http://www.buenastareas.com/ensayos/Tr http://www.buenastareas.com/ensayos/Trabajo-De-Comportamiento-De-Sistemasabajo-De-Comportamiento-De-SistemasGasesos/4505891.html 1.Por Que El Mercurio Es Una Sustancia Más Adecuada Para Usar En Un Barómetro Que El Agua? R/ El Mercurio Es las sustancia más adecuada dado a que es el unico material en estado liquido a temperatura ambiente, cuya densidad es 13.6 veces mayor que la del agua. El barómetro de mercurio se basa en el peso de una columna de mercurio, como así si funcionara con otro líquido sería la presión que genera la columna de ese líquido. Si fuera de agua, por ejemplo, debería tener un tamaño de 10.33m lineales de altura. Es decir, decir, se utiliza el mercurio porque es un liquido de alta alta densidad para reducir reducir el tamaño del barómetro. 2. ¿Por qué la densidad de un gas es mucho menor que la de un liquido o solido. En condiciones atmosféricas? ¿Cuáles son las unidades normales usadas para expresar la densidad de los gases? R/ Esto se debe a que q ue las moléculas en los gases se encuentran enc uentran mas dispersas que en los líquidos y en los sólidos, es decir en los gases las moléculas tienen una mayor repulsión y por eso se le es llamado fluido por que fluyen con una mayor facilidad que en otros estado de la materia. La unidad de medida más Adecuada para expresar densidad de gases es gramos/litro El gramo por litro, de símbolo g/L o bien g·L-1, es una unidad de medida de concentración másica, que indica cuántos gramos g ramos de una determinada sustancia están presentes p resentes en un litro de mezcla, normalmente líquida o gaseosa. Esta unidad no pertenece al Sistema Internacional, pues hace referencia al litro, que no pertenece a dicho sistema. En el SI, la unidad de concentración másica es el kilogramo por metro cúbico, que es numéricamente equivalente: 1 g/L = 1 kg/m³ 3. Describa como utilizaría la ley de Graham para determinar experimentalmente el peso molecular de una especie gaseosa. R/ En la parte experimental utilizaríamosestá ley obteniendo la velocidad dedifusión del gas y la teoría nos dice quees inversamente proporcional a la raíz desu peso molecular y ya sabiendo lavelocidad de difusión podemos obtener el peso molecular 4. ¿a que temperatura tendrá una molécula de la misma velocidad que una de HCl a100ºC? ¿a Que temperatura tendrá la misma energía de traslación? R/La temperatura del NH3 es 174.3 ºK y la velocidad del HCl es 505.2 m
Medida
1 2 3 4 MEDID A
VOLUMEN DE AGUA QUE INGRESA (mL) 0mL 1mL 4.2mL 17.8mL
COLUMNA DE AGUA (h)
VOLUMEN GAS mL
25mL 26mL 29.2mL 42.8mL COLUMNA DE AIRE (ha)
TEMPERATURA °K
298°K 313°K 333°K 371.2°K PRESION DEL SISTEMA
L (cm)
V cm3
L (cm)
V (cm)
(P atm + P columna agua
1 2 3 4
boye
charles
La ley charles es una de las leyes de los gases ideales. Relaciona la temperatura con el volumen a presión constante. Esta ley dice que la temperatura y el volumen son directamente proporcionales esto quiere decir que al aumentar la temperatura, aumentara el volumen y al disminuir la temperatura, disminuirá el volumen. Volumen sobre temperatura V/T=K Dónde: V es el volumen T es la temperatura (dada en kelvin) K es la constante de proporcionalidad Además puede expresarse como V1/T1=V2/T2 Despejando V1 V1=V2*T1/T2 Despejando V2 V2=V1*T2/T1 despejandoT1 T1=V1*T2/V2 despejandoT2 T2=V1*T1/T2 Para poner en práctica esta ley se tomó un Erlenmeyer de 25 ml tapado con un tapón el cual tiene un tubo de vidrio, se calentó el gas del Erlenmeyer en un baño de agua a 40ºC, se retiró y volteo para introducirlo en un vaso con agua fría fijándose que el agua no tocara el tapón, luego cuando la temperatura del elrmeyer estuvo a temperatura ambiente se retiró y se volteo para observar el volumen de agua que entro en él, esto se repitió a 60ºc y a 98,2ºc. Al aumentar la temperatura se observó que aumentaba el volumen de agua que ingresaba al Erlenmeyer
LEY DE CHARLES. A continuación, se presenta la tabla de datos correspondiente al experimento de la ley de Charles, que relaciona el aumento en el volumen en proporción directa con el aumento de la temperatura de un gas. MEDIDA VOLUMEN AGUA QUE INGRESA 1 2 3 4
VOLUMEN GAS
0 1 4,2 17,8
TEMPERATURA ºK
25 26 29,2 42,8
298 313 333 373
La ley
de charles, afirma que el volumen de un gas es directamente proporcional a la temperatura que este tiene. Durante la práctica se llevó acabo un experimento que consistía en colocar un tapón a un Erlenmeyer de 25ml, (este contendría en su interior gas atmosférico) a temperatura ambiente (25ºC). Se calienta con baño de agua a tres temperaturas diferentes en orden ascendente, siendo la última de estas la de ebullición; posteriormente después de alcanzar cada una de estas temperaturas, se invertía el Erlenmeyer y se colocaba en un recipiente con agua fría, asegurando que la boca de este no quedara más allá de los 0.5cm al interior del agua. Hubo ingreso de agua al sistema y se midió su volumen. Se pudo observar que a mayor temperatura, mayor cantidad del líquido ingresa al Erlenmeyer. El ingreso del líquido se explica porque el gas tiene un volumen determinado para cada temperatura, a medida que esta aumenta, el volumen también lo hará, pero como el gas está dentro de un recipiente que no se expande, este sale de él por el orificio para estabilizar su volumen. Al ingresar el recipiente en agua fría, el volumen se reduce pero como una parte del gas escapó, la cantidad restante es llenada por el agua. Las tres temperaturas a las que se llegó fueron: 40,60 y 100 ºC y el volumen de agua que ingresó fue 1, 4.2, y 17.8 mL respectivamente. Por lo cual si se tratase de un globo u otro recipiente que fuera sellado y pudiera expandirse, el volumen al que hubiese llegado el gas seria de 26, 29.2 y 42.8 mL respectivos a cada temperatura alcanzada, que son los que se expresan en la tabla de datos como volumen gas. Igualmente la constante de proporcionalidad aumentaba; de acuerdo a la expresión V/T =K
al relacionar los resultados de cada volumen gas con la temperatura en Kelvin se obtuvo los siguientes resultados: 0.025L/298K= 0.084*10^-3L/k 0.026L/313K= 0.083*10^-3L/k 0.0292L/333K=0.088*10^-3L/k 0.0428L/ 373K= 0.115*10^-3L/k estas proporciones nos revelan la relacion entre temperatura y volumen que puede explicarse porque las moleculas a medida que reciben la energia termica aumentan su velocidad promedio por lo cual su movimiento es mayor en el espacio por lo que su masa se expandiria en forma proporcional a la energia aplicada. De lo anterior se concluye que se cumple la ley de Charles, debido a que al aumentar la temperatura el gas ocupa más espacio; los datos del experimento son concluyentes pues el agua que ingresa representa la cantidad de mL que debió expandirse el gas contenido en el Erlenmeyer. Aunque los datos obtenidos pudieron haber sido influenciados por el nivel de sellamiento del Erlenmeyer, pues quizá escapó aún más gas del que debía, también está la influencia de la temperatura pues si no estuviese estabilizada, no se podría hacer una lectura precisa de expansión en el volumen del gas, ya que este depende de una relación directamente proporcional a la temperatura en que se encuentre.
PREGUNTA. ¿A qué temperatura tendrá una molécula de NH3 la misma velocidad que una de HCL a 100ºC? ¿A qué temperatura tendrá la misma energía de traslación? HCL= 36g/mol= M:
100ºC= 373K
U2= 3RT/M U2=(38.314JK*mol)(373K)/(0.036Kg/mol) U2=258427J/Kg U2=258427Kg*m2/s^2/Kg U=508.357m/s
NH3= 17 g/mol
T=MU2/3R T= 0.017Kg/mol(258427J/Kg)/3(8.314JK*mol) T=176K CONCLUSIONES: A medida que aumenta la temperatura el volumen de cualquier gas crecerá • proporcionalmente.
•
El agua que ingresa representa el aumento de volumen en el gas.
Al calentar el agua de la lata aumentamos la presión en el interior. Esta presión disminuye bruscamente cuando colocamos la lata boca abajo en el cristalizador con agua a temperatura ambiente, debido a que se produce la condensación del vapor. De esta manera, la diferencia de presión entre el interior y el exterior de la lata hace que el aire del exterior tienda a entrar, pero como la lata esta hecha con un material moldeable, se deforma. Entonces, ¿qué pasará si en vez de utilizar una lata, empleamos un matraz de vidrio? La explicación de esta experiencia es la misma que la de la 6; la diferencia de presión entre el interior y el exterior, el pequeño diámetro del tubo y el vidrio con el que se ha fabricado el matraz, ha hecho que el agua del cristalizador entre bruscamente en el interior del matraz y no se rompiese. Pero no lo ha hecho inmediatamente sino que ha tardado un tiempo, el necesario para que la presión del aire del exterior empujara el agua del cristalizador.
Al calentar el gas del matraz se expande pero una parte se escapa por el tubo de vidrio luego al introducirlo en el agua su volumen disminuye y el gas que escapo es compensado con el agua esto quiere decir que el volumen de gas que se escapo es el mismo volumen de agua que ingreso 20.025L/298=8.38*10-5