UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
...................................................................................................................... ..................................................................................................................... 4 .............................................................................................................................. ............................................................................................................................. 5 ............................................................................................................. ............................................................................................................ 5 ...................................................................................................... 5 .................................................................................................................... ................................................................................................................... 6 ............................................ 6 ............................................................................................... .............................................................................................. 7 .................................................................. ................................................................. 7 ............................................................................. ............................................................................ 10 .................................................................................................................... ................................................................................................................... 12 ................................................................................................................................. ................................................................................................................................ 12 ................................................................................................................ .......................................................... ...................................................... 18 .................................................................................................................... ................................................................................................................... 32 ................................................................................................................... .................................................................................................................. 33
HIDROLOGÍA SUPERFICIAL
1
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
:
:
HIDROLOGÍA SUPERFICIAL
................................................................................................. ................................................................................................ 9 ...................................................................................................... ..................................................................................................... 10 ..................................................................... .................................................................... 13 ............................................................................ 13 ......................................................................................... ........................................................................................ 14 ..................................................................................................... 14 ................................................................................................. 15 ........................................................................................................... ................................................................. .......................................... 15 ................................ 16 ....................... .......................... .......................... ............................. ............................. . ............................ .......................... ................................................. .................................................................. ................................................................. 19 ....................................................................... ...................................................................... 21 ............................................................................ 24 ........................................................................... 24 ......................................................................... 25 ......................................................................... 25 ........................................................................... 26 ........................................................................... 26 ........................................................................... 27 ........................................................................... 27 ........................................................................... 28 ............................................................................................................. 28 ............................................................................................. 29 ..................................................................................... 30 31
2
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
............................................................................................................ ........................................................................................................... 12 ........................................................................................... .......................................................................................... 16 .................................................... 17 ......................... ......................... ......................... ............... ..................... ................ . ................. ...................................................................... 18 ................................................................... ............................................... .................... 19 ......................................................................................... ........................................................................................ 20 ............................................................................................................. ............................................................................................................ 22 ........................................................ ........................................................ 23 ........................ ........................ 23
HIDROLOGÍA SUPERFICIAL
3
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
En muchos tipos de problemas hidrológicos es necesario determinar la precipitación promedio sobre un área específica, para una tormenta especifica o para un periodo de tiempo dado por ejemplo en base anual. Y después de conocer el valor correcto de la precipitación media en el área, se pueden realizar determinaciones importantes como, balances y modelos hidrológicos, muy necesarios en el manejo de cuencas hidrográficas. La precipitación media, se determina específicamente para un área determinada o en el mejor de los casos para una cuenca hidrográfica específica, procurando tomar los datos de precipitación lo más correctamente posible para que no se tengan datos falsos. Posteriormente, utilizando el método más adecuado a las condiciones de topografía y distribución de pluviómetros. Los cuales pueden ser factores limitantes para el buen funcionamiento de algunos métodos, se podrá estimar la precipitación media en un área en particular.
HIDROLOGÍA SUPERFICIAL
4
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
Conocer el uso de los diferentes métodos de determinación de la precipitación media mediante los software QGis y Civil.
Presentar los métodos y la forma de cálculo de cada uno de ellos: El Promedio Aritmético, Polígonos de Thiessen, Curvas de Isoyetas.
Describir las limitantes de uso de cada uno de los métodos para el cálculo de la precipitación media.
Realizar una comparativa entre los resultados usando ambos software.
HIDROLOGÍA SUPERFICIAL
5
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
En general, la altura de precipitación que cae de un sitio dado, difiere de la que cae en los alrededores, aunque sea en sitios cercanos. Los pluviómetros registran la lluvia puntual, es decir, la que se produce en el punto en la que está instalada el aparato. Para muchos problemas hidrológicos, se requiere conocer la altura de precipitación media de una zona, la cual puede estar referida a la altura de precipitación diaria, mensual, anual, media mensual, media anual. es la suma de las lecturas observadas en un día. es el promedio aritmético de las lecturas observadas en un día. es la suma de las alturas diarias ocurridas en un mes. es el promedio aritmético de las alturas de precipitación mensual, correspondiente a un cierto número de meses. es la suma de las alturas de precipitación mensual, ocurridas en un año. es el promedio aritmético de las alturas de precipitación anual, correspondiente a un cierto número de años. Para calcular la precipitación media de una tormenta o la precipitación media anual, existen tres métodos de uso generalizado: A.
La Media Aritmética o Promedio Aritmético
B.
El Método de Thiessen o Polígonos de Thiessen
HIDROLOGÍA SUPERFICIAL
6
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
C.
El Método de las Isoyetas o Curvas Isoyetas
Estos métodos dan un resultado que puede ser expresado en mm, cm o pulgadas de lluvia caída por un área específica, siendo los mm la dimensional más usada en los países latinoamericanos.
Este método es el más simple pero el más inseguro de todos, que da unos buenos estimativos en áreas planas, si los pluviómetros están distribuidos uniformemente y el valor captado por cada uno de los pluviómetros no varía mucho a partir de la media. Estas limitaciones se pueden prever si las influencias topográficas y la representatividad del área se consideran en la selección de los sitios en los cuales se van a ubicar los pluviómetros. Sólo da buenos resultados cuando el número de pluviómetros es grande El método de Promedio Aritmético consiste en obtener el promedio aritmético, de las alturas de precipitaciones registradas, de las estaciones localizadas dentro de la zona:
1 ∑ = Donde:
=precipitación media de la zona o cuenca = precipitación de la estación i n= número de estaciones dentro de la cuenca
Para este método, es necesario conocer la localización de las estaciones en la zona bajo estudio, ya que para su aplicación, se requiere delimitar la zona de influencia de cada estación, dentro del conjunto de estaciones. El método consiste en: 1. Ubicar las estaciones, dentro y fuera de la cuenca.
HIDROLOGÍA SUPERFICIAL
7
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
2. Unir las estaciones formando triángulos, procurando en lo posible que estos sean acutángulos. 3. Trazar las mediatrices de los lados de los triángulos (Figura N°1) formando polígonos. 4. Definir el área de influencia de cada estación, cada estación quedará rodeada por las líneas del polígono (en algunos casos, en parte por el parteaguas de la cuenca). El área encerrada por los polígonos de Thiessen y el parteaguas será el área de influencia de la estación correspondiente. 5. Calcular el área de cada estación. 6. Calcular la precipitación media, como el promedio pesado de las precipitaciones de cada estación, usando como peso el área de influencia correspondiente, es decir:
1 ∑ = Donde:
= Precipitación media = Área total de la cuenca = Área de influencia parcial del polígono de Thiessen correspondiente a la estación i Pi = Precipitación de cada estación contenida en un polígono. n= número de estaciones tomadas en cuenta
HIDROLOGÍA SUPERFICIAL
8
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
La superficie de cada uno de estos polígonos, forman los factores A i de ponderación de la formula y se mantienen invariables para una determinada cuenca mientras todas las estaciones aporten ininterrumpidamente sus datos. De esta manera se facilita el cálculo, pues basta multiplicar la precipitación caída durante un cierto intervalo de tiempo en un punto por el factor de ponderación de este punto o estación y sumarla a las estaciones restantes dividiendo finalmente la suma de estos productos por la superficie total de la cuenca. Para la determinación de los polígonos se aprovechan también las estaciones que están fuera de la cuenca, pero cerca de ella. Cuando en este caso se extienden los polígonos fuera del área considerada, se ocupa solo la parte del polígono que queda dentro de la cuenca. Los resultados son por lo general más exactos que aquellos obtenidos por un simple promedio aritmético. La mayor limitación del método de Thiessen es su poca flexibilidad, puesto que se requiere un nuevo diagrama cada vez que hay un cambio en la red. El método tampoco tiene en cuenta influencias orográficas. En realidad, el procedimiento de Thiessen simplemente supone una variación lineal de la precipitación
HIDROLOGÍA SUPERFICIAL
9
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
entre las estaciones y asigna un segmento del área a la estación más cercana.
Para este método, se necesita un plano de isoyetas de la precipitación registrada, en las diversas estaciones de la zona en estudio. Las isoyetas son curvas que unen puntos de igual precipitación (Figura N°2). Este método es el más exacto, pero requiere de un cierto criterio para trazar el plano de isoyetas. Se puede decir que si la precipitación es de tipo orográfico, las isoyetas tenderán a seguir una configuración parecida a las curvas de nivel. Por supuesto, entre mayor sea el número de estaciones dentro de la zona de estudio, mayor será la aproximación con lo cual se trace el plano de isoyetas.
HIDROLOGÍA SUPERFICIAL
10
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
El método consiste en: 1. Ubicar las estaciones dentro y fuera de la cuenca. 2. Trazar las isoyetas, interpolando las alturas de precipitación entre las diversas estaciones, de modo similar a cómo se trazan las curvas de nivel.
,,3,…, entre cada 2 isoyetas seguidas. Si 0 , , ,…, son las precipitaciones representadas por las isoyetas
3. Hallar las áreas 4.
respectivas, calcular la precipitación media utilizando:
0 + ∗ + ⋯+ − + ∗ 2 + ⋯ + 2 1 ∑ −− + +2 ∗ =
Donde:
=Precipitación media =Área total de la cuenca =Altura de precipitación de las isoyetas i =Área parcial comprendida entre las isoyetas − Es el método más exacto para promediar la precipitación sobre un área, donde la localización de las estaciones y las cantidades de lluvia se grafican en un mapa adecuado y sobre este se dibujan las líneas de igual precipitación (isoyetas).
HIDROLOGÍA SUPERFICIAL
11
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
1) Primero se añade el archivo del shape de la cuenca que ya se había guardado
anteriormente, así como los datos en Excel del número de estaciones, coordenadas y precipitaciones de las estaciones dadas. Este archivo de Excel se guardará en formato CVS (delimitado por comas).
HIDROLOGÍA SUPERFICIAL
12
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
2) Una vez añadidos ambos archivos obtendremos el siguiente resultado.
3) Tras haber realizado esto se procede a reproyectar la capa añadida de Excel,
realizaremos eso haciendo uso de la caja de herramientas y de la opción reproyectar capa. Posteriormente procedemos a guardar la capa resultante, en formato SHP.
HIDROLOGÍA SUPERFICIAL
13
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
4) Seleccionamos la opción de Polígonos Voronoi para poder realizar los
polígonos de Thiessen.
5) El resultado obtenido será el siguiente:
HIDROLOGÍA SUPERFICIAL
14
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
6) Al superponer la cuenca obtendremos:
7) Procederemos a seleccionar la opción cortar, pues tenemos un área
innecesaria.
HIDROLOGÍA SUPERFICIAL
15
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
8) Tras realizado el anterior paso obtendremos lo siguiente:
9) Procedemos a seleccionar la opción de atributos de la capa que nos resulta
tras realizar el recorte y obtendremos el área de cada polígono dentro de la
cuenca.
HIDROLOGÍA SUPERFICIAL
16
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
10) Hallamos la precipitación media usando la fórmula general
Pm= (P1 x A1) + (P2 x A2) + (P3 x A3) + . . . + (Pn x An) AT N° ESTACIÓN 1 2 3 4 5 7 8 9
COORDENADAS PRECIPITACIÓN x y 754814.211 9252015.65 750 749425.092 9248934.85 667 739922.142 9251728.11 705 743007.516 9245196.8 738 744116.369 9259693.38 697 740710.855 9236098.62 615 761895.597 9243149.76 669 764227.252 9249668.73 705
Precip. Media
HIDROLOGÍA SUPERFICIAL
AREA HALLADA EN QGIS m2 km2 42549855 42.549855 85945222 85.945222 53769321 53.769321 77779088 77.779088 10117629 10.117629 10562017 10.562017 11563866 11.563866 85945222 85.945222
704.385862
17
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
754814.211 749425.092 739922.142 743007.516 744116.369 731980.568 740710.855 761895.597 764227.252 762417.461
HIDROLOGÍA SUPERFICIAL
754814.211 749425.092 739922.142 743007.516 744116.369 731980.568 740710.855 761895.597 764227.252 762417.461
9252015.655 9248934.845 9251728.113 9245196.796 9259698.379 9254495.682 9236098.62 9243149.756 9249668.731 9258445.135
750 667 705 738 697 720 615 669 705 702
9252015.655 9248934.845 9251728.113 9245196.796 9259698.379 9254495.682 9236098.62 9243149.756 9249668.731 9258445.135
750 667 705 738 697 720 615 669 705 702
28.3 82.73 55.61 71.54 7.06 9.74 10.37 15.46 7.71 7.91
21225 55180.91 39205.05 52796.52 4920.82 7012.8 6377.55 10342.74 5435.55 5552.82
18
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
HIDROLOGÍA SUPERFICIAL
19
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
0.72 5.62 9.93 11.43 13.55 15.85 39.1 12.75 25.03 58.03 23.13 10.99 18.04 10.43 8.41 7.84 8.61 6.03 4.92 6.03
HIDROLOGÍA SUPERFICIAL
317.5 637.5 642.5 647.5 652.5 657.5 665 672.5 677.5 690 702.5 707.5 712.5 717.5 722.5 727.5 732.5 737.5 742.5 747.5
228.6 3582.75 6380.025 7400.925 8841.375 10421.375 26001.5 8574.375 16957.825 40040.7 16248.825 7775.425 12853.5 7483.525 6076.225 5703.6 6306.825 4447.125 3653.1 4507.425
20
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
HIDROLOGÍA SUPERFICIAL
21
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
101 56 52 73 71 54 90 60 54 68 65 43 65 48 46 26 25 24 60 50 46 72 60.9 49 69.4 54.5 46
HIDROLOGÍA SUPERFICIAL
71 44 35 54 50 36 50 49 44 63 57 38 53 44 32 24 20 20 60 45 39 52.2 50.4 49 53.4 44.9 36.6
24 20 18 34 30 22 24 21 20 37 24 18 35 18 17 21 19 11 38 33 26 29.4 21.4 20.5 30.3 23.3 19.1
14 12 10 18 17 13 16 13 13 19 12 12 21 14 11 12 10 8 23 20 15 15.1 13 10.7 17.3 13.9 11.6
11 6 6 9 8 8 10 8 8 9 8 6 11 10 7 6 6 5 14 10 8 8.3 7.6 5.4 9.9 8 5.7
22
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
101 73 90 68 65 26 60 72 69.4
10.0 4.5 2.7 1.8 1.2 0.8 0.6 0.4 0.2
HIDROLOGÍA SUPERFICIAL
71 54 50 63 53 24 60 52.2 53.4
101 90 73 72 69.4 68 65 60 26
24 34 24 37 35 21 38 29.4 30.3
71 63 60 54 53.4 53 52.2 50 24
14 18 16 19 21 12 23 15.1 17.3
38 37 35 34 30.3 29.4 24 24 21
11 9 10 9 11 6 14 8.3 9.9
23 21 19 18 17.3 16 15.1 14 12
14 11 11 10 9.9 9 9 8.3 6
23
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
120 101 100
) H / M 80 M ( D 60 A D I S N E 40 T N I
71
38 23 14
20 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
100
90
90 ) 80 H / 70 M M 60 ( D 50 A D I S 40 N E T 30 N I
63
37 21
20
11
10 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
:
HIDROLOGÍA SUPERFICIAL
24
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
80
73
70
60
) H60 / M 50 M ( D40 A D I S 30 N E T N20 I
35 19 11
10 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
80
72
70 ) H60 / M M50 ( D40 A D I S 30 N E T N20 I
54
34 18 10
10 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
HIDROLOGÍA SUPERFICIAL
25
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
80
69.4
70 ) H60 / M 50 M ( D40 A D I S 30 N E T N20 I
53.4
30.3 17.3 9.9
10 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
80
68
70 ) H60 / M M50 ( D40 A D I S 30 N E T N20 I
53
29.4 16 9
10 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
HIDROLOGÍA SUPERFICIAL
26
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
65
70 60
52.2
) H / 50 M M ( 40 D A D I 30 S N E T 20 N I
24 15.1 9
10 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
70
60
60
50
) H / 50 M M ( 40 D A D I 30 S N E T 20 N I
24 14 8.3
10 0 0
20
40
60
80
100
120
140
DURACIÓN (MIN)
:
HIDROLOGÍA SUPERFICIAL
27
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
30
26 24
25
21
) H / M20 M ( D15 A D I S N E 10 T N I
12 6
5 0
0
20
40
60
80
100
120
140
DURACIÓN (MIN)
110 100 90 ) H / 80 M 70 M ( D 60 A D 50 I S N 40 E T 30 N I 20 10 0
T=10 AÑOS T=4.5 AÑOS T=2.67 AÑOS T=1.75 AÑOS T=1.2 AÑOS T=0.83 AÑOS T=0.57 ÑOS T=0.38 AÑOS 0
20
40
60
80
100
120
140
T=0.22 AÑOS
DURACIÓN (MIN)
HIDROLOGÍA SUPERFICIAL
28
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
HIDROLOGÍA SUPERFICIAL
29
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
HIDROLOGÍA SUPERFICIAL
30
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
Instantaneous or Daily Values Ronquill_D_J1_(m3/s) 7 6 s e u 5 l a V y l i a D4 r o s u o 3 e n a t n a 2 t s n I
1 0 01/08/2008
14/12/2009
HIDROLOGÍA SUPERFICIAL
28/04/2011
09/09/2012
22/01/2014
06/06/2015
31
UNIVERSIDAD NACIONAL DE CAJAMARCA E.A.P. de Ingeniería civil
Mientras más estaciones se usen para hallar la precipitación media más cercano estará el valor de coincidir por los tres métodos. Se logró desarrollar los softwares para análisis rápido de las precipitaciones medias mediante Q-GIS y AUTOCAD CIVIL 3D. Se corroboró que el software HYDRACCES es mucho más rápido analizando datos que cualquier otro programa utilizado en el presente informe.
HIDROLOGÍA SUPERFICIAL
32