Home
Add Document
Sign In
Register
kuliah-6-bab-4-deret-fourier-untuk-sinyal-periodik
Home
kuliah-6-bab-4-deret-fourier-untuk-sinyal-periodik
Full description...
Author:
Adelia Herlisa
13 downloads
206 Views
34KB Size
Report
DOWNLOAD .PDF
Recommend Documents
No documents
88
=
Ingat bahwa ω0 =
2 k ω0 T
× sin (k ω0 T1 )
=
2 sin(k ω0 T1 )
=
sin(k ω0 T1 )
k ω0 T k π
2π T
Sebagai gambaran, maka dapat dimisalkan suatu kasus jika T = 4T 1 sehingga ω0 =
2π
2π
=
T
4T1
atau ω0 T1 =
π 2
.
Dengan pemisalan ini dapat
ditemukan nilai-nilai koefisien deret Fourier x(t) untuk berbagai harga k. a0 =
2T1 T
=
2T1 4T1
=
1 2
⎡ π⎤
sin ⎢k ⎥ sin( k ω0 T1 ) ⎣ 2⎦ = a k = k π k π maka a1 = a2 a3 a4 a5
sin( π / 2)
=
1
→ a −1 = a 1
π π sin π = =0 2π sin(3π / 2) − 1 = = 3π 3π sin 2π = =0 4π sin(5π / 2) 1 = = 5π 5π
→ a −2 = a 2 → a −3 = a 3 → a −4 = a 4 → a −5 = a 5
dan seterusnya Koefisien ak dapat diplot seperti pada gambar 4.3. ak
-3 -5
-4
3 -2
-1
0
1
2
4
5
k
Gambar 4.3 Plot koefisien-koefisien deret Fourier pada soal no. 3
×
Report "kuliah-6-bab-4-deret-fourier-untuk-sinyal-periodik"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close