Base-S Base -Sta tati tion on-A -Ant nten ennas nas fo forr op opti tim mize ized d Mobile Communication Networks Norbert Ephan, Roland Gabriel KATHREIN-Werke KG, Postfach 100 444, 83004 Rosenheim, Germany
Kathrein-Werke KG Rosenheim PO Box 10 04 44 Phone:+ Phone:+ 49 (0)8031 (0)8031 184 - 0 Fax: +49 (0)8031 184 991 antennas.mobilcom@kathrein. de www.kathrein.de
Content
•
1. Polarization - Diversity- Antennas
•
2. Site-Sharing with Multiband - Antennas
•
3. Remote Electrical Tilt
•
4. Adaptive Antennas and Tower Top Electronics
Content
•
1. Polarization - Diversity- Antennas
•
2. Site-Sharing with Multiband - Antennas
•
3. Remote Electrical Tilt
•
4. Adaptive Antennas and Tower Top Electronics
History: Base Station Antennas
Evoluti Evolution on from from Euroce Eurocell ll V-Pol. V-Pol. to A-Pa A-Panel nel XX-Pol XX-Pol..
1. Polariza Polarizatio tion n Diversity Diversity Antenna Antennass
Diversity combining Diversity with two antennas
- Level difference - Correlation
10 5 ] 0 B d [ -5 l e v e -10 L l a -15 n g i S-20
1 Rx 2 Rx 1
-25 -30 Time
Combined Signal 10 5 ] 0 B d [ -5 l e v e -10 l l a -15 n g i S-20
1
8 8 7 ] 7 ] B B6 d [ d [ 6 n i n5 i a a 5 G G4 y t y 4 i t i s r s3 r 3 e e v i v i D 22 D 1 1
Maximal MaximalRatio RatioCombining Combining
0 0 1 3 1 3 5 7 5 7 9 11 0 9 11 13 15 2 0 . 13 15 17 4 2 . 0 6 4 . 19 . 0 Signal Difference . 0 8 6 . 0 . Signal Difference[dB] [dB] 17 19 2121 23 25 1 0 8 0 . 0 1 23 0 25 Cross-
-25 -30 Time
Diversity Diversitygain gainGSM GSM
CrossCorrelation Correlation
Diversity •Typical Diversity Gain for GSM - System (max. uncorrelated, equal level) Outage Probability (y
Div-gain 7 dB 1,E-01 ) x < ( r P
single signal 1,E-02
max. ratio com b./ uncorrelated signals
1,E-03
1,E-04 -40
-30
-20
-10
10 log (x/ ) [dB]
0
10
Diversity •
Space Diversity Arrangement – uses two vertical polarized Rx antennas (Rxa and Rxb) with a horizontal spacing of 12-15 λ – Omni base station : 3 omni antennas with the Tx antenna on a higher level
3m 3m
Polarization-Diversity: Xpol construction 65°
90°
Polarization Diversity Antennas: Radiators -45°-Polarization
+45°-Polarization
Reflektor „Vektor“-dipol -halfpower beamwidth 65°- 90° -low crosspol- level -broadband design(1710 - 2170 MHz)
Polarization Diversity Antenna Arrangements
Space-Diversity - Arrangement
Polarization-Diversity Arrangement
X-Pol Array Antennas - Vector Dipole Characteristic Co-/Cross Pol. behavior 15
0
345
30
Frequency behavior
Primary radiator design
45 60
300
75
285
-20
-10 dB 270
105
255
120
240
co-pol 135
225
cross-pol 150
210 165
180
345
195
> 25 dB (main direction) > 10dB (+/- 60° Sector)
330
45
315
-30
0
30
330
90
15
315
60
300
75
285
90
-30
-20
-10 dB 270
105
255
120
240 135
225 150
210 165
180
195
1710 - 2170 MHz
Site-Sharing with Dual and Triple-Band Antennas
Dualband Antennas / XXpol System Major Mobile Communication Frequencies
TETRA GSM DVB-H AMPS GSM 900 GSM 1800 UMTS UMTS LTE WiMax
380 - 430 MHz 450 MHz 512-860 MHz 824 - 890 MHz 880-960 MHz 1710 - 1880 MHz 1920 - 2170 MHz 2500 - 2700 MHz 3.4 - 3.8 GHz
Site Sharing and Multi-Band Antennas Single-Band-Antennen für GSM900 und GSM1800
GSM900 (D-Netz)
GSM1800 (E-Netz) XXPol-Dual-Band mit Combiner
Site Sharing and Multiband Antennas
Dualband antennas: XXpol construction
Triple-Band Antennas Major Mobile Communication Frequencies
TETRA GSM DVB-H AMPS GSM 900 GSM 1800 UMTS UMTS LTE WiMax
380 - 430 MHz 450 MHz 512-860 MHz 824 - 890 MHz 880-960 MHz 1710 - 1880 MHz 1920 - 2170 MHz 2500 - 2700 MHz 3.4 - 3.8 GHz
Independent adjustable Downtilt
Triple- Band Antennas
66Systems, Systems,independently independentlyadjustable adjustable --GSM GSM900 900--GSM GSM1800 1800--UMTS UMTS
Triple- Band Antennas
Adjustable Electrical DT Combined radiators 806-960/1710-2170 MHz C-Filter-Combiner 1710-1880 MHz 1920-2170 MHz DPS-Differential Phase-Shifter
Single radiators 1710 - 2170 MHz
Scheme of Triple-Band-Antenna
Triple- Band Antennas Downtilt GSM 900 VSWR
Complex design: Optimization Parameter of Triple-Band Antennas
frequency
Sidelobe level
Downtilt GSM 1800
Tracking , squint isolation
Isolation +/-45° Triple-Band-Antenna
45 43 41 39 37 Isolation 35 33 31 29 27 25
6 4 2 0 0
1
2
3
4
5
6
Downtilt 900 MHz
7
8
9
Crosspolar Crosspolar level Halfpower beamwidth
10
Downtilt 1800 MHz
Downtilt UMTS
Remote Electrical Tilt
Adjustable Electrical Downtilt •
maximum flexibility is achieved with adjustable electrical downtilt by combining the adjustability of the mechanical DT and the technical advantage of the electrical DT Ф
Ф
Ф
Ф
Adjustable Electrical Downtilt •
Network Extension Extension
• Support of traffic dependent cell breathing and regulation of soft Handover areas • Hot spots spots during special events • Dynamical traffic adaptive regulation of cell load „Hot Spot“
„Cell Brathing“
High traffic area
Adjustable Electrical Downtilt – Electrical Tilt instead of Mechanical Tilt – Manual Adjustable: Team has to climb up the tower – RET offers flexible remote control (on site ore via O&M Network)
RET
Adjustable Electrical DT Schemes of Triple-Band-Antenna
Triple-Band Antenna system 900 MHz +45°
Adjustable Electrical DT Schemes of Triple-Band-Antenna C-Filter-Combiner
Passive Differential Phase Shifter
DPS-Differential Phase-Shifter
Triple-Band Antenna system 2000 MHz +45°
UMTS / WCDMA-Network Optimization of Service 98
Without RET
96
RET optimized Azimuth optimized
94
y t i l i 92 b a p 90 o r P 88 e c i v 86 r e S
84 82 80 1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
Number of Subscribers
Influence of Downtilt-Optimization - a) RET and Pilot Power - b) RET, Pilot Power and Azimuth adjustment Based on study results by Symena Software & Consulting GmbH Wien: www.symena.com „ The value of automated optimization“ , publishing with allowance of Symena
RET- Scenarios Network-Planing Tool „Dynamical“ Predefined Modus Scenarios
Network-Extension
Antenna
Changed Load Situation (Rush Hour)
RCU
TMA
-Optimization Time -Reaction Time -Administration
BTS Central Control unit
OMC Control Network
Smart-BIAS-T Feeder lines
Roll-Out of RET-System in Taipei/Taiwan
Adaptive Antennas and Tower Top Electronics
Adaptive Antennas Antennas - forming: beam forming: Antennaswith withbeam- beam-forming: - "SMART" - -"SMART" - "SMART"- Antennas - Antennas Antennas - -„Multi - Beam“ -B eam“ - - Antennas „Multi-Beam“-Antennas - Adaptive -Adaptive AdaptiveAntennas Antennas
- -Increased IncreasedCapacity Capacity - Reduced interference - -Reduced Reduced interferencelevel level - -Reduced - Power Transmit P ower Reduced Transmit-Power - -Reduction Reductionof ofaverage averageEM EM fields fields but but - Expensive E xpensive BTS -Expensive BTS - n x Feeder Cables -n x Feeder Cables - Higher H igher Size -Higher Size - -Reduced ReducedSite SiteSharing SharingCapabilities Capabilities
Transmit the power to the correct destination.
Adaptive Antennas - Control principles Adaptive Antenna Control Options
Standard BTS
Special BTS for n Sensors
Control via: -Handover (Switched) -Soft Handover (MakroDiversity)
Beam-Forming Algorithm -Switched fixed beam -MRC principle
-Backbone network takes over high traffic -or increased handovers required
Pilot carrier (BCCH) has to been distributed within the whole cell
-2X...4X dual beam antennas -common 6-sector arrangements
2X...4X array antennas option: flat frequency phasedependency for FDD
Adaptive Antennas For QPSK-Modulation, uncorrelated carriers: BER MRC-Receiver, noncorrelated signals
2r 1 − µ 2 P b, MRC = − ∑ 2 2 r =0 r 4 1
1,E+00
µ =
1,E-01 Diversity-gain
µ
M −1
P t
Tx-Power
P t + σ n2
1,E-02
noise
1,E-03 R E B
1,E-04
1,E-05
Single Sensor 2 sensors 3 sensors
1,E-06
4 sensors
1,E-07 -19 -17 -14 -12 -10 -7
-5
-3
0
2
5
7
9
12 14 16 19 21 24 26 28 31
SNR [dB]
MISO- Multiple Input- Single Output
MRC M=4
M=8
r
Adaptive Antennas Array Gain
14 12 ] B d [ n i a G
- 2..4 sensors offer attractive ratio of gain/costs
10 8 6 4 2 0 1
2
Array Gain (correlation=1) typical gain max gain(correl=0)
3
4
5
6
Number of sensors
7
8
Antenna /Sensor T yp Single Path Two P ath Four Path 8-Path
Array gain (total correlated) 0 dB
Maximum Typical Gain (non gain correlated) 0 dB 0 dB
3 dB 6 dB 9 dB
8 dB 10.5 dB 13 dB
4..5 dB 6..10 dB 8..11 dB
Adaptive Antennas: 4x-solution Dual-polarized Array-Antenna 4x 4 x Tx +4 x Rx Diversity
Digital data processing Beam steering algorithm
(1x phase calibration) M=8
Improved Rx-signal, reduced Tx power
6-Sector-Arrangement: „Switched Beam“ Adaption 6 -Sektor Arrangements: - Increased Coverage - Equivalent Traffic / Cell Cell - Reduced Interference
area sec tor
d6sect=1.41d3sect
≈
subscriber sec tor
⇒ r 6 sec t = 2 r 3sec t Required additional gain for increased radius (Okumarata Hata-Model) 4,5..6 dB
= cons
6-Sector Ultra High sites
Increased Coverage due to increased height of the Tx Antenna path loss
„Ultra High sites“
140 130
Increased coverage
] 120 B d [
h= 10 m
s s o110 l h t a P100
∆h
h=20m h=40m h=100m
90 80 0,1
0,3
0,5
0,7
0,9
1,1
Distance [km]
1,3
1,5
1,7
1,9
f=2GHz, gTx=18 dBi, Okumurata-Hata
Adaptive Antenna: Dual Beam (2X)
Dual-Beam-Antenna ( 2 Columns)
3dB-Hybrid
Adaptive Antenna: Dual Beam (4X)
Dual-Beam-Antenna ( 4 Columns) Beam 1
Frequenz
HPBW
Azimuth
Beam 2
Frequenz
HPBW
Azimuth
4x2 Butler-Matrix
Adaptive Antennas: Tracking 2X
Smart Antenna ( 2 Columns, 65° HPBW) Phase Shift (Columns) 0 degree 30 degree 60 degree 90 degree 120 degree
Horizontal Scan-Width 0 degree 5 degree 10 degree 15 degree 20 degree
Adaptive Antennas: MIMO-Systems
MIMO-System: Combination of Pattern and Polarization-Diversity
Tower Top electronics
transmission= 20 W
M C P A TMA
N o i se
dissipation2=
F i g u r e
5W
MultiRRH dissipation1= 25 W
CPRI Interface
PTx= 50 W % 0 1 = η
Pin= 500 W
BTS
BTS