Indian Institute of Technology Gandhinagar Dept. of Mechanical Engineering
ME304: KINEMATICS AND DYNAMICS OF MACHINES L09: POSITION ANALYSIS OF MECHANISMS
Dr. Murali Damodaran
[email protected]
Spring Semester of AY2011-2012 MD/AY2011-2012
ME304
KDM.1
LECTURE 09 23 January 2012 ME304: Kinematics and Dynamics of Machines Introduction to Mechanisms. ..continuing with Kinematic Fundamentals Position, Velocity and Acceleration Analysis. (Kinematics) Analytical Method for Position Synthesis (The basis for computer modeling and synthesis of linkages) Design of Cam Follower Mechanisms. Gear tooth profiles, Spur gears and Helical gears,Epicyclic Gear Trains Belt drives Dynamic Analysis of Mechanisms (Dynamics) Balancing Analysis and Applications of Discrete and Continuous System Vibration
Course Website @ https://sites.google.com/a/iitgn.ac.in/me304/ MD/AY2011-2012
ME304
KDM.2
Coordinate Systems for Analysis of Planar Mechanism
POSITION ANALYSIS OF MECHANISMS Cartesian: RX , RY Polar: (RA , )
• Converting between the two
RA RX 2 RY 2
arctan RY RX
RX RA cos
o
RY RA sin
Y
• Position Difference, Relative position – Difference (one point, two times) – relative (two points, same time) RBA=RB-RA MD/AY2011-2012
ME304
A RA
o
RBA
B
RB X
KDM.3
Position Analysis of Fourbar Linkage Mechanism
POSITION ANALYSIS OF MECHANISMS Given : The lengths of links a, b, c and d position of the ground link O2 O4 and the angle 2 Objective: Find 3 and 4
MD/AY2011-2012
ME304
KDM.4
Graphical Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS • Draw an arc of radius b, centered at A • Draw an arc of radius c, centered at O4
B1 b A
a • The intersections are the two possible positions for the linkage, 2 open and crossed O2
3
d
c
4 O4
B2 MD/AY2011-2012
ME304
KDM.5
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
Coordinates of Point B b Bx Ax By Ay 2
2
2
c Bx d By 2 2
Coordinates of Point A:
2
Solve these equations to find
Ax a cos 2
Bx and By
Ay a sin 2
See Page 177-178 for solution MD/AY2011-2012
ME304
KDM.6
Coordinate Systems for Analysis of Planar Mechanism
POSITION ANALYSIS OF MECHANISMS x’ y’
Coordinate Systems: GCS = Global Coordinate System, (X, Y) LNCS = Local Non-Rotating Coordinate System , (x, y) LRCS = Local Rotating Coordinate System , (x’, y’) MD/AY2011-2012
ME304
KDM.7
Coordinate Systems for Airplane Fight Dynamics
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.8
Non-planar Linkages-3D Spherical Linkages
POSITION ANALYSIS OF MECHANISMS
http://synthetica.eng.uci.edu/~mcca rthy/Linkages.html MD/AY2011-2012
ME304
KDM.9
Representation of Position Vectors
POSITION ANALYSIS OF MECHANISMS
• For planar motion complex numbers on the real-imaginary plane can be used to model position vectors • Euler identity e±iθ=cos θ ± i sin θ (Note-Norton uses j instead of i in his text book i.e. e±jθ =cos θ ± j sin θ ) • Cartesian form: RAcos θ + i RAsin θ • Polar form: RAei θ
MD/AY2011-2012
ME304
KDM.10
Representation of Position Vectors
POSITION ANALYSIS OF MECHANISMS
Multiplying a vector by ei corresponds to rotating the vector through i
i
i 2
RAe e RAe
Rei R cos iR sin R RA
RB iR
For a rotation RC i 2 R R
through 90 degrees e
i
2
cos
2
MD/AY2011-2012
i sin
2
i RD i3 R iR
ME304
KDM.11
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS Write the vector loop equation:
R2 R3 R4 R1 0 (Positive from tail to tip)
Substitute with complex vectors
aei2 bei3 cei4 dei1 0 Split the knowns on one side and the unknowns on the other. Call the knowns Z i3 i 4 i 2 i1
be ce
ae de Z
Z aei2 dei1 MD/AY2011-2012
ME304
known KDM.12
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS bei3 cei4 aei2 dei1 Z Define s ei3 and t ei4 i3
be ce
i 4
bs ct Z
1 1 i 4 Define s e = and t e i.e. conjugates s t and a conjugate based on known link lengths i3
bs ct Z b c 1 Z noting that Z s t Z MD/AY2011-2012
ME304
KDM.13
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS bs ct Z b c Z s t bs ct Z b c Z s t
MD/AY2011-2012
1 noting that Z Z
c b ct Z Z t c 2 2 b c ctZ Z ZZ t b 2t c 2t ct 2 Z cZ tZZ 2
ME304
KDM.14
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
c 2t ct 2 Z t c 2 b2 ZZ cZ 0 Solve ct Z t c b ZZ cZ 0 for t 2
c b ZZ 2
t
2
2
2
c
2
b ZZ 4c ZZ 2
2
2
2cZ
ct Z s b MD/AY2011-2012
ME304
KDM.15
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
Solve ct 2 Z t c 2 b2 ZZ cZ 0 c b ZZ 2
t
2
c
2
b ZZ 4c 2 ZZ 2
2
2cZ
ct Z s b s ei3 and t ei4
Z bei3 cei4 Z be i3 ce i4 conjugate of Z 1 noting that Z Z
Solve this in Matlab/Octave MD/AY2011-2012
ME304
KDM.16
Algebraic Position Analysis of Fourbar Linkage in Octave
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.17
Algebraic Position Analysis of Fourbar Linkage
KINEMATICS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.18
Software Systems for Analysis of Various Linkages
POSITION ANALYSIS OF MECHANISMS R L NORTON’s SUITE OF PROGRAMS ACCOMPANYING THE TEXTBOOK Kinematics and Dynamics of Machinery
COMMERCIAL SOFTWARES FOR LINKAGE MECHANISMS WORKING MODEL 2D
FOURBAR FIVEBAR SIXBAR SLIDER DYNACAM ENGINE All are student SI editions
MD/AY2011-2012
SAM (Synthesis and Analysis of Mechanisms) MATLAB Simechanics Toolbox
Ch MECHANISMS Toolkit
AutoDesk Inventor In-Motion Module
ME304
KDM.19
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS FOURBAR Program
MD/AY2011-2012
ME304
KDM.20
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS FOURBAR Program
MD/AY2011-2012
ME304
KDM.21
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.22
Algebraic Position Analysis Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS • Given: link lengths a, b and c, θ1, θ2 (the motor position) • Find: the unknown angle θ3 and length d
R2 R3 R4 R1 0 aei2 bei3 cei4 dei1 0 MD/AY2011-2012
ME304
KDM.23
Algebraic Position Analysis Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS aei2 bei3 cei4 dei1 0 Using Euler Equivalents, collecting real and imaginary terms and setting each to zero results in:
a cos 2 b cos 3 c cos 4 d cos 1 0 a sin 2 b sin 3 c sin 4 d sin 1 0 As 1 0, these equations simplify to: a cos 2 b cos 3 c cos 4 d 0 a sin 2 b sin 3 c sin 4 0 MD/AY2011-2012
a sin 2 c sin 4 3 sin b 1
ME304
KDM.24
Algebraic Position Analysis of Linkages with more than 4 bars
POSITION ANALYSIS OF MECHANISMS a sin 2 c sin 4 b Here c is the offset.
3 sin 1
Initial set up of coordinate system for slider block such that
1 0 and 4 90 Hence one solution is: a sin 2 c 3 sin b d a cos 2 b cos 3 1
MD/AY2011-2012
The next valid solution taking into account the multi-valuedness of arcsin is a sin 2 c 3 sin b d a cos 2 b cos 3 1
ME304
KDM.25
Algebraic Position Analysis of Linkages with more than 4 bars
POSITION ANALYSIS OF MECHANISMS Hence one solution is: a sin 2 c b d a cos 2 b cos 3
3 sin 1
MD/AY2011-2012
ME304
KDM.26
Algebraic Position Analysis of Linkages with more than 4 bars
POSITION ANALYSIS OF MECHANISMS a sin 2 c b d a cos 2 b cos 3
3 sin 1
MD/AY2011-2012
ME304
KDM.27
Algebraic Position Analysis of Inverted Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS • Given: link lengths a, c and d, 1, 2 (the motor position), and g the angle between the slider and rod
• Find: the unknown angles 3 and 4 and length b
MD/AY2011-2012
ME304
2
KDM.28
Algebraic Position Analysis of Inverted Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS Write the vector loop equation:
R2 R3 R4 R1 0 (Positive from tail to tip) Substitute with complex vectors i 2
i3
i 4
i1
ae be ce de 0
2
Since 3 4 g aei2 be
i 4 g
MD/AY2011-2012
cei4 dei1 0 ME304
KDM.29
Algebraic Position Analysis of Inverted Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS i 4 g
i2
ae be
cei4 dei1 0
• Grouping knowns and unknowns
bei4 g cei4 aei2 dei1 Z i 2
Z ae de
i1
known
• Denoting s ei4 , t eig
Z be
i 4 g
ce
2
i 4
Z bei4 eig cei4 bst cs • Taking the conjugate to get the second equation MD/AY2011-2012
ME304
1b Z bst cs c s t KDM.30
Algebraic Position Analysis of Inverted Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS Z bst cs 1b Z bst cs c s t Multiply Z and Z to get:
1 2 ZZ b bc t c 2 t 1 2 Solve b c t b c 2 ZZ 0 for b t 2
2
1 1 2 c t c t 4 c 2 ZZ t t b 2
MD/AY2011-2012
ME304
KDM.31
Algebraic Position Analysis of Inverted Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS 1 Solve b c t b c 2 ZZ 0 for b t 2
2
1 1 c t c 2 t 4 c 2 ZZ t t b 2 2
From Z bst cs Z s bt c
MD/AY2011-2012
ME304
KDM.32
Algebraic Position Analysis of Inverted Crank-Slider Linkage
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.33
Algebraic Position Analysis of Geared Fivebar Linkage
POSITION ANALYSIS OF MECHANISMS • Consider Geared fivebar linkage • Write vector loop equation
R2 R3 R4 R5 R1 0
• Apply complex number representation i3
i2
i5
i4
ae be ce de fei1 0 Gear Ratio: will relate 5 and 2 v via a phase angle as follows:
5 2 i2
i3
i4
i ( 2 )
ae be ce de MD/AY2011-2012
ME304
i1
fe 0 KDM.34
Algebraic Position Analysis of Geared Fivebar Linkage
POSITION ANALYSIS OF MECHANISMS
aei2 bei3 cei4 dei ( 2 ) fei1 0 Separate unknowns and knowns
bei3 cei4 aei2 dei ( 2 ) fei1 Z Denote Z be
i3
cei4
Define s bei3 and t cei4 bei3 cei4 bs ct Z b c Form Conjugate Z bs ct s t
The remaining analysis follows exactly the same way as shown for the fourbar linkage
MD/AY2011-2012
ME304
KDM.35
Algebraic Position Analysis of Geared Fivebar Linkage
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.36
Algebraic Position Analysis of Geared Fivebar Linkage
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.37
Algebraic Position Analysis of Watt’s Sixbar Linkage
POSITION ANALYSIS OF MECHANISMS
• Watt’s sixbar can be solved as 2 fourbar linkages • R1R2R3R4, then R5R6R7R8 • R4 and R5 have a constant angle between them
MD/AY2011-2012
ME304
KDM.38
Algebraic Position Analysis of Watt’s Sixbar Linkage
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.39
Algebraic Position Analysis of Watt’s Sixbar Linkage
POSITION ANALYSIS OF MECHANISMS
MD/AY2011-2012
ME304
KDM.40
Algebraic Position Analysis of Stephenson’s Sixbar Linkage
POSITION ANALYSIS OF MECHANISMS
• Stephenson’s sixbar can sometimes be solved as a fourbar and then a fivebar linkage • R1R2R3R4, then R4R5R6R7R8 • R3 and R5 have a constant angle between them • If motor is at O6 you have to solve eqns. simultaneously
MD/AY2011-2012
ME304
KDM.41
Finding the position of any point on a linkage
POSITION ANALYSIS OF MECHANISMS
• Once the unknown angles have been found it is easy to find any position on the linkage (relative to pivot O2)
• For point S Rs=sei( +d ) • For point P RP=aei +pei ( +d ) • For point U RU=d +uei ( +d ) 2
2
2
3
4
MD/AY2011-2012
b c
3
a d
4
ME304
KDM.42
Algebraic Position Analysis of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
y’
x’ Rp
RA
MD/AY2011-2012
ME304
KDM.43
Analysis of Transmission Angles of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
• Extreme value of transmission angle when links 1 and 2 are aligned.
b 2 c 2 d a 2 1 arccos 2bc MD/AY2011-2012
b 2 c 2 d a 2 2 arccos 2bc ME304
KDM.44
Analysis of Toggle Positions of Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
• Caused by the collinearity of links 3 and 4.
2
toggle
a 2 d 2 b2 c 2 bc cos 0 2toggle 2ad ad 1
3
3 Overlapped
4 2
Extended
MD/AY2011-2012
2
2
4
2 ME304
KDM.45
Analysis of Toggle Positions of a Fourbar Linkage
POSITION ANALYSIS OF MECHANISMS
• Caused by the collinearity of links 3 and 4. 2 2 2 2 bc 1 a d b c 2toggle cos 0 2toggle 2ad ad • For a non-Grashof linkage, only one of the values of
a 2 d 2 b2 c 2 bc 2ad ad will be between –1 and 1
MD/AY2011-2012
ME304
KDM.46
MD/AY2011-2012
ME304
KDM.47