IC
53.0 53.020 20.2 .2
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
Cran Cranes es Lift Lift ng Ch Chai ains ns an It Rela Relate te Equi Equi ment ment”S ”Sec ecti tion on
Co mi tee, tee,
FOREWORD by th Cran Cranes es Lifi Lifiin in Chai Chains ns an It Rela Relate te Eq ip en Engi Engine neer erin in Divi Divisi sion on Co Coun unci cil. l.
th prod produc ucer er an th
ecti ection onal al Co mi te ha been been appr approv oved ed
he Mech Mechan anic ical al
anuf anufac actu ture rer. r.
,’, an Th desi design gn
olts olts qual qualit it
olts olts bolt bolt ti hten htenin in an effe effect ct ve fric fric io surf surfac ac ha been been deal deal
rd
1S4137 1S4137 :-1985 :-1985
labo labora rate tely ly
as
Code Co de
prac practi tice ce fo heav heav du
elec electr tric ic over over ea trav travel elin in
cran cranes es incl includ udin in spec specia ia serv servic ic
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
1S 807:20 807:2006 06
CONTENTS Page
Scope References Terminology -4
Materials Clas Classi sifi fica cati tion on of Cran Cranes es
St te
Lo ding ding
Lo ds Du to li atic atic Misc Miscel ella lane neou ou
10
ffec ffects ts
12
Load Load
12 12 13 13 ..., 14 Allo Allowa wabl bl
14
Stre Stress ss
14 14
14 10 Stab Stabil ilit it 10.1 10.1
21
agai agains ns Over Overtu turn rnin in
21
peci pecial al Meas Measur ures es
21 11
alcu alcula lati tion on
12 Calc Calcul ulat atio io 13
14 15
21
ensi ension on Memb Member er of Comp Compre ress ssio io
alcu alcula lati tion on
ox
26
Memb Member er
irde irde Su ject ject
to endi ending ng an
orsi orsi na
tres tresse se
13.1 13.1 Bend Bendin in
26
13.2 13.2 Tors Torsio io
27 27
ti alcu alcula lati tion on tr se
27
elde elde Join Joints ts
27
oi in
in
27
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 0 a t n a m .
IS 807:2006 Page 28
16
pr
iv
he
16 17
St
29
ts
29
gn
29
on
17.1 17.2 Slendernes 17.3
29
Rati
imit or Sl nd rnes
17.4 Compressiv
36
atio
36
Member with Variable Height
17.5 Combined Compressiv
37
Member
17.6 18
28
pe
38
ve
38
il
38
lt
40 40 19
ng
42
ne
20 Limiting Deflection
42
21 Camber~
42
22 Diaphragms an Vertical Stifl%es
.,,,
42
22.1 Diaphragms
42
23 Girder an Connection
42
24 Bridge Trucks
42 42 42
25 Welded Bo Girder 25.1 Girder Proportion
42 44 44
om
44 45 45 45 45 45 45 48
Indu tria an Mill Cranes
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006 Page 48 48
eJ
48
ta
48 48
-5.1
Ge eral
48
eq irements
48 48 48
iI
48
Fit
55 55 55 55 66
.1
66 66 it
69
ti
...
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
Title
hi dard ov rs he od manufactur erection an testin ol h, he
structur rr
of EO
1364 1)
REFERENCES
5t
of this standard At th time of publication, th editions (Par 3):200 M6 )(
standard ar encouraged to investigat th possibilit he ns st nd ds indicate below: 1SNo,
third
Title
800:1984
third
1367
875 bu ld ng
hr aded st el fasteners:
an structures
material second
evision)
thir
revision
Mechanical properties of.fastener (Par 4):198 (Par 5):198
loads Special combinat on
load
and
(fourth Me hanica prop rt es of fastener
961:1975 second revi ion)
threaded fastener no unde tensil st ss
1363 1) M5
th
io thir
th
evision)
io
method fo nuts wi hout sp cified
(Par 3) 1992 M 6 ) ( thir
revision
second
evision)
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
IS No.
Title
Title
iteria
1893:1984
Part
arthquak
resist nt
ts
fourth third
1929:1982 1) 1993
Surfac discontinuities, Sectio Bolts, screw an stud fo genera applications
1993
Surfac discontinuities, Sectio Bolts, screws an stud fo specia applications ti
Specificatio ot rg ivet closin 12t (first revision ia et purposes
ts third
(Par 12):1981 Pa
Ph sphate coatings te
):
thread
3138:1966
Specificatio
3737:1966
eath in ea
ti
(Par 14):1984
(first revision
fo hexagona bolt
safety ot meta in ustrie
orkers
6623:1985 structural nuts (first
Stainless-steel threaded fasteners second
revision
6639:1972
Specificatio fo hexago bolt fo stee structures
6649:1985
Specific tion
1) 2002
(Jjih
stee st ucture
(second revision)
Specificatio
ia et
(~hird revision)
stee
corrosion-resistan
stainless stee third
ar netf an
strength st uctu al (first
lt an
ut
2002 thir
Part 14/Sec 2002
qualitie
revision
corrosion-resistan
stainles stee
Designatio thir
Pa
ne irde
to connecti
than
revision
Inspection,
sampling
and
8):
996
Pa ka in
9):
997
Axia load fatigu testin of bolts,
mi
em er if mo
system fo fastener
third
Pa
(,firs
TERMINOLOGY
miI Pa
“Specificatio
ws diameter 1m to 0mm
iz wheel. 3.3
echa is whic th ru wa rails.
shor en tr ck whic is igidly
ar ie th trol ey travelin
alon
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
3.5
An
rg
in
th 3.20
ti
3.6
operatio an whilst th load is in such stat ofmotion he effect on th structur
3.7 3.8 iv
ly
sa
le ti
collision. th
3.9 Clearance 3.10 girder.
ti
3.11
cran controlled by
le
An assembly rs wh s,
ra whic
ts th
purpose. 3.26 tr -t -c
platform.
th
cran simila to an overhead
3.13
supplementa hoistin 3.14 orting
3.29
pourin molten material
3.15
cran whos
id crane.
me ti
3.30
operation.
ista
lo
th
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p unit 0 a t n a m .
is th
Th minimu tw
inim runway. 3.17 ll traverse motion 3.-18
ss
sp
iskn
as cr
3.32
Th weight of th cran structured consists
permanently. 3.19 is
he vertical ts
th rate load plus th weight
th trolle
3.33 rate load io
IS 807:2006 3.35
.2
tructura stee shal confor
he
ateria used
IS 20
IS 50
ea th ex erna load lifted an handle by th cran ck es su
as
ets, ra s,
ams,
sh
.3
3.36
4. 3.37
hook to th neares poin of th chassis/
3.38
ri
Materia characteristics
ri
s,
The assembl of rails,girders, brackets
3.39
mechanical device attached
3.40
Th horizontal distance between centreru ra
re
3.41 su rt
s,
NOTE
an No
ed
Clauses 4.3 Product
S1 No.
Standard
se
(1)
3.42
The
in an ertica of th ji
lane passin
st hrough he center li
3.46
The
th brid
rolley
(3) 2155 1929
s a d b
4 ( 3138
o 5
an nuts
of th trolle orbridge This member is rigidl attached to fi ed structur an normally does no have energy absorbin ability.
3.45 centre of th oute most wheels su ra
(2) Rivets
i)
iii)
6623 6649
.I
i) ii)
horizontally.
0.3
3.47
iv)
v)
10-f
expansion (a)
Specific gravit (y
as to give maxi um loading. 3.48
fa
MATERIALS 4.1
sh
so
ro
ec
rs
7.85
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
re
ll
cl sses 5.1.1
in ti
5.3
th
Stress Spectrum
Class
lc la
structure.
st
th
anes
6.1.1
5.2 Load Spectrum
6J.I.1
5.2.1
components cran girders, en carria e, pl te forms, in tr it ista
Spectrum
to whic th cran lift th maximu
load
~a or only
6.1.2
.,.,
S1 No. (.I
(2)
Irregularoccasional idleperiods
104
ii)
105
iii)
10s
iv)
106
shiftlday
la se
.2.1 Definition
(1)
(2) Very ligh
ii)
Light
iii)
Moderate
iv)
Heavy
(3)
rr po di (4) P=o
P= 1/3 2/3
P=l
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
LIL max.
L/L max.
1.0
1.0
0.8
0.8
0.6
0.6
0.4
0.4
‘0.2
0.2
104
FIG.
GRAPHICALREPRESENTATIO OF CLAS OF UTILIZATION
FIG.
GRAPHICALREPRESENTATIONOF CLASS OF
CYCLES
105 CYCLES
UTILIZATIO
L/L max.
L/ max
1.0
1.0
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t i r e m , e V 1 i 0 s : a k 5 0 h : 2 a p 0 a t n a m .
P=’
0.8
0.8
0.6
0.6
0.4
0.4 F&
0.2
FIG.
GRAPHICAL REPRESENTATIONOF
UTILIZATION
0.2
LASSOF
FIG.
GRAPHICALREPRESENTATIO OF CLAS OF
105 CYCLES
106 CYCLES
UTILIZATIO
Clause 5.3)
(1)
(2)
i)
Very Iigh
ii)
Light
iv)
Moderate
Heavy
P=o
maximumstress
113 stre
iii)
(4)
(3)
bu
osksll
ab ut 1/
maximu
.s orma ly tres
maximumstress an 1/ to 2/ of th maximu stress Co ponent maximumstress
bj
ar
tres
from
2/3
P=l
IS 807:2006
Clause 5.3)
(1)
I(
(2)
(3)
y l ii) iii)
Moderate,
2/3
(4)
(5)
(6)
Ml
M4
M2
M5
M5
M6
M3
iv)
M4
M8
M5
M6 M7
M8
Clause 5.3) S1 No
Cranes
Type
(1)
Applications Utilization
(2) Over head travei]ing
cranes
(3)
(4)
1. Hot cranes,
Loading (5) o-1
station, cranes 2.
Group (6)
MI-M2
-2
M2-M3-M4
1-2
M4-M5-M6
genera us B-C
cranes
cranes, magnet cranes ad
cr ne
C-D C-D
M6-M7-M8
C-D
M7-M8 M7-M8
cranes Chargi Fo gi ii)
Gant
cr ne
C-D’
cranes
M7-M8
cranes
iii)
Gantry cranes
iv)
Ji cranes
B-C anes
on ai er hand ng
op as embl abbi
an
ho agne cran
M1-M2
1-2
M3-M4 M4-M5-M6
B-C-D
M7-M8
A-B
1-2
MI-M3
B-C
2-3
M3-M4-M5
C-D
2-3
M5-Mti-M7 M7-M8
5. Cranes fo building construction Derrick
o-1
B-C
4. Unloaders v)
M7-M8
A-B
1-2
M1-M3
0-1
MI-M2
2-3
-building grab in
cran
A-B
M5-M6
A-B
M5-M6-M7
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
6.1. Th load du to horizontal motion area follows: a) deceleration
of th traverse travel slewin
th
hree
ll
a)
anes of travel
or ng co di an
ns
de at spee
gr
le gt
b)
calculated in term of th valu of acceleration
application; c)
Tabl
ig
sp ed
an anes
high ac el
ti
6.1.3.2
b)
Effe ts of en rifuga forc
c)
Transverse horizontal reaction resultin from rollin tion nd
d)
Buffet effects.
6.1.3.1 fn ia fo
betw en 0.1m/s2an 0.6m/s2, accordin
fo re an deceleration of th traverse motion travel motion wi rane ha ra re of th moving part an th hoisti lo d, nd be give by th followin formula:
to th sp ed
10 second @achieved. 6.1.3.3 Effect
of centrlfixgalforc
Th centrifuga forc shal be th force, wldc is acting outwards in th dire tion of slewin radius result tlom th slewin radius an sl wing mo io nd shal be obta ne fr th foll wing formula: =& gR
However,
case
ravers
ot on an
rave
ot on
where
.,.,
Moreover fo th slewin motion it shal be considered NOTE specifie
periph ra speed,
by th user acceleration time correspondin
ls
Clause SI
Speed o b Reached, n s
(1)
(2)
(3)
n m
(4)
n s
Acceleration, in m/s2
(5)
i)
4.00
6.0
-0.67
ii)
3.15
5.4
0.58
iii)
2.5
“0.33
iv) v)
1.50
8.3
.00
6.6
3.0
5.2
.
viii) ix)
0.25
3.2
0.078
x)
0.16
2.5
0.064
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 0 a t n a m .
6.1.3.4
Th la eral forc on wh el shalI
th
or zo ta forc
th oute tw guid roller shal be tpke as th effectiv whee base 6.-I.3.5 Buffer effect Th impact du to collisio with buffers ma b.eapplied
0.15 0.10 0.05
sh Fo spee exceedin 0.7m/s accoun shal be take with
ffers. 1m/
owever fo
ig er spee
greate
OF SPA: AN EFFECTIVEWIIEE BASE
versus
SIDE FORC CONSTANTON WHEELS
SF=X,R
eceler ti on th cranes hi alwa reduce th spee to th predetermine lowe valu before he ff rs ar reached.
where s,
L= //.
6.1.3.6
1= a=
ig .6 re r, guid roller ar provided th centre distance betwee
.
6A
I
FIG.
METHOD FO TAKING EFFECTIV WHEE BASE
I
I
1
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
perp ndicular
7.1
om th action th ind, fr temperatur variations 7.1.1
snow load
ae odyn
9=
nd om
th
ic pr ssur
ir tion of th
ind;
in kgf/ 2; an
(J.
Wind Action
a) 7.1.4 b)
re -ult in in reas
nd educ
pr ssur
aerodynamics pressure
Another
forc on th prot te pa of th
7.1.2 Wind Pressure
irde is determin
calculated in accordance with th formul
pr formula: 9=
‘rl.A.q .C. ‘b’
and ‘h’
VW2.
where
16g
A=
where
A,
density, in kglm
h=
pressure in kgffmz 9= Vw= gravitationa
b=
di tanc betw en th surf es fa in each
acceleration in m/s2
aerodyna ic pressure in kg/m”2
A/Aeis.awter 7.1.3 omponent of hi fo
esolve
lo
he ir tion 7,2 7.2.1
where
7.2.1.1
p. A=
)t
Clause 7.1.2)
Ab
Gr Velocity, Vw
Vw
Pressure, mls
20
ii) iii)
Aerodynamic Pr e,
2 o
72
25
(6)
(7)
(8)
36
130
80
20 to 100
110
do
do
do
46
165
130
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
1S 807:2006
GLUUJC
S1No. (1)
Type
/.l..J
Gi de
Variable
(2)
(3)
(4)
i)
ii)
(5) 1.6
ox
h~ iii)
in kgf/m2
of yl dr al me be
11 fo th va ue
FIG.
aerodyna ic coefficient.
d~
1.2’”’
d~>l
0,7
DISTANCEO CONFORMITYGIRDERS
-pre
re su es m1S8
rm
se
sh
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
=A/A, and b/h
Table
(4)
(1)
1.0
0.8
0.8
1,0
0.05
0.05
!).2
0.2
(5)
r\\mL
BEs
b/h=6
L\
0.6
T-1 0.4 b/h=3 b/i=2
0.2
,,,,
blh=l b/h=O.
FIG.
RELATIONDIAGRA
BETWEE
shal be designed to carr th followin concentrated loads:
7.2.2
load shal be neglecte in th design calculations he cranes. Snow
a) pl form wh re
Stresses
considered only in specia cranes such as when member such ases th
xi um te pera ur
by latfor
12
be pl ed
15 kg fo gangways an platform intended
c)
30
fo girders
fluc uation
terial
b)
NOTE 8.2
arri
ANDq
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
rope
ay be negl cted is ic
oe
Th followin shal be take into consideratio oa ue de ig t) or ng d) coefficient, )]
om
given
8.
static yn
8.4.2
mpli ic tion of Lo
8.3.1 in by
ultiplying th impa
ng pe d,
acto specifie in Tabl 12
factor. 8.4.3 on
oa ng oc rs
th
a)
Cranes out-of-service with maximu
wind
b)
Cranes undergoing static as well as dyna ic
c) effect.
ground. 8.3.2
considered: a) ue
depends
th
b) du to th servic lo ff t; an
able 13con id ring th wo king ondition c)
he ul ti re os un or combinatio shal be applied. Th thre differen case
gh
plus th greatest bu fe
oads
where P,
oefficient by hich th safe orking lo is ul he yn t;
P* SL
xi
pe
ib
Clause-8.3.1) Ml
M2
M8
(1)
(9) 1.06
1.12
1.40
1.5
(Clause 8.3.2) M8
M3 Classification (1)
(9)
(2) 1.05
1.12
1.2
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006 NOTES lltheloads aretob
io d; an
selected intbemostunfavourabl
he horizontal lo ds al be co sidere over th rs combinatio of load whic ma happen simtdtaneously it lear tha the horizonta
as th valu obtained by di idin
ithe th yiel poin
motions
whicheve is th sm ller
es gn te
position
no lo
he
ut
rvic
tati
1.8
i)
Concentrated an uniforml distribute
load impose
11
ii)
1.5
1.3
1.4
iii)
tr
ta
it
ta
re
NOTES nl
determined it shal be assume that th trolle is placed
este qualit
te ia
pl es beam channels
members. he qual ty st el used sh ll be ated an th ph sica properties chemical compositio an elding qualitie ha be ua anteed by he anufactu er he te l.
S1No.
9.2 n l
i)
Allowabl stresses fo structural member an weld
y r 1.1
9.3
NOTES es gn te
ositio
no load
he
ll
ut of serv ce
tr se
iv
ts
in
ll
9.4 Spectrum
ig tr se le io sh ll ma inthe esig th structur member to th pr tectio in us in ig lu a) stress
se
tu
rs
sufficie tl
ig value;
th
tr ss
b)
is
is
ty
c) d)
failure:
corrosion, tall ic
tr
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 0 a t n a m .
1S 807:2006 Welds CIause ll wa le
tresse
Calculation Oross
Structural member
Gross
6,/1.15
Compression Buckling
Gross Bending Welds 0,
Compression Shear
Oalfi
of-bead, compression Throat NOTES
followingconditions
he es
ho 4o
.,
Clause 9.3) Allowable Shear
Shop
Rema s:
ia eter
0,/43
Bearing pressure -Fields
Hightensile bolt
Shear 80 of th abov Bearing pressure Diametero bolt stem
S 2
Hightensile
fb
ol Reamed
IJ
s 3 s 6
Pi join Bending 0.60,
9.4.1
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 0 a t n a m .
IS 807:2006
nu be
cy le
ithout fa lu
he
il re is
nd
high
consideratio shal be give to fatigu limit, high stress ep es ntatio
is give graphi ll
in Fig. 9.
9.4.2
4/,,.
FATIGU LIMIT
,05
,.6
NUMBER FIG.
., FATIGUECYCLES
1400 1200
u) (n Lu lx 1U-J
600
400
200
10
,.6
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006
Clause 9.4.2) S1 No
Notc
St engt
As (})
(4)
(5)
(6) d.
~y~y
us
Confirm abse ce lamination
,/
Crucifor
join ---”.~...
=. ,<.
..
* 0“
different righ angles Asymmetrical
Symmetrica
join
slop
-------
Symmetrica
join
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 0 a t n a m .
IS 807:2006
.– Explanation
Figure Notc
(1)
(2)
(3)
iii)
As Welded
Bea Finished
(4)
(5)
Remarks
(6) Confirm
/’
iv)
Strength
on nuou bu el an wel parallel
,..’
lamination
Butt weld
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
Fillet wel
v)
Discontinuous -R-L -D-L
vi)
With necessar me be oi
Butt
vii)
it necessar me be oint
1A*>
Weld
Fillet weld R’
=.
“\. ,K,x.,
IS 807:2006 Table 18 Explanation
Continued)
Figure Notc
(1)
(2)
viii) lang an
Strength
As Welded
3ea Finishe
(4)
(5)
Remarks
(6)
Fille weld
eb -1
-i
IA
Fi le weld (perfect
1ix)
.,,, en at
Filletweld
I’ille weld (perfect
GY
x)
rruss
Fillet weld
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 0 a t n a m .
IS 807:2006 Concluded) Figrme Notc (1)
(2)
(3)
Strength
(4)
Fillet weld ..
..
........ . . . . . . . . .. ..... ........
---
Fillet weld E-groove ---
-.-.. JLD xii)
--.
Perforated member
~~~~
“---”r:_t”--”
9.4.3 Maximu al th applicatio
stress cr~t is th hi hest stress in absolute s, si ss
fluctuatin stresses an negative when th extrem stresses).
of amplifying coefficients M.
9.4.5
9.4.4 is su ec ed
er
lc
in
The
tr
satisf th foll wi
lo
?w wn Fo welds,
Ifa~m an c~,nar th algebrai values ofthese extrem stresses o~aX st es
thre fo mulae:
J. .a be applied. FJ,~~ar
where
‘Max
aria le St es es
parent metals
this rati ‘K’ by taking tw extrem values whic ca occu urin possible operatio
‘M
tu
st es
the (see
ma imum irec stress 20
notch
‘u’
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
=1S807:2006 where
in
A’4U.K N/mmz; ~A{(
specifie
in
ic
ia ra
Nhnmz;
se
N/mm2; N/mmz;
ra
ts
10.1 Specia Measures ta
*d
lo
le
th
ig
tr
id
ld position wh ou
Iowa le stress
th cranes services
ertain it’s compon nt lt rn ti el to allo freedo
Such measures should only be adopte atle agreemen betwee th user an th anuf ct re as they impose conditions on operation. 10.2 li (Clause 9.4.5) M2
M3
h46
M7 Mg
(3)
(4)
(7)
(8)
se in motion ifmaximum wind increase by 10percent. is chec sh ll carrie ou assuming oefficie
Cranes Notches (9)
a.
1,3
1.2
1.2
1.()
1,() lo
c.d
1.7
1,4
1.4
I,o
],()
lo
bush
wheels
here ther is da ge such as chains cl mps,
ovem nt mo ri evic an al automati lockin
9.4.6
is ible
tr
ll
ti 11
th ri et fr
th foll wing ormula Ut
where N=
=
le
An at
tensil stress “inkgf/cm2 or N/mmz; an
O,a= allowabl
tensil stress
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s : a k 5 0 h : 2 a p 1 a t n a m .
IS 807:2006
600 400
200
1000
500
-1000
(Tin= FIG. 11 ALLOWABLEFATIGUESTRENIGTH
STABILITY REACH MEASURED FROM
STABILITY REACH EASU ED RO BASE LINE TO
BASE
1/
BASE LINETO BH DP
$)’’” 90°
+++%
TABILITY BASE
BASE LINE
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
~kL’E4 l--STABILll
BAS 1
FIG. 12 ILLLJSTRATION STABILITYBASE STABILITYREAC AND REACHFORNON-SLEWING OR SUSPENSION CRANES
22
POINI-
IS 807:2006
STABILITY BASE ...
REACH
FIG. 13 TYPEMOUNTED MOBILECRANE
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t i r e m , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
STABILITY BASE a)
RADIUS
FT
STABILITY BASE b)
IG 14 TRAWLETYPEMOBILECRANE
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e ,, V 1 i 0 s a : 5 k 0 h a : 2 p 1 a t n a m .
///
JI CRAN PORTAL
.,
“FIG 1(
TOWE CRAN OR TOWE DERIRC CRAN
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 1 a t n a m .
IS 807:2006
(1) St ti
(3)
(2)
chec
c) Wind Dynamic
Cranes unde l e
D}namic
-0.1
check
no-load
horizontal effect
a) St rm !vin
c) 0.3
b) )
Two
t w h no l
L
NOTES
ly
MEMBERS
The
Ibe
th followin
latera bu klin du to th bendin is no
formula:
13.1 Bendin MM
where N=
An
compressio forc in axia direction, in kg orN;
w=
buckling coefficient;
Oc
co pres iv and
rsca= allo able
ompr ssiv
of gyration fo compressio
/m 2;
stress
member shal no exceed
subsidiary members. 13
LC LA IO
cJ=
T=
stress in kgf/
onsidered.
BOX GIRDER SUBJECTED
!“
<(3,2
~c
An’
where at
gfl or N/mm2;
a=
co pr ssiv stress long dg or N/mm*;
q,
allowabl
T=
sh ar stress in kgf/cm
Ta A/f.
allo able bendin
I= or mm4;
in kg /c
tensil strkss /m
hear stress om nt in kg
Nm
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 1 a t n a m .
1S807:2006 and ==
compression
15
,=
A,,’
is
Moreover open sectio such as 1section member shal chec ed abou late al buckli g.
distance betwee th neutra axis to tensio
6’=
ta
ne sectiona area of we subjecte to shear, incm? mm
13-.2 Torsion
=_
calculated from th followin formulae
M,
<~ ‘
a.1
l~here T, Ta
.
kgf/cm~; allowa le shea stress
where
M,
G= li
‘r=
tr in kgf/cm or N/mm2; N/mmz;
p.
t=
a= 1=
ss followin
15.2
su formulae or
nd he
Mo en
Composite stress shal be calculated from th followin
precis buckling calculatio
th member as required erti al ri onta tt el webplate nd iIle weld connecti l-shap ir er to wall su fa e: .W+O.9
G=
where
where
in kgf/cm or N/mm2;
0,
or N/mmz; (3=
compressiv or N/mmz;
stress al
crta= allowa le tensil
edge
kg /c
15.2.1
stress
‘”Y
N.
1=
bendin ment geometrical moment or mnd;
f-cm
m;
where
A= An
ne sectio area
em er in m2
2;
0=
te le iv in kgf/cm or N/mm2;
M=
en in cm;
I=
27
st
om nt ctin at th joint, in
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s : a k 5 0 h : 2 a p 1 a t n a m .
IS 807:200
reduce
accordingl ‘Iki
17
‘throa is expanded on th oining surf ce nd
‘ki
=d where 15.2.2
al . –
A4fG
61k]=
I.CI
where -c=
shea stress
igf/ m2or N/cm T=
geom trical moment of he ar of sectio outsid of th weld line unde consideratio nt
I=
oc
stress
k-gf cm2or N/cm
uckl
ss
he
loca idea buckling give fi-o th formul ~kl= OCk;
p. MG
compressiv
sh
re
kg
Tabl 22); fundamenta buckling stress give from th following formula:
nd
a=
CTc=
n2.E.t2
12b2(l -p2)
,k
=(
or N/mm
PLATES
E.
Loca buckling strength of th plates shal be calculated
kgf/cm or N/mm2; poisson’
ratio;
nc ud ng st ffener wher th load ct ng on th plat
.,,.,
b=
k=
16.1
with Tabl 23 Concernin th whole surface
Independently 16.1.1 In su
loca buckling coefficien an concerning
case wher OI ,,fit~ exceed th elasti from Tabl 23
al
?1 }“
a3 . a4 ~-
R..
a5
a5
FIG.17 EXPANSIONOF TIiROKI 28
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:2006 a=
17
in
a=
(1
= stiffeners ra io
Y=
Y-
ra
th stiffe er
0.092
se ra
ff
17.1
i5t3
J=
rs
section a-c-c-a
ra
a-a, four rivets
re of th member hi
F=
17.2
ross sectiona area or mm~.
th stiffeners in cm calculated from th followin formula:
NOTE
k= lklk where
16.2 Simultaneously he tw
oc
buckling stress. ol~,and ~,~iare separatel
be btai ed fr
th fo lo in
~s
form a:
Ovkl= ,.
-t (:)* intersects th othe members, th intersecting part ma
(d
‘Ik!
where rp a)
,ov ,= ,c
supporte
exceed th elasti it of he at rial he al owable stress shal et rm ne by th
CT vk
Cr
~+
nk
,s
rN
joined rigidl to latera member having bend ~s take as 0. 1. c)
In th case wher both ends ar jointe rigidl ra ksh 0.71.
compressiv
stress
kgf/cm
safety factor fo lo al uckl ng (sVk= reduce
/c
d) both trusse do no displace perpendicularl
co bi ed stress ress
a=vkl ok
displace en
b)
where al
rm
all-owable reduce
stress
2< N2
NI
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:200
Clause 16.1.1
S1 No.
Loadin
Co dition by
(1)
(3)
(2)
tiffness (4)
1.5+0.075($–1)
.i) ii)
11
iii)
111
5 +
Clause 16.1.1 sl
No.
Loadin
onditi
Uniformly distribute compressive stress 1#1=1 ii)
inea ly is ri te compressive stress
iii)
Linearly distributed tensil an compressiv stresses, where
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i (l+@) m e , e V K’= buckling coetlicien .,,,,, Iijr 1 i 0 s a O( : 5 k h 0 K’ buckling coefficien : 2 a p 1 a t n a m K=23.9 .
larger -1<$<0 iv) tensil an compressiv stresses, where equa an te il is la er .S-1 v)
Uniforml
stre
distribute
shea stress
30
fi
Clause 16.1. S1 No
i)
ii)
iii)
Uniforml distribute compressive stress o
distribute stress
O n v er ti c centre
s ti ff en e
.-=
,-
m.
=&x
HI O-*
-1 ,.
a.ab
Rang
fi
a<4dl+2y I+
*U
’ 1+ 2 1+2(5
0.
Uniforml distribute compressiv stress On h or iz on t t if fe ne r a n
of Applicatio
0.
SCIS
i,o
SCX<1.
w iv)
Uniforml shear centre
v)
vi)
a%
distribute 0.
1+
Cx 2.
u-u
+a
K= Uniforml distribute shear stress One vertical stiffene at centre
I+9LY’)Z
) 2 0 .4 1 ( 9+ a ) 2
1~.lly
4.9 (1+az) 10.24( 1+az )2+0,4 10.2
(l+9a~)z
a2)z +3,16(9+
13.1 yczz
& )2 + 4 .0 5y a
Uniforml distributed One ta one
vertical centre OT
2+
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i s 0 a : 5 k 0 h : 2 a p 1 a t n a m .
B ot h s t f f n er s s l} al l c ro s e ac h o th e i ii th ou t r ed uc t o n o f h kn di n
.l
s t t Tn es s o r b e c om bi ne d
t h s am e s ii ff ne ss .
IS 807: 807:20 2006 06
20
1.05 1,10 40
1,16
50
1.23
1.13
:()
50
1.46 1,59
80 90 00
90 1.90
2.02 110
2.18 120 130 140
3.17
3.22
2.81
1?()
3.26
I.30
4.27
150
3.31 3.95 4.65
180
180
5.59
90 200
6.42
I()()
6.49
6.75
200
,,
.3
5
6
7
8
9
1.01 30
1.03
2()
1.04
1.06
40
3() 40
1.16
50 1.27
60
1,37
70
1.68
90
2.01
00
80 90
1.59
100
1.97 2.20
2.35 equal
32
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
1S 807:2006 807:2006
(Cla (Claus us
6.1. 6.1.
3() 40
50 1.42 70 90
1.95
100
2.29
()()
110
3,09 :.35
3.40
120
3.46
130 140
140
150 160
60
170 7,94
8.18
180 I()() 2i)i)”
()
?() 3() 40
1.10
1.15
1.15
50
1.16
40
1.25
5()
1.36 70
1.38
70
80 90
90
plate thickness I0
eqLIal
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s : a k 5 0 h a : 2 p 1 a t n a m .
IS
807:2006 Table26
(Clu (Cluus us
16.1 16.1.1 .1
Buckli Buckling ng Coeffi Coefficie cients nts o)
5
6
7
8
1.15
1.15
1.23
1.24
1.34
1.36
I.49
1.51
1.68
1.70
1.91
],93
2.29
2.33
9()
2.79
2.85
1()()
Z() 30
1.14 1.19
60
1.41
70 1.88 90 10()
2.53
1.52
110 120
3.89
130
4,96
1-1o
4.69
4.62
4,35 5.18
5.25
5.33
130 5.40
5.62
140
150
()
1,03 3() .
1,05
1.06
1.06
1.11
1.12
1,30
7()
1.31
1.04
20
.0
1.08
1.23
1.24
50
1.35
1.36
60
1.51
1.53
1,83
1.88 .i
[0 90
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:2006
(Claus
16.1.1
30
30
40
1.19 1.32
50
1,33
60
1.49 2.03
70 X() 90
90 100
3.26
00
3.32 4.“38
120 130
5.50
140
6.32
5.59
5.67
130 140 150
?&
5
“1
6
7
a.
8
20
40
1.12
3()
1.06
1.06 1,12
1.27 1.35
1.29
1,43
1.41
70
2.03
35
-70
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t i r e m , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:2006
“t--
.+__Q--
+-@---
1FIG 18 EFFECTIVENET SECTIONALAREA D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
where
an
ar Nodalpoi ts fTrusses an N, an N2an
orce
member
FIG. 19 BUCKLINGLENGT OUT OF PLATE
Th slendernes ra io of th
em er shal no exceed
multiplyingthe maximu geometrical moment of inerti l=cxlMar
S“l
Slenderness Ratio
(1)
i) ii)
(2) Main compressi},e member xi
comp es ve
em er
-JL-.-l 150
240
where ~.
10
MUX Thes shal be applie only to th bearin member 10>0.0 Ih,ur 1f 0.81~1 ~0.51
1S 807:2006
(C/ausc 17.4) educ ng (1)
(3)
(~) (r
i)
Factor
l, ,=/.21.
1<0.51,0.l
s’”” I,)=rzll
ii)
1[,=r~ll
II
)+
(,)
((
-’EaII
O.l
It, I()=r:ll
().4
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s : a k 5 0 h : 2 a p 1 a t n a m .
I)ilrabola ,. i))
O.l
[o=r2[ 1,
.
-la
I)mabola
where
compressiv member et
,AI’
17.5
maximu and
ed
~=
mo
eometrical moment
ressiv
ee
iner ia
m=
number of single member buil up into on combined unit by mean of horizontal join
em er
Th combined compressiv member ar em member hown Fig. 20(1 ). am re me slen erne s-ra io is gi en by he followin
rnes iv de into
al ormula
e=
~l=nm2 ~:%: distance betwee th neutra axis to tensio
kl d=
where
A=
37
en
al
gros sectiona area of compound member cm2or mm2;
IS 807:2006
.
II II il II II
II
II
II II II
II !1 II II
II
1:
:1 tl 0,
II
1$
b)
a) F’1~.20 COMBIN
COMPRHSIVE MFMFER
where mmz;
k,
II
parallel plane. 17.6 hear
tr
ng
minimu radius of gyration of sing,l member.
from th followin formula:
pr
Members
‘t
D=
All
where
with thei ioints shal no exceed th allowabl stresses
the main
following forlmula
member
and t]lc
diagona member 18 DETAILE-D DESIGN OF GIRDER SUBJECTE TO BENDIN
80
w41ere F,
Th rivets or th bolts forjointing th combine member in th relategirder shal be calculated from th formula:
,4= ompr ss ve member in clmzor mm?; an 0= c<1
ow or N/mm7.
pers
re
f/
FS
where
1=
P=
mm~;
100
wabl
1=
ri
oa nt
mtm4;
20 kl th equivalent shea forc shal be take va ue ho he ng
80
Ha
F=
geometri al moment of ar of th sect on re atin th neutra axis of he girder th
8020
~or 38
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
1S 807:2006
1,3 3’ YI
Y!
l----
YI
1P)’ Jx
$iHF
+jJk
-\#
\4-
YI .e m=2
31E
C=d Fr 1,
x’
T
_.L--
1“
.,,,
*--
g) m=2
Y/“
Y/‘
FIG.
21 MFTHOD OF SL~ND~RNESSRATI
Continued)
,1
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
807:2006
G!P-lik-.
T@
‘/’
4+”%, D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
F1ci.21 METHO OF SWNDERN~SSRATI Iw
18.2 where
‘[he to
R= orN; n=
of-the joinin
sju calculatio is impossible
~=
line
maximumshea forc at thejoint, in kgfo N:
~w
18.3
.cm N.mm;
~.
en in ir er
en f.
th welded jo nt Nmm
roun th
eutral axis 4or
th
I= Iw
--
th gros se tion
Ey
bolt aton side of thejoint lineto th neutra s,
in th formula: Y“
40
rt
--1-
4--
.--1-
.ITL
50
--1--
mm
--Q--t%----e-t-o ---e-* FIG.22 DISTRIBUTION OFWHEELLOA ,,
’+-+
+---+ NEUTRAL - AXIS
‘+--4
Y, -J
+----i
2-- ---- -Y
IS
(cmor mm
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:2006 maximu trolle whee load in kg withou impact ).
M-ILL CRANES consideration: a) Weldabilit
classification of qualifie
b)
ress
steel;
s;
hort diaphrag shal be placed betwee th fulI dept diap ra to su port he brid ra l. ll ia hrag shal bear agains th to cove plat an shal be welded 23
c) d) Classification of welded joints joint
orizonta ti ed en fo rigi it to
ir er
category.
19.2 20
rd r. Th
24 IMITIN
FL
ON
factor should ot be such as
ra
ul im ai th stre gt
tlnishing.
ru
re
connection. D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
24.1 Base
llow ng conditio
2m)
consider d:
21 CAMBERS
plus one- al
he live oa deflec io
22 DIAPHRAGMS
AN
VERTICAL
TIFFNESS
24.2
exceed r. where
ra
se
ri
Th
rs
el in
clip
re referred It is reco
en ed
whicheve isgreater we plat shal be reinforced with ra s. 22.1 Diaphragms Th distance betwee th adjacent diaphrag
longer
25 struct ra stee
it co ti uous
where maximu
;a 42
shea an bending.
fu
en trat on bu
RO LE
HE
LOAD
n----n II II
II II
di=d=l
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
,, l!!dl
Ii ++
FIG.24 GIRDERARRANGEMENT
1S 807:2006 25.1 Girder-Proportion Th bo girder shal be designed fo suitable size taking nt ount of th followin pr po tions: a)
//h
b)
I/b
c)
bfc
hlt
yb
as follow 5k stress
188
r8 5k co pr ssio stress
220
h/t
co pr ssio h/t
240
700
co pr ssio
where [=
stress
25.3
h=
a)
b=
wh
he ra io
c=
b)
25.2
Plate
stre sh ll be om ut formula:
1235
C(k+l)
blc
th foll
in
J(
38
where
blc
and
b/c
ss None
81
188
One
162
376
Two
f,
i)
40
ii)
44
99()
iii)
48
x70
iv) v)
vi)
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s : a k 5 0 h : 2 a p 1 a t n a m .
IS 807:2006
9.4.2
Clauses
9.4.6)
and
th torqu formula:
A-1
fi forc transmitte
on by friction depend upon th join
re ra
fo
where P, d=
on
F=
by en rg ti brushing with cl an metallic brush. Oi applicatio of suitable chemical product
c=
carbon tetra-
more carefu preparation ma increas th coefficien be ng ot -a ne on fore ru just pr or to jointing ff
A-1.3
re
re
r.
va ue
gi
A-1.4 SI
Joined
Normally Surfaces
limit: Th ultimate tensil strength OR us be gr at
i)
(3)
(4)
0.30
0.50
where
ii) Iii)
than
St 52
‘E
elasti limit.
mm of bolt di meter.
wa
fr
A.1.2 Bolt Tightening
su fa
b)
m=2,
c)
m=3
where
ha
dere
s:
and
is th friction surface.
pre-determined by calculation. Th tension, resultin
ra
wn
Clause A-1.3) 10
24
12 115
45
157
192
245
303
353
27 459
.30 501
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
Clause
(1)
(2)
i)
<70
ii)
70 to
(3)
iii)
I. IOCT
111
ili
1:1 Ill Ill
FIG.25 EFFECTIVEFRICTIONSURFACE
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
Clause A-1.4) Bolt
Tensile
mm
Area
Clamping
Applied
rm
r ep a
r ep ar e
rf
rf
No. s A
kg.m e I
mmz
e 1
e 1
-5
. A 2 p e 1
C as e 1 1
e I
(lo)
(1)
i)
10
58
ii)
12
84.3
0 .5 5 C as e 1 1
e 1
(14)
(11) [.52
3.03 4.14
iii) 4.25
iv) 18
v)
192
13.80
4.80 22
6.61
5.85
303
viii)
6.94
ix)
8.45
bo
of
,th va ue of
or
n d o f h e t or q
di
bl
re
be
8.20
9.90
9.55
11.55
ul
8.80
7.27
10.90 9.31
12.40
176 TE
6.90
5.70
49.2
vi) vii)
4.15
5.14
by
ra
E/
re no
10.50
12.70
13.60
16,50 me ur
re
ke
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
1S 807:2006
clause
19.2)
ro thickness.
B-2 B-5.3
er
secondary members. controlled by buckling
B-5.4 Fi le We ds
a) B-4
FATIGUE
Th maximu
stress in welded joints to repeated stress re sa sh ce
b)
Th maximu
c)
Th
fillet weldsizepermitte
alon
rang does no exceed th valu give in Tabl B-5
ffecti
applie
el area shallb
th effect ve
load
d) than 60”0 e)
fillet welds, an
peni B-5.
Genera
fo
to mm aximum
Requirements
rd
ze
a) el
B-5.2
ze
as
Ma imum spacin permit ed betwee weld
a)
b)
In ermitten fi le weld ma be used to carr calculated loads.
c)
Intermittent fillet -weldsshal no be less than
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s : a k 5 0 h : 2 a p 1 a t n a m .
IS 807:2006
Clause B-3)
Level (3) i)
atchin weld
Complete
etal shal be used
Compression l t used l t
s t n m
g w
weld
ii) normal
.l
to
equa to or less than matching weld
ig ed
weld
..
weld
ce iii)
36
ie
re th
nominal
ceed
.5
ie
tensile
tr
iv)
Tension
compression
weld v)
le
to
fe ti
0.27 equa to
metal
49
less than matching weld
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:2006
Clause B-4)
(1)
(4)
(3)
(2) Plai
at go
Situation
al Material with tine smoothness ii)
Built-up Member
on girder we or flange
iii)
Groove
elds pr il by no
iv)
he de tr
ds
ground an ng
iv
oundne
li
Groove Welded
Longitudinal loading materials unequal thicknes welds sloped web ground connedion
transition radius
a) R>610m
BB cc DD EE
c)152mm>R>51mm d)51mm~R>0 v)
Groove
elds netr io
roov
de
ic
he
ot
ui in
tr nsit
testing vi) Welde
Connectio radius R,
b)51mm
ir io of ga dl at transition radius R, 5 I ground en mm
gt
he th
il
odie
c)when152mm>R>51mm viii)
Fillet Weld ta
ld
in
Base meta at intermittent fillet weld attachin ix)
Stud Weld
x)
50
ns longitudinal stiffeners
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
S-80
2000
200
1507)
150
1000
100
500
50
:.2006
-1
500
-50
1000
-1oo
1500
-150
2000
-200
FIG. .26 ALLOWABLEFATIGUESTRESS FORCRANES
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:2006
2000
200
1500
150
1000
100
50
-1=
-500
-50
WI
-1000
-1oo
-1500
-150
-2000
-200
I FIG.
27 ALLOWABL FATIGUE STRESS R C
52
I
I S(
I
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
IS 807:2006
2000
200
1500
150
1000
100
500
50
-1
500
-50
,. 1000
-1oo
1500
-150
2000
-200
28
ES
RCR
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
1S 807:2006
-WELDSIZE --
WELD SIZE
(- ‘.,
WELD
WELD
en tr ti
rocess
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 1 a t n a m .
ik’N\ WELD EFFECTIVE THROGHOUT REIN ORCE EN
FIG.29 FILLE WEL
54
IS 807:2006
surface. Clauses B-4 and B-5.2)
mm
in mu Effectiv Throat mm
(2)
(3)
SI
No. (1)
th part containing it plus mm Th maximu th th Mt
!3
Table 39.
iii)
v)
10
vi)
13
Th oo
vii)
Welded butt or T-joints with complet join penetration. Th ro th firs weld is chippe go ge ground Horizontal Position
(2)
(1)
go ge
ti gr un
direction of metal remova paralle to the principal stress. Fi is in tr te ed
Clause B-5.4)
““~
jo th irst weld is chippe
st
(4)
EM!_U-l
omplet join pe etration
tt
te
-j ints an corner
Complete penetratio butt T-joints an corner joints partia penetratio butt T-joints an come join welde
se th in th distance betwee tw co secuti th
weld
Partia join penetratio butt T-joints an corner joints sl
Iate
staggere intermittent fillet weld is 90 percen Joints with no specia welded groove preparatio such la el s, im an structural welded joints of secondar importance B-
WELDING-PROCES
a)
Square-groove
weld butt join (B), come join
shea loadin in lapjoint to preven buckling
b)
comp ne
c)
(Q; Square groove weld T-join (7’),corner join (q; Si gl V- roov weld ut join (B), corner
d)
Double
a)
part
uilt
me bers exce
b) 55
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
Clause
B-6)
Category
11
D S h a i t p e 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
EL
56
IS 807:2006 Continued
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 1 a t n a m .
NOTES
e)
ngle-bev
groove weld bu join
B)
join (C);
Single-bevel groove weld T-join (7), come oint (C Double -bevel groove weld butt join om oint C) h)
(7’),corn k)
-joint
Single U-groove
Some
57
join (C
Doub -groov weld (C), bu join (B).
nd oi (7),
orne oi
IS ?30 :2006
r j weld
(f) Groov
Preparatio Welding Positions
Thickness
l A
Shielding for FCAW
, M
,–
R=T1
Max xC
,–
R=TI
required
Square-groov
weld II
b-
MI
TE ng
Proc
Groov
Preparatio
ol an
Thickness
FCAW Root opening Sub-merged Meta Ar Weldin rc
+2 -3,5
6,
ldin
Sub-merged Ar Weldin (SAW
Up
0-3.5
R=O
12.5,
58
+2-0
+0
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 2 a t n a m .
1S 807:2006
Square-groove wel
IL -
Process
Welding
Groove Preparatio Thickness FCAW
TI
Tz
sd
&tOX
lu
rc ored Ar
ldin ldin
+2,0
+2 3,
All
IO, Max required
R=O
Max
Flat
Tolerances
ingl V-groove weld
UP
AA
df%-
IL
!Q
-d&-
Groove Preparatio Thickness
T,, mm Sub-merged
et
T2,
Ar Weldin
R=6
45o
R=1O
R= 12.5 as
ta Ar
ldin
R=5
lu
re
eldi
R=5
Ar
300
R=6 Sub-merged Ar Weldin
59
R=6
300
R=8
(-J 200
All
l–
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
IS 807:2006
$iogle
-groov
el
IL 17-
Permitted Welding Positions
Thickaess =U
T,, mm ;ub-merged
Gas Shielding
T,, mm R=6
etal Ar Weldin
All
=4
R=1O R= 12.5
Required
R=5
‘Iux Core
No required
Arc-Weldin
No recruired ;ub-merged
rc We!din
lub-merged
rc Weldin
oubl
groove
12.5, &fL7X
Tolerances
el
As detailed IL
~Ip
6.-0
R=O
Note
f=io +10” –5
.,
+0
l“J@
Weldin
Proces
Permitted (f/
Gas
Unlimited
T,, mm
T,, mm
Sub-merged
+1.5, –o
Groove
preferably F,(3H
Weldirw Sub-merged Ar Welding
-~ = 6
l– 20”
Fl
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t i r e m , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
IS 807:2006 (B)
lingle-bevel groove weld Butt join
Tolerances
(B)
,+10”, -5” IY
-.. -----
(x ~,\M
<.
Thickness 7[, mm
Tz, mm
‘ositions
-mer
R=6
Welding
R=IO
R=6 R=1O
~=450 30.
@= 45.
All F,OH All
Required
All
Requirwd
Flat
No require
,,,
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
Single-b ve
groove weld
nt
-..
f“
Tolerances
..~x . . . ,! --t.-.
--.._
,,
L![..
Thickness Groove
Root
Positions
mm Sub-merged Meta
rc Weldin
Ar Welding Sub-merged Ar Weldin
OH
R=6
cl=45°
R=1O
~=loo
R=5
~=300
R=1O
~=300
R=6
Ct=45°
R=lfl
~= 30.
R=6
~=450
All
Flat
Overhead
Clause B-7) oubl -b
groove
,.
TI
ld
ma
c1 ;–
Thickness Tolerances
Root Opening
As detaile Groove Angle Sub-merged Meta Ar 1.5, -o
1.5,-3
-o
thicker
rx+p,
1o –0
15° ding
-o
(‘ Prefer
1.5, -o
to.3 or thicke
+1o –0
~=450
10 +0”
62
–5
No li ited
+10”,–5”
Positions
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
IS 807:2006
Clause B-7) ouble-beve
groove weld
/-
J+.,
Note -..
~1
ne
..’.
}J ~4
i?
Note
Ga
hiel in
Thickness
T,
T,
Opening ot Face As detailed Groove Angle All
Sub-merged Meta Ar Welding
Preferably
f=oto3 ~=450
+10”
no im te 10”, –5
00
thicker di ored
lJ
All
No required
All
No require
Preferably
el ng thicker +(j, -(
Sub-merged Ar Weldin
f=
*1.5 10”, –0
10”, –5
us groo
Tolerances
el
As detailed
-.,
NOTE
..
+1.5
Welding Positions
Tlrickness
Opening Sub-merged M’etal Ar
Face
Angle
Radius ~=(j
All
~=6 ~=6
All F,OH
f=
~=6
All
f=
~=6
f= ~=2
Welding
as
Up
=45 =2
et
el
ored OH
di Overhead
No required t r
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 2 a t n a m .
IS 807:2006
(Clause Tolerances
jingle J-groove weld
–()
oc
Sub- erge Welding
Meta
Permitted Welding Positions
Thickness
*1.5
Ga
hi ldin or
rc in
ux
or
ldin
Clause B-7) ;i gl
. if ~fp”1!? .,.
groove nt
ru -\
.
-“F
.....
*-
Base Metal
Thickness
Sub- erge
Meta Ar
Welding ld ng ding
re
OH
-=-b-
‘)
Groove Preparatio
Tolerar
es
As detaile
Up
+10” -5
+1O”, -0
No li it *1.5
Permitted Welding Positions
Ga
Shie di
All R= Oto3
f= f=
Overhead
64
=3
All
No required
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
IS 807:2006
Clause B-7) Double J-groove weld
[I’/ -.
<-;>
..
-Welding Proces
Root Face
Groove Angle
No limite *1.5
Gas Shielding
troove Radius r=10
Ar
Gas-Meta Ar Weldin lu ored rc el in
10”, –5
Permitted Welding Positiona
Thickness =U
Sub-merged Welding
As detailed
,,”’1,
Groove Preparatio
Root Opening
Toleral
All
Preferably 160r thicker 11
Preferably thicker
f=
r=10
All
No required
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
IS 807:2006
Clause B-7) Tolera
Double J-groove weld
es
As detaile
T-join (T Co
.. . .+ ““R~
+1 ”,
Note
r:% l--
No limite +1.5
..
..
ro es
Nole,
Permitted
Groove Preparatio
Ga
Sh eldi
Positions
T,
T,
Opening r=10
f=
Sub-merged Meta Ar Welding
Preferably 160r thicker
a = 30”
as
r=10
tr
r=10
thicker
OH
7.
overhead.
olerance
or
roov
el
oi
applie
Prep ra ions
heat whil weldin
progresses
c) Some join preparations oler nc give able41
re se
re re
d)
HRINKAGE
little restrain as possible before othe joints re us less ri welded.
rt reinforced parts to member shal be designed to minimize distortion an shrinkage.
Fo differen type of stress category th loadin cycles deposite
in sequen
ha will balanc
he
66
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
IS 807:2006
24
24
REMOVE
AFTER
2;
24
Transition
by slopingwel surfac chamferin
CHAMFER BEFORE
24
24
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
CHAMFER BEFORE
24
BEFORE WELDING OFFSET ALIGNMEN
CENTRE LINE ALIGNMEN FIG.
30 TRANSITIONBY CHAMFERINGTHICKNESSPART
Clause B-7.1) Weld Preparations (2)
(1)
mm
mm
(3)
(4)
*1.5
No limite
ii)
+1.5
+1.5
iii)
+6
Not applicabl
i)
iv)
Groove angl
5“ -5°
IS 807:2006
Clause B-9)
o. (1)
(2)
(6)
(3)
i)
276
221
166
166
ii)
228
172
117
103
117
83
iii)
v) vi)
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .
IS 807:2006
Foreword)
COMMI’ITEE COMPOSITION
te Representative(s)
Organization
SHRIK MANICKAM (Chairman)
ea
SHRIA. C. HERI SH~IN. VASUOEVA lern te IK
pa
TH
SHRI GIRISH SHRIVASTAV
A1/ernat SHRIR. L. GUPT SHRI RI Inst tute
Mumbai SH
Ho
d,
K.
A1/ernute
SHRI
nd He cule
tern te
SH
N AN I
umba SHRI P. CH TLAN IA
tern te
SHR~LALITM HA
SHRIP K. NEVATIA SHRI BIMA
an
CHANDRAPAL
H AK RA B
TH
SHRIL N. “MISHRA RI
.,
lter at
A JU M A R
lter af an
SHRIH. S. SING
Alternat
SHRI D. GHOS SHRIG. HR K. PA
C. 3ANERJF.
Alternate)
HI
SHRI RAJJNDE SJNG
tern te
SHRI SHRI D. CHAKRABORTHY
Alternat
RJD.
SHRI
K. BHATTACHARYA
SHRI BALRA GOEL SHRI
R.K.
DH
SHRI
SHRID P. RATHORE
SHRI
AI-WA
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h a : 2 p 2 a t n a m .
IS 807:2006 WMI
ne SH
BI Directorat
Genera
D. CH TT RJEE(
,D
Member Secretary SHRJS. B. RO
D S h a i t e p 1 B 7 u -0 i l d 6 i -2 n g 0 C 0 8 e T n t r i m e , e V 1 i 0 s a : 5 k 0 h : 2 a p 2 a t n a m .