Low Power Trends and Methodology Godwin Maben
Predictable Success
Agenda • Introduction • Summary of Low Power Techniques Designer’s Arsenal
• Details on each Technique Technology Highlights Advantages/Trade-Offs Challenges
• Synopsys Low Power Flow Summary
© 2008 Synopsys, Inc. (2)
Predictable Success
Reasons for Low Power Demand
Source: Intel
It’s all about battery life Leakage Power Dynamic Power
250nm180nm130nm 90nm 65nm 45nm © 2008 Synopsys, Inc. (3)
Predictable Success
Reasons for Low Power Demand 60%
Technology Driven
Application Driven
75%
40% 48%
50%
30%
41%
26% 21% 20%
22%
25%
10%
13%
1%
10%
1%
1%
0%
0% Consumer
Communications 2004
2006
Computer/ Peripherals 2007
Other
>250nm 250nm
180nm Last
130nm
90nm Current
65nm
45nm
32nm
Next
Source: SNUG 2007 © 2008 Synopsys, Inc. (4)
Predictable Success
Summary of Low Power Techniques (Designer’s Arsenal)
© 2008 Synopsys, Inc. (5)
Predictable Success
Factors Governing Power t
E ( VDD I leak CV 2 DD fc)dt 0
Total Power Total Power Dissipation Dissipation
t
VDD I leak dt 0
Static Power Static Power Dissipation Dissipation
Minimize Ileak by:
DynamicPower Power Dynamic Dissipation Dissipation
Ileak
t
CV
2
DD
f c dt
0
Minimize Iswitch by:
Iswitch
Reducing operating voltage
Reducing operating voltage
Less switching cap
Fewer leaking transistors
Less switching activity
© 2008 Synopsys, Inc. (6)
Predictable Success
Basic Low Power Techniques Summary Clock Gating
Q
D
FF
16 bit
64 bit
Ripple
90
366
CLA
100
405
Carry Skip
108
437
Carry Select
161
711
Carry Save
218
1323
EN LT
a b c b d
ICG
a c f
b c d
Leakage Current
CLK
Multi-Threshold Low VTH Nominal VTH High VTH Delay
© 2008 Synopsys, Inc. (7)
Predictable Success
Advanced Low Power Techniques Summary SLEEP Virtual VDD
1.0V 0.7V 0.8V
Virtual VSS nSLEEP
Power Gating
Multi-Voltage (MV)
VDDB
A A
Z
Z
VSSB
Non minimum size gate lengths
VTCMOS
Stack Effect
© 2008 Synopsys, Inc. (8)
Predictable Success
Details on each Technique • Clock Gating Basic Understanding Advantages Concerns in the flow
© 2008 Synopsys, Inc. (9)
Predictable Success
Understanding Clock Gating
D
EN
FF
FF
Q
D
Q
FF EN LT
CLK
CLK
ICG
© 2008 Synopsys, Inc. (10)
Predictable Success
Clock Gating Flow Challenges • Enable Timing • Insertion delay increase Impact on OCV
• Peak Power during ON/OFF of clock IR drop as well
• Verification Impact
© 2008 Synopsys, Inc. (11)
Predictable Success
Managing Enable Timing
© 2008 Synopsys, Inc. (12)
Predictable Success
Clock Gating Impact on Verification • RTL functional Simulation None
• Gate level Simulation
Reset “0/1”
Q
D
D
FF
FF
EN “X” LT
CLK “0/1”
ICG
© 2008 Synopsys, Inc. (13)
Predictable Success
Details on each Technique • Multi-Threshold Leakage Optimization Basic Understanding Advantages Concerns in the flow
© 2008 Synopsys, Inc. (14)
Predictable Success
Understanding Multi Threshold
• Multiple Threshold Cells Vdd 0.9v
Vdd 0.9v
Vth 0.22v
Vth 0.3v
16ps
10ps
© 2008 Synopsys, Inc. (15)
Predictable Success
Multi-Threshold Flow Challenges
-ve slack
+ve slack
•
Looking at a different view of the problem, optimizations push towards zero-slack
•
High-Vt cells tend to be weaker and can be more susceptible to variability
Slack
Power critical range
© 2008 Synopsys, Inc. (16)
Predictable Success
Multi-Threshold Flow Challenges • Implant Spacing Violations
• Min Width Violations • Chip Finishing requires Proper filler Cell Insertion
© 2008 Synopsys, Inc. (17)
Predictable Success
Details on each Technique • Power Gating Basic Understanding Advantages Concerns in the flow
© 2008 Synopsys, Inc. (18)
Predictable Success
Understanding Power Gating VDDG
Switch Fabric
Switch Fabric
Gating Control
ISO Power Gated Block
Always On Block
Switch Fabric
VSS © 2008 Synopsys, Inc. (19)
Predictable Success
Architectural Tradeoffs
• Amount of leakage power savings that is possible
• Entry and exit time penalties incurred • Energy dissipated entering and leaving such leakage saving modes
© 2008 Synopsys, Inc. (20)
Predictable Success
Activity Profile for Power Gating
SLEEP
WAKE
Power
Dynamic Power Activity “X”
SLEEP
Dynamic Power Activity “Y”
Leakage Power Activity “X” Leakage Power Power Gated
Leakage Power Activity “Y”
WAKE
SLEEP
Dynamic Power Activity “Z”
Leakage Power Activity “Z” Leakage Power Power Gated
TIME
© 2008 Synopsys, Inc. (21)
Predictable Success
Realistic Profile for Power Gating SLEEP
WAKE
Power
Dynamic Power Activity “X”
Leakage Power Activity “X” Leakage Power Power Gated
SLEEP
WAKE
SLEEP
Dynamic Power Activity “Y”
Dynamic Power Activity “Z”
Leakage Power Activity “Y”
Leakage Power Activity “Z” Leakage Power Power Gated
TIME
© 2008 Synopsys, Inc. (22)
Predictable Success
Architectural Tradeoffs
• Gate VDD or VSS?
• Retention Mechanism
© 2008 Synopsys, Inc. (23)
Predictable Success
Power Gating Flow Challenges
• Functional Verification
Clock wiggling while power-gated Rail with Standby value (0.6 volts)
Rail ramp-down
Rail ramp-up Restore RETENTION Rail
Island Power-gated (Z) © 2008 Synopsys, Inc. (24)
Save
Registers RESTORED Predictable Success
Power Gating Sequence/Coverage
Voltage States: 8/8 Logical States: 2/3
Is the wakeup/shutdown sequence correct ?
© 2008 Synopsys, Inc. (25)
Predictable Success
Power Gating Flow Challenges
• Logic Synthesis VDD OFF GATE
VDD
X
EN
ISO
on/off
VDD_BACKUP
Active Logic CP D
VSS save
Active Logic
Insert Isolation Cell
restore
SI SE LD RS
RR
Q
Shut Down Insert Retention Register Hookup Retention Register
© 2008 Synopsys, Inc. (26)
Predictable Success
Power Planning the Switches Resistance
# PWR SWITCHE S
X_INC R
Y_INC R
LIB_CEL_NAME
0.4
650.0
328.0
26.3
3.6
SXXZZYX8L
42.7
0.3
1300.0
328.0
26.3
3.6
SXXZZYX4L
43.6
0.2
650.0
164.0
26.3
7.2
SXXZZYX8L
53.2
0.2
2600.0
328.0
26.3
3.6
SXXZZYX2L
55.3
0.2
1300.0
164.0
26.3
7.2
SXXZZYX4L
72.5
0.2
650.0
164.0
52.6
3.6
SXXZZYX8L
MAXIR (mV)
Area (%)
37.2
53.2
39.9
© 2008 Synopsys, Inc. (27)
Predictable Success
IR-Drop Management Limit the voltage drop across the switch
Turn On All Switches at Once NSLEEP
VDD
VDD
VVDD
NSLEEP
IN
NOT_IN
VSS
Sequentially Turn On Switches NSLEEP
Volts
VVDD Normal - Power-on
Power-up
t0
t1
t2 VDD
Time
T
T-
Power-up
Normal - Power-on VVDD
T+
© 2008 Synopsys, Inc. (28)
Predictable Success
Details on each Technique • Multi-Voltage Basic Understanding Advantages Concerns in the flow
© 2008 Synopsys, Inc. (29)
Predictable Success
Multi-Voltage Design Style • Static Voltage • Multi-Level Voltage Scaling • Dynamic Voltage and Frequency Scaling • Adaptive Voltage Scaling Voltage Island
Voltage Island
A
Voltage Island
B 1.0 V, 250 MHz
Voltage Island
C 1.5 V, 500 MHz
B
A Programmable
1.2 V, 350 MHz
Voltage Island
Voltage Regulators
Mode Control
Voltage Island Monitor
A
Mode Control
Voltage Island Monitor
B
Voltage Regulators
Voltage Island
Voltage Island
C
Monitor
C
© 2008 Synopsys, Inc. (30)
Predictable Success
Understanding Multi-Voltage/Scaling • Avoid completing tasks early – energy is wasted • Use only enough energy required to complete task in time
Reduce Voltage
Voltage
Reduce Voltage
Reduce Voltage
Energy Energy Saved Energy Run Task in Available Time
Run Task Slow as Possible Time
Task 1
Idle
Task 2
Task 3
© 2008 Synopsys, Inc. (31)
Predictable Success
Voltage Scaling Facts • Voltage/Frequency are not changed at runtime
direction based on
Wait till Voltage/Frequency are locked
0.76V
CU when Target Control Voltage/Frequency changed in aReached specific Voltage Unit(CU) requests VCU to “amount of change” the ramp up Voltage
1.08V
0V
VCU Interrupts Change of V/F is defined either through s/w or h/w
CU requests VCU to ramp down voltage and reprograms clock generator to lower Frequency
CU programs clock
Designs at run time will operate on locked Frequency/Voltage generator to maximum Frequency
• Identify the various operating voltages under which •
blocks will be operating at any point of time Do we have libraries characterized at these V points?
© 2008 Synopsys, Inc. (32)
Predictable Success
Voltage Scaling Flow Challenges • Accurately represent effects of dynamic change in voltage values during simulation
Vdst 1.0V Logic1
Vsrc
VIH
0.6V X
VIL Logic0
0.0V
Vsrc
1.0v 0.6v 0.0v
When Vsrc is between VIH And VIL propagate “X”
SIM Output
Hi
X
Z
© 2008 Synopsys, Inc. (33)
Predictable Success
Voltage Scaling Flow Challenges
• Synthesis
Multi-Mode Optimization Optimal Voltage for Timing/Area/Power Optimization Level Shifter Optimization based on Mode
• Power Planning Optimal Power Grid
• Choose the appropriate Power Numbers
© 2008 Synopsys, Inc. (34)
Predictable Success
Voltage Scaling Flow Challenges • Placement, CTS and Route Minimize Skew MCMM
Placement of Level Shifters Temperature Inversion
3000 2000 1000 0
VDDMax VDDMin VDDMax 3.5 3.9 4.1 4.4 4.7
Large Skew Across Domains # Flops
# Flops
Reduced Skew Across Domains
3000 2000 1000 0 3.5 3.8 3.9 4 4.2 4.4 4.5
© 2008 Synopsys, Inc. (35)
Predictable Success
Voltage Scaling Timing Challenges • Functional or Performance Failures VDD=1.0
VDD=1.0
Set-up Time Met
VDD=1.0
VDD=1.0
D CLK Q
D
CLK
VDD=1.0
Q
D
CLK
DFF
DFF CLK Q
D
Combinatorial
CLK
DFF
D
VDD=1.0
VDD=1.0
Q DFF
© 2008 Synopsys, Inc. (36)
Predictable Success
Voltage Scaling Timing Challenges • Functional or Performance Failures VDD0.95
VDD=1.2
VDD=0.91
VDD=0.99
Set-up Time Failure D CLK Q
D
CLK
Q
D
VDD=1.0
CLK
DFF
DFF CLK Q
D
Combinatorial
CLK
DFF
D VDD=0.99
VDD=0.98
Q DFF
© 2008 Synopsys, Inc. (37)
Predictable Success
Details on each Technique • Back Biasing Basic Understanding Advantages Concerns in the flow
© 2008 Synopsys, Inc. (38)
Predictable Success
Understanding Biasing
Shut-Down
Wake-Up
Short Stop
Long Stop
Body Bias (VTCMOS)
MTCMOS
Reduced Leakage
Zero Leakage
© 2008 Synopsys, Inc. (39)
Predictable Success
Reducing Leakage using Well Bias Gate
FILLBIAS Connect N-Well to VDD
Source
Drain
n+
n+
VDD
VNW
ID p-well
VPW
Connect P-Well to VSS – 0.3V
VPW
VSS
• When VPW < Source Vth increases
ID decreases
Leakage
decreases
Drain
VPW
Gate
I D
Source
© 2008 Synopsys, Inc. (40)
Predictable Success
Well Biasing Flow Challenges • Impact on Area due to extra Pick-Up cells • Multi-Corner Analysis required for Sign-Off VBB = 1V, VBB = 2V…etc
• Sleep to Transition Power Overhead • LVS complexity • Well RC extraction
© 2008 Synopsys, Inc. (41)
Predictable Success
Power Savings Data Technique Used
Technology
% Leakage Savings
% Total Power Savings
Clock gating
90nm
NA
57%
Multi-Vt
90nm
31%
NA
Power Gating
130nm
25X
13x
Power Gating
65nm
2x
NA
DVFS
45nm
98% during Standby
NA
© 2008 Synopsys, Inc. (42)
Predictable Success
Thoughts on Efficient Leakage Power Management
Predictable Success
Efficient Leakage Power Management VDD
VDD
VDD
VSS
VSS
VVSS
VIRTUAL_VSS Source:IBM
Gate Voltage Gate Voltage
Source:IBM
© 2008 Synopsys, Inc. (44)
Predictable Success
Multiple Power Mode Implementation
VDD
VDD
VDD
VSS
VSS
VVSS
S0
S1
S2
1
0
0
Snore
0
1
0
Dream
0
0
1
Sleep
0
1
1
Active
VIRTUAL_VSS
Gate Voltage
S0
S1
S2
Voltage Generator
Source:I BM
© 2008 Synopsys, Inc. (45)
Predictable Success
Activity Profile of Multiple Sleep Modes
Shut-Down
Sleep
Wake-Up
Dream Dream
Snore
Active
© 2008 Synopsys, Inc. (46)
Predictable Success
Recycle Energy - Hybrid Car
Motor Generator
Battery
© 2008 Synopsys, Inc. (47)
Predictable Success
Recycle Energy - Hybrid Car
Motor Generator
Battery
© 2008 Synopsys, Inc. (48)
Predictable Success
Recycle Energy - Hybrid Car
Motor Generator
Battery
© 2008 Synopsys, Inc. (49)
Predictable Success
Recycle Energy - Hybrid Car
Motor Generator
Battery
© 2008 Synopsys, Inc. (50)
Predictable Success
Recycle Leakage VDD
Full Chip Standard Cell Area
GND © 2008 Synopsys, Inc. (51)
Predictable Success
Recycle Leakage VDD
Full Chip Standard Cell Area
TEMP_GND
Charge Collector
GND © 2008 Synopsys, Inc. (52)
Predictable Success
Recycle Leakage VDD
Full Chip Standard Cell Area
VDD_SPARE
TEMP_GND
Charge Collector
GND © 2008 Synopsys, Inc. (53)
Predictable Success
Where Best to Manage Power and How? Architectural Changes Re-architect vectors
RTL
Simulation
TB
Synthesis VCD
Vector Vector Analysis
Re-architect Design
No
Good?
Yes
Power Analysis No
Power Good
Yes
Place and Route
Parasitic Extraction
Sign-Off Analysis
© 2008 Synopsys, Inc. (54)
Predictable Success
Synopsys Low Power Flow Summary
© 2008 Synopsys, Inc. (55)
Predictable Success
Predictable Success
© 2008 Synopsys, Inc. (56)
Predictable Success