DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN
Graph Theory and Its Applications Second Edition
DISCRETE MATHEMATICS and ITS APPLICATIONS Series Editor
Kenneth H. Rosen, Ph.D. Juergen Bierbrauer, Introduction to Coding Theory Kun-Mao Chao and Bang Ye Wu, Spanning Trees and Optimization Problems Charalambos A. Charalambides, Enumerative Combinatorics Henri Cohen, Gerhard Frey, et al., Handbook of Elliptic and Hyperelliptic Curve Cryptography Charles J. Colbourn and Jeffrey H. Dinitz, The CRC Handbook of Combinatorial Designs Steven Furino, Ying Miao, and Jianxing Yin, Frames and Resolvable Designs: Uses, Constructions, and Existence Randy Goldberg and Lance Riek, A Practical Handbook of Speech Coders Jacob E. Goodman and Joseph O’Rourke, Handbook of Discrete and Computational Geometry, Second Edition Jonathan L. Gross and Jay Yellen, Graph Theory and Its Applications, Second Edition Jonathan L. Gross and Jay Yellen, Handbook of Graph Theory Darrel R. Hankerson, Greg A. Harris, and Peter D. Johnson, Introduction to Information Theory and Data Compression, Second Edition Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn, and John S. Devitt, Network Reliability: Experiments with a Symbolic Algebra Environment Derek F. Holt with Bettina Eick and Eamonn A. O’Brien, Handbook of Computational Group Theory David M. Jackson and Terry I. Visentin, An Atlas of Smaller Maps in Orientable and Nonorientable Surfaces Richard E. Klima, Ernest Stitzinger, and Neil P. Sigmon, Abstract Algebra Applications with Maple Patrick Knupp and Kambiz Salari, Verification of Computer Codes in Computational Science and Engineering William Kocay and Donald L. Kreher, Graphs, Algorithms, and Optimization Donald L. Kreher and Douglas R. Stinson, Combinatorial Algorithms: Generation Enumeration and Search Charles C. Lindner and Christopher A. Rodgers, Design Theory Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography
Continued Titles Richard A. Mollin, Algebraic Number Theory Richard A. Mollin, Codes: The Guide to Secrecy from Ancient to Modern Times Richard A. Mollin, Fundamental Number Theory with Applications Richard A. Mollin, An Introduction to Cryptography Richard A. Mollin, Quadratics Richard A. Mollin, RSA and Public-Key Cryptography Kenneth H. Rosen, Handbook of Discrete and Combinatorial Mathematics Douglas R. Shier and K.T. Wallenius, Applied Mathematical Modeling: A Multidisciplinary Approach Jörn Steuding, Diophantine Analysis Douglas R. Stinson, Cryptography: Theory and Practice, Second Edition Roberto Togneri and Christopher J. deSilva, Fundamentals of Information Theory and Coding Design Lawrence C. Washington, Elliptic Curves: Number Theory and Cryptography
DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN
Graph Theory and Its Applications Second Edition
Jonathan L. Gross Jay Yellen
Boca Raton London New York
Copyright Jonathan L. Gross and Jay Yellen
CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20110713 International Standard Book Number-13: 978-1-4200-5714-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com
PREFACE
!"" #"""
$ $ % &
'
Æ
% ( ) * % + ! % + ,- % !
% .
% (" % (( / 0 % (# (1 2
% (3 () 4 % ( ) 5 2 6
Ü3)7
6 7
8
$ % ! 5 % ( % # Ü1(
9
¯ Ü1# Ü3( ¯ Ü3( Ü3# Ü:3 Ü(#: ¯ Ü3: Ü:1 Ü)( ¯ ; % : Ü(11 ¯ % ! Ü()( Ü()# ¯ Ü(:( Ü(:# Ü(:1 Ü()1 Ü()3 Ü(): $
% 3 6 7 : 6 7 ) 6 7 . 6 7 (# 6 7 (1 627 - $
% 1 67 $ % + 6 7 % ! 6 7 % (3 67 % (: 6 7 % () 6 7
¯
¯
4 % <
¯
*
= $
$ > '
$ ("" . 9
Ü!) ? Ü.3 @ Ü("( ? Ü("# ? Ü("1 A
Ü("3 Ü((( 0 Ü((# Ü((1 0
= % (
>
>
* % # * % 1 3 2 % :
Ü:#
* 0 # * % + ,- 6 % . 7 % ! % + 6 % (: 7 4 % + 6 7 % . % (" 6Ü.37 % (" (( 6Ü (":
Ü(")7 % +
% (# % (( % (1 % (# % (3 (: () % (1 (3 (: % (3 6 7 A- B % () 6 7 % + % !
@
Ü33 Ü1+
' -
8
? ' $
%0% ;
$
' 8
A A
C % B , * , A 4 A 4 4 , 0 ' C ' ? D * A 4
' * ,
C C E
ABOUT THE AUTHORS Jonathan Gross is Professor of Computer Science at Columbia University. His research in topology, graph theory, and cultural sociometry has earned him an Alfred P. Sloan Fellowship, an IBM Postdoctoral Fellowship, and various research grants from the Office of Naval Research, the National Science Foundation, and the Russell Sage Foundation. Professor Gross has created and delivered numerous softwaredevelopment short courses for Bell Laboratories and for IBM. These include mathematical methods for performance evaluation at the advanced level and for developing reusable software at a basic level. He has received several awards for outstanding teaching at Columbia University, including the career Great Teacher Award from the Society of Columbia Graduates. His peak semester enrollment in his graph theory course at Columbia was 101 students. His previous books include Topological Graph Theory, coauthored with Thomas W. Tucker. Another previous book, Measuring Culture, coauthored with Steve Rayner, constructs network-theoretic tools for measuring sociological phenomena. Prior to Columbia University, Professor Gross was in the Mathematics Department at Princeton University. His undergraduate work was at M.I.T., and he wrote his Ph.D. thesis on 3-dimensional topology at Dartmouth College.
Jay Yellen is Professor of Mathematics at Rollins College. He received his B.S. and M.S. in Mathematics at Polytechnic University of New York and did his doctoral work in finite group theory at Colorado State University. Dr. Yellen has had regular faculty appointments at Allegheny College, State University of New York at Fredonia, and Florida Institute of Technology, where he was Chair of Operations Research from 1995 to 1999. He has had visiting appointments at Emory University, Georgia Institute of Technology, and Columbia University. In addition to the Handbook of Graph Theory, which he coedited with Professor Gross, Professor Yellen has written manuscripts used at IBM for two courses in discrete mathematics within the Principles of Computer Science Series and has contributed two sections to the Handbook of Discrete and Combinatorial Mathematics. He also has designed and conducted several summer workshops on creative problem solving for secondary-school mathematics teachers, which were funded by the National Science Foundation and New York State. He has been a recipient of a Student’s Choice Professor Award at Rollins College. Dr. Yellen has published research articles in character theory of finite groups, graph theory, power-system scheduling, and timetabling. His current research interests include graph theory, discrete optimization, and graph algorithms for software testing and course timetabling.
C $
C 4
CONTENTS Preface 1.
INTRODUCTION to GRAPH MODELS (( ? # (# % @ (: (1 4 $ ## (3 * ? #! (: ; % 1. () F $9 4 $ 3! (+ ' :( :1
1
2.
STRUCTURE and REPRESENTATION #( :! ## $ ' ): #1 ' +# #3 ' > !" #: = !. #) 4 0 .: #+ 4 > ("( #! ' ("+ (("
57
3.
TREES 1(
% ;
(()
1#
0 > A
(#3
11 13 1: 1) 1+ 1! 1.
4.
A A' 58 > ; % ; % B 9 ;G % A 9 % 0 '
115
SPANNING TREES 3( 3# ? @ A @ ' 31 4 ' ' ; 33 $ ? @ ' 3: % % ' 3) F ' 3+ 4 $ 3! '
(1# (1+ (3( (3) (:( (:) (:! ()"
163 ()3 (+( (+) (!# (." (.+ #"+ #(# #(1
5.
CONNECTIVITY F
:#
% 0 =
:1 :3 ::
6.
7.
8.
44 ? 4- A ? '
:(
%
OPTIMAL GRAPH TRAVERSALS )( )# ?A& ' ; ; )1 5 ; % )3 % ' ; ): ' PLANARITY AND KURATOWSKI’S THEOREM +( ; ? ' A ' +# ' 5 +1 ; ? +3 ,- +: $ ; +) ; $ ++ % = +! ' DRAWING GRAPHS AND MAPS !( B ? !# 5 > ' !1 4 4 ? !3 0 4 ' !: 5 > ' !) ? !+ '
9. GRAPH COLORINGS .( F% .# 4 % .1 % .3 @ .: '
217 #(! ##1 #1( #3( #33 #3:
247 #3! #:# #)+ #+1 #!# #!1
285 #!) #.# #.+ 1"3 1(( 1#3 1#+ 11( 113
337 11! 13( 13) 13. 1:3 1)( 1): 1))
371 1+# 1!) 1.1 3"+ 3(( 3(1
10. MEASUREMENT AND MAPPINGS ("( ? ("# ? ("1 A ("3 (": B 4 (") 4 = ("+ ' 11. ANALYTIC GRAPH THEORY ((( 0 ((# ((1 0 ((3 '
417 3(! 3#3 31" 31: 333 3:1 3)# 3)1
469 3+" 3+: 3!" 3!. 3."
12. SPECIAL DIGRAPH MODELS ;& ' % ; @ ' % ? '
493
(#(
? ; 4 0
3.3
(##
? 4 0
:":
(#1 (#3 (#: (#)
13. NETWORK FLOWS and APPLICATIONS (1( @ % = (1# ' 4@ ; (11 @ % (13 4 F % (1: '
:(( :() :#1 :#! :#.
533 :13 :3# ::( :)" :+1 :+3
14. GRAPHICAL ENUMERATION (3( (3# (31 (33 (3: (3) (3+
% ' A- B % ; ; 4 % ' ;H A ' $ '
577 :+! :!1 :!. :.: )"" )") )". )("
15. ALGEBRAIC SPECIFICATION of GRAPHS (:( % F (:# % 0 F (:1 ; F (:3 ' ; $ (:: = ; (:) '
613 )(3 )#1 )1# )1+ )33 )3) )3.
16. NONPLANAR LAYOUTS ? F ' B =,FB F 5 4 % ; '
()(
0
()# ()1 ()3 (): ())
0
651 ):# ):. ))3 )+" )+# )++ )+!
APPENDIX
681
' A % $ ' $ % ' 0
$(
B @
)!(
$#
0 @
)!1
$1 $3 $: $)
)!) )!+ ).# ).3
BIBLIOGRAPHY
695
A(
0
).:
A#
0
).+
SOLUTIONS and HINTS
709
INDEXES ( # 1 3
757
$ = $
+:+ +:. +)( +)+
Chapter
1
INTRODUCTION TO GRAPH MODELS 1.1 Graphs and Digraphs 1.2 Common Families of Graphs 1.3 Graph Modeling Applications 1.4 Walks and Distance 1.5 Paths, Cycles, and Trees 1.6 Vertex and Edge Attributes: More Applications
INTRODUCTION
!
!
"
"
#
$
%
& '
%
(
) " $
1
2
1.1
Chapter 1 INTRODUCTION TO GRAPH MODELS
GRAPHS AND DIGRAPHS
%
*
+
, ( (
Figure 1.1.1
-
)
. + ,
+ , /
" ( " " +,
01 . +, % + +, +,,
"
+, 01
"
222 . . "
. . 3 ("
4
" Simple Graphs and General Graphs
# " ( "
Section 1.1
Graphs and Digraphs
3
# "
(
(
+ ,
5
222 !
%
"
"
6
Null and Trivial Graphs
"
" Edge Directions
#
+ ,
# +, +,
4
Chapter 1 INTRODUCTION TO GRAPH MODELS
+ ,
# " "
0 1
227 #
Figure 1.1.2
+ , " + ,
22*
Figure 1.1.3
6
! " 2*
Formal Specification of Graphs and Digraphs
/" !
6
+ " ,
+
, # ("
Section 1.1
5
Graphs and Digraphs
" "
228
' '
' ' Figure 1.1.4
. + ,
+ ,
"
229
Figure 1.1.5
. + , ' ' " "
4
!' "
#
" 22: ;<
"
6
Chapter 1 INTRODUCTION TO GRAPH MODELS
+, . +, . +, . +, . +, . +, . ! +, . +, . + , . +, . +, . +, . ! +, . +, . +, . + , . Figure 1.1.6
!' 4
+, +
, =
( +, +,
'
7 ' + , (
$
(
>
+ , %
/
6 " $ ( ' + ,
? 2:
Section 1.1
7
Graphs and Digraphs
Mathematical Modeling with Graphs
"
# " 22@
Figure 1.1.7
$ !
% 22?
Figure 1.1.8
Degree of a Vertex
( # " + , " +,
"
Æ Æ + Æ +, Æ +,
, 6
Æ Æ A Æ
8
Chapter 1 INTRODUCTION TO GRAPH MODELS
"
& 22B
: : 8 2 2 C - " Figure 1.1.9
'
$
( 222C $
Figure 1.1.10
) ' * * * 7 7 7 7
6 2* +
2*7, +
+
6
C 2 D "
C "
2
"
C
2 ( 7 D - 2
> / +2@C@E2@?*, /
) , -
+
/
.
+
227
D
Section 1.1
Graphs and Digraphs
9
.
229 "
9 8 * * 7 2 C
( "
2222
Figure 1.1.11
. ' 9 8 * * 7 2 C
)
+ , . . 2 +
6
"
F 22* G
(
Graphic Sequences
229
6 !
) "
+ , . . 2 7 ½ +
"
+ , . . 2 7 . +, ½ " # . # " " 7 H 2
( " " H 2 ( + + , . , & + , + , "
10
Chapter 1 INTRODUCTION TO GRAPH MODELS
" ( > + 2227,
+ , ½ + , ½ . H 2
Figure 1.1.12
/ 0 1
. # ,21 3&4 2! 3&"4-
2 ½ 2 ½ !"
# !' 22@
1 5 /'3 4 '
' =I/
! >6/ # . C = =I/ /
# C = >6/ /
> 2 ½ 2 ½ = 6 + , Algorithm 1.1.1:
!' 6
22@ "
+
/"
,
-
D -
" "
%
* * 7 7 2 2 222*
6 -
"
"
Section 1.1
11
Graphs and Digraphs
Figure 1.1.13
) 6 ' * * 7 7 2 2
Indegree and Outdegree in a Digraph
"
" ! " /
"
* 8 * 7
2 *
) 1 " / G J
6 227
Figure 1.1.14
) %
+
/
+,
+, 7 .8// / ! "
22
. ! ! . +, . ! + , . ! +, . !
12
Chapter 1 INTRODUCTION TO GRAPH MODELS
22
. " ! ! . +, . ! +, . ! +, . ! +, . 22 . " ! ! . +, . + , . ! +, . ! ! +, . +, . " # $ % . % .
22 22 22"
"
"
"
& ' "
22# 22%
22&
( ) "
22( /"
22@ 22 /"
22? 22 /"
22B
22 J
? @ * B ? ? : 9 * 2
Section 1.1
Graphs and Digraphs
13
22 J
: 8 8 * * 7 2 2 9 9 9 * * * * * * ! + , - .
&
22 7 7 2 C C 8 * 7 2 C 22" 8 7 7 2 2 7 7 7 7 22# 8 * 7 7 2 8 * * * 2 22% 8 8 8 8 * * * * * 7 7 2 C 22& 222
#
- @ : : 9 8 * 7 2 9 9 9 8 7 2 2 2 @ @ : 9 8 8 * 7 9 9 8 8 7 7 2 2 22( I
22: 22@ 22 % 222 22@
-
22
"
K 22 J
22 % K 22 J
"
' 2 2 2 ' 2 2 2 ' 7 2 ' * C
" "
# + , . + , . . 2 7 22" J
* 2 2 C 2 2 2 7 22# / 22@
22% D $
-
K 22&
* $
22(
97 $
"
22
$
"
K 22 J " "
( K
14
Chapter 1 INTRODUCTION TO GRAPH MODELS
22 ) ' " 2* *2
2
8 > . + , $ $ " $ +6
2*8, 22 - + , " "
? "
22 " "
22@ 22"
( 6
(
J
( +6
7* B2, 22# - " + ,
"
? "
22% "
" 22@ 22& "
/"
22*:
( +6
B* 2*8, 22( - " + , "
? " 22 " " 22@ 22 " /"
22*: > . + , $ $ + , " $ ( " $ $ 0 1 +6
2C7, 22 - + ,
"
? "
Section 1.2
15
Common Families of Graphs
22
"
22@ 22
/"
22*:
1.2
COMMON FAMILIES OF GRAPHS
" Complete Graphs
( %
272
Figure 1.2.1
) 1
Bipartite Graphs
"
& $ &
$ & $ & $
277
Figure 1.2.2
+
) *
+
16
Chapter 1 INTRODUCTION TO GRAPH MODELS
% 27*
Figure 1.2.3
) $*
"
( "
'
%
% 278
Figure 1.2.4
) * %
Regular Graphs
"
279
"
Figure 1.2.5
) 1
%
Section 1.2
17
Common Families of Graphs
# *
27: F
)
(
Figure 1.2.6
) +
" ( "
7 27@
Figure 1.2.7
$ (
Bouquets and Dipoles
4 " " + ,
+
29, "
Figure 1.2.8
9 '
(
"
" 27@
27B
Figure 1.2.9
:
18
Chapter 1 INTRODUCTION TO GRAPH MODELS
Path Graphs and Cycle Graphs
) . H2
2 ) # ) ) ) 272C
+ ) )
Figure 1.2.10
"
*
.
" * % * * * 2722
Figure 1.2.11
. * * *
!'
28 29 Hypercubes and Circular Ladders
+
"
$ " & ? " 279 + +
/"
,
*, -
( ( *, 2727
Figure 1.2.12
. *,
Section 1.2
19
Common Families of Graphs
Circulant Graphs
. C 2 2
- 2 2
+ ' - ,
"
. ( - H . . . H . #
- #
- . + ' ,
272*
Figure 1.2.13
) +9 ' 2 7, +: ' 2 7, +? ' 2 8,
!' 3
.
29 Intersection and Interval Graphs
"
. . - - - " ( . . - - . "
2728 '
+2 *,
+7 :,
Figure 1.2.14
+9 ?,
+8 @,
1
' 6
" 2CCC F 2CCC J #
( #
20
Chapter 1 INTRODUCTION TO GRAPH MODELS
#
+2CCC 2CCC, +
,
Figure 1.2.15
!' #
-
2C8
Line Graphs /
,+, " ,+, ( " ,+,
272: ,+,
Figure 1.2.16
7 .8// / 27 % % 27 % "
' K 27 J
27 J % * ) 27 J * %
Section 1.2
21
Common Families of Graphs
)$ )&
27"
27#
27% > 279 *
( $ " 27&
" " $ K #
"K 27( ) ' " 9 22
27 J * "
J 8 "
" 27 ) "
C "
C 27 6
D $ "
K 27 > 0 > C81
"
& . $ . + , . . 2 7 + , . . 2 7 )
7 C C 2 2 ½ 2 ½ ½ 27 8 " 27" 6
27# 6
Æ + ' , * 27%
Æ + ' , /7 ( 27& J -
+ 22 "
, % % * )
*, 27( J - " + 22 "
, % % * )
*,
22
Chapter 1 INTRODUCTION TO GRAPH MODELS
27 J -
+ 22
"
, % % * )
*, 27 J - " + 22 "
, % % * )
*, 27 6 % 2 27 J +C 7, +* ?, +2 8, +* 8, +7 9, +@ B, 27 6 272 +2CCC 2CCC, 27" ) * 8 27# J
2 7 * 27% )
1.3
GRAPH MODELING APPLICATIONS
J $
6 !
Models That Use Simple Graphs
$
$ % 6
$ (
(
( (
" ( K # 2*2
(
(
2*
Figure 1.3.1
0 *
Section 1.3
Graph Modeling Applications
23
& ' % # $ "
(
2*7 # 6 %
"
6 ; <
Figure 1.3.2
' !
F ) 222 2*7
* * * * 8 8 8 : ( % # 2** "
(
Figure 1.3.3
5 0
( $ % " * % " 2
2*8
2
Figure 1.3.4
$ $ !
24
Chapter 1 INTRODUCTION TO GRAPH MODELS
& ' $ % 3
" #
"
2*9
0 29 $
Figure 1.3.5
$*;$ $ !
"
) * % %
$
- $
6
2CC $
2CC 2*:
! " # $
! " # && ' '( )' (* + ,, ** - *&
Figure 1.3.6
$ &' -( (& + '*
% (( ,-, ( + ,
$'$ *
( $ $
B
Section 1.3
25
Graph Modeling Applications
Models Requiring Non-Simple Graphs
# + )
% # ( 2** (
( % , - % - 2*@ 6 8
"
8!
"
2
Figure 1.3.7
) *6
Models That Use Simple Digraphs
"
& " %
2*? /
" " "
Figure 1.3.8
)
* .
. -'/0 )-
26
Chapter 1 INTRODUCTION TO GRAPH MODELS
( & ' % # (
2*B
L " " $
27
Figure 1.3.9
1 *
* . , $ % /
" " " I
Models Requiring Non-Simple Digraphs
-' . % 6
4G %G 2*2C ( 4G C8 G
"
%G C: 4G # 1
D ;4< ;%<
4G %G &
1 2*2C / " " 2 & " +
2:, 4 " & 27
Figure 1.3.10
<! 1
Section 1.3
Graph Modeling Applications
27
%
- ; < %
-
" 6
" % -
2*22 4 "
$
" 2
/
#
Figure 1.3.11
=$ 6
7 .8// / 2* 6
2*:
2* % K
2* = & 2*27
(
" 4G % "
%G 4G %G K 2* & - 2*2*
+D ' , 2* % - K
28
Chapter 1 INTRODUCTION TO GRAPH MODELS
$ %
3
2*"
2*# 6
$
2*% =
; < "
+ + , + , , 2*& 6
4 9C
! " # $
! " (' ' & +' +& )&
# )' && ' ,&
$ '' *' &' && &
% (' -' (' +' )' *'
2*( 6
(
( 2, J 7, /"
( " ( 2*
2* > 0
- +=
" 7, J
J 0
- . 2 7 * 8 9 0 . +2 7, +7 2, +2 2, +2 9, +8 9, +* *, 2* J
" ! ! !
1.4
WALKS AND DISTANCE
&
Section 1.4
29
Walks and Distance
F "
(
Walks and Directed Walks
#
" "
# $" " "
$ . + , . . 2 # + " , $ $" " " + , . + , . #
"
$ . #
" "
$ . + , "
$" ! + $" !4
" "
C "
$"
$" + $", + , " $" + $", $
# 282 :
4D ) 3M L & 3M ) 4 ) 3 Æ 29
5
30
Chapter 1 INTRODUCTION TO GRAPH MODELS
Figure 1.4.1
5 0
# & + 2*27,
4G %G %G " 4G
4 % % % 4 &
" 4G 8 @ @ * . CC9??
Figure 1.4.2
<! 1
# " 2*2* ) B " " $ . $ . $ $
$ Æ $ . 28* 7 *
$ . $ . " ! ' $ Æ $ . " ! ' Figure 1.4.3
. !
$" $ .
- . C . "
# 288
" ! " !
Section 1.4
31
Walks and Distance
Figure 1.4.4
Distance
+ , " " " !
+ , .
1+ , " # 289 % L & % L &
Figure 1.4.5
5 0
+ , +
/"
, #
+
8*,
Figure 1.4.6
2 ! >
Eccentricity, Diameter, and Radius
" +, " +, . ¾ " + ,
32
Chapter 1 INTRODUCTION TO GRAPH MODELS
'+, " " "
'+, . ¾ " + , . ¾ " + ",
+, "
+, . ¾ + ,
" +, . +, # 28@ 8 " " 7 7
"
Figure 1.4.7
% >
"
( : !' J
2C2 Connectedness
L " "
6
& 28? 7*
Figure 1.4.8
$
Section 1.4
33
Walks and Distance
Strongly Connected Digraphs
( 28B
Figure 1.4.9
6
282C
Æ
Figure 1.4.10
!?
"
6
27 - Application of Connectedness to Rigidity
+ + * ' ' 7
(
1
34
Chapter 1 INTRODUCTION TO GRAPH MODELS
-
" 2822
Figure 1.4.11
) !
6 ) + *' 6
2 7
8 ' 77
Section 1.4
Walks and Distance
35
2 7
6
+2 2, & .
. F
'
8 ' 2827 2822
3
4 )
Figure 1.4.12
/ ) !
7 .8// / 28 J "
! ! ! !
36
Chapter 1 INTRODUCTION TO GRAPH MODELS
28
8 9 " "
28
28 %
K
28 /"
! " !
#$ #,
28" 28# 28%
28& /" K 28( J 28 "
28
"
Section 1.4
Walks and Distance
37
28 #
+ , K 28 J ? "
28 J @ "
28" J ? "
"
28# J 9 " #, #),
28% /"
282 28& /"
287 28( ) ) * + 27, 28 * 8 + 27, 28 % * 28 % ' * + 27, 28 )
+ 27, 28 D + ! - +K + 27, 28" *, 8 + 27, 28# J + 27, 28% # + 27, 28& J
+ 27, +9 ' 2 7,! +: ' 2 7,! +? ' 2 7, 28( J + ' ',
' 28 J + ' ,
28 > )
+, '+, 7 +, 28 )
-
# # # $
28
38
Chapter 1 INTRODUCTION TO GRAPH MODELS
28
28"
28# 6 K
28% > )
" 28& )
"
28( > ) 28 > " $ % " 7 * 28 > " $ ( % " 7 * 28 > " $ ( % " 7 * 28 )
!
" ! + ! , + ", H +" ! , 28 > ) + ", 7 " " + ", . + , H + ", 28" > " +, " )
Section 1.5
1.5
39
Paths, Cycles, and Trees
PATHS, CYCLES, AND TREES
F " " %
"
Trails and Paths
+ "
, " I
4
#
292 $ . !
2 .
"
$ . ! 2 . Figure 1.5.1
@! $ 2
!' J
" % " (
Deleting Closed Subwalks from Walks
$ .
$ ¼ . $" $ $" $ ¼ $ $ ¼ $ $ ¼ . $ $ ¼ $ $ ¼ " 4
$ $ ¼ $ ¼ $
297
$ $ ¼ $ $ ¼ 4
$ $ ¼
40
Chapter 1 INTRODUCTION TO GRAPH MODELS
$ " $ ¼ " "
$ . $ ¼ . $ $ ¼ . Figure 1.5.2
! $ * *! $ ¼
!' + ,
$" "
. $ $ $ . . 2 2 $ $
$ "
" " ' $ "
' +
# $ "
$
$ ) $ " ' $ "
" ' $ +
# $ "
$
" =
"
" > 292 . "
/ " +
" " 297
Cycles
" +:*
,
2 3 4
Section 1.5
41
Paths, Cycles, and Trees
29* ! "
Figure 1.5.3
- ) +
4 +,' 6
6 5Æ +,' > 7 %
) " +3 4 , '
3 . + , 4 . " + ", # +3 4 ,
( > ) ) F
3 4
6 " " +
298, 6 ) )
)
)
F
D +3 4 ,
Figure 1.5.4
= Æ )
297 + "
2 ' +
> 2 ¼
2 # 2 ¼
2 ¼
42
Chapter 1 INTRODUCTION TO GRAPH MODELS
!'
) 299 2
+
/"
, ( * * * * 2
2
2
) "
% 2 +
F
' 3 " 2
' H 2 F ) 299 2
* 2 *
' F 2 *
(
* 2
* * *
2 299
-
Figure 1.5.5
2
Eulerian Trails
2 . . 29:
# ( 298
- 89
Figure 1.5.6
5 6 #
Section 1.5
43
Paths, Cycles, and Trees
" & '% 6
29:
" K
/" 299 2
: Girth
" 29@ * * 7 2
Figure 1.5.7
Trees
Figure 1.5.8
$
" * 8
"
$ , %
# " 6
G
% 2
44
Chapter 1 INTRODUCTION TO GRAPH MODELS
8 * 29B
Figure 1.5.9
) * * *
0 . % &
+
,
G
+
*7, 292C
Figure 1.5.10
*
+ ' 6 +
*7, Æ
#
(+#+,, 2922
*
3 % %
Figure 1.5.11
*$ $ !
Section 1.5
Paths, Cycles, and Trees
45
- , & ' ' 6
. ¾
( #
2927 3
Figure 1.5.12
. 1 *
7 .8// / 29 % "
K % K % K %
K " " " " "
29 % "
K % K % K %
K " " " 29 #
9
29 # @
"
46
Chapter 1 INTRODUCTION TO GRAPH MODELS
29 J
29" J )
+ 27, " 9 B 9 : ? B 29#
29% "
29& > " $ % " 7 * 29( > " $ % 9 " 8 29 > " ( % " 7 * 8 29 > " $ ( % " 7 * 8 29 > " ( % * " 7 * 8 29 > " $ ( % * " 7 * 8 ++ +))
29 29" 29# 29% 29& 29( 29 29
% % ' * % D + - + K *, - *,K )
J #
29 J + 27, +9 ' 2 7,! +: ' 2 7,! +? ' 2 7, 29 J + ' ', '
Section 1.5
Paths, Cycles, and Trees
47
29 J + ' , 29"
Æ + ' , 29# J + 29% J )
29& J *, * 29( ) "
29 ) ' /
29 ) " " " " 29 6
) ) 7 29 6 297 29 6 ) 299 29" 6 29: 29#
/" 298
+
, 29% #
* 2922
#
2922K 29&
29( J
$ 29 % K 29 ) "
29 ) "
48
Chapter 1 INTRODUCTION TO GRAPH MODELS
1.6 VERTEX AND EDGE ATTRIBUTES: MORE APPLICATIONS
# & " 2*
Four Classical Edge-Weight Problems in Combinatorial Optimization
$
$ /
-
" $ $ % 6
2:2
+ , " " +
8,
Figure 1.6.1
$ *
" -1
$ % 6
"
2:7 J - +
8,
Figure 1.6.2
Section 1.6 Vertex and Edge Attributes: More Applications
49
" $ % 6
" 2:*
G - #
+
:,
Figure 1.6.3
1
" -* $ % 6
2:8
" +
2*,
Figure 1.6.4
$; *
# %
Æ
47%8 # $ Vertex-Weights and Labels
" " "
" " &
50
Chapter 1 INTRODUCTION TO GRAPH MODELS
" $ ' 59%
" %9 * * 3 N
" -
29
Figure 1.6.5
) A$ -
"" ,
$ $ ' J
" G
#
: < ' G "
- . 7 7
:7
!' I
G
"
" 7 .8// / " 2:
+ 2*2, " +D ' , 2: > " % D $ D K $ $, %
:
2: 6
"
D
K
Section 1.7
Supplementary Exercises
51
2: 6
D
- K 2:
/
Æ
% Æ
K 2:" '
%
. . D
- K 2:# 6
O P%D " 5 P%D /
' / P%D
. D K 2:% 6
'
9C . D
- K
1.7
SUPPLEMENTARY EXERCISES
2@ 7C " :7 / "
* @ D
*K 2@ / * @ " " 2@ ) 9 " @ 7 2@ I
D D
9***77 # 2@ J
,+,
22777** 2@" J
,+ ,
22777** /"
2@9 2@# D K 2@% D + K 2@& % )
K /" 2@( # +78 ' 2 9, +*,K
52
Chapter 1 INTRODUCTION TO GRAPH MODELS
2@ # +78 ' 2 9, 7 " *K 2@ # +78 ' 8 B, K %
K D K 2@ % " +2* ' 2 9, CK 2@ +2* ' 2 9, 2@ ?? )
:7 *2 ( 2@" ) '
2@# ) " 2@% $ % 2@& > "
% " K "
( (
2@( > 9 ) +6
78, 2@ >
8 ( $ " % "
% K /" .
2@ ) "
C+ 8, 2+ 8, 2@
K 2@ 6
8 H 2 ) "
7 " ' ' C 2 ' ¼ ' C 2 ' + , +,
2@ ) * 2@" ) *
Glossary
53
GLOSSARY
' 0 *' " " 0 ' 0 1 ' ( '
! ' *
' "
& . $ . + , . . 2 7 + , . . 2 7 * '
"
+ ,
* '
* '' "
1 ' "
+, .
+, + ' - ,
- 2 2'
"
. C 2 2 . ( H . . . H . *, ' -
( '' 34 !' + ,
* '
$ ( ' ( $ $ '
$ $ $ $ '
'
'
' 2 " !
54
Chapter 1 INTRODUCTION TO GRAPH MODELS
2 ' * * * (
* 2
2 "' "
''
'+,' '+, . ¾ " + ", '
' " "
+ , . # + , . . 2 7 ' "
" ' ' ' ! " " '
'
!
'
' "
$ " $ ( " $ " ' " ! +, '
$ ' "
( ( ' % $ '
+ , '
' '
' ' + , " ' ' " ' ' C 2 ' ¼ ' C 2 ' + , +,
Glossary
55
. + ,'
+ , /
'
'
"
'
* +'
"
$ " '
* '
" ' '
( '
(
1 '
"
'
,+, ' " ,+, ( " '
( ' $ '
$ '
* ' " ' '
"
34 !'
" $
" ' ' ' + "
",! '
56
Chapter 1 INTRODUCTION TO GRAPH MODELS
+ ' * 2C " Q )
' " ' * E '
+,' " * " " ' " ! $ $ ¼'
$ ¼ " $ '
$ ' . $
'
" + ,' + ,
$ ! ' ' '
*! $ '
$ ' '
' ' 1 ' " " ' + , 1' 1'
! 1 1 ' "
$ " $ ! " " '
" " '
%
Chapter
2
STRUCTURE AND REPRESENTATION 2.1 Graph Isomorphism 2.2 Automorphisms and Symmetry 2.3 Subgraphs 2.4 Some Graph Operations 2.5 Tests for Non-Isomorphism 2.6 Matrix Representations 2.7 More Graph Operations
INTRODUCTION
! ! " # $ # # # # %
& ' ( ) 57
58
Chapter 2
STRUCTURE AND REPRESENTATION
* + ' ! , # # # -. # / # Æ Æ
2.1
GRAPH ISOMORPHISM
Æ !
! Structurally Equivalent Graphs
$ -00
Figure 2.1.1
, ' ' 1 ,
Section 2.1
59
Graph Isomorphism
-0- !
Figure 2.1.2
$
,
' # 0 4
- . 2 5 3 6 $ # 0 ' - 2 4 , # 7 (0) ' 7 (-) 7 (2) 7 (4) , # '
8 ' ' " Formalizing Structural Equivalence for Simple Graphs
9 # ' 8 ' () ( ) '
() ( ) ' '
# ' 8 # ' ' ' () ( ) '
7 # # ' 8
# 1 ! # 8 8
$ -02 %! # '
60
Chapter 2
Figure 2.1.3
STRUCTURE AND REPRESENTATION
$ -03
Figure 2.1.4
8 ' # ' ' 8 , 9 % 0: # ; 3 $ -04 ' ' ' , ' : - ' 3 .
Figure 2.1.5
!"# "$#% &
' # - $ -0. ' ' '
Figure 2.1.6
(# " $"% & "#
Section 2.1
Graph Isomorphism
61
Extending the Definition of Isomorphism to General Graphs
# # ' ) 8 # $ -05 () 7 7 0 - 2 ' '
Figure 2.1.7
&& *&#
# ' 8 # () ( :)
() ( ) () # # ()
# ( ) # # ' 8 7 Specifying an Isomorphism Between Graphs Having Multi-Edges
9 # ' 8 ' 8
() ( 8 8 ) 8 ( 7 8 8
(
, # ' ' % 7 # ' 8 1 ' 8
' () ( ) ( ) 8 , # ' 8 '
8 () ( )
62
Chapter 2
STRUCTURE AND REPRESENTATION
< ' # ' # ' 8 '
8 ,
+ # ' $ -06 / # ' # ' < 0-
Figure 2.1.8
Isomorphic Graph Pairs
! # #
(
9 8
' 8 ( ( )) 7 ( ) (
# # ( ) ( ( )) 7 ( ) ,
, ' 8 () - , $ -0= 6 0 2 # # ' # # ' ,
Section 2.1
Graph Isomorphism
Figure 2.1.9
63
.& &
/ $ -00: *> + . = 2 #
Figure 2.1.10
! 01 &
Isomorphism Type of a Graph
, 7 ( ) 7 ( )
7 (? @) AB# 7 / 7 , $ -000 %
( % 03)
Figure 2.1.11
& $#
Isomorphism of Digraphs
#
64
Chapter 2
STRUCTURE AND REPRESENTATION
() () ( ) 2 $ -00- C
Figure 2.1.12
3 & $
The Isomorphism Problem
, # %! # ' # # < D # ' ! #
+% % ! /$ % ! ! , +% /$ +% ( )
, +% ! /$ ! ! < ! +% !
4 ,5 !
"
-0 -0 -0 -0 -0' -0)
3 # 3 #
4 # . # 4 # # . # #
# $ !
"
-0+
3 # #
Section 2.2
-0-0/ -0 2
Automorphisms and Symmetry
65
3 # # 2 #
2 #
% !
"
-0 -0 -0 -0 3 # # # -
& ' ! !
-0 '
-0 )
-0 +
-0 -
-0 / E # 4 # -02 E # = #
2.2
AUTOMORPHISMS AND SYMMETRY
# ( ) 1 7 ( )
66
Chapter 2
STRUCTURE AND REPRESENTATION
1 # #
8 # ( ) ( ) # Permutations and Cycle Notation
, () ' # F ( ) ' F ( ) ' 7 : 0 0 # # 3 '
0 2 3 4 . 5 6 = 7 5 3 0 6 4 - = . 2 0 5 - 3
7 (0 5 = 2)(- 3 6 .)(4) Geometric Symmetry
# / B $ --0
Figure 2.2.1
$ 0-:Æ ! # ()( ) ( ) B # # ()()( ) ()( ) #
Section 2.2
Automorphisms and Symmetry
67
G # /
()( )( )() ()()() 0-:Æ ()( ) ( ) -3:Æ ()( ) ( ) B ()()( ) ()( ) B ()( )( ) ()( ) B ()( )( ) ()( ) # -3 + -02 # 2 # # ' # '
# 8 /# # # # ' $ --- # ' , # 1 B B 06:Æ H #
Figure 2.2.2
& &
Limitations of Geometric Symmetry
! B $ --2 H 4 (: 0 - 2 3)(4 . 5 6 =) (: 4)(0 6)(3 5)(- 2)(.)(=) - B ( # . =)
( /# )
68
Chapter 2
Figure 2.2.3
STRUCTURE AND REPRESENTATION
(
Vertex- and Edge-Transitive Graphs
#
' /# ---
# 2 # ) # ( /# ) + # ( /# ) - H # ( /# ) / / !(F " ) # , # ; # , $ --3 $ # 2 # 5 !(02 8 0 4) ( /# )
Figure 2.2.4
& !(02 8 0 4)
Vertex Orbits and Edge Orbits
Section 2.2
69
Automorphisms and Symmetry
(/ # -) 2 /# --2 ( $ --4) #
# 8 0 6 3 . - 5 2 4 8 0- 56 23 4. -2 -4 25 45
Figure 2.2.5
24
6
(
-02
(
% -04
8 # #
# / # # 7 F # < ( /# ) 8
% 03 04 # How to Find the Orbits
1 # (, !
# D # ' ) , --0 --- # #
70
Chapter 2
STRUCTURE AND REPRESENTATION
, $ --. # : # - B (:)(0 3)(- 2) 0 3 - 2 * 0 3 - - 2 0 3 - 2 # : 0 3 - 2
Figure 2.2.6
3 #
-2 2 :0 :3 - 2 # B :0 :3 0- 23 02 -3 (:)(0)(3)(- 2) 0- 02 -3 23 -2 :0 :3 0- 02 -3 23
1 3 $ --5 (: 4)(0 3)(-)(2)(.) ! < #
Figure 2.2.7
3 #
1 ! : - 2 4 2
0 3 . ' $ --6
Figure 2.2.8
3 #
, # : - 2 4 0 3 . " :4 -2
Section 2.2
71
Automorphisms and Symmetry
4 ,5 %
--
--
--
--
& #
--'
---
--)
--+
( !
--/ -- !( 8 " )
-- 2 -- H
-- H # 7 % #
-- !(= 8 0 ) -- )
)* + !
-- ' !(02 8 0 ) -- +
' # !
-- - --2 -- -- --)
/# --0 /# --2 /# --4 /# --5 $ --=()
-- / -- -- --' --+
/# --- /# --3 /# --. $ --=( ) $ --=()
72
Chapter 2
Figure 2.2.9
STRUCTURE AND REPRESENTATION
--- / H /# --3 ( ) H - B () H () H --/ H /# --2
2.3
SUBGRAPHS
H # # $ 042 I ! % 5 ( ) ! , /
Section 2.3
73
Subgraphs
$ -20
Figure 2.3.1
7 8 &
A Broader Use of the Term “Subgraph”
? @
$ -20 # $ -2- $ () % ()
Figure 2.3.2
&
Spanning Subgraphs
7
' , $ -20
) $ -22
74
Chapter 2
Figure 2.3.3
STRUCTURE AND REPRESENTATION
% 2 3
(
!" # $%&
( #
!" # $%&
+ , $ -23 # 0- # /
Figure 2.3.4
Cliques and Independent Sets
" " ' " # ' # ' ?@ # &( ) - $ -24 , # 2
Section 2.3
75
Subgraphs
Figure 2.3.5
*&
" " ' " ' '( ) 8 &( ) '( ) , -3 Induced Subgraphs
$ ( (( ) # ( (
7 ( 7
)() (
/ , 2
2 # $ -2. #
Figure 2.3.6
& & & #
$ % (%) % # %
7
)() %
7%
, $ -25
76
Chapter 2
STRUCTURE AND REPRESENTATION
& & & # Figure 2.3.7
* ( ) ( 03)
$ -26 2 2
Figure 2.3.8
+$
8 , -3 Local Subgraphs
( ) # ( )
$ -2=
Figure 2.3.9
&
8 () ( ()) (
() ' ( ())
Section 2.3
77
Subgraphs
$ -20: 3 + '( ) 7 3 '( ) 7 - &( ) 7 - &( ) 7 2
Figure 2.3.10
$& -$#
Components
,
,
? @
'
5 # $ -200
Figure 2.3.11
&
# # ! C # #
, ( ) " # ( ) ( ) 7 ( )
, + ? @ % 3
78
Chapter 2
STRUCTURE AND REPRESENTATION
Application to Parallel-Computer Computation
! #
! 6 6 2
! 02 ( 0-) , 02 6 6 2-
8 , ! ( ) ! ( ) ! * ! % 0: , % 04 ? @
! 4 ,5 , ,
,
%
-2 , 7 F % 7 - , 7 F % 7 ) - , 7 F % 7 ) ! . -2 , 7 F % 7 , 7 F % 7 - , 7 F % 7 ! .
,
,, , ! ( ) ( )
%
,
%
-2 , 7 F % 7 ) ! -2' , 7 F % 7
-2 -2)
, 7 F % 7 . , 7 F % 7 .
,# , ! ( )
(
-2+ ( 7 -2 2 ( 7
(
-2- ( 7 -2 ( 7
-2/ ( 7 -2 ( 7
Section 2.3
79
Subgraphs
,, ,& !
-2 -2 )
-2 -2 +
-2 '
-2 -
,( ,
)+ -
) + )+ -
)+ )+ -
-2 /
-22
-2
-2
,, , !
-2 -2 -2' -2)
/# -20= /# -2-: /# -2-0 /# -2--
,# ,' !
-2+
-2-
,( ,, !
"
-2/ . # # -22 3 # # -2 4 # # -2 . # # -2 < J -2 H -2' H # -2) -2+ E - J -2- H 8 /
80
Chapter 2
STRUCTURE AND REPRESENTATION
-2/ H 8 $ # # , 7 (, ) -2 2 H 8 $ # % 7 (%) -2 9 ( , # & (( ) (, ) 7 (( , )J -2 9 % / & (%) (/ ) 7 (% / )J -2 % # -2 % 8
-2 ' H H -20 (< 8 H
) -2 ) H H -2- (< 8 9
)
2.4
SOME GRAPH OPERATIONS
% # ' , % 3
, K Deleting Vertices or Edges
, # # 7 7 0 )() * ( ( ( , 7 7 * % % % #
Section 2.4
81
Some Graph Operations
# #
Figure 2.4.1
Figure 2.4.2
& #
&
Network Vulnerability
!
% 4 # ( ( ( ) # #
, $ -32 ! !
! # # ( #)
Figure 2.4.3
& &$#
% % ( )
$ $ -33 F
! F !
82
Chapter 2
STRUCTURE AND REPRESENTATION
&$ 9# 8 ,
# ( ) LM # L M (
) $ # $ -34 LM L M C '
Figure 2.4.4
Figure 2.4.5
LM L M
( '
(
9 ,
%
+ + ; H -30 , ' ' (
H -30 ( ) , ' ( ) 7 (( )); 0
Section 2.4
Some Graph Operations
83
The Graph-Reconstruction Problem
9 7 #
1 # ! #
$ -3.
#$ &
! 8 1 - # - ( ' ) ! 8 # # < HN I * & 0=30 ' , /# -33 ! $ -3. ( )
! Figure 2.4.6
Figure 2.4.7
5
& :
8 7 7 ( 7 ( 7 0 7
#
84
Chapter 2
STRUCTURE AND REPRESENTATION
'
(
, # 7 * - - 0 7
- , ' ' )
(
$ $ # , ) ) (
+ % -34 ! " ! 0 ' # 8 + *I L*55M C' LC55M # ' 0: Adding Edges or Vertices
#
) $ -36
Figure 2.4.8
# # # 8 .
K 1
Section 2.4
85
Some Graph Operations
Graph Union
#
7 ( ) 7 ( ) # ' # + '
$ -3= # #
Figure 2.4.9
&
' - $ -3= - - Joining a Vertex to a Graph
# # ' -5 , # ' # ; ' # # # # , ' ; # ( # ) , , F ,
Figure 2.4.10
4$ , 7 ;
' ( +
(
$ O ' # F O 7 (( ; ) ; )
86
Chapter 2
STRUCTURE AND REPRESENTATION
$ -300 7 (O - ) ; ; ) , # - 2 3
Figure 2.4.11
0
Edge-Complementation
9 , ( ) # ' ' / $ -30-
Figure 2.4.12
( 7 7 ) C# # # ' 8 " 7
- &( ) 7 '( ) '( ) 7 &( )
8 " -5
Section 2.4
87
Some Graph Operations
4 ,5 % %& !
-3 F - -3 F -3 F ) - -3 F -3' F # . -3) # H ( 0-) -3+ H %' % !
-3-
-3/
-3 2
-3
% %&
! !
-3 -3
/# -36 /# -30:
-3 -3 '
/# -3= /# -300
% %(
! !
-3 ) -3 -
/# -36 /# -30:
-3 + -3 /
/# -3= /# -300
%$ % !
"
-32 -3
3 #
3 #
% %& !
-3
88
Chapter 2
STRUCTURE AND REPRESENTATION
-3 -3
-3'
-3) < ! J (E !) -3+ < !
J (E !) -3- % ( ); 7 # -3/ H -32 9
H # -3 9
$
# -3 4 #
E # $ # # E # E # E #
E # -3 4 #
; # -3 9 # H 8 ; # -3' H 8 $ ; -3) Æ # # -3+ E '
Section 2.5
Tests for Non-Isomorphism
89
-3- H . ( ) -3/ H # # -3 2 9 H
2.5
TESTS FOR NON-ISOMORPHISM
, -0 8 1 # ! # '
# ! ! 1 ( ) ( )
' 1 -0 , A Local Invariant
' 8
(
( )
(
% -04
' $ -40 8 0 0 0 - - 2 + -0- # #
2 < 0 0 - ' 0 - - -40
90
Chapter 2
Figure 2.5.1
STRUCTURE AND REPRESENTATION
; $ *&
'
$ -4- - ( -40) + 2 2
Figure 2.5.2
; $ *&
Distance Invariants
9 , 7 ! ( ) 8 , ! (, ) 7 ( ) ( ) ( ) ( ) ( )
' ) ) (
, ' ( ( ( ( ( (
(
-4- ' , ' * 1( ! & !& 1 , '' ( ( (
% -42 ' ' $ -42 *> 6 # 2 #
Section 2.5
Tests for Non-Isomorphism
91
; $ *& ! 7 -6 # ! # # # $
$ *> ; 0 6 # # # : 2 # . #
# : - 1 '() 7 3 '( ) 7 2 Figure 2.5.3
Subgraph Presence
') * ' (
(
9 8
( ) ' '' $ -43 2 1 2 $ % -4. 2 < 4 2
3# && $ % -$#% $& % 1 '(2) 7 3 '( ) 7 2 Figure 2.5.4
Edge-Complementation
# ( # ' )
92
Chapter 2
STRUCTURE AND REPRESENTATION
'+ '
(
+ ' ' ') $ -44 ( -: -6 ) ' 3 6
Figure 2.5.5
# % $ '$&
Summary
, ( /# )
# 0 - 2 3 4 . 5 , 6 $ = $ Table 2.5.1
Using Invariants to Construct an Isomorphism
#
'+ $ -4. = # 0 0: + % -42 = = ' = = '
( ; 0) ' #
Section 2.5
93
Tests for Non-Isomorphism
'
Figure 2.5.6
(
4 ,5 ' -4 $ /# -44
& &,
-4
-4
&% &
-4 -4'
94
Chapter 2
STRUCTURE AND REPRESENTATION
-4)
-4+
-4-
-4/
-4 2
-4
-4 8 /
$ ( ) $ ( ) &, &' !
-4 -40 -4 ' % -43 -4 + -4.
-4 -4- -4 ) % -44 -4 - -45
-4 / % -40 &$ &&
-42
Section 2.6
Matrix Representations
95
-4
-4 -4
-4 -4'
2.6
MATRIX REPRESENTATIONS
A , Adjacency Matrices
2 # # ' 2 L M 7 0: ) $ -.0 ' # # : 0 0 : 0 : 0 : 2 7
0 0 : 0
: : 0 : Figure 2.6.1 "
& # # ' # 2 # #
96
Chapter 2
STRUCTURE AND REPRESENTATION
( ) 2 2 L M ! 2 ' ) !
(
! 7 0 ' # ! 0
# ( /# ) ' # ! % 2 # # 2 L M 7 0:
) ' # $ -.- #
Figure 2.6.2
: 0 : 0 : 0 2 7
0 : : : : : "
: : 0 :
( ) % 7 2 ( !#&
( ) % 2 2 L M ! 2 ' ) !
!#&
8 # ' # ( ) 2 L M # # ( # # ) Brute-Force Graph-Isomorphism Testing
# '
Section 2.6
Matrix Representations
97
) $ -.2 ' : 0 0 0 0 : 0 : 2 7
0 0 : 0
0 : 0 :
Figure 2.6.3
: 0 0 0 0 : 0 : 2 7
0 0 : 0
0 : 0 : & "
!&$ 8 / 8 A P/ C" , 7 A C" , A C" $# # 1 ' # 2 $ # 3 1 2 3 , 2 ( 3 ) 7 2 A P/ A C" Algorithm 2.6.1:
$ #
Æ
-0
Incidence Matrices for Undirected Graphs
# 4 # : 4 L M 7 0 -
98
Chapter 2
STRUCTURE AND REPRESENTATION
) $ -.3 #
4
7
Figure 2.6.4
:
: :
.
: : :
0 0 : :
: 0 : 0
: 0 : 0
: 0 : 0
: : 0 0
0 : 0 :
" 4 # #
( )
!#&
( )' +
!#&
/ , # # Incidence Matrices for Digraphs
% # # : 4 L M 7 00 -
)' $ -.4 #
4 Figure 2.6.5
7
:
: :
. - 0 : : : : 0 : 0 0 0 0 : : : : : : : 0 0 : : 0 0 0 0 :
Section 2.6
99
Matrix Representations
Using Incidence Tables to Save Space
# ' # Æ # 4 ( ) )) /# -.3 ( ) 8
8 4 ( ) 7 88 8
. .
? 5@ # , # ' # 5( ) 5( ) 5( ) $ % (%)
# (%) )+ < (%) (%) $ -.4
8 ( ) 7 88 8
.
8 . ( ) 7 88 8
8 ' 4 ,5 )
,
-.
-.
!
"!
2 4
4 ( )
-.
5#
$
100
Chapter 2
STRUCTURE AND REPRESENTATION
% ( )
%
-.
%
-.'
2 4 (%)
-.)
# '
: 0 7
0 0
-.+
2
0 : 0 :
0 0 : 0
0 7
0 0
-.-
0 : 0 :
2
0 : 0 :
0 0 : 0
0 : 0 :
( ,
-./ -. 2
-. +
-.
-.
% &
-.
: : 7
: :
2
0 : 0 :
0 : : 0
-. '
0 : : :
2
: : 7
0 0
0 : 0 :
0 0 : 0
0 : 0 :
# 0 L M
2
-. ) -. +
' # /# -.5 ' # /# -.6
' ( 0 , L M
2
-. - -. /
2 L M
2 L M
' # /# -.03 ' # /# -.04
$
-.2
4
7
: 0
0 :
0 : : 0
: : :
: 0 : 0
-.
: 0 : 0
4
7
0 :
: 0
: : :
0 0 : :
: 0 : 0
: 0 : 0
,
-.
4 7
0 : : 0
- 0 : : : 0 0 0 : : : : : : 0 0
-.
4
7
0 :
: 0
: 0 : : : : : 0 : 0 0 : - : 0 0
Section 2.7
More Graph Operations
101
-. % H -.0 -.' H H -.- -.) H H -.2 -.+ H H -.3 -.- H H -.4 -./ L1 0M , -.0 /# -43 -400
2.7
MORE GRAPH OPERATIONS
' '
Cartesian Product
# 7 8 7 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) + $ -50 3 " 0-
Figure 2.7.1
&
102
Chapter 2
STRUCTURE AND REPRESENTATION
+ $ -5-
+
Figure 2.7.2
&
+
" $ + $ -52
Figure 2.7.3
# #
+
8
0-
Figure 2.7.4
& % %
,
8 2 0! 0-
Section 2.7
103
More Graph Operations
Figure 2.7.5
& % %
+½ +¾ +
Figure 2.7.6
4 3 -
½ ¾
Figure 2.7.7
& 3 2
8 Join
;
# #
Figure 2.7.8
" + ; +
+ ' ; ; , ' ; * '
104
Chapter 2
STRUCTURE AND REPRESENTATION
+ ' ; " '
7 : 7 -- ; 0 , 7 2 0!
+' $ -5=
Figure 2.7.9
+) $ -50: ( ) ' - 0 ' ' ' - ; ' - ; ' ' '
Figure 2.7.10
2
Amalgamations
" ? @ H
9 ' ( )0 7 ( ) # #
Section 2.7
More Graph Operations
105
# # ( ) ( ) # #
++ $ -500 2 3 # 2 # 3
Figure 2.7.11
# $ $
, # 2 3
+- $ -50- + + #
Figure 2.7.12
3 & # + +
1 # 9 ' 6 7 9 8 6 7 8 6 7 # 6 () () 7 # () () # ( ) ( ) () ( ) ( ) () # () # () ( )0 8 6 7 , ( )0 8 6 7 6 7 % %
106
Chapter 2
STRUCTURE AND REPRESENTATION
+/ / # 2 2 $ -502
$
Figure 2.7.13
# $ -503
Figure 2.7.14
8 # #
# # 4 ,5 + - # #%
-5 -5 + -5 , + -5 + - -5' H -5) H 3 - ## #$
-5+ ; -5- $ ; -5/ , ; + -5 2 + ; ; -5 E Æ ' - # #&
2
-5 + , -5 +
-5 + + -5 ' +
Section 2.8
107
Supplementary Exercises
- # #(
2 )
+
-5 ) + , -5 - +
-5 + + + -5 / +
- #$ #,
2
-52 + , -5 + + -5 + -5 + -5 , - - -5' , ' ; + ' - ; +
, ! 7 2 7 3 -5) H - -5+ B# ( ) ? @
L% H 'M - #' #,
3 ( ) ( )
+ ,
-5- % -5/ N -52 G # -5
2.8
SUPPLEMENTARY EXERCISES
-6 - - 2 -6 - - 2
108
Chapter 2
STRUCTURE AND REPRESENTATION
-6 . 2 . 3 4 4 5 3 -6 322--- 022222 -6' 3 5 # < 8 -6) / 0: # 3 -6+ !(02 8 0 3) !(02 8 0 4) -6- H
-6/ , 8 !(6 8 0 -) !(6 8 0 2) !(6 8 0 3) !(6 8 - 2) !(6 8 - 3) !(6 8 2 3) -6 2 $ -60
Figure 2.8.1
-6
Figure 2.8.2
-6
Figure 2.8.3
-6
Figure 2.8.4
Section 2.8
-6
109
Supplementary Exercises
9 # $ -64
Figure 2.8.5
-6 ' % $ -64 -6 ) 9 # $ -6.
Figure 2.8.6
-6 + 3 # # #
-6 - -6 / A ! $ -65
Figure 2.8.7
-62 A ! $ -66
Figure 2.8.8
-6 # # # # # -6 ' # # ($ :00:0 ' 0::0:) H E 2 H 2 -6 %
110
Chapter 2
STRUCTURE AND REPRESENTATION
-6 H -6' H H 1 - ( -) H 1 #
-
J /# -6) $ -6+ % *>
GLOSSARY
8 # # 8 # " % 2 8 # # 2 L M 7 0: " 2 8 # # ' 2 L M 7 0: "$# # ' 8 8 ' () ( ) ' $8 () ( ) ' ' % # ' 8 ( )0 7 ( ) # # # #
( ) ( ) # # & 8 6 7 ' 6 7 8 ( )0 8 6 7 # 6 () () 7 -5 & 8 6 7 ( )0 8 6 7
Glossary
111
& 8
F 7 ( ) 8 !8 # ! & 8 # 7 7 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
8 ( 03)F * ( ) & 8 F (
0-) *& 8 # ' *& & 8 F &( ) 8 8 #
F
# 8
# ' 8 &$ 8 & 8 &$# 8 # #8 " 8 F /# --0 $ 8 # ' ' $& 8 $ & 8 $&8 ' # 8 / /
112
Chapter 2
STRUCTURE AND REPRESENTATION
$# 8 8 #8 7$8& 8 / - # 4 %8 # # : 4 L M 7 00 - 4 8 # # : 4 L M 7 0 - & 8 F '( ) 8 # , " ' " ' & & %8 % # % & & # , 8 # , , #8 ( ) 8 8 # ' F 7 8 # ' 8 ' 8 () ( 8 8 )
8 8 # ' 8 8 # 8
Glossary
113
" # 8 # ' # F ; " 8 # # F ; & # 8 F ( ) 8 +½ +¾ + &8 ½ ¾ 01 & 8 F *> # 8 # ' 7 8
& # 8 F ( )
% $ 8 '
- 7 : 7 - ; 0 # "8 # $"8 8 # & 8 & 8 # 8 # ! 8 & 8 # & 8
#
8 & 8 7 8
&&$# # ' 8 # ' 8 () ( :) '
' () ( ) () # # ()
114
Chapter 2
STRUCTURE AND REPRESENTATION
&&$# # ' 8 # ' 8 ' ' ' () ( ) ' & %8 % % & 8 8 8 7 &8 ?@ F & # 8 8 4 ( ) # %8 (%) # & %8 (%) # 78 & 7 ( ) 7 ( )8 # ' # $ $8 ' F #$& 8 #$ & 8 # #$ & 8 # # 8 # , , # #$# 8 # $ ,8 ' ; # #8 8
Chapter
3 TREES
3.1 Characterizations and Properties of Trees 3.2 Rooted Trees, Ordered Trees, and Binary Trees 3.3 Binary-Tree Traversals 3.4 Binary-Search Trees 3.5 Huffman Trees and Optimal Prefix Codes 3.6 Priority Trees 3.7 Counting Labeled Trees: Prüfer Encoding 3.8 Counting Binary Trees: Catalan Recursion
INTRODUCTION
Æ Æ
Æ ! "
# $% &
'
115
116
Chapter 3 TREES
3.1 CHARACTERIZATIONS AND PROPERTIES OF TREES
$ ( ) * *& ' + (
Basic Properties of Trees
*
, - !
* . / **0 ' 1
Figure 3.1.1
2 **
'
117
Section 3.1 Characterizations and Properties of Trees
*
* * 3 4 * 5 2
**
6
*
* 5
/0 - *
/0
/0 2 *
/0 7
$ 9
7
/7 0 $ * 8 /7 0 - /0
$ *:
/ **90
/
0/
9
4 *0
, - * !
¾ /0 - ¾ Æ !
- - - ¾ 9 ¾ 5 ¾ ¾ /
*0/
90
118
Chapter 3 TREES
Six Different Characterizations of a Tree
( ' (
* !
* "
#
$ 4
- * !
9
* 9 ; 5 2 * 9 ; ! $ * <
- * ; , !
9 $ *: 9 / 0 ! : ; 5 ! ' , / 0 / *90
!
Figure 3.1.2
: " ;
'
+ ' ! : " * ; 5
. '
! " (
119
Section 3.1 Characterizations and Properties of Trees
Table 3.1.1
*
9 = + > : * " * 9 # The Center of a Tree
/0
/0 - / 0 ¾
/0
/0 < $ ? *&"@ A
! "
% & /0 - /0 4 * %& /0 9
/0 !
/0 9 - / 0 - /0 5
/0 - / 0 - / 0 4 * - /0 4 * /0 5 2 /0 *
! # % /0 - / 0&
, + /0 9
+ / 0 4 *
!
£
£ /0 /0 4 * , /0 - / 0 5 , **B
/ *0
120
Chapter 3 TREES
£ £ /0 - / 0 /0 - / 0 - / 0 4 * - /0 4 *
Figure 3.1.3
£
/ 0 - / £ 0
* $%&' "( /0
2 **9
- *
- 9
Tree Isomorphisms and Automorphisms
9:
)* * +
+
Figure 3.1.4
)*
+ ,-
*: '
121
Section 3.1 Characterizations and Properties of Trees
Figure 3.1.5
. ,
/0; / C<D# & E0 Tree-Graphic Sequences
( +
+
+
9
+
- 9 9 +
+
> % F! / **0 2 * - 9 - 9 9 Æ
- 9 9 +
- 9/ 4*0 9 - 9 A 9 - - * +
* 9 9
+
* , 7 . * +
7 +
Trees as Subgraphs
' Æ / Æ 0
Æ /0
Æ /0
* - * - 9
9 , 4 * Æ /0 A
122
Chapter 3 TREES
,
!
/0 . , . / *"0
Figure 3.1.6
C/ 0 E 4
)1)/2)
* F "
* F *9 *B
* # *B * " 9 ** * & 9
* & 9 *B * @ 9 *B * @
*B *" @
*9 * # *B 9 *
*B * **
* . * ,
F ( * 2
* !
9 < G
Section 3.1 Characterizations and Properties of Trees
123
* 2 ;
* 2 ;
* 2 ;
4 * * " 2 ;
4 9 . *# 2
A
G * 2 * !
* 2
* , 2 Æ /0
* 2
* 2
B * * $ (
* , £ * 2 / £ 0 / 0 9 / £0 - / 0 * *" , 2 / 0 / 0 - 9/ 0 * *# F 9 * F 9 4 *
B * . * 9
* 2 2 / 0 9
! " 2 ; > / 0
124
Chapter 3 TREES
/ 0 /0 / 0
8 /0 ¾ * F
* , ' 2 / 0 / 0 * F
* , ' 2 / 0 /0
3.2 ROOTED TREES, ORDERED TREES, AND BINARY TREES Rooted Trees
> B *
9*
Figure 3.2.1
&3 &
Some Applications of Rooted Trees
. ' (
( 99 +
+
Section 3.2 Rooted Trees, Ordered Trees, and Binary Trees
Figure 3.2.2
125
4 ,,
. ' ) * ( H
( ! " # . 6 ( > . . 9
F
Figure 3.2.3
5 6 & 7 &
. + , (
> 9
I! J
Figure 3.2.4
3
126
Chapter 3 TREES
. + , (
,
+
)* 9: &
Figure 3.2.5
. 3 & ,
/0;
$ $
$" %& '
Rooted Tree Terminology
F
+ B
/0; (
/ 0
K /
0 + - /
0
/ 0
)* 9"
127
Section 3.2 Rooted Trees, Ordered Trees, and Binary Trees
8 ! 8 ! 8
Figure 3.2.6
6
/ 90
)* 9# /0 8
8
Figure 3.2.7
, ' &
- *
" " * !
- " 4 *
! !4*
* *
, * $
99
!4*-
*
-
-
*
!
*
·½
128
Chapter 3 TREES
Isomorphism of Rooted Trees
)* 9&
8
Figure 3.2.8
2 & 6 &
- - ; B * * B
)* 9@ Figure 3.2.9
( ,
(
(
)
*
+
/3 &
Ordered Trees
( /0; 1 +
, $ $ $ )* ! '
9*B
Section 3.2 Rooted Trees, Ordered Trees, and Binary Trees
129
Figure 3.2.10
&8 && &
/0; > 9" 9
Binary Trees
5 +
"
Figure 3.2.11
9
. 6 3
/ 0 '
)* 9*9 ' ( ' &
Figure 3.2.12
5 &8 6 &&
130
Chapter 3 TREES
! + ! * +
)*
9* 9
Figure 3.2.13
/ 6
9: +
$ 9
! 9 * ! - B B 9 * 4 * !
9 * * 4 9 * 4 9 * - 9 *
! 9
*
)* " 9* 9: ! -
Figure 3.2.14
6 3
131
Section 3.2 Rooted Trees, Ordered Trees, and Binary Trees
)1)/2) 9 F < '
G 9 F : < ' G 9 F 9 9 F = * - .
" - .
9 *9 : 9 *9 9 * 9 *
9" ' " 9 # *B 9
9& 9 9 * 9 2 B
9 H ( 9 A
G 2 9 < ' / 0 G 9 F
I H F J / (
9 "
B * * * * * 9 9 9
9#
"
B * * 9 9
9
9
132
Chapter 3 TREES
9 , /!0 ! > /!0 /! *0 9: 9: 9 9: $ 9" I J ; ! B ! * 9 *
3.3
BINARY-TREE TRAVERSALS
; $ $ $ $ Level-Order Traversal
)*
*
! "
Figure 3.3.1
! ,&
! "
Pre-Order, Post-Order, and In-Order Traversals
9 /*B0
+
*
Section 3.3
133
Binary-Tree Traversals
; , / 0 2 2
)* ' & ! ,9& ! "
; 2 2 , / 0 )* ' & ,9&; ! "
; 2 , / 0 2
)* ' & 2,9&;
! "
Processing Arithmetic Expressions
;
)*
// 4 0 / 00#
9
Figure 3.3.2
. * // 4 0 / 00#
. ,. , . . / ( A
" " "
134
Chapter 3 TREES
)* 9 ; # 4 ; 4 # ; // 4 0 / 00# +
Geometric Descriptions of Pre-order, Post-Order, and In-Order Traversals
$" & / 0
Figure 3.3.3
,9& ;
. ,4 0 &
! "
,9& ; ! " A 2,9& ; ! " A Stack Implementations of Pre-Order, Post-Order, and In-Order Traversals
+
/ / 0
$%$/& 0 &%$/& 0 5
$%$ &%$ 0
Section 3.3
135
Binary-Tree Traversals
Algorithm 3.3.1:
! ,9&
; 0;
2 %%& A 2 ' 2
Algorithm 3.3.2:
,9&
; 0;
2 %%& A &%$/& 0 6 > ;- $%$/& 0 ,
Algorithm 3.3.3:
2,9&
; 0;
2 %%& A ;- &%$/& 0 A 2 " & !"/0 ;- " & !"/0 ;- $%$/& 0 , 2 !& !"/0 ;- !& !"/0 > A ;- $%$/& 0 , 2 !& !"/0 ;- !& !"/0
Queue Implementation of Level-Order Traversal
+
/ 0 & + / 0
136
Chapter 3 TREES
Algorithm 3.3.4:
! ,9& ,,' !,,/3
; 0;
> + %%& A + F+ > +
)1)/2) $ $ $ $
=
* / $ 1 " "
"
/ 4 0 / / 4 00 // 4 / 00 0#
// 4 0 / / 4 000 /// 4 / 00 0# 0 // / 4 0 / 00#/ 4 00 // 4 0 !0 /// 4 0 0 / 4 00 /// 4 / 00 0# 0
Section 3.4
Binary-Search Trees
137
# =
2 + 9 /< ; + 0 ! + $ / 0 H
> *9 > *B ** C! % E * > * C! % E 9 > * C! % E > * C! % E
> *
3.4
BINARY-SEARCH TREES
+
1 %
/5! 0 )* 5 * ;
& @ *9 * 9* 99 9 9& : B " 3 5! ! / > 0
138
Chapter 3 TREES
Figure 3.4.1
6, 3 0
/0;
< %%&/ 0 1 +
Algorithm 3.4.1:
,,
; 0;
& /0 - & & 3D,, & ;- %%&/ 0 A / - 3D,,0 /& - /00 & /0 ;- !& !"/0 > ;- " & !"/0 H
Algorithm 3.4.2:
/ : ' &;
; 0;
& /0 - & & 3D,, & %%&/ 0 - 3D,, H 3D,, > & - /%%&0 H %%& > & /%%&0 5! / !&& / 0 &0 > 5! /" && / 0 &0
Section 3.4
Binary-Search Trees
139
Balanced Binary-Search Trees
+ ( ( ' )* *
8
+
1
9B
$ &
+ '
;
!
!
5 ! + '/"% 0
+ '/ 0 !
9 9 <
'/"% 0
!
'/ 0
+
<
+ '/"% 0
'/ 0 + '/ 0
/'/*00 '/ 0 '/"% 0
140
Chapter 3 TREES
Insertions and Deletions in a Binary-Search Tree
/0 Algorithm 3.4.3:
,, 2: ' ;
; 0;
&/0 -
%%&/ 0 - 3D,, $ &/0 - %%&/ 0 ;- > /0 /%%&0 /" && / 0 0 > / !&& / 0 0
+ $ *; $ 9; $ ; / 0 " " /
0
Figure 3.4.2
73 * 3 &
)1)/2) ) )) 2 $ &
* @ *@ * @ 9 : # *: 9B B B : :B *9 9 : # : :B : "B "" * 9 : & * 9* :: &@ *
Section 3.5
Huffman Trees and Optimal Prefix Codes
141
)* )( " $ 3
" #
*B *: 9B *B 9B *: F : 9& : F 9& : @ # @ : F @ # :
+
* 9 : & * 9* :: &@ *
5 +
< ' +
* @ *@ * @
G A +
G = ! $
D
C! % E 9
* 9 9:
3.5
HUFFMAN TREES AND OPTIMAL PREFIX CODES
Binary Codes
+
B% *% / 0
>
>
/ L 0
'
142
Chapter 3 TREES
!$ > !$
> $
"
. 0 ,. 0 (
. / ' 0 3 B * +
)* ! / 0 :*
+
Figure 3.5.1
(((
(((
((
((
(
((
(
. 6 & 4* &
Huffman Codes
+
+
> IJ IJ % Æ
+
Section 3.5
143
Huffman Trees and Optimal Prefix Codes
)* ! +
(*
*
*
*
:* 9 4 B: 4 * 4 * 4 9: 4 *: 4 *: - 9: , &/ 0 $&!/ 0 &/ 0 +
+ . 0 Æ 0 1 23 ( F < ' C< :9E
Algorithm 3.5.1:
;
<8 4* &
8 0;
( - * " * $ ( ¼ ( $ ¼ , B ¼ * / 0 4 / ¼ 0 H ¼ ( H (
> " :*
144
Chapter 3 TREES
)*
< ' +
> :9
< '
((
(((
((
(
(
(
Section 3.5
Huffman Trees and Optimal Prefix Codes
145
9 9 4 B: 4 * 4 * 4 9 9: 4 *: 4 *: - 9# < ' Æ +
B *
A < '
!
4 4 %+ &
5 23
" " - 9 < ' 4
4 , :* " 9 < ' < ' " , " 4* < ' < ' M 4 4 / :90 , :* &/ 0 - &/M 04 4 5 M 4 3 £ , £ A
$ M £ &/ £ 0 - &/M04 4 5 M 4
&/M0 &/M 0 &/ £ 0 &/ 0
Figure 3.5.2
<8 & M
146
Chapter 3 TREES
)1)/2) * * 42
*
: **BBBB*B*BBB***B : B*BBBB******BB****B : B***B**BBBB*B**BB**
*) *+ 42 5 6 5 6 7 $ $ &
: : :
(*
8
*
*
(9
*
9
*
(*
(*
*
*
(8
*
(*
: D < '
H
:
: :"
> ( :* 2 , :*
: # C! % E < ' $
> : :"
3.6
PRIORITY TREES
!
6
> ! 9
! * / 0
3 ! * ! *
Section 3.6
147
Priority Trees
"*
Figure 3.6.1
. , 6 3
/ 0 / 0
)* "9
9*
Figure 3.6.2
. 3
A + + + /; $$< $00 + /< $ $< $00 + > I J
'/ 0
'/*0
+
Æ +
Inserting an Entry Into a Priority Tree
+ + +
148
Chapter 3 TREES
+ Algorithm 3.6.1:
2
; 0;
A - %%&/ 0 3F $%&/0 $%&/$ &/00 ! $ &/0
)* " +
* "9
Figure 3.6.3
23
+
2 '/"% 0
Deleting an Entry From a Priority Tree
+ +
Section 3.6
149
Priority Trees
Algorithm 3.6.2:
7
; 0;
H
A 3F C$%&/0 $%&/" & !"/00 1H $%&/0 $%&/ !& !"/00E $%&/" & !"/00 $%&/ !& !"/00 ! " & !"/0 > ! !& !"/0
)* " 9*
Figure 3.6.4
73
Heaps
/%%&0 - B
/" & !"/00 - 9 /0 4 *
/ !& !"/00 - 9 /0 4 9
/$ &/00 -
150
Chapter 3 TREES
)* ":
B * 9 9: 9* & *
Figure 3.6.5
: " # & @ *B ** *& : 9 # *" ** *
/3 3
)1)/2) " F 9 " < ' ! G + +8 " $ 3
" " " " " "
*B *: 9* *B 9* *: F * * F *& : 9: *# & *: F & *# 99
+/ +
"" &B "B B :B 9: *B : B 9: *B *: " # : B 9 9B 9& 9: *" *: *& "
: 9 # 9B 9: *" 9@ *B 99 " :B 9B 9 *: *" 9: # ** : & " 2 ;
151
Section 3.7 Counting Labeled Trees: Prüfer Encoding
3.7 COUNTING LABELED TREES: PRÜFER ENCODING
*: $ 5 $ * 9 #* '
Figure 3.7.1
&8 6&
9 ' < 2N
+
!
/0; $
Æ 2O5
$ * Prüfer Encoding
"#
*
9
9 +
2N +
; 2N +
9 Algorithm 3.7.1:
;
0;
= )&3
* 2N +
9 ( - * 9 , * , ;- H +
152
Chapter 3 TREES
)*
#9 2N +
Figure 3.7.2
. 6& 6 && = > )
Figure 3.7.3
Figure 3.7.4
5 = &3
! = &3
3
2N +
"/0
,6 4 * 2N +
9 4 * , *
Section 3.7 Counting Labeled Trees: Prüfer Encoding
153
2N +
) "/0 2N +
) £ £ - 5
/0 +
"/0 ) £ 5 -
"/0 ) £ )
/0 -
/0
/0 -
/0 4 * "/0
) ) £ Prüfer Encoding
2N +
Algorithm 3.7.2:
= 7&3
; 2N +
0;
9 * ( 2N +
( * * ( ( * - * 9 , * , . H * H
. * H (
)*
+
# # : 2 #* ; /*0 - /90 /0 - /"0 - *8 / 0 - /#0 - 8 /:0 - 9 * * #
. * # *
# +
+
! ; 2N +
154
Chapter 3 TREES
. ; ,6 9
2N
155
Section 3.7 Counting Labeled Trees: Prüfer Encoding
+
3 ; 7 ,6 9
- 9
9 2N +
$ $ $ * 9 4 *
$ $% 3 * 9
9 + 2N +
$ $ * * 4 * 4 * 5 $
* 9 4 * 3 > #9 2N +
# # : > #* 2N
# # :
; ; % &
$ $ !( 3
2 #
+
H 2 +
/0; ' $%
'
)1)/2) 9 9+ 1 9
#
#
#
#
#
#
156
Chapter 3 TREES
99 9
# #" #
" # 9 * # 9 * * * : * :
# 9 * * : : # # * 9 : # * * : 9 :
# F # <
G # 2 2 # 2N
2N 2N +
3.8
COUNTING BINARY TREES: CATALAN RECURSION
'
+ , - * !
- * * * B * 2 ' <
- 4 4 4
+ $
' / > 0
)* $ - 9 - - 9 - : &* '
Figure 3.8.1
4 &8 6
A
Section 3.8
157
Counting Binary Trees: Catalan Recursion
3 -
* 9 4*
9 ;
/0 , /0 - ½
' * 4 C /0E - /0 Ô /0 + /0 /0 - / 0 = : > 1 /*4 0 - ½
( Æ * - B8 ¡¡¡ * D = ( 5 /0
½ *#9 * *
/0 / 0 9
/0 / 0 ½ *#9
/0 /*0 9
4*
- /*0 9 /0 *#9 /*0 /*0/0/:0 /9 *0 4 * - 9 /*0/90/0 / 4 *0
* 9 4*
)1)/2) & D $ '
$ & D $ ' $ & $ - '
( & , $
$ - 9 / 0 / 0 ! $ + / *0 $
158
Chapter 3 TREES
& /0 /0 &* & / 0 /0 &* & /0 &* &
C!
% E
A
&" / 0 $ &" / 0
&* *: $
3.9
SUPPLEMENTARY EXERCISES
@ F @ A
G @ A G @ A G @ H @*
Figure 3.9.1
@ $ (
@ , +
# @ F ** # @" , +
& @ # +
> @@ ' +
@
, +
& @ F @ @ F / 0 +
99****
Section 3.9
@ @ @ @ @
159
Supplementary Exercises
2 # F @ 2 : 2 " A G < ; 5 ) ;0
Figure 3.9.2
@ " F 5! * 5! @ @# F 5! 5! @
Figure 3.9.3
@ F + 9: @ 9:
Figure 3.9.4
@ A 2N
Figure 3.9.5
/ /8
@ @
**9B:B "*""*
@ @
*"* #*9&
@ @
:*99:" B*9B*9B*
160
Chapter 3 TREES
GLOSSARY
; 8
,, B *
*; 3 3& & ; + &/ 0 &/ 0 - $&!/ 0 6& ; ' 6 &; 6, /5! 0;
6 ; $ $ 8 9 6' ; + $ ;
' - 4 4 4 3 /0; * ;
& ;
8 &&; , ;
,&3; & ; + && ;
8 && ; & /0;
8 /0 / 0 ¾ /0;
8 /0 - / 0 ¾ * ;
;
;
Glossary
161
3 ; 4 *
B * . * 9 ; ;
/%%&0 - B
/" & !"/00 - 9 /0 4 *
/ !& !"/00 - 9 /0 4 9
/$ &/00 - 3 ; 8 <8 &; < ' <8 ; < ' / :*0 * ; & ;
; ; * ,&; , ; ; ,& ; , ; && ; ; 4* &; >; A ; / 0 && ; ' = > 9 9; +
* 8
/ #*0 >; +
/ 0 & + / 0
162
Chapter 3 TREES
&, 6; +
1 % 3,&; 3& ; ; & ;
,
; + 63 ; 0; +
/ 0 / 0 && &3 ; ( && ; ; $ ,3 +
; +
+
; ,&; ; 2 , / 0 2 ,&; ; , / 0 2 2 ,&; ,&; ; 2 2 , / 0 + &*;
Chapter
4 SPANNING TREES
4.1 Tree Growing 4.2 Depth-First and Breadth-First Search 4.3 Minimum Spanning Trees and Shortest Paths 4.4 Applications of Depth-First Search 4.5 Cycles, Edge-Cuts, and Spanning Trees 4.6 Graphs and Vector Spaces 4.7 Matroids and the Greedy Algorithm
INTRODUCTION
!
" # $ %&' ( !
)
163
164
4.1
Chapter 4
SPANNING TREES
TREE-GROWING
! * )
$
Frontier Edges
*
$ $ +,,
Figure 4.1.1
- $ +,,
(
.
$ /+ Choosing a Frontier Edge
*
0
Section 4.1
165
Tree-Growing
.
- 1
2 3
*
$ +,/ 4 " ' $ +,/ " ' 5 " '
Figure 4.1.2 Algorithm 4.1.1:
.
.
3 2 3 2 6 4 0 4 " ' 0 * " ' 7
. 8 !
! 9 3 +/ +%
! 9
166
Chapter 4
SPANNING TREES
Discovery Order of the Vertices
0 9
" ' :
$ +,% ! 9 $ " '
8 . 5 +,/
Figure 4.1.3
! "#
$ -
9 ( 9 " +; +<' 3 %, $ +,% ) 3 +; +< Two Kinds of Non-Tree Edges
$ +,%
Section 4.1
167
Tree-Growing
$ 9
1
$ $ $ +,% $ Depth-First and Breadth-First Search as Tree-Growing
6 ! 3
. . Resolving Ties When Choosing the Next Frontier Edge
3 2
$ " /<'
! 9 " ' = 3 Tree-Growing Applied to a Non-Connected Graph
"'
$
! "## "'
+,,
% # !
168
Chapter 4
SPANNING TREES
Tree-Growing in a Digraph
*
. > ! $ # +,+
3
3 9 ; $ +,+ , ; $ Figure 4.1.4
&
$ " ' . * * *
.
1
.
3 # ,/ *
)
Forest-Growing
9 8 $ 9 " '
* !
Section 4.1
169
Tree-Growing
Algorithm 4.1.2:
' % %
.
. "'
3 2 3 2 .4 , 6 0 4 " ' ? 9 "' * .4 @ , 7 "' 4
( $ +,; " ' 5
Figure 4.1.5
Some Implementation Considerations
. * 9 "* +,,'
) - > )
A " B*>?C%D BAC%D B CCD'
. #
* ) 9 "* +,,' 3
170
Chapter 4
SPANNING TREES
8
" /<' " ' 9 " ' > 9 "' " ' - " '
) %*+ + + ! ! ! "# $
+,
+,
+,$
! ! %# & # $ # & ' ! ! ! ! ( $ ) * + , *+
+, +,-
E E
+,( +,.
E E
+,,
E
+,/ * * +,/ $ +,< ! !- ! !"# & & $ ' ! ! &# $ $
+, 0 +, +, +, $
E E E E
Section 4.2
Depth-First and Breadth-First Search
171
+, * $ +,% * +,,
! " ' +, ( +,/ +, , # 2 * +,, +, - ? * +,, +, . B. D 3 * +,, 8 +,+ +,C +, / B. D 3 * +,/ ,: / ,: %
4.2
DEPTH-FIRST AND BREADTH-FIRST SEARCH
" ++ ;+' " ,/;' " &<'1 F F 2 " ,%/'
" ' " ' G H * * +, Depth-First Search
6
" G H' 3 9
0
. " '
3 " '
172
Chapter 4
Algorithm 4.2.1:
SPANNING TREES
1 ' +
.
.
3 2 3 2 6 4 0 4 " ' 0 * " ' 7
"'
.
$ ++ ;+ 3 #
,/
$ +/, 5 ( 3 #
,/
Figure 4.2.1
1 2
$ 0
"' "' *
.
* " %%' " 8 '
Section 4.2
173
Depth-First and Breadth-First Search
Recursive Depth-First Search
* $ "'. 6 0 $ "' 7
6 +,
$ ) "03 $ -' " '
Depth-First Search in a Digraph
* +/,
*
% $ &
. * ,/
++ #
Breadth-First Search
3 G H
$ +// ,, -
* * +//
0
. " ' 3 " '
174
Chapter 4
Figure 4.2.2
SPANNING TREES
1 2 " 2
Algorithm 4.2.2:
3 ' +
.
.
3 2 3 2 6 4 0 4 " ' 0 " ' * " ' 7
$ $ +/% 8 +/,
- * " %/' A
Figure 4.2.3
3 2
$ % $
+/, "8 '
$ ! "''
Section 4.2
Depth-First and Breadth-First Search
175
6 "03 $ -'
"$ 3 $ -'
) %*+ + + / ! / 0# & & ' / ! & $ ) * + , *+
+/ +/ +/$ +/ +/( +/, +/-
E E E E E E E
/ % / !# & # $ # & ' / / & ( $ ) * + , *+
+/. +// +/ 0 +/ +/ +/ $ +/
E E E E E E E
+/ ( # 2
+/ , 6 ) I +/ - E +/ . 3 # % I J +/ / +// +/ 0 +/% +/ +/+
176
Chapter 4
SPANNING TREES
+/ B. D 3 " /<' #
8 +/, +/& +/ $ B. D 3 " /<' #
8 +/C +/,+ +/ B. D 3 * +/, " /<' #
8 +/, +/& +/ ( B. D 3 * +/, " /<' #
8 +/C +/,+ +/ , B. D 3 * +// ) # 8 +/, +/& +/ - B. D 3 * +// ) # 8 +/C +/,+ +/ . B. D ( * +/,
4.3 MINIMUM SPANNING TREES AND SHORTEST PATHS +,
*
Finding the Minimum Spanning Tree: Prim’s Algorithm
1 ( 2 . 0 $ 6 ,< A # " %&' !
7 # B ;&D G H ! 9 ! " '
Section 4.3 Minimum Spanning Trees and Shortest Paths
177
0
! . ! " ' 3 ! " ' Algorithm 4.3.1:
4 5 +
.
.
3 2 3 2 6 4 0 4 ! " ' 0 * " ' 7
$ $ +%, .
Figure 4.3.1
5 "# 4
)
$ ( " () : "
,
" 4 : A " : " / "" @ ,' 0 3 3 ) @ # G H - $ +%/1 4 " ' @
178
Chapter 4
SPANNING TREES
"" @ ,' "' " ' " ' K 4 @ K " ' $ " K' 4 " ' @ "' " ' " ' K
Figure 4.3.2
% # $ % ()
+%, * ! " 9 ' 3 The Steiner-Tree Problem
3 )
) 2 (
0 # # - # 4
$ $ +%% " ' # 4
Figure 4.3.3
.
+ # 4
3 * C< & ) " ' 2 ( " ,:,'
Section 4.3 Minimum Spanning Trees and Shortest Paths
179
Finding the Shortest Path: Dijkstra’s Algorithm
( . 0
$ *
) " '
.
3 ) "* +//' 8 B;LD
) . " ' 6 $ B$
"# . 0
$%" " ' 3 $%" " ' Algorithm 4.3.2:
16 4 +
.
.
3 2 3 2 6 4 0 .4 $%" " ' 0 * " ' 7
$ BD
$$ $ +%+ .
180
Chapter 4
SPANNING TREES
3 BD
Figure 4.3.4
"# 16 4
Calculating Distances as the Dijkstra Tree Grows
$ "' 5 $ +%+ . BD 4 BD @ "' $%" BD @ "'
$%" Æ 3
" +%% '
0 ! ! "' ! "' 4 BD @ "' $%" " ' £ ! "£ ' 4 ! "' "* $%" ¾ " ' ' Correctness of Dijkstra’s Algorithm
3
$$ *& % *&) : %
, +
A % : % / 0 "% @ ,' Æ & & ' ("&' 4 ! "' 5 ) 6 ' (")' ' ("&' ) * ) " $ +%; '
Section 4.3 Minimum Spanning Trees and Shortest Paths
Figure 4.3.5
181
16 4
"% @ ,' ! "' ! " '
' (")' 4 BD @ " ' @ ' ("* ' 4 ! " ' @ ' ("* '
! "' @ ' ("* ' ! "' 4 ' ("&' )
8 ! 3 "
' " ' *
! *
) %*+ + + $ " ! " # *' " !+ $ & # $ $ " ! & # & ' $ $ $
+%
+%
+%$
+%
182
Chapter 4
SPANNING TREES
" 4 " %# *' " /+ $ & # $ $ " " & # $ # $ $
+%( +%-
8 +%, 8 +%%
+%, +%.
8 +%/ 8 +%+
+%/ % % 3 ? "> . # ' '
+% 0 9 ) ) +% Æ ) 3 I +% > I +% $ +% B. D 3 "* +%,' 8 +%, +%+ +% ( B. D 3 "* +%/' 8 +%, +%+
4.4
APPLICATIONS OF DEPTH-FIRST SEARCH
3 The Finish Order of a Depth-First Search
6
Section 4.4
Applications of Depth-First Search
183
.
3 +/ "8 +/,&' 7 3 " %%' " 8 ' Growing a DFS-Path
*
*
!
$ $ $
!
3 !
% # , $ $ " ' 4 ,
0 A ++, ! " ' 3 " ' + ,
% # $ Æ Æ
Finding the Cut-Edges of a Connected Graph
* " ' *
0 , " ' * "$%' , " /+' 0 - - - " 8
- "
$ ++, - -
184
Chapter 4
Figure 4.4.1
SPANNING TREES
% - &
!
(
$ ++/ " '
Figure 4.4.2
% " &
, "' ,
# ++/ Algorithm 4.4.1:
' %
.
.
3 2 - 6 + , 9 3 " ' 4 , ( - .4 - 8 =M M= 0 - 7
$ Æ
Section 4.4
185
Applications of Depth-First Search
Topological Sorting by Depth-First Search
* +/ (
* *
"
' , / . . .
" '"'' "("'' * : :
- &
.
" ' " +//' >
.
$ $ &
3
Algorithm 4.4.2:
+
.
.
3 2 - 3 2 " .4 6 4 " ' 4 " - .4 - " .4 " , 7
* * ++, Æ
.
# ,/
186
Chapter 4
SPANNING TREES
Finding the Cut-Vertices of a Connected Graph
2
/ !
-
5 "' 3 3 (Æ "' 3 !
$ 3 $ ++% " '
- *
Figure 4.4.3
1 2 7
0 $
5 "' A
5 1 " $ +++' +/, (Æ "'
Section 4.4
Applications of Depth-First Search
187
++L
Figure 4.4.4
$
*
5 "' A " $ ++;' $ 6 3 - ! E " $ ++;' *
" 8 ' 3 ! > ++L
(Æ "'
Figure 4.4.5
188
Chapter 4
SPANNING TREES
Characterizing Cut-Vertices in Terms of the
A +/, ++,, "'
0 '"' "' ++,, "* ++%'
% # $ '"' "'
Algorithm 4.4.3:
' % 8
.
. *
3 2 * # 8 0 3 * * $ # '"' $ 3 '"' "' * * 7 *
' $ ++<
Figure 4.4.6
' & 2
Section 4.4
189
Applications of Depth-First Search
3 '"' . "' " ' '"'
' 3 ' '"' "$ B*>?C%D' 6 Escaping From a Maze: Tarry’s Algorithm
2 *
N 2 8 9
2 ,CL; &' . $ $# $ Æ $
A
. 3 -? 3 35 3 35 3 -?
$ , . )
190
Chapter 4
SPANNING TREES
) %*+ + + ! 0# * + $ ' $ $ &# $ 6 $ , *+ $ 7 $ . !/ * +
++ ++ ++$ ++ ++( ++, ++-
E E E E E E E
++.
++/ # ++% ++ 0 +++ ++ ++; ++ ++< ++ $ ++& ++ # 5 ++,, ++ ( ++,% ++ , B. D 3 * ++, 8 ++, ++ - B. D 3 * ++% 8 ++, ++& 8
4.5
CYCLES, EDGE-CUTS, AND SPANNING TREES
" # +,+' >
Section 4.5
Cycles, Edge-Cuts, and Spanning Trees
191
( ! 3
3 #
( !
- -
5 "' *
(Æ "' 0 -
# ½ 4
½ 4
3 - " 2 %,' - - - 4 - 3 ) - - Partition-Cuts and Minimal Edge-Cuts
* 3 & 8& # ,%
0 / / / /
/ /
($ / / ,
/ / / /
/ / / / ! / / 0 / / / / A / / /
/ / / / /
192
Chapter 4
SPANNING TREES
( / / 4 / /
# / / 3 / / / /
. +;+
2 # /+%
" 8 '
(( !
/ / *
/ / 3 / / 4 / / / / / / $ " ' / " $ +;,'
Figure 4.5.1
/ / / / ) *
/ / " )' 8 / / " . . . ' 4 Fundamental Cycles and Fundamental Edge-Cuts
0 "' # %,+
) "' 0 - - - "- ' 0 "' " $ ' 0 "' 0 "' 4 @ "'
Section 4.5
Cycles, Edge-Cuts, and Spanning Trees
193
.
-
0 "' ) 0 "'
* !
0 @ "
) 2 %,'
. 8
9
A 0 "'
0 0 +;%
. $ !
. 3
! *
( $ +;/ A 5 $
194
Chapter 4
Figure 4.5.2
SPANNING TREES
' # #
Relationship Between Cycles and Edge-Cuts
+&
(,
A +;,
(-
A +;/
(. !
0 0 5 6
( . 3 $ +;/ 2
Section 4.5
Cycles, Edge-Cuts, and Spanning Trees
195
(/
£ £ £ 0 . . . £ , " 8 " ' A +;C
A £ £ , " £ ! . . . . . . " ' £ +;C £
( . % $ +;/ - %
( 0
2 ,&%< 8 2 OP
A " <,' # <
*
*
( 9 % : ;
+ # ' / *
", /' 0 / /
196
Chapter 4
SPANNING TREES
"/ %' 3 % - 4
½ $ / 3 3
4
½
¾ - 4
½
¾ 3
4
½
¾ . . .
/ % "% ,' * 4 $
) %*+ + + ( 4 ! 4 4# & & * + : & *+ : & 4
4
4
$ 4 4(
4 ; 4 <# * + (& 4 ; *+ (& 4 0 *+ (& 4 $ &
+;, +;.
8 +;, 8 +;%
+;+;/
8 +;/ 8 +;+
4 !- 4 !"# * + (& 4 < *+ (& 4 !-
+; 0 8 +;, +; 8 +;/ +; 8 +;% +; $ 8 +;+ +;
+; ( 9 +;/ G H -
Section 4.6
197
Graphs and Vector Spaces
+; , , +; - +; . , +; / 0 ! @ "> . * +;< ' +; 0 +; +;,: +; 9 +;C
4.6
GRAPHS AND VECTOR SPACES
? Vector Space of Edge Subsets
$ 1 "' 1 "'
4 " ' "
'
1 "' "/' , 4 : 4 1 "' 3 " "/' * *+'
,
1 "' 0'
1 "'
198
Chapter 4
SPANNING TREES
,
4 . . . . . . 1 "' 1 "' 0'
3 - 4 ½ ¾ . . . 1 "' - 4 ½ ¾ . . . # . . .
0 . . . ) 4 . . . % , : * $
1 "' 2 3 4 . . . ( $ 1 "' 9$"/' ) $ $ 3 / @ (" ' 4 (" ' @ (" '
. 8
) 4 " ' 1 "' * , 4 : 4 " ' 1 "' $ G H
1 "' The Cycle Space of a Graph
1 "' 1 "' " '
, $ +<, 1 "'
Figure 4.6.1
# 1 "'
Section 4.6
Graphs and Vector Spaces
199
5 1 "' 1 "' 1 "' 2 " +;,,' 1 "'
,$ 1 "' 1 "'
3 Æ 1 "'
1 "' 4 A +;,, ¿ "' # / 4 , / % / / / / 2 4 / 4 / / A / 4 / @ / // / / The Edge-Cut Subspace of a Graph
1 "' 1 "'
, $ +</ ,; 1 "'
Figure 4.6.2
1 "'
, 1 "' 1 "'
A +;% Æ 4 / / 4 / / 4 / / 4 , / % 4 % +
200
Chapter 4
SPANNING TREES
4 4 4 4
>
4
A
4
,$ +<+ 1 "' $ +</ $ 4 1 4 1 4 4 Bases for the Cycle and Edge-Cut Spaces
,(
1 "'
A
> 1 "' - 1 "' 5 . . . - @ 4 , . . . ) - 4 . . . ) , 4 - . . . , , A , 1 "' " 1 "' ' 1 "'
, . $ +<% $ +<, 8 1 "' / 3
4 4 4 4
Section 4.6
201
Graphs and Vector Spaces
Figure 4.6.3
' # " 1 "'
+<;
,,
1 "'
, . $ +<+ $ +</ 3 ,; 1 "' / " 8 ' $ $ +</ )
Figure 4.6.4
' # " 1 "'
, ! 1 ) 2
-) .
$ +<; * )
Figure 4.6.5
- 0 O !
"O#0' O ! "OE0' . - 0 $
F 4 O#0
2 OE0 2
202
Chapter 4
SPANNING TREES
! F
* . $ +<<
Figure 4.6.6
"O#0')
@ @ @
4: 4: 4: 4: 4:
5 ) ) : 4 : $ "OE0') $ "OE0')
) ) ) 4 : ) @ ) @ ) 4 : ) @ ) @ ) ) 4 : ) *
Æ
) ) O !
) )
* .
- $ +<&
)
.
. . .
) @ ) ) @ ) 4 : ) ) ) 4 : ) @ ) @ ) 4 :
Section 4.6
Graphs and Vector Spaces
Figure 4.6.7
203
) "O#0') 3 4 /C ) ,
4 ,/1 4 4 +1 4 4 +1 4 4 C Dimension of the Cycle Space and of the Edge-Cut Space
3 8 +;, +; +<; +<< $
% # ,-
1 "' & 0 "' 4 @ "' 1 "' & "'
+<; +<<
Relationship Between the Cycle and Edge-Cut Spaces
2 2
,. ! - 1 "' 1 "'
5 "' 8 +;C (Æ "' 3
- 0 . . . - 4 . . . @ 4 , . . . *
+<; - -
204
Chapter 4
SPANNING TREES
- 5 - A 1 "' - - 3 - - - 4 > -
,/ ! -
Orthogonality of the Cycle and Edge-Cut Spaces
1 "' ) : "/'
, 0 1 "' 1 "' 1 "'
0 - * A +<C +<L - *
, 1 "' 1 "' 1 "' 1 "' 1 "' 4
3 1 "'1 "' 1 "' 1 "'
"1 "' 1 "'' 4 "1 "'' @ "1 "'' "1 "' 1 "'' A # +<& "1 "''@"1 "'' 4 "1 "'1 "'' 4 4 "1 "'' "1 "' 1 "'' 4 : Vector Space of Vertex Subsets
. 2 2 6 2 "/' / "* * *+' 0 . . .
. . .
3 " % '
3 B % D 4
: ,
Section 4.6
205
Graphs and Vector Spaces
* 1 "'
"/' 1 "' 8 1 "' "/' 3 3 1 "' 1 "'
, #
$ +<C , : , , 3 4 : , : : Figure 4.6.8
3
: : , ,
, : : ,
, : , :
3
4 3 " /' .
, , : :
: , , :
: : , ,
, : : ,
, , : : : , , 4 , : : : , ,
4 5 3 $ 3
* 1 "' 1 "' ! - "' "' 3
$ @ @
3 3 /
3 $ 8 +<+ 3 4 " 2 1 "'' / 3 2 3
$ $
3
, $ ' + .
$ "
3
206
Chapter 4
SPANNING TREES
, : : , , , : : : , , : : : , ,
% # , $ ! $ * ' .
8 3 "/' 3 "/' 2 ? 2 ) # +<,%
, ! $
"/'
2
, ( $ $ 3
3 3 A 3
4 $
, ,
$
$ 3 "/' +<,+ +<,;
) %*+ + + , ; ! ; "# * + 1 "' $ , *+ 1 "'
+<
+<
+<$
Section 4.7
Matroids and the Greedy Algorithm
207
; ; ;# * + (& & 1 "' *+ (& &
1 "'
+< 8 +<, +<( 8 +</ +<, 8 +<% +< ( 1 "' $ !
+<. 8 ,; 1 "' $ +</ / $ +<+ +</ $ * +<,
; !- ; !/# $ . ; !" ; !; $ &
+< 0 +< +<
+< $ +<, +< +<< +< ( +<L +< , # +<,% +< - $ +</ 1 "' +< . 8 $ +</
4.7
MATROIDS AND THE GREEDY ALGORITHM
* " ' 4 "
' " ¼ ¼ '
208
Chapter 4
SPANNING TREES
- 0 $ ", : :' ": , :' ": : ,' 4 " ' " ' - 0 4 " ' .
$ 3 - -
( 2 2
4 "
' . 0 &
$ 3 ¾ "'
.
2 A - "
' 3 @ 3 Algorithm 4.7.1:
#
. "
'
. 3 ¾ "'
3 2 3 .4 3 2 .4
6 4 #
.4 3 3 @ 3 .4 3 @ 7 3
.
G
H GH
! 2 *
Section 4.7
Matroids and the Greedy Algorithm
209
-$ # $ +&,
Figure 4.7.1
- " ' &
3 $ +&/
Figure 4.7.2
#
.
(' J A O BO ;
*
" '
-
$ +&%
#
Figure 4.7.3
; ,
210
Chapter 4
SPANNING TREES
For Which Problems Will the Greedy Algorithm Perform Optimally?
* 2 4 "
'
' . 3 3 4 3 4 4 3 3 @
- 2 "' 4 " '
3 4 3 4 0 - 3 4 - 3 " +;/' 4 4 3 A - 4 $ 3 @
.
- ) " 8 ' 2 "' " 8 ' #
-( $ +&% 3 4 4 4 2
-
4 "
'
5 "' 3 4 3 4 4 3 3 @ 4 4 3 @ , 0 3 4
"' 4
@ / 3 1 @ , 4 3 1 :
* 3 2 4 " @ /' A 4 " @ ,'
Section 4.7
211
Matroids and the Greedy Algorithm
(Æ "' 0 3 4 . . .
4 4 . . . * ' 3 5 3 4 . . . 4 4 . . . " 4 , . . . ' Æ
" ' 4. "3 ' "4 '
" 4 , . . . '
- "3' "4'
A "3 ' "4 ' , " ' A 4 3 3 @ " ' "' * "' "'
"3 ' 4 "3 ' @ " ' "3 ' @ " ' "4 ' @ " ' 4 "4' $ "3 ' 4 "3 ' "3 ' "4 ' 4 "4 ' 3
.
* ) +&, +&/ O ?
Æ +&/ O " 8 ' " B*?>C%D B CCD' ? 2 $ " B- L/D B6L
) %*+ + + 0 ! 0 # 3
+& +&$
8 +%, 8 +%%
+& +&
&
8 +%/ 8 +%+
0 4 0 <# & $ "
' # & # &
+&( 4 +&,
4 +& 4
212
Chapter 4
SPANNING TREES
+&.
4 +&/ " , " +& 0 "* +&,' " " "
+& 0 2 4 "
' 2 +& 0 - 4 " ' - +& $ 0 2 4 "
' ! 2 +& 0 . ",' 3 1 "/' 3 ! +& ( 2 "' +& , 0 2 4 "
' G 2 H 2 O " ' +& *
) * " ) 0 "
' +& . B. D 7 * +&, O
3 O 8 +%, +%+ +%
4.8
SUPPLEMENTARY EXERCISES
+C < *
213
Glossary
+C 3 ! * I +C$ 1 ) +; "> . ' +C A$ $ 8 F +C( 6 $ * +C, ) +C3 $ +C, 1
Figure 4.8.1
GLOSSARY
#. " 9 . 3 " . " . " 2 . 9 " 2 . " . " 3% , . , " /+' & "'. " - & . " 8 "
214
Chapter 4
SPANNING TREES
9
.
.
.
9 .
. # . 1 ) # . 1 "' . 2 . 2 . 9
" . 1 "' . . 16 . * +%/ & # " 9 . : & # 9 . " ' . . . ) 1 . 1 "' 1 "' . "/' . . . 2 . 2 & .
Glossary
215
9
. . . . ! # . ) . ) # # . # . # . 1 * +&, # " # 4 "
'. " ¼ ¼ ' 4 "
'. . . 2 4 "
' . 3 4 3 4 4 3 3 @ #. . " +&,' " 4 "
'. " '
. . <+= . 1 9 * +,, ". 3 " ' .
3 " ' 16 .
216
Chapter 4
SPANNING TREES
3 $%" " ' . 3 ! " ' . # & ! "' . ) ! "' 4 BD @ "' / / . / / / / . ( * +%,
& . " '
& " - - . "- '
, . " , ' ", ' , . : 9 . . . ! " ' . . : + " # . # "
' . , / . . .
" '"'' "("'' . . . . ' <+=
. 1 9 * +,, & 1 "' . "/' . &
Chapter
5 CONNECTIVITY
5.1 Vertex- and Edge-Connectivity 5.2 Constructing Reliable Networks 5.3 Max-Min Duality and Menger’s Theorems 5.4 Block Decompositions
INTRODUCTION
!
"
217
218
5.1
Chapter 5
CONNECTIVITY
VERTEX- AND EDGE-CONNECTIVITY
#
$ %
$ & ' % $
$ & ' % $ % %
&'
(%
% ) &'
%
$ &' !
% ) % %
&' % &' %
$ %
& &' '
! *(( + ,% %
% &' - , . /% %
% &' - /
Figure 5.1.1
&' - , &' - /
0
. 1
Section 5.1
Vertex- and Edge-Connectivity
219
0
% %
+ %
1
&' Æ &' # - Æ &' $ %
% % 2 3 (/
& ' %% %
% % & ' %
4 5 6*6 % % %
Relationship Between Vertex- and Edge-Connectivity
% % ,% 1 7
8 (9/,
/ & (' # - ,
+ & ' ! Æ
% & '
% & ,%' % %
& ' :
; <
=( & %' % % % % & *(,' : % 0
0 $
# + %
220
Chapter 5
CONNECTIVITY
7 % & *(,' ! % & ' % & '
Figure 5.1.2
& '
! ( & ' 5 *(/ &' &' # - &' (
(% 3 *(6 % &'
%
" &' &' Æ &'
5 *(( 3 *(*
Internally Disjoint Paths and Vertex-Connectivity: Whitney’s Theorem
$
% ,%
7
8 % (9/, %
*/
$ 1 # $ %
# $ %
& ' $ ,% % % ! %
Section 5.1
Vertex- and Edge-Connectivity
221
& ' ,% 8 & '
% ) % ! ) & & ' - (' % 3 *(6
% ! ) % :
,
# & ' - % # & ' ) % $ ,% % *(/
0 &
' &
'
Figure 5.1.3
#
& ' $
) % > ! % ) 1 ) !
&
*(? ) %
0 *(? 8 % */ 3 *(@ 3 ? A
,% !
& B '
222
Chapter 5
CONNECTIVITY
' $ %
! " # $ # % & # ' #
( #
) # ( )* * * *( ,% % B *((
*( *( *(! *(
$ $ $ $
C% &' - , &' - , (( (D % /% ,% @%
!
*("
*(#
*(&
*('
*( +
3
*(
3
*( % % *( % % 5 &(,' ) &70 E
' " #
*( ! *( "
&' - &' - Æ &' &' &' - Æ &'
*( &' - &' Æ &' *( # &' &' Æ &'
Section 5.2
Constructing Reliable Networks
223
*( & # % ) & ' -
*( ' # % 5
- = &,6' & = ('% *(+ 5 /% *( #
&' - &' - Æ &' -
$
*( % , *( 3 % . ,
*(! 5 ,% *(D *( 5 &' - ( = & ' *(" % &(6' & '
5.2
CONSTRUCTING RELIABLE NETWORKS
! % ! Whitney’s Synthesis of 2-Connected Graphs and 2-Edge-Connected Graphs
$
$
$ % . - - - ( !
.
*,( 6% 8
Figure 5.2.1
, -.
224
Chapter 5
CONNECTIVITY
/ 3 *(@ ,% $ % * & ' - - 8
,% # *,( ,% - ( ! - ,%
& ' ,% 3 8 & ' -
- ,%
% "
%
# 1 & *,,' -
Figure 5.2.2
E F ,%%
/ + , % ! $ % * - & ' - - 8 %F
,%% # *,/ ,%%
Section 5.2
Constructing Reliable Networks
225
& ' ,%% $
8 %F - $ *,, -
" & ,%%' $ 1 4 %
*,/ -
Figure 5.2.3
5 *,/ " 8 8 %F % Tutte’s Synthesis of 3-Connected Graphs
/% % 8 ,% 8
GC(H
! & !' ) =
% & % '
*% *,6 !
Figure 5.2.4
$ % $
! - % & . % % !& ' / !& ' / +/(!0,
226
Chapter 5
CONNECTIVITY
$ %
6% $ ,
Figure 5.2.5
! - -.
1 1 - 0
! % &' % % :
$
# " &' % > " &' - (
" &'
"
. .
" " &' B % &((' , Æ &' 3 *(C Harary’s Construction of an Optimal -Connected Graph
7 %
, &G7 C,H' # % D ( , ( & *,C ' $) # # % %# # #
Section 5.2
227
Constructing Reliable Networks
Figure 5.2.6
0 -
# # D ( ( # # # #
1
& '
!
# - ,$ ; # ) # 0
Figure 5.2.7
$
*,?
0
!
$ & B '
$ - - & '
# - ,$ = ( % = - D ( . $ = - - - < *,@ 0
# - ,$ = ( %0
&
D D
& = ' - ( . $ = - - & '
228
Chapter 5
Figure 5.2.8
Figure 5.2.9
CONNECTIVITY
0 - -
0 - 12 3-
0
$ 7
# 2 0 - ,$
,$ ( ! Æ % % % > . . . $ ( $
. .
$ ( = $ , & *,(D ' 4
$ # $ #
.
) . . % &3
('
- ,$ = ( ,$
! Æ % % 0
Section 5.2
229
Constructing Reliable Networks
Figure 5.2.10
! $
3
( .
$
. E % - =( = $ ( & - = ( = $ ( B > = $ (
= $ ( & *,(('
Figure 5.2.11
- -. -2 -. 2
# - & = $' & (' - & = $' = = $ ( = $ ( : - = = $ ( = $ ( 4 . $
& *,(,' " -
) 1 3
, % 4 % % &3
,' %0
- ,$ = (
3
/ 3
,
&B '
230
Chapter 5
Figure 5.2.12
CONNECTIVITY
7
%
& 2 & ' % +3% , Algorithm 5.2.1:
- 4 5 6
0 '0 7
D%
! D # $ - - D , # - = ( ( ! # $ >F = # $ 3 # G( H ! F B ! - D ( 3 & = ' B 3 D 3 D - ( 3 & = ' F
( )* * * *, 8 ?% *, 8 *, /% 8 6%
Section 5.3
231
Max-Min Duality and Menger’s Theorems
*,! ,%% 1 /% 8 %F %
*, (% *," E *,* /% *,# E *,* 7 /% 6 *,& 7 $ ) * +
*,' *,
*, + *,
*, $ *,(
7 *, ! 5 3 *,@ *, 5 3
/ *,? *, " G ,-H 8 ) 7 D ( (
5.3
MAX-MIN DUALITY AND MENGER’S THEOREMS
4 E % ) % $
&
'
. & ' " % %
# $ & ' & ' + % % % % 8
% %
232
Chapter 5
CONNECTIVITY
*/( % % % % %
: % % & ' % % & %' % % /% % /
Figure 5.3.1
5 -
A Primal-Dual Pair of Optimization Problems
*( + % > ) 3 % ) . / ,0
) %
. / ,0
+* 4 ,
% %
)
) % & '
%
5 " . . 4
! 5 */(
Section 5.3
Max-Min Duality and Menger’s Theorems
233
$ $ % %
- % 5
5 +3% , 3 */, . ' $ ( ) % - ( % / 3 *// % ) % % %
Figure 5.3.2
Menger’s Theorem
A " (9,? %
&
. ' %
3 (/ 2 1 .
! $& %
%
Variations and Consequences of Menger’s Theorem
%
8
# ( ' % ) ( ' &( '' (%'
/ % &' % &( ''
( ' (%' % &' &( '' % ) ( ' &'
234
Chapter 5
CONNECTIVITY
. &( '' % ) ( ' > % &'
( ' + % 4 &( '' &' &( '' % ) (
'
. &' "
8 (9/, ! ,% *(?
" $ %
! )
%
1
%
% ) ! %
%
% */6 ) %
7
) % 3
) % 5 */( & ' % ) &' # */*
# = ( - (
3 ) - (
*//
Figure 5.3.3
-
% % & B *((@' 4 */C ) % % ) (9CD %
,% 3 *(@
& $' %
= ( /
#
4
Section 5.3
Max-Min Duality and Menger’s Theorems
235
3 *(@ , ! 3 */? ) - ( 4 & */6'
Figure 5.3.4
- 2
Analogues of Menger’s Theorem
B
3 (/
' $( ) $ % %
-
6 +3% , + $( ) & % % 5 +3% , $ ( % +3% , */*
1 % ) % % 6 % ) % % 6
Figure 5.3.5
236
Chapter 5
CONNECTIVITY
Proof of Menger’s Theorem 5.3.4
" % $ +
2 3 (/ "
# $ ) $ % & . '
! 3 % - (
*/C . $ $ ( % % % ' (
Figure 5.3.6
1 , $
/ : 4 3 */, Æ ) % - ( & '
,
!0
! % , ) % !0 - , #
% %
% ( 4
( ) 5 ) ) % &$
*/6 ' ! % ) $
*/6 ) % (' & ' /
% ! 3
( %
*/? ) ! 3
,
% 3
, ) )
1
Section 5.3
Max-Min Duality and Menger’s Theorems
Figure 5.3.7
237
7 8
% - ) # % % % % & */@ ' 0
!.0 4 !.0 % & %
' % % 1 % + 7
% ) - ( 4 3
(
$
&$
*/6'
Figure 5.3.8
- -.
!0 !0 4
4 1 % % 7
238
Chapter 5
CONNECTIVITY
% & */9' 4
% 1 &$
*/6'
Figure 5.3.9
-
8 1 0 & */(D'
Figure 5.3.10
)- -
!0 4 !0 .
- ) -
& ' & $
*/6'
= & $
*/6'
= & '
$
&$
*/6'
4 % % % 7
% % ) % ) % & */(( ' %
% # - (
) % &3
('
Section 5.3
Max-Min Duality and Menger’s Theorems
Figure 5.3.11
239
9
%
) 0
# - % 4 $
*/6
/ ) 4 5 *(/ % #
% & */(,' %
% & ' % ( > % %
Figure 5.3.12
7 8
!
- ) % ! - ( - ( , & % '
% 3
, )
) 7 ) & % ,' 4 3
, )
0
" 3 (/
" (9** 3 (/ 2
240
Chapter 5
CONNECTIVITY
( )* * * % %" - ' 0 %%1 -
*/
*/
*/
*/!
% %2 - 3 ' 0, %)1 -
*/ */#
B */( B *//
*/" */&
B */, B */6
%) %4 - , %) -
( -
*/'
*/ +
*/ 5 3 1 > &3 *//' */ 5 B 3 1 > &5 */9' */ 5 B " */(D */ ! 5 8 %B%3 3 */(( */ 5 *,* /% &70 8 %3 3 % */C' */ " # % , #
, 5 */ # # % # - * 5 % - ( )
Section 5.4
5.4
241
Block Decompositions
BLOCK DECOMPOSITIONS
$
%
,% &
' &,% %'
0
1 $ % & ' +
& 1 '
! *6(
I ' (
Figure 5.4.1
- .
0
4 1
% & ' % 1 %
! 3 3 (% ! 7 % # & & + & & % &
& & &
& & & *6,' % % && & ' % & & & &
% & & " & % & & % & & &
% & &
242
Chapter 5
Figure 5.4.2
CONNECTIVITY
. 2 2
. 5 *6,
!
&B ' !! % % 7 +3% ,
! & & & & % % % +3% , &+&' &+&' )
!
*6/ &+&'
Figure 5.4.3
.
$ %
9( 56 (
!" % +3% , Finding the Blocks of a Graph
! 66 %1
1 % &$ 66/' $ 66/
1 F 66 ,&' - $ %1 ) %
Section 5.4
243
Block Decompositions
Algorithm 5.4.1:
:;
0 '0 % & & &
$ $ 66/ 1 % ! 0- D % &
- $' %1 . ! ,&' - $& ' # . . 0- = ( & 0- * . 0- . * F & & &
8 1 $ *6( %
%1 & G$ 7E@/H G4 @/H G 9,H' $ %
1
(,* Block Decomposition of Graphs With Self-Loops
! % %
. &
% %
! *66 % 1 %
Figure 5.4.4
12 .
( )* * * ! " ""
*6
*6
244
Chapter 5
*6
CONNECTIVITY
*6!
*6 *6" % *6# % *6& 7 % J ") " * "
*6' *6
B *6( B *6/
*6 *6 " *6 #
5 3 *6/ 5 3 *66 5 3 *6*
*6 + *6
B *6, B *66
*6 5 0 B *6 ! 5 0
#
&' * * * ) * ) % ) % "2 " &' &'
*6 & B *6( *6+ B *6/
*6 ' *6
B *6, B *66
*6 #
5 % &' *6 5 5 *6C &70 B *6,,' *6! G ,-H ! $ *6( B *6%, *6(
5.5 ** ** **
SUPPLEMENTARY EXERCISES 3 % 5 % 5 %
Glossary
245
**! ! % 1 % ) &D D D' &( ( (' ** 5 Æ ( '
**" 7 ( 'J
GLOSSARY
.
0
% I % %
. & 0 % .- &'
0 * * * )% * ) % ) %
. &+&' 0 &+&' ) . 0 0 . 0 0 &' - 0
-0 -2 0
0
0 %
246
Chapter 5
CONNECTIVITY
0 7 7 8 0 7 8 0 7 0 %
& &' ' 2 0
I &' - 0
< 0
. 0 0 % %
7 & *,' 9 0 .0 2 2 % ) ( '0 % (%' I &( '' # # D ( (0 # # I 7 % &*,' 0 0 0 + 0 ) $ % % - 0 /% I *,* - 0 2 2 0 (% I &' % ) ( '0 (%' I &( '' 2 - 0
=> 0 & ('%
- = , 0 8 %F , .. 0 . - -
- (
Chapter
6
OPTIMAL GRAPH TRAVERSALS 6.1 Eulerian Trails and Tours 6.2 DeBruijn Sequences and Postman Problems 6.3 Hamiltonian Paths and Cycles 6.4 Gray Codes and Traveling Salesman Problems
INTRODUCTION
!
"
" #
$ " " "
% " " &'" ' "
()
247
248
6.1
Chapter 6 OPTIMAL GRAPH TRAVERSALS
EULERIAN TRAILS AND TOURS
* +
.. Konigsberg Bridges Problem
%
,- . '
' /
# '
0
1 (22
' 1
3
4 . . 5 267(
Figure 6.1.1
. 8
1 (29 %
. " 3 : ; )<=
. 267(
Section 6.1
249
Eulerian Trails and Tours
Figure 6.1.2
. 5 2>67
Algorithm 6.1.1:
?
?
: .
; )9=
(22 " @
A A
1 (27
A
Figure 6.1.3
250
Chapter 6 OPTIMAL GRAPH TRAVERSALS
Open Eulerian Trails
:
!
;= 0 A B
#
"
;=
% 0
%
"
5
A
Eulerian Trails in Digraphs
! " # $
" ;= A ;= #$ % % ;=B2 A ;= ; = A ; =B2 #$ % Tarry’s Maze-Searching Algorithm Revisited
% )) 8 " " %
8 0 " 1
*1C2+
Section 6.1
251
Eulerian Trails and Tours
& $ ! ! & ! ! #$ % ' ( )* * * ! " #
(2
(2!
(2%
"
(2&
(2+ ; 29= D $! % # &
(2
(2,
(2-
(2.
(2/ E
(22 (22
! # % # '
(2
(2!
(2%
(2&
(2+ F (22
252
Chapter 6 OPTIMAL GRAPH TRAVERSALS
$! # %
(2
(2,
(2-
(2.
(2!/
(22
D (2!
" (22 D (2!! '
(29 ;5?
" )<= (2!% '
(27 ;5? E
(29= (2!& ' ' (2G (2!+ '
; = ; 29=
(2! ' ?
(2!, ' ? %
(2!- ' 9
"0
(2!. * (+ % (22
. (2( (2C (2%/ * (+ % (22
. (222 (22) 6.2 DEBRUIJN SEQUENCES AND POSTMAN PROBLEMS
9 ;9 ="
9
!
;9 =" # 0
A 2 9 7 ) G2 G22G G222G2GG GGGG2GG22G2G2222
Section 6.2 DeBruijn Sequences and Postman Problems
0
! & ' ( " ?
253
2( H G 2
2(
I J )"
1 1 (92
2G2G
Figure 6.2.1
0 1 &
!
2(
; =
;9 )=" # 0
)"
" Æ )" % ;9 =" # 0 %
; =" # 0
; =" 0
F
& F # 0
;9 =" 9
2 9
!! 1 (99
;9 )=" # 0
"
#
1
GGG GG2 GGG2
Figure 6.2.2
;9 )="23
254
Chapter 6 OPTIMAL GRAPH TRAVERSALS
! ;9 =)
# 0
? K K K K $ "
G 2
G 2 ; = A ; = A 9 "
(29
Algorithm 6.2.1:
;9 ="23 *4
? ? ;9 =" # 0 :
;9 =" # 0 : : %
1 ;
=
"
!%
;9 )=" # 0
;9 )=" # 0 1 (99 %
GGG GGG GG2 G2G 2GG GG2 G22 22G 2G2 G2G 2G2 G22 222 222 22G 2GG GGG
;9 )=" # 0 GGGG2GG22G2G2222
(5?
H GGG ;9 )=" # 0 #
H ;9 )=" # 0 ; = H ;
. =
" (92
!! ! !
2 ;9 =) ! !
A 2 2 2
B2 #
"
#
# 0
255
Section 6.2 DeBruijn Sequences and Postman Problems
9 B 2
#
"
!& ' (99
1 (99
2GG GG2 G22 22G 2G2
2GG2
"
2GG GG2 #
H )
' (99
)
;9 )=" # 0
Guan’s Postman Problem
:
$ 3 *3 (9+
3
Æ L . *.(<+
% "
0
: ' '
"
; = !
!
; =
" %
. L *.L67+
: ' ' " (99
$
0 "
: 27
256
Chapter 6 OPTIMAL GRAPH TRAVERSALS
Algorithm 6.2.2:
6
? ? 1
"
1 "
1
4
1
1
1 " 1
4
1
" 4
:
. L
"
" %
"
!+
(99
1 (97
Figure 6.2.3
7
1 (9)
"
1
"
>
"
Figure 6.2.4
81
257
Section 6.2 DeBruijn Sequences and Postman Problems
.
(99
1 (9<
Figure 6.2.5
#
1 !
! !
(99
$ : 27 "
" ;
. = (5? . L 8 "
: ' ' ; =
&'" ;*'6(+= %
. L
"
3 1 *16C+
5
" Other Eulerian-Type Applications
M
: ' '
K " K "
K " K K " 0
!! * * ?
1 (9( "
. "
"
;
=
"D
: ' ' # * #>7+
;
" =
!
K
258
Chapter 6 OPTIMAL GRAPH TRAVERSALS
Figure 6.2.6
1
. L 8 #
"
") *" ; / : 27= 1
" "
69
9G
/
" ;
& N :=
0
!% + ' ?
1 (96
* >2+ ;
. =
Figure 6.2.7
0
!& * ' , ?
# $ % &
2
%
"
;
=
D # $ % &
# $ 2 % G2 2 & G
2 2 2 G 2
G 2 G 2 G
2 2 G 2 2
2 G 2 2 2
G 2 G 2 2
Section 6.2 DeBruijn Sequences and Postman Problems
259
" ;
0 = 1 (9>
Figure 6.2.8
1
"
(22
(22 0
!+ " (- , & ? % & ; = :33E3E:3 ? ;= ;:= ;3= ;E= % "
& !
" &
3 5 *5 (C+ 9? 1
& & 3" & E"
:"
&
3" 3
3"
&" 3" E:" E : %
)? %
:33E3E:3 0
3"
; 3" =? :3 3 E3 E:3 %
0
E:"
? : 33E 3E : 3 1 (9C
&
260
Figure 6.2.9
Chapter 6 OPTIMAL GRAPH TRAVERSALS
(:0 ; < ;
3
3"
E:"
&"
&" K
&"
3"
E:" * 0
3"
&"
3"
9) A )O ;
3" =
3:3E:3E3
E:" 3
9) A )O
::33E3E3
& !
3" 9)
E:" 9)
5 & 62 3" >9 E:"
6GO 2G
3" >2O 2G
E:"
5 8 &
*?
E:" 3"
3" E:" " 3" E:" 1 (92G
&
3"
E:"
1 1 (92G
3" 3
E:" : :
:
3" E:"
3
E:" 3" $
#
Section 6.2 DeBruijn Sequences and Postman Problems
Figure 6.2.10
261
(:0 ; < ;
3" E:" ;
. = %
: ?
H .
? 2 %
& ;%
% = 9 %
;%
= 7 % ) F
7 < 1 & 7
&
& K
& ( F
9
2
;P=
)?
1 (922
Figure 6.2.11
# (:0
262
Chapter 6 OPTIMAL GRAPH TRAVERSALS
(:0 ?
2
9 1
8 )?
H
1 (922
& ? :33E3E:3 :33E:3E3 :3E:33E3 :3E33E:3 %
3" E:"
1
"" "
& D
5 8 0
! & $ ? %
&
$
L 5 5 *5 6<+ 1
' )? 1
29792929
? A 7K A )K A 2K A 7K A 9K A A 2
? 1 8 8 ' A 2 H
D % A G
;
*5 6<+= *;? F
0 ; =
6?
A
263
Section 6.2 DeBruijn Sequences and Postman Problems
)?
1 (929 0
8 %
2 9
29792929
$
Figure 6.2.12
# =
A
A
#
(27
"
; =
8 8
B 2 A A
A
2
B 2 A A
. "
: "
% '
' H
; O= H
%
4
0 )? 1 (927
Figure 6.2.13
""
# 0 . *F . <2+ * )2+
; 2=O ;* +=
264
Chapter 6 OPTIMAL GRAPH TRAVERSALS
A
"
A '
( A ; 2=O ; O= ;* +=
1
7 7 G 9O7OGO7O9O 9 ) 2 A 7 G 2 2
" ? 29792929K 29292979K 29297929
Eulerian Digraphs and Software Testing
% 2(
;" = "
5 "
!
"
+
Figure 6.2.14
9
& %
! ; = A ); = 1
1 (92)
265
Section 6.2 DeBruijn Sequences and Postman Problems
1 " ; = " 0
!
; 29=
; = "
" K ; = ! ; = A ); = ;
1 (92<= "9 " ? 2 :
; =
9 :
; = 7
!, 1 (92<
. (9(
&
"9 "
Figure 6.2.15
9
' ( )* * * ! (9 : ;9 )=" # 0 H
(92 H (9! F
;9 7=" # 0 H ;9 7=" # 0 (9%
# 0 " D L (9& 1
" ; 29=
# 0
# 0 (9+ ' ; = A (9 3 ' (92 (9, ; =" # 0 ; = " 3
;7 9=" # 0 ;7 9=" # 0
266
Chapter 6 OPTIMAL GRAPH TRAVERSALS
(9- :
# 0 ;7 7=" # 0 (9.
; =
# 0
# 0 (9/ ' ; = A (9
# 0 " D L
,, ,-! % ,, " # " . " /
(9!
(9%
(9&
(9+
, ,0 # % ,,
(9 '
(9, ' (9-
" (9. E (99
(97 (9!/
(9)
,, ,, ! # % ,- 12% " 3 4 #
(9! (9!! (9!% (9!&
3" ? ::3 3 E::3 3K E:" ? 333 3E : : : : 3" ? :E3 :3 3 E:K E:" ? : : E 3: 33E 3" ? 3 E:3 3 3 EEK E:" ? 333E E 3E : 3" ? 3 3 :: :E3 3K E:" ? 333E E : 3: (9!+ (9<
Section 6.3
267
Hamiltonian Paths and Cycles
(9! (9<
,,5 ,6'! % , " / # ! ,! 6 #/ ( # / ! # % ,
; =
(9!,
A 7K A
A )K A )K A ) G 2 7 7 G 2 9 2 G (9%/ A 7K A 7K A )K A ) G G 7 G 2 G 2 2 2 G G 7 2 9 G G (9%
. (96
0
6.3
(9!-
HAMILTONIAN PATHS AND CYCLES
; =
1
(5? " 0
"
%
5 ;2>G(<=
"
3 !
% 3
1 (72
268
Chapter 6 OPTIMAL GRAPH TRAVERSALS
Figure 6.3.1
# )
"
&
%
&'"
I% DJ
"
Æ
Showing That a Graph Is Not Hamiltonian
? 2 %
9
9 F
7 %
%
1 (79
Figure 6.3.2
0
Section 6.3
269
Hamiltonian Paths and Cycles
'? 2 ! 7
%
2 #
7" 9
0 ;
= 9 %!
1 (77
Figure 6.3.3
0
'? 2 2 7
%
7
#
2
#
Sufficient Conditions for a Graph to be Hamiltonian
3 F 2C<9 ;*F<9+=
! ! ;*!(G+= % "6> ./$ . ! 7 ;= B ; =
#
"
0 "0 4 "0 ; 7= Æ ;= B ; = 2 B
4 A A ;
1 (7)=
270
Chapter 6 OPTIMAL GRAPH TRAVERSALS
0
Figure 6.3.4
1 A 9 2
"0
;
1 (7<= ; =
0
B 2 A 9 9
Figure 6.3.5
;= B ; = A
B
A B B B
A 2 B B
B 2
A 9 B ; B =
9B7A 2
; %! "# > .+!$ . ! 7 ;=
! F
Æ " * 69+
%% . ! * ;=B ;= #/012% ; %& . ! ;= ;=
Section 6.3
271
Hamiltonian Paths and Cycles
' ( )* * * % 6 6 ! " #
(7
(7!
(7%
"
(7&
(7+ D 6 6'! "
(7 >" >
(7, >" >
(7- >" >
(7. >"
! 8
(7/ (" 2G (7 '
!
(7! ' 66 60! !
(7%
(7&
(7+
(7
272
Chapter 6 OPTIMAL GRAPH TRAVERSALS
(7,
(7-
(7.
' (7!/ !
% 3 ;
1 (72= 1
#:'&$ (7! :
"
"
" #
(7!!
8
5 '
8
(7!%
F8 ;: (7= I ;= J ; I ;= J=
(7!&
Æ ! 8
(9 "
(7!+ :
2 9 1
H H
1
2 9 1
(7! '
("
(" (7!,
"0 ;5?
2 9 = (7!- 2C
% H
5
D ;5?
= (7!. 7 7 7
96 2 2 2 %
D
Section 6.4
6.4
273
Gray Codes and Traveling Salesman Problems
GRAY CODES AND TRAVELING SALESMAN PROBLEMS
%
I J #
; =
I J
9 "
;
= H &
GGG 2GG 22G G2G G22 222 2G2 GG2 3 7
"
"
H 3
1 ()2
Figure 6.4.1
0 ; ;
3
; B 2="
" ? 0 G
"
0 2
0
(5?
96
1 ()2
1 ()9
G 2
GGG
K
;G22=K
GG2K
GGG
274
Chapter 6 OPTIMAL GRAPH TRAVERSALS
Figure 6.4.2
; % ; !
& ! 9 )"
9
G G G 2 2 2 G
' * ?
3
I J
1
3 . ()2
2 > G22 ;A <=
; = ) (
0
&
Traveling Salesman Problem
!
$ % ;$%=
1 ()7
K
"
"
Figure 6.4.3
7 *
Section 6.4
Gray Codes and Traveling Salesman Problems
275
'
' 26
.
, 8 ' ;
. = !
H M ;2662= ' , ;2><(= 5 ;2><(=
"
' 5 2C7) $ 1 :
2C<)
3# F F 1 $ L ;*F1 L<)+=
0 )C ; F:
)> =
2C>G
: ' 72>" ;*:'>G+=
8 2G
2 2G
: "' ( "" # / +
Heuristics and Approximate Algorithms for the TSP
5
Æ " %
H 8
!
" % H
' "
"H
*44 , ><+
'
% "
?
" "
276
Chapter 6 OPTIMAL GRAPH TRAVERSALS
Algorithm 6.4.1:
: :
? ? % );= A G % A G
?A B 2
0 );= A ?A
"
K
1 ()7
5 ;=
1 ())
Figure 6.4.4
;
"
' &! & *' A ( #/* 3142%
5 '
/
#
"
()7 4 2 9
'
B ' &% * 2 *' !
! ! ! #/(*.112%
Section 6.4
277
Gray Codes and Traveling Salesman Problems
Two Heuristic Algorithms That Have Performance Guarantees
"
# "
Algorithm 6.4.2:
#
? ? 1
: + : + : ? 1
0
:
0
&!
1 ()<;=
6"
1 ()<;=
1 ()<;=
"
Figure 6.4.5
) 0 &!
&& *' !
! 45 4 %
()9 %
" "
"
9 ; =
0
278
Chapter 6 OPTIMAL GRAPH TRAVERSALS
9
;% = 9 ; = # %
9 ; = 9 ;% = !
()9
& :
8 5
. L
: ' ' ; (9= "
"
: 8
'
Algorithm 6.4.3:
8
? ? 1
4 ,
"
1 " , : +
: + ()9 : ()9
: 8
" *44 , ><+ &+ *' !
! , 6
(5? '
"
/
"
TSP’s in Disguise
'
8Æ
5
' ' 2 9
' ? 1 " ? 1 G
A A G ' A 2 9 ;
1 ()(=
G
Section 6.4
279
Gray Codes and Traveling Salesman Problems
Figure 6.4.6
? ! 1 "
!?
'
" A ' A A
Figure 6.4.7
!
? % 1 "
%?
=
' ;
Figure 6.4.8
%
280
Chapter 6 OPTIMAL GRAPH TRAVERSALS
0
&! 7! * * + ?
0
0 ' # 0 5
0
D F "
0K
'
0 " 0
&% , " ?
#
1
; =
"
0
&& * ) ( ? .
-
' ' A 2 5
D
A 2 - 4
-
)
' #
"
"
-
8 &
' " #
1
8
" 1
%
-
½
¾
½
¾
' ( )* * * & () E
()2 3
)
3 7 . ()2
Section 6.4
Gray Codes and Traveling Salesman Problems
281
, -! # % 6 ! / " # #
()!
()%
()&
()+
$! # # % 6 " & # / " # #
()
. ()9 (),
. ()7 ()-
. ()) ().
. ()< ()/ ' ? %
" ; 29=
0
! # # % 6 " # & # , / " # #
()
. ()9 ()%
. ())
()!
. ()7 ()&
. ()<
- ! # # % 6 " " ) & # 6 / " # #
()+
. ()9
()
. ()7
5 0! # # " #
F
2 9 7
3
"
;
= ()2 ()9
;=
"
282
Chapter 6 OPTIMAL GRAPH TRAVERSALS
3
"
;
= ()2 ()9
;=
" (), ()-
(). 0 -
. 0 0
0 !
0 ! ! B 2 ; *" " " =
0
0 ; B 2=" ' ;5? : 0
2 0 ' 0 = ()!/ * (+ % ()2
. ()G ()< 6.5
SUPPLEMENTARY EXERCISES
(< F "
1 (<2;=
(<! F "
1 (<2;=
Figure 6.5.1
(<% :
(<& 3
"
" "
"
283
Glossary
(<+ # $ % '
% (< F
0 9 B (<, F
0 7 B (<- F
(<. 3 0 " (</ F + 0 + "
" .
" (<
1 (<9;= " (<!
1 (<9;= "
Figure 6.5.2
(<% F
1 (<7;= (<& F
1 (<7;=
Figure 6.5.3
(<+ "0 + 0 + 3
" (< 3
"
"
"
"
GLOSSARY
?
284
Chapter 6 OPTIMAL GRAPH TRAVERSALS
23 ?
9 H 2 9
K
;9 =" # 0 23 4 9? 9
9
K ;9 =" # 0 ? ? " ? ? ? ; ?
9 " H ? @ ; A ? ; =
K
?
?
5=
?
?
; = "
" K ; = ! ; = A ); = ; = ?
0
?
?
? ? " 1 > ! ? 0 4; 2 9 ?
" B '
Chapter
7
PLANARITY AND KURATOWSKI’S THEOREM 7.1 Planar Drawings and Some Basic Surfaces 7.2 Subdivision and Homeomorphism 7.3 Extending Planar Drawings 7.4 Kuratowski’s Theorem 7.5 Algebraic Tests for Planarity 7.6 Planarity Algorithm 7.7 Crossing Numbers and Thickness
INTRODUCTION
Æ ! " # $ % Æ & !
'
( ) * *&
285
286
7.1
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
PLANAR DRAWINGS AND SOME BASIC SURFACES
+ ,
( ) " Planar Drawings
( "
,
- **
Figure 7.1.1
! .. / .. /
0
1 2 / 3
4 ,
, , 3 ,
" , - *#
Figure 7.1.2
Section 7.1
Planar Drawings and Some Basic Surfaces
287
1 3 3
, ' 5 6
Three Basic Surfaces
7 8
! 7 8 Ê
9 9 :
Ê % ",
* #; ! , 8 - *8
Figure 7.1.3
- *< : ; ; ' ! : * - *< ' ! : *
Figure 7.1.4
!
288
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
5 6 5 6
1 3 )# " " % Riemann Stereographic Projection
= %
Ý ; ; ; 7 8 ; * ; > = / 5 6 ! 5 6 - *
Figure 7.1.5
" #"
1 ' , 5 " 6
? = / "
, @ A .
$ $
% = /
Ý
Section 7.1
289
Planar Drawings and Some Basic Surfaces
Jordan Separation Property
/ "
@
" . B 7 Ê
7 / C; *D ; : * : + .
", 7 C; *D ; : * / - 5! 6 % - *&
Figure 7.1.6
& " "' ( "
) 3
7 Ý , 7 7 , * - *
3
Figure 7.1.7
" "'
' ! B !
Ý
290
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
7
+ ' Þ , ' . E -
/ - *< E ( % Æ F E *)) "
G *H;
"
( = ! " #$ Applying The Jordan Curve Theorem to the Nonplanarity of
and
3
E ( 3
" 8
% $
0 ; < B E ( * # 8 < * ( , ; 5 6 B E ( / , ; * # 8 < - *) @ 8 ; * # ; ; # 8 ; ; 8 < ; ; < * ; #< , * # 8 < *
Figure 7.1.8
-
! "#$%& Þ
Section 7.1
291
Planar Drawings and Some Basic Surfaces
3 #< <; ;# * 8 E (
*8
)
$
0 ; # < * 8 B E ( # 8 < #
, ; 5 6 B E ( / , ; 8 ; 8 # ; ; 8 < ;
- *H
Figure 7.1.9
-
1 , # 8 < #
3 , * , , * ,
, * "
Figure 7.1.10
.
- ***
3 ( )
292
Chapter 7
Figure 7.1.11
0 1
PLANARITY AND KURATOWSKI’S THEOREM
" /
"
! " # I 1 '
* ;Ô *
* *%
Ô
Ô
$ % " ! " I 1 > ,
Ô *) ; ; * * ; *
7.2
** *2
8 ; < ; ;
SUBDIVISION AND HOMEOMORPHISM
- #*
! ! ! 5 6 , (
3
, 5
6
Figure 7.2.1
!'
! " ! % 3 "
Section 7.2
293
Subdivision and Homeomorphism
Graph Subdivision
0 ,
¼ ¼¼
Figure 7.2.2
!'
# , ¼
, ¼ ¼¼ / ¼ ¼¼ 0 ¼¼
, '
Figure 7.2.3
9 * - #< 3
, 9 * * 3
, * : %
!' /"," , %/","
Figure 7.2.4
%
9
* *
$ $
'
Barycentric Subdivision
/ "
! J
294
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
,
,
- #
Figure 7.2.5
!," " !'
$ % $
0 ¼ + ¼ 5 6 , 56
$ & $
B
##
$ % & $
(
3
56 , 5 6 "
*
$ ) % $
B
#8 "
#< - #&
Figure 7.2.6
" !," " !'
Graph Homeomorphism
Section 7.2
295
Subdivision and Homeomorphism
% ? - # 8 I
Figure 7.2.7
/ " "
1 K 7, #<
$ * ' % $
#* $ $
B
## + Subgraph Homeomorphism Problem
$ ) - #) - ;*#8;
# !
Figure 7.2.8
" " ,
K - #) ,
, ; * # , 8 - #H % / /
; * # B
296
Chapter 7
Figure 7.2.9
PLANARITY AND KURATOWSKI’S THEOREM
! , "
* - #*; " / / 2
?
Figure 7.2.10
0 1
" " ,
"
& ' '( (
#
#
#
#%
#) ' % ! % L I 1
#*
& ' ')(
# #3
#2 # 4
Section 7.3
297
Extending Planar Drawings
& ' '( *+,
# #
7.3
# # %
<
EXTENDING PLANAR DRAWINGS
' # " , "
#
' 1 7
! 1
1 ' # I 1
1
Planar Extensions of a Planar Subgraph
, , ! J "
$ $
$ , Æ
@ ,
Æ
298
Chapter 7
Figure 7.3.1
PLANARITY AND KURATOWSKI’S THEOREM
/
/ ' ,
,
$
( ( $
(
@ ,
Figure 7.3.2
!' ' ,
/
$ % ' 1 ' % 1 $
3 1
' - 88 + G ,
Figure 7.3.3
5 !,
Section 7.3
299
Extending Planar Drawings
Amalgamating Planar Graphs
' #
$ ) ' % % $
( = / $ * ' ) ' ¼ " ) ¼ % " # : : $
" : 8 - 8<
Figure 7.3.4
- ! K, " ! ¼ "
8 - 8
"
Figure 7.3.5
!
'
, % " A
K ! "
" ! - 8&
" "
" # : : :
300
Chapter 7
Figure 7.3.6
PLANARITY AND KURATOWSKI’S THEOREM
$ !, "
, ' " ' $ ¼ " % " #$ : $
'
, %
A
$ ¼ / $ 1 % ,
- - 8 ( 8
Figure 7.3.7
/'
1
- 8) !
Figure 7.3.8
%/'
Section 7.3
301
Extending Planar Drawings
Appendages to a Subgraph
3
" ! 0 , !
1 % F A,
0
%
0 /
0 ,
3 - 8H ! ,
, K
!
Figure 7.3.9
! 6 6
3
,
1 7 / 7
302
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
Overlapping Appendages
56
3 0 1
B
- 8*;
Figure 7.3.10
, " '
$ 2 ' % $
+
( *8 E ( 0
= 3 - 8*; 0 1
"
& - -( #
. #
8
8
Section 7.3
303
Extending Planar Drawings
8
8%
& -$ -%( #
#
8)
8*
8
82
& -/ -'( ( " "
83
8 4
8
8
& -- -0( 1
2 "
( #
8
8 %
304
8 )
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
8 *
8 ? 1 1
$
7, 8 2 £ £ . ,
£
88
8* ¼
7.4
KURATOWSKI’S THEOREM
+ ! ! J .
%
! *+,-./ $
*< *
#&
!
Æ 3 ! Æ , ! 3 , , , , ,
1 3 1 , 8 3 ' 1 , 3 - 1 " !
Section 7.4
305
Kuratowski’s Theorem
Step 1: A Minimum Counterexample would be Simple and 3-Connected
' 0 % $
B ( 8#
!
** ' 0 % ( $
3 , B ( 8
*# ' 0 ' ( % %
% $
, , %
*# / & # - <*
Figure 7.4.1
/ & %
: & % ! ! 0 &
% 9 ! % 9 @ % 9 , & , % 9 3 % 9 $ % 9
%
8<
*8
% ' 0 % ( (
306
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
$
%
, (
B
*8
- <#
Figure 7.4.2
-" '"
B
8&
*<
' 0 % - $
.
* Step 2: Finding a Cycle with Three Mutually Overlapping Appendages
0 ! 0 8 * * # *
- <8 5 6
,
Figure 7.4.3
," !
1 $
+
#*
Section 7.4
Kuratowski’s Theorem
307
' % $
3
8
## ' %
$
& & >
56 &
- << @ B
##
#8
Figure 7.4.4
7 , " ","
% % $
% +
@ + B
#8
#< ' 0 % $
# %
3 #
#< ,
308
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
B
#8
# Step 3: Analyzing the Cycle-and-Appendages Configuration
! J "
, # ! ' ' % 0 $
0
- < +
Figure 7.4.5
8
"," "
2 B " Æ
3 , 3 ¼ ,
!" !" ( ¼ : - <& 3
& & ( * Figure 7.4.6
Section 7.4
309
Kuratowski’s Theorem
!" ! !" ! ( :
¼ ¼ : - < 3 & ¼ 0 , & & ¼ & & ¼ , " ¼
/ - < : ¼ : ( * G G &
Figure 7.4.7
Figure 7.4.8
!"
!" & , - <) " & " " ! ( #
Figure 7.4.9
!" !
!" ! & , 0 & & - <H & ¼ & & & & ¼ ¼¼
310
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
& ¼¼ ( # <* ( ,
, % ' " " %
2 $
B <* ! ! 8
!
! Finding
or
in Small Nonplanar Graphs
" ¼
< & & ¼ & 5
6
@M '% - <*;
Figure 7.4.10
8
! !, ' "
"
! < / / - <*;
% / ! - <**
Figure 7.4.11
8
6
% / ! - <*#
Figure 7.4.12
8
6
Section 7.5
311
Algebraic Tests for Planarity
% / " ! - <*8
Figure 7.4.13
0 1
8
6
" %
4 # ( # 5
<
<
<
<%
<)
<*
< <3 9 < < 9
7.5
<2 & < 4 & < < %
ALGEBRAIC TESTS FOR PLANARITY
! 3
312
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
, 7 % ) . % About Faces
1 ( 3 ( (
) - * +
Figure 7.5.1
!
1
!
1 G ! + . J ! / ! " " ! . * #
) 3 - * * !
# ! ) 8 ! ) 7 " & !
$ ) ' 1 '
% $
(
0
- #
Section 7.5
313
Algebraic Tests for Planarity
Figure 7.5.2
"' "
E
3
,
) ' - * - 8 + ** ! ) ) **
Figure 7.5.3
' !
Face-Size Equation
) #" $ 3 ' 1 % # : *
¾
$
7 2 !
! " .
314
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
)% - < ,
% # : *# %
¾
* : * 9 * 9 * 9 *
Figure 7.5.4
: * 9 # 9 8 9 & : *#
!
Edge-Face Inequality
!
$ ) $
3 +), : * ! 3 +), : # ! : ¼ : ! 3 ¼ : ! * + ! # K
+), 8 3 ! , ! + , ! ! ,
! $ )% ' 1 + % $
!
! (
@ : - (
, , !
,
Section 7.5
315
Algebraic Tests for Planarity
Figure 7.5.5
" " 9 ! ,
, - , * ' "
$ )) % 1
)*!, $
( * 3 ! !
8 ( # 3 !
)*!, : * *
*
. ( 8 B
< ! *
3 ¼ 1 ¼ ¼ * ¼ 5 !6
* * ¼
)*!,¼ * : )*!,
)* # %$ 3 ' 1 % # )*!, ( $
3 - . 7% # :
¾
*
)*!, , (
316
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
Euler Polyhedral Equation
' < & < < & 9 < : # ' ) *# & ) *# 9 & : # 1 = ' C' ;
3 *; 7 9 ( : #
? "
*H< 0 0
*)** 9( : ; N .
*)H*H;<
) & $ 3 ' 1 % 9 ( : # $
3 ! - . - % +
3 ( : *
9 ( : * 9 ( 8*8 : * 9 * : #
! K,
7 7% - : ; ! - : 9 * 0 . - : (
* : # : 9 * - &
/
Figure 7.5.6
B
8*) . 9 % B E 2
8
( : (
9*
Section 7.5
317
Algebraic Tests for Planarity
9 ( : : : :
9 (
* 9 * 9 ( # 9 * 9 ( 9 * 8 9 ( : #
" 7 ! -
Figure 7.5.7
/" " : ! /"
)) # - & & ' 8 7 ' , ' -
Poincaré Duality
- I N C*H;;D 1 £ 1 £ £ ' " ( )
' 1
" @ ? 1 & '
1 1 3 , £ - ) £ ( £
Figure 7.5.8
1 '" !
318
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
£ - H / , , 3 £
, £ £ £ 1
Figure 7.5.9
1 " !
3 N £ ,
£
£
3 N
.
£
£
1 £
3 N , £ - , £ £ ( + ,
$ )2 4 5 3 ' 1 % £ : ( £ : ( £ : $
% " N
% ,
!
£ , - *;
Figure 7.5.10
" '
Section 7.5
319
Algebraic Tests for Planarity
)* 2
- **
2 - H % * #
- ** % * 8 <
;
Figure 7.5.11
1 N
/ .
5 6 1 7- 3% & 7J **# Algebraic Proofs of Nonplanarity
7 % 9 ( : # .
E > 7 % %
% !
E Æ
#; O !
)3 ' 1 % 8 & $
7 7% * 9 ( : # 7 7% # )*!, ( # 7- 3% 8 8( # 8 )*!, # < ( 8 # 9 8 #
< * & 8 #
)
8 8
# &
320
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
) 4 % $
8 & : H : *; % / 8 & " H 1 E ( 7 7% 8 & 3 '
% H " 2 ,
% $ ) ' 6( *H % $
8 & : 8 ) & : *) *H / 8 & B H 1 * CI&HD )8) ), *H
**
% !
A More Powerful Nonplanarity Condition for Bipartite Graphs
- H % %
)
& H 8 &
) ' 1 % # < $
, ! * 9 ( : # 7 7% # )*!, ( # 7- 3% 8 <( # < )*!, # < ( < #
< * 9 < # & # #
)
# #
# <
Section 7.5
321
Algebraic Tests for Planarity
) % $
# < : ) : H % / # < " *#
Figure 7.5.12
.
Nonplanar Subgraphs
H *# ) % " $
7
)2 : , / : : #* & : * * : 8 & : * I ! - *8 I *<
Figure 7.5.13
"
$ ) ) 7 $
322
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
$ ) * 8 % $
% H *#
F
, &
<" ) % 0 )3 ),
*8 - *< +
!
Figure 7.5.14
0 1
, " )
& $ $( # 6
# 7 " 8 3 # 8 9 #
%
Section 7.5
323
Algebraic Tests for Planarity
& $$ $%( # 6
! 3 #
9 #
)
* 2
7, * 7, 8
7, # 7, <
& $/ $'( # 6
(
! ( (
(
3 # 9 9 : #
3
4
7, * 7, 8
7, # 7, <
& $- $0( # : ;
)
% *
7, * 7, 8
7, # 7, <
& $ $')( # # ( 9 < =
3
2 4
7, * 7, 8
7, # 7, <
N £ & $' $'0( # " (
%
) 9
0 * 8
& $' $-'(
4
<
2
8 9
3
#
& $-- $)( #
& *8 % & *8 ) ** * ** *<< &*8 2 *#) ;# 3 8& &) %4 8& *;# % $ * *) " # <
324
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
& $' $$( #
9 8 &(
% %%
7.6
9
% %)
PLANARITY ALGORITHM
C$@&
3
"
Blocked and Forced Appendages of a Subgraph
,
0 3
0 3
* 3 - &* ! , ! !
Figure 7.6.1
! ! "
$ * ' 1 % ( 1 $
0 " /
2 B E
Section 7.6
325
Planarity Algorithm
0 3
* 3 - &# ! , !
! "
Figure 7.6.2
Algorithmic Preliminaries
B ( 8 !
! <
# 3 # ' # " 3 Selecting the Next Path Addition
B
, + , , ! 3 3 , !
3
/
3 " 3
, 3 >
, ,
,
, ,
326
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
The Algorithm
K , % , % 1 ,
, $ ,/ / " = 4 6 # + 6 -07 4 8 - ' : , 3 ! -07 3 1: 1: 1: $ ( ,
7
= Algorithm 7.6.1:
Outline of Correctness of Planarity Algorithm
, 2 " " 2 ¼ - &8
Figure 7.6.3
2 ¼
- H) CB @&D
&8 C';*D I / CI
?
=
C?= )*D '" C?= HD
Section 7.7
0 1
327
Crossing Numbers and Thickness
" *
& 0 0'( > 0
& 7, <* & 7, <# & 7, <8 &% 7, << &) 7, < &* 7, <& & & 2 &3 9 & 4 & & & & & C( /D 3 &*
7.7
CROSSING NUMBERS AND THICKNESS
% " +
5 6 Crossing Numbers
Æ
,
8 )8
0 3
3
3 ,
3
$ 3 : * $
B *<
3 * - *
3 *
Figure 7.7.1
, "
328
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
$ 3 : * $
B * 3 * #
3 *
Figure 7.7.2
-
, "
Lower Bounds for Crossing Numbers
* ' % 3 8 9 & $
0 , H 8 & 8 &
: ,
3 8 9 &
$ % 3 : 8 $
: * : & 8 3 * 8 & 9 & : 8 - 8
3 8
Figure 7.7.3
"
) ' % 3 # 9 < $
0 , *# # < # < : ,
Section 7.7
329
Crossing Numbers and Thickness
3 # 9 <
$ * 3 $
Figure 7.7.4
: #
: *#
:
3
*# # 9 < : #
- <
3
#
"
%
-
Figure 7.7.5
/"
Thickness
" 7 4 7 ' 3 + % . ! @ . . @
%
.
4
- &
330
Chapter 7
Figure 7.7.6
PLANARITY AND KURATOWSKI’S THEOREM
!
' %
4
8 &
$
B H
8 & $ 2 4 : # $
B 4 # - &
4 # 3 ' %
4 # < $
B *#
# <
Straight-Line Drawings of Graphs
3
' C'8&D - C-<)D ! -J
C ); )*D
! J -J
4 ' % 0 1 " $
3 8# < $
3 5 # #
Section 7.8
%
331
Supplementary Exercises
$ #
$ H
$ % 9
) 3 3 9
* 2
3 3 9
3 4 4 4 : # 4 : 8 " 6 " 5 6 ", -
Figure 7.7.7
/, /
' $ 9
" #
% )
7.8
SUPPLEMENTARY EXERCISES
) ( , 8 & > 7 7% 7- 3% , 8 > E / ) $ % 8 8 8 8 < < < ) $ % 8 8 8 8 < < <
332
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
)% 6 7 3 , / ,
,
I L - : )) $ < H, )*
% < < ) < <
& )2 ( 8 8 L 7 ,
)3 8 < 7 7% 7- 3% ) 4 0 < / $ 7 ,
) $ &, ) $ H, . 9 . ) $
) % $
) ) $
Section 7.8
Supplementary Exercises
333
) * B
) $
) 2 > *! 1 * # - ! ) 3 > *! H 1 * 8 - ! )4 =
) (
) (
) 3
I 1 F P
)%
I 1 , )) 4 )* ( 4 ) = - & - & 1 -
*&* 3 , %
334
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
GLOSSARY
! 1 , ! "1 " 1
' 1 1 ! 1 !," " !' 6 9 1 , 1 " * ! , ! 1
! , " 1
! " ! 1 1 % ! " ! 1 " " " 1 " " ! 1 , " ! 3 1
)8 "'6 " 7 1 1 # 1 , 1 "1 ! 1 , , , / , , '"1
335
Glossary
!, ! 1 ! , !, ! 1 " 1 7 Ê " "1 7 , 1 ,
" 1 1
"/ ! 1 1 ( ( ( , "/>1
!
. " 1
" " 1 ! 1
( ) + ,1 7
. 1 . ! 1
1
! , 5 6 1
! 5 6 1 * 7 1 C; *D ; : * : / C; *D + . ", " 1 ; : * : - 5! 6 1 ; : * : 1
1 ,
336
Chapter 7
PLANARITY AND KURATOWSKI’S THEOREM
7 8 Ê1 9 9 : $ "? 1 ! 1 N
'"6 6 " 1
1 ! ! 1 1 7 " #" 1 ; ; ; 7 8 ; * ; / 1
N £ " 1 > " 1 .
/' ' 1 2 / 1 Ê % ", 1 ! * #; , 8 1 * #; , 8 3 / 1 !' 1 ¼ ¼¼ ¼ ¼¼ , !' 1 % " 4 1
Chapter
8
DRAWING GRAPHS AND MAPS 8.1 The Topology of Low Dimensions 8.2 Higher-Order Surfaces 8.3 Mathematical Model for Drawing Graphs 8.4 Regular Maps on a Sphere 8.5 Imbeddings on Higher-Order Surfaces 8.6 Geometric Drawings of Graphs
INTRODUCTION
!
"
#
$
% & ' % & % ( ) * +, * % ' & +- & ! *
337
338
8.1
Chapter 8
DRAWING GRAPHS AND MAPS
THE TOPOLOGY OF LOW DIMENSIONS
* . / . / 0 +1
Some Subsets of Euclidean 2-Space and 3-Space
Ê & . /
Æ .. / . // 2
.
/
3 3 .
/
* 1& Ê .*
Ê / *
. / 3 *
/ 3
.
*
/ 4 3
.
+ & * & &5 &
Ê
Figure 8.1.1
* 6&
/ 3 3 2
.
* 6& . / 4 3 2
Figure 8.1.2
Section 8.1
339
The Topology of Low Dimensions
Topological Equivalences of Euclidean Sets
7 8 7 8 & 5
9 & & 9
9 %
* : . / % % %
.. // 2
* % ;
% ( . /
<5 & & +6 =
* %
Figure 8.1.3
! ! " "
7 8 7 > 8 5 & +, * >
% *
5
340
Chapter 8
Figure 8.1.4
DRAWING GRAPHS AND MAPS
# " ! " ! "
%
$ * 5 6&
*
5& 5 +- 6& 5
*
Figure 8.1.5
!
Topological Model of a Graph
* 5
6& 9 ?4 @ Ê 6& .4/ 2 ./ 2 & & 5
2 *
. / ?4 @ * . / .4 / . / 2 . / 5 Ê *
5
*
7 8 * 4& ?4 @ * & ?4 @
Section 8.2
Higher-Order Surfaces
341
9
&
. / . /
& +A
Figure 8.1.6
% "
9 *
&
4& & & 4& * &
& '() ) ) + 0 .4/
% + 0 . / 3 1 % + " % & B + # . % / C
8.2
HIGHER-ORDER SURFACES
* '
4 &
% &
342
Chapter 8
DRAWING GRAPHS AND MAPS
Torus and Möbius Band
D
* .14/ & &5
6&
% &
*
. +1/
Figure 8.2.1
: > > * +11
Figure 8.2.2
" "
* +11 78 * * 5 +16
Figure 8.2.3
( " * "
# . 78/ .
78/ ;
Section 8.2
343
Higher-Order Surfaces
9 ( 78
78 78 & +1, +1-
Figure 8.2.4
" + +
Figure 8.2.5
#, * *
* . +1A/
Figure 8.2.6
#, * *
-
* EF
9 * ! EF
EF $ EF < Bounded and Boundaryless Surfaces
&
%
344
Chapter 8
DRAWING GRAPHS AND MAPS
*
*
* $ *
* . * EF
Closed Surfaces
5& 9 ./ * ./ *
./ *
%
/ * *
. / 2 4
0 * % * EF
' 7 8 & # 7 8 &
% EF 9 0 % EF 6& 0 % 5 . / * % * 7 & 8 Classification of Surfaces
* 0 * % +1
Section 8.2
Higher-Order Surfaces
Figure 8.2.7
345
*
! "# $%&' * % * 7 8
EF * EF % 5
9 *
EF ,& 6& ' ,& *
7 8
EF 9 * ,& .
6& / *
* 5 0
0
Figure 8.2.8
*
() )
! "# $%&' *
!
% * . / EF
346
Chapter 8
DRAWING GRAPHS AND MAPS
& '() ) ) ! !"#
+1 +1 +1 +1 +1$
* .44/ * .44/ * .4/ * 6& * 6&
!$ !%# &
+1. * .44/ +1/ * .44/ +1 * .4/ +10 * 6& +1 % * 6& +1 $ EF ! EF * +1 +1 C > & C
B +1 C +1 C
8.3
MATHEMATICAL MODEL FOR DRAWING GRAPHS
*
?4 @ .4/ 2 ./ 2 .D '
5 / & & C 5
Section 8.3
Mathematical Model for Drawing Graphs
347
"
5 *
+6
./ * 5 ./ & ./ * 5
Figure 8.3.1
* " " + "
# Normalized Drawings and Imbeddings
" 9 ./ * ./ * #
. / ./ * +61 9 ./
G ./
G ./
&5
Figure 8.3.2
* + "
" H
5 5
' .; 5 .//
348
Chapter 8
DRAWING GRAPHS AND MAPS
&
G % 9 E & & &
Ê D 9 "
*
Eliminating Edge-Crossings
% &
0 # +66 &
Figure 8.3.3
" " " * ! " " "
&
+6, *
D &
Figure 8.3.4
" " " * "
9 6&
5 +61 C# # #
Section 8.4
349
Regular Maps on a Sphere
* + 9
0
; &
& '() ) ) !' !'$# & & &
+6
+6
+6
+6
+6$
+6.
8.4
REGULAR MAPS ON A SPHERE
* # & & * ;
5 ;
5 ; &
& Map Theory
; &
&
* # $!
5 5 5 5 5
350
Chapter 8
DRAWING GRAPHS AND MAPS
* & . / +, " ./ ./ *
Figure 8.4.1
+ 12 12 "
* +,1 * 6& 6& G * 6& 5 ,& G . 5 / *
Figure 8.4.2
+ "
9 *
- , 9 -
./
9 *
E 5 0 5 % ./
* * 9
Section 8.4
351
Regular Maps on a Sphere
9
%
* +,1 &
Degrees and Face-Sizes of Regular Maps
*
Æ ./
- 9 Æ ./ A -
./ !"# $./ % 1 & % .1/ .6/
.,/ .-/ .A/ ./ .+/ .I/
6 !"# $./ 6% 1 1 % 6 3 % 2 1
./ .1/
1 A 1 1 1 A 1 1 A 1
.,/ .-/
.4/ Æ ./ 2
6
Ú ¾Î
!./
1
./
Æ ./ 2
.1/
Æ ./ A
.6/
%
1
Æ ./ A
* 1 .I/ ./ .1/ 1 4
' .
/0 10 2 -
* +,1
- ' ) 3
/0 10 2 -
$ +,6
352
Chapter 8
DRAWING GRAPHS AND MAPS
Construction of the Regular Simple Maps
$ +,6 +,, 6 , - & ' 6 , - * * +,-
$ 4 #
) 30 0
2
,# 1. 3 #/ #
2
1# 1. 3 #/ #
% 2
, 1. 3 #/ #
-
0 % 7 8 %
# 3 % 2 1 % 1 2 #% & ' % 1 2 & %
*
& ' # * * +,- & ' 5 #
6 6 6 , , , -
6 , 6 , 6 , -
< 6 , A , * 1 + 1 A $ 14 64 1 C 1 A 1 + D 4
1 4 14 +
1 64 14 1 + 14 4
, 4 ,
,#
1#
,
& 6& J &
&
&
Section 8.4
353
Regular Maps on a Sphere
*
+,6
Figure 8.4.3
3! "
9 * +,6 * 5
9 0 %
* +,-
&
&
& '() ) ) ( !) !))# & & &
+, +, +, +,
: 2 : 2 1 & ' 2 , : 2 , & ' 2 1 : 2 1 & ' 2 6
+,$ & 6 +,. C . +,1/
+,/ ( 2 1 & ' +, ( & ' 2 1
354
8.5
Chapter 8
DRAWING GRAPHS AND MAPS
IMBEDDINGS ON HIGHER-ORDER SURFACES
*
> 0 % ' Cellular Imbeddings
;
9 % .*
71&8/
9
$ +- % & & & +-./ 78 .
! / +-./ %
Figure 8.5.1
+ * "
&
=
& +-./ % & E & +-./ % &
- $
-
! 0
*
Section 8.5
Imbeddings on Higher-Order Surfaces
355
- $ -
* ( +- 0 >
$ +-1./ +-1./ $ ./ ,& * 7 8
D ./ 5 5 * 0 5 5
Figure 8.5.2
+ * " 12 4 1*2
Flat Polygon Drawings
% % $ +-6 +1 &
>
Figure 8.5.3
" "
356
Chapter 8
DRAWING GRAPHS AND MAPS
> ,! .
?EA@/ %
$ +-,
'(' (
))
Figure 8.5.4
" * "
0 & > 1* . ?EA@/
% +-- 5
Figure 8.5.5
" "
>
+-A 5 D
'
(
Figure 8.5.6
* "
Section 8.5
Imbeddings on Higher-Order Surfaces
357
Surgery on Imbeddings
* > . / K . / % % 5
5
$$ C > .* L/ +-
Figure 8.5.7
* " + + "
*
& <5 +- *
* 5 +-+ . / *
Figure 8.5.8
5 " 3 + !
Euler Polyhedral Equations for All Closed Surfaces
; & '( 1 2
"+. /
9 0 & ) 1 !"# $./ %
358
Chapter 8
DRAWING GRAPHS AND MAPS
. / & E 9 ( ) ./ 2 % ./ 2 ./ % 2 " % & % % &
6 $ - 0 5 .
. . -
0 5
C
# #
$ - 3 % 2 1 1! -
-
3 % % 1 *
% ; C
= +-6
<5 , +-I
= +-6
* & = +-6 3 %
Figure 8.5.9
" * "
Section 8.5
Imbeddings on Higher-Order Surfaces
359
,
% * 5 3 % +-I % 5 & % 3 % 2 3 % 3 1 3 % 2 1 1! 3 % 2 1! 2 1 1.! 3 /
$$ - ) 3 % 2 1 * -
*
* +-, 5 EF
$. * +-A 3 % A I 3 6 2 4 2 1 1! $$ * +- +-+ 3 %
I 14 3 I 2 1 2 1 1! $/ * +-4 I * 3 % 2 A - 3 I 2 4 2 1 *
Figure 8.5.10
* " + 0 "
* % 3 %
). / *
). / 2 1 1! 1 * &
J & & -./
$ I *
-. / *
)#./ )#./ 5 ). /
360
Chapter 8
DRAWING GRAPHS AND MAPS
Average Degree and General Surfaces
* ' * +,1
$. - 9 ). / Æ ./ A -
*
* +,1 5 1 ./ % 6 .1/ 3 % 2 ). / .6/ .,/ .-/
. & %/ . %/
). / 6 1 A A ). /
Æ ./ 2
.A/ Æ ./ A
. ./ .1// . .6/ /
1
. * 1/
A ). /
. .,/ .-//
$ 0 ). / 2 &
A * $0 * 3 A ). / 2 4 * +-A
3
& '() ) ) $ !" !"%# *
+- +- +-$ +-/ +-0
. 3 . /
+- +- +-. +- +- %
3 , 1
!" !")# *
+- +-
+- +-
!"" !"!# *
+- $ +- /
+- . +-
Section 8.6
Geometric Drawings of Graphs
361
( !"+ !"$# &
+- 0 +- +- +-$ +-/ +- +-0
8.6
+-% & +- +- +-. . ( 3 ( , ( & 6
GEOMETRIC DRAWINGS OF GRAPHS
J H 5
& $ & *
&
J " & .0 +6/ Some Types of Geometric Graph Drawings
( & 5 * & " "
. +A.//
"
"
" ' . +A./ /
362
Chapter 8
Figure 8.6.1
DRAWING GRAPHS AND MAPS
7+ " 12 " 4 1*2 " "
Some Properties of Graph Drawings
' ' D
5' ' * " & 5 '
" * "
*
5
* "
Minimizing Total Edge Length
! Ê
! Ê
5
' .*
& / * '* & Ê . +A1/
Figure 8.6.2
8 "
Section 8.6
Geometric Drawings of Graphs
363
9 Ê
/. / ( M
Ê &
* Ê 5
Ê &
5 +A6
Ê " '
Figure 8.6.3
" "
9 .?=*4,@/ <(& Minimizing Area
* C
. +A,
Figure 8.6.4
) " " + "
. +A- &
Figure 8.6.5
) " " " + "
364
Chapter 8
DRAWING GRAPHS AND MAPS
Representability
; '
N D:*"DJD< = C: ;
)"#). 9 1 6/ +AA
Figure 8.6.6
+ " + " )"#). 9 1 6/
* & N E<EHE 0( <<
0
0 0 " " 5
0 9 5 5 -
& 5 A .?E 0I1@/ <(& 5 % A .? ;IA@/ < 5 1 Ê 5 I Ê & .?=CI-@/ Voronoi Diagrams and Delaunay Triangulations
O C &
&
. ' 3 3 ' ( * + 2 Ê Ê 5 . / . / . / * , 2
* & . / O . / . /
Section 8.7
Supplementary Exercises
365
* C
O +A O C
Figure 8.6.7
9 " 7 "
D & C
, Ê &
, " C
5
9 * O /. /& /. /& .0 ?$44@/
9 ' C .0 =*4,@/
9 Ê
P. / ( M .? ;++@/
8.7
SUPPLEMENTARY EXERCISES
+ C EF + $ 9 6& ,&
+ C
+ +$
C 5 +6 C &
366
Chapter 8
DRAWING GRAPHS AND MAPS
+. & 5 ." 9 H ( %
& / - 2 . / ' 1&
2 . /
+/ C 1& 5 & + ; 1& 5
GLOSSARY
* + " " 9
9 ./ * ./ * #
. / ./
" 9
5
" + "9 5
' 9
* + "9 * 9 * + 9
* 9 9 & * " 9 9 & % "9 " 9 %
"9
367
Glossary
#, * * 9 &
9
9 . / 3 2 . /9 ' 1& 2 . / , &
! Ê 9 5 ! 9 &
.
' 3 3 '
(
' ! Ê 9 &
9 EF " 9 & EF
* * 9 % EF
7 +* "9 -
7 " 2 9
5 & . / . . / . / 7 " Ê9 5 9
& & .41/ + &5
+ " " 2 . / 9 & & 5
" + "9
9 " 9 '
" 9
368
Chapter 8
DRAWING GRAPHS AND MAPS
" * "9
5 5 5 5 5 " " 9 # "9 . / % 9 4& ?4 @ 9 & ?4 @ 9 & Æ .. / . // 2 . / 3 3 . / #) *9 Ê 9 9 5 3 9 5
9 Ê 9 3 % G -. / " 5 ). / * 1 ). / 2 1 1*! &
: " 9
% * " 9 +6
./ * 5 ./ & ./ * 5 " * 9 % 7 8 " " Ê 9 & ' " " Ê 9
5 9 . / 4 3
Glossary
369
9
" 9 & %
78 * " " 9 &
!9 5 9 &
%& ; * 9 &
9 "9
9 % 9
" 9 +" +* 9 5 Ê
0 #, * * 9 & & "*
9
+ +
9
4 * " 9 & * 9 EF * 3 9 & % 5 * + " " 9 ./ #
G ./ G ./
'
9 . / 3
* 9 EF
* 3 9
% 9 ?4 @ .4/ 2 ./ 2 ?4 @ .D ' 5 /
370
Chapter 8
DRAWING GRAPHS AND MAPS
9 .4/ 2 ./ 2 .
7 8 / 9 .4/ 2 ./ 2 " 9 9 1& " 9 &
9 &
9 & 6& 9 & <! 9 &
+ "9
" " + " 9 & & & 2 . /9 2 . / ! *+ + 9
& & ?4 @ 6& 4 ?4 @ " 9 ! 9 9 % * 9 9
% & * 9 " ! 9 9 & & 9
" " 2 . /9 6& 5 6& *
9 % " " + "9 " Ê 9 & 5 +"9 ' 9 . / 4 3 2 9 . / 3 3 2 9 " 2 Ê 9 Ê 5 . / . / . /
Chapter
9 GRAPH COLORINGS
9.1 Vertex-Colorings 9.2 Map-Colorings 9.3 Edge-Colorings 9.4 Factorization
INTRODUCTION
! " # $ % & ' # # # ( ) * ) # +# #, # * - # # Æ # * . # - # # #, # * % ' # / ## Æ 012* 3 # # # * ( 4 ## #5 #5 *
371
372
9.1
Chapter 9 GRAPH COLORINGS
VERTEX-COLORINGS
6 # # * ( ## # ## 75*
* 7 # 7 # # Æ 8 9 Æ # 7* The Minimization Problem for Vertex-Colorings
# # - # # # # # * : 75 ; # # * ( # * $ 75 - #5 5 # 7 *
75 * 75 # # # # < * : = 7 # #5 ## * # 7 5 * 75 ( 0** # 7 >5 *
Figure 9.1.1
# # 8 9 # < - # 75 * 8 9 ; * 8 9 ; 5 8 95 *
Section 9.1
373
Vertex-Colorings
?5 ( 0**
( 0** ?5 8 9 ?* ' #, # 5 * ?5 *
Figure 9.1.2
>5 ( 0**?
8 9 > # 5 8# #9 8 9 >* ' 8 9 ; >*
Figure 9.1.3
!
: # 75 # * 5 ## # 5 #, * #, < # #, * Modeling Applications as Vertex-Coloring Problems
% ## 75 # # # @ * $ # * 6 # #5 # #, # # # - * A#,B # # # < - * &# - 5 5 * 6 # 8 9 - - - # # # * 8$ *?*2*9 $ # < # ## 5 * ( 7 # # # # *
374
Chapter 9 GRAPH COLORINGS
# < - # 7 7 # * $ * 6 # #, # # # * ! # # ## * 75 8 9 # # # @ *
6 # A B 7 # * # ## A B * # A B # 7 # # # * C # # # < * # 7 # #, # * - ## # * Sequential Vertex-Coloring Algorithm
85 9 # # 7# 57 5 * D 5 # E+$ * F # # ;
E+$ # 7 * ' 7 * 0** - # G # * 5 35# H)D 10I* 6 # # ?5 35 * Algorithm 9.1.1:
: :
"# $%
7 * 75 : *
( ; " 8 9 :; # 5 # * & 75 *
% - 75 # ( 0**> >5 *
Section 9.1
375
Vertex-Colorings
Figure 9.1.4
#
' 7 7 # 7 ?5 #
( 0***
Figure 9.1.5
#
: 3 ( 0** ##
#
? - # ## *
8 # 9 ## # 7 # # - 5 * 57 7 # 8 J # 9 0** # * Basic Principles for Calculating Chromatic Numbers
5 * # # # +7 0** # 0**?* : $ 8 9 7 5 * : $ 8 9 # - * # 8 9G # # - 8 9* F K # *
376
Chapter 9 GRAPH COLORINGS
& 8 9 Æ 8 9 L & - Æ 8 9 L
## 7 Æ 8 9 *
& 8 9
& # #, # *
7 #,* 8 9
- *
% ' 8 9 8 9
8 9 ## 7 # *
& 8
9 8 9
& $ 8 9 # < 8 9 *
! # ; 81 : 9 ( 0**2* 3
5#, #5 ; 81 : ?9 15 ?5 * 8 9 ; # - 0**> 8 9 8 9 ; 1 ; > >5 M ? > # 2*
Figure 9.1.6
81 : 9
& ( 8 9 8 9 & % # # *
Section 9.1
377
Vertex-Colorings
L # # ## # 7 # 7 *
& )
8 L 9 ; 8 9 L 8 9 & 6 , L # # 7 #, 7 * $ 8 9 - # # 8 9 - # 8 L 9 8 9 L 8 9* D 8 9 L # 8 9 # < * Chromatic Numbers for Common Graph Families
F # 4# 0*** Table 9.1.1
% ! 8 9 ## ##
? ? >
& * 8 9 ; & # # # # < *
& + 8 9 ; ! & 5 # 7
# 7 * 6 # 8 9 0***
% ' 89 ; ! & * 0*** : D # # *
378
Chapter 9 GRAPH COLORINGS
# ## # *
% ' , 8 9 ; ! & * % ' 89 ; & * % ' 89 ; & *
& 8 9 ; ? & ! 8 9 ; * 0**>
8 9 888 999 ; L ; ?
## # *
; L #
& ! 8 9 ; ? & ; L 0**2 # ! 0** 8 9 ; 8 9 L 8 9 ; L ; ?*
& ( ! 8 9 ; >! & , L 5
0**2 # 0**? 8 9 ; 8 9 L 8 9 ; ? L ; > *
& ) " 89 ; & F 0** 89 * 5 *
Chromatically Critical Subgraphs
( # 8 9 #* ( # #
7# #* * 8 9 ; # #5# 8 95 # 8 ** #5 5 9* #
Section 9.1
379
Vertex-Colorings
( ## ?5 # # #
# ? * ) ## >5 0** # ( 0**1 5# 5# # ?* >5 * ## >5 8 +7 9*
Figure 9.1.7
- ! '
& * " ! # #"
8 9"
- + " #
& F # 7 # * ! # 8 95 75# 7 0**1* # # # 8 95 7 *
# # #
# * # 8 95 # * Obstructions to -Chromaticity
8 9
* * 5 * 8 0***9 & $ 8 L 9" " " & 6 # ## 8 L 95 # 5 *
8 L 95
8 L 95
*
+ *
5
H! 4 I #
## *
380
Chapter 9 GRAPH COLORINGS
5 4
; ## 5 * , ## >5 # ?5 >5 * ( 0** # ## ## 0**> >5 *
Figure 9.1.8
.
Brooks’s Theorem
7 #
7 57 * 7 57 * HI 57 * HI " # # # * " #
# 57 * 7 #, 7 * / , "! " %" & ? # & & " & " 7 * ( 5 #* 7 # 7 8 7 # 5 9* 6 7 # # 7 # #* 8 9 ; * # 8 7 5 HI 9* $ 5 7 #, 7 57 # #, 7 57 * F 5 HI 7 #, 7 * ' # *
- 01 2 "!
& # # Æ 8 9 ? 8 9 Æ 8 9 & 6 H" 1I - # * $ ; * # * ( 7 7 # Æ 8 9* 37
Section 9.1
381
Vertex-Colorings
8 >*9 # # #* 6 # 7 7 5 #7# * ' 7 Æ 8 9 5 #7# * 6 - Æ 8 9 * $ # 57 * " 75# # ## 75 ; * # 7 Æ 8 9* F ! 7 Æ 8 9 * F 7 # Æ 8 9 * % # 5 #* F " 0**M 7 5#, # #* ) # # #* ! 7 7 Æ 8 9 5 #7# * 6 - Æ 8 9 7 * - # # * Æ 8 9 * Heuristics for Vertex-Coloring
75 # 7 # # Æ # H !2 F10I # - # #
# * # # #* * # * # # < # # #, * Algorithm 9.1.2:
: :
$% / 3 4
57 * 75 *
% # # 7 # 7 7 # #* 7 : 8 9 :; * & 75 *
# # # ( 0**0 8 9
5#5 # ?5 ( 0**0 8 9*
382
Chapter 9 GRAPH COLORINGS
Figure 9.1.9
5 #
Coloring the Vertices of an Edge-Weighted Graph
( & ' H/ E0I
$ ## ! ! ! * # # # # # # < * # 75 # # # # # ## # < * # & 8 ** # ## # < 9* , # # @ 4#* @ # # # # #* # #, #5 # # #* ( # # - # # # # # # # * $ 89 # # # # # # # * ( 5 8 9 #5 # # # * , # 5 * H/ E0I # # A # ÆB A # ÆB #*
6 %7"" " 0** - # - * !
- *
Section 9.1
383
Vertex-Colorings
0** ! # < # - ## # *? MM *
' (#% (#() " "" ) " ""
0**
0**
0**(
0**)
0***
0**+
0**
384
Chapter 9 GRAPH COLORINGS
' (##* (##+) ,
0** , +7 0**?* 0** +7 0**>* 0** +7 0*** 0** +7 0**2* 0** +7 0**1* 0** ( +7 0*** 0** ) +7 0**0* 0** * - 75 *
0** + ) # ( 0**1 - 75 # ?5 * 0** - 75 # # * 0**, ## # * 0** # 7 # * 0** - 75 # # #7*
0** 5#5 +7 0*** 0** 8*9 - - * 8' : - 75 *9 0**( ) 0**1 0*** 0**) ) 4 7 # # - * 0*** * 0**+ ## >5 * 0** >5 * 0**, , *
Section 9.1
385
Vertex-Colorings
' (#%# (#%-) " .
0** 0** 0** 0** 0**(
+7 0**?* +7 0**>* +7 0*** +7 0**2* +7 0**1*
0**) # ## 8 9 ; " # 8 9 ; " # * # # #$8 9 #
% 7 % 7 % * 8 M**9 '
(#%/ (#0#) " " .
0*** 0**+ 0**
0**, 0** 0** 0** 0**
+7 0**?* +7 0**>* +7 0*** +7 0**2* +7 0**1*
! # # * ! # # * # #
8 9 ; # # #$8 9 ; *
8 9 - - 8 9*
8*?9
0**( * 0**) #5 * 0*** H" 1I 6 0** # 0** # +7 0**? 0**0* ' (#02 (#0() , $ . . " " " 3
0**+
0**
386
Chapter 9 GRAPH COLORINGS
0**(, H" 1I # 7 5 # 4 # # * # # * #5 # # +7 0**> # 0**>0 # 75 # #* 0**( ) $# $ 7 ## * 6 # # 7 # # - * 7 # # 7 * ( # 7 # 4 *
> 2 > > > 2 2 > > >
9.2
MAP-COLORINGS
## *
( # % &8% 9 Æ % # &8% 9 #* # ## Æ # * # # M ( 5! 8# 9 # ' # # * 6 &8% 9 # # # * ' # ! 2* Dualizing Map-Colorings into Vertex-Colorings
## ' :
% : ( 5 ( ; # # * ( # * 5 #
# # # < * ' : &8'9 ## *
%
( 0** >5 * C5
#* - *
Section 9.2
387
Map-Colorings
Figure 9.2.1
# # K # * 6 # 7
K # * : # * ( 0** # 8 9* C # #*
Figure 9.2.2
.
" 4# # # . # 8 1*9 75 # * # ( 0** ( 0**? # 7 # ; * 5#, # 4 5#, 7 *
Figure 9.2.3
- 4
&
Geographic Maps
% # # #* : 6 5 * ( ( # $ # 5 # # C #
388
Chapter 9 GRAPH COLORINGS
# $ # ( 0**>* $ $ 4# # " * 6# # ! #, # 3 # F* #, # < *
Figure 9.2.4
3! 8' 4 "
: 7 # * # ( ! $ ( 0** # *
Figure 9.2.5
4 % 9"
$ - >* 6 # ( 0**2 5 F # ?5 * 0** $ - * % +7 >5 $ 8 +7 9*
Figure 9.2.6
- "
# $ * $ ## # ( 0**1 * % N # 3# # # / # *
Section 9.2
389
Map-Colorings
Figure 9.2.7
- . 9"
: # - 4 # ! # # # ( ! * , L # * Five-Color Theorem for Planar Graphs and Maps
( ! * F* / H10I ## # ' # H0MI # Æ Æ * ' #K *
75 # ## # *
75
5*
( ( 0** / 5? * # / ##*
Figure 9.2.8
. . :
- 0;. + ,2
( & $ # # 5 #* 6 Æ 5 * $ Æ 8 9 2 8 *>*9 7 # * 0** 8 9 2* 75# 5 0**1* 37 # 5 * 6 # 7 5 # 7## # *
390
Chapter 9 GRAPH COLORINGS
# 7 * # ( 0**0* ! # >5 ( 0**0
## # # / 5> $ 7 8 ** # 9* # $ / # >5 7 * # > # / ( 0**0* 5 # * 5 7# 5 # 7 *
Figure 9.2.9
". :
$ / >5 # 5 7 * / 5 >5 # # ( 0**M* # # 7 # 7# # # ( 0**M* F D # ! 81*9 * $
Figure 9.2.10
: '
$ ?5 # 5 # < #
/ ?5 ) 5 ?5 * / ) # 7 5 * - 0 ; *)2 $ )"
: # ' H'12I ( ! 4# # * ( # ' # ' ## # # 8 0MM9 # * C MM #* + # # & $# $ # H& $$ 01I*
Section 9.2
Map-Colorings
391
6 %7"" " 0** 7# 7 # *
0** +7 0** # 7 # * 0** 7# 7 # *
0** +7 0**? # 7 # * 0**( 6 >5 7 ## ?5 7##O +7 * 0**) # +7 0**? # 75 * 0*** 7# 7 # *
0**+
( # / 5> *
392
0**
Chapter 9 GRAPH COLORINGS
( # / 5? *
4 "
1 # # # * 0** , ! ( ! # A B # , *
0** ) >5 8 ( 0**29 $ # * 0** ! + # # 5 : ( F 3# "7 ) # $ 4#* % O 0** ! 3 * 0** ! * 0** ( ! * 0** ) ! *
0** * ! *
Section 9.3
9.3
393
Edge-Colorings
EDGE-COLORINGS
( # #5 # 75 * 75 #5 #5 * #5 75 #5 * The Minimization Problem for Edge-Colorings
# *
# < #
:
#5 ; # # * ( # *
#5
# *
#5 #,
# # # < *
: % 5# 75 < #5 # #* ) 5 7## # * # # 5 *
# 5 ( 0*?**
Figure 9.3.1
. (
8 9 5 # < - # #5 * 8 9 ; * 8 9 ; # 5 # 8 95 * #5 ( 0*?* ( 0*?* * # ?5 #, #* 8 9 ; >* # # ¼
¼
¼
¼
394
Chapter 9 GRAPH COLORINGS
Figure 9.3.2
4
Modeling Applications as Edge-Coloring Problems
* : $ #
#* # # # < # #* - # #5 # * : ! ! * * * 6 ! * * * : ! # - # # * : ( ! ! # * * * # , ! # * # ( 0*?*?*
Figure 9.3.3
! !' !
4# #* 6 #5 # #5 * #5 ( 0*?*> #*
Figure 9.3.4
4
Sequential Edge-Coloring Algorithm
- #5 - 75 0**
Section 9.3
395
Edge-Colorings
#
# *
Algorithm 9.3.1:
"# %
*
: # : #5
( ; " 8 9 :; # 5 # * & #5 *
Basic Principles for Calculating Edge-Chromatic Numbers
+#5 5 # # 5 75 5 * : $ 8 9 7 # 5 * : $ 8 9 * 7 # #5 * # - # * & 8 9 % ' ! 8 9 Æ 8 9 & 8 9 8 9 ¼
¼
¼
¼
¼
# 5
¼
( 0*?*
8 9 # 7 5 7 8 9 ! 0*?** ' 8 9 ; * ¼
¼
¼
Figure 9.3.5
( !
Matchings
" # ## 7 * 6 # # #5 * 8 9 # 5#,* 7 #*
396
Chapter 9 GRAPH COLORINGS
# 7 ## 8 9 *
# # 8 9 ¼
: 6 # # #5 * # # #5 # 4 7 * & ! 8 9 8 9 ¼
¼
+$#,
#5 # 7 * Algorithm 9.3.2:
% !' < <
: * : #
5 * 6 4 :; M* % ; :; L
( # 7 + * ( # + 89 :; :; + 8#5# 9 & #5 * 5 # 5 # 7 # D +# #* F # # ?*> # # *
Edge-Chromatic Numbers for Common Graph Families
6 # #5 4# 0*?* 75 # # 0** 7
75 # 7 *
& ( 8 9 ; Æ 8 9 ; ¼
& ) 89 ; ! ? & * 89 ; & + 8 9 ; ? & 8 9 ; Æ 8 9! & , 89 ; ¼
¼
¼
¼
¼
+$#, +$#, +$#, +$#, +$#, +$#,
Section 9.3
397
Edge-Colorings
&
8 9 ; ! ?
!
¼
+$#,
( 0*?*2 # 5 *
Figure 9.3.6
( .
& " 89 ; ? & : ¼
5 # M # 5 8 # ( 0*?*1 ; 19* C # , M # # # 8 # 9* $ # 8# # # # ( 0*?*19 #, # *
Figure 9.3.7
-.
$ # # ? 8 # 9 # 8 ## # ( 0*?*19 # ?* 6 % % % % # # 8 # 9* # % # # 5 #* : 4 7 ## * $ ; # 0*?*> 8 9 *
¼
% ' " 89 ; & , ## ¼
7 * 0*?* # 5 #5 7 7* #5 7## #5 7 # , 7 7 8 ( 0*?* 9*
0*?* 4 #5
## # # *
398
Chapter 9 GRAPH COLORINGS
Figure 9.3.8
Table 9.3.1
! 8 9 Æ 8 9 ; ? ##
? ##
¼
?
Æ 8 9 Æ 8 9
Chromatic Incidence
7 # #5 , * ( #5
7 # # # * C 7 *
#5 # < #5 # 7 * 6 # # 8 9*
# # 8 9 # * #5
8 9 ;
8 9
¾
( #5 ( 0*?*0 # <
#5 # ## # # # # * # # * ( #5 # ? # #5 , # *
Section 9.3
399
Edge-Colorings
Figure 9.3.9
-
# - # *
& " ! 8 9 #,8 9
% ' ( "
8 9
¾
#,8 9
¾
& ) " # !
8 9 ; #,8 9
% ' * "
8 9 ;
¾
¾
#,8 9
Edge-Coloring of Bipartite Graphs
#5 - 75 * 3 #: 8 9 ; Æ 8 9* 4 ## # * # # # * #5 # * * ¼
# # * *
/ + & & " %" # % & #: * # 5 # #5 # - *
400
Chapter 9 GRAPH COLORINGS
$:
* ! # 8# #9 7 # >* # ## # - # 5 #* # 7 7 # ##5 # # 5 #* 7 # > 7* # 7*
Figure 9.3.10
% ' %
%:
* ! 7 , 7 ##5# 7 7 5# 8 ( 0*?*M 9* F +K #5 - 8*9 ##5# 7 #* 7 5 4 8>*9* 37 # 5 # ! * #5 # # #5 # 7 # * £
£
£
£
6 8 9 #5 ## 5 # # 5 #
#*
( # >5 ( 0*?* # / 5 #5 ## #*
Figure 9.3.11
. . :
/ " &
# & & & - " " # & F " 0*?* / 5 #5 # 7 ## # # # # # 7* #5
Section 9.3
401
Edge-Colorings
# # # 7 # 55 - # 7 * # # #5 7 #*
- , 0:= )2 8 9 ; Æ 8 9 & " P ; Æ 8 9 # # 8 9 ; P* ¼
¼
! 0*?* P 8 9* 37 # P5
# 8 9 7 * $ #5 7 8 9 #,8 9 8 0*?*29* # # * F P # P # # # 7 * 6 " 0*?*0 ## # * ¼
Vizing’s Theorem
! # 8 9 Æ 8 9 ## ! 0*?* N 4 K # #
8 9 * ¼
¼
# # 5 % # * # # # # # #, * 7## # # % * "
) 6 ( 0*?* # 5 # # # # #*
Figure 9.3.12
( !
/ & "
- " " + , & + 7 / # 8 #5 9 # # # *
- 0$> ) )(2 0 ))2 # " Æ 8 9 L & #5 # # 8** 0*?*9 # * 6 # # * C # # - # #* 6
402
Chapter 9 GRAPH COLORINGS
# # # 7## # * # # #* $ 7# Æ 8 9 7 * " 7 - # 7 * ! 7 - # # # #* 8( 7 *9 $ 5# # 7 - # # * 37 * 6 7 - # # # # ( 0*?*?* 7 # # # 7* $ # *
Figure 9.3.13
!'
6 # 7 - 5# # 7 -
# # 7 * ! 5# # 7 - # # 7 * " . 7 # 7 - 8 . 7 9* #5 ! 7 # 7 -* 6 .* .: ; . #
* # # # * # ( 0*?*>* 3 #5 # # *
Figure 9.3.14
% .
! ; .* 6 6 .* " / 5 #5 # 7 * F # # 5# # 5# # 7 8 # .9* F " 0*?* / # # 7
* # # # $5
Section 9.3
403
Edge-Colorings
* 6 # ! #*
Figure 9.3.15
% .
7 * # * 7 -* ! # * # # ( 0*?* * $
Figure 9.3.16
% ! .
7 * # * 7 * # # ( 0*?*2 * # # * $
Figure 9.3.17
% .
7 7 * $ # 7 - # - # # 7 -* # 7 * 3 ! # ( 0*?*1 * $
404
Chapter 9 GRAPH COLORINGS
% ' 8 9 ; Æ 8 9 8 9 ; ¼
Æ 8 9 L
¼
& # N 4 K # ! 0*?**
5 8 9 ; Æ 8 9*
8 9 ; Æ 8 9 L * ¼
¼
# 35
H' I*
/8 9
, *
7 #
: N 4 # Æ 8 9 8 9 Æ 8 9L /8 9* #5 # N 4 K 7 A B # ( 0*?* , # #* ¼
Figure 9.3.18
' ? @ # Æ
L /
Line Graphs
# #5 75 *
)8 9 # , # # #, # # # 7 *
*
#
# ( 0*?*0*
Figure 9.3.19
-
Section 9.3
405
Edge-Colorings
& " )8 9
#"
& # # *
: F HF2I # # # ( 0*?*M ## * $ 35 # # #5 # 75 *
Figure 9.3.20
- ! !
6 %7"" " ' (%# (%#$) " "" " ""
0*?*
0*?*
0*?*
0*?*
0*?*(
0*?*)
0*?**
0*?*+
406
Chapter 9 GRAPH COLORINGS
0*?*
0*?* ,
0*?*
0*?*
0*?* 0*?*>* " 8 9 4 7 * 8 9 8 9 * ¼
¼
¼
0*?* 0*?** 8 9 ; # Æ 8 9 ; * 0*?* ( 0*?*2* 8 9 ; ?* 0*?* ) 0*?*1* 89 ; * 0*?* * 0*?** 8 9 ; ?* 0*?* + 0*?*0* 8 9 ; Æ 8 9 * 0*?* 0*?*M* 8 9 ; * 0*?*, 0*?** 8 9 ; ?* 0*?* ## # #5 * 0*?* $ # * 0*?* $ #5 )8 9 * 0*?* +7 # # #
#5 - Æ 8 9* 0*?*( ) 7 # # # # #5 * 0*?*) " Æ 8 9 8 9* * 0*?** " ## * * 0*?*+ " ?5 5#* * 0*?* ) 7 0*?* # # #5 * ¼
¼ ¼ ¼ ¼
¼ ¼
¼
0*?*, H" 1I 6 0*?* # 0*?* # +7 0*?* 0*?**
Section 9.4
9.4
407
Factorization
FACTORIZATION
% #5 #5 #, # # # ## # #5 # . 3 * 6
4 #5 # * % %* * ' 4 # # @ # ! ?* Factors
*
#5 *
#5
( 0*>* 4 *
Figure 9.4.1
4>
5 *
4 5 *
( 0*>* 5 4 *
4 89 * 6 4 89 # # # ?5 # >5 *
Figure 9.4.2
-. >
5 # * # 5 #
# 5 *
408
Chapter 9 GRAPH COLORINGS
Tutte’s 1-Factor Theorem
* HM>I 4 K 5 @ # 5 * # # # K * ## * !" % ## % # 7# % * / . & " K # # # ### #, * L K # % * 6 # % 8 L 9 % 7 % * 6 # % ## #* # # , % * 6 # % # ## # ## - % 8 # 9* 6 # ## ## # 8 9*
/ & ! & # /! # - 0! % 0" & F 2** + -* 6 # # # # 7 # - 8 #9* % 7 7 - # 7 # * 8 # # # #*9 6 # 5 *
" 0*>* 7 # ( 0*>*?* 6 # # # # * # # # 5 # " 0*>**
Figure 9.4.3
-. ' .
" + # 0 * # + 0 #5 8 9 8 9*
Section 9.4
Factorization
409
K 5( # " .4 H" 1I*
- 0!" $ !2 0"
% ! % # % & 89 $ 5 * ## % 7 # 7 # 7 # 7 % * 6 % % * 89 F # 7 K # 5 * F ## # # 5 K # 8 " 0*>*9 # # 7 5 * % # # 5 * " 7 ; #, 7
% $ *
7 7 ## * + 7 #, 8 # 9* K # ## * ' ## 7 * 5
7 8 #9 # * #, 8 # 9 # # * $ # Æ * K # % ; ## * % $ * 6 5#, - # * 7 #, * F # ## # 5 * 6 + # 0 5 L - # L * % # < + 0 5 - # 5 * $ 7 # + # # 0 7 # M + 0 + 0 # # * + # 0 5 + 5# # 0 5# * " + 0 # - * 8C 5 + - # 5 *9 6 # # 0 5# + 5# 5 * 6 # # # 1 ; 8 L - L - 9 - # * $ ( 0*>*>*
410
Chapter 9 GRAPH COLORINGS
% ! 1
Figure 9.4.4
$ # # # 1 * 1 7 # ? 7 # # # * 6
" 0*>* 1 5 * F 5 1 # + 5 * Petersen’s 1-Factor Theorem
##
# # $8 9*
- 0% " $ !2 $ " " /"
0" & F K 5( Æ K 5 # * " % # # % # ## % * %
? %
7 % # ? ?5* ( ## % # , %
;
7 # ? * F +K 5$ 8*9 # * $ ## ? ##* $ 5# 2
? # ?$8
%9
;
?$8 % 9 ? %
K # $8 % 9 % *
% ' ( $ " " /" %" & F K 5( 5 * $ ?5 #5 5 5 *
Section 9.5
411
Supplementary Exercises
: (* FQ 8HFQ?I9 # 8 95#5 # 5 5 # 5#5 # 8 L 95 5 5 * : # ! ?* 89 " . # ! ? # @ * & " $ ! H/Q 2I + 5
2 M 5 * % " $ ! H0I* + # 5 * 6 0*>* 0*>* 0*>*
%7"" "
5 *
?5 5 5 5 5 5 * # 5 ,
0*>* # # 5 # 5 5 * 0*>*( 5 # 5 * 0*>*) 5 * ' : # * 0*>** 5 # # 5 # # # * 0*>*+ 5 #5 5 * 0*>* $ 5 # #* 5 O 0*>* , 5 # # 5 * 0*>* 5 # # 5 *
9.5
SUPPLEMENTARY EXERCISES
(-# (-+ #/
0** 0** 0** 0** 0**(
% .
2
% 5 * ?5 % # ?5 * >5 % # >5 * 5 % # 5 * 25 % # 25 *
412
Chapter 9 GRAPH COLORINGS
0**) % 15 * 0*** # 8 L 9 ; 8 9 L 8 9* 0**+ 257 8 9 L 8 9 ; #5 * 0** 257 8 9 L 8 9 ; 1* 0** , ! 5 2 * 0** 75 # #5 3 ( 0** # * 0** 75 # #5 ( 0** # *
Figure 9.5.1
0** ! 7 # # * 6 7 O 6 # O
Figure 9.5.2
0** >5 057 * 8' : # # ?5 >5 057 *9 0** ( ! 7 # ?5 * F * 0** ) ! 8? : 9* 0** * * * * #
# ?5 *
Figure 9.5.3
0** + ! *
413
Glossary
0** ) >5 ' " * % ? # < # O % ? # < # O 8 ## 7*9
Figure 9.5.4
<' A
0**, ! # * 0** # ## > # # # # * 0** # - > # #* % * 0** ! ## * 0** ! - 80 : ? >9* 0**( ! ## # 3 ( 0*** 0**) ! ## # ( 0***
Figure 9.5.5
0*** ?5 ?5#5 * 0**+ ## # < 5 5 5 *
GLOSSARY
8 : # < # # * ! : 7 # 7 57 *
: 7 * #5 7 : # < #5 # # 8 9*
414
Chapter 9 GRAPH COLORINGS
!: : # < - #
# # 8 9* : ## " * % : 7 % - 8 5 9 ### % # # &8% 9* ' : # # # ##*
: 5 #5
- 7 #* .: #5 7 #* # : 7 #, * # ! : -* 75 : * ! : 7 5 * : 75 * : 75 7 # < * : 5 7 # < * : # * ! ': 8 L 95 8 L 95 * ! #$8 9 : # % 7 % 7 % * : 8 9 ; * ! 8 9 : # < - # #5 * ! : # 5 * : # A B * : #5 7 # < * ! : # # 5 # # # #, # * ! # 8 9 : 7 # ## #* : * : # # * . : ; L * ¼
¼
Glossary
415
: * : # * > : #5 #5 *
> : 4 5 *
! : 7 # ##
# # 8 9* : 5#, #* : 5#, * 8 . : L # ## # 7 # 7 * : : ## # * : : ## 5 # # 5 # #* ! : 7 57 * : )8 9 # # # #, )8 9* : ## * ## :
## * : # 5#,* : 7 #* : # #5 # # # 5 * ' /8 9 : 7 # , * ! : # # # * ! ': 7# * : ## * . : ; L ##* : 5#5 5 # 5#5 * : " * : ## 8 9 - - 8 9* : #5 # # # # < * : # # # < *
416
Chapter 9 GRAPH COLORINGS
: # # # # < *
:
# * -A : # % ## % # 7# % * ! : 7 5 * : 75 # * : 75 7 # < * BC : 8 9 ; * BC ! # # 8 9: # < - # 75 *
Chapter
10
MEASUREMENT AND MAPPINGS 10.1 Distance in Graphs 10.2 Domination in Graphs 10.3 Bandwidth 10.4 Intersection Graphs 10.5 Linear Graph Mappings 10.6 Modeling Network Emulation
INTRODUCTION
!
"
417
418
Chapter 10
10.1
MEASUREMENT AND MAPPINGS
DISTANCE IN GRAPHS
# $
% # $ & '
#
# $$ (
# $ # $ & & # $ & # $ # $ ) # $ # $
*
( ( Eccentricity, Diameter, and Radius
# $ # $ & # $
#$
* #$ & #$ & # $
#$
#$ & #$ +
# $ & #$ #$
, & # $ +
#$ &
, #$ & - #$ # $
Section 10.1
419
Distance in Graphs
Figure 10.1.1
#$ & - #$ &
#$ &
#$ #$ #$
* *
* . / * 0
# $ * * #1 " $
!"#
1 #$
(
2
3
# # $ & # $$ # $ # $ # $ & # $ + Periphery
4 5
+
# $ &
#$
#$
, ,
#$ & -
$%&'&("# !
# $ #$ &
+
& ) 6 # -$
1 #$
#$ & 7 # $ & # $ &
420
Chapter 10
MEASUREMENT AND MAPPINGS
#$ 1 & # $ # $ & 1 # $ 1 # $ # $ & # $ # $ & # $ #$ Girth and Circumference
#$
#$
Figure 10.1.2
, 8 9
#$ & 8 #$ & 9
Convexity
+
,
: ;
,
: ;
: ;
$ , , 8 : ; & # $ &
Figure 10.1.3
+
: ; &
Section 10.1
421
Distance in Graphs
$ )* , , 8
# $
Steiner Distance
3
+
# $
1
!
, - 1
& # $ & <
Figure 10.1.4
'
. -8
+ 1 *
1
Total Distance and Medians
# $
# $ &
# $
+ , <
1 # $ & =
Figure 10.1.5
, ) # $ & =
422
Chapter 10
MEASUREMENT AND MAPPINGS
! " # $# ) $
# $
6
> & ,
# $ &
&
? & & & # $
& #
$ & # $# ) $ # $
@ ) 1 + &
, ! # $ &
&
Figure 10.1.6
# $ # $ ) # $ # $ # $# ) $ & # $# ) $ # ) $
) ) ) & & # $ & @ 6
# $
& ) &
# $
# $
Section 10.1
Distance in Graphs
423
# $# ) $ & ' 6
2
, :/A= ; # $ & ) ) ) # $ ) # $# ) $ &
+
#$
+ )* B
, < < > #$ & !
+ # 3 & , .
& 6
6 # $ & # " $
- ./' ' ')
. + - <
$ ! + 0 (
? ? 8 ? A ! ? ! C ? " ? " C 0 ? # . $ # $ ? # . $
!
1 , 0 0 . #$ & "
0 8 ? -
424
Chapter 10
MEASUREMENT AND MAPPINGS
$ ? 8 ! ? 8 + 0 0 A ! ( ? " - # $ 1 / * 0 "
2
,
#$ * #$ * * #$ * # $ * * '
0 ? * 3 0 #$ 3 # 1
# 0 ## $ & # $ $ 3 6 0 2 ! 3 #$ 8 0 #$ + 3 ? #A. $ 0 3 2
0 #$ #$ ) # $ ( ?
0 !
10.2
DOMINATION IN GRAPHS
+
(
? / :/!; > > :> !; , *(
:AA -; , :AA1=D; 3 $ + $
# $
$ 6 $
Section 10.2
425
Domination in Graphs
+
& #$$
%#$
#
, #
$
2 # $
8
Figure 10.2.1
,
, <
%# $ & * Three Applications of Domination
A
) :/98; $ .
(
) # % $. 1 (
+ 6
) & . ?
* * * *
* *
!- 6 * #1 " $ Private Neighbors
/ ,
426
Chapter 10
MEASUREMENT AND MAPPINGS
' # $
' : ; ' : ; & ' # $
3 $
$
' :; $ &
$ + $
. /
6 E *
$ ' $ $ ( $ ) $
> :> !;
:> !; $ $ $
#$ /
$
$ $ # $ 1 $ 3 $
$ $ :> !; $ $ ' $ $ + $ 0 / 0 #$ & $ $ & 6 $ # 0 #$$ 6
$ .& $
%#$ ( #
Section 10.2
427
Domination in Graphs
Bounds on the Domination Number
, ! :'+19=;
, +
) Æ #$
%#$
#
#
*+,-. %#$ Æ #$
.& 0
*/$,0. %#$ )#$
)#$ 1 !
)#$ Æ #$
Independent Domination
+
6
*#$
+
%#$
, %#$ & 8
Figure 10.2.2
(
*
% %#$ %#$
1 # 3 $
$
$ 0
428
Chapter 10
MEASUREMENT AND MAPPINGS
# .& % %#$ *#$ 3
# & *#$$ 0
%#$
.& % %#$ *#$ .& # *
0 =
Connected Domination
+
$ $
%#$
$
, 8 %#$ & -
Figure 10.2.3
* ))
Distance-+ Domination
'
+ F + $ +
$ $ # $ + +
%#$
+
> %#$ & %#$ 7 %#$ %#$
!
, - %#$ & @ %#$ & -
Figure 10.2.4
* )2
Section 10.2
429
Domination in Graphs
- ./' ' ') ,
"" "#
$
%#$
$ ? " # $ ? " C ! 8 ! ? ! C + 0
0 ,
# $ 6 #< . $% #! . $% #D . $ (
* * * * 1
( * ( ( " "%
$
0 ? " ? " C $ 8 ! ! - ! +
( *
* *
* 0 ,
6 #< . $% #! . $% #D . $ ( , -
430
Chapter 10
MEASUREMENT AND MAPPINGS
" ""& $
1 0 ? " ? " C 8 ! $ %#$ & - + + & 8 ! , 8 %#$ & ) + + & + 3 %#$ 8 0
0 0 ? - ( 0 < 1 0 ! 0 0
10.3
BANDWIDTH
6 !
+ # $
6 , . ,
- #$ & , #$ , # $ .
-#$ & - #$ ,
- #$ / #$
+
, -#$ - #$ & -#$
,
8 ! , 8 >
-#$ & - # " $
Section 10.3
431
Bandwidth
Figure 10.3.1
, 3 *4 &)*4 !
Interpreting Bandwidth in Terms of Adjacency Matrices
6 , ,
6
,
)* 6 , , 8 @ G
G
&
&
, !
) - #$ - #$ # 0 $ 0 1 0 0 0 Some Basic Results and Examples
-# $ & -# $ & -# $ &
%
#" $
432
Chapter 10
MEASUREMENT AND MAPPINGS
' -# $ & - ,
8 - Æ - # $ - ,
! 9
- # $ < 7 9 - # $ < 2 , 8 -
Figure 10.3.2
4 *4
-# $ -#$ + ,
, $
#
Characterizing Bandwidth via Powers of the Path Graph
& . & # $ 3 *
6
, , # $ & G G
$ % -#
$ & 0 8
*
!
-#$
, 0 8 88 8-
.& +
-#$ &
Some Bounds on the Bandwidth
' H :?FH 9<;
Section 10.3
433
Bandwidth
0
Æ #$ & I -#$
I
3 ,
' # $ & ' , # $ 1 , # $ 1 1 , # $ - #$
&
,
I
# $ , # $ , # $ , # $
, # $ 1 , # $ 1 , # $
(
-#$ #$
3 # $ & #$ & 2 & & & *
, 2 & 2( ' ,
- #$ & & #$ + ) ) ) # , 88$ ,
3 3 & ) / & ) )
Figure 10.3.3
> 3 6 / ) ) 7 # #3 / $$ 6 ) ) 8 . ' 0( 6 3 + " + 2 6 * & 2 & #$ - #$ #$ 2 + 2 # " $
434
Chapter 10
MEASUREMENT AND MAPPINGS
4#$ + . #$ + . #$ & # $
4# $ 4#$
1
% & 4#
$ & )
' 4#
$ )
*
6 6 # $ & # ) $ # ) $
.&
-#$ 4#$
3 -#$ &
0 8!
4#$ 4#
$ & )
. / :/ D<; -#$ 4 #$( 4 #$
# =8$
>
+
) #$
% & ) #
$ 1 6
5
% -#$ ) #$
#
. , :/ -; :??FD; :3'==; , :?DD; :7=;
Section 10.4
435
Intersection Graphs
- ./' ' ') & &&
8 ? " 8 8 8$ 0 0 8 8! 0
* 8+ 0
* 8 80 1 -#!$ & - #A. (
, - #! $ 1 -$ 8( 0 5 * 81 ?
0 8D , 2 - 2 8 0 0 8 #A. J 3 8$
10.4
INTERSECTION GRAPHS
1
' 6
. + Intersection Graphs
3 &
K# $ & . & & 0 &
3 &
& & K# $ , # $ & &
&
$ , - & - 8 8 -
436
Chapter 10
Figure 10.4.1
MEASUREMENT AND MAPPINGS
, )&) ) )
$ *231. # , .
.
Some Special Kinds of Intersection Graphs
+
"#$
"#$ 6 "#$
$
, -
Figure 10.4.2
6
.
, - # " $
$ , -8 "#$
Figure 10.4.3
Section 10.4
437
Intersection Graphs
Subtree Graphs
+
& # # #
#
# G
#
# # # G $
$ $ + , --
# #
Figure 10.4.4
#
#
*4
$ # +
-
$ $ )* , -- $ *+,3 4,3 /,5.
$ *2200. 6 3
Competition Graphs
3 $ 3
6# $ # $
6# $ & # $ 3 # $ & # $ 3
# $ $
$
438
Chapter 10
MEASUREMENT AND MAPPINGS
+ $
# $
$
$ ! + $ , -<
Figure 10.4.5
$ )
) $
% / :? 9D;. 1 + $
G
$ & 3 & # $ 6
$ #1 + 8=$ Characterizing Competition Graphs of Acyclic Digraphs
5 $ $ # 7
(
5 $ !
$ # $ 3 1 0
#$
& + $
) / 3 -- $ /
$L & $ # $ 3 1 0
G
$
# $ Æ
$ # $ 3 1 0 * ½ ¾ ½ 1 1 1 1 $
Section 10.4
439
Intersection Graphs
, $ +
*8+ 5- 25-. " & ! ! ! ! 1 0
#$ 1
$ / 3 -< & & # $ 3 1 0 3 & ! ! !
$ ! & # $ & *
! 1 0 # " $ # $ 1 & & ! ! ! *
! 1 0 $ & 3 & # $ ! / 3 -< $ 7
$ # " $ . ?
:/ D8;
Edge Clique Covers and Intersection Graphs '
+
& ! ! !
! G . & .½ .¾ .
"
( '
* *
$ 0
&
& % ! & & ! "
!
& 0 6 @ &
6 . *
$ ( & ! ! ! " & & & K# $ ' 6 , . , # $ & 6 6 # $ 1 6 . !
440
Chapter 10
MEASUREMENT AND MAPPINGS
6 K# $ ? 6 K# $ & ! 6
Duality Between Edge Clique Covers and Set Representations
* & ! 0 -9
& 0 -D
*
3 *
*
*
$ 1 " # $
# $
# Intersection Number of a Graph
#$
&
7 #$ * & ! ! !
, $ *# 49::. % #$ & 7 #$
3 & &
# & #$$ 0 -9 *
#$ 7 #$ *
0 -D p-Intersection Graphs
&
K # $ &
. & & 0
Section 10.4
441
Intersection Graphs
+
& & K # $
$ +
9
, -!
Figure 10.4.6
2)
$ # 0 -
+
&
& K # $ 3 L &
& K #L$
Tolerance Graphs
:M77=; :M71=; 3
&
% (
% : . # $ 9 (
% & 8 # $
, 8 :
8 . 9 9 9
.
& & & 0 :# $ 8# $
+ 8 8 : &
8
8 : G
442
Chapter 10
MEASUREMENT AND MAPPINGS
Some Special Classes of Tolerance Graphs
,
: (
* :# $ 1
8
2
$ 0 +
8 :# $ & & :# $ & 8# $ &
+
&
8 & 8# $ & # $ ; :#; $
$
#
#
.
:F 7 D F 7 D-;
$ ( , -9
Figure 10.4.7
, )&) 2) 6
3
&
+
8 :# $ & & 8# $ &
$ 1 , -D
2 @
3 8
+ 8 8
. , 8 :+3377=-; :/ 7B=<; :/ 7B=!; :/ ?B ; 1
8 8# $ & # $ # $ )
Section 10.5
Linear Graph Mappings
Figure 10.4.8
443
, )&) 432) )
. ,
7H 77 :77==; + F (
( :F 8;
- ./' ' ') $ . 1
- # $ #8 D$ # -$ #8 -$ # <$ #9 =$ - 1 - 1 - (( ( $
-$ -! -+ -0 -(
8 # -$
-1 0 0 - - 0 0 -= - #$ 1
-! * #$ 1
$
-! - 1
444
Chapter 10
10.5
MEASUREMENT AND MAPPINGS
LINEAR GRAPH MAPPINGS
N
6 6 6 6 A *
6 * 6
+ 6 , .
6 6
6 , #$ , # $ 6 " 6 , .
6 , . . . , # $ & , #$, # $ + , .
6 , . ,
6 , 6 ,
+ # $ , .
, . , . . . , 6 ,
6 & , #$ , # $ 6 , # $ , #$, # $ + , 6 , . ,
! 3
, . ·½ , # $ & , # $ & , # $ & & 6 , . .·½ . , & #, , $
, <
& -
Section 10.5
445
Linear Graph Mappings
Figure 10.5.1
! + , . ! , < 6
!
Figure 10.5.2
7 )*4 !
! , & #, , $ ; , , ) , , , 6 6
, 6 , .
, # $ , #. $
.& !
; Linear Graph Mappings Between General Graphs
'
+ + , . # $
,
.
, . .
.
. .
,
, # $
446
Chapter 10
MEASUREMENT AND MAPPINGS
. >
6 + 0 <
! , <8 ,
, ,
Figure 10.5.3
7 2
Linear Graph Mappings Via Amalgamation
? <
' 1
(
2 3 < &
<
(< #$
& & . & . (<
! $ , <-
& < & 6
Figure 10.5.4
.&) 4 62
@
" <
Section 10.5
Linear Graph Mappings
447
! ! , <<
!
G
62 )*4 !
Figure 10.5.5
! + , <!
" <8
Figure 10.5.6
62 4
Multi-Edge Amalgamation
3 3 & .
3 #$
3
& . & #. 3$
! + )* , <9 3 & - @
" <8
Figure 10.5.7
! 0
*2 3 & -
448
Chapter 10
MEASUREMENT AND MAPPINGS
, <D
*
> 2
# $
Figure 10.5.8
4 * 6
Complete Multi-Edge Amalgamation
(
! (
! (< # " <<$ , <= N
" <
Figure 10.5.9
, ) *2 !(<
.
# $ (
'
Section 10.5
Linear Graph Mappings
449
! , . (< (< &
3 , #$
, # $
. < & , #$
, # $ (< # , 6$
(< *
Mapping by Merging Two Ordinary Edges
7
*
(
! 1
2 # $ , <
Figure 10.5.10
!
, & 8
6
2 # $ , <
450
Chapter 10
Figure 10.5.11
MEASUREMENT AND MAPPINGS
, & 9)
Linear Graph Mappings of Paths
+ (
! , <
! (
! " ( 5
5
Figure 10.5.12
7 + +
! $ # ( +
( (
! ! , . , #$
1 , #$ # $
6
, # $ #
$ , # $ 6
+ 6
, # $ .& ! +
0 <<
Section 10.5
451
Linear Graph Mappings
? = > F
=
> +
Mapping Graphs Onto Pseudopaths
+
Figure 10.5.13
! 0
* !
#
3
3
6
? , <-
Figure 10.5.14
* 2 6& 6
,
*
7
7
8 7 0 & 0
- 7 # $ 6 0
? < 7 # $ 6 0 0 ) , -
!
, <<
0 <9 "
452
Chapter 10
Figure 10.5.15
MEASUREMENT AND MAPPINGS
7 *
- ./' ' ') ! ) % % *
< < <! <0
5
< <$ <+ <(
! 5
) % %# *
<1 < < <!
5
< < <$ <+
! 5
) %+ %" *
<0 <1
<( <
) %" %"(
,-., /
!
<
< < <$
Section 10.6
Modeling Network Emulation
453
) %"% %"
<! <+ <0 <( <1
, ! , , ,
, +
) %& %
< , < , < , < , <$ , <! , <+ , 8 <0 F
( # -<$
(
<( F
(
(
10.6
MODELING NETWORK EMULATION
1 * 2
2
' O
Graph Models for Parallel Computers
) +
9 &
( ,
(
454
Chapter 10
MEASUREMENT AND MAPPINGS
J
+ , * 6# $
M
+
, !
Figure 10.6.1
'2) &)*4 )*
> 2 # $ , !
> 2 , !
6#$ 6# $ * , !
D
Figure 10.6.2
: * &)*4
A Model for Porting Parallel Algorithms
) +
# ; ' ( 2 (
Section 10.6
455
Modeling Network Emulation
(
( (
, , .
(
1 ( *
Load and Congestion of a Graph Mapping
+ 6
6
3
( (
, .
, # $ , .
(
7 ' *
, .
, # $
, . (
.
*
+
, . ! #" <$ , !8 8
, *
8 8 ! , !
456
Chapter 10
Figure 10.6.3
MEASUREMENT AND MAPPINGS
) +
+
! , !-
"
!
Figure 10.6.4
!
! *
!
+ *
+ , . , ( , . (.
, . . ,
+ , .
, # $ *
.& +
, . < , #$ & , # $
0 !
Section 10.6
Modeling Network Emulation
+ $
!
457
2= & ? = <
!
!(< & =(! & 0 ! , !<
(
Figure 10.6.5
, . )
+ !
2= & ? ! = - !
!(- & =(! & , , !!
Figure 10.6.6
, . ) $
, !9 8 8
Figure 10.6.7
. )
8 + $ , . -
1
8
458
Chapter 10
MEASUREMENT AND MAPPINGS
? !8 -
- - - Semilinear Graph Mappings
( 6
2
# $ # $ (
+ , .
,
.
, . .
.
,
, # $ . ,
+ + , !D
> (
8
Figure 10.6.8
2 & 2
, .
, .
+ ! ! *
Section 10.6
Modeling Network Emulation
459
+ 0
A , != "
-
" - - , -
Figure 10.6.9
!2)&) # *4& $2)&)
1
+ ( , . 8
2
7
, ! #> P , # $ & , # $ , # $ & , #-$ P $ 8
Figure 10.6.10
, . )
A . , !
Figure 10.6.11
. )
460
Chapter 10
MEASUREMENT AND MAPPINGS
+ + 4
1 , . F . , # $ , #$ , # $ +
Bandwidth From the Perspective of Graph Mappings
8
6 '
6
. + 6 , .
, . * 2
(
,
2 # $
+ 1 + @
6
+ + + *
*
+ + 1 6
A
, ! 6
Figure 10.6.12
6249)6 4
Section 10.6
461
Modeling Network Emulation
- ./' ' ') + ) # #(
! 3 ! 3 -
! !$
3 8 3 - -
) #% #
!! !+ !0 !(
, ! * * 8 , ! $ * - * 8 , ! * * , " * *
) # #"
!1 !
$
! !
"
) #& ##
! $ !$ !! !+ " !0 6
? ' 0 ! C 0 #A. $ !( 8 . 1
8 !1 0
* ! 0
* 8 ! ! * - - ! 5 * #1 " 8D$
462
Chapter 10
MEASUREMENT AND MAPPINGS
) #"& #"#
! ? " !$ !! !+ !0 ?
8
10.7
SUPPLEMENTARY EXERCISES
9 ? 9 ? 9 3 #$ #$ 0 9$ 3 1 %#$ & 9! 3 0 %#$ 9+ ,
90 0 . , *
9(
91 3 & 6
" -#$
-#$ -# $ -#$ 9 1 * 9 ! & 8 9 8 D & 8 9 ?
0 9$ 0 <
5 9! ? -# $ #A. $ ) +# +"+
9+ " 90 " 9( " 91 " 9 " 9 " 9 " 9 " 9$ 5 9! 5 9+ 5 90 5 9( 0 <
463
Glossary
91 3 , . 0 , #$ , # $ * 9 3 , . 0
*
9 3
9
?
9 ?
#A. $ 9 3
, 9
& 0 &
Figure 10.7.1
9$ ?
, 9 9! ? , 9
Figure 10.7.2
GLOSSARY
9))&26 .
4 *4 ,
- #$. *
- #$ & , #$ , # $ . . 4 *4 . , -#$ - #$ & -#$ 4 -#$. * -#$ & - #$ . ,
% - #$ / #$
464
Chapter 10
MEASUREMENT AND MAPPINGS
4
.
6
% *
# !$ 4) .
) #$.
) 6
.
# $ & #$ ) . - )) *4 4#$. + . #$ + . #$ & # $ ))*) .
% #$
) 6 6)
. : ;%
) 6 6 *4
. :;% : ; ) $.
$ ) . # $
$ 82). (
# -$ )
.
) .
)6 * 6 *4 . )6 6 *4 . : ; & #$.
* #$ & #$ & # $
.
.
) # $ .
% # $ & .
Glossary
465
. $
$ 6 $ )). $ $ )2+ + . $ $ $ # $ + .
. *4
.
% %#$ #
& #$$ )). %#$%
)2+. %#$%
+
. %#$%
* );* )6
. * 0 -9 *
* H
. 0 -D *44 . 6
)))& 6 # $. # $ & # $ );* )6
. & ! ! !
! G . & .½ .¾ . 4. $
$ & 3 & # $ ) .
.
% #$
. *
( .
( .
, . .
, # $ , #. $ ))26 &. ) *4
*#$.
466
Chapter 10
MEASUREMENT AND MAPPINGS
6# .
6 2 # $ 6 $ 3 . # $ & # $ 3 ) & *4 & K# $. & . & & 0 & 2
&
! . K # $% & . & & 0 ) . &
& & K# $ , # $ & & 432). (
# -$ 2). (
# -$ 2.
& & K # $ ) *4 #$.
6 .
2).
# -$ . 6 , .
. "#$
"#$ 6 , . # 2$
, . , . . . . .
,
, # $ , . .
, . , . . . , 6 , 6 & , #$ , # $ 6 , # $ , #$, # $ .
6
.
6 . *4 #$
.
Glossary
467
Ê . # $ # $ & & # $ & # $ # $ # $ ) # $ # $ # ' $ *2 3 & .
. # $
3 #1 <$ ). ( 4 6 . . ' # $%
). ' : ;% ' : ; & ' # $ *4. *2 6# $ 6 $ 3 . 6# $ & # $ 3 . &
6
. # $ & #$ & #$.
. & . & # $ 6 4 6 6 $
. $ ' :; $ & * .
* #$.
#$ & #$ . +
' ) 6 *4 .
1 % # $ ' .
)
. .
468
Chapter 10
MEASUREMENT AND MAPPINGS
*)*26 6 49) .
6 , . 6 6
6 , #$ , # $ 6 *4 .
# # #
#
# G
#
&& & )
. ) 6 # $. * # $ & # $ ) .
# -$ . & # # #
#
& )
. 62))6& )) ) #$.
62)* )) . 624 24#
. 6 , . 62
< &
.
(< #$
# <$
Chapter
11
ANALYTIC GRAPH THEORY 11.1 Ramsey Graph Theory 11.2 Extremal Graph Theory 11.3 Random Graphs
INTRODUCTION
Æ
469
470
11.1
Chapter 11
ANALYTIC GRAPH THEORY
RAMSEY THEORY
! " # $%&' # # (( ) *+&,-
. )- & )- & )- / )- 0 1 2 )- & - . " $$$$
Figure 11.1.1
3 4 4 Ramsey Numbers
# (( (
. )
-
5 $$$$ )& &- 0 6 )
- 7 ( Fundamental Properties of Ramsey Numbers
)
- 0 ) -
$ 7
Section 11.1
Ramsey Theory
471
)
$- 0 $ $ )
*- 0 $ 3 )
*- ! "#
& )
- ) $ - / )
$ ) $ - )
$- )
- ) $ - / )
$ )- ( $$$$ )- . ) $ -/ )
$- )- ) $ - )- )
$- 0 ) $ - )- / )- 0 ) $ - / )
$- $ 3 )- ) $ - ) $ - ) - 3 )- ) $ -
)- 8
) $ - )
$- ) $ - / )
$- $ )- / )- 0 ) $ - / )
$- * 3 )- ) $ - )- 3 )- ) $ - )- ) $ - * )- ) $ - )-
5
#
$%%& ' ! "#
/* )
- $ 2 / / 0 * 9 $$$& &
/ 0 )
- ) $ - / )
$- ) $$$1)- ) $- / * / / ) $- * ) ) $- $
$
/ & / / & 0
*
$
/* 0 ) 9:
$
472
Chapter 11
ANALYTIC GRAPH THEORY
Ramsey Number Calculations
; # )
- & Æ 7 3 #
< $ $$$$ )& &- 0 6 )& +- )& 1-
)+ +-
% ( & ) )
- &
0&
0&
+
1
6
=
,
%
6
%
$+
$,
*&
*,
&6
$,
*1
+
* )& +- 0 % # )* +- 0 + )& &- 0 6 $$$1)-
)& +- )* +- / )& &- $ 0 %
" , 0 ),< $ +- " $$$* ) -
Figure 11.1.2
+ +)% ),< $ +-
, )& 1- 0 $+
)& 1- $$$1)- 9 $$$+ $$$= 3 )& 1- )* 1- / )& +- 0 1 / % 0 $+
" $& 0 )$&< $ 1- " $$$& 3 7 4 ! ' * $ & 1 = , $' $* + 6 % $$ ! + % 4 . 6 $$
" )+ +- $, ! $$$1)- 9 $$$* $$$= )+ +- )& +- / )+ &- 0 % / % 0 $,
Section 11.1
473
Ramsey Theory
Figure 11.1.3
+ +)% )$&< $ 1-
Ramsey Numbers for Arbitrary Subgraphs
" )
- ! " ) - . ) - ) - / ) - 0 / $ $ 2 . ) / $- ) $- 0 ) / $< $ * - ) $- ) - / "
) / - Æ ) - $ Æ ) - ) - / * ) / *- ) $- 0 ) / *< $ * - ) - / $ 8
) / $- $ Æ ) - $ ! ) $- / $ $ )- $ )- ) - / $
$.%! "**# # ! ) - 0 ) $-) $- / $ 0 $ 0 *
& 2 ) $- 0
474
Chapter 11
0 ) $-
ANALYTIC GRAPH THEORY
$
) - ) $-) $- / $
) $-) $- / $
4 ) - $ ! 9 %$+
) $-) $- / $ ) $-) $- / $ ) - 0
$
)
-
) $- 3 ) %$- ! %$$, Æ ) - $ &$$1
Generalization to Arbitrarily Many Edge-Partition Classes
) - 3 $%11 > > ( # ?>>11@
/ ( /% ! "# )& & &- 0 $=
5
" 4 # ?"'+@ ?># %'@
0$1 + $$$ A $$$1 $$$6
)& 6- 2 $$$ $$$ $$$ $$$ $$$' $$$*
B 9 )& 6- $= )$6< $ 1 ,- A $$$$
)& =- 9 )& =- *$ )*$< $ 1 %- A $$$1 $$$6
)+ 1- 2 B / $$$6 9 )& - * /+ 9 )& - & $$$1 *
Section 11.2
$$$,
475
Extremal Graph Theory
9 )& -
/ & & $$$= *
/ & & $$$1)9 )& -
$$$" * $$$, $$$- 9 )& & &- $=
11.2
EXTREMAL GRAPH THEORY
2
2
Æ 2
Æ Æ Æ Extremal Graphs and Extremal Functions
2
C D 2
) -
% $ E ) - 0 $ % & 1 ) =1- & 6 4 ) *- " $$*$ ) - 0 & 6
Figure 11.2.1
* / % % &
476
Chapter 11
ANALYTIC GRAPH THEORY
%
)6*- Æ 3
Turán’s Theorem
9 F ?+$@5 B
3 F: E
" ) -
3 ) -
F ) - 0 $$*$ $$**
). ! "# # / $ ! +
A 0 & 0 + / $ 0 & 1 & 1 / $
. 4 0 * 3 4 3 * 4
+
/ $ ) $- 0
!
+ / + +
/$ 0
) *- +
/$
Section 11.2
477
Extremal Graph Theory
).
Figure 11.2.2
). ! "# ! ) - 3 0 3 0 3
5 ) - ( ) - & 3 F Vertex Degree
) - 0
.
) $- *
*
0 *
) $- *
Æ )
/ $
/$
- 0
*
! * ) * $
0
) $-
! $
3
) -
) $- *
3 ) $- G ) *-
) *- / $ *
*
0
$ *
0
*
478
Chapter 11
ANALYTIC GRAPH THEORY
Connectedness
.
4 H ! 0 3
0
/ *
*
0
/ ) - ) *
*
?$ $@
0
* / * *
0 $ 0 $
$ Æ
/ 9 $$*+
Figure 11.2.3
.
2 '3 % 3+ +
0 0 0 0
$ )- / ) $* & / * / * * *
1 / + /
0 * * / ) $*
*
1 / 6 / $ *
) $- ) $
Section 11.2
479
Extremal Graph Theory
Traversability
'
$
/*
. 4 .
)- / )- 0 * * 0
*
))- / )--
0 )- / )-
)- / )- 0 *$ * *
$ * $ /* * *
* * * $ 0 ) & / 6- ) 1 / 6- 0 *
! G: )6&-
)
-
$%%& * !
/ $ ! 9 $$*6
Figure 11.2.4
2 '3 % % % &
$%%& ,
$
/ $
4 ! 9 $$*6
$%%& " ) "- 0 3 $$*,
Chromatic Number
3 3
480
Chapter 11
-
ANALYTIC GRAPH THEORY
! % &
!
' #* #* *
*
& 3
*
*
0 #* 0 #*
0$1 + $$* . 1 $$* . 6 $$* 9 $$** $$* ) - ) - F $$* )+ *- $$*' )1 *- $$** )6 *- $$*, )6 &- $$*" $ $$*- *
11.3
RANDOM GRAPHS
7 4 $ * C D 2 $$*
Section 11.3
481
Random Graphs
3
2 $ ) - Labeled Graph Isomorphism
% 5
% )-
3 The Probabilistic Method of Proof
# )
- 2 $$$ )& &- 0 6 )+ +- 0 $,
& )
- ! *
. 0 * *) - I G 4 3 Æ $ 4
$#* * ) - " 7 & $ &
$ )
- 0
$ )$ )$ )/ 0 * 0 * ) * * *
. &
$ )
-
$ ) - 0 * )J * 0 ) -J J J * * *
J $ 0 * $
J
) )
*-
&-
482
Chapter 11
ANALYTIC GRAPH THEORY
) $*&-
J* . ' $#* " ( $ ) )'- 0 $ ( ' ()* +,-'.
'
(
))'- 0
) )'-
' ( ' * )) )'-- * 3 '
)))'-- 0 )
) )'-- 0
)) )'-- 0 J*
J* J* Models for Random Graphs
K K 7 7
˝ The Erdos-Rényi Random Graph
) - )-
" '
Section 11.3
483
Random Graphs
%
) - 0 $*'
Figure 11.3.1
)1 &- " $$&$
% & )1 &-
! )1 &- 2 8 )1 &- ' $ * &' $ ,' * $' $ 0 0 0 $*' + $*' & $*' $* '
* $ 1 $ / $ / * 0 + & $* 6
Expected Number of Copies of in ) -
) - $$&& 7 7
)*- 0
$
'
)- 0 $1
%
)
)+ +-
-
)+ +- $ $1
)
-
" $$&* + + & )+ +- * $* + > * + $* $* + 0 )+ +- $1 1
484
Chapter 11
ANALYTIC GRAPH THEORY
( & 3! 3
Figure 11.3.2
5
$$&* )+ +- $1 )+ +- ! + 3 ) -
! ) - & & &
$$&* ) -
)
-
3
"
)
-
$
& &
3
&
& &
0
&
J
) &-J
0
&
&J
J
& J J J J ) &-J J
0
& &
&
5 3 $$&& / $ $ $$&& (
Section 11.3
485
Random Graphs
!
) -
Expected Number of -cycles
7 ) - 2 ) $-J
) - ) $-J * ) - I ) $-J $ ) $-J 0 * * !
* 3 ) - ) $-J *
0 0
) $-J *
) -
) $-J * J ) $-J * ) -J J
J ) -J
J
J
0
J
) $-J *
J
J
The Bernoulli Random Graph
) $-
$ $ )$ $-) -
486
Chapter 11
ANALYTIC GRAPH THEORY
) - 1 & )1 $- &
%
" $ 0
$' &
$ )$ $-
$*' $1 0 $'*+ $*, ˝ Bernoulli Space as a Union of Erdos-Rényi Spaces
) ! ) $- * / $ I L #F
) - 0 ' *
) - )- H ) - ) -
%
) $ $) - G L #F ) - $ ) -
%
)+ $- & " 0 $* ": & " $ )$ $- $*$ )$ $- 3 L #F )+ &- 0 *' + + $* " " $*#*' 0 Some Properties of Almost Every Graph
$ ! '
) $- $
' $ 3 ) $- 4 ) ( & " $ $ $ )$ $ - ' $ ! ' $ $ $ $ $ ! '
Section 11.3
487
Random Graphs
$$&6 (
*
$
$%%& , # / ! $$&= "
%
. ) $- "
$$ * 4
$ $
'
$ ! '
- $ 9 $$&%
( 9 $$&% $$&$'
# , 0 0 , - 0 , - , 4 , )$ $- - 4 4
) $ , 4 4 , 4 4
$ )$ )$ $--
'
$ ! '
! ' 9 $$&$$ 0 * 0 ' 0
488
Chapter 11
ANALYTIC GRAPH THEORY
Some Statistical Properties of Random Graphs in ) $-
/
.) - 0 $ *
) $- .
/) - 0
$)$ $- *
! 7 ! ) $- $
$%%&
-
) $- /)
* *
" $ ' $ $ $)$ $- $$&$&
/) -
0
$)$ $- *
,
0
* *
) $- * $ . $ )) - 0 $-- 0 $ ) - 0 $
9 $$&%
$ )) - 0 *--
0
$ )
- 0 $$
)) -- 0 $ $ / * )$ $- 0 * $
0$1 + $$& ; 1 + )1 +- $$& A $$&$ )1 + $$& A $$&& )1 +- ) $$&*$$& ) - $$& & )1 +- )H 5 $$&' )1 1- 1 $$&* )1 - 1
Section 11.4
$$&, $$&" $$& $$&
489
Supplementary Exercises
9 $$&& 9 9 9 $$&+ ) -
$$& 9 $$&= $$& A 9 $$&$$ ! '
11.4
SUPPLEMENTARY EXERCISES
$$+ 9 ) - ! 6 $$+ 9 ) - 0 6 $$+ ) - $$+ A $$*$ $$*& ) - = $$+ 9 ) - / $$+' 9 ) - / $ $$+* ; 6 & " $$+,
# )1 1- $$+" 9 )1 - 0 = $$+- 9 )1 - 0 , $$+ . 6 , 9 +
" 5 )- Æ 0 1< )- Æ 0 +< )- Æ 0 & )6 "- 0 = )H 5 . 3 4 & 0 )-$$+ " & )- )- )- 4 4 )- )- $$+ ) - $$+ & ) - $$+ ), 5 $ +- ) -
490
Chapter 11
ANALYTIC GRAPH THEORY
$$+' $* &6 $$+* , =
GLOSSARY
% & ! & % 5 ) $- $ $ ! ' 4 )%% ) $-5
$< ) $- $ )$ $-) - 3. & ) -5
)- < % ) + ) - & 5 % 3 & 5 C D 1 ) ) + 5 )*- 0 $'
%%3 5 % 5 % )- % 5 )% 5
5 & ) )
- 5 %5 # )
- & ) ! ) -5 % ! ) -5 5
Glossary
)Æ+ %& % ! ( + & 5
491
7 ) 5 ) $*&). 5 ) ) -5 )- <
492
Chapter 11
ANALYTIC GRAPH THEORY
Chapter
12
SPECIAL DIGRAPH MODELS 12.1 Directed Paths and Mutual Reachability 12.2 Digraphs as Models for Relations 12.3 Tournaments 12.4 Project Scheduling and Critical Paths 12.5 Finding the Strong Components of a Digraph
INTRODUCTION
!
" ! # $
% $
% & ! !
493
494
12.1
Chapter 12
SPECIAL DIGRAPH MODELS
DIRECTED PATHS AND MUTUAL REACHABILITY
' !
! ( " #
& # ! ) ! " !
! * + ! $! % & !
& # + , - & + + $#
% . /
Strong Components
& +
! * ! + !
0 ! 1 + +
"
" '
02 3 . " ! ! 4 ! ! $ 05% !
Section 12.1
495
Directed Paths and Mutual Reachability
Figure 12.1.1
!
) ! " + 6 + +
+ + 00 +
1 $ % ¼
Figure 12.1.2
& +
+ " + $*+% & $ %
Tree-Growing Revisited
& 0 ! ! 3 4 ! + 7 ! $ % ! !
496
Chapter 12
SPECIAL DIGRAPH MODELS
4 + 7 + + + & 0
&
Algorithm 12.1.1:
. + . + ! 4 ( + 8 ! 9 + 4 ( ! .6 8 ) ! $ % $ % &
+ 8 ! + .6 : ; + !
8
! 05 ! ' ! " + ! 8 + " + + ! 9
Figure 12.1.3
"
1 05 + ! "
Section 12.1
Directed Paths and Mutual Reachability
497
!
! !
4 /< $ % "
! " #$ # < =999 ! =299 + " ! ! " + # ( + & ; > =99 $ % =5999 $ % =?99 $ 0 % =999 $ 0 % =099 $ 5 % =?999 $ 5 % =99 $ 3 % =@999 $ 3 % =099 $ 2 % =999 $ 2 % " + ! " ! + + ! ! " 6 ! : : ! + ! ! 0 ! 3 6 299 : 99 : ?99 999 6 =A999 03 2 " =99
Figure 12.1.4
"
" ! $ % + + " /< !
498
Chapter 12
SPECIAL DIGRAPH MODELS
Characterization of Strongly Orientable Graphs
& B! ;!! Æ ! # 1 C ! ;!! ! ! ! & +
&
&
! +
&
+ + &
6 6
6 . & 0
8
;!!
# 02
!
Figure 12.1.5
$ % % "
1 +
4 ;!! !
Æ ! ! # & ""' (!()
$% & !
"
$ 0% "
$ % ! ! $ %
Section 12.1
499
Directed Paths and Mutual Reachability
Figure 12.1.6
$% #
7 20 ! 8 ;!! # ! ! !
! Markov Chains
" !D 5
# ! 4 + + ! " ! " + ! $ EA2F% # ! ! ! 6 9 0 ) ! $ % 6 ! $
% & ! ! ! 6 9 0 6 6
"
! 6 $ 6 6 % 6 0
8 + " + !! " $ % + + +
" +
!
500
Chapter 12
SPECIAL DIGRAPH MODELS
%& #. # ! =5 " 4 ! =5G = B =2 ) ! 6 5 " 6 9 0 5 3 2 ! " " +
0A 9 0 5 3 2 9 9 9 9 9 9 A2 9 9 9 02 9 0 9 A2 9 9 9 02 5 9 9 A2 9 9 02 3 9 9 9 A2 9 02
2 9 9 9 9 9
Figure 12.1.7
" * +,
-Step Transition Probability
) ! 6 " !! 6 6 " + " !!
+ - & / ! 9 ! 4 ! ! ! ! ) ! ! 4
+ !! + H 4 + 0@ $ *+% !! + ! ? : ? 6 @ 9 0 5 9 9 9 9 9 9 ? 0 9 9 @ @ 5 99 99? 035 A0?
Figure 12.1.8
. +,
Section 12.1
Directed Paths and Mutual Reachability
501
" ! 5 !! 0 * 0 5 5 !! !! 5 " 5 !! ! 5 + + 0 " + ' 0 5 !!
6 $ ? A0? 035% : $ ? 99? % : $ ? 035 @% : $ @ @% : $ @ 035% : $ 9 % 6 005
4 + ( + ( 7 !! ! ! ! + + !
! $ 0% -
'( 6
7 + 6
! ! ! 1+ : + + + " 6 ! + Classification of States in a Markov Chain
" ' " & ( !! " " ! & + ! " + & I & 6
502
Chapter 12
SPECIAL DIGRAPH MODELS
& + ! ! ! " ( !!
& ! !! / " *+ 02 !
0 4 J ! < & 00 9 2 !!
1 .233 3
0
!"
0
0!
0#
0-
0/
#
" $ %& '
" ( )
*
00 " *+ 0 04 " *+ 00 0( " *+ 05 0 5 " *+ 03 0
" *+ 02 0 " *+ 0 0 ! ! & 0 /<
Section 12.1
503
Directed Paths and Mutual Reachability
0 # ; & 0 ! =999 & =299 < =99 ! ! 0 - # + ! =099 =099 + + & ! ! ! !
" =@9 =09 =9 =039 =0@9 / (
+ + + !
"
0 /
0 0
0 4
0 (
05
0
0 0! K 00 0# ( 0- K K 0 0/ K K 05 00 K 04 K . ) !
!
" : 0( > + J ! < ! & 00 0!5 / 0 + & 00 ! ! K 02 0! > + *+ 02
504
Chapter 12
SPECIAL DIGRAPH MODELS
0! ; *+ 02 ! 0!! / 0 + *+ 02 ! ! K 02 0!# !
0!- 0 + + ! ! K 02 0!/ ! " )(. # ! !
! 399 & + 8 !! 99 G !! 99 !G !! ! + B ! & ! / ! / !! 5 0 + ! ! K 02
0!0 K 0!4 E F 4 7 " J & 0
*+ 0 0 0!( E F 8
$B. " 03% + , -
+ , -
505
Section 12.2 Digraphs as Models for Relations
12.2 DIGRAPHS AS MODELS FOR RELATIONS
" "
" + + # $ #% " " $ #% " + + # . 7 ! ! 8 !
# " 6 ! $ % $ % $ % $ % $ % " " 00
Figure 12.2.1
"
The Transitive Closure of a Digraph
& " + + # # $ $ " " ! " "
! $ #% " + 6 6 # $ % " 6 9 * " " " ) ! " " " " " $ #% 6 #
# # + . 4 +
506
Chapter 12
SPECIAL DIGRAPH MODELS
" 00
000
Figure 12.2.2
,
* # +($ # % + ! % " + + ! " " ! " +
Constructing the Transitive Closure of a Digraph: Warshall’s Algorithm
) ! % + & 8 6 ! 6 % / ! !
$ % $ % 0 +
Figure 12.2.3
Algorithm 12.2.1:
$ %
6 * , .
. % + . 4 ( ! 6 % 6 % 4 $ % 6 % 4 $ % &
$ % $ % ;
507
Section 12.2 Digraphs as Models for Relations
& Æ - $ 0% !
$ % 6
9 4 9 ! ! ! .6 $ % " & 00
% !! # # $ #%
" 6 !
$6% $ % $ #% 7 1+ # ! + # 4 + + $ #% 4 + + ! $ % $ #% B $ #%
Partial Orders, Hasse Diagrams, and Linear Extensions
" ! ! . & D+ " $ % ! ) 6 0 5 3 @ 0 ! ! # # $ % " 003
Figure 12.2.4
& ! .
508
Chapter 12
SPECIAL DIGRAPH MODELS
) ! & $ % . * ! + 4 # # + # + G ' ! # #
+ + #
" ' ! !
" ! 1 ! B # " B + 002
Figure 12.2.5
7
1 ! !
B
+ ! + " ! B " # $ % ! # # # & ! - / " 002 ! ! $ 5 @ ! % . 7 B !
! & $ % # # & $ % !
/
509
Section 12.2 Digraphs as Models for Relations
& + 4 + , - - ' . # ! " # # # & + ! 2 . # B 00
6 & '
Figure 12.2.6
7
" + " & $ % ( ( 4 B + +
! !
Algorithm 12.2.2:
8
. % $ % . + $ % 6 % ) ! $ % .6 ;
& & 000 ! & 0 " B ! & 000 B 00 7 B
& ' " !
510
Chapter 12
SPECIAL DIGRAPH MODELS
Figure 12.2.7
2 !
Figure 12.2.8
2 # 0
1 .233 3
00
!"
00
00!
00#
00-
00/
#
000 004 00( 00 5 00
00
" 0 1 '
" *+ 00 " *+ 000 " *+ 005 " *+ 003 " *+ 002 " *+ 00
2 4
3"
.
00 ! $ % 6 0 5 3 2 # ) # 00 # $ % 6 0 5 3 2 @ ? A0 # # 00 - $ % ! 6 0 5 # ! #
Section 12.3
511
Tournaments
!
5"
00 / " *+ 005 00 0 " *+ 003 00 4 " *+ 002 00 ( + B ! $; ! %
005 E F 4 8 < & 00 *+ 00 00 + , -
12.3
TOURNAMENTS
" ! ! B D+!
& " ! !
Transitive Tournaments
" + & !
* + 4 ! + ! ! ! 05 ! 2 !
! # !
* 6 7 + + +
512
Chapter 12
Figure 12.3.1
SPECIAL DIGRAPH MODELS
-, ,
! + + # # $ 4 ! + + $
$ ! B ! $ ! 4 !
" ! # # ! $ ! $ " ! ! + 4 # $ % # 1 ! '
$% " + ! Score Sequence
"
!
% 9 %
$% # #
Æ % ' ) # ! $ #% 1+ + ! + # " + 6 $# % '
$#% 6 + + $ % " '
$% + : ) '
$#% $% # 9 % ; ! '
$ % 6 6 9 % " + + 4 + + )
. % ! ! " ! K 050
+ 4 + $ *+%
Section 12.3
513
Tournaments
. " Æ ! &
,!- " + ! # & 9' (!#) ) ! % + 6 !
+ 7 % " + 7 + ! ! $ % ! 4 $ % + 4 $ % $ % 6 4 + + . J ! ; ! ; ! ! ! "
< ! ! # E @F " + !
%
6
7
! - " K 00 05 ! # - . . #
" ( ! ! !
E78L93F Regular Tournaments and Kelly’s Conjecture
& '
$% 6 ! ! & A + 050 ! 1 ! . 905329 903529 932059
514
Chapter 12
Figure 12.3.2
SPECIAL DIGRAPH MODELS
0,
! "# $ E @F% " % + ! $% %,0 ! . 7 & % ?
E7"@F EM@9F E"@0F EBN?5F K ?3 8
Tournament Kings
B J ) E)25F , - + & + + ! ! 0
! / ( 8 ! " + +
& % % + ) ! $% : % + ! + 7 ) ! + 4 + + + . " ! # E @9F ( E;?F Voting and the Condorcet Paradox
& % + < % $ % * % ! + # # ) ! + " # + + + # #
Section 12.3
515
Tournaments
. 4 < < 4
! ! # 055 2 + < * * + + ! + + * + + ! + ! *
Figure 12.3.3
:%
" "
# # !
" + + " " ! #' " + ! * 055 + 8 ! ! * * " ! * * ! ! !
! . "
, + 9 + 0
9 9
1 .233 3 ! 05 J 5 + 05 2 + +
05! / ! 3 + 05# # + 9 05- K + +
516
Chapter 12
SPECIAL DIGRAPH MODELS
05/ ) ! + 9 ! K + 050 K ! 054 055 05( K ! ! 05 5 K
12.4
PROJECT SCHEDULING
& ! + " ! ! ! " ! ! ( The Critical-Path Method for Project Scheduling
4 $.+% ! ! K !
! $%$ * $ % " * + && , ! & ! ! ! ! #
" + ! && 4 ! ! * ! 0 5 Figure 12.4.1
, ,% !
Section 12.4
517
Project Scheduling
Figure 12.4.2
Figure 12.4.3
, ! ,% *
,% " ! *
8 ! ! ! * " *
Figure 12.4.4
,% *
. 1 && ! " && ! !
J && ! . >+ + % 0 * ! + 5 " ! + $ % ! + ! $ % 3 * + 2 " ! ! $ % & ( ! !
! ! * ! ! 1 * ! ! ! !
Figure 12.4.5
; % ! *
518
Chapter 12
SPECIAL DIGRAPH MODELS
- * /. # $% ! & K / $ % 6 8 I ! 6 K ! I ? * 6 8 O & 7 @ 6 & 7 A 6 / 9 - 6 4 * 0 4 && 03
#
Figure 12.4.6
$
" ) $ % $ % Calculating the Earliest Event Times
) $ % +
& + +
) $ % ! + " ! ! $% 6 9 " $ % $ % + 4 + + " + ! $% : $ % # + $ % + 03A
Figure 12.4.7
$ % 6 ( $ % : $ %
Section 12.4
Project Scheduling
519
# 4 +
$0% 6 $% : ? 6 ? $5% 6 ( $% : 6 $0% : 9 6 ? 6 ? $3% 6 $5% : A 6 $2% 6 ( $5% : @ 6 A $3% : 9 6 0 6 0 $% 6 $2% : 0 6 5@
" 5@ # 0 ( 0 % $ % (
# + 9
! ! " $ % " + $ *+% #
1 1
" ! K 030 4 + 9 >+
+ ! & ! + + $ *+% Algorithm 12.4.1:
. ,
. % + && . 0 % . $% $0% $%% E F 4 ( .6 . 6 % $ % .6 9 E F 6 % ) ! + 9 $ % # $% .6 ( $% $% : $ % .6 ; $% $0% $%%
8
$
Calculating the Latest Event Times
) / $ % +
520
Chapter 12
& +
SPECIAL DIGRAPH MODELS
+
) $ % ! + " / $ % ! ! + % 4 ! ! / $%% 6 $%% 1+ + + 4 + / $% $ % / $% ! # / $ % ' 03@
Figure 12.4.8
/ $ % 6 ( % / $ % $ %
# ! + / $% 6 5@ / $2% 6 / $% 0 6 0 / $3% 6 / $2% 9 6 / $5% 6 ( %/ $3% A 6 ? / $2% @ 6 @ 6 ? / $0% 6 / $5% 9 6 ? / $% 6 ( %/ $0% ? 6 9 / $5% 6 5 6 9
& 030 / & 03 Algorithm 12.4.2:
. 8 ,
. % + && . 0 % . / $% / $0% / $%% E F 4 ( .6 . 6 % / $ % .6 E F 6 % ) ! + 9 $ % # / $% .6 ( %/ $% / $% $ % .6 ; / $% / $0% / $%%
8
$
Section 12.4
521
Project Scheduling
Determining the Critical Activities
" & $ % - $ % ! $ % $ % !
* D ! $ % ! " D !
# ! 2 $ % - $ % 6 / $% $ % $ % # $ %
! " $ % ! $ % : : $ % " $ % : : $ % 6 / $% # # " + ( ! >+ $ % / $ % 9 9 0 ? ? 5 ? ? 3 2 0 0 5@ 5@ 7 K 035 D - $ % 6 - $ 5% 6 / $5% $% 6 5 - $! % 6 - $ 0% 6 / $0% $% ? 6 9 - $* % 6 - $5 2% 6 / $2% $5% @ 6 ? - $% 6 - $5 3% 6 / $3% $5% A 6 9 - $ % 6 - $3 2% 6 / $2% $3% 9 6 9 - $- % 6 - $2 % 6 / $% $2% 0 6 9 1 * ! 4 ! & D ( & + + # - 0 5 3 2 " + !
7
522
Chapter 12
SPECIAL DIGRAPH MODELS
# #
0 ( 3 3
1 .233 3 # :
- "
03
: 2"
"
- " ' +,
!
9 A 2 5 0 3 I I ! 03 ! 9 2 5 3 2 2 2 I I ! 03! ! A 5 0 @ 3 9 2 ? I ! 03# & 9 !
" ! & K ! K 6 1 0 6 0 / 6 / 5 6 5 0 & 6 & / J" 6 J " / /* 6 /' * 0 # 6 # K 6 K!! 0/ )& 6 ) & ! / 5 03- K 03 03/ K K 030 030 K * " & 03 034 K ) " & 030 03( K K 033 03 5 E F 8 % + && D + , -
Section 12.5 Finding the Strong Components of a Digraph
523
12.5 FINDING THE STRONG COMPONENTS OF A DIGRAPH
" !! ! 23 " ! ! $ *+%
Depth-First Search Revisited
& ! +
& ! . & 30
! ! " + & 02 + & 020 & + ! ! + 4 + ! + + ! ; 30 ! + &% ( $% / + & 02 ! + 4 $ % $% + + &% ( $% +
$% + ! + " ! +
$ % + " & 02 ( &% ( $% " ( %
! + ! ( ( % $ % $ %
"$% + Classifying the Non-Tree Arcs of a DFS Tree
& + & + & + +
524
Chapter 12
< 3
Algorithm 12.5.1:
SPECIAL DIGRAPH MODELS
. + . &% ( E F + &% ( $% .6
( % $ % .6 4 ( + 4 ( + &% ( $% .6 9 4 ( &% ( &% ( .6 E F 8 ) + ! $ % 8 + + ) ! + +
( % $ % .6 " ) + ! $ % 4 &% ( $% 6 E F &% ( $% .6 &% ( &% ( .6 &% ( : &
$ + % K + E F .6 E F ; &% (
8
$
;
-
02 ! + &
02 + " & ! !
Figure 12.5.1
* ! ! &% (
4 &% ( ! &% ( "
&% (
Section 12.5 Finding the Strong Components of a Digraph
525
-
3 # &% ( $% ) &% ( $#%
7 &%
( $% &% ( $#% " +
! + # 4
! # + # ! ! 7 + ! + # ! + 4 + # + Additional Preliminaries for the Strong-Component-Finding Algorithm
" ! 4 33 23
! & 020 "
E"#?0F E7@5F
! & ' ! E#?5F ) ! " $% &% ( ! + " + + &% ( + ( $% Additional Variables and Initialization for Algorithm 12.5.2
$%. %$%. .
" + ! + ! !
2 = -
+ &% ( $% .6 $% .6 $% .6
( % $ % .6 4 ( + 4 ( + &% ( $% .6 9 4 ( &% ( &% ( .6 4 ( .6 9 4 (
526
Chapter 12
SPECIAL DIGRAPH MODELS
Computation of
8 &% ( + ( $% ! &% ( " & + $% 6 &% ( $% + ! & Algorithm 12.5.2:
3. <
. + . G + 4 ( ! ! ! E F 8 ) + ! $ % 8 + + ) ! + +
( % $ % .6 " ) + ! $ % 4 &% ( $% 6 E+ F &% ( $% .6 &% ( &% ( .6 &% ( : $% .6 &% ( $% K + .6 * 4 $% 6 E+ ! F $% .6 ( %$% &% ( $% E + ! F 4 $% 6 &% ( $% E+ ! F .6 : $% .6 " 4 ( .6 E + F 8 6 &1/ $$ %% &% ( $% $ .6 $ % $$ % .6 " E$ ! F .6 $ K K + * K + K 4 %$% + $ % $ %$%% .6 ( %$ %$%% $% E ! %$%F ; +
$
527
Section 12.5 Finding the Strong Components of a Digraph
Updating the Value of
" $% " ! K 02 4 + $% &% ( $% $% ! " $ %$%% .6 ( %$ %$%% $% 0 4 + ! + ! $% .6 ( %$% &% ( $% 5 4 + ! + $% .6 ( %$% &% ( $% ! . + + ! + $ *+% & 020 ! + 4 & 020 + B ! ! 6
" 1 .233 3 3
3 :"
<
9 ' 3
"
0
02
02!
#
02#
#
3 5"
,
3
0202/ 020 024
' "
02
3 3
" *+ 02 " *+ 020 " *+ 025 " *+ 023
528
Chapter 12
SPECIAL DIGRAPH MODELS
3 = 3 " 9 + ' 3
"
+
02( " *+ 02 02 5 " *+ 020 02
" *+ 025 02 " *+ 023 02 ! & # & 020 09 4 ! ! ! ! 02 # ( # & 020 02 - K + ! + 02 / & # & 020 ! 23 02 0 E F 4 # & 020 " *+ 02 023
+ , -
12.6
SUPPLEMENTARY EXERCISES
0 / 3 5 0 / 3 3 0! / 2 5 0# / 3 & 0- / 5 0/ / 3 3 " + & 6 00 / 5
529
Glossary
04 / 3 0( ) ! K 0 5 K 0
K + 9 9 0 / B 2 + + 0 ! / 3 0 # / 2 0 - / + % + % 3 H 4 + + + ! 0 / / 2 + + 0 0 K . " + % + % '
$% 6 '
$% + %
0 4 ) ! % + K $% $0% $5% GLOSSARY
"" . 6 , , . !
+
$ >,%? .
$ % " * + ! . + " . . ! . + ! " $ %. # # #
530
Chapter 12
SPECIAL DIGRAPH MODELS
" .
# # % + . + ! + . + 6 + +
+ + . . #
# ! " + + . . $ 05% . # ! ,% && . D (G
&& . + + . % .
+ + . . " . " + + # $ #% " . $ "% + # . + # .
. . 7 $ %. . $% * ! + $0% 4 # + # + G
#
+ + # + && . + + && . + ¼
531
Glossary
. + + ! !
0 $ %. ! :% + .
+ + + # # +, ' . ! ! ! 6 9 0 >? "" %
! 6 $ 6 6 % 6 0 " . %. !!
+, . + " + + $ %. ( ( % " . ! & + ! . ! . D+ % . $ "% " .
! +
. ! . !
! ! ! + && . + " % . $ % . . . + + $% @ . % . 6 ,
532
Chapter 12
SPECIAL DIGRAPH MODELS
. + ! G
! + ! % . ! % " .
+
. + $ % + A - $ % $ % && . ! $ % $ % !
. ! . . '
$% 6
,. . + ! ! ! . + !! . + !! "" % . !! 6 6 . !! 6 6 , . , . " + + # # $ $ 6% "" % . 6 6
6
Chapter
13
NETWORK FLOWS AND APPLICATIONS 13.1 Flows and Cuts in Networks 13.2 Solving the Maximum-Flow Problem 13.3 Flows and Connectivity 13.4 Matchings, Transversals, and Vertex Covers
INTRODUCTION
! ! " # Æ
533
534
Chapter 13
13.1
NETWORK FLOWS AND APPLICATIONS
FLOWS AND CUTS IN NETWORKS
$ % & $ &
Single Source–Single Sink Capacitated Networks
$
$ '
(
)
$ ()
* +
$
+
()
() , () , ()
() , () ,
!
, () ()
$ - ! ./.. , ,
Section 13.1
535
Flows and Cuts in Networks
Figure 13.1.1
*
0 1 2 ( % )
Feasible Flows
+
*
$ ( )
() *
. ( 3
) () () ( ) () , ()
" 3 ! & () &
! ./.3 % ./.. 4 5
+
Figure 13.1.2
( ) ( )
,
()
()
536
Chapter 13
NETWORK FLOWS AND APPLICATIONS
$ ( ) ( )
Cuts in - Networks 6 ( )
( ) ( 7-) ( -/)
+
* 4 ( ) ()
! ././ ( ) ()
( ) , () ,
Figure 13.1.3
( ) ()
$
, ,
Figure 13.1.4
! ./.7
!
!
+ , , , 0
( ! ./.-)
Section 13.1
537
Flows and Cuts in Networks
Figure 13.1.5
Relationship Between Flows and Cuts 0 ( )
( ) 1 2 ! ( ) ( )
,
()
()
"
() ,
Figure 13.1.6
() ,
! () ! " #
!
( )
,
6 ( )
()
( ) ,
() ,
$
!
,
()
()
()
()
()
() , 8
() ,
()
()
538
Chapter 13
6 + ./.3
()
()
,
,
NETWORK FLOWS AND APPLICATIONS
()
()
9
9
()
()
! ./.: " ././
Figure 13.1.7
5 , ( ) ,
()
() , : .
# $
$ ( )
!
,
()
()
$ " ././ () ,
,
()
$
%
! ./.: ./
.8
The Maximum-Flow Problem and the Minimum-Cut Problem -/
Section 13.1
539
Flows and Cuts in Networks
!
$
( )
!
" ././
( )
,
() () ( " ././) () () ( ) () ( )
,
( () )
-/
# $ % &' ( $ ) *
!
$ ( ) ( )
" ./.-
# $ + , - $ ) *
$ ( ) , ( ) $ $
!
+ ; " ./.-
(;) ( ) , ( ) ( % )
+
! ./.< .8 6 = ./.:
Figure 13.1.8
540
Chapter 13
# $ .
$
NETWORK FLOWS AND APPLICATIONS
() ,
() 8
$
% "
/ #011 1
! " # ! $
./.
./.
./.
./.
% & !
./.
+
%
./.
./. 0
.
./. 0 8 8 >
2
./. > ? ? = @ = ./.:
Section 13.1
Flows and Cuts in Networks
541
3
./. ? % ./.A ? = @ = ./.:
./. ? % ./.A ? = @ = ./.:
./. ! ? = @ = ./.:
./. 0 > $ () $ = @ = ./.:
./. + 0 B
./. % ./.
= = @ = ./.: " = ./.<
542
Chapter 13
13.2
NETWORK FLOWS AND APPLICATIONS
SOLVING THE MAXIMUM-FLOW PROBLEM
! ! C! !53D % $ 6
Using Directed Paths to Augment Flow 0
, ( ) ( ) , . ! ( ) ( ) 6 E E "( ) ( )
! ./3. 5 = , E , 3 <
Figure 13.2.1
45 % .
? A ! ./33 $
Figure 13.2.2
# 6 5
# @
Section 13.2
543
Solving the Maximum-Flow Problem
F
* 4 A .8 $
-Augmenting Paths
$
, ,
!
# , , ,
* =
0
'
@ ! ./3/ $
Figure 13.2.3
7 6
+ $ # #
()
()
() % 8
! E E ,
() () ()
E $
544
Chapter 13
NETWORK FLOWS AND APPLICATIONS
* = # E E , E
4 E E #
A
Figure 13.2.4
! ! ./37 # , E , .
45 55 # 6$ E , .
' 6
1G2
! &) 5*
$ E $ ; #
() 9 E ;() , ()( )E
# #
(;) , ( ) 9 E = 8 ;() () E
# ; #
!
! # # ! ./3-
Figure 13.2.5
6 7
Section 13.2
545
Solving the Maximum-Flow Problem
E
# ;( ) , ( ) 9 E ( ) E
(;)
,
;()
;()
,
E 9 ( )
;( ) ,
# $
$ $ $ Max-Flow Min-Cut Theorem
8 9 ) * $ $ !
( () 0 " ./3. )Æ ()
0 = * ( ) ( ) +
0 + ,
() ,
() 8
# = ./.<
&9) 9#* $ & !
./3/ ( ) " ./3. ./3/
Finding an -Augmenting Path " ./3. ! ! ( 7.) #
546
Chapter 13
Algorithm 13.2.1:
NETWORK FLOWS AND APPLICATIONS
- 9 )
** "* C*+D
! () *, 8 C ,D H ! # + E , E
! # () *, () 9 E % C D () *, () E I
-
$ ! ( ) E % 8
$ &
()
()
() % 8
Figure 13.2.6
) - ( )
( )
( ) % 8
* ! 6 Æ $ ./38 1 2 ! ! ( ) 6 Æ !
Section 13.2
547
Solving the Maximum-Flow Problem
0
! ! ./3: . ' 3'
Figure 13.2.7
7 $ 3' 5
% J ! ! C%J:3D - ! $ ./33
Algorithm 13.2.2:
)5 55 !
** "* # *,
( )
H 8 *, . H +
+ 0 $!(() *, H *, *, 9 . % I I # I #
$ ./3/ $ ./38 ./33 1!!%J2 ! ! % J
548
Chapter 13
Algorithm 13.2.3:
NETWORK FLOWS AND APPLICATIONS
)): 9 )
** "* C*+D
! () *, 8 C ,D I $ $ ./33 # + E , E
! # () *, () 9 E % C D () *, () E ? I
$ ./3/ % ( )
Figure 13.2.8
0 3
( ) , 8
; 55 # E , 3
Figure 13.2.9
0
( ) , 3
; 55 # E , 3
Section 13.2
549
Solving the Maximum-Flow Problem
Figure 13.2.10
0 ( ) , 7; 55 # E , 3
Figure 13.2.11
) ( ) , 5 , ) * $
4 & ) * $ ./3/
% J C%J:3D $ ./3/
0 ( ) $ ./3/ ( ) Æ ( C:
/ #011 1 ./3 0 A % ./3/ F F
.. .& , . ! $
./3
./3
550
Chapter 13
NETWORK FLOWS AND APPLICATIONS
./3
./3
%
./3
+
./3 $ -88 -88 A88 :88 588 588
= K K
.
./3 L " 0 0 H H " 0 $ ! ! * . M 3 M / M 7 !
2
./3 0 7 - 7 / 3.
5 !
>
3
./3 + " * M
M
./3 ! $ ./3/ ( % ./.A)
./3 ! $ ./3/
Section 13.3
551
Flows and Connectivity
./3 >
./3 C / 0D ! $ ./3/ % ./33 ./35
13.3
FLOWS AND CONNECTIVITY
N -/ N 1 8.
"
( +,( ) % +,( ) +,() % ( +,() ( +,() , +,()
!
+ - * * - * ( +,(* ) , ( +,(* )) 6
- - - -
-
!
( +,( ) +,( ) , " , +,() ( +,()
( +,() , +,()
,
" '
!
" , . & 5./ 6 .-3 & 6 " , ! ! . " , ! 9 . + .//. ; " , ! ; 6 ! & ! ! 9 . &
552
Chapter 13
NETWORK FLOWS AND APPLICATIONS
Two Basic Properties of 0-1 Networks
$
8 .
!
() , . $ &
'
!
+ , & = () , 8 () , .
() , () , ( +,()
() , () , +,()
( )
( +,( ) +,( ) , ( ) , +,() ( +,()
( +,() , +,()
,
6 " .//3 ( ) & ( ) , & *
() ,
. 8
( ) , , ( % ) ( ) ,
Separating Sets and Cuts = -)
(
+ . $ . . .
+ / $ / / / /
* !
Section 13.3
553
Flows and Connectivity
!
() , . &
!
+ , 0 0 ( ) 0 1 0 1 1 1
( )
1
,
0
,
( ) ( .) (
1 )
Arc and Edge Versions of Menger’s Theorem Revisited
& ) 95< * / ' / & / !
+ / " ./// .//7
! = ( ./37)
* = N " ./// .//7 ! = ( % ) N .
. .
%
%
. . . . . ( . ' . ' % "
" +
1 / ) / , ) $ , ) 1
!
0 + , ) ( ) / 1 , ) ,
554
Chapter 13
NETWORK FLOWS AND APPLICATIONS
) /
1 $ , ) ( 1 ) , / $ ( ) 1
.
. . . . & .
!
+ " 1 . "
. + 1 .
1 1
. 3" + 1
. 1 + .//: 1 1 " " 4
& . & . " "
2 &5 ) 95< * . ' . & . !
+ " '
& . " ' &
.
2 & . $ .//5 2 . &
' , 2 , 2 ' 6 $ .//< .//-
" ,' ' " , "
" " &
Determining Edge-Connectivity Using Network Flows
.
3 (.)
3 ( ) . .
Section 13.3
555
Flows and Connectivity
+ -/- -/
! 3
. &
3 (.) ,
3 (
)
% "
" .//.8 .//A 3 (.) . .
. ( $ .//5 .//<) 6
+ . . .
!
. 3 (.) & 3( )
!
0
) 3 (.) , 3 ( )) ( " .//.8) Æ 3 ( ) 3 ( ))
+ . .
. .½ ¾
) . +
.½ ¾ ( )
.½ ¾
4 ) ) . , ( )
3 ( )
,
( )
(" .//7 $ .//<)
( .½ ¾ )
,
( )
,
3 ( ))
,
,
( ) ( .) ( ) (! = ./37) (" ./// .//-)
556
Chapter 13
# $
NETWORK FLOWS AND APPLICATIONS
. 3 (.) ,
!
3 (
)
+ (
, ) 6 " .//.. 3 (.) , 3 ( ) 3 . Æ
Algorithm 13.3.1:
5#$ #
** . "*
3 .
= . + . 3 *, !
$ $ ./3/ . ( ) 3 3 *, ( ) I 3
$ .//. () $ ./3/ ( ) $ .//. ( ) Æ $ ./3/
Using Network Flows to Prove the Vertex Forms of Menger’s Theorem N ( .//- .//A)
# (5 ) (5 /*
+ & / / * % % /
% / % / ) )
Section 13.3
Flows and Connectivity
Figure 13.3.1
557
5 5 5 /
+ & . ( /) $ . ( /) . ( /) ( )
( ) Relationships Between Digraphs D and N / %
/ % "
/ '
' % "
' & ' % " /
%
/ & % "
+ &= ) 95 (5*
' / ' / & / !
$ .//./ .//.5 N ( .//-)
558
Chapter 13
NETWORK FLOWS AND APPLICATIONS
. &= ) 95 4 >*
' .
' . & .
!
+ . . .//.: $ .//5 .//<
Determining Vertex-Connectivity Using Network Flows N
N
& 3 ( ) +
+ -/-* + . & 3 (.) 3 ( ) &
*
( ) &
Algorithm 13.3.2:
=#$ #
** . , "* 3 .
= . 3 *, ! *, 8 H ! 3 ! *, ! 9 . ! 4 , ! 9 . & =
$
I 3
$ $ ./3/ ( ) 3 3 *, ( )
Section 13.3
559
Flows and Connectivity
$ $ .//. O C%:AD 3 $ ./// . Æ
/ #011 1 ! - - ! $
.//
.//
.//
.//
% 2 , !
.//% .//+ .//. .//
% .//. % .//3 % ./// % .//7
3 . ! - - ! $
2
.//
.//
3
.//
.//
& , . !
.// .// .// % .//
% .//A % .//.8 % .//.. % .//.3
560
Chapter 13
+ .// . .//
NETWORK FLOWS AND APPLICATIONS
0 + .//.
0 , & . 0 *
() ,
. 8
( ) , ,
2 .//3 .//
.// .// .// .//
.//
" $ .//5 " " .//.8 " $ .//./ " $ .//.7 " $ .//.- " $ .//.5
" ! = ./37 $ ! N .//- " ./// .//7
13.4
MATCHINGS, TRANSVERSALS, AND VERTEX COVERS
N
Matchings in a Graph
$ ' . . '
) ' ' ) ) '
$
* $ . . =
= . ! ./7. $ . . $ .
Section 13.4
561
Matchings, Transversals, and Vertex Covers
Figure 13.4.1
5 .
Maximum Matching in a Bipartite Graph
$ . .
) * ) + 0 F & & $ & & & K ! ./73 & % & &
Figure 13.4.2
5 5 6
Converting a Maximum-Matching Problem into a Maximum-Flow Problem + . . . . *
(.) . .
(3) % . ) . )
(/) ! .
(7) ! ) . )
(-) % . () , .
562
Chapter 13
NETWORK FLOWS AND APPLICATIONS
! ./7/ $ ./7. .
Figure 13.4.3
6 5 . 5 .
Relationship Between Matchings in . and Flows in .
!
. .
. $ . .
!
+ . () , 8 . . + '
. . . ' . ( % ) = ' . . 5 . .
() ,
. . 8
, 5 ' & 5 '
. ( % )
# $
' . $ . ( ) , ' $ '
! " ./7. @ ! ./77
/ . .
$ ./7. . . " ./7.
Section 13.4
563
Matchings, Transversals, and Vertex Covers
Figure 13.4.4
5 5
Algorithm 13.4.1:
9 ? 95
** . "* ' . ' *, = . . $ $ ./3/ . ! 5 . (5 ) , . ' *, ' I '
$ 5 . .
*
@
% C%5-D %
' '
) , - ( * 0 H K $
Transversals for Families of Subsets
+ , 1 1 1 ( ) ( ) & , , 1 , . ,
564
Chapter 13
+ , $ , 1 1 1
1 , $M
NETWORK FLOWS AND APPLICATIONS
1 , $ M
1 , M
1 , M
1 , $
& , $
) . / * 0 , ! 1 , 1 1 1 Relationship Between Bipartite Matchings and Transversals
+ . ' . '
' ' 4
! ./7-
Figure 13.4.5
5 5
6
Finding a Transversal by Finding an
/-Saturating Matching
+ , , 1 1 1 ( ) = . .
, , ) ) )
Section 13.4
565
Matchings, Transversals, and Vertex Covers
1 ) $ ) 1 .
%
! ./75 & , $ % ./77
Figure 13.4.6
& , $ 5 5
Hall’s Theorem 45 Æ
+ . - (- ) & - (- ) - -
$
" - (- ) -
!
&@ < ? >A 2* . . - - (- ) !
( () 0 ' . - - ) ' % ) (- ) - - (- ) )Æ ()
0 #N = - (- ) - = . . ( " ./7.) $ . . . ! = ( ./37) Æ . ( )
566
Chapter 13
NETWORK FLOWS AND APPLICATIONS
+ . - , & ( ! ./7:)
, -
Figure 13.4.7
, - -
, - 9 - 9 , - 9 - 9
( , .)
( . )
- 9 (- ) 9 ( (- )) , - 9 (- ) (- ) 9 ( ! ./7:) - 9 (- ) 9 ( (- ) ) , - 9 (- ) - 9 - ( #N = ) ,
# $ &@ < *
0 , 1 1 1 ! 1 ! . ! ,"
!
#N 6 B
* @ #N # $* 6
- 7 (0 % )
Section 13.4
567
Matchings, Transversals, and Vertex Covers
Two Graph Factorization Theorems
$ $ % . $ ! . ! . $ ! % !
&&'!
*
( % )
. , % 8
123 4 % ,
!
0 - - ,- 0 , , ( )
(- )
,- ,
, -
6 #N 6 B . 0 , . . . . (, .)
$ $ $
*+ " % * $ . .
% &$ !
*
,( % )
. 7
1)564 %
!
H . + . 3, . %B = H 6
7 ,
- ,
& B 6 , . , 0 6 ./7- 6 . 2 6 6 2
.
568
Chapter 13
NETWORK FLOWS AND APPLICATIONS
! , . . 2
2 , 2
. 2 3 . . 3 (3, 3)
Maximum Matchings and Minimum Vertex Covers = -
+ . . . .
$
+
! ! ./7< ( ) ( ) -
Figure 13.4.8
5
! + &' ( $ 95*
. . '
'
% "
# $ . , - $ 95*
' . . ' , ' % "
* = ./7< ( % )M
- . (- ) ( (- ))
2 &:B5A 2 *
.
!
.
.
&
+ . . & , , ! ./7A
Section 13.4
569
Matchings, Transversals, and Vertex Covers
Figure 13.4.9
9 ,
= . . + - - % (- ) ½ - ½ (- ) , ½ (- ) 6 ) , . ( . #N = #N ' ' , ( ./7/) .
4 . . ' ' , ' , ' ' 9 , = .375 ' . ' ,
0-1 Matrices and the König-Egerváry Theorem $ 8 .
1
3 &:B55C$A 2 * 8 9 & 9 !
+ . & . ./7A ( % )
: ) * 0 > 7 @. @3 @/ @7 @-
. 7 / 7 3
3 5 7 < 5
/ / 3 / 5
7 5 / 3 3 7
7 7 : -
570
Chapter 13
NETWORK FLOWS AND APPLICATIONS
+ ' - - 4 . 7 4 8
. 8 ' , .
8 8 . 8 8
. .
. . 8 . 8
8 . . . .
. 8 . 8 8
.N 7
Summary of Equivalences Among Theorems in Chapter 13 N ( .//.<) ! = ( ./37) JP N ( ./7A) #N ( ./7/) JP %Q ( ./7.8) 6 ! = , ( .//- .//A .//.: .//.<) ! = , # ( ./7/) # , JP ( ./7A) JP , JP %Q ( ./7.8) JP %Q , # (% ./7/3) , # (% ./7/.) , ! = (% .//3-)
/ #011 1 8 , ! -
./7
./7
Section 13.4
Matchings, Transversals, and Vertex Covers
571
./7
./7
./7 ! J B # 6 ! = # L > ! B %
B K
%
./7 $ # > F
K =
"
B R I I 6 % =
0 H L " 0 0 O L 0
# 1 45 - - * ! 9
+ ./7. ./72 ./7 3 ./7
. 3 7 3 7 3 / . 3 / . 3 - . - . 3 3 - . 3 / . 3 7 . / 7 . 3 / 7 3 / 7 . 3 3 / - . / 7 - 7 -
!
./7
./7
./7
./7
572
Chapter 13
./7
NETWORK FLOWS AND APPLICATIONS
+ . . (
" ./7.) " . ' . . .
%
./7 + ' . ! . 5 . ( " ./7.) =
() ,
. . 8
, 5 ' & 5 '
. 0 .
+
./7 + . Æ E " Æ E .
.
./7 0 & % ! & ! . & ! " & F &
2
./7 + . , , " ! ! . " .
3
./7 + , 1 1 1 . 3 ,
" " . "
./7 + . - " - . ( 3/) - .
.. . :; < 1 1
./7
./7
./7
. 8 . .
. . 8 .
8 . . 8
8 . 8 8
. . 8 .
8
8 8 . 8
. . . 8
8 . 8 8
. . 8 .
8 .
8 8 . 8 .
. . . . 8
8 . 8 . 8
. . 8 8 .
8 . 8 . . 8
Section 13.5
573
Supplementary Exercises
./7 0 & & & & F
& K
H. H3 H/ H7 H-
L . / 5 / 5
L 3 : / < -
L / 3 < 5 :
L 7 < / 5 7 /
./7
%
" (" ./7:)
./7
+
" (= ./7<)
.
./7 0 ./7A JP
2
./7 % #N / - ( = ./7<)
3
./7 ! JP %Q ./7.8 8.
./7 ./7
13.5
> #N ./7/ N ./7.< > #N ./7/ JP %Q ./7.8
SUPPLEMENTARY EXERCISES
./- + . , , " ! ! . " ' ' ' ' . (#* % ./7.A)
./- $ & .8 .8 & % & &
6 & & " /8 38
./- + ' 8N .N .N . " .N
./- " * $ .
574
Chapter 13
NETWORK FLOWS AND APPLICATIONS
./- + . + . . " 9 , (#* % ./73.)
$ " " 8 , (" ) .
$
%
./- % - #& * ? #N " 8 " " (#* + , . 3 , 1 1 1 1 $ 8 8 (" 9 .) #N = )
+
./- ? #N (#* M N 3 ) $
Figure 13.5.1
.
./- > . 3 / 7 - 5 : <
K , - 5 : , 7 - 9 , 3 / 5 : < , . 7 8 , . / 7 # , 3 - 5 < & , . - 7 , / - #*
GLOSSARY
55 # *
6
# , , , *
6 5*
.
*
()
$ * $ * ,
()
M
* () , ()
575
Glossary
*
5$ 3(.) .* . 3 ( ) * .
5* 5 .* . 5 .* . 5 .* . !* ! . 8 5 .*
. ! D6 E * ! *
* () * . ( ) () () 3 ( ) () , ()
* 55 * ( ) # , , , *
* @ < # . * - (- ) -
()*
() ,
.* & .
() ,
-
$ F ( ) () *
( )
5
* " 8 , (" ) .
"
7* 5$ 3( ) .* .
$ 3 ( ) & .*
.
) ' *
& )
'
5 .*
.
*
576
Chapter 13
NETWORK FLOWS AND APPLICATIONS
* 5 * * * * =
* ' 3 * 8 . ()*
() ,
.*
() ,
.
7 *
, ,
5 ' . *
' '
5 /*
/M /
5 5 .*
.M
.
5 . ( /) . ( /)M ( )
5 G 5 * * = E #* () ()
()
* = $ * , 1 1 1 ( ) * & , , 1 , . ,
( )* ( ) ,
()
.*
()
M
. .
*
Chapter
14
GRAPHICAL ENUMERATION 14.1 Automorphisms of Simple Graphs 14.2 Graph Colorings and Symmetry 14.3 Burnside’s Lemma 14.4 Cycle-Index Polynomial of a Permutation Group 14.5 More Counting, Including Simple Graphs ˝ 14.6 Polya-Burnside Enumeration
INTRODUCTION
577
578
Chapter 14
14.1
GRAPHICAL ENUMERATION
AUTOMORPHISMS OF SIMPLE GRAPHS
!! " !
# $ % # $ $ $ &' &' $ # $ % $ % &' ( &' &' % " # $ % # $ $ # $ $
&' # &' ( ) &' )
&'
# &' &' The Sets &' and &' are Permutation Groups
$
* " $
+ % ,
* + % ,
$ $ # &' (
-
Section 14.1
579
Automorphisms of Simple Graphs
&' .
# # & #' &' &'
%
& !!' /
# 0
# # & '
&' ( &'&'&'&' &'& ' &'& ' &'&'& ' &'&'& ' &'&'& '
&' ( &'&'&' & ' & ' &'& ' &'& ' &'& '
Figure 14.1.1
# !! # Automorphism Groups of Some Other Simple Graphs
& '
& ' 1 # $ # "
Figure 14.1.2
23 4 !0
580
Chapter 14
GRAPHICAL ENUMERATION
5 23 # 1 5 #
& '
23 2024 ( 6 5 7! 3 #
& ' & ' 5 # #
&'& '& ' & '& '&' . 5 ! Æ
Figure 14.1.3
& ' 3
# $ # ( 6 2020 5 7! 3 #
& '& ' & '& ' Æ
5 #
# & '&'& '& ' & '& '&'& '& '& ' 5 ! # ( 4 .
( # !0
Figure 14.1.4
!
& ' * # ( ( & ' $ . &' ( & ' ( $ & &' ( & ' ( '
Section 14.1
Automorphisms of Simple Graphs
581
. ( &' ( & ' (
( ! " ! - " -
&! "'&' ( !"&&'' ! - " - # ! " . ( & ' ( - -
& ' ( 11 . ( & ' - - # $ 8 &1' # $ # $ # & ' ( !&1'
Figure 14.1.5
" 4161 ( 7!9
# $%&& &
202
202
202
202
202
202'
202(
202)
582
Chapter 14
GRAPHICAL ENUMERATION
!
202*
202+
202
202
202 : &';
202 )
# :
; : # ;
202 )
: ; : # ;
202' )
$ 6 : ; : # ;
202( : & ' !# 4# 0# ; : # ; 202) : & # ' # # & 2!'; : # ;
Section 14.2
14.2
583
Graph Colorings and Symmetry
GRAPH COLORINGS AND SYMMETRY
# . # &'
3 204 206 Coloring a Set Subject to the Action of a Permutation Group
#
$
&'
2 ! % % % $ $
&$' $
2 ! % % % $ &$' &' & '
&' & ' ( $
< / &
# 4'
* ( + % ,
&$' $ ( $ &' & &''
&' & ' &' & ' &' & ' &$' (
* ( # 4
20!2 ( ( & ' & ' # 9 2!9 !09 3 &' & ' &!' 20!2 &!' % 2 ! & 2' 3 & !'
4
# &' & ' + &' & ', ( 222 !22 2!2 22! 2!! !2! !!2 !!! Æ
Æ
Æ
584
Chapter 14
Figure 14.2.1
GRAPHICAL ENUMERATION
,-
% . !22 2!2 22!
( Induced Permutation Actions
. # 20!2 #&!' 8
$ $
( + % ,
&' & ' $ &' & ' $ $ &'
$ ( + % ,
% &' & ' &' & ' & ' ( &' & '
&' & '
$
% &' & ' &' & ' " & 20!4' &' & ' &' & ' &' & ' = 3
( + % ,
( + % &' & ', &' & '
*
=
&' & '
Section 14.2
585
Graph Colorings and Symmetry
. 20!! $ &' & ' ( 222 22! 2!2 2!! !22 !2! !!2 !!!
Figure 14.2.2
$
> & '
Equivalent Colorings of a Graph G under Aut(G)
. # ? $ $ # $ & / 20!2' : 3 &' & ' &$' &' & ' &$'
* &'
# &' &'
# &' &' &' & ' &' & ' &' & ' ) &' & ' &' &' & '
# 20!4 2@9 5 # Æ
Figure 14.2.3
! ,- -/
586
Chapter 14
GRAPHICAL ENUMERATION
20!0 <5 #
Figure 14.2.4
! ,- /
Counting Vertex- and Edge-Coloring Orbits One by One
# A 3 # " 3
"#
! "# 4 & ' #
) &' &' &'&'&'&' &'&'&'&'&' 5% % # &'&'& ' &'& '& ' 5% % # &'&'& ' &'& '& ' 2@9 & '& ' &'& '& ' Æ
20!6 &' &' & & '
Figure 14.2.5
'
2B #&!'
& '/" &' &
'
. ) "
! ( 4! 20!B 20 & ' &' & ' ># &!' "
& ' ) )
Section 14.2
587
Graph Colorings and Symmetry
Figure 14.2.6
- 0 " &' &
'
Elementary Application of Symmetries in Itemizing Colorings
: # 3
&' & ' #&!' #&!' 3 3 # # #
3 20!7
Figure 14.2.7
-/ ! ! "
C 3 #
3 3 " 3 !9 & ' . !9 #&!'
'
&!' 29 %
2 2 29 ( ! !
3 3 3 0 3
588
Chapter 14
GRAPHICAL ENUMERATION
(
&' &4' &!' = 4 20!@ # 3 4
Figure 14.2.8
& /,- //
) 2@ 4 ) ! # # 20!B !0 &4' # # &4' 2@ 06 ( !0 # 4 . @2 ( 4
# $%&& & ! !" #!$ &' % !&
20! 20! 20! 20! 20! 20!' 20!(
D #
! ! &' #4$ ' !"
20!) 20!* 20!+ # 20!4
Section 14.3
Burnside’s Lemma
589
20! 20! 20! D 20! # !& !! &' #!$ ' !(
20! 20!' 20!( 20!) 20!* 20!+ 20!
# 20!4 D #
!!! !! &' #4$ ' !"
20! 20! 20! 20! 20!' 20!( 20!)
14.3
BURNSIDE’S LEMMA
# 20!4 D #
3 . CE " CE = " &' :
CE & 206' &' &' & ' &' & ' Stabilizer of an Object ( + % , &' ( &' (
*
590
Chapter 14
GRAPHICAL ENUMERATION
$ $ 2 &'
& ' ) &' ( ( &'&'&'&' 5% % # ( &'&'& ' 5% % # ( &'&'& ' 2@9 ( & '& ' Æ
. & ' % &' ( ( &' ( ( &' ( ( &' ( (
$ & ' ) &' ( ( &'&'&'&'&' 5% % # ( &'& '& ' 5% % # ( &'& '& ' 2@9 ( &'& '& ' Æ
. & ' % &' ( &' ( &' ( &' ( ( &' ( ( Fixed-Point Set of a Permutation
* ( + % ,
*& ' ( &' (
* & ' $
2 $ "#
# & '
& ' "#
"#
* &'&'&'&' ( * &'&'& ' ( * &'&'& ' ( * & '& ' (
Section 14.3
591
Burnside’s Lemma
* &'&'&'&'&' * &'& '& ' * &'& '& ' * &'& '& '
( ( ( (
# CE Relationship Between Stabilizers and Fixed-Point Sets
1 ( + % ,
&' (
* & '
# # $
# 2 &' ( 9 & 2E' #
. & ' & # 2042'
&' ( ! F ! F ! F ! ( @
"## & # 2044' *& ' ( 0 F ! F ! F 9 ( @
' . & ' & # 204!'
&' ( 2 F 2 F 2 F 2 F 0 ( @?
"# & # 2040' *& ' ( 6 F 2 F 2 F 2 ( @
Relationship Between Stabilizers and Orbits
1 ( + % ,
&' ( &+
&'
)
&+ &' ( ( % % % ( 2 % % % $ $ % % % ( &'
592
Chapter 14
GRAPHICAL ENUMERATION
( 2 % % % &' ( Æ & ' $ ( ( &' ( 2 % % % ) % % % &' &' ( C ( &+ &'
( & ' ) 5% % # 5% % # 2@9 Æ
&' ( ( &'&'&'&' ( &'&'& ' ( &'&'& ' ( & '& '
& ' ! ! # 2042 & ' 0 # &' ( 3 ! (
) & ' ) &' ( ( &'&'&'&'&' 5% % # ( &'& '& ' 5% % # ( &'& '& ' 2@9 ( &'& '& ' Æ
& ' &' ( 2 ( 0 (
% # #
1 ( + % ,
2
(
&+ &'
)
% % % ( .
2
&+ &'
(
2
&+ &'
2 2 2 ( 2 ( ( 2 ( (
Section 14.3
593
Burnside’s Lemma
*
* 2044 2042 = $
2 * 2044
Figure 14.3.1
0
Proof of Burnside’s Lemma
234 5 ( + % ,
2 *& '
(
* 2042 204! 2044 CE 2 *& ' ( 2 &'
2
& * 2042'
& * 204!'
&+ &' 2 ( 2
&+ &' 2 ( & * 2044' ( &+ &'
(
Direct Application of Burnside’s Lemma
CE #
# :
CE ( + % , % 2 * & ' ? !
#
#
+
& ' "# # 2046
594
Chapter 14
GRAPHICAL ENUMERATION
*& ' ( 0 F ! F ! F 9 ( @
) & ' ( 0 CE ! ( @G0
& ' "# # 204B *& ' ( 6 F 2 F 2 F 2 ( @
) & ' ( 0 CE ! ( @G0
# $%&& & ) )(
* ' * + * , + - ) , + - )! , + - )) , + . /
204
204
204
204
204
204'
204(
204)
204*
204+ 204 204 204 F 204 204 204' F
# 2022 # 202! # 2024 # 2020 # 2026 # 202B # 2027 # 202@ # 202H # 20229 # 20222 # 20220 # 20226
Section 14.4
595
Cycle-Index Polynomial of a Permutation Group
)" ))!
* ' * + * , + - ) , + - )! , + - )) , + . /
204( 204) 204* 204+ 204 204 204 204 204 204' 204( 204) 204* F 204+ 204 204 F
# 2022 # 202! # 2024 # 2020 # 2026 # 202B # 2027 # 202@ # 202H # 20229 # 20222 # 20220 # 20226
14.4 CYCLE-INDEX POLYNOMIAL OF A PERMUTATION GROUP
=
$ #
&$' # #
Cycle-Structure Monomial of a Permutation
$
596
Chapter 14
GRAPHICAL ENUMERATION
*
( + % , $
, & ' (
(
+ $ $
( &2 7 H 4'&! 0 @ B'&6' , & ' ( 2 0
# & ' ) &' &'&'&'&' 5% % # &'&'& ' 5% % # &'&'& ' 2@9 & '& ' Æ
& ' ) &' &'&'&'&'&' 5% % # &'& '& ' 5% % # &'& '& ' 2@9 &'& '& ' Æ
Cycle-Index Polynomial
# &' # &' &' & ' &' & '
*
( + % , $
% % % ' ( 2
&
, & '
, & '
# 200! # & '
' ( 02 & F ! F '
&
Section 14.4
Cycle-Index Polynomial of a Permutation Group
597
) !
!' ( 20 &! F ! ! ! F ! ' ( H
&!
20!6 & ' # &!'
# 2004 # & '
' ( 02 & F 4 '
&
!
!' ( 20 &! F 4 ! ! ' ( 20
&!
20!B & ' &!'
# Correctness of Substituting Into the Cycle-Index Polynomial
= CE & 2040' $ # &' &$' * ( + % ,
% &' & ' &' & ' " & ' ( &' & ' &' & ' &' & ' &' & ' &' & ' = 3 ( + % &' & ', &' & ' & ' &' & ' &' & ' = &' & '
598
Chapter 14
GRAPHICAL ENUMERATION
. -& % % % ' -&$ % % % $'
$
1 ( + % , &' & ' $
* & ' ( , & '&$ % % % $'
&$' "#
$ $ *& ' ( $ C $ , & '&$ % % % $'
' < 20!!
& ' &' & '
* 2002
( & ' & '
, & ' *& ' @ &222'&!22 2!2 22!'&2!! !2! !!2'&!!!' ! &222'&!22 22! 2!2'&2!! !!2 !2!'&!!!' !
(
( + % , &' & ' ( &$ % % % $'
CE
&' & '
( ( ( (
2
2
2
*& '
, & '&$ % % % $'
& * 2002'
, & '&$ % % % $'
$ % % % $'
&
(
& ' 5 # & '
' ( 2! & F '
&
) !
!' ( !2 &! F ! ! ' ( !9
&!
#&!' # 20!6
Section 14.4
Cycle-Index Polynomial of a Permutation Group
599
) # &' 2 & ' ( & F ' ! 2 &! !' ( &! F ! ' ( 29 ! &!' # 20!B 8 4 2 &4 4' ( &4 F 4 ' ( 06 ! # 20!7 &4'
# $%&& & (
, &'
! , &'
!
0
1 2 #!$
3
# $ 0
1 2 #!$
3
#$
200
200
200
200
200
200'
200(
200)
200*
200+ 200 200 200 F 200 200 200' F
# 2022 # 202! # 2024 # 2020 # 2026 # 202B # 2027 # 202@ # 202H # 20229 # 20222 # 20220 # 20226
600
Chapter 14
GRAPHICAL ENUMERATION
" ! 3 ! &' + # $
&' & '
200( 200) 200* 200+ 200
# 2022 # 202! # 2024 # 2020 # 2026
!! !( 3 ! &' + # $
&' & '
200 200 200 200 200'
14.5
# 2022 # 202! # 2024 # 2020 # 2026
MORE COUNTING, INCLUDING SIMPLE GRAPHS
.
CE & 200!'
&!' Counting Necklaces
0 3
3 #&!' & & ' &' & '' 2062 3
Figure 14.5.1
/,- -/&!'/
Section 14.5
601
More Counting, Including Simple Graphs
. # & ' 2 & ' ( F ! F 4 F ! @
200! 2 ! F ! ! ! F 4 ! F ! ! ( B &! ! ! !' ( @ > #&4' C 200! #&4' % 2 4 F ! 4 4 F 4 4 F ! 4 ( !2 &4 4 4 4' ( @ I ) # # 4 0 ( 2! # 206! # #
Figure 14.5.2
-/
!
4 F 2! F B ( !2 #&4' 200!
"
Counting Vertex-Colorings of a Bowtie
2064 ./ #
Figure 14.5.3
"! ./
./ #
&./ ' &+'&0'& '&'&' &+ 0'& '&'&' &+'&0'& '& ' &+ 0'& '& ' &+ '& '&0 ' &+ 0 '& ' &+ 0 '& ' &+ '& '&0 '
&./ ' &'&'&'&'&'& ' &'& '&'&'& ' &'&'&'& '& ' &'& '& '& ' & '& '& ' & '& ' & '& ' & '& '& '
602
Chapter 14
GRAPHICAL ENUMERATION
# &./ ' 2 & ' ( F ! F 4 F ! @ # &./ ' 2 F ! F F ! F ! & ' ( @ C 200! #&!' ./ 2 &! ! ! !' ( ! F ! ! ! F 4 ! ! F ! ! ! ( 2! @ 2060 " ) # 3 # 3 #
Figure 14.5.4
6/" -/ ./ ! ! "
. ) 200! &!' ./ %
! ! !' ( @2 ! F ! ! ! F ! ! F ! ! F ! ! ! ( !2
&!
" # Counting Simple Graphs
200! &' # & & '' &!'
&!' &' & ' .
! &!'
! #
/ 2062 # 0 6
Section 14.5
603
More Counting, Including Simple Graphs
General Strategy for Counting n-Vertex Simple Graphs
& %
& '
) 3 # Æ & %
& '
# & ' # & ' & % !""#
" ! #
Counting Simple Graphs on 4 Vertices
& '
2 F B F @ F 4 F B ' ( !0
&
!0 # & ' " % % 2 J % B
( B ! % @
( 0 4 &4 2'1 ( ! % 4
$ " % B
&0 2'1 ( B $
& '
2 F H F @ F B ' ( !0
&
& ' , & ' , & ' # , . , & ' ( , & ' ( 4 + % . 2 # "# .
604
Chapter 14
GRAPHICAL ENUMERATION
. , & ' ( , & ' ( 4 + %
! 2 "# 2 "# !
# ! . ! , !
. , & ' ( , & ' ( 4 + % 4 4 2 4 4 , )
. , & ' ( , & ' ( 4 + % ! "# . ! ! ! ! ,
. , & ' ( , & ' ( 4 + % 0 ! 0 ! , &
$ !! "
A / 2064
2 ! F H ! ! F @ ! F B ! ! ( 22 ! ! !' ( !0
&!
22 2066
Figure 14.5.5
/-
% &!' B0 & #
' 22 2066 # #
22 B0 & #'
Section 14.5
More Counting, Including Simple Graphs
605
Simple Graphs with 5 Vertices
$" %
C
0#
2 % % % ' ( 2!9 F 29 F 26 F !9 F 49 F !9 F !0
&
2
% % % ' ( 2!9 F29 F26 F!9 F49 F!9 F!0
&
% % % !' (
&!
2 ! F 29 ! F 26 ! F !9 ! F 49 ! F !9 ! F !0 ! ( 40 2!9 %
# $%&& & & &" 5
0 6 !
+
7 0 6 !
+
206 206 206 206 206 206' 206(
& & 5
0 6 !
+
7 0 6 !
+
206) 206* 206+
606
Chapter 14
GRAPHICAL ENUMERATION
206 206 206 206 206 . ./
I 3 3 I 3 # 3 &' &' # 2064 206' 2066 206(
206) I 206* I 4# 206+ ) 4 = # 2062H; 206 I #
14.6
˝ POLYA-BURNSIDE ENUMERATION
/KE # 204 200 206 = # $
# Inventory of the Coloring Classes ( + % , $
&' & '
*
' 20!6 #&!' 2 0 9 3 ! 4 2 3 4 ! ! 3 ! 2 4 3 2 9 0 3
Section 14.6
607
Polya-Burnside ˝ Enumeration
' 20!B &!' 2 6 9 3 ! 0 2 3 0 4 ! 3 0 ! 4 3 ! 2 0 3 2 9 6 3 ˝ Polya Substitution
L /K &+/47,'
200! $ & $' #
* & % % % ' #
( + % , $ # $ F F F
$
* & % % % ' #
( + % , $ $ # /K $ . & F F '
˝ Polya’s Enumeration Theorem
89 6 " # +C99, +C90, ' 7 8 ( + % , & & F F ' '(
$ &' & ' Æ & F F ' ( 2 ! % % % $
' < # 2000 # & '
' ( 02 & F ! F '
&
/K !
& F ' ( 20 & F ' F !& F ' & F ' F & F '
( 20 F 0 F B F 0 F F ! F 0 F 0 F 0 F ! F F ! F ( F ! F 4 F ! F
608
Chapter 14
GRAPHICAL ENUMERATION
. /K 3 Æ # # 20B2
' < # 2006 # & '
' ( 02 & F 4 '
/K ! 2
& F ' ( & F ' F 4& F '& F ' 0
( 2 F 6 F 29 F 29 F 6 F 0 F 4 F 4 F B F B F 4 F 4 ( F ! F 0 F 0 F ! F &
# 20B! Inventory of n-Vertex Simple Graphs
/K ! & ' #
" $
' / 2064 # & '
2 F H F @ F B !0
& F ' 2
& F ' F H& F ' & F ' F @& F ' F B& F '& F ' !0
( 2 F B F 26 F !9 F 26 F B F !0 F H F 2@ F !7 F 4B F !7 F 2@ F H F @ F 2B F @ F B F B F B F B ( F F ! F 4 F ! F F
(
. 2066 0# % 2 9 2 2 ! ! 4 4 ! 0 2 6 2 B
Section 14.7
609
Supplementary Exercises
# $%&& & ' 20B /K 4# 20B I 6# 20B I 6# 20B I 6# " 20B # 20B0 # 20B4 # 20B! = 40; 20B' /K 6# 20B( /K B# 20B) ) /K 4 # 206!9
14.7
SUPPLEMENTARY EXERCISES
" ": 5
- ; 0 .
<
, 89 #$ * < #$ -
;
0 .
<
, 89 #$ * < #$
207 207 207 207 207 207'
$ 6
#
8M 1#
610
Chapter 14
207(
207)
207*
207+
GRAPHICAL ENUMERATION
207 = # &A ' # #
207 * #
# A
N
207 . " # 4 / # ) % * #
GLOSSARY
%
&' %
611
Glossary
%
$ %
2 ! % % % $
&' &'/ % $ &$' &' & ' % $ 3 / 2 5 % 2 & % % % ' ( , & '
% $
/ % , & ' (
+ $ $ / &' % $ /,- ( + % ,% ( $ &' & &'' &' & ' &' & ' ,- / % &' ,- -/ % # &' 9/ % % *& ' ( &' (
- % % ( + % , &' & ' % ( + % , &' & ' - % $ " -% ( % " ": % &' + % ,% " $ ; / % /K #
612
Chapter 14
GRAPHICAL ENUMERATION
; " $ # % $ F F F # #
& % % % ' "0 ": % ( + % , &' ( &' ( - % -/ &' % $ #
Chapter
15
ALGEBRAIC SPECIFICATION OF GRAPHS 15.1 Cyclic Voltages 15.2 Cayley Graphs and Regular Voltages 15.3 Permutation Voltages 15.4 Symmetric Graphs and Parallel Architectures 15.5 Interconnection-Network Performance
INTRODUCTION
Æ
!
"
#
$
613
614
15.1
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
CYCLIC VOLTAGES
! %
Symmetry and Specification Reduction
!
&
!
!
' ( )*))
+ ,
'
!
- ( )*))
Figure 15.1.1
- ( )*))
' ,
'
) . +/ 0 -
1 . +/ ) . +/ (
)*)-
Figure 15.1.2
' )*))
' 2 .)/
'
3
+ .-/ !
3
.+/
'
Section 15.1
615
Cyclic Voltages
' ! '
Voltage Assignments and Their Meaning
4
. 5 /
)*))
. /
2 ! 2
! - ( )*)- ' ( )*))
!
( )*)+./ ,
4 6 ./ ./
Figure 15.1.3
! 2
7 . /
7 7
616
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
2
(
!
! ( )*)+
7 7
8 .))/ ( )*)+
Vertex Fibers and Edge Fibers
!
0
9
0 2 (
: 0 2 (
:
# ( )*)-
$
+ !
7 7
; ( )*)$
Figure 15.1.4
"
!
: 7 : 7
Section 15.1
617
Cyclic Voltages
: 7 : 7 -
*
)1
4
#
#$ !
:
:
# :
#$ (
(
Artificiality of the Arc Directions
5
<
. = >/ !
( )*)*./
( )*)+./
- . +/
) . +/ ( )*)*./ ,
( )*)+./
Figure 15.1.5
618
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
#
. / . / ./ 7 ./
#$ !
?
?
5 ! 7 1 ) . /
7 5
!
# !
#$ 0 . / !
5
!
%&2
!
Voltage Graphs with Self-Loops
!
./
' ( )*)' ) . +/
( )*)+
Figure 15.1.6
$
#
4
Section 15.1
Cyclic Voltages
619
" ( )*)@ 7
.* 2 ) -/ % ,
) . */
*
) . */ #
- . */
*
- . */
Figure 15.1.7
( 7 .* 2 ) -/
)
7 .@ 2 ) -/ ! @
) . @/ # @
- . @/
Figure 15.1.8
(
7 .@ 2 ) -/
* 4 )*)A
.' 2 ) -/ ! ' + 7
) . '/ <
+
. '/
Figure 15.1.9
( + 7 .' 2 ) -/
620
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
# . /
#$ !
)*))1
Circulant Graphs as Coverings of Voltage Graphs
% !
5
5
2
+
. 2 /
#$ ! %
( )*))1
Figure 15.1.10
.)+ 2 ) */ $
!
9
!
5
B
B
B !
Section 15.1
621
Cyclic Voltages
4 ?
7 .- 2 ) - / % ( )*)))
Figure 15.1.11
) -
(
%&2
. /
Designing Specifications of Given Graphs
!
6 )*))
Figure 15.1.12
# ,
! 6
( )*))-./ )1
)* 4 .)1 )*/ 7 * C 6 )*))
C 6 )*)-
# 6 )*)$ 6
!
+ -
( )*))-./
622
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
! A
+'
% ) - + $ . A/ !
(
!
5
7 ) - + $
! ! - B )
.- B )/
! % ) - . - B )/ !
)*))+ - %./0 0 $ 0
)*)
)*)
)*)
)*)!
)*)
)*)
)*)'
)*)"
)*))
)*)*
)*)
)*)
)*) (
)*))
Section 15.2
Cayley Graphs and Regular Voltages
623
)*)! (
)*)-
)*) (
)*)+
)*) (
)*)$
)*)' &
)*)" D 6 )*)* )*)) 6
1 )*)* < E
15.2
CAYLEY GRAPHS AND REGULAR VOLTAGES
9
9 .);@;/
!
& .)A))/
%
5 9
Cayley Graphs
! 9
2 7
D
5 <
2 7
. /
(
) !
%
?
( $ @
' A
624
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
0 7
! . /
7 7
5
.C
- )*)/
0 7
! . / . /
( )*-) 9
)
9 .* 2 )/
Figure 15.2.1
+ . . )/ . . )/
, 1 4
( )*--
.-$ 2 ' A/
9
9
Figure 15.2.2
+ 1 .-$ 2 ' A/
0 7
!
9 . / 9 . / : 7 ! 9 . /
?
:
Section 15.2
Cayley Graphs and Regular Voltages
625
( )*-+ 9
- + !
Figure 15.2.3
$ . . - +/
9
%&2 ( )*-+
9
;
! ! 9 . - +/
( )*-$
Figure 15.2.4
. - +/
%&2 0
9
% !
( -1
.- 1/ !
( )*-* +$ 9
Figure 15.2.5
+ . . 1) )1/
626
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
! 9
) - ( )*-'
Figure 15.2.6
+ . . ) - +/
- 9 9
9 0
- !
5
9
!
!
' ! % 0 A1Æ !
F
! ! ! ! ! ( )*-@ 9
!
Figure 15.2.7
. $ 1
Regular-Voltage Graphs
!
!
9 7 . /
./ ! ./ 0
Section 15.2
627
Cayley Graphs and Regular Voltages
2
7 . /
! 2
, GD !@@ D !;@H
= >
!
" ! " ( )*-;
Figure 15.2.8
. / 1(
%&2 ! " 1 )
- ( )*-;
)*-@ " 9 (
9 I6 ?
9 Æ ! 2 7 . /
7 7 5
5
!
!
628
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
2 8
) ! ( )*-A
,
;
Figure 15.2.9
. /
Graphic Conventions for Clarifying Voltage-Graph Drawings
!
!
%
!
%
* ( )*-)1 ( )*-A !
Figure 15.2.10
0 $ $ 2 1 )
Section 15.2
Cayley Graphs and Regular Voltages
629
Voltages on a Bouquet to Specify a Cayley Graph
!
9 %
#
. /
#$ !
# 9
. /
#
( . /
6 )*-) ( )*-)) ./ ./ 9
Figure 15.2.11
$
.
) - . / % ¾ 9
# 5 % % % !
)*-)) " ½ ¾ % ( )*-)- ,
#
Figure 15.2.12
$ 1
630
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
Multiple Components
)*-;
+ J 6 )*)) " ;
)- !
( )*-)+
"
Figure 15.2.13
( 1(
! !
"
!
,
The Natural Transformation and Vertex-Transitivity
2 # !
&
0
%&2 4
& 4
# 2 # & 2
#$ 0 !
!
& . / 7
!
& . / 7 & ./ 7 ! &
# &
& ½ &
Section 15.2
Cayley Graphs and Regular Voltages
631
! & ( )*-)$ . ( )*)@/
&
Figure 15.2.14
$
. 2
: #$ 0 : ! & ½
! &
)*-)+
# ! . / #$ 0 ! & ½
. /
- %./0 0 $ 0
)*- !
) + )*- !
- * )*- !
)1 1) )*-! !
))1 )1) 1))
!
)*- !
)) )- )*- ! @-Æ F !
632
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
)*-' . / ! K
) - + $
.) - + $/ .) -/ )*-" . / !
) - + $
.) - +/ .) - $/ "
)*-)
)*-*
)*-
)*-
# $
)*- "
)*-) & )*-! "
)*-- & )*- "
)*-' &
%
)*- " )*-A & )*-' "
)*-)1 & )*-" "
)*-)) & )*-) 0 2 6 & Æ & &
15.3
PERMUTATION VOLTAGES
5
Permutation-Voltage Specifications
!
Section 15.3
633
Permutation Voltages
0 7 G' 2 ( H
) '
7 . /
7 G' 2 ( H
7 G' 2 ( H
!
7 G' 2 ( H
K 5 ) -
5
( )*+) ./
./
Figure 15.3.1
3
,
5
.) - +/ ,
5
.) - +/ 5 ) 5 - # 5
.) - +/ 5 -
5 + 5
.) - +/ 5 +
5 ) !
2 7 G' 2 ( H 7 . /
7 ( 7 ( 5
5
!
!
634
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
2 6
%&2 !
5 ./. / 5
./ )*+)
%&2
%
Drawing Graphs Specified by Permutation Voltages
!
5
( )*+-./ K % (
)*+-./
( )*+-./
5
Figure 15.3.2
3 $
4
( )*++./ K ( )*++./
( )*++./
!
" .
/
Section 15.3
635
Permutation Voltages
Figure 15.3.3
3 $
Specifying the deBruijn Graphs
'- .- / C 5 -
) - ( )*+$
Figure 15.3.4
+ .- $/ 41 5
! C 5
.
/ ! 6 )*-$ % , % .
/ % C
5
( 7 111 11) 1)1 1)) )11 )1) ))1 ))) !
* * !
) ) . / Æ Æ
636
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
! 5 *
* 7 .111/ .11) 1)1 )11/ .1)) ))1 )1)/ .)))/ 5 Æ Æ 7 .111 11) 1)) ))) ))1 )11/ .)1) 1)1/ 0 7 G' 2 ( H
* Æ .! -$ / (
)*+*./
C 5 ( )*+*./
!
C 5
Figure 15.3.5
0 $ 41 5 1
!
* Æ
1 ) )
Wreath Product
(
* 7 ) 111 Æ 7 ) 11) ) 11).1))/ 7 ))1 B 11) 7 ))) ) 111.1))/ 7 ))1 B 111 7 ))1
%&2 !
" 9
)' !
GD !@@H D !
Æ
Section 15.4
Symmetric Graphs and Parallel Architectures
637
- %./0 0 $ 0 # #
)*+
)*+
)*+
)*+!
)*+
)*+
)*+'
)*+"
)*+) & C 5
)*+* 6
( )*++
" )*+ 6 C 5
)*+ 4 5 Æ Æ )*+ 4 Æ Æ # #%
)*+! ) )1).1)1/ )*+ - 1)1.)11/ )*+ - )1).)1)/
15.4 SYMMETRIC GRAPHS AND PARALLEL ARCHITECTURES
4
: <
638
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
Theoretical Criteria for Designing Base Graphs
4 !
!
:
: . ? 5 =
> / ! )*$) ! )*$-
! ! )*$+
! ! )*$) )*$$ 6 )*)) )*)$
+ ! ! 7
%&2
! )*$) 5 )
+ ! "
:
%&2
! )*$- 5
+ ! "
./
+ ! ! "
Specification Problems with Elementary Solutions
D : 7 . : : /
2 .)/ & 7 . / .-/ # .+/ & L 5
5
Section 15.4
Symmetric Graphs and Parallel Architectures
639
./
! )*$) : . / . : : / . /
7 . /
: : 7 7 . : : / . : : / 4 ! )*$-
! 9
#
: 7 ./ 7 - : 7 ./ 7 +
. : : / 7 .- +/ 7 7 . /
: : 7 7 - 7 7 +
!
#
+ ! )*$-
+ ! + 7 - 7 + (
! )*$$
! ! ( )*$)
Figure 15.4.1
6 1(( $ 1
! ! : 7 . / 7 - : 7 . / 7
640
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
. : : / 7 .- / 7 -
! 7
:
7 . /
7 -
7
:
7
#
! )*$-
!
- B) 5
! . / C 6 )*$+
C ! )*$$
?
( )*$-
4
)*)+
Figure 15.4.2
0 $ (
<
7 ) 7 7
! ? ( )*$+ 7 $
Figure 15.4.3
6 $ (
! ! M
+ . 7 $ ( )*$$/ : 7 .+/ 7 - : 7 .+ / 7 + 5
. : : / 7 .- +/ 7
Section 15.4
Symmetric Graphs and Parallel Architectures
641
+ $ 78( 1 +
Figure 15.4.4
,
7 . /
: : 7 + 7 7 - 7
+
+ , + 7 - 7 +
M
4 +
( )*$$./ <
( )*$$./
+
.
M
/ ( + 9 . ) / Specification Problems with Complicated Solutions
(
<
!
( )*$* +
Figure 15.4.5
+ 1(
642
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
!
)
! ! !
-
- !
! : 7 ./ 7 -
: 7 ./ 7 - B - 7 +-
. : : / 7 .- +- / 7 -
7 - 7 + # +
<
. / ( )*$'
Figure 15.4.6
$
! 7 + ( )*$@
Figure 15.4.7
+ , ( 2 1 !
!
! ( )*$'
-
- ?
.#
/
Section 15.4
Symmetric Graphs and Parallel Architectures
643
! !
( )*+* C 5
( )*$;
Figure 15.4.8
1 $ ,
#
. /
. / ! ( )*$A
, <
F (
Figure 15.4.9
+ (19 ,
- %./0 0 $ 0 !
)*$ )*$ )*$ )*$! )*$ )*$ )*$' )*$"
! ! ! " ! " ! ! ! ! B
- !
* ./ !
!
644
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
)*$) 9
N
)*$* D
! )*$$
15.5
INTERCONNECTION-NETWORK PERFORMANCE
, ?
!
Diameter and Mean Pair-Distance
C
9 !
. /
#%. / !
. /
. /
#%. /
#
#$ # 9
!
. /
#
#$ # 7 !
. / 7 .) )/
#
. /
.1 /
!
! 9
) # .1 / 7
1
!
#%. / 7 -
Section 15.5
645
Interconnection-Network Performance
4
1 %
.1 / 7 - ) B - B B - ) B ) ) 7 ) 7- 7 $
4
1 %
) ) B .1 / 7 - ) B - B B
7 - B - - B 7 7 7-
B
$ 6 )**-
-
$
B)
./ 7 $ $. )/
!
" 11 1
%
)
6 )**)
%
#%." / 7
7 ) !
7
C 6 )**-
)
7 -
."/ 7 - - )
- %./0 0 $ 0
)** !
)** !
)** !
)**! !
)** ! M
+
646
)** )**' )**" )**) )*** )** )** )** )**! )**
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
! M
+ ! M
+ ! M
+ ! ! ! ! ! 5 B ! 5 B ! 5 B
% #&
)** )**' )**" )**) )*** )** )** )** )**! )** )** )**' )**" )**) )***
!
!
!
!
! M
+ ! M
+ ! M
+ ! M
+ ! ! ! ! ! 5 B ! 5 B ! 5 B
15.6
SUPPLEMENTARY EXERCISES
)*' &
$ #
$ 4
- .
A$/E
Section 15.6
Supplementary Exercises
647
)*' D
)*' 9
)*'! D
)*' 0 $
)*' 0 % $
)*'' ! ! " # & $
.
( O
)*'" ! $ % & $
. 0
!
648
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
)*') &
+ )1
., 2 / #
)*'* & -
$
( )*') )*' & )
$ $
( )*')
Figure 15.6.1
)*' 9
$ &
)*' &
! )
)*'! $
)*' $
Glossary
649
)*' $
GLOSSARY
( $ 2 ( $ 2
( 2
- 5
. . /2 7
7 7 5
.'
-/ . . /2 7
. / . 2
. / $ $ 2 % ! 3
$ $ 2
%
! 3
! $ 2 7 . / $ 2
1( 2
. / $ $
. / .% / 5 7 % ?
7 7 % )3 )
?
$ $2
. /2
. / .
/
650
Chapter 15
ALGEBRAIC SPECIFICATION OF GRAPHS
41 5 1 2
) ) #%. / $ 2 . /
( : $ 2 .)/
3 .-/
7 G' 2 ( H ( ( : $ 2 .)/
3 .-/
7 G' 2 ( H
( $ 1( ( 2 . / $ 2
. /
1 5 $ 1 2 =
>
:
: 1 $ & 2
1 2
7 G' 2 ( H 1 2 2
3
1: - * ./ !
1 $ $ $ 2
2
2
7 G' 2 ( H 2
7 G' 2 ( H 2
12
16
Chapter
NONPLANAR LAYOUTS 16.1 Representing Imbeddings by Rotations 16.2 Genus Distribution of a Graph 16.3 Voltage-Graph Specification of Graph Layouts 16.4 Non-KVL Imbedded Voltage Graphs 16.5 The Heawood Map-Coloring Problem
INTRODUCTION
! " # $%$
Æ #
& !
' ( ) * +
651
652
16.1
Chapter 16
NONPLANAR LAYOUTS
REPRESENTING IMBEDDINGS BY ROTATIONS
, Review of Closed Surfaces and Flat Polygon Drawings
Figure 16.1.1
" -. , /
Figure 16.1.2
" / / Parametrization
, # $ ( 01 $2 '
Section 16.1
653
Representing Imbeddings by Rotations
3
1 $ 1 $
4 4 45
, ( $
6 " # (
7 ( 8 , + 8 Rotations and Rotation Systems
" "
#
"
6 ,
9 : # " 3 6 ! 3 6 #
! 3 #
# # ! , # !
654
Chapter 16
NONPLANAR LAYOUTS
; $%$: # / !
Figure 16.1.3
!
6
" 6 ! " 9 # # <
; $%$=
8 6 7 8
Figure 16.1.4
6
!
Dual Rotations
3 6 ! 6 !
,/ !
Section 16.1
655
Representing Imbeddings by Rotations
Algorithm 16.1.1:
#
! ; ! ) !
, 6
9# $%$$
4 ! ! ! !
$ , 6
9# $%$>
4 ! !
9# $%$: / ; $%$1 9# $%$= / ; $%$= +8 9 " / /
% &'()* &+), ! 6 "
"# " ! ! #
/ , $%$>
Algorithm 16.1.2:
-
! / ? # # ! ' @A 64 ) # 4 ! ? " B 4 ? @!A )
656
Chapter 16
NONPLANAR LAYOUTS
The Induced Surface of a Rotation System
3 ! 3 ; !
"
"# " " 3 ! /
. ; $%$
8 9# $%$>
Figure 16.1.5
! !
9# $%$> = : C ; $%$%
Figure 16.1.6
6
!
Section 16.1
Representing Imbeddings by Rotations
657
3
! / , Counting the Imbeddings of a Graph
" 3 6 6
# / " $ 6 6 " 4 " , $%$: / ! . " $ " D $%$= ' ! 6 ! ¼
6 E !
5 4 > > ! ! 4 0! $2F
"
# 0! $2F !
G $%$% $% " : # =
: C ) #
; " $%
9# $%$$ $%$> $%$
658
Chapter 16
NONPLANAR LAYOUTS
/#011 1 ! "
$%$
$%$
$%$
$%$$
# ! "
$%$.
$%$
$ %! " ! &' ! &'
$%$2
$%$
$%$(
$%$+
$%$
$%$
( )! " ! &' ! &'
$%$ $%$$ $%$.
9# $%$H 9# $%$ 9# $%$C
Section 16.2
$%$ $%$2 $%$
659
Genus Distribution of a Graph
9# $%$$1 9# $%$$$ 9# $%$$>
* %)! +" "
$%$( $%$ $%$ $%$. $%$2
16.2
$%$+ $%$ $%$$ $%$ $%$
: 5
5
GENUS DISTRIBUTION OF A GRAPH
Æ (
$C E ) / $C 1 $C% $C% I * Minimum Genus
! 4 ! 1
, ( ,
! 4 $ '
< G $CH1 " ! " !
660
Chapter 16
NONPLANAR LAYOUTS
%
! ! >! 5 $ > ! ! > " E 9 !
5 4 > > ! 9; , H ! > ! ! ! ! >!
> > ! ! !
! ! >! !
> ! ! > 5$ ' !
#! %
!
% > 5$ " ' ! ! : ' $%>$
' ! ! 4 : ? $%>> !
5$ >% > > >= 5 % 4 : 4> 4 % > 5$ 4 %
Maximum Genus
0J'H$2 0J)'H>2 ! 4 # ! 1
#
Section 16.2
Genus Distribution of a Graph
661
" ! " # !
" ! 4 5 $
" ! ! > " E # 9 5 4 > > ! ) 9 > ! 5 4 5 > 4 " ! 5 $ $! " ! ! > '
$ # 1 " ! 4 1 . 9# $%$> ! $ - $%>:
" ! : > 4 > 4$ ? ! 4 $ !
Genus Range
<
# 4 !!
#
$ # $ ! & #! ' " ' # #
662
Chapter 16
NONPLANAR LAYOUTS
! # $ ; 6 ! 6 #!
6 $! , $ $!! !!
$!! 5 $
!! #!! $
$!! #!! $!! 5 $
#! . %0 &3),
! ! ! $ " " < # G $%>= $
6 ? $%> 0 ! !2
HF! 8 $%$% G $%>$ $%>: 0> $12
' # # #
$%>: #
0; E -2 # $%>$ K JD 0 C2 Non-Orientable Imbeddings
8 # ; , ! , ! 4 1 , ! , ! 4 1
Section 16.2
663
Genus Distribution of a Graph
% !
: 5 >
"
? $%>> K
#
2 ! 4 " !
" " ! 4 5 $
" " ! ! $%>: D 09% 2 /#011 1 % % %! , %% "
%
$%> $%> $%>. $%>2 $%>( $%> $%>
$%>
% $%>$
$%> % % % $%> % 5 %
$%>+ #
$%> " $%>$ ? $%>> ! ! 4 = $%>$ " 9# $%>$: 9# $%>$$ $%>$> % # %% ! - %( "
$%>. $%>2 $%>( $%> $%>
%
% % %
$%>. D $%>%
$%> $%> $%>+ $%> $%>$
%
% 5 % %&
664
Chapter 16
NONPLANAR LAYOUTS
16.3 VOLTAGE-GRAPH SPECIFICATION OF GRAPH LAYOUTS
#
, / Signed Walks
/ " ! ½ ¾
/
! / Æ 6 / 3 4 ½ ¾ / ' 6 / ' ! 4 ' !
; $%:$ D /
4 ( (
# / # # # ( / # ( ' ! 4 '! 5 '! '! 4 $ 5 1 > 4 $ !
665
Section 16.3 Voltage-Graph Specification of Graph Layouts
Figure 16.3.1
4 ! "
%5 6 7 , ' (
" "#
4 ½ ¾
4 ½ ½ ¾ ½ "# " ; ) 4 $ * 4 5 ' !
½
½
# / 3 / #
/ # < / $%:$! /
6
/ 4 ( ( 9# $%:$ 4 ( ( 4 ( ( 4 ( ( 4 ( ( 4 ( (
" ' (
"# ( "# ( " /
666
Chapter 16
NONPLANAR LAYOUTS
*
/ # # ( = / ( Kirchoff Voltage Law
" / "
"# )* "# " D $%:> ! # "$%
$ ' ( "# ' ! 4 +
"# " ' / # G D $%:> / , 4 1 + $ , / 4 /
6 " # 8 #
, # +" KVL Imbedded Voltage Graphs
" 6 ' 6
" "
/ 1 " "$% L&3 6 , 8 L 8 /
1 / / ' 9# ! , L&3 * / & M * / / ! # "$%
667
Section 16.3 Voltage-Graph Specification of Graph Layouts
3 6 ' 6 L&3 ; / 6
; $%:> L&3 -
Figure 16.3.2
897 4 4
$
; ; $%::
- H >$
Figure 16.3.3
1 !
! 4 -
; $%:= L&3 ' $= 9 H >$ 5 $= 4 1 4 > > '
Figure 16.3.4
1 :
668
Chapter 16
NONPLANAR LAYOUTS
# . 6 M 6
/#011 1 ( (%! " " /01 "
$%:
$%:
$%: D L&3 +6 D 9 5 1! $%:$ D L&3 +6 D 5 >! $%:. ' ; $%:> K K $%: ' ; $%:= K K ($ (
!
$%:2
' /
$%:
' /
# (
#
669
Section 16.3 Voltage-Graph Specification of Graph Layouts
$%:( ' /
$%:+ ' / (
# (
#
$%: ' / N # (
3 ' 6 / !
$%: 3 ' 6 ( D # # (
/ ( ) $%: 3 ' 6 B 9# $%:$> 0"E H%2 $%:$ 3 $ D L 8 / D < L&3 / /!
670
16.4
Chapter 16
NONPLANAR LAYOUTS
NON-KVL IMBEDDED VOLTAGE GRAPHS
6 ' 6 L&3
L&3 / / +
/ / , L&3
* / + /
/ Non-KVL Covering Faces
, L&3
* / + & M +* / / / 3 6
' 6 L&3 ; / 6
$
. . ! ; $%=$ > > $> / % , 7 7 # /
Figure 16.4.1
1 :
Minimum-Genus Formula for Hypercube Graphs
" (
Section 16.4
671
Non-KVL Imbedded Voltage Graphs
" $ ! =! > 5 $ > " ; 4 > 4 : 1 ; = $%>$
!
! ! >! > ! ! > 5 $
' ! 4 > ! 4 > ! ! 4 = ( > = >! > !
>= > 5$ 4 > > == >! >> 5 $ 4 > > 5 $ 4 =! > 5 $
" $ ! =! > 5 $ > " , Æ =!> 5$ ; $%=$ ( ; $%=>
Figure 16.4.2
9 !
' ! ! 4 = $%>$ ; $%=>
> > / , > /
672
Chapter 16
NONPLANAR LAYOUTS
/#011 1 $ ! "
$%=
$%=
$%=
$%=$
$%=.
$%=
" "
$ )! " " "
$%=2
16.5
!
$%=
HEAWOOD MAP-COLORING PROBLEM
Æ = C>!
( D + +
9 + O # # # L #
> >
Section 16.5
673
Heawood Map-Coloring Problem
" # E / / + ! ! 9 ! Heawood Number of a Surface
7 . ! ! ! H % !
"
Æ Æ
$! Æ ! % >! Æ ! Æ ! :! ! $ Æ ! =! ! $ % ! ! H %! ! H
%! C$$! $! >! :!! =!! ! ! !
7 . ! 1 ! H
% ! !
" 3 ! 9 ! $! ! H 3 $% $! >! ! ! 4 ! ! :! >! % 1! $! :!! =! ! H
! 9 !
H 5 =C >= ! 0 !! 4 >
. %';* (+, " ! $ ! 0 !! " G D P Æ + - Æ ; ! 4 $ 3 $% $ ! % 4 0 $! ; ! 1 3 $% >
674
Chapter 16
! H ! 5 % !
NONPLANAR LAYOUTS
1 ;
=C >= ! H =C >= ! H 5 ! ! > >
1
' ! 1 H ' !
6 9 ! 4 > " 0 >! 4 = $% : Heawood Conjecture and Minimum Genus
+ ( + + O
< ! 9 ! 0 !!
:! =!
= +" " .$ ! ! $> $ H 5 $ 5 = " + 0 > >! 4 , > :! =! ! = $>
0 > >! :!0 > >! =! ! $> ! D ! # D ; / $C:= ! 4 % ' 9 L ! 1 0 1! 4 H ; /O
# + < + L + :! =! " .. ! M !
+" % $ ) "
Section 16.5
Heawood Map-Coloring Problem
675
, $C 1 $C%1 E ) + < # ! D $% $> D $% = $> $> G $C%1 ) $> ) 9 E / E 0E %:2 ; $% $ E
Figure 16.5.1
<
E / / # ! / # Æ! / ; $ Æ! / # : ! / > Æ! / $ % $ H ? % ! / = Æ! / $ ( 1 $ : > % = / H 1 $ : > % = $ > = : 1 % > : = $ % 1 : = % > 1 $ = 1 % : $ > % $ 1 = > : % 1 > $ : = E : # 1 " !! ) *
E O # + < $C% :11 <
676
Chapter 16
NONPLANAR LAYOUTS
E " 0E "H: E "H=2 ( ( " ( ) # E 0E H=2 E / 0E HH2 ( $ :! Minimum Genus of Complete Graphs, Case 7
4 H $> 9# $%:=
. ; $% >
Figure 16.5.2
.
Figure 16.5.3
897 4
; $% :
897 4
J L&3 " L&3 Æ
Section 16.6
Supplementary Exercises
677
/#011 1 . # #! " 2 "
$% $% $% $%
. 2
16.6
$% $1 $% $ >> $% % & ! D $% =
%
=
SUPPLEMENTARY EXERCISES
$%% ? / Q
$%%
?
$%% ? #
$%%$ D % % % $H $%%. D
> $%% D % $ $%%2 9# % # = $> +6 ! $%% ? < % 5 $%%( ' ( ? =
; /O H ; L /
$%%+ D H % # $ +6 !
678
Chapter 16
NONPLANAR LAYOUTS
$%% K %& %& Q % Q K %& $%% . + Q + # Q + Q Q
$%% ; ; $%%$ . ? .
Figure 16.6.1
$%%$ K
Figure 16.6.2
GLOSSARY
6
6 #
! % ,6
!
4 6 7
/ / /
4 6
Glossary
679
4 6
/
6 -.
6 8#76 # L 8
! 6 " ! 4 5 $ 6 4 6 # / / ! 6 9
5 6 > > > * : 4 4 6 M ! = ! 6 / 6 ! 8 6
6 '; > 6 < 9 0 ! 4 $ 1 $ '; 6 ! 9 0 !! 4 ! ! 6 / 4 6
! ! 6
# 8#76 / 3 8 ? ; 8#7! #6 # 8 ? 4 ; 897! 6 / 8 ? 4 ; 897! /6 / 8976 / 3 "
680
;
Chapter 16
NONPLANAR LAYOUTS
4 6 / / < 4 4 6 / !6 , ! 4 1 6 # % , 6 & ' % , 6 ! !6 , ! 4 1 ! 6 ! 1 6 % , 6 ! 4 ;6 6
6 4 6 ! 6 # > 6 <
# 6 # , # # ! , # ! ; 6 / ! ! 6 ! 4 6 ' ' " 6 8976 L&3
APPENDIX
A.1 Logic Fundamentals A.2 Relations and Functions A.3 Some Basic Combinatorics A.4 Algebraic Structures A.5 Algorithmic Complexity A.6 Supplementary Reading
A.1
LOGIC FUNDAMENTALS
Propositional Logic
Æ
681
682
Chapter A APPENDIX
Types of Proof
! " # ! $"% ! &
' '
!" ( ) * +
Mathematical Induction
, $% $% - $% $ ) *%
$ % $% $ ) *%
*
$ ) *% " ! * * ! *
*
' -
!$
!
% ) $ ) *% ! $
"
$ ) *%% ) $ ) *% !
)*
"
$ ) "%
, $% $% - $ $% $ ) *% $%% $ ) *%
$ ) *%
$% $ ) *% $%
Section A.2
A.2
683
Relations and Functions
RELATIONS AND FUNCTIONS
Relations
! $ %
.
$ % $ %
$ %
/+
! (
0 1
01 !
- 2 3+ " * 041 ! ( 0*1 ! ( ) * 0"1 ! ( ) " 5
6 2 ! * !
684
Chapter A APPENDIX
* " 01 ! 01 ( 01 01 !
041 0*1 0"1 3+ " "
Partial Orderings and Posets
!
$ %
/+
$ %
Functions
.
+
2 + ! $ %
$ % ! $%
.
$ % ! $%
Section A.2
685
Relations and Functions
$ % $% ! $%
6 6
!
$ % +
$ % !
7 7
$46 % +6 6+ +
4 * * 7
4 * * 4 *
!" # $" %
* 6 6 " ( !
7
Æ
$ % ! $ $ %%
Æ
$ % !
Æ
&
686
A.3
Chapter A APPENDIX
SOME BASIC COMBINATORICS
# %
!
6 7
6
6 8 ' 6
9
$ %9
6 6 6 6 $ %
!
9 9$ %9
!" # !"% !
$ ) % !
$% ! ! ) ) ) ) )
* *
* ! *
* " (
! !
!
* !
*
* $* %
Section A.4
A.4
687
Algebraic Structures
ALGEBRAIC STRUCTURES
Groups
$$ %% !
! 4 * " : *4 - ; ; ! *" ! " $ *4% ; ; ! (; ! ; $ *4%
$ % ! $ % ! ! ! $
% - $
% ! ! ! $ %
*
" ( 3 $ % 3 ! $ % $ % $
%
)
- $ %
& *
! $ )% < $
% 3+
688
Chapter A APPENDIX
5 $ % 4
6
$ %
Æ
Æ
! $ % ! +
! " = *6
!
$ 4 % ! ( ! = ! $ % ! $ % $ % $ % & '
! $ )% ! *
2
% 6 ! $ % ! $ % ! $ % 2
! $ % !" #( !" ( ) *%
" $ % $ % ! $
6 6
Order of an Element in a Group
! $ % ) "
" !
! $ %
+
= " ! " ) " ) " ) " ) " ! 4 $ *4% =
- " "
Section A.4
689
Algebraic Structures
Permutation Groups
> >
5 * " " + 2 $ %
,
> + ! * " (
*"( ! ? *"( *"( ! ?
("*
*"( ! ? *(" *"( ! ? "(*
*"( ! ? "*( *"( ! (*"
> 8
Æ
Æ
Æ
Æ
Æ
Æ
Æ
! ! ! ? ! ? ! ? !
> @ ! ! (
Æ
! Cycle Notation for a Permutation
3 7 * " ( 3+ & :
! * " ( * " ( * " ( * " (
6 $ %
!
!
$% !
-
$ % 6 ! * *
3+ & : $* " (% $" ( *% $( * "%
690
Chapter A APPENDIX
+ .
A # > # !
7 #
#
! $* B &%$"%$( ;%$= C :% $* B &%$( ;%$= C :%
Fields
! ! $$ ) % $ ) $ % 6 2 * $$ )% " $$ 4 % 4 ( $ ) % ! $ % ) $ % $ ) % ! $ % ) $ %
Finite Field $ $"%
! 4 * 4 * ! * 4 ! *? 4 4 ! * 4 ! 4 * ! 4? * * ! *
! ! $ $"% "
4 4 ! * * ! 4? Vector Spaces
2 $ % $ % ) $ $$ %% %%
2 % & * $ )% $ ) D 2 % " $ %% ! $%% ( $ ) %% ! % ) % & $% ) &% ! % ) & = % ! % 2
' ! $# # #% # $ $"% $ "% ' - # $ $"% & ! $# # #% 2
! $# # # # # #%
' $ $"% #&
2 3+ & *" 6 2
Section A.4
691
Algebraic Structures
Independence, Subspaces, and Dimension
2
2 + ' 2 3+ & *"
% % % % % ! #% ) ) ) # % # ! * "
# %
' $* 4 *% $* * 4% $4 * *% $* 4 *% ! *$* * 4% ) *$4 * *% $* 4 *% $* * 4% $4 * *% 4
% % %
+
$* * 4% $4 * 4% $4 * *% ' +
3+ & *& '
$* 4 4% $4 * 4% $4 4 *%
"$ % ( (
(
(
* % ) & ( % & ( " #% ( # % (
&
3 (6 3+ & *= (6 ( ! $4 4 4% $* * 4% $4 * *% $* 4 *%
"6 '
'
( ( ( (
( ( ( ( % ) % % %
692
Chapter A APPENDIX
& ( ( ( ( "$( ( % ! "$( % ) "$( % "$( ( %
A.5
ALGORITHMIC COMPLEXITY
5 E
7 $ %
$ % 2 Big-) Notation
* * $% )$$%% $ 6) $%% +
$% $%
, +
$% )$$%% $%
$% Æ Æ $% $% )$$%% $ %
2 $% )$$%% $% $% !
, 4
$% !
)$ %
) ) ) ! " "
2 ! " + ! 4 $% )$ % " )$ % ! " + ! 4 )$ $%% $% !
) ! " $%
+ + D 6
Section A.5
693
Algorithmic Complexity
F 2 + % - + +
" 7 + . 7 + $ % 6 + $+ % + + < # )$ % 7
- + + )$"%
- $% $% ) $% )$$%% )$ $%%
$%
! $% $% )
! )
$ < % )$ $%% $% )$% )$ % Decision Problems
6
/
2 6
G
A 7 D G
# (6 A
(6 D 7 #
+
694
Chapter A APPENDIX
+
+ $
%
<
6 6 # 2
+
H + The Problem Classes + -Complete and + -Hard
$ + % +6 6 D + 2 6 + 6 6 + 6 5
03B:1 0FI B:1 0C;1 - 6 . . - . . $ % +
+ 6 + 6 +
+
! ! ! $ % ! $ %
, A $0A B*1%
+ 6 2 + 6 ,
A.6
SUPPLEMENTARY READING
- 0' ,:41 08 C&1 08 4(1 0,:(1 0 :=1 - 0F:41 0@.;B1 - 0# JC(1 0.CC1 0,CC1 0C;1
BIBLIOGRAPHY B.1 General Reading B.2 References
B.1
GENERAL READING
ALGEBRA and ENUMERATION
! " # $ % & '() * + , # " ' - (
! " ./ &) 0123 ! 0 1 4 0,
&23 ALGORITHMS and COMPUTATION
% 5 67 8 " % # 5
, ./ &67 167 ! 1 . / &67 "3 ! " $ , ! ( &3 3 0 * # ! / % 9, &3 3 , &3 695
696
BIBLIOGRAPHY
+32 " + + ! "# % *. / &32 !66 * ! ./ &66 /62 % ! / $ (.%
&62 COMBINATORIAL MATHEMATICS
1 ' ( 1 " , ( : 1) * 1 9 " ( %
:) 0* & 0 ' % * ;"< 0.%
&& ( ! ( , % ! 1 =$ & * 6) 9 ! * (.%
&6) * 7 ' % * 9 " 0.%
:7 !7 % ! % 1 =$ &7 & 9 " / > ! :& GRAPH THEORY
16? $ 1 @ .%
&6? 1+ /62 @ + 1 " ' + * / &'()&*() - &62 1 6 1 1
A ! &6 1 032 1 5 ! * 0 + , " &32 $+) $ + + , 9 " $*$ ( :) $B? $ ( B 0 %
:? # * # !.8 ! " : 6? $, 5 ( &6?
B.2
References
697
6 0 $ , , ( &6 66 * 1C,=$,, &66 D) + D
-# $*$ ( :) %2 9 % ./ &2 !: ' , 0 @ ! !, / > ! &: /& # 1 / ! " (.%
:& /2 * / / + , &2 // * / / / > ! & SURFACES and TOPOLOGICAL GRAPH THEORY
63 + / # :& ;9 " / .E &63< 023 / ! 0 % &23 *3) * ! &3) /6) / . * " @ .%
&6)
B.2
REFERENCES
E , -# , ,, , , Chapter 1: Introduction to Graph Models
* 6) 9 ! * (.%
&6) /) * / - Ü&7 -# + D
$*$ ( :) // * / / / > ! &
698
BIBLIOGRAPHY
Chapter 2: Structure and Representation
033 1 # 0' $ , ,
/0 & ;&33< :6&F:67 @33 @C @ G , 0 0 0 :) ;&33< .: Chapter 3: Trees
% 5 67 8 " % # 5
, ./ &67 %?: # %4, , ,,,. 0 12 ) ;&?:< &6F&&& Chapter 4: Spanning Trees
% 5 67 8 " % # 5
, ./ &67 167 ! 1 . / &67 #? " / #C , # & ;&?< :2F:3& 9 2: * / 9 , 3H 0 ?H2 ;&2:< 7)? '?2 1 ' - , , 3 & ;&?2< +32 " + + ! "# % *. / &32 -: - - &: (?3 * $ (, ! , I 3 / 72 ;&?3< !66 * ! ./ &66 !: ' , 0 @ ! !, / > ! &: /32 # / , ( &32 /2 * / / + , &2
B.2
References
699
Chapter 5: Connectivity
% 5 67 8 " % # 5
, ./ &67 167 ! 1 . / &67 $%26 ("J ' A, 'A 1 &26 2&F27 9 9?2 + * 9 # * 9 0, K 0 /0 0 6 ;&?2< 7F)) %2: 9 % ,,, 0 0
0 0. 400 )6 ;&2:< &&):F&&)2 !: ' , 0 @ ! !, / > ! &: 2& / 7. 0 0 :7 ;&2&< ))&F)?? Chapter 6: Optimal Graph Traversals
$(6 % $ 0 / ( ! . ,, . , , , :2 ;&6< )?F? #9 ?) 1 #I # * 9 ! 0 ! . , , 0 1 0 : ;&?)< 77F)& #"?& @ 1C " $ - % :6 ;&?&< :7F:&3 #?: # ! , , 0 5 0 0 : ;&?:< 2F6& "2? ", $ , , 0 1 0 &7.& ;&2?< 737 " 37 ", " + 0 " $ . , 0 ? ;&37< 66F&:) 9 % 9 2 1 . &. 60 & # 0 @ .%
,, & 9 & % 9 2 1 . &. 60 7 # 0 @ .%
,, && 9 ) % 9 2 Ü): -# + D
$*$ ( 1 * 9 :)
700
BIBLIOGRAPHY
93 @ 9 , , , , , / :2 ;&3< ?76F??) 2: 0 ,, 0 & ;&2:< :37F:33 %2 % " , G , . 30 0 3 0 7& ;&2< ?)&F?2: %/3? ( % % ! / - " . C /0 0 &6 ;&3?< 6F63 ++'!6? " + + ' + % * ' # !, % ! / &6? -2 - - @ %, 0 0 23 ;&2< ?? (32 $ % (, - , / :7 ;&32< ?))F??) (!6: $ % (, ' ! I ! $ (.%
&6: * 6& " 0 * * " C - , , /0 & ;&6&< 232F26& * % * G 0 .1 & E. $ $ , ! * !+33 # * I * " ! ( 0 +
, , /0 0 2 ;&33< ?27F?6& ! 32 ! ! I I (. , , , / :7 ;&32< ???F?2? !, )& $ 1 !, / - ) 0 0 )6 ;&)&< :77F:73 1 67 $ + 1 , , . / 9 + 9 ! * * 0
;"< 7 !.8 ;&67< 32F&&& / 3: # * /
!Æ 0 5 0 0 :) ;&3:< 37F3?? Chapter 7: Planarity and Kuratowski’s Theorem
1 032 1 5 ! * 0 + , " &32
B.2
References
701
#0(2) #, D 0 * ( H . G 1%0 1 6 ;&2)< 77F)3 9)6 E 9 - .
0 0 && ;&)6< ::F:77 * 3 + * % * ., , :. ,. /0 0 0 0 : ;&3< 2&&F2&3 * 6& + * % * , I :. , 80 0 )) ;&6&< :)&F:)3 %2 9 % ./ &2 % 3) % * " C "Æ ( / :& ;&3)< ?)F?26 @?) 0 % @, 2 $, 5 ( &?) 6 $ , ( /0 0 0 3 : ;&6< :))F:3& 6& $ , ' L , /0 ? ;&6&< ::?F:)& /72 ' / 1, I, 8 , /0 0 0 60 )2 ;&72< :&F:: /& # 1 / ! " (.%
:& /) * / - Ü&7 -# + D
$*$ ( :) Chapter 8: Drawing Graphs and Maps
/66 / $ , , 5 1 7 &66 $ $ , $ , $ , , Ü&7? - # ; ' % * < $*$ ( : $ 0 3: % ! 0 $ / - 0 1 " !.8 &3: "/2 ( " ! / I , " ,,, @(. &2 ;&2< 2F6: ;! # # 1 * ,<
702
BIBLIOGRAPHY
63 + / # :& ;9 " / .E &63< +#? + # 1 $ , , 7., :7F:? ( ) / , # ! 5 0 0 ?? !.8 &? + ) + * , " Ü&7 -# + D
$*$ ( :) 023 / ! 0 !.8 &6 ;9 " H % 1 > / &23< 0 !: $ 0 , ! ! , ,,, 0 0 6 ;&:< :2?F:7 Chapter 9: Graph Colorings
%32 ' E / % " , . 30 0 0 0 6: ;&32< 3&&F3&: 1J76 9 1J 5J B J ! , - 0 0 -%0 & ;&76< :3?F:63 126 + / 1 # 3 ! &26 13 # 1 I @ , 0 :: ;&3< :?&F:?2 $62 0 / $ , , , 0 1 0 7) ;&62< &7F:: 3 0 * # ! / % 9, &3 % 6& E % @(. , . /0 & ;&6&< 3&6F3: 'D: + ' D
/ , 0 1 0 & ;&:< ?F23 'J &2 # 'J 5J #, 0 0 0 33 ;&&2< )?7F)2? + 3? + + AI /0 0 0 3 & ;&3?< :2F:3& 06& 1 0 $ &*9& . &6&
B.2
703
References
(&6& ( # J
0 &? ;&6&< &7F :: ( ) 0 ( ,, ! Ü?) -# + D
$*$ ( :) * !! 3 @ * # ( ! ( !, * , . , /0 0 0 3 3 ;&3< &22F&67 Chapter 10: Measurement and Mappings
++00) $ + + * + ( 0' ! ' 0I @ . , . , 0 0 & ;&)< 3F&3 12: $ 1 0 &2: 137 $ 1 - @ .%
&37 1!67 % 1 00 ! ( 0 0 -0 &6 ;&67< :2F:3? 1) * $ 1, 3" Ü) -# + D
$*$ ( :) 1$8 * $ 1, * $ * ( 8 1 4 0 ?) ;:< 7F:3 1#6? * $ 1, * # # "# &? ;&6?< 37F&3
,
108? * $ 1, 9 * 00 * ( 8 , 5 0 :&3 ;&?< )&F?: 1082 * $ 1, 9 * 00 * ( 8 .. ,. 0 22 ;&2< &&F&6 13) ( 1, 0 ;&3)< :?F:&: 1% 9 1 9 % ./ & $66 9 * ' $ + 7 . , ( +, ! # $ ;&66< &?&F&26 $$#6: ( B $ $A A ' # @ " , ,F / 2 ;&6:< ::7F:?)
704
BIBLIOGRAPHY
$#' 3? $A A ' # @ " * * ' , H
* * :) #, $ , ! 5 / - ;&3?< $- B 6 $ - * -
, ! % 1 B ! : 0 0 &&) ;&6< 7F)& $B) $ ( B Ü& -# + D
$*$ ( :) $ 36 " $ + ( 5 ( &36 #167 * # # * $ 1, I , 0 0 2 ;&67< 7&?F7&3 " ( 22 ( "M / , + (A 0 /0 0 &6 ;&22< &2F&&: 3) 9 / 0 . 0 3 &2 ;&3)< )3F?2 0 6: 0 $ , $ + 0 , I 0 0 7? ;&6:< 7:&F77& 0 6) 0 $ , $ + 0 , / 0 0 ;&6)< &?3F&3 7 0 $ , @ $, 5 ( :7 %2) + % % -, , , / &: ;&2)< &7&F&7? %%) / % 0 % Ü: -# + D
$*$ ( :) %%! 6 / % ! %, ( ! 0 # &6 %@ ?7 9 % * B @ , , %,
0 0 ?6 ;&?7< &7)F&)& %-! 0 % - * -
, % $ ! - ! ! , 0 : ;&< &7F& %-!& 0 % - * -
, % $ ! - ,,, ! . . ; D 9 * ' $ * + , # 9 %< !E 0 ( ;&&< 77F)7
B.2
References
705
00& 0 ! 9 * 00 % 0 0 E . ;D
"< / E : ;&&< 3?F3:7 0!& 0 ! 9 * 00 " * !, /0 &? ;&&< ?37F?33 +/ D + ' /
, , , / 7& ;&< 3?F) +067 * + ! 0 I , , , 0 0 2 ;&67< 7&F7:: 0)? " !I C.0I ! L, 0 0 77 ;&)?< 77F73 00 0' 9 * 00 !E 0 , & 0& B 0
0 ' % * ;" < 0.%
@ D ;&&< 72?F77 -2: - - 0 0 0 0 76 ;&2:< :2F:&: /36 * / * / : ;&36< :2?F:23 / !3 % 1 / 1 # " !,, * , , 0 * E
0*E 5 & ;&3< Chapter 11: Analytic Graph Theory
1 @) 1 1
A 8 @ 2$ Ü6& -# + D
$*$ ( :) 9) * 9 1 Ü67 -# + D
$*$ ( :) * ! * + , 1 + * % ! 1 / > ! & ?? * " 0 $ , , 0 /0 0 3 ;&??< &F3 )& ( A - , , ;%< ; !0 5# )6 ;&)&< )72F)?:
706
BIBLIOGRAPHY
/ ) @ / , 1 Ü6: -# + D
$*$ ( :) Chapter 12: Special Digraph Models
167 ! 1 . / &67 1 6& .$ 1, $ , $ H /0 ? ;&6&< &F)7 1/') " 1 # / ' Ü?2 -# + D
$*$ ( :) $3? " $ (.%
&3? %J7 * %J %, 0 0 0 : ;&7< :?F7: +?7 % + - , , EEE 30 0 3 0 &? ;&?7< &)7F&)6 0) !1 0
Ü7: -# + D
$*$ ( :) 06 ! 0 , 0 0 ?7 ;&6< 23F6 0 26 / 0 % * / &26 *) ' 1 * Ü77 -# + D
$*$ ( :) *2 ' 1 * ,H I 0 &&? ;&2< &3&F:&& !7 % ! % 1 =$ &7 6: $ , ".C %, , 0 5 0 0 )? ;&6:< &?&F&26 !: ' , 0 @ ! !, / > ! &: B6 $ N B " , .C %, /0 < . 0 1 0 ;&6< 3F6& Chapter 13: Network Flows and Related Problems
"2? ", ( K 0 /0 0 &3 ;&2?< ))F)23
B.2
References
707
"'3: ", * 0 ' , , , Æ. K , / & ;&3:< :)6F:2) "3 ! " $ , ! ( &3 9 92: + * 9 # * 9 " "# ( 5 ( &2: 'J &2 # 'J 5J #, 0 0 0 33 ;&&2< )?7F)2? 036 " 0 "# 0 # &36 (&6& ( # J
0 &? ;&6&< &7F :: !: ' , 0 @ ! !, / > ! &: Chapter 14: Graphical Enumeration
1 ' ( 1 " , ( : 1) * 1 9 " ( %
:) %(37 9 % " 0 ( , 2 , ( &37 ( 73 ( ' , I ,, $, 8
26 ;&73< &)?F:?) Chapter 15: Algebraic Specification of Graphs
$2 + $ , , , 0 : ;&2< )?&F)3 33 + /
, , 0 &6 ;&33< :37F:67 +: 9 + 0 ' , &: Chapter 16: Non-Planar Layouts
32 ! * + $ , /0 0 0 3 : ;&32< :67F77 #22 * # , 1 , 0 /0 0 &6 ;&22< 6&3F6::
708
BIBLIOGRAPHY
"2 ", ,
0 0 0 3 ;&2< .2)2 "2? * ", - /0 1 0 0 30 0 3 ;&2?< &:&F&:7 9066 0 9 + + 0 9 ,,,. , / 7? ;&66< ?:7F?7) 3) + 8 0 ;&3)< :7F:)2 37 + ! * 1 , 30
0 0 0 3 ;&37< ):F)? 3) + ! * /0 0 0 3 &3 ;&3)< :&6F:77 33 + /
, , 0 &6 ;&33< :37F:67 63 + / # :& ;9 " / .E &63< 27 / - , $ 30 0 0 0 2 ;&27< :3:F:3? %&6& + %4 5J ( , @ 0 76 ;&6&< )33F?6 @ !/3& " @ 1 0 ! / - ,,, /0 0 0 3 && ;&3&< :?6F:23 @ *!/3: " @ * # * 1 0 ! / ' . , ,,, /0 0 0 3 &: ;&3:< :2F:23 6 $ , , @(. , /0 & ;&6< ?26F?32 Appendix
$ 3& ! $ , , 0 (
= '&> ;&3&< &?&F&?6 "3 ! " $ , ! ( &3 3 0 * # ! / % 9, &3 /62 % ! / $ (.%
&62
SOLUTIONS AND HINTS
Chapter 1 Introduction to Graph Models 1.1
Graphs and Digraphs
!
709
710 1.2
Solutions and Hints
Common Families of Graphs
"
!
"
!
'
" ( )
" *
+ ,- .
1.3
# $% &
"
. (*
)
( )
(* /)
( )
(* /)
Graph Modeling Applications
! /
0 1 2
3 ! 4 . 0
5 0
1.4
. .
Walks and Distance
6 7 . 8
()
! .9 2 ! .9
()
" /
() "
8 2
.
( )
"
2
:
- .9 - .9 - .9 .9
. .9 .9 /
711
Solutions and Hints
'
. 0
&
0 0
1.5
Paths, Cycles, and Trees
; .9
.
1
<
'
.
.9
/ 2 -
: . .
.9
$ 7
& & 5
. 7
1.6
Vertex and Edge Attributes: More Applications
(
*)=
+
. . 0 . . > . 0 .
5 4
? *
@ ! * / * .
0 7 . (
& .9>. (
*/ )
*/ *)
Æ
6 7
. .
()
Chapter 2 Structure and Representation 2.1
Graph Isomorphism
712
Solutions and Hints
2.2
A A A
A A A
Automorphisms and Symmetry
()()(
8 .
)
" ()()( )( ) " ()()(
)
0 . 7
0 ; . 0 0
(?
* )
" / ( . /
. / * )
2.3
A
Subgraphs
B
(!)
"
A
()
"
" " /
() 2A / () ()
#
" / ()
()
7
# $ *? .
8
;
.
$
6
$
;
713
Solutions and Hints
2.4
Some Graph Operations
A
A
2 / **
8 ;
C
!
2.5
C
0
.
0
;
%
6 . / < 2 & . * / ;
Matrix Representations
&
"
*
*
*
*
*
*
A
*
;
"
*
*
*
*
*
*
*
*
*
*
;
Tests for Non-Isomorphism
2.6
<
714
Solutions and Hints
&
"
*
*
*
*
* *
A
% .
& D E "
( * * *) ( * * *) " /
& D E "
( * ) ( ) "
2.7
More Graph Operations
*
*
*
*
*
*
*
*
*
*
7 0 % *% .
;
. *%
"
715
Solutions and Hints
Chapter 3 Trees 3.1
Characterizations and Properties of Trees
.
.
.
.
$% & F / * /
"
"
# F / * 3 . ;
'
. .
<
'
'
'
,
'
C
# F / * 3
0
3.2
. 0
&
!
Rooted Trees, Ordered Trees, and Binary Trees . / . .
.
.
.
0
716
Solutions and Hints
8 .
**
& .
. .
< . 8 . ( ) . . < . .
(()
* * *
" (
3.3
*) C
* "
*
(()
" (( *) C * ,
Binary-Tree Traversals
3.4
7
* / G3?*A
* G3 /?*A
G3 ?*/* HCC
7
CCH
Binary-Search Trees
. .
*/ /
/ *
* 3 * 3?
+ 9
717
Solutions and Hints
3.5
Huffman Trees and Optimal Prefix Codes
" ***********A
3.6
" ************
Priority Trees
3.7 Counting Labeled Trees: Prüfer Encoding
* * / * /
$
3.8
1
Counting Binary Trees: Catalan Recursion
"
C
C
* 0 .
C
" * "
718
Solutions and Hints
$
*
. < . <
*
#
( )= " ( )(
*)(
2
=( *)( /) (/)(*)
) (/)( )(*) "
Chapter 4 Spanning Trees 4.1
Tree Growing
)
. .
4.2
Depth-First and Breadth-First Search
719
Solutions and Hints
4.3
Minimum Spanning Trees and Shortest Paths
. " /
4.4
Applications of Depth-First Search ! 7 . .
() * (()
( ) * ()
- *
720
Solutions and Hints
4
. .
- *
4.5
Cycles, Edge-Cuts, and Spanning Trees
8 7 *()
. . . .
(
. .
)
8 7 *()
. . . . . .
. 7
*()
.
.
.
- .
.
(. 7 *
) .
.
. . 7 . *() .
- .
.
*())
.
.
(. 7
.
7
*() .
'
0
$
;
$
. 0
- 8
.
721
Solutions and Hints
4.6
Graphs and Vector Spaces
()
$ 7
( *())
8
"
C
$
()
(
*())
8
" C
8
"
*
*
*
*
*
* **
5 .
0
. 2 . .
! 7
.
()
()
** .
4.7
Matroids and the Greedy Algorithm
& . . 9
%
;
; &. (
)
8
.
722
Solutions and Hints
&
.
(&) + (% )
&
&
%
%
&
& " () ( ) ( ) % " . ' ) ( ) + ( ) () (&) + (% )) , & " % " & % % , () ( ) + ( ) . ) ' .
Chapter 5 Connectivity 5.1
Vertex- and Edge-Connectivity
-
, ()
"
*
, ()
"
- 7 0
0 . . -
, () " , () "
*
/
8
* *
I5 8
* * ( -
1 D-13E )
& "
, () , ()
2 1
5.2
& @%
/
Constructing Reliable Networks
6 1 ' . ' 2 . ' ' * . #
723
Solutions and Hints
5.3
*
Max-Min Duality and Menger’s Theorems
# -
"
. 0
.
5
.
. . 0
"
5 0
/ * 5
- .
0
.
8 *
'
.
, - * " " 0 ; < 0 & $ " ! 0 0 0 0 ; $ . 0 * " " . " "
.
5.4
Block Decompositions
%
"
7 9
%
"
%
"
%
"
%
9 . .
"
724
Solutions and Hints
, / * 3 2
9
.
%
$ .
%
0 0 . 0 . 0 . 7 .
8 . . 9
8 9 . . 9
*
; 9 9
9 . 9
Chapter 6 Optimal Graph Traversals 6.1
Eulerian Trails and Tours
/
&
. . 2
*
-
"
- " " ) ( A ) (
! * * . $
. . ' * ) ! - " '
'
*
"
-
"
"
A - "
* ) !
* ) !
* ) !
725
Solutions and Hints
- '
'
"
.
.
. .
C
- . - - . & $ - - - 2 - &
+
7
:
2
-
-
!"
-
- - - & $ - - : - &
+
* /
.
.
.
! .
!
'
9
&. .
! * * ( $ * * )
-
"
*
"
A
"
A
/
-
"
-
"
-
"
" ( ) A ( )
! * * ( $ * *)
-
2
-
"
-
7
( )
-
"
.
( )
; . . ;
726
Solutions and Hints
8 8
6.2
.
DeBruijn Sequences and Postman Problems
! < ( ),0 2 7
. 2
************
************
2 ( ),0 2
********
.() .() .() ( () " *() $ .( ) . ,0 ; .( ) &.
$
.
$
"
/
*
. < 2
7 . . .
/
"
. */
. . */ .
$
.
. . ! ! * * . . GG
& - * * /
727
Solutions and Hints
.
*
#-
.
- -!!IA
/ .
.
-#IA
!!I-A
. .
6 .
II#
#- :! -!!I-#II#-
(. ) . .
<
6 2 .
. $
%) 8 . 2 % .
< 2 ( * / */* */* / *
< . 7 7 2 ** //// */* ** /// *//* * / **////* * // *///**
6.3
Hamiltonian Paths and Cycles
8
6.4
C
) (
.
) * ( 1
-
7
Gray Codes and Traveling Salesman Problems 8 I $ *
2 7 * 2 . . I * ** * ** *** ** * ** *** **** *** ** *** ** *
728
Solutions and Hints
. . . . ?
*
. . .
. . / . .
!
;
. . 2 .
7 (! *) .
9 . 8 7 $ / . .9 . 1. . G ? 7 . < / ;
* /
. .9
Chapter 7 Planarity and Kuratowski’s Theorem 7.1
Planar Drawings and Some Basic Surfaces
( )
& D(
) ( * )E " (
( * )
( * ) C
)
(
" .
)
" A (* )
(
( * ) C
(
)
)
( * )
( * )
C (
)
C
"
.
"
A
729
Solutions and Hints
7.2
Subdivision and Homeomorphism
& .
.
F
.
0 . . 0
7.3
. . 0 ; .
. 0
.
Extending Planar Drawings
!
0 JK
! .
6
0
.
7.4
.
.
Kuratowski’s Theorem
; 7 .
.
9 0
730 7.5
Solutions and Hints
Algebraic Tests for Planarity
() & 5 " / C C
()
(
()
" /
"
()
0
" G
" /
0
" * "
( 0 " / / G "
" /
()
C 0
"
G
"
G C / "
& 5 . . .
/
, $ /
; .
$ . 0 ()
0
4 2
/
7 2
7.6
/
1.
" *
" G
Planarity Algorithm
9 8 &G .
; 9
7.7
Crossing Numbers and Thickness
! G G /
731
Solutions and Hints
Figure Sol7.6.2
, G G
1 ()
1 ()
, G G ?
2( )
*
3 C " 7
7
Chapter 8 Drawing Graphs and Maps 8.1
The Topology of Low Dimensions
()
6
"
*
*
*
2( )
732 8.2
Solutions and Hints
Higher-Order Surfaces
! 7
( )
+ + *
; 7
() ()
;
JK J.K () ()
8.3
Mathematical Model for Drawing Graphs
8.4
Regular Maps on a Sphere
8.5
Imbeddings on Higher-Order Surfaces
733
Solutions and Hints
F
. LG .
$ $ 3
2.
2
>
3
7 . . > 0
Æ
*3
! 3
Chapter 9 Graph Colorings 9.1
Vertex-Colorings
8.
734
Solutions and Hints
8. .
$ ? * G
7
; .
; . *
;
4 * *
. /
0 . 0
8 . 0 . .
& . . 0 0
*
0
! . 0 27 ! *
. 2 *
6.
2
9.2
Map-Colorings . 0
735
Solutions and Hints
B 1
! & !
. M . @ M . .
9.3
& 0
Edge-Colorings
& / /
* !
! I . . #
736
Solutions and Hints
. .
( . . / . . .
) & .
.
. 0
1.
.
9.4
Factorization
'
C '
$ ? *
Chapter 10 Measurement and Mappings 10.1
Distance in Graphs
( ) 8
"
2
2
4
8
2
8
( ) 2
& .
( )
10.2
() ()
&
() () C *
# 2 .
()
Domination in Graphs
($ )
F /
($ )
"
"
A
( ( ( ( ( (3
($)
($)
* )) " * )) "
* )) " "
"
( ( * ))"*A ( ( * )) " A ( (3 * )) "
/
"
737
Solutions and Hints
10.3
Bandwidth
(. ) "
/
& *
(.
. .
*)
. .
. . *
& * (.
. . *) . .
10.4
. 7
Intersection Graphs
'
($ )
"
2 2 * *
2
7
.
10.5
" 5(/ ) " * ((/ ) / 6 7 " 5( ) * ) + " '
'
Linear Graph Mappings
+
$
& $ *
.
738 10.6
Solutions and Hints
Modeling Network Emulation
'
. 7 .
/
6 3
3
7 . 3
@
&
J
K ( C *)
.
/ . / 0 . 7 5 .
Chapter 11 Analytic Graph Theory 11.1
Ramsey Graph Theory , ** *
(/ ) ( ) C (/
- ** *
(/ )
/C
)
* " C *
* " *?
,
739
Solutions and Hints
(/ )
11.2
"
C
Extremal Graph Theory
11.3
(
) " /
Random Graphs
*C
" *
( )
"
G . ( )
( )
"
G
" *
!
(& $ ** / * )
Chapter 12 Special Digraph Models 12.1
Directed Paths and Mutual Reachability
. .
! * * * . . .
$ 7 9 9 7 7
740
Solutions and Hints
C *
* *
. .
! .
@9 8 * * G
/
. <
@
. 9 . .
/
*
/
*
C
*
"
.
G
*
*3G
*3G
/G /G
*
! .
< /
/ * / A
/ *
A
/ *
A
/
,
9 .
"
C
C
C
"
; . @9
.
&. .
. . .
12.2
Digraphs as Models for Relations &
.
741
Solutions and Hints
"
( "
)
1 . . /
2
/ ? 3 G
. 2
12.3
Tournaments
&
< /
. . . .
$
. 7 .
7
/
7 2 7
Æ
Æ
. ? *3
Æ G . 7
8
.
&
* 8 . 2 (. - * / /) . .
742
Solutions and Hints
; . . .
. .
12.4
Project Scheduling and Critical Paths
; !6! .9 . . $
' . $
- ()
*
.- ()
/
*
*
*
*
*3
*3
G
*
*
3
/
/
0 / ; >
9
.- ( ) - (*) ()
"
" *
& 5
.
&
& 7 "
" *
. .
! . .
& . .
)
$
)
9 7 .
9.
)
7
- 0 -
.-
+9
12.5
Finding the Strong Components of a Digraph
. 7 . ;
;
-
- 9 9
743
Solutions and Hints
: $ *
-
/
/
;
-
&
A A
! *
&
Chapter 13 Network Flows and Applications 13.1
Flows and Cuts in Networks
. 7 .
. >.
1 - */ * G
7 >.
-
/
9 .9 .
. 8 9
-
. . *
! J K
J 9K
<
.
8( )
/
2
( )
2
& 9
/ - .9 / (/ ) " GA (/ ) " *A ( ) " /A ( ) " A ( ) " /A ( ) " GA () " A ( ) " A ( ) " /A ( ) " A ( ) " /A ( ) " ( - ) " A ( - ) " ?A ( - ) " 3 8 / - >. .9 ! *G
! >.
&
.
.
2
.9 .
.
.
744
Solutions and Hints
.
.9 .
.
13.2
# F */ * / - */ * G
Solving the Maximum-Flow Problem
! 2 2 >. . .
& . >.
745
Solutions and Hints
13.3
Flows and Connectivity
$
. *
9
.
! >.
/ .
7 >. *
. . 2 /
0
8 $ */ / * . 9.
, ( ) " / , () " /
, ( ) 3
$
"
,(
) " /
" / &
. . *
, ( )
.
! >. /
>. * 0
, ( )
- */ / *
9
" /
. 0
; . $ */ / ?
/ . '
/
, ()
, ( )
"
" /
& >. * . * ( ) " ( ) " & ( ) ( ) . 7 >. ' .9 3 6 >. * >. 7
;
3
3
; .9
N * .9 3
3
.
3 ( )
"
/ * ;
(
746
Solutions and Hints
$ */ * * ) ; >. < . >. Æ 5
13.4
Matchings, Transversals, and Vertex Covers
>. .9
. .
. >.
/
*
! . .9
. >.
6 1%
.
'
( *) (/ ) ( ?) (3 *) ( G)
* / 3
9
() 3 ( )
&
2
, 2
3 ( )
Æ
()
() 3 ( ) O 3 ( ) Æ
. . 1% 7
$ */ *G
. ;
"
()
()
"
9
3 ( )
747
Solutions and Hints
$ * PQ $R
*/ / */ ?
N .9 (F : " : . . : ! . '
N */ G) :
; . 9.
. . . 9.
Chapter 14 Graphical Enumeration 14.1
Automorphisms of Simple Graphs
4 &
()( )( )()
5>
()( )(
4 ()( )( ) (
) ( ) ()( ) ( )( ) ( )( )
=
=/=
=/= =
14.2
$
Graph Colorings and Symmetry
()()( )( )
)
()( )(
$ ()()( ) (
) ) ()( ) ( )( ) ()( ) (
)
748
Solutions and Hints
/?
"
"
*
.
/
*
.
. . 9
*
. 9
*3
14.3
"
. . 9 /
*
.
/
Burnside’s Lemma
()
"
7
( )
"
7
( )
"
7
(
)()()
()
"
7
(
)()()
0 ()()()() 0 ( )()()
" #
/
"
*C*C C " C 8
C C / "
* "
C
8
"
()
"
7 ()( )
( )
"
7 ( )( )
( )
"
7 ( )( )
0 ()()()
"
0 ( )()
"
"
"
"
"
0 ( )()
0 ( )() 0 ( ) 0 ( ) *
C C " /C*C*C*CC 8 "
*
C "
C
" *
" /
" #
"
749
Solutions and Hints
14.4
. $ * / / . $ * /
Cycle-Index Polynomial of a Permutation Group
*
)
&
*
)
&
*
( C
*
( C
"
"
* *
( C
( C
)
)
&
&
G
* 9.
1 * G ( )
750
Solutions and Hints
14.5
More Counting, Including Simple Graphs
"
( )
"
* * * *
C C
(/ /)
C
"
"
*
C
/
* *
/ C */
*
/ C C 3
*
//
C
*
"
C
"
3
/
C *
"
/?
-7 . . * . . * . .
.
/
. *3
! / . ! / . *
14.6
. 9 $ * / * $ * 3
˝ Polya-Burnside Enumeration .
C
C
C
(/ /)
"
"
* *
C
C C
C
C
C
C
C / / / C /
/
G C G C
"
*
751
Solutions and Hints
Chapter 15 Algebraic Specification of Graphs 15.1
Cyclic Voltages
!
9 9
2
%
. *
.
* ( )
752 15.2
Solutions and Hints
Cayley Graphs and Regular Voltages
& * /
.
- . 9 9 .
JK
: L? 9.
# (
)( )( )( )
(
15.3
)( )( )( )( )( )( )( )
Permutation Voltages
753
Solutions and Hints
( ** **)(* *** *)(**)(*)
(*)
15.4
Symmetric Graphs and Parallel Architectures
15.5
Interconnection-Network Performance
(. )
"
(: . ) "
/
( )
(
C
"
) "
(. ) "
(: . ) "
( )
"
( C )
"
754
Solutions and Hints
Chapter 16 Nonplanar Layouts 16.1
Representing Imbedding by Rotations
(
(
(
(
)(
)
(
)(
16.2
G=
(/=)
Genus Distribution of a Graph
*?
*
G
3
C*
C *
?C
" /
*
" *
" ?
755
Solutions and Hints
16.3
Voltage-Graph Specification of Graph Layouts
F . .
( P4')
0 " 0
"
"
16.4
&
Non-KVL Imbedded Voltage Graphs
F . .
16.5
. 3 . *
The Heawood Map-Coloring Problem
# * 9 9 8 * * / #
;
8 *
756
Solutions and Hints #
;
#
;