1. FOTO FOTOGR GRAM AMET ETRI RIJA JA Metode geodetskog premjera terena kojom se pomoću fotografija terena izrađuju planovi snimljenog terena. Fotografije su fotogrametrijski mjerni snimci ili fotogrami (imaju definiran kordinatni sustav). Fotogrametrija je najbrža metoda snimanja terena i najjeftinija metoda premjera terena. Fotogramaterija Fotogramaterija se djeli djeli na: aero aerofo foto togr gram amet etrij rijuu ili sni snima manj njee iz zra zraka ka!!
"rostorni kordinatni sustav: z
κ
ψ nagib snimke u pravcu snimanja ω nagib snimka u pravcu okomitom na pravac baze snimanja κ zaokret snimka oko vertikale (/orizontale) φ nagib modela (dva snimka jednog stereopara) u pravcu snimanja Ω nagib modela u pravcu okomitom na pravac snimanja
#
ψ φ
$
ω Ω
b x
AEROFOTOGR AEROFOTOGRAME AMETRI TRIJJ A b
TER TERESTIČKO TIČKO SNIMAN IMANJ E STEREO POLJE
b -BAZA SNI SNI MANJ MANJA A STEREO POLJ POLJE E
A
b
B
%sim po mjestu snimanja fotogramaterija se djeli na: foto fotogr gram amat atri rija ja jed jedno nogg sni snimk mkaa fotogr fotogram ametr etrija ija drug drugog og snim snimka ka &' &'%F% %F%'% '%*+ *+M' M',,-+ + rste fotogrametrijski/ snimaka: N''
S a
&
f OS SNIMANJA SNIMANJ A ω
N Nk
T
n ravnina snimka f žari0n ri0naa dulji uljinna kamer ameree 1 kut snimanja ' teren 2 plan3karta
K
4
1 5 67 /orizontalni snimak (teresti8ka fotogrametrija) fotogrametrija) 1 5 967 vertikalni snimka (aerofotogrametrija) (aerofotogrametrija) ećinom se snimaju blago nagnuti ili kosi snimci. N'
Mjerilo snimanja snimanja je odnos žari0ne duljine @k i visine snimanja (leta): h R = 4 : i ck
k
C
0
i
h
N
Mjerilo snimanja definira mjerilo kartiranja: Mk Ms 4:4 666 4: 666 4:; 666 4:< 666 4:4; 666 4:4; 666 4: =; 666 4: =6 666 Metoda Metoda dobivanja dobivanja geod geodetsk etski/ i/ planova planova pomoću pomoću fotograma fotogramatrije trije zasniva zasniva se na >>restituc >>restituciji>> iji>> (obradi dobivenog snimka) kori0tenjem centralne projekcije. ?raka svjetlosti odbija se od to8ke " na terenu pravocrtno putuje kroz to8ku F (žari0te kamere) i pogađa ravninu snimanja & (fotografiju) u to8ki ">. %brada snimka restitucionim instrumentima s ciljem da se dođe do geodetskog plana u ravnini 2 sastoji se u rekonstrukciji položaja to8ke " u ravnini 2! polazeći od slike "> na snimku &. +naliti8ko rje0enje: O(0!"0!z0#
Z
C
S
η ">(ξ,η)
z 0
ξ P(!"!z# z
% " 0
0
"
+ko su koordinate osi zarotirane tada je:
$
A! B kordinate to8ke u ravnini snimka $!#!z koordinate to8ke u zemlji0nom koordinatnom sustavu $CsCup D( !#CsCup D( ! zCsCup D( koordinate centra projekcije to8ke snimanja u zemlji0nom koord. sustavu nazivnik mjerila snimanja
−
=
1 5 67 /orizontalni snimak (teresti8ka fotogrametrija) fotogrametrija) 1 5 967 vertikalni snimka (aerofotogrametrija) (aerofotogrametrija) ećinom se snimaju blago nagnuti ili kosi snimci. N'
Mjerilo snimanja snimanja je odnos žari0ne duljine @k i visine snimanja (leta): h R = 4 : i ck
k
C
0
i
h
N
Mjerilo snimanja definira mjerilo kartiranja: Mk Ms 4:4 666 4: 666 4:; 666 4:< 666 4:4; 666 4:4; 666 4: =; 666 4: =6 666 Metoda Metoda dobivanja dobivanja geod geodetsk etski/ i/ planova planova pomoću pomoću fotograma fotogramatrije trije zasniva zasniva se na >>restituc >>restituciji>> iji>> (obradi dobivenog snimka) kori0tenjem centralne projekcije. ?raka svjetlosti odbija se od to8ke " na terenu pravocrtno putuje kroz to8ku F (žari0te kamere) i pogađa ravninu snimanja & (fotografiju) u to8ki ">. %brada snimka restitucionim instrumentima s ciljem da se dođe do geodetskog plana u ravnini 2 sastoji se u rekonstrukciji položaja to8ke " u ravnini 2! polazeći od slike "> na snimku &. +naliti8ko rje0enje: O(0!"0!z0#
Z
C
S
η ">(ξ,η)
z 0
ξ P(!"!z# z
% " 0
0
"
+ko su koordinate osi zarotirane tada je:
$
A! B kordinate to8ke u ravnini snimka $!#!z koordinate to8ke u zemlji0nom koordinatnom sustavu $CsCup D( !#CsCup D( ! zCsCup D( koordinate centra projekcije to8ke snimanja u zemlji0nom koord. sustavu nazivnik mjerila snimanja
−
=
x x − 6 ξ
y y− = Rλ⋅ η z z− c 6
gdje je E matrica rotacije
6
aerofotogrametriji se mjere koordinate na snimkama te se ra8aunaju koordinate na terenu budući da se radi o beskona8nom beskona8nom broju to8aka! konstruirani su instrumenti restituciju tzv. analogni stereofotogrametrijski instrumenti za automatsku restituciju (autografi). Ganas se koriste softverska rje0enja koja na osobnom ra8unalu izvode postupak! tj. na osnovu dvaju snimaka definiraju se kooridinate terena i izrađuje i zrađuje karta.
ORJENTACIJA SNIMAKA Ga bi se mogao koristiti autograf (ili &H) potrebno je da snimak bude orijentiran. %rjentacija snimk snimkaa je dov dovođe ođenje nje snimk snimkaa u polož položaj aj kak kakav av je imao imao u trenut trenutku ku ekspon eksponira iranja nja snimk snimka. a. %rjentacija se dijeli na: unu unutar tarnju nju E odn odnos os snimk snimkaa i objekt objektiva iva kamere kamere!! vanj vanjsk skuu orij orijen enta taci ciju ju koja koja se se dije dijeli li na: na: o relativnu vanjsku orjentaciju i o apsolutnu vanjsku orjentaciju elativna vanjska orjentacija je dovođenje parova snimaka u položaj kakav su imali kod eksponiranja. +psolutna orjentacija je dovođenje parova snimaka u odnos prema zemlji0nom koordinatnom sustavu.
FOTOGRAMETRIJA JEDNOG SNIMKA &e primjenjuje u ravni8arskim terenima! jer jedan snimak nam nije dovoljan za visinsku predstavu terena. "ostupak transformacije jednog snimka u fotoplan (jedinstveno mjerilo) naziva se G&,+I-.
J
A'
B
B'
SNIMAK
A
TEREN
A' O
T K
B P
P
K B)
B'
A T
B'
A TA
POGRE&KA NASTAJ E ZBOG NEERTIKALNOSTI SNIMANJA
B T
A'
α
P
PPOGRE&KA NEERTIKALNOSTI SNIMANJA
,nstrument kojim se eliminira pogre0ka nevertikalnosti snimanja naziva se G&. 2ada je teren brdovit redreserom nije moguće eliminirati pogre0ke. "revođenjem centralne projekcije u ortogonalnu projekciju mogu će je eliminirati pogre0ke plana. Ga bi se izgradio ortofotoplan potrebno je poznavati (digitalni) model terena tj. visinsku predstavu. "ostupak je prevodi po visinskim zonama tzv. G,FI@,-+KI,M G&,+I-M.
STEROFOTOGRAMETRIJA &tereofotogrametrija je snimanje i obrada istog terena pomoću dva bliska snimka:
P'
P''
SL
S,
Ζ ∆
P P*
P+
?a/valjujući stereoskopskom efektu o8iju moguće je odrediti visinu to8ke koja je snimljena na dvije fotografije koje pokrivaju isto podru8je. ređaj kojim se dobija trodimenzionalnost terena pomoću dvije fotografije sa zajedni8kim detaljom naziva se &'%&2%". Ia ra8unalim se istovremeno prikazuju na ekranu dvije polarizirane fotografije a stereoskopske nao8ale daju JG predstavu terena.
TERESTIČKA FOTOGRAMETRIJA 'eresti8ka fotogrametrija je metoda snimanja i mjerenja fotogrametrijom s tla. 2oristi se kod mjerenja nedostupni/ mjesta (kanjona rijeka! dnevni iskopi rudnika! fasada objekata! praćenje objekata E mostovi). STEREO POLJE b
,nstrument za teresti8ku fotogrametriju naziva se F%'%'%G%K,' E fotografski aparat s mogućno0ću mjerenja /orizontalni/ kutova. Ia osnovu poznate koordinate fototeodolita (lijevog ili desnog) poznate baze i presjekom naprijed moguće je definirati sve koordinate terena u podru8ju stereo polja.
AEROFOTOGRAMTERIJA +erofotogrametrija je snimanje i mjrenje fotografija eksponirani/ iz zraka. +erofotogrametrija je stereoskopska metoda.
;
SMJ ER LETA
0
0 SMJ ER LETA
0.
/Z,/NOG PREKLAPANJA
10.
POPREČNOG PREKLAPANJA
2od snimanja iz zraka do pojave *"& prijemnika bilo je potrebno odrediti orjentacione to8ke na terenu kojima se posredno određivala unutaranja i vanjska orjentacija snimaka jer je bila nepoznata to8ka 6 centar projekcije u terensku eksponažu pojedinog snimka. *"& prijemnikom u kameri moguće je odrediti to8ku % centar projekcije za svaki snimak. M%' &I&,I* (daljinsko istraživanje) je skup metoda koji se veže uz fotogrametrijsko istraživanje (pronicanje) je de0ifriranje fotogafija E aero ili satelitski/ snimaka! koristi se jo0 pojam ,I'"'+@,-+ &I,M+2+. ?a razliku od fotogrametrije gdje je cilj snimka izraditi vektorsku kartu (to8ke! linije! poligoni) interpretirani snimak je raster s formacijom tzv. rasterski gis. &/MA
PA&NJAK
MAKIJ A
D
2. GAUSS – KRÜGER-ova PROJEKCIJA &lužbena kartografska projekcija Lrvatske usvojena je 49=9.godine. *auss E 2rgerova projekcija je matemati8ka funkcija koja jednozna8no povezuje geodetske koordinate na N+&&Kovom rotacionom elipsoidu i pravokuten koordinate na ravnini. *auss E 2rgerova projekcija ima sljedeće osobine: 4. cilindri8na popre8na projekcija! =. komforna projekcija! J. os x je sredi0nji merdijan projekcije! . deformacija dužina je u granicama 4 dm34 km. ;. os y je ekvator * k9 " 2345i678i 9435i8a7
5:
9 5
9 5 * * 9 9 9 k k k * * *
" 51;
Ia po8etnom merdijanu (os $) dužina koja se izmjeri s karte je manja 4 dm po 4 km! odnosno mjerilo na po8etnom merdijanu je 6!999. Lrvatska se proteže od 4J!;7 do 49!;7 isto8ne geodetske dužine! te je potrebno kreirati = koordinatna sustav na 4;7 i 4<7.O "+%2'I 2%%G,I+': '4 (D ;6 666! ; 66 666) '= (D P6 666! ; J6 666) 'J (; ;=6 666! ; J=6 666) ' (; P6 666! ; JD6 666) Ga bi se zadovoljio uvjet 4 dm34 km Qd5J7 i da bi se izbjegle negativne koordinate dodaje se ;66 666 m po y koordinati . ; i D koordinatni sustav zbog lak0eg snalaženja podjeljeni su na redove i kolone. edovi su ozna8avani brojevima od juga prema sjeveru visine 4; km. 2olone su ozna8ene slovima od istoka prema zapadu 0irine ==!; km.
P
"olje 0irine ==!; km a visine 4; km naziva se trigonomterijska sekcija. &adrži ;6 karata mjerila 4:; 666. %vaj na8in omogućava jedinstvenost * ozna8avanja karata: **
>
+*
B** B**
+1 +1
1* *
>0
b3<8
345 b3<8prostora. %G2 ;666 pokriva podru8je =!=; $ J km odnosno ; cmz<74 $ D6 k<=<7a cm! korisnog ka3?4
*
+
1
*
*@
2arta 4 : 4 666 ima nomenklaturu: ; N44 E =J E D Nroj karte u %G2 ; 666. "lan (karta) 4 : 4 666 pokriva podru8je P; $ ;6 cm korisnog prostora lista ili P;6 $ ;66 m.
*
GEODETSKA OSNOVA ?adatak geodezije je izrada planova i karata i kontrola objekata na terenu! pomoću mjerenja na terenu. -edini na8in je da izvedemo mjerenje te ucrtamo i/ na planove je taj da mjerenja izvedemo s geodetski/ poznati to8aka (osnove) a zatim ta ista mjerenja ucrtamo na kartu s poznati/ to8aka ucrtani na kartu. *eodetska to8ka na terenu Q mjerenje geodetska to8ka poznata po koordinatama Qra8unanje *eodetska to8ka na terenu Q ucrtavanje Ia starim planovima ucrtavanje novi/ objekata se izvodilo uklapanjem! a mjerenje se izvodilo sa stari/ objekata. modernom s/vatanju geodezije uspostavljaju se stalne geodetske to8ke kao geodetska osnova. STALNE GEODETSKE TOČKE SU POZNATE PO KOORDINATAMA STA!ILIZIRANE I OZNAČENE NA TERENU I UCRTANE U PLANOVE ILI KARTE. Ia stalne geodetske to8ke vežu se sva geodetska mjerenja. Ga se smanje pogre0ke mjerenja i ra8unanja geodetske to8ke su grupirane u redove po to8nosti. Nudući da se posebno ra8unaju mjerenja koja se odnose na situaciju ($! #) a posebno na konfiguraciju (z) geodetske povr0ine se dijele na: 4. &,'+@,%I *%G'&2 '%R2 to su trigonometrijske i poligonske to8ke! =. ,&,I&2 *%G'&2 '%R2 ili ", Ia po8etku premjera teritorija (npr.: Lrvatska) potrebno je izmjeriti manju koli8inu to8aka (=6 E J6) koje će pokriti cijeli teren i zajedni8ki izra8unati koordinate navedeni/ to8aka. 'o su <
najpreciznije izra8unate to8ke a pokrivaju najveći teritorij. 'o su trigonometrijske to8ke prvog reda i postavljaju se na udaljenostima d S=6 km. ?atim se to8ke progu0ćaju s to8kama drugog reda koje pokrivaju manji teren pri ra8unanju se oslanjaju na to8ke prvog reda koje se smatraju apsolutnim. 'rigonometrijske to8ke dijele se po principu IZ VELIKOG U MALO na trigonometrijske to8ke: 4.G+ =.G+ =."%"I-++-T* J.G+ J."%"I-++-T* .G+ daljenost između to8aka 8etvrtog reda je 4 do km. A 5*
M-I- ',*%I%M',-&2,L '%R+2+
γ 1
α 4 α1
γ 4
β 4
β1
α2
β2
λ3
β3
γ 2
γ 3
'rigonometrijske to8ke zatavaraju mrežu trokuta. Mjerenjm kutova u trokutima određuje se oblik mreže! a mjerenjem minimalno jedne dužine mjerilo mreže. Ga bi se odredile koordinate to8aka potrebno je izra8unati koordinatu barem jedne to8ke. 2oordinate se određuju astronomskim mjerenjem zvijezda. @ijelu mrežu je moguće rotirati oko jedne poznate koordinate te je potrebno odrediti + (azimut). +?,M' je kut 0to ga zatvara izabrana dužina s pravcem merdijana. %dređuje se astronomski. a8unanje koordinata trigonometrijski/ to8aka. a8unanja se izvode na osnovu mjerenja kutova u trokutu odkud je i dobio naziv trigonometrijske to8ke. Ganas se sve 8e0će mjere stranice trokuta. 'akva mjerenja se nazivaju ',K+'+@,-&2+ M-I-+. 2od mjerenja dužina do pojave elektroni8ki/ daljinomjera trebalo je ru8no izmjeriti baze ',+I*K+@,-. * β
β1
9 0 k γ + ( 5
b
α1 γ 1
b5 mjerena baza! b5 D km na osnovu kutova posredno se ra8unala baza
α
9
OZNAČAVANJE I SIGNALIZIRANJE TRIGONOMETRIJSKE MRE"E ?bog zakrivljenosti ?emlje potrebno je trigonometrijske to8ke izabrati na vr/ovima brda (u8ka). ravni8arskim podru8jima trigonometrijske to8ke se biraju na vr/ovima tornjeva ili zvonika. +ko su to8ke u nizini! signalizacija se izvodi sa tornjevima do 46 m visine (ekstremno do J6m). &tabilizacija trigonomterijski/ to8aka se izvodi s dva podzemna i nadzemnim centrom.?a 4.red ?+4.G (5# 5**0 )9
10-0 )9 50 )9
=.G+ =; $ =; $ P; cm J.G+ =6 $ =6 $ D6 cm .G+ 4; $ 4; $ D6 cm
*0 )9 0 )9 *0 )9
?a svaku izra8unatu trigonometrijsku to8ku izrađuje se formular sa skicom trigonometrijske to8ke trig.for.=P E gdje je navedeno vrijeme opažanja! na8in stabilizacije i signalizacije te skica za lak0e pronalaženje na terenu.
46
#. GEODETSKE PODLOGE ZA PROJEKTIRANJE "odloge za projektiranje su: geodetski planovi topografske karte
To$o%&a'()* )a&+* su izrađene u sitnijem mjerilu. G*o,*+() $a/ov se izrđuju u krupnijem mjerilu. 'opografske karte pokrivaju veću zemljinu povr0inu. *eodetski planovi pokrivaju manju povr0inu. 2arte su deformirana slika povr0ine! planovi su nedeformirani. "lanovi Q zemlja ravna 2arte Q zemlja rotacioni elipsoidi Po0a 0*&a ,zmeđu dužine na planu (karti) stvarne veli8ine te dužine u prirodi . 2rupno mjerilo Q krupan detalj &itno mjerilo Q sitan detalj "lanovi su izrađeni u krupnim mjerilima 2arte su izrađene u sitnijm mjerilima 4: 4 666 4 : 46 Q 4>5=67 4: = 666 4 : =<<6 Q 4>567 4: ; 666
OSNOVNA DU"INA KARATA ODK3 Ia svim planovima iscrtana je situacija na %G2 ; 666 situacija i konfiguracija. &lužbene fotografske karte L: 4: =; 666 '2 =; 4: ;6 666 '2 ;6 4: 466 666 '2 466
Ia kartama su iscrtane situacija i konfiguracija
POJAM RAZLUČIVOSTI azlu8ivost je mogućnost prepoznavanja i mjrenje detalja na karti ili planu. eća razlu8ivost Q krupnije mjerilo Manja razlu8ivost Q sitniji detalj Q sitnije mjerilo %visno o tipu projekta izabire se karta ili plan kao podloga projektiranja. ,dejni projekt karta sitnijeg mjerila *lavni projekt plan krupnijeg mjerila & kojom to8no0ću se može o8itati koordinata ($!#) detalja s karte3plana. 'o8nost ovisi o: 4. mjerilu! =. to8nosti o8itanja. 44
'o8nost o8itanja je empirijska vrijednost. "rocjenjuje se da to8nost o8itavanja 6!= mm *rafi8ka to8nost plana je 6!= mm $ M 4: 4 666 U6!= m 4: ; 666 U4!6 m 4: =; 666 U;!6 m
rijednosti se odnose na situaciju ($!#)
GRAFIČKA TOČNOST PLANOVA ZA KOORDINATU VISINE 'o8nost o8itanja visina je V;6W lo0ija od to8nosti o8itanja situacije.'o8nost o8itanja ovisna je od: 4. gustoće slojnica =. ekvidistanci 2,G,&'+I@+ (e) je visinska razlika između susjedni/ slojnica. e (%G2) 5 ; m e (%G2) 5 46 m
46 =6
DEFORMACIJE TOPOGRAFSKI4 KARATA 5 PLANOVA Medij na kojem je iscrtan plan 3 karta je podložan promjenama veli8ine usljed:
temperaturni/ razlika promjena vlažnosti zraka
Geformacija papira 3 folije uslijed navedeni/ razloga naziva se &L. X$ Geformacija po $
' '. '>
X# Geformacija po # X# '> X$ '
&L %,&, %G: 4. Medija (papir! folija) =. kavliteti medija J. promjenama okoline
4=
KOREKCIJA USU4A 4: 4 666 466 m 4: ; 666 ;6 m 4: =; 666 6 m
"'+ + '
k3iz4i k<<35i7a?74 934z4
' 0 0 A
466 99
*
"'*
y >4 + y > = = 99!6
× y >4 = y4
0 0 @
A"URNOST PLANOVA %sim geometrijske to8nosti planovi 3 karte trebaju odražavati stvarno stanje u prostoru. 2valiteta planova se procjenjuje na osnovu navedeni/ parametara. *odina izdavanja karte je otisnuta izvan okvirnog prostora karte kao i izvornik karte! te godina snimanja i metoda snimanja.
SADR"AJ PLANOVA 5 KARATA &vaji plan3karta sastoje se od: 4. =. J. .
2%%G,I+'I, MY+ (*%M',-&2,) *%M',-&2, %NK,@, (*+F,R2,) +I%'+@,- ('2&') 2+'%*+F&2, ?I+2%, (&,MN%K,)
%blici i objekti terena na kartama se predstavljaju usvojenim kartografskim znakovima. 2artografski znaci su osnova za 8itanje karte ili plana. Ia planovima u krupnijem mjerilu kartografski znakovi se iscrtavaju u mjerilu karte. ZNAKOI ISCRTANI / MJERIL/
Ia kartama u sitnijem mjerilu simboli se ne mogu iscrtati unutar geometrijskog oblika i mjerila te se geometrija naru0ava a pojedini geometrijski oblici *I+K,?,+-.
4J
@esta u mjerilu 4 : =; 666 Iacrtana 4 mm 0irine u stvarnosti P E < m ZNAK ISCRTAN IZAN MJ ERILA
,zuzetak su karakteristi8ni objekti koji moraju prikazati na palnovima neovisno o mjerilu (usamljeno stablo i sl.)
IZVANOKVIRNI SADR"AJ KARATA &ve karte izvan svog okvira sadrže: 4. =. J. . ;. D. P. <. 9.
I+?, 2+' *%G,I+ ,?G++I-+ 2+' ,?%I,@, 'M+R 2+'%*+F&2,L ?I+2%+ M-,K% 2+' I%MI2K+'+ 2+' "%-2@,-+ 2+' 2,G,&'+I@+ M'%G &I,M+I-+ ,?%I,2+
I%MI2K+'+ 2+' je usvojena metoda po kojoj se određuje položaj karte u sustavu službeni/ karata.
DIGITALNA KARTOGRAFIJA "GI%&',:
ubrzanje izrade (ažurnost) pojeftinjenje izrade pobolj0anje kvalitete karata nove mogućnosti izrada (npr.: preklapanje sadržaja karte razli8iti/ projekcija) povezivanje geodetski/ mjerenja s drugim znanstvenim disciplinama direktni unos podataka s terena (integracija *"& i *,&a)
I*+',I%&',:
poznavanje vi0e disciplina! znanje (LH! &H! periferija! baza podataka! opća informatika)
VRSTA KARTOGRAFSKI4 PODATAKA %"TI,'%: 4. to8ke =. linije (polilinije i linije) J. povr0ine! regije 4
'," "%G+'+2+ 4. geometrijski podatci =. grafi8ki podatci J. opisni podatci *eometrijski podatci su to8ke! linije i povr0ine (poligoni). %ni mogu biti u vektorskom i rasterskom obliku. 2'%&2, *%M',-&2, "%G+@, 'o su podaci koji su opisani karakteristi8nim to8kama poznatim po koordinatama.
T+(+!"+# T*(*!"*#
• •
T(!"# T1(1!"1# T+(+!"+# T*(*!"*#
linije su niz to8aka definirane po8etnom i zavr0nom to8kom i to8kama preloma poligoni (povr0ine) su definisane zatvorenim linijama
asterski geometrijski podatci E to su podatci zasnovani na povr0inama. %snovni element je povr0ina ",2&K (picture element E slikovni element). "oložaj svakog piksela određen je redom i stupcem u slikovnoj matrici.
*rafi8ki podatci kartografskog prikaza su podatci o prikazu npr. tip linije! debljina i boja linije ili to8ke! 0rafure! kartografski znaci. %",&I, "%G+'@, (+',N',) 'o su svi negeometrijski podatci i tekst! brojke! svojstva! nazivi (npr. kućni brojevi! vlasnici)
4;
STROJNA OPREMA 463 &trojna oprema sastoji se od:
ra8unala digitalizator ploteri skaneri
4. G,*,'+K,?+'% je uređaj za pretvaranje grfi8ki/ orginala (analogni podaci) u digitalni oblik ru8nim unosom. &ustav mjerenje sastoji se od guste mreže međusobno okomiti/ žica u smjeru $ i #. 2likom na pokaziva8u se određuje pozicija $ i # u koordinatnom sustavu digitalizatora!unosi u memoriju ra8unala kao vektor to8aka. nutra0nja to8nost digitalizatora mora biti veća od 6!= mm.
PLODA SA NARE,BAMA
PACK POKAZIAČ
PLODA ZA ,IGITALIZACIJ/
=. &2+I, ili automatski digitalizator je rasterski digitalizator jer je rezultat skaniranja rasterska datoteka.
A, PRET
L O A , E L O G
OPTIKA ,OK/MENT
eća koli8ina celova po povr0ini veća rezolucija je definirana s G",. 2olika je rezolucija dovoljna za topografske karteZ
4D
&kaneri se dijele na:
jednobojni (@3N i siva skala) skeneri kolor skaneri
'ipovi skanera: &'%KI,! %'+@,-&2,! RI,! ,G% 2+M "K%',: Gijele se na:
vektorske (zastarjeli) plotere rasterske plotere
asterski ploteri:
laserski ink jet
2artografski ispis ( boje) +4 ili +[ format. 2oriste se ink jet ploteri. PROCESIH *
KARTA PLAN
SKANIRANJE RASTER
EKTORIZACIJ A NA EKRAN/ EKTORI ,B
+
,IGITALIZACIJ A ,O,ATNA OBRA,A EKTORI ,B
&kaniranjem se generiraju rasterske datoteke formata ',F! *,F! -"*. eli8ina karte ; $ D6 cm (%G2) u ',F nekompresiranom formatu s 66 G", i =;D boja je V 6MN! ista karta @3N K@ formata 66 G", V J MN. "o/rana rasterski/ datoteka na @G E %M medijima. ?a %G2 Lrvatske potrebno je V ;66 @G E %Mova\ GG medij ZZZ ektorizacija smanjuje memorijske za/tjeve. "roces pretvorbe ovisan je o ljudskom radu. "otrebno je približno 46 radni/ dana za vektorizaciju %G2.
4P
O!RADA RASTERA asterska datoteka se treba transformitrati iz koordinatnog sustava skanera u zemlji0ni koordinatni sustav.
1!+
*!*>
1!*>
- PASERI - TIC-<i - KRIEI KO, MREE
>>11+*! >00+1*
?a prikaz vi0e karata istovremeno! potrebno je iz datoteke izrezati izvan okvirni sadržaj. "ostupak se naziva *2%G,+I- 2++'+.
4. '+I&F%M+@,-+ +&'&2,L 2'%&2 "%G+'2
4. RI% & 2+I+ =. "%K+'%M+'&2, J. +'%M+'&2, ('%,-+) "otrebno je s ekrana iscrtati odgovarajuće vektore.
4<
"rogramski alati koji se koriste su:
+'%@+G ] @+G %K+^ ] '+@ M,@%&'+',%I ] (+& N )3+& @ +@ ,H +@ ,IF%
=. 2'%&2, @'Y '+I&F%M,+', 2+'%*+F&2 "%-2@,- J. G%G+', +',N' E %",&I "%G+'2 *%M',-&2,M 2'%&2,M "%G+@,M+
7. GEODEZIJA *% E ?MK-+ G?,& E G,-K,', ?nanost u dana0njem smislu pojma znanosti definira se tijekom 4<.stoljeća određivanjem oblika zemlje. *eodezija se bavi: određivanjem oblika ?emlje kao planete! premjeravanjem svi/ umjetni/ i prirodni/ oblika na povr0ini zemlje prou8avanjem metoda premjera prou8avanjem instrumentarija vezanog uz premjer preno0enje na teren projekata i nji/ovo praćenje eksploatacije Ia osnovu navedenog geodezija se dijeli na: vi0u geodeziju prakti8nu geodeziju fotogrametriju kartografiju inženjersku geodeziju geoinformatiku ?nanosti na koje se geodezija oslanja su: 4. matematika =. trigonometrija J. astronomija . fizika i geofizika ;. statistika D. optika P. elektronika <. i telekomunikacije
49
GEODETSKA DJELATNOST U R4 &ve službene karte i planovi L se izrađuju ili ovjeravaju od državane geodetske uprave (tijelo vlade L) odnosno ispostava G*. Ipr. podru8ni ured za kataster ijeka "2 %patija! "2 "ula itd. "odru8ni uredi za katastar vode i izrađuju katastar nekretnina. 2atastar nekretnina je grafi8ka baze zemlji0ne knjige. ?a sve projekte (građevinske! ar/itektonske! prometne! i dr.) kao podloga se uzimaju službene geodetske karte koje 8uva i održava G*.
8KOLSTVO *eodezija se studira na geodetskom fakultetu u ?agrebu. &K%I,-+ E *+_,I&2, F+2K'' NiL E *+_,I&2, F+2K'' &N,-+ ` *+_,I&2, F+2K'' +&',-+ E 'LI,R2, F+2K'' (NR! *+?) 2ao poseban predmet geodezija se izu8ava na ar/itektonskom fakultetu! 0umarskom! poljoprivrednom! rudarskom E naftnogeolo0kom i građevinskom fakultetu u &plitu! %sijeku i ijeci.
POSLOVANJE *eodetska poduzeća! da bi mogla izvoditi geodetske radove moraju imati zaposlenog ovla0tenog inženjera geodezije koji potpisuje ispravnost geodetskog posla. %vla0teni geodetski inženjer je u8lanjen u 2omoru inženjera! ima položen stru8ni ispit i minimum J.godine iskustva.
POVJEST GEODEZIJE
",'+*%+ oko ;;6. godine p.n.e. zaklju8uje da je ?emlja okrugla! +,&'%'K oko J;6. godine p.n.e. zaklju8uje da je ?emlja kugla! +'%&'I iz +leksandrije =PD49;. godina p.n.e. poku0aj određivanja radijusa kugle α1 AL R:
α , 1
AS
α Ε AS - AS/AN AL - ALEKSAN,RIJ A R: ,> 000 α0=0° α1=1/50
R =
D 4<6 O α =
⋅
π
=6
I,2%K+ 2%"I,2 4PJ4;J >>%tkriće vrtnje nebeski/ tijela>>! ,&+@ IH'%I 4DJ4P=P zaklju8uje da ?emlja mora imati oblik elipsoida (zbog rotacije mase)
"rva topografska karta na osnovu egzaktni/ matemati8ki/ modela i metoda mjerenja je '2 Francuske! rađena od 4P;6 E 4<4<.godine u mjerilu 4 :
4<4D.godine +ustrougarska monra/ija po8inje katasterski premjer. 4
MJERE ZA DU"INE geodeziji se dužine mjere u metrima: 46J!J Q sto tri metra i 8etrdeset tri centimetra. %sim metarskog sustava koristi se jo0 i stari +ustrougarski sustav: 4754!<9D m ?+ GY,I
4> 5 6!J4D m 4>>5=!DJ cm
4 RL5J!;9 m 4 -utro54D66 RL
?+ "%,I
G2+G&2 M- ?+ "%,I 4M 4 La 4 +r 4 km
@om
b i n
@om
b i n
I*K&2 M- ?+ GY,I
5 %&I%I+ M-+ 5 466 $ 466 M 5 46 $ 46 M 5 4666 $ 4666 M
4 ,I@L 4 ,I@L+ J F'
@om
b i n
@om
b i n
5 =!; cm 5 4 F' 5 4 ^+G
@om
b i n
MJERE ZA KUTOVE 47 4> 4 >> JD67
&'"+IM,I'+ &2IG+ "I, 2*
&2&+*?,I+KI, &&'+ M-+
=4
O!LIK I VELIČINA ZEMLJE ?adatak geodezije je premjeravanjem odrediti uzajamni položaj pojedini/ to8aka ?emljine povr0ine te preslikavajući i/ na plan. &tvoriti sliku premjeravannog podru8ja. 'o8ke premjera imaju tri koordinte ($!#!z) situacioni planodređuje se $!#koordinate. 2onfiguracija terena je visinska predstava terena. Ga bi se mogle to8ke na terenu egzaktno prenjeti na plan potrebno je definirati ?emlju kao nebesko tijelo. ?emlja je fizikalno tijelo E geoid. *eoid je tijelo zatvoreno (definirano) nultom nivo plo/om potencijala sile teže. Iulta nivo plo/a potencijala sile teže je nulta nivo plo/a mora (aproksimativno) %d nulte nivo plo/e mora određuje se visine odnosno z koordinata. Ia geoidu nije moguće izvoditi jednostavne matemati8ke operacije te se geoid aproksimira referentnim rotacionim elipsoidom! a koordinate $ i # su elipsoidne koordinate....... OTKLON TEI&NICE
N
ξ
/N,/LACIJ A GEOI,A
G E O I , E L I P S O I ,
Ma$. u 5 4=6 m u ,ndijskom oceanu u rije8koj luci V m. %blik geoida se određuje gravimetrijskim mjerenjima na pojedinim to8kama na ?emlji. eferentni elipsoid za podru8je + E u monar/ija izra8unao je Nassel 4<4.godine (vrijeme katasterskog premjera). a5D JPP J9P!4;; m b5D J;D 6P
a+a+b J
= DJP6=94m
2%%G,I+'I, &&'+,
geografski geodetski elipsoidni sferni ravninski
2+'%*+F&2 "%-2@,- a. po to8ki preslikavanja b. po deformacijama ==
9. GPS &+'K,'&2+ M'%G+ %G_,+I-+ "K%Y+-+ '%R+2+ *K%N+KI, "%?,@,-&2, &&'++ 49;P.godine lansiranje prvog umjetnog satelita na osnovu gibanja umjetnog satelita bilo je moguće izraditi model geoida za ?emlju. &jeverni pol ]49 m -užni pol E =D m
49PJ.*%G,I I+,*+',%I &^&'M +IG +I*,I* (I+&'+) "%-2' & I+^ , & +, F%@. ,z I+&'++ je nastao *"&. 'o je sustav satelita za određivanje pložaja! smjera kretanja i vremena tj. za navigaciju brodova na moru! aviona u zraku i vozila na kopnu. "rvenstveno je to vojni sustav koji služi u civilne svr/e. *lobalni pozicijski sustav se sastoji od: &M,&2%* &*MI'+ 2%I'%KI%* &*MI'+ 2%,&I,R2%* &*MI'+
>
*
+ 1
1 +
*
>
SVEMIRSKI SEGMENT *"& sateliti (= aktivna ] J rezervna) kruže na udaljenosti V =6 =66 km od povr0ine ?emlje. %bilazak ?emlje traje V4=/. %rbite *"& satelita leže u D ravnina koje zatvaraju kut s ravninom 2+'%+ i5;;7 &ustav je planiran na na8in da se u bilo kojoj to8ki na ?emlji iznad /orizonta mora nalaziti minimalno satelita istovremeno. Ia satelitu se osim sustava za kontrolu putanje! visine! brzine! topline! napajanja! nalaze: %da0ilja8 poruka na ?emlju\ prijemnik poruka sa ?emlje\ atomski satovi to8nosti 46 −4J u intervalu 4 sata. &ateliti emitiraju poruke na frekvenciji: l 4 = 4;P;!:= MHz i l = = 4==P!D6 MHz
=J
KONTROLNI SEGMENT
kontinuirano opaža gibanje *"& &atelita i unaprijed određuje putanju (orbitu) &atelita tzv. "G,@,+I- "'+I-! prati rad satelitski satova i predviđa /od unaprijed oda0ilja na *"& &atelite prediciranu putanju i predviđeno pona0anje sata satelita
2%I'%KI, &*MI' se sastoji od: ; opaža8ki/ stanica (raspoređeni/ ravnomjerno blizu kvatora)! 4 glavna kontrolna stanica (@%K%+G% &",I*&) J zemaljske antene %paža8ke stanie prikupljaju podatke sa &atelita iznad nji/ovi/ /orizonata i 0alju u glavnu opaža8ku stanicu. *lavna opaža8ka E kontrolna stanica na osnovu podataka iz ; opaža8ki/ stanica ra8una efemeride i /od sata za svaki satelit. ?emaljske antene 0alju &atelitima izra8unate efemeride i /od sata pomoću radio veze. obi8ajeno podaci se 0alju svaki/ < sati. &ateliti mogu bez novi/ podataka letjeti 4 dana.
KORISNIČKI SEGMENT 'o su svi civilni i vojni korisnici koji pomoću *"& prijemnika primaju signale odaslane s *"& satelita i pomoću nji/ određuju položaj! brzinu! smjer kretanja i vrijeme. *"& prijemnik sastoji se od: .4 +I'I E primaju *"& signale .= +G,%F2I'I, G,% E obrađuje signal .J +RI+K% . 2%,&I,R2% &RK- .; MM%,-+ .D ,?% I+"+-+I-+ I*,-%M *"& prijemnici se po kvaliteti dijele u razlici radiofrekventnog dijela. adio signali odaslani sa &atelita! budući da prijemnici istovremeno primaju signale sa vi0e satelita svaki satelit ima osobni kod.
=
OSNOVNA FREKVENCIJA
f 0*0!+1 MDz
λ0=23,3 m
L* *> f **>>!+ MDz
λ1=19,05 cm
*+0 L+ f +*++!0 MDz
λ2=24,45 cm
f f < P KO, f *0!+1 MDz
29,31 m
f f < P KO, f *0!+1 MDz
29,31 m
Ia noseću frekvenciju fCsCup D( množenjem s 4; odnosno 4=6 generiraju se KCsCup D( i KC sCup D( valovi na koje se ugrađuje pogre0ka " kod.
? f 0 f * PRN SEKENCA P KO, + ,ANA FAZNA MO,/LACIJ A GPS SATELITA FORMAT PORUKE *"& poruka je formatirna u frames od 4;66 bita. Nrzina emitiranja ;6 b3s.
METODE MJERENJA *"& mjernjem se izra8unavaju koordinate to8ke u svjetskom geocentri8nom sustavu H*& <.
=;
z
T T h
ϕ λ
"
h
4=i2
D
47
*"& mjerenjem određena je elipsoidna visina /! I E geoidna undulacija\ L E ortometrijska visina +ko se *"& to8ka želi ucrtati na službene karte Lrvatske (LG2 ; 666! '2 =;! '2 ;6) potrebno je koordinate H*& < transformirati u *auss2rgerovu projekciju! odnosno N+&&ovu elipsoidu. *"& mjerenjem mogu se odrediti: 4. apsolutne koordinate u H*& < E is/odi0te u teži0tu ?emlje. Mogu se odrediti s jednim *"& prijemnikom. =. 2oordinatne razlike tj. relativni položaj to8aka istovremenim mjerenjem na dvije ili vi0e to8aka. G,FFI',+K *"& Q G*"&. G*"& je vrlo precizna metoda. +ko se dva *"& uređaja povežu radiovalovima moguće je dobiti precizna mjerenja u realnom vremenu tzv. '2 M'%G+.
REFERENTNE GPS STANICE &e postavljaju na geodetske to8ke poznate po koordinatama koje kontinurano 0alju internetom ili radio vezom korekcije *"& signala. I+R,I +G+ 4. &'+',RI, E *"& prijemnici su nepomi8ni =. 2,IM+',RI, E *"& se gibaju tijekom opažanja
*"& M-I-+ & G,-K I+: 4. M-I-+ MI+ =. M-I-+ F+?I,L +?K,2+ Mjerenje vremena (pseudoudaljenosti) koristimo za određivanja pozicije *"& prijemnika =D
S*
+
5*
5+
S1 51
Ku8nim presjekom J udaljenosti može se odrediti $!#!z to8ke ' (tri dimenzije) d i = c ⋅ ∆t
∆t = (t p − t s )
@5 brzina 0irenja elektromagnetnog vala ∆t vremenski interval od slanja do primanja poruke na *"& prijemniku t p − vrijeme primanja nije dovoljno to8no određeno (manje to8ni satovi na *"& prijemnicima) "otrebno je izra8unati korekciju sata i J koordinate. nepoznanice Q &atelita iznad /orizonta! pozicija svakog &atelita u trenutku slanja poruke moguće je odrediti na osnovi efemerida.
D = N ⋅ λ +
λ ⋅ ϕ =π
MJERENJE POMO:U FAZNI4 RAZLIKA
gdje je: I E broj cijeli/ valni/ duljina\
λ ⋅ ϕ =π
fazna razlika valna duljina
%dasalni val podliježe pomaku frekvencije time se mijenja valna duljina. -ednadžba opažanja: Φ i j (t ) =
4
λ
⋅ p ji (t ) + N ji + f ⋅ δ j (t ) − f ⋅ δ i (t ) + Φ ATM
Φ mjerena faza λ valna duljina p ji udaljenost & E " N ji po8etni broj valni/ duljina f frekvencija odasalni/ valova δ i odstupanje sata satelita δ j odstupanje sata prijemnika Φ ATM promjena faze uzorkovana atmosferom i j
i !AT"#$T j %R$&"MN$'
Go cijelog broja valni/ duljina I može se doći ra8unanjem fazni/ razlika: 4. Faznom razlikom eliminiraju se pogre0ke sata &atelita
=P
=. Faznom razlikom eliminiraju se sati prijemnika J. Faznom razlikom eliminira se cijeli broj valni/ duljina
Ia ovaj na8in se 2%G relativnog *"&a G*"&a određuje koordinata jedne to8ke. -edna to8ka je poznata po koordinatama.
=<
;. LI!ELA Kibela je instrument kojim se pravac ili ravnina dovodi u /orizontalni položaj. Kibelama je 'IG%K,' E /orizontalni krug dovodi u /orizontalni položaj. Kibele se po konstrukciji dijele: cijevne dozne
MJED/R LIBELE
MARKA LIBELE
ϕ
Kibele su staklene posude u obliku doze ili cijevi ispunjene tekućinom. Mje/ur libele je dio posude bez tekućine. "ars je mjera za duljinu V = mm udaljenosti između oznaka je 4 "ars. %sjetljivost libele kut pomaka libele da se mje/ur libele pomakne za pars S=>> i =>. obi8ajno je 5J6>> %sjetljivost libele je veća 0to je manji. %sjetljivije libele Q precizniji instrument ispitivanja libele. 2 α
* POLOAJ
Ga bi se mogao /orizonti za teodolit potrebno je ispitati teodolitne (al/idadne) libele ispitivanjem u položaja razli8iti/ za 4<67.
α
α
2 α
α
REKTIFIKACIJA TEODOLITA K
D
D
L
L
K
"rovjeravanje unutra0nje ispravnosti teodolita i ispravljanje pogre0aka naziva se ektifikacija teodolita. +ko postoje gre0ke u odnosima između osa (osi) teodolita pri mjerenjuće se pojavljivati sistematske pogre0ke. 'eodolit se može pojednostaviti E zamisliti J osi E vertikalna os! LL E /orizontalna os i 22 E kolimaciona os.
=9
nutra0nji uvjet je teodolit je mora zadovoljavati: 4. KK =. LL J. 22 LL %& +KL,G+GI K,NK (pomoćna os). ```` uvjet se ispunjava tako da tangentu na al/idadnim libelama dovedemo u /orizontalni položaj. 'ada /orizontalni krug je /orizonta I u prostoru. ,stovremeno je vertikalna `` vertikalna u prostoru. %vaj postupak se naziva /orizontiranje teodolita a postupak se provodi u tri koraka: 4. korak E al/idadna libela se dovodi u smjer paralelan s dva podnožna vijka vr/uni =. korak okrene se ali/idada za 4<67 i zatim se provjeri da li libela vr/uni! ako libela ne vr/uni tada treba rektificirati libelu J. korak E al/idada se okreće za 967 tako da libela dođe u smjer J. podnožnog vijka i na vr/uni se.
* KORAK
+ KORAK
1
*
1 KORAK
1
1
*
+
+
*
+
"rovjera 4. uvjeta odnosno /orizontalnosti /orizontalnog kruga izvodi se tako da se al/idadna libela okrene u proizvoljnom smjeru i provjeri da li vr/uni.
POGRE8KA VIZURNE ILI KOLIMACIONE OSE ,nstrument se /orizontira i vizira na to8ku min. 466 m od stajali0ta. %8itamo kut s mikroskopa u 4. prvom položaju instrumenta. "oložaj je položaj durbina desno od vertikalnog kruga. =. položaj je položaj lijevo od vertikalnog kruga iziramo u istu to8ku u =. položaju instrumenta (U4<67) i o8itamo kut. +ko je razlika dvaju o8itanja razli8ita od 4<67 kolmimaciona os opisuje stožac umjesto O4 − O= = 4<6 + = ⋅ k
O+-O**@0;
D+
D*
O+
O*
O* O+
κ
O*
O+ O+
D*
O*
D+
+ko postoji neokomitost između /orizontane i kolimacione osi ona se će se duplicirati pri o8itanju na istu to8ku iz dva položaja durbina. %va sistemska pogre0ka se eliminira iz mjerenjapromjenom metode mjerenja kutova. POGRE8KA 4ORIZONTALNE OSI J6
"ogre0ka je nagnutosti /orizontalne osi u odnosu na vertikalnu os. LL . "ogre0ka LL provjerava se spu0tanjem okomice s visoke to8ke na /orizont. +ko je LL tada 5[. +ko je LL tada je u dva položaja teodolita dobije se =. %va pogre0ka je vrlo rijetka kod dana0nji/ instrumenata i ispravlja se u servisu.
D
D
ε
"%&'+K-+I- '%G%K,'+ L%,?%I',+I-! @I',+I-
,?,+I-
E
M-I-!
'eodolit se postavlja na geodetske stalne to8ke. 'e to8ke se kod mjerenja kutova naziva stajali0ta instrumenata. ?a postavljanje instrumenata na to8ku služi stativ ili tronožac. &tativ se sastoji od tri noge i glave stativa. *lava stativa se sastoji je ravna plo8a. 'eodolit se postavlja na glavu stativa . "rije postavljanja instrumenta na stativ potrebno je dovesti da glava stativa bude u /orizontalna i sredi0nji vijak da pogađa D D vizuelno to8ku '. Iakon 0to će se postaviti instrument na stativ instrument se /orizontalno centrira. Lorizontiranje i centriranje su dvije povezane T radnje i međusobno utje8u jedna na drugu. Lorizontiranjem se vertikalna os teodolita dovodi u smjer vertikale. "ostupak /orizontiranja se izvodi u = položaja al/idalne libele ako je libela ispravna. * POLOAJ + POLOAJ 1
*
1
+
*
+
CENTRIRANJE TEODOLITA J4
ertikalna os teodolita treba prolaziti centrom to8ke stajali0ta instrumenta (i istovremeno instrument mora biti /orizontalan) "ostupak se izvodi pomoću obi8nog viska ili opti8kog viska.
VIZIRANJE TOČKE DETALJA iziranjem dovodimo sliku nitog križa na to8ku (cilja) detalja. iziranje može biti grubo i precizno. 2od viziranja potrebno je obratiti pažnju na slijedeće: vizirati 0to niže (bliže) detalju! vizirati isto mjesto! precizno diptrirati i fokusirati durbin.
5 - POGRE&KA IZIRANJA
5 MJERENJE KUTOVA "ostoje niz metoda no u upotrebi su većinom: prosta metoda girusna metoda Mjerenje kutova prostom metodom sastoji se u tome da se mjerenje kutova izvede u jednom položaju instrumenta.
A
γ
C
β
Iema kontrole prekobrzog mjerenja osim zatvaranja punog kruga. "rovjerava se pomak instrumenta.
, α B
A
C ' A A R I P N T E Č P O
E
δ O O* O+ O1
,
γ
α
β C
B
GIRUSNA METODA J=
O= − O4 = β OJ − O = = γ O − OJ = δ
"ostupak mjerenja je takav da se opažaju svi pravci u oba položaja durbina. ,zabere se po8etni pravac i zatim se u smjeru kazaljke na satu opažaju sve to8ke detalja. ?a kontrolu pomaka instrumenta opaža se ponovo na kraju po8etni pravac. 'o je tzv. 4. polugirus okrene se al/idada i durbin za 4<67! vizira se na po8etnu to8ku i u smjeru obrnutom od kazaljke na satu. %pažaju sve to8ke i na kraju ponovo po8etna to8ka to je tzv. =.polugirus. ?ajedno 4."* i =."* 8ine jedan girus mjerenja /orizontalnim kutova mjerenja se izvode ovisno o to8nosti u 4 ili vi0e girusa. "omak limb ("54<63I! I E je broj girusa) se izvodi tako da se vrijednosti po8etnog o8itanja budu razli8ite (to8nije opažanje). lminacija kolimacione pogre0ke (sistemska p.) liminacija grubi/ pogre0aka (prekobrojno mjerenje) %stale metode: "',@,%I+! &+,N%+ ,'G.
PRINCIP RADA ELEKTRONIČKOG TEODOLITA lektroni8ki teodolit mjere kutove (L= i ) u digitalnom formatu i prikazuju i/ na displeju (ekranu9 (nema mikroskopa! skale i sl.) zapisuju podatke u +&@, obliku na memorijskoj kartici ("@M@,+) i tako omogućavaju neprekidni tijek informacija (+%") i nji/ovu obradu.
C,-ROM INTERNET DTML
PRINTER
PLOTER MO,EM
,ATA LOGER
PC
SERER
"ovećanje to8nosti instrumenta jer: nije potrebno zapisati podatke! nije potrebno o8itanje na mikroskopu! nema pogre0ke /orizontiranja (&H) pogre0ke instrumenta svedene na min. (&H)
JJ
Mjerenja je moguće na terenu obraditi te uo8iti pogre0ke na mjerenjima. (brzina rada) fikasnost mjrenja se povećava. lektroni8ki teodoliti se u osnovi razlikuju od opti8ki/ u formatu (obliku /orizontalnog i vertikalnog kruga). "ostupak registracije kutova kod digitalni/ teodolita je apsolutno! relativna ili dinami8ka.
APSOLUTNO MJERENJE
KO,IRANI KR/GOI
G,I+M,R2% M-I-
ϕ 0
S
T<
S ∆ T 7
ϕ
ϕ
R T
Getektor & je fiksan (stati8an) Getektor je pomi8an (rotira se) zajedno s al/idadom. # R − #! = ϕ \ T = n ⋅ T O + ∆T T O vrijeme prolaza (rotacije) jednog inkrementa! /orizontalni krug se rotira kod ' =666 okr3s: ϕ = n ⋅ ϕ O + ∆ϕ ∆ϕ : ϕ O = ∆T : T O mjeri se vrijeme. ∆ϕ =
ϕ O
T O
∆T = c ⋅ ∆T
J
na krugu imamo ;4= crni/ i ;4= bijeli/ polja nako 0to +3G konverter prebroji inkremente ϕ = n ⋅ ϕ O i detektira ∆T . ∆T treba o8itati s 46 −P s za o8itanje U6>>!;.
;. MJERENJE DU"INA Gužine se mogu mjeriti: direktno pomoću vrpce! lanca (d5=6 m! ;6 m) direktno pomoću opti8ki/ daljinomjera direktno pomoću elektroni8ki/ daljinomjera indirektno ra8unanjem na osnovu mjerenja kutova J;
MJERNE VRPCE Guljina vrpce 46 m! =6 m! ;6 m! 0irina 46 mm 8eli8ne vrpce (lanci) koriste se za mjerenja veći/ dužina dS;6 m.
BROJAČ
?+0;
F - Si=a za?4za78a
Reli8ne vrpce su osjetljive na temperaturu i silu zatezanja. 2linovi broja8i zatežu lanac i ubadaju se u teren na kraju lanaca! ujedno služe za određivanje broja puni/ duljina lanca. 2ada se to8ke na kraju dužine ne dogledaju potrebno je okom ili durbinom utjerati pravac lanca.
*' 5*
,5*5+515 5+
5
+
*
A
1'
51
B
1
+'
Iastaje pogre0ka utjerivanja u pravac kada se to8ke + i N (krajevi dužine) ne dogledaju određuje se pomoćne to8ke koje leže na pravcu mjeri se (ili ra8una) /orizontalna dužina.
,'
C'
,'' ,''' A
,''''
C'' C'''
B
"ogre0ke kod me/ani8kog mjerenja dužina pomoću vrpce ili lanca: JD
4. =. J. .
uslijed utjecaja temperature! uslijed utjecaja zatezanja lanca! uslijed utjecaja visinske razlike! neutjerivanje u pravac uslijed lan8anice! nesvođenja na nultu nivo plo/u. Ieto8na nominalna duljina vrpce
B D ' = DH + ∆ D
, K
∆h
A K
D H = D ' −
∆,
,D
∆h = = D '
%"TI,'%: d = d 4 + d = + d J + .... + d n mJ= + .... + mn= md = m4= + m== +
je m4 = m = = m n \ tada md = m d 3 e =
m d
=m
ako
n
m d ⇒ md = const . d e
pogre0ka mjerenja dužina me/ani8ki povećava se duljinom dužine.
MJERENJE DU"INA POMO:U OPTIČKI4 DALJINOMJERA "rvi opti8ki daljinomjer 4<46.godine konstruisao eincenbac/ "reincip mjerenja d = b
sin b sin α
+ko je baza kut nasuprot bazi je daljinomjerni (paralakti8ki) kut α b = d ⋅ ctg α N5967 b α
5
%visno o konstrukciji! instrumenata! baza ili paralakti8ki kut mogu biti fiksni ili promjenljivi. %pti8ki daljinomjeri dijele se na daljinomjeres: 4. promjenjivu bazu! fiksni daljinomjerni kut =. fiksna baza! promjenljiv paralakti8ki (daljinomjerni kut) ,* b*
α1
,+
α2
,1
α3
Galjinomjer s promjenljivom bazom na stajali0tu paralakti8ki kut konstantan. α 4 = α = = α J = G+K-,I%M-I, 2'
b+ b1
REINCEN!AC4 DALJINOMJER – DALJINOMJER S TRI NITI JP
f
7
δ
4
5
f
D = δ + f + d
f f n f = ⇒ d = ⋅ e ⇒ D = δ + f + ⋅ e e d n n δ + f
f n
adiciona konstanta
multiplikaciona konstanta
D = R ⋅ ' ⋅ e
ako je R = [ D = ' ⋅ e \ 7
f d = ⋅ e n
α
4
4 +
=
= f
tg α ⋅ α =
f
α = Z
'()**
d =
e = x tg
4
=
x 4 n ⋅ = tg = f =
d 466 4 α = ⇒ 466 = ctg ⇒ α = J>==> > !D; e 4 = = ` ` ` `
na letvi se 8ita +>N> potrebno je +N
A '
α ϕ
,
K
4 '
B
A
4 'E +
4E +
D H = D ' ⋅ cos ϕ \ D H = ' ⋅ e>⋅ cos ϕ ⋅ cos ϕ
ϕ '
B
B
A
= - = A> , >⋅ cos ϕ = e>⋅ cos ϕ D ' = ' ⋅ e>⋅ cos ϕ D ' kosa dužina A,
D H = ' ⋅ e>⋅ cos = ϕ
,D , K
∆D ϕ
za o8itanje /orizontalne dužine potrebno je o8itati ϕ
,D
visinski kut
J<
s eincenbac/ovim daljinomjerom moguće je izmjeriti i L: 2 ∆D
i
∆h
∆ H = ∆h + i − s
i E visina instrumenta s E visina signala
∆h = ' ⋅ e>⋅ cos ϕ ⋅ sin ϕ ∆h = ' ⋅ e>⋅
4 = 4
sin =ϕ \
∆ H = ' ⋅ e>⋅ sin =ϕ + i − s =
to8nost mjerenja dužina ako je o8itanje na letvi. *5694J G5699< e>54D< mm $ 466 G546<4 GCsCup D( 54D!< m "ogre0ka o8itanja niti je m e = ± m = = ±4!: mm
N
*0
m D = 466 ⋅ 4!mm = ±4cm
Ia to8nost u8itanja dužina bitno utje8e nagnutne vertikalne letve i visinski kut. λ 5kut otklona od vertikale λ 5=7 (procjena okom) ϕ 5467 mCsCup <( 5D6 cm λ 5=7 (procjena okom) ϕ 5=67 mCsCup <( 54!J m
+utoredukcioni daljinomjeri````````````````` D H = ' ⋅ e>⋅ cos = ϕ ∆h = ' ⋅ e>⋅
4 =
sin =ϕ
Funkcija ' ⋅ cos = ϕ i funkcija ' ⋅
4 =
sin =ϕ nanesu se na staklenu plo8icu kao dijagram
J9
)<2+ϕ -*0 *0 +0 >0
-+0 ->0
SLIKA / ,/RBIN/ NITNI KRI
ELEKTRONIČKI DALJINOMJERI lektroni8ki (elektroopti8ki) daljinomjeri mjere duljinu emisijom vidljive ili nevidljive svjetlosti. Iužno je opti8ko dogledanje instrumenta i to8ke cilja. Ia cilju se postavlja reflektor. lektroopti8ki daljinomjeri se dijele na: implusne daljinomjere fazne daljinomjere ,M"K&I, G+K-,I%M-, IMPL/SNI ,ALJINOMJERI IZOR ZRAČENJA
MO,/LATOR GENERATOR IMPL/SA MJERAČ REMENSKOG INTERALA
O,A&ILJAČ R O T K E L F E R
OSCILATOR
PRIJEMNIK
BLOK SDEMA IMPL/SNOG ,ALJINOMJ ERA ATOMSKI SAT ,IGITALNI MJERAČ REMENSKOG INTERALA
LASER R O T K E L F E R
FOTO PRIJ EMNIK
2od implusni/ daljinomjera mjeri se vrijeme od odaslanog vala do primljenog vala. = D = c ⋅ ∆t ⇒ D =
4 =
c ⋅ ∆t
"otrebno je odrediti radnu brzinu svjetlosti c=
- 6 n
n E indeks loma zraka! je ovisan o temperaturi ' tlaku zraka p i vlažnosti zraka e
6
M-I- MI&2%* ,I'+K+ Mjerenje se izvodi tako da se signal odaslan s oda0ilja8a odvaja na mjeri signal i referentni signal. 2od R O,A&ILJAČ PROFERENTNI O T implusnog daljinomjera SIGNAL K E direktno se mjeri vrijeme. L F ∆t = t R − t ! E MJERNI SIGNAL R PRIJEMNIK elativna pogre0ka mjerenja vremena određuje i relativnu pogre0ku dužine. G5;66 m ∆t ≈ 6!J ⋅ 46 −; s ako je mt = 6!4 ns tj. 46 −46 s m d = 4!;cm . Gana0nji satovi m t = 46 −4= s Q 6!4 mm3km ! pogre0ka je proporcionalna duljini.
FAZNI NAČIN MJERENJA DULJINE 2od faznog na8ina mjerenja posebno se mjeri vremenski interval na osnovi mjerenja fazne razlike odaslanog i primljenog signala.
λ ϕ = =π ⋅
f A ∆ϕ
f B
λ
\ = D = ϕ ⋅ λ =π
ϕ = N ⋅ =π + ∆ϕ ∆Νλ/2
= D = N λ + ∆ N λ \
,
= D =
D = ( N + ∆N ) ⋅
t = NT + ∆ Nt \
=D
= D = c ⋅ t = c ⋅ T ( N + ∆N )
IZOR ZRAČENJA MJERAČ FAZE
OSCILATOR
,ETEKTOR MO,/LACIJ E FREKENCIJ E
PRIJ EMNIK MO,/LARNOG ALA
=π
λ + ∆ϕ ⋅
λ =π
λ =
\ c ⋅ T = λ
O,A&ILJAČ OPTIKA
OPTIKA PRIJ EMNIK
N ⋅ =π
MO,/LARNI AL PREMA REFLEKTOR/
MO,/LARNI AL O, REFLEKTORA
4
!LOK S4EMA FAZNOG DALJINOMJERA Mjerenjem fazne razlike određuje se ∆ N ⋅
λ ostaje nepoznata veli8ina I. =
"roblem se rje0ava mjenjanjem frekvencije tj. valne daljine. Ipr.: f 4
= 4;6 kLz
λ = =666 m
f 4
= 4!; MLz
λ 3 = = 4666 m
f 4
= 4; MLz
λ 3 = = 466 m
λ = P9 m = λ ∆ N ⋅ = <4!9 m = λ ∆ N ⋅ = =!6J m =
∆ N ⋅
λ 3 = = 46 m Rez+ltat ./01*2 m
G,*,'+KI,M M-I-M M-, & F+?I+ +?K,2+
O,ASLANI AL PRIMLJENI AL SIGNAL IZ SCDMITT-<< TRIGERA * SIGNAL IZ SCDMITT-<< TRIGERA * IZLAZ IZ BISTABILA IMPL/SI IZ OSCILATORA DISTOMAT K2+ G,&'%M+' G, 4666 λ =
=
M%GK,+I- K2'%M+*I'I%* +K+ "% +M"K,'G,
+π +π MO,/LIRANJ E ELEKTROMAGNETSKOG ALA PO FREKENCIJ I +0 Dz Dz +0 Dz
<. MJERENJE VISINSKI4 KUTOVA isinski kut je kut 0to ga zatvara vertikala (vertikalna os instrumentateodolita) i kolimaciona os instrumenta odnosno /orizontalna ravnina i kolimaciona os teodolita. K Z prvom slu8aju visinski kut naziva se z zenitski kut (z)! u drugom slu8aju naziva se vertikalni kut (). ϕ M ?enitni kut ima raspon od %7 do 4<%7. 2ada M K je z5%7 tada je vizurna to8ka u zenitu! odnosno kada je z 5 4<67 vizurna to8ka u N nadiru. ertikalni kut se mjeri od /orizonta
J
prema zenitu!tada je pozitivan (elivacioni) kut odnosno od /orizonta prema nadiru! tada je negativan (depresioni) kut. z + ϕ = 96 z = ;6
⇒ ϕ = :6
z = 4;6
!
⇒ ϕ = −D6
!
sporedba /orizontalni/ i visinski/ kutova. Lorizontalni kut je definiran s tri (J) to8ke. & (stajali0te)! 'CsCup <( i 'CsCup <( (to8ke opažanja). ertikalni kut je definiran s dvije (=) to8ke: & (stajali0te)! 'CsCup <( (to8ka opažanja). Lorizontalni kut je ortogonalna projekcija na /orizontalnu ravninu prostornog kuta 0to ga zatvaraju pravci &CsCup <( i &CsCup <( . isinski (vertikalni! zenitni) kut je kut 0to ga zatvarna vizurna os (pravac) i /orizontalna ravnina. isinski kut mjeri se teodolitom koji ima vertikalni krug ( K,MN ). ertikalni krug je fizi8ki vezan uz durbin tj. rotira se oko /orizontalne osi zajedno s durbinom. ,ndeks za o8itanje vertikalnog ili zenitnog kuta je nepomi8an i /orizontalan. K
2 E korekcioni vijak libele L
; 0 N
K
0 ;
ϕ
L
N
E vijak libele vertikalnog kruga
N
*
+
ICsCup <( i ICsCup <( linija indeksa za o8itanje vertikalnog kuta
0 ; * @
+ A 0 ;
K K tangenta na marku libele
K
Ga bi se ispravno izmjerili vertikalni (zenitni) kut potrebno je : 4. spojnica 67 4<67 ili 967 =P67 paralelna s 22 =. K K paralelna s linijom indeksa o8itanja
* POLOAJ ,/RBINA z
0 ; + ϕ
+ POLOAJ ,/RBINA
L
L
0 ;
δ 1
ϕ
N*
* @ 0 ;
L
L
ε 2
ε ε 1
ε 1
N *
2
N+
+ A 0 ;
* @ 0 ;
N +
ϕ
N 0 ;
; 0 0 ;
δ 2
δ 4 = 96 − ε 4 − ϕ − ε =
δ = = =P6 − ε 4 + ϕ − ε =
+?K,2+ %R,'+I-+ O
JD6
+ δ 4 = JD6 + 96O − ε 4 − ϕ − ε =
δ = = =P6 − ε 4 + ϕ − ε =
JD6O 4<6
3 ()
+ δ 4 − δ = = 4<6 − =ϕ δ − δ + 4 = = z =
3 (:=)
?N%- %R,'+I-+ δ 4 + δ = = JD6 − =ε 4 − =ε =
JD6O
− (δ 4 − δ = ) = =(ε 4 + ε = ) POSTUPAK OPA"ANJA
isinski kut se opaža s /orizontalnim nitima nitnog križa. %paža se gornja! srednja i donja nit u prvom i drugom položaju durbina. &'.
2K 2G 2K]2G =? + G PJ D 66 =
=P>>
SNIMANJE TERENA %snovni zadatak je geodetskim snimanjem terena dati matemati8ki to8nu predodžbu snimljenog terenu kao digitalnu ili analognu kartu. %snova snimanja je geodetska mreža stalni/ to8aka. Getaljne to8ke koje reprezentiraju objekt snimanja ovise o mjerilu snimanja. "ravilne linije snimaju se u to8kama gdje mijenjaju obilježje. 2rivulje kružni lukovi krivina snimaju se i prikazuju kao niz izlomljeni/ dužina.
+ *
5 O 0 ! + 9 9 M
5+00 9
1 *
+ 1 > 4 >0 9
;
%pćenito! potrebno je snimiti sve detalje terena od interesa naru8ioca (katastarski plan ne treba visinsku predstavu). Metode snimanja ( s terena ): o ortogonalna (linijska) o polarna h ta/imetreija
ORTOGONALNA METODA
%rtogonalna metoda snimanja detalja zasniva se mjerenje pravokutni/ koordinata detaljni/ to8aka u lokalnom koordinatnom sustavu. %s # je definirana poligonskom stranom os $ je okomica na #.
*
*0
* + F 1
* + F * A
+
F N 1 0 * * 0 * F N + F * + * F 0 0 B A + 0 F @ 1 N F 0 +
>
+ F N B A
* F 1 * B
**
2%I'%K+ opažanja koordinatni/ odsje8aka provjerava se frontovima! kosim odmjeranjima Frontovi su dužine između dvije karakteristi8ne detaljne to8ke.
@ F 0 0
* * F N +
+ F 1 0 +
*000 FRONTOIMA
KOSIM O,MJERANJI MA
2osa odmjeranja mjerenja od proizvoljno izabrane obi8no okrugle vrijednosti na apcisi.
* * * F 0 *
*
+ * 1 F 0 0
0 0 > *
N + F * *
1 > @
* F * * F @ N
0 0 0 1
su
kontrolna
* > F 0 +
0 0 > B
+ N F 1 *
+0
Moguće je linijskim mjerenjima Epresjekom naprijed Eizbaciti postavljanje okomica i ubrzati postupak. ?a spu0tanje okomica koristi se trostrana ili peterostrana prizma.
D
T1 >;
* * + +
T*
T+
A
B
**+> **+>
T1 T* T+
PREDNOSTI ORTOGONALNE METODE 'o8na! brza! jednostavna metoda IG%&'+@, M'%G: te0ko se izvodi na ne/orizontalnom terenu nije pogodna za rijetke detalje nije prenosiva u digitalni format
POLARNA METODA SNIMANJA DETALJA
P
P T**
z
P T**
P T* *
β β
ϕ
5* 2
5+
1
"
β
P T* 0*
,D
B
*
A
1
+
P T*+
A'
P T*B
"olarna metoda ili fa/imetrija ( brzi premjer ) kao os $ uzima poligonsku stranicu. Mjeri se /orizontalni kut od poligonske stranice do detaljne to8ke "'44! "'4=! "'4 Lorizontalna dužina d 4 i visinski kut 4. (ako je poznata visina stajali0ta "'4= ). Mjerenja se izvode univerzalnim instrumentom opti8kim ta/imetrima (GL+K'+646! 6=6) lektroni8kim ta/imetrima (K'+! H,K' '& 4D66). 2ao kontrolna mjerenja odmjeravaju se frontovi. "GI%&', "%K+I M'%G &nimanja detalja Nrzina snimanja 'o8nost ovisna o preciznosti ta/imetra('+L,M'+ je opti8ki teodolit s opti8kim daljinomjerom). ,li totalne mjerne stanice ('otalna mjerna stanica je elektroni8ki ta/imetar! digitalni teodolit i digitalni daljinomjer i data kolektor) Ieovisnost rada o konfiguraciji terena Mogućnost neprekinutog tijeka informacije M-I-Q+RI+I-QG%G+'I+ %N+G+Q"K+I "rimjer +&@, datoteke elektrni8kog ta/imetra &' i L.2. .2. 2.G. ." .& 444 644= 4J4=464 6446 =6P==6 4 4J;66P 466==44 J.=4 4.D. 4.D = 4JP6P49 96444 4J.4< 4.. 4.D J L.2. /orizontalni kut .2. visinski kut 2.G. kosa dužina .". visina prizme .&. visina stajali0ta
<
MJERENJE
PARALELNI PORT
RS +1+ PORT
,C
SERIJSKI KABAL
RAČ/ANJE ,O,ATNA
PLOTER
2od digitalnog zapisa problem je skica mjerenja koja se vodi tijekom mjerenja! koja se vodi na papiru.
PALM PILOT
mjesto G+'+ kolektora koji ima moć po/ranjivanja alfa numeri8ki/ znakova koristi se neki od uređaja koji podržavaju da na ekranu može se vidjeti karta ili vektorska datoteka. &kica mjerenja i zapisnik mjerenja se vodi na terenu na ra8unalu.
TRIGONOMETRIJSKO MJERENJE VISINSKI4 RAZLIKA Mjerenjem kose dužine od stajali0ta do objekta vertikalnog kuta može se izra8unati visinska razlika od stajali0ta do objekta primjenom trigonometrije. ∆h = d ⋅ tg ϕ = d ⋅ ctgz
z
2 i
A
5 K
ϕ 5D
B = ∆h ∆D
∆h = d ' ⋅ sin ϕ = d ' ⋅ cos z l E visina signala i E visina instrumenta ∆ H = ∆h + i − l
'rigonometrijsko mjerenje visinski/ razlika koristi se u inžinjerskoj geodeziji kod praćenja objekata! kod određivanja visina 9
nedostupni/ to8aka! za određivanje visine objekata! u ta/imetriji za određivanje visine detaljni/ to8aka. 2od elektroni8ki/ daljinomjera visoke preciznosti i teodolita visoke preciznosti! moguće je izra8unati vrlo to8no visinsku razliku. Mjeri se s jednog stajali0ta uz mogućnost automatske registracije podataka. ∆ H = ∆h + i − l
Formula je to8na kod određivanja visina detaljni/ to8aka jer se ne ra8una utjecaj zakrivljenosti zemlje. ∆ H = ∆ H >+4 3
∆D'
ϕ , +
/
R
R
ε
4 3 = Z \ R + 4 3 = 4 3 =
R cos ε
R cos ε
− R = Rsccε − R
azvoj u 'a#lorov red: 4
4
= 4
sccε = 4 + ε = +
ε .....
= 4 l = l l 4 3 = R(4 + ε ) − R = ε R ε = ⇒ 4 3 = . R = = = = R = = R R vr0tenjem u formulu: d H = ∆ H = d H + tg ϕ + i − s + = R tjecaj refrakcije vizurne na trigonometrijsko mjerenje visinski/ razlika. Ia precizno mjerenje vertikalnog kuta potrebno je uzeti u obzir refrakciju vizurne linije.
4
=
=
PRII,NA IZ/RA PRAA IZ/RA
B
ϕ
ϕ
> E o8itanje na vertikalnom krugu E pravi vertikalni kut izurna linija je kružnica te se analogno izrazu za zakrivljenost ?emlje može pisati: d H = 4 R = k ⋅ = R d H = frakcioni kut δ = ϕ >−ϕ ⇒ δ = k ⋅ = R
Ia osnovu empirijski/ istraživanja Q k56.4J! formula za '.%.. d H = d H = ∆ H = d H + tg ϕ + i − s + − R = R = R
d H = ∆ H = d H + tg ϕ + i − s + (4 − k ) = R
;6
UTJECAJ REFRAKCIJE I ZAKRIVLJENOSTI ZEMLJE d 'M
6! 6!D 4!6 =!6 ;!6
(4 − k )
d = = R
4 cm = cm P cm =P cm 4P6 cm
UTJECAJ REDUKCIJE NA NIVO PLO4U MORA
B
A R
R
; 666 m 466 m 4 cm =66 m = cm ;66 m cm hm
∆h
h A G h h A B
+ko ra8unamo visinsku razliku to8aka poznati/ koordinata: h h +h hm = A , \ d m = d + d ⋅ m =
r
hm d H = ∆ H = (d + d ⋅ )tg ϕ + i − s + (4 − k ) = R R "otrebno je uzeti obzir korekciju za utjecaj redukcije na nivo plo/u mora:
4 666 m = cm ; cm < cm
'o8nost određivanje visinski/ razlika ovisiti će o duljini stranice i utjecaju refrakcije. "otrebno je mjeriti stranice (kutove) obostrano! kada je najmanji utjecaj refrakcije.
;4
GEODETSKI INSTRUMENT ZA MJERENJE VISINSKI4 RAZLIKA TOČAKA GEOMETRIJSKIM NIVELMANOM "rovjeravanje ispravnosti nivelira (rektifikacija ) "otrebno je provjeriti J uvjeta : 4. 22 ili KK (radni ili glavni uvjet) =. ] KK J. Lorizontalna nit nitnog križa durbina treba biti /orizontalna u prostoru. "rovjeravanje 4. vjeta metodom >>iz sredine>> i >>s kraja>> "rovjeravanje =. vjeta ili uvjet vertikalne osi nivelira identi8an je istom uvjetu teodolita. 2rene al/idadna libela u smjer = podnožnjaka! libela se navr/uni! okrene se al/idada za 4<6W! provjeri se da li libela vr/uni! ako vr/uni okrene se al/idadna libela u smjeru ećeg podnožnog vijka i navr/uni. 'ada je okomito KK u prostoru. slu8aju da libela ne vr/uni kada je postavimo u =. "oložaj polovicu otklona mje/ura otklanjamo sa korekcijom vijcima na libeli a drugu polovicu elevacionim vijkom. "rovjeravanje J. vjeta /orizontalnosti nitnog križa ( /orizontalnosti /orizontalne niti ) na udaljenosti <64=6 .
∆
∆
,zabere se karakteristi8na to8ka uvizira s te se tako da dodiruje /orizontalnu nit . Iivelir zako8i! te se vijkom za fini pomak al/idade pomi8e gura. +ko to8ka prati /orizontalnu nit J. vjet je ispunjen.
NIVELIRI S AUTOMATSKIM 4ORIZONTIRANJEM VIZURE
78iha=< 2 3iz9<9
78iha=< 2 <=45a=<9 k<94za?<3
Iiveliri kod koji/ se vizurna os (linija ) automatski postavlja u /orizontalni položaj sa automatski niveliri. ,nstrument mora biti približno /orizontiran ( 154;> ili 1546>) 0to se postiže doznom libelom. ;=
"rve konstrukcije automatski/ nivelira imale su okomiti durbin 0to je uzrokovalo osjetljivost na vjetar. Ganas se izrađuju /orizontalni durbini s kompezatorima. ,spitivanje rada kompezatora se izvodi prije opažanja tako da se lagano kucne po niveliru kada je približno /orizontiran. Iitni križ se treba lagano zatresti. Iiveliri se osim po to8nosti i namjeni mogu dijeliti na analogne i digitalne. Gigitalni niveliri su oni niveliri koji omogućuju zapis u digitalnoj formi te prenos na ra8unalo. Ga bi se to omogućilo nivelmanska letva ima nane0en barkod! tkz. 2odirane letve. mjesto opažanja okom! niz fotodioda o8ita barkod. Fotodiode pretvaraju barkokod u digitalne signale. ,IO KO,IRANE LETE
,IO LETE KOJ I SE INTERPRETIRA POMO/ FOTO,IO,A
LASERSKI NIELIRI
,ETEKTOR LETA
adijametralnim stranama glave nivelira propu0taju se polarizirane zrake lasera. Ia referentnoj ravnini koja ne mora biti /orizontalna vididjeti će se implusi oba snopa tj. ?raka lasera. ,z referentne ravnine vidjeti će se niz svjetlosni/ impulsa pomoću detektora (svjetlosnog ili zvu8nog) o8itava se vizura. otacijski laser se koristi u graditeljstvu navođenje građevinski/ strojeva. (kada postigne vizuru detektor se oglasi).
NIVELMAN Iivelman je niz metoda kojima cilj odrediti apsolutnu ili relativnu visinu to8ke. +psolutna ili nadmorska visina je udaljenost od nulte nivo plo/e mora (geoid). ?a određivanje nulte nivo plo/e koriste se : mareografi. Mareograf je instrument koji bilježi promjene visine mora u vremenu. Ia osnovu visine mora ra8una se nulta nivo plo/a na koju se veže nulti reper (nulta stalna geodetska to8ka poznata po visini) s koje se razvija mreža nivelmanski/ vlakova. Iivelman se dijeli na o 'rigonometrijski o Narometrijski o Lidrostatski o *ometrijski 'rigonometrijski nivelman je najto8nijina8in određivanja visinski/ razlika. ;J
A 4A
NNPM
4B B A
h
B
∆
?a to8ke na većim udaljenostima n
∆ H = ∑ ∆hi
∆ H = ∆h4 + ∆h= + ..... + ∆hn
4
P
P
4+ P
4* 4A
4*
41
4B
41 B
4+
1 +
* A
∆ H A, = (e4 − e " ) + (e = − e4 % )........
Ga bi se teren prikazao u visinskom smislu potrebno je snimiti geometrijskim nivelmanom sve karakteristi8ne to8ke s to8aka koje su stabilizirane i poznata im je visina (snimljene su prije). "o vrsti to8aka za koje se visine određuje geometrijski nivelman se dijeli na: 4. Getaljni nivelman koji služi za dobivanje vertikalne predstave terna =. *eneralni nivelman koji služi za određivanje visina stalni/ visinski/ to8aka (repera)
;
STA!ILIZACIJA NIVELMANSKOG REPERA eperi se ugrađuju u stabilne objekte javne upotrebe. eperi se uobi8ano ugrađuju na visini od približno 6!; m od tla. Ia reper se direktno postavlja nivelmanska letva. ?a svaki reper zapisnik s položaja opisom repera! situacijom i skicom objekta na kojemu je reper na8in stabilizacije visina repera.
D
*I+KI, I,KM+I &e dijeli na:
Iivelman visoke to8nosti 'e/ni8ki nivelman
Iivelman visoke to8nosti 4.red precizni nivelman visoke to8nosti i precizni nivelman. "otrebno je postići to8nost od 4 E = mm na kilometar vlaka. ``````````````````````````` 'o8nosti (J.red) i te/ni8ki nivelman imaju ma$. Gozvoljenu 4 : =66 666 odnosno 4: 4=; 666. a8unanje nivelmanskog vlaka:
RA
n
∑ ∆h = ( H i
H
R* R+
R1
n
− H A ) ima5treba\
( H ,
4
f ∆h
≤ ∆ ∆h
RB
− H A ) − ∑ ∆hi = f ∆h
f ∆h
− pogre0ka
4
5 ∆hi =
f ∆h d i ∑ d
∆hi = ∆h>4 +5 ∆h4
∆h= = ∆h> = + 5 ∆h = ........................
∑
∆h = H H − H A
∆ ∆h = ±J=
D + 6!6D D =
za vlak .reda
;;
Rvorna to8ka nivelmanskog vlaka: H > H
R A
R B R D
= H A + ∆h> A
H > > H = H , + ∆h> , H > > > H = H - + ∆h> - H >⋅ % 4 + H > >⋅ % = + H > > >⋅ % J H = % 4 + % = + % J % $
=
∧ [ d i ]
isina 8vorne to8ke određuje se općom aritmeti8kom sredinom. 'ežina je ovisna o dužini nivelmanskog vlaka.
R C
DETALJNI NIVELMAN -e visinski premjer terena. %visno o ternu! nivelman dijelimo: "lo0ni nivelman Iivelman profila! "lo0ni nivelman se primjenjuje kao nadopuna ortogonalnoj metodi ili kod snimanja veliki/ plo/a mrežom kvadrata ili po profilima. 4. Metoda razbacani/ to8aka =. Metoda mreže kvadrata J. Metoda usmjereni/ profila +
*0 @
R*
1 **
>
*+
R+
a *
(*>#
*1
b
*>
*
;D
R*
*
@
*
*
+
+
*0
*>
*@
+1
1
a**
*
*
++
>
*+
*1
+0
+*
*+*
R*
I
II
* +
1
@
*1@ >
III *++I
*0 * ** *
a
*+ *>
R+
I
*+1
*@ +> * +
b
*1 *
+0 +1
)
R+
+* ++
*1
**
*0
&kica ortogonalnog snimanja! to8ke a i b su vezne to8ke
NIVELMAN UZDU"NI4 I POPREČNI4 PROFILA LINIJSKI NIVELMAN
b KK SK
R*
0 G *
a PK
)
R+
0 @ G * 0 G 1
5
PK
SK
Kinijski nivelman je metoda snimanja visina to8aka koje predstavljaju trasu (liniju) projektiranog objekta ili izgrađenog objekta kao 0to su ceste! vodotoci! naftovodi i sl. +ko je objekt izgrađen metodom uzdužnog profila snima se os objekta. +ko je projektiran potrebno je os trase prenjeti na teren! te snimiti stacionaže objekta.
;P
h /Z,/NI PROFIL TERENA
/Z,/NI PROFI L PROJEKTIRANOG OBJ EKTA 0 0 G 0
0 + G 0
0 B G 0
0 G 0
0 @ G 0
"opre8ne profile snimamo okomito na os trase u to8kama uzdužnog profila.
++0
PROJEKTIRANA TRASA OBJEKTA
KK
1
+
>
*+0
* @ POPREČNI PROFIL TERENA
+
1
>
*0
*
&nimanjem popre8ni/ i uzdužni/ profila ra8unaju se povr0ine usjeka i nasipa kubatura iskopa i nasipa projektiranog objekta. a8unanje kota detaljni/ to8aka Gozovljeno odstupanje (pogre0ka): ∆ ∆h = ±JD
4R R
d ( km )
k 4* *
4+ 41 +
1
'6 = H R + e R H 4 = '6 − e4 H = = '6 − e=
...................... ;<
∑ H
= n ⋅ '6 − ∑ e kontrola mjerenja
POGRE8KE KOD MJERENJA VISINA "ogre0ka nevertikalnosti nivelmanske letve ω
4*
e4 = e >4 ⋅ cos ω % = e>4 −e4
4'*
"5Z
ω =
= e>4 −(e>4 cos ω )
±6!; 6
*
POGRE8KA NE4ORIZONTALNOSTI VIZURNE LINIJE
% = e>4 − e
ω
4*
4'*
ω = 4; 6
d5;6 m "5J!D mm
=. NIVELIR ,nstrument za mjernje visinski/ razlika metodom geometrijskog nivelmana. &astavni dijelovi su: 4. Gurbin =. ređaji za /orizontiranje vizurne osi Iužni dijelovi opreme za mjerenje: 4. Iivelmanske letve =. &tativ ređaj za /orizontiranje vizurne osi može biti: 4. @ijevna libela i elevacioni vijak! 496<.g. Hild /. Iivelir s libelama =. 2ompenzacijski uređaj! 49;6 niveliri s kompenzatorima Iiveliri se po to8nosti dijele na: 4. Iiveliri najvi0e to8nosti ≤ ± 6!; mm3km =. Iiveliri visoke to8nosti ≤ ± 4. Mm3km J. Iiveliri vi0e to8nosti ≤ ± J mm3km . Iiveliri srednje to8nosti ≤ ± < mm3km ;. -ednostavni niveliri > ± < mm3km ;9
,li niveliri: "recizni ,nžinjerski *rađevinski L
L K
K
P - PO,NONI IJCI A - IJ AK ALDI,A,E
E E - ELEACIONI IJAK A
K L - IJAK LIBELE (KOREKCIONI# LL - OS LIBELE P
P
KK - KOLIMACIONA OS
NIVELIRA S ELEVACIONIM VIJKOM ,nstrument mora zadovoljiti slijedeće uvjete: 4. "aralelnost kolimacione osi i tangente nivelacijske libele =. ertikalnost vertikalne ose al/idade J. Lorizontalnost /orizontalne osi nitnokriža "rvi uvjet tzv. adni uvjet provjerava se niveliranjem iz sredine i iz kraja.
L A
L
ϕ
ϕ
4A
B
4B
B
A ,A
,B
D A = D , ∆h = e A − e , 6 A = 6 , = 6 ∆h = e A + 6 − e , ∆h = e A − e ,
Mjerenju iz sredine u slu8aju da vizura ``` paralelna s tangentom libele pogre0ka u o8itanju vCsCup D( i vCsC up D( je jednaka jer je dCsCup P( 5dCsCup <( u8itanje visine D6
izmjereno iz sredine je ```` vCsCup D( i vCsCup D( se poni0tavaju. drugom koraku provodimo mjerenje s kraja da mjerenja otklonimo pogre0ku neparalelnosti. # A = e A + 6 A − e , ϕ
+
# , = e , + =6 4B
∆h = # , − # A
+,
1>. POLIGONOMETRIJA "ri geodetskom mjernju bilo parcela ili nekog drugog mjerenja potrebno je: mjeriti detalj mjeriti mrežu (frameork) "olgonometrija je mjerenje (i ra8unanje) poligonske mreže. 'o8ke 4 do P su to8ke detalja a to8ke 1, +!N!@!G su poligonske to8ke dužine dCsCup + D( ! dCsCup D( ! dCsCup D( ! su poligonske 2 "+ β C strane (mjere se /orizontalne dužine). β 4 i * β = su poligonski prelomni kutovi (mjere > 1 $ "* β se u smjeru kazaljke na satu). B
1 K A E I J + R *
PODJELA POLIGONSKI4 VLAKOVA D4
4. slijepi poligonski vlakovi (open traverse) =. priklju8ni poligonski vlakovi J. zatvoreni poligonski vlakovi &lijepi poligonski vlak je priklju8en na po8etku po8etna to8ka i to8ka iz po8etne su poznate koordinatama. "riklu8eni poligonski vlak je priklju8en na po8etku i na kraju. "o8etna! druga! predzadnja i zadnja to8ka su poznate `````````` koordinatama. ?atvoreni poligonski vlak ima po8etnu i zavr0nu to8ku istu. + ZATORENI POLIGONSKI LAK
* SLIJ EPI POLIGONSKI LAK
1 5 5> 51
β 2 + β
β
1
>
5
5 B
β 7
5@
5*
θ
β6
5
B * θΑ 5*
*
β
β 5
+ 5+
1
5+
2
β 4
β3
*0 5*0
5
@
β8
β 9
β1 0
A
TOČKE A I B POZNATE * I + NEPOZNATE PO KOOR,INATAMA
TOČKE A POZNATA PO KOOR,INATAMA
1 ZATORENI POLI GONSKI LAK
PRIKLJ /ČENI POLIGONSKI LAK
2
β
B
θΑ
A
*
β3
,
θC
1
β
+
B
β 5
β 4
θΑ
B
A 1
β 1
β 2
β 4 B
TOČKE A I B POZNATE PO KOOR,INATAMA
5* *
β3
C 51
5+ +
TOČKE A!B!C!, POZNATE PO KOOR,INATAMA
D=
> PRIKLJ /ČENI POLIGONSKI LAK
B
θΑ
A
SF PF
B B
PSZS
β 1
A 5*
β 2 *
θΑ
5+
β4
β 3 +
β6 β5
51
1
TOČKE A I B POZNATE PO KOOR,INATAMA
5
5>
B
β 1 β 2 5* *
5+
A
θC
Z FS F
C
β 3 +
β4 51
1
β6 β5 5> 5
TOČKE A! B I C POZNATE PO KOOR,INATAMA
"o principu mjerenja iz većeg u manje poligonski vlakovi se dijele na redove 4!=!J! red. i0e vlakova 8ine poligonsku mrežu. 2ada se u jednoj to8ki sjeku tri ili vi0e poligonski/ vlakova! takva se to8ka naziva 8vorna to8ka.
POSTAVLJANJE POLIGONSKE MRE"E TOČAKA3 "oligonske to8ke se postavljaju tako da zadovolje matemati8ke uvjet: 4. poligonski vlakovi trebaju biti ispruženi V4<67 =. poligonske stranicce trebaju biti sli8ne duljine +ko su navedeni uvjeti ispunjeni utjecaj pogre0aka u mjerenju kutova će biti minimalni.
STA!ILIZACIJA POLIGONSKI4 TOČAKA +ko se poligonska to8ka uvodi u popis stalni/ ```` tada se stabilizacija izvodi betonskim stupovima 4;$4;$D6 cm. gradovima se stabilizacija izvodi željeznom bolcnom. STALNA +0 )9 TOČKA *0 )9
MJERENJA POLIGONSKI4 VLAKOVA 2utovi se mjere u jedan ili dva girusa. "ogre0ka koja može utjecati na to8nost kutova je 2&@I',@,'' ,?. %vdje se vidi i utjecaj kratke strane.
DJ
Τ
4+ )9
8 0
' '
Τ'
>0 9
Gužine se mjere 4. direktno =. indirektno
, K
∆h
,D
Girektno mjerenje može se obavljati /orizontalno ili koso po terenu. obi8ajno se dužine mjere koso po terenu! obavezno tamo i natrag. =$. 2ontrola mjere koso izmjerna dužina se mora svesti na /orizontalu. d H = D' − ∆h = d ' 4 − =
=
∆h =
=
∆h =
d k =
= d ' −
∆h = =d '
d ' − d H redukcija
=d k
2ada je moguće mjeriti (visinski kut) redukcija5X/ tg 3=. ,ndirektna mjerenja dužina se koriste kada nije moguće direktno mjeriti dužinu. A γ 4 i γ = se ra8unaju
5*
α 1 β 1 ,
5+
β 2 α 2 B
C 51
d 4 se ra8una =$
β ,
prelomni kut se direktno mjeri
β Β
E
RAČUNANJE POLIGONSKOG PRIKLJUČENOG VLAKA
D
T*
β 1 β 2 5* *
T+
β4
β 3 3
5+ + 51 1 5
β5
β6
5>
T1 5 T "
Mjereno na terenu: β 4 ! β = ! β J ! β : ! β ; ! β D kutovi d 4 ! d = ! d J ! d : ! d ; ! d D dužine lak u po8etku i na kraju je priklju8en na mrežu stalni/ geodetski/ to8aka. "oznate su od prije po koordinatama koordinatama T 4 ! T = ! T J i T : potrebno je izra8unati izra8unati koordinate 4!=!J! 4!=!J! poligonski/ to8aka. to8aka. "ostupak ra8uanja ra8uanja koordinata koordinata poligonski/ to8aka to8aka u poligonskom poligonskom vlaku može se izvesti po približnoj metodi i po uvjetnoj metodi izjedna8enja. "ribližna metoda ra8uanja koordinata ":': razni mjerenja i prvo ra8una (izjedna8uje9 kutna mjerenja! zatim dužinska mjerenja. "ret/odna ra8unanja! ra8unanje smjernog kuta &mjerni kut je kut 0to ga zatvara paralela osi $ koordinatnog sustava i pravca dvaju stalni/ geodetski/ to8aka. %zna8ava se s ````` između T ! T = postoje ```` i ``` koji se `````. 4
% T+ T+
θ
tg θ T T 4= = ,
sin θ T T 4= =
Τ1
% T*
D =
$ T+
$ T*
yT = − yT 4 ∆ y = xT = − xT 4 ∆ x
"
∆ y
D
∆ y T = sin θ T 4
⇒ cos θ T T 4= =
=
∆ x
D
⇒
∆ x T =
cosθ T 4
+ko je poznato T 4 ( y4 ! x4 ) i T = ( y = ! x = ) a da se po 4. geodetskom zadatku ra8una θ T T 4= i
DT 4!T =
"o obrnutom geodetskom zadatku ra8uanaju koordinate to8ke T = ako su poznate koordinate T = T ( x4 ! y4 ) i θ T 4 i DT T ∆ y sin θ T T 4= = ⇒ ∆ y = D sin θ T T 4= yT = = yT 4 + ∆ y 2ako u geodeziji ne ra8una se s D negativnim kutovim za ,, kv. 6 T x ∆ cos θ T T 4= = ⇒ ∆ x = D cosθ T T 4= xT = = xT 4 + ∆ x vrijedi α + 4<6 = θ T J za ,,, i , D kv. vrijedi θ T T ;D ili θ T T P< 4
4!
=
POPRAVKA MJERENI4 KUTOVA
D;
f J f ⇒ θ T > = = θ T T 4= + (β 4 + J ) ± 4<6 6 n n f θ T T J: = θ iT J + ( β i + J ) ± 4<6 6 treba kontrola ra8unanja n
5 , =
RAČUNANJE KORDINATNI4 RAZLIKA "omoću izjedna8eni/ smjerni/ kutova i mjereni/ dužina: ∆ y4 = d 4 sin θ T T 4=
∆ x4 = d 4 cosθ T T 4=
∆ y = = d = sin θ T T 4=
∆ x = = d = cos θ T T 4=
:::::::::::::::::::::
::::::::::::::::::::::: T J
∆ xT J = d ;= cos θ T J
∆ y T J = d ; sin θ
`````````````````````` ````````````````````````````````` ````````````````` `````` n
∑
n
∑
∆ y 5 ima
i
∆ x 5 ima
i
− xT = 5 treba f x 5 treba ima
− y T = 5 treba f y 5 treba ima
xT J
yT J
T*
T* ∆"*
T+
∆"+
∆"1
∆"
*
∆" T1
θΤ2
T+
∆
*
T1
+
T1
1 ∆"
" T+
ukupna linearna pogre0ka:
T
T1 f # f $
∆"*
T+ 5*
∆
f e
*
T1'
" T1
f e = = f y= + f x=
dopu0teno odstupanje: l e = 6!;
n
n
i
i
∑ d + 6!J∑ d + ;
cm
f e < ∆ e
K,I+I+ "%*2+ M%+ N,', M+I-+ %G G%?%K-I%* %G&'"+I-+ "%"+2 2%%G,I+'I,L +?K,2+ +RI+- & "% F%MK,: 5 yi =
f y ⋅ d i d ∑
5 xi =
f x ⋅ d i d ∑
definitivne koordinate se ra8unaju po formulama:
DD
y4 = yT = + ∆ y4 +
f y ⋅ d 4 ∑ d
x4 = xT = + ∆ x4 +
f x ⋅ d 4 d
∑
koordinate poligonski/ to8aka u poligonskom vlaku ra8unaju se u trigonometrijskom formularu:
a k a l v . r N
e k 8 o t . r N
β i
θ i
2od.razlike
d i
koordinate
∆x
∆ y
#
$
e k 8 o t . r N
∑ d ∑ ∆ y ∑ ∆ x
∑ β f β
fy
fx
fe
+RI+I- 2%%G,I+'+ 2%%G,I+'+ R%I '%R2 T>
1 @ T* T*
T >
*
+ *
T1
+
1 Č*
ZAJE,N AJ E,NII ČKA ČKA STRANICA
θ 4 = θ T T 4= + ∑ β ± ; ⋅ 4<66
DP
p4θ 4 + p =θ = + pJθ J p4 + p = + pJ n broj β u vlaku
θ = = θ T T J + ∑ β ± J ⋅ 4<6 6
θ 7
θ J = θ T T J; + ∑ β ± ; ⋅ 4<66
=
\ p =
4
n
po istom principu ra8unanja se koordinatne razlike: y4
= yT = + ∑ ∆y4
x4
= xT = + ∑ ∆x4
y = = yT + ∑ ∆y =
x = = xT + ∑ ∆x =
yJ
xJ
= yT ; + ∑ ∆yJ
y7 =
pi =
p4 y4 + p= y= + pJ yJ p4 + p = + pJ
4
∑ d i
p4 =
= xT ; + ∑ ∆xJ
x7 =
4
∑ d
4
p4 x4 + p= x= + pJ xJ p4 + p= + pJ
p = =
4
∑ d
=
pJ =
4
∑ d
J
D<
11. POLIGONSKE TOČKE "oligonske to8ke su stalne geodetske to8ke i postavljaju se tako progutćuju trigonometrijske mreže , reda. "ostavljaju se i ra8unaju tako da niz to8aka 8ini vlak koji na po8etku i3ili na kraju ima poznate to8ke po koordinatama. Iiz vlakova 8ini poligonsku mrežu. "oligonske to8ke 3 vlakovi se po to8nosti dijele na vlakove 4.! =.! J.! i . reda. I III <=i<72k4 ?
I II
I
"oligonske to8ke i trigonometrijske to8ke namijenjene su za snimanje situacije ($! # ) dok za snimanje konfiguracije (z ) postavljaju se! stabiliziraju! signaliziraju i ra8unaju visinske stalne geodetske to8kereperi. NIELMANSKI LAKOI
A
C
B
",I@," "%&'+K-+I-+ , +RI+I-+ repera odgovaratrigonometrijskim i poligonskim to8kama. "rincip iz velikog u malo reperi se po to8nosti dijele na : 4. red reperi "I' =. red reperi "I J. red reperi 'I"' . red reperi 'I
GPS TOČKE *"& to8ke mogu se postavljati i uklju8iti u mrežu stalni/ geodetski/ to8aka. D9
azlika između *"& to8aka i drugi/ stalni/ geodetski/ to8aka je 0to su *"& to8ke trodimenzionalne (istovremeno se ra8una $!# i z koordinate ). Lrvatskoj je 499D. godine izvedena karta snimanja *"& to8aka F 9D ( =6 +2') koje su kasnije progu0ćavane. F je evropska kampanja. Ia taj na8in su se povezale koordinate evropski/ država u jedinstvenu mrežu.
12. OSNOVE TEORIJE POGRE8AKA &va mjerenja koja se izvode su opterćena pogre0kama. Mjereći ravnalom stranicu stola vi0e puta dobiti ćemo razli8ite rezultate. azli8iti rezultati su posljedice pogre0aka. ,zvori pogre0aka mogu se podijeliti na 4. pogre0ke instrumentarija =. pogre0ke metode mjerenja J. pogre0ke opaža8a ( oka ) . pogre0ke uslijed vanjski/ prilika "o na8inu nastanka dijele se na: sistematske ( konstantne eng.) slu8ajne (random ) Ieke od slu8ajni/ pogre0aka se mogu prepoznati i eliminirati iz mjerenja. 'o su grube pogre0ke. *rube pogre0ke su posljedica nemara i neznanja operatora. &istematske pogre0ke (konstantne eng.) također se mogu eliminirati iz mjerenja (ako se poznaje uzrok) promijenjenom metodom mjerenja ili rektifikacijom instrumenata. *rube pogre0ke se mogu uo8iti samo u ponovljenim mjerenjima Q prekobrojna mjerenja. *ranica između slu8ajne i grube pogre0ke naziva se dozvoljena odstupanja. Mjerenja izvan dozvoljeni/ odstupanja odbacuju se.
SISTEMATSKE POGRE8KE Iastaju zbog nesavr0enosti instrumenata i vanjski/ neprilika. 2onstantne ili sistematske pogre0ke se ne mogu uo8iti ponovljenim mjerenjima! sa istim priborom. &istematske pogre0ke su po iznosu male vrijednosti a po predznaku uvijek iste. anjski utjecaji koji utje8u na na sistematske pogre0ke temperatura vlažnost zraka tlak zraka &lu8ajne pogre0ke su one pogre0ke koje ne možemo eliminirati iz mjerenja jer ne poznamo uzrok nastajanja. %ne su po veli8ini male vrijednosti unutar dozvoljeni/ odstupanja a po predznaku su razli8ite. XS dozvoljeno odstupanje ε ≤ ∆ ε prava pogre0ka istinitna teoriji izjedna8enja mjerenja smatra se da je ∞ mjerenja ∑ ε = Σ − ε odnosno aritmeti8ka težina težiti će [ ε = p − e e mjerenje ε pogre0ka e4546;!J e546;! P6
e=546;!D e;546;! eJ546;!= 546;!
*0>
GAUSS-OVA KRIVULJA RAZDIO!E POGRE8AKA
> > > > > > > 0 0 0 0 0 0 0 * * * * * * *
-e funkcija gustoće vjerojatnosti mjerenja (zvonolika krivulja ).
lim n →∞ −φ
+φ
∑ ε
4
n
= φ
2riteriji mjerenja 4. to8nost
=. preciznost J. sigurnost 'o8nost je mjerenja stupanj približenja pravoj vrijednost mjerenja. "reciznost mjerenja je je stupanj približenja ponovljeni/ mjerenja. &igurnost mjerenja je interval u kojem o8ekujemo da će se pojaviti pogre0ka mjerenja.
. . .
+ko se uzme veća tolerancija pogre0ke veća je sigurnost mjerenja ( ne treba ponavljati mjerenja )
OSNOVNI POJMOVI P4
+5 Ki ] ε i iQprava pogre0ka 5 Ki ] iQ najvjerojatnija pogre0ka najvjerojatnija vrijednost mjerenja Ki Q mjerenje
PROSJEČNA POGRE8KA ! =
∑ ε n
-e ocjena to8nosti gdje se sve istinite pogre0ke uzimaju apsolutnom iznosu
SREDNJA POGRE8KA
[ε ] 5 ± ∑ ε =
m=±
n
=
n
[5 ] =
m=±
n −4
-e ocjena to8nosti koja se koristi kod ograni8enog broja mjerenja
RELATIVNA POGRE8KA -e omjer srednje pogre0ke i mjerene veli8ine r =
m# #
izražava se 4 : n
Gozvoljena pogre0ka je grani8na vrijednost koja se u geodetskim mjerenjima uzima kao prag slu8ajni/ i grubi/ pogre0aka. obi8ajno se uzima X 5Jm! tada je " 5 6!99PJ (sigurnost ) vrijednosti veće od Jm su grube pogre0ke. 2od precizniji/ i to8niji/ mjerenja može se X 5=m ili to8nije.
P=
TEORIJA POGRE8AKA RAČUN IZJEDNAČENJA ?akon o prirastu pogre0aka y = 8 (e4 ! e = !....e n ) # E tražena veli8ina e4 ! e = !....e n mjerene veli8ine e i mjerenje mi srednja pogre0ka mjerenja funkcija y = e + c c E konstanta y ± m y = (e ± m) + c
m y
= ±m
y = e4 + e = y ± m y = (e4 ± m ⋅ e4 ) + (c = ± m ⋅ e= ) m9 = ± me
=
4
+ me
=
=
± m9 = ± me4 ± me = neodređeni izrazi
formula vrijedi i za oduzimanje
",M-,:
α = ;74P>=<>>
mα
β = =>>
m β
= ± D>> = ± 46>>
γ = Z mγ
=Z
%"TI,', ,?+? y = 8 (e4 ! e = !....e n ) y
± m y = 8 (e4 ± m4 ! e = ± m = ! eJ ± mJ !......) uz pretpostavku
F razvijamo u 'a#lorov red: y
± m y = 8 (e4 ! e= ! eJ !......) ±
male veli8ine
∂ 8 ∂ 8 ∂ 8 m4 ± m= ± m ± .......... 8lanovi vi0i/ redova se ∂e4 ∂e = ∂eJ J =
zanemaruju ± m9
m4 ! m = !....mn
=
∂ 8 ∂ 8 = ± m4 ± m = ∂e + .......... ∂ e 4 =
",M- =.: a5 =4!;;U6!6P m
traži se stranica b u trokutu i
mb
PJ
α = ;J7=>;=>>U4;>> β = P67;><>>U4;>>
b=a⋅
sin β sin α
∂b ∂b sin β ∂b = −b ⋅ ctg β = −b ⋅ ctg α \ = \ ∂β ∂α ∂a sin α
\
mb 5
VRSTE MJERENJA "rema teoriji najmanji/ kvadrata najvjerojatnija vrijednost mjerenja je ona za koju vrijedi da je suma kvadrata odstupanja mjereni/ veli8ina od izabrane jednaka minimumu. ,zjedna8enje je pronalaženje veli8ine za koju vrijedi gornja definicija. Mjerenja se dijele na: direktna indirektna uvjetna izjedna8enje direktni/ mjerenja: 54= = l = − =le4 + e4= 5 == = l = − =le= + e== 5J= = l = − =leJ + eJ=
54 = l − e4 5 = = l − e= 5 J = l − eJ
:: [ 55 ] = min
[ 5 ] = n ⋅ l = − =l [ e] + [ ee]
[ 55 ] će biti minimum ako prva derivacija bude 5[ po najvjerojatnijoj vrijednosti. ∂[ 55 ] = =nl − =[ e] 5 [ \ ∂l
[ e] prosta aritmti8ka sredina n srednja pogre0ka aritmeti8ke sredine je srednja pogre0ka najvjerojatnije vrijednosti mjerenja. l =
[ e] \ n
nl5e \
l + ml =
e4 ± m4 + e= ± m= \ n
5m
\ M l = ±
m4 ! m = !....mn
l =
M l = ±
m4 + m = + .... n
[ 55] m = n( n − 4) n
",M- J.: e4
= =6!=P !J= != !=D !J; !J6
l5Z m5Z M5Z
P
'Y,I+ M-I-+ +RI+I- & 'Y,I+M+ 2ada mjerenja nisu izvedena pod jednakim uvjetima imati će razli8iti utjecaj na kona8ne rezultate tj. težina pojedini/ mjerenja ovisiti će utjecaju na rezultat najvjerojatniju vrijednost mjerenja. p težina mjerenja p =
l =
4 m
težina je recipro8na srednjoj pogre0ci mjerenja.
p4 e4 + p4 e4 + .......... ..... p n e n [ pe ] = [ p ] p4 + p = + p n
po teoriji najmanji kvadrata: [ p55 ] = min
mo = ±
[ p55 ] srednja pogre0ka jedinice težine n −4
[ p55 ] srednja pogre0ka opće aritmeti8ke sredine [ p ] (n − 4) m m $ = ± o srednja pogre0ka relativnog mjerenja p i
M = ±
",M- .: 4JP74=>JD>> 4JP74=>=> 4JP74=>P>>
J* D* <*
l5Z
m4 = Z
=Z M5Z
m= = Z mJ = Z
m6
MJERE 4ORIZONTALNI4 KUTOVA
h A
α'
α
2
ϕB
Bh
"rostorni kut koji je definiran s to8kama &+N odnosno pravcima &+ i &N se projecira na /orizontalnu ravninu i o8itava se kut u /orizontalnoj ravnini. Ga bi se ispravno o8itao ugao &+N potrebno je zadovoljiti uvjete: instrument mora biti centriran instrument mora biti /orizontiran
,nstrument kojim se mjere /orizontalni kutovi ( i visinski) zove se '%G%K,'. '%G%K,' Gijeli se po to8nosti opažanja: visoka to8nost ≤ 4>> P;
srednja to8nost ≤ D>> manja to8nost ≤ =;>>
"o na8inu izrade teodoliti se dijele na: me/ani8ke! opti8ke i elektroni8ke %snovni dijelovi teodolita: podnožni dio s tri podnožna vijka i centralnim vijkom. @entralni vijak služi za u8vr0ćivanje teodolita na stativ. "odnožni vijci služe za /orizontiranje instrumenata. Ia podnožnom dijelu leži /orizontalni krug (K,MN) i al/idada. z /orizontalan krug je smje0ten "',@,%I, uređaj koji oslobađa ili blokira okretanje /orizontalnog kruga. +l/idada je okretni dio teodolita sadrži: o al/idadne libele o vertikalna osovina o /orizontalna osovina o nosa8i durbina o durbin (vertikalni krug) o o (libela vertikalnog kruga) o ko8nica za pomicanje al/idade o ko8nica za pomicanje durbina o vijke za fino pomicanje o opti8ki visak o mikroskop za o8itanje /orizontalnog i3ili vertikalnog kruga +l/idadne libele (dozna i cijevna) dovode al/idadu i /orizontalni krug u /orizontalni položaj. ertikalna osovina je fizi8ka osovina oko koje rotira al/idada. ertikalna os je simetrala vertikalne osovine. Gurbin je fizi8ki spojen sa /orizontalnom osovinom! koja se rotira na nosa8ima durbina. &imetrala /orizontalne osovine i /orizontalna os teodolita. Gurbinom se vizira to8ka detalja koja se mjeri. Gurbinom prolazi vizurna ili kolimaciona os teodolita. 2o8nice i vijci! fini pomak al/idade i durbina koriste se precizno viziranje na to8ku detalja. %pti8ki visak durbin kroz kojeg se zrake svjetla lomi pod 967. %pti8kim viskom teodolit centrira odnosno dovodi iznad to8ke opažanja. Mikroskom ili lupa je opti8ki sistem kojim se o8itavaju vrijednosti s /orizontalnog ili vertikalnog kruga. Lorizontalni3vertikalni krug je metalna ili staklena okrugla plo8a s podjelom u stupnjevima ili gradima.
DUR!IN Gurbin je opti8ki instrument koji služi za povećanje vidnog puta. Gurbini se dijele na: reflektore i refraktore Gurbini na teodolitu su refraktori. "ostoje dva tipa refraktora: astronomski durbin (2etlerov) *alilejev durbin Gurbini na teodolitu su astronomski durbini jer astronomski durbini omugoćavaju ugradnju nitnog kriza (oznake kojima viziramo detalj) u durbin. %blici nitnog križa:
PD
izurna os je definirana sredi0tem nitnog križa i sredi0tem objektiva durbina.
&tvaranje slike u durbinu
/EANA SLIKA REALNA SLIKA /MANJENA F+
F*
OBJ EKTI
OK/LAR
%brnuta realna umanjena slika predmeta mora pasti na nitni križ. +ko to nije slu8aj nije pravilno izvr0eno fokusiranje tj. slika je mutna. %kular je povećalo. Ga bi se uvećana virtualna slika o0tro vidjela u oku! potrebno je dioptrirati okular. &vojstva durbina: povećnje = J= $ svjetloća veli8ina vidnog polja. 5 =
d f 4
47J7
p =
f 4O, f 4O'
MIKROSKOP ZA OČITANJE LIM!A 4ORIZONTALNOG5VERTIKALNOG KRUGA Gijelimo i/ na: mikroskop s crtom mikroskop s nonijusom mikroskop sa skalom mikroskop s opti8kim mikrometrom M)&o()o$ ( ?&+o /,*)(o3
** *+
o8itanje 44>J=>> procjenjuju se sekunde 49
PP
M)&o()o$ (a ()ao a @0*(+o /,*)(a ()a@ o8itanje J7JJ>
0 > 1 +*0
11 1
1> MIKROSKOP S OPTIČKIM MIKROMETROM
2oriste se kod vrlo precizni mikroskopa! kao uređaj za mjerenje koristi se plan paralelni/ plo8a.
5
1
i754k2
> 1+*0
+'B0''
;*+'>'' -
+ ' -0 ''
P<