea.
fresh 7.6 8.0 55.0 40.0 3,016
P P,V V C P
P
aka Banana screen Vendor indicated maximum range At nominal circuit throughput rate Forward-reverse re-pulping dead boxes in chute
Calculated based on vendor indicated deck dimensions Based on Vendor indicated range and area
for dewatering efficiency
A A A
Schenck indicated. Single deck screens with spray bars Used in Polysius simulations Schenck indicated. Schenck indicated.
spacing of about 0.75 m 15 Usgpm @ 50 psi
A A A A A
to minimize wear of sprays with entrained solids in process water
A
JKSimMet simulations Assumed Large volume water required for complete disagglomeration of flakes Additional water addition to prevent sanding of low-angle discharge chute
A A
Page 50 of 73
Post-leach Thickener CIL tailings density Thickener feed screen spray water rate Target underflow density Thickener dilution feed box retention time Flow to dilution feed box Post-leach thickener distributor volume Diluted feed slurry density Internal feed dilution slurry density Equivalent settling rate
39.5 25 50 60 1763 #VALUE! 38.6 18 0.2
% solids m3/h % solids s m3/h m3 % solids % solids t/h/m²
Indicated thickener diameter Selected thickener diameter Actual rise rate Flocculant addition
8.0 70 0.00 25-30
m m m³/h/m² g/t
Dilution Water to Post-Leach Thickener Flocculant Addition Lined Tailings Reclaim Water Post-leach thickener overflow flowrate Overflow standpipe retention time Standpipe volume
20 24.1 157.1 207 3 10
m3/h m3/h m3/h m3/h min m3
B.5 Carbon-In-Leach Circuit Design throughput Design gold head grade Feed slurry density Dry Solids SG Gold lock-up on carbon - Years 3 to 7 Gold lock-up on carbon - Years 8 to 12 Gold lock-up on carbon - Years 13+ Design slurry flowrate
10 0.76 40 2.78 138 122 114 19
t/h g/t % solids
2.0 60 0.14 35
g/t % % %
1 0
min m3
Indicated silver head grade Indicated silver leach extraction Indicated copper head grade Indicated copper leach extraction Leach circuit feed distributor retention time Distributor volume
kg kg kg m3/h
Trash screen aperture Carbon sizing screen aperture Carbon size
24 20 6 x 12
mesh mesh mesh
B.5.1 Leach Circuit Trash Screen Screen type Safety screen aperture Screen feed flowrate design factor Estimated screen unit capacity Net screen area required Number of screen provided
linear, static 28 mesh 1.2 90 m3/h/m2 m2 0 1 ea.
B.5.2 Leach Tanks Leaching retention time Aeration volume allowance Effective tank volume Gross leach tank volume requirement
20 5 94.5 414
h % % m3
Tank aspect ratio (H:L) Tank freeboard Retained tank diameter Tank height Tank freeboard Number of stages Leach tank volume provided Actual retention time provided
1:1 0.25 16.3 16.3 0.9 10 33,492 1620.8
m m m m ea m3 h
Final gold residue Nominal effluent dissolved gold tenor
0.050 0.006
g/t mg/l
Agitator type Aeration gas Aeration rate
axial turbines air 0.3 Nm3/h/m3
Slurry pH Carbon concentration in CIL slurry Carbon inventory
11.0 18 603
Carbon advance method
g/l t
vertical interstage pump
Daily nominal carbon forwarding duration
6
h
Carbon advance pumping rate Carbon advance rate through CIL section
185 20
m3/h tpd
24
tpd
204
m3/h
- design Peak interstage slurry advance rate
Carbon interstage screen type
Kemix swept screen
Interstage screen aperture
20
mesh
Indicated screen capacity Screen area required, per leach tank Selected area per screen Number of screens per tank Number of screen positions per tank
85 2.4 10 0 1
m3/h/m2 m2 m2 each each
B.5.3 Loaded Carbon Screen Screen type Screen aperture Transfer flowrate Screen feed flowrate design factor Estimated screen unit capacity Net screen area required Selected screen net area Screen wash water Loaded carbon max gold loading Peak carbon loading Expected nominal carbon gold loading
high-frequency 20 mesh m3/h 185 1.2 180 m3/h/m2 2.47 m2 m2 2.88 m3/h 2.5 1,000 g/t 600 g/t 581 g/t
Wet carbon SG Loaded carbon holding tank capacity
1.5 2 32
t/m3 batch m3
Barren carbon holding tank capacity
4 64.0
batches m3
B.5.4 Carbon Safety Screen Screen type Safety screen aperture Screen feed flowrate design factor Estimated screen unit capacity Net screen area required Number of screens provided Selected screen size Net screen area provided Screen spray water flowrate Leach reagents NaCN addition NaCN consumed NaCN in tailings Lime addition (100% CaO basis)
high-frequency 28 mesh 1 130 m3/h/m2 0.1 m2 2 ea. 1820 3600 m2 13.1 12.5 m3/h Years 6 to 18 Years1 to 5 1.6 3.1 1.5 3.0 0.1 0.1 0.1 1.3
B.6.12 Sodium Cyanide - NaCN (CIL Facility) Role Consumption at design throughput Peak design factor Design Consumption Form of supply Mixed solution strength Solids SG Solution SG Design solution consumption
gold leaching agent 4 kg/t 350.3 t/d 1.2 420.4 t/d briquettes c/w alkaline buffer 20 % w/w 1.6 t/m³ 1.06 t/m³ 1982.9
m³/d
Mixing tank capacity
15 1239
h m³
Distribution tank capacity
1.2 1487
batches m³
B.6.13 Activated Carbon Role Usage rate, per tonne of CIL feed Average consumption Form of supply B.7.3 CIL Leach Air Flotation tails leach Peak flow design factor Installed capacity Discharge air pressure Power efficiency Number of operated units Indicated motor power Motor size retained Receiver capacity
gold adsorption 20 g/t 1752 kg/d loose granules
10,048
Nm3/h
1.2 12,057 320 78 1 #DIV/0! 597 nr
Nm3/h kPag % ea kW kW
M P P P M C C T T
nominal feed equivalent to heap leach requirements at design feed rate
nominal feed
C P C per volume of supernatant crossing through solids bed P anionic, 15% charge density M M M M design, to SART Recovery Circuit P C
M For leach tank volume calculations P For carbon circuit sizing T,P Low density due to viscosity constraints M C C C C T T C T P C
SGS leaching testwork 2009 SGS leaching testwork 2009 Mass balance result G&T testwork
P P P
P P P P C P
P P P net of air, screens, agitator C P P P C Based on H:D ratio of 1:1 P P C C At Design Throughput P Indicated, from leach optimisation testwork results P Indicated by modeling results P paired P P P Increased from 8 g/l to compensate for dilution of leach P feed pulp C P C P nominal C Expected nominal for years 11 to 19 design based on nominal head grade and design P tonnage scenario C
A
P P P,V C P P P
P P M P P C P P P P P
6 hours operated per day
1200 mm x2400 mm instantaneous Short-term peak loading At design tonnage and nominal grade At average CIL feed tonnage and grade
P P daily carbon transfer batch C for transfer to pneumatic truck P daily carbon transfer batch C
P P P P C Assuming leach tails flow = leach feed flow P P L X W (mm) P,V P per screen
kg/t kg/t kg/t kg/t
P T C T
Includes cyanide credit recycled from SART
P T per SGS Lakefield cyanidation testwork C Based on design tonnage for the CIL P C operated basis c/w 92% utilization P Isotainers – size to confirm P V V C P C net volume P C net volume
rption O C Based on design tonnage to CIL V 900-kg tote bags
C P C P V P plus one stand-by unit C P P
Information Reagent form of supply Number of Mixing Tanks Mixing system utilization Filling Time of Mixing tank Batch preparation duration Time to transfer from mixing to distribution tank Distribution tank capacity Solution SG Concentrate Thickener Feed Cleaner Tailings (Pre-Leach Thickener) Cleaner Tailings (Post-Leach Thickener) Rougher tailings to thickener #1 Rougher tailings to thickener #2
Time to mix, minutes Mix tank volume, m3 Number of mix tanks Daily volume used, m3 Number of mixes per day required Number of mixes per day per mix tank Mixing time per day per tank, minutes Mix System Utilization, %
INPUTS value units 700 kg 2 85 % 40 min 50 min/batch 35 min 8 h 1 53.4 mt/h 0.0 mt/h 743.1 mt/h 0.0 mt/h 1036.8 mt/h
125 85 2 256 3.012275 1.506138 188.2672 13.07411
comment free-flowing powder
nominal nominal nominal nominal nominal
source Design Criteria Pierre Lacombe Pierre Lacombe Assumption Design Criteria Assumption Design Criteria Assumption Mass Balance Mass Balance Mass Balance Mass Balance Mass Balance
Stream Number 743 723 734 726 729 727 742A 724A 742B 724B
723 = 743 726 = 734 727 = 729 724A = 742A 724B = 742B 723 726 727 724A 724B
733 733 733 789 (868) 868
742,729,734,743
743 867 734 871 729 872 742A 869 742B
870
743 734 729 742A 742B 873
CALCULATIONS DISTRIBUTION TANK 4172-TNK-035 Solution strenght from package Flocc. to Concentrate Thickener Solution from package to concentrate thickener Flocc. to Pre-leach Flotation Tails Thickener Solution from package to flotation tails thickener Flocc. to Post-leach Flotation Tails Thickener Solution from package to post-leach flotation tails thickener Flocc. to Rougher Tailings Thickener #1 Solution from package to rougher tailings thickener #1 Flocc. to Rougher Tailings Thickener #2 Solution from package to rougher tailings thickener #2 Total flocculant consumption TotalSolution needed Solution needed Live volume capacity Flocc. from package to concentrate thickener Flocc. from package to flotation tails thickener Flocc. from package to post-leach flotation tails thickener Flocc. from package to rougher tailings thickener #1 Flocc. from package to rougher tailings thickener #2
0.5 0.001 0.214 0.000 0.000 0.019 3.715 0.000 0.000 0.034 6.739 0.053 10.67 10.67 256.0 85 0.001 0.000 0.019 0.000 0.034
% mt/h mt/h mt/h mt/h mt/h mt/h mt/h mt/h mt/h mt/h mt/h mt/h m3/h m3/d m3 mt/h mt/h mt/h mt/h mt/h
Water in Solution from package to concentrate thickener Water in Solution from package to flotation tails thickener Water in Solution from package to post-leach flotation tails thickener Water in Solution from package to rougher tailings thickener #1 Water in Solution from package to rougher tailings thickener #2
0.212 0.000 3.697 0.000 6.706
mt/h mt/h mt/h mt/h mt/h
PACKAGE MIXING TANK considering 80 m3 of live volume Solution strenght 0.5 Total time per batch 2.1 Real batch per day 9.8
% h batch/d
WATER
789
paulina.carrasco: Hay 2 estanques de mezcla, pero no operan simultaneamente.
paulina.carrasco: se debe redondear manualmente
paulina.carrasco: se debe redondear manualmente
batch/d mt/batch mt/batch m3/batch
Solution from Mixing to Distribution Tank Flocc. from Mixing to Distribution Tank Water in Solution from Mixing to Distribution Tank Flocculant consumption Flocculant consumption Water consumption Water flow rate
9 0.142 28 28 2 14 14 24.385 6.8 24 0.1 24.3 0.07 0.11 14.15 21.23027
FLOW PER LINE DISTRIBUTION Solution strenght Solution to Concentrate Thickener Solution to Concentrate Thickener Water added in this line Water added in this line Solution to Pre-leach Flotation Tails Thickener Solution to Pre-leach Flotation Tails Thickener Water added in this line Water added in this line Solution to Post-leach Flotation Tails Thickener Solution to Post-leach Flotation Tails Thickener Water added in this line Water added in this line Solution to Rougher Tailings Thickener #1 Solution to Rougher Tailings Thickener #1 Water added in this line Water added in this line Solution to Rougher Tailings Thickener #2 Solution to Rougher Tailings Thickener #2 Total solution consumption at 0.05% Water added in this line Water added in this line Total water added
0.05 2.14 2.14 1.92 1.92 0.00 0.00 0.00 0.00 37.15 37.15 33.44 33.44 0.00 0.00 0.00 0.00 67.39 67.39 2560.43 60.66 60.66 96.02
% mt/h m3/h mt/h m3/h mt/h m3/h mt/h m3/h mt/h m3/h mt/h m3/h mt/h m3/h mt/h m3/h mt/h m3/h m3/d mt/h m3/h m3/h
2.13 0.00 37.14 0.00 67.36
mt/h mt/h mt/h mt/h mt/h
Tonelaje por Batch Requerido Tonelaje de Estanque Requerido Volumen vivo requerido Cantidad de estanuqes requeridos Volumen por estanque Capacidad másica del estanque Carried flow
Water in solution. to Concentrate Thickener Water in solution to Pre-leach Flotation Tails Thickener Water in solution to Post-leach Flotation Tails Thickener Water in solution to Rougher Tailings Thickener #1 Water in solution to Rougher Tailings Thickener #2
Total water consumption 117.25
m3 mt m3/h L/s mt/h mt/h mt/h mt/bacth mt/h m3/bacth m3/h
mt/h
paulina.carrasco: considera 2 estanque de 85 m3 c/u
0.053 10.615 10.668
0.800 0.500 0.999
117.25 mt/h
96.02 mt/h 1.92
873 789
0.067 10.615 10.682
867
14.15 mt/batch 21.23027 m3/h
Flocc 0.07 mt/batch 0.11 mt/h 9 batch/day
0.00 mt/h
868
33.44 mt/h
870 60.66 mt/h
paulina.carrasco: Hay 2 estanques de mezcla, pero no operan simultaneamente.
MIXING tANK BATCH
85 m3
24.4 24.4 0.5 0.1
4172-TNK-035
0.00 mt/h
872
869
m3/h Sol mt/h Sol % mt/h Flocc
67.39 mt/h Sol 0.05 % 0.034 mt/h Flocc
742B
paulina.carrasco: se debe redondear manualmente
871
0.00 mt/h Sol 0.05 % 0.000 mt/h Flocc
742A
paulina.carrasco: se debe redondear manualmente
paulina.carrasco: considera 2 estanques de 85 m3 c/u
mt/h
867
743 2.14 mt/h Sol 0.05 % 0.0011 mt/h Flocc
37.15 mt/h Sol 0.05 % 0.019 mt/h Flocc
729
0.00 mt/h Sol 0.05 % 0.0000 mt/h Flocc
734
Floc Viscosity Strength, Viscosity, cP 1 600 0.5 100 0.25 50 0.1 25 0.05 22 0.2 37.38577
700
y = 18,699e3,4641x
400
Chart Title 600
f(x) = 18.6989560359 exp( 3.4640540253 x ) R² = 0.9972236624
500
Viscosity, cP Exponential (Viscosity, cP)
Viscosity, cP
300 200 100 0 0
0.2
0.4
0.6
0.8
45 40
f(x) = - 0.18666666
35
f(x) = - 0.2348484848x^2 30 1 1 R² = 1.2 25 20
Lime Slurry Density, %
11.00 7.1 to 7.9 16.00 26 to 29 22.00 30 to 42 15.00 25.00
15
Min
Max 7.1 26 30
7.9 29 42 25.5195 43.4395
Average 7.5 27.5 36 24.452 33.942
10 5
0 10.00 12.00 14.00 16.00 18 Slurry Den
Viscosity, cP Exponential (Viscosity, cP)
(x) = - 0.1866666667x^2 + 9.26x - 71.3733333333
= - 0.2348484848x^2 + 10.3409090909x - 77.8333333333 1 1.2
2.00 14.00 16.00 18.00 20.00 22.00 24.00 Slurry Density, %
Min Max Polynomial (Max) Average Polynomial (Average)
Calculation of pond area Pond:
Process Water
Width, m Length, m 60 50
10.75
4.3 m
~38.5m
63.5m
78.5 m
Level, % 0 25 50 75 100
Width, m Length, m 38.5 78.5 43.875 83.875 49.25 89.25 54.625 94.625 60 100
Area, m2 3000
m
Area, m2 6022 6680 7396 8169 9000
1st cleaner 2nd cleaner 3rd cleaner
0.00 #DIV/0! 1.23
Cleaner cct 1st clnr 2nd clnr 3rc clnr
234.2 0.0 61.0 89.8