JEE(Advanced)-2014 ANSWERS, HINTS & SOLUTIONS FULL TEST –I (Paper-1)
ALL INDIA TEST SERIES
From Classroom/Integrated School Programs 7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Students from Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013
FIITJEE
Q. No.
PHYSICS
CHEMISTRY
MATHEMATICS
1.
B
B
B
2.
B
C
A
3.
A
D
A
4.
B
D
A
5.
A
A
C
6.
A
D
B
7.
C
B
A
8.
D
B
C
9.
B
B
A
10.
A
A
A
11.
D
B
C
12.
B
B
D
13.
B
A
C
14.
A
B
A
15.
B
C
C
16.
C
A
C
17.
A
B
A
18.
C
A
B
19.
C
C
C
1.
(A) (r, s), (B) (r, s), (C) (q, s), (D) (p, s)
A → (q, r) B → (q, r) C → (p, s) D → (p, s)
(A) (s), (B) (p), (C) (q), (D) (r)
(A) (p, s), (B) (p, s), (C) (q, s), (D) (p, s)
A → (r, s) B → (r, s)
2.
(A) (q), (B) (s), (C) (p), (D) (r)
(A) (p, q, r, s), (B) (q, s) (C) (q, s), (D) (p, q, r, s)
A → (q) B → (r)
3.
C → (p, r) D → (p, q)
C → (s) D → (p)
(A) (q), (B) (s), (C) (p), (D) (r)
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
2
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
Physics 1.
PART – I
Now downward force on the right block is more.
T
T
mg
2. 3.
mg
IC = I0 + M(OC)2 = I0 + M(OB2 + BC2) = IB + M(BC)2 Potential difference across AC is zero as IAC = 0 5 2I = 0 I = 2.5 A Let the resistance of part BC be r Applying KVL 10 + 5 2I Ir I = 0 2.5r = 7.5 r = 3 As resistance of part AB = 9 Length AC = 66.7 cm
E1 = 10V r1 = 1
A
G
C
E2 = 5V r2 = 2
5.
Initial energy of electron = 2eV Energy after formation of hydrogen atom in the ground state = 13.6 eV. Energy released = 2 (13.6) = 15.6 eV hc 793 Å 15.6
6.
Threshold wavelength = 5000Å hc Work function = = 2.48 eV K.E. = eV = 3 eV hC 2258 Å 5.48
7.
B
V 2 3002 V2 R= 2 900 R P 100 V 300 1 current i = A R 900 3 Let L be the required inductance, then 500 500 1 1 or = 2 2 z 3 3 (900) x 2 P
XL 1200 L
1200 1200 W 2f
1200 4H 150 2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
3
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
8.
In steady state potential difference across each capacitor = E
9.
H=
4
14.
15.
E2 0 R dt
4
0
6t
2
12
dt
= 64 J
q1 + q2 = 0 kq kQ kq2 vA = 1 R 2R 4R kq1 kQ kq2 vC = 4R 4R 4R vA = vC q1 = Q/3 and q2 = Q/3
q2 Q q1 A
C B
Q Q Q Q vA = k 3R 2R 12R 160R
Q 5Q Q Q vB = k 48 R 6R 2R 12R 0 di 17-19. When current is maximum 0 dt emf across L = 0 and potential difference across the capacitor will be same. V From conservation of charge V + + 3CV + CV = 6CV0 CV0 C 3C 5CV0 L V= 4 Loss in energy of capacitor = energy stored in inductor 3V0 3C Imax = 2 L
16.
S
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
4
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
Chemistry 1.
PART – II
Ag I AgI e
Eo 0.152 V
Ag e Ag
Eo 0.800 V
Ag I AgI
Ecell = 0. 952 V
At eqm, Eo
2.303RT 1 Ag I K SP
2.303RT logK SP 0.059 logK SP F 16.13
0.952
logK SP 2.
3.
A 2 t on differentiating the equation we get: dA 1 2AdA dt or A dt 2A 2 Hence order is -1. rA 1 0.5 . As it lies in the range 0.414 to 0.732. AB has octahedral structure like that of NaCl. rB 2
a 2 rA rB 2 1 2 6 pm 3
4.
Volume = a = (6 pm)3 = 216 pm3 2 BaF2 s Ba aq 2F aq K sp Ba2 F
2
F
Again K sp 2 Ba2 F F
5.
Co3
K sp Ba2
2
K sp 2 Ba2
1s2 2s2 2p6 3s2 3p6 3d6 3d6
4p
4s
4d
sp3 hybridisation
6.
Bond order of N2 ,N2 ,NO ,NO,CN and CN are 3, 2.5, 3, 2.5, 3, 2.5 respectively. Higher is bond order smaller is bond length. Bond order of CO and CO+ are 3 and 3.5. Br
7. MgCl
Br2 /h
Cl2 /h CH4 CH3 Cl
8.
C KCN
N
COOH
H3 O
O CH3 CH2 O Br
H
C6H5
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
5
O
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
O O Br
Br
C6H5
CH3
C6H5
C6H5
9. O O3 / Zn H2O
O
15.
Y
H
O K
+
1 3 Ho H CaSO 4 . H2 O s H H2O g 2 2 1 H CaSO 4 .2H2 O s 833 kJ mol = + 484 kJ for 1 kg Ho Ho So = 17920 J mol-1 Go 2.303RTlogK p
Go 7.22 10 4 pH2O 2.303RT 8.1 10 3 atm
logK p pH2 O
16.
OH
KOH Cannizzaro reaction
O
14.
H
O
3 2
pH2O 1, K p 1 Go 0 at eqm. Ho TSo T
Ho 380 K So
= 107oC
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
6
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
Mathematics 1.
PART – III
x2 + y2 – 2x – 2y – 1 = 0 x 2 + y2 –1=0 Common chord is –2x – 2y = 0 2x + 2y = 0 y = –x 1 1 Points of intersection of circles are , 2 2 4
k k 1 8
10 2 5 8 7 14
2.
P(E)
3.
The line can be written as y = mx and curve as x 2 + y2 = 4
C2
Let, C(h, k) be a point on the circles and A 3, 1 be given point then,
B 1
h2 3 3
3, 1 A
h 3 2 3 k2 m 3 k = 3m – 2 Now, this point (h, k) lies on the circle 2
2
C(h, k)
(, m) (0, 0)
y = mx
3 2 3 3m 2 4 2
9 2 12 12 3 9m2 2 4 12m 4 9 1 m2 2 12 3 m 12 0
3 1 m2 2 4 3 m 4 0 2
16 3 m 4 3 1 m2 4 0
2
3 m 3 1 m2 0
3 m2 2 3m 3 3m2 0 2 3m 2m2 0 2m2 2 3m 0 m 0,
4.
3
Suppose m is an integer root of x4 – ax3 – bx2 – cx – d = 0 as d 0 m0 (I) m > 0 m4 – am3 – bm2 – cm = d d = m(m3 – am2 – bm – c) dm Also, m4 – am3 = bm2 + cm + d 3 2 m (m – a) = bm + cm + d m > a contradiction (II) m < 0 m = –n n4 + an3 – bn2 + cn – d = 0
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
7
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
n4 + n2(an – b) + (cn – d) > 0 So, contradiction Hence, equation has no integral solution 5.
(I)
+
+
1 3 2 2 + + 1
(II) x – 3x + 2
+ – 1
–
1
– – 1
1 3 2 2
1
1 3 2 2
+
1
2
+
1
1 3 2 2
2
1 1 x 1 2 4
x
–
1
1 2
x2 x
2
– + 1
2
+ + 1
1 3 2 2
2 –2x –1
1 (III) x 1 x 1 2 1 3 set x can be , 4 4
1 2 1 x 4
/2
6.
Required area, A 4
y
0
/2
= 4
0
1 1 1 2 3 x 4
2x
2x
y
dx dt dt
(0, a) 0
x
a sin t a cos2 t dt sin t
(0, –a)
/2
= 4a
2
cos
2
t dt a
2
y
0
7.
Distance from origin, D x2 y2 z2 where P(x, y, z) is any point on the curve D2 = x2 + y2 + z2 = x2 + y2 +
2 2 2xy 4 xy xy
D = 2 and occurs at point(s) 1, 1, 2 and 1, 1, 2 , 1, 1, 2 , 1, -1, 2
8.
Differentiating w.r.t. ‘r’, 2r dr = 2a cos 2 d, a rdr r
r2 sin 2
r2 cos 2 d sin 2
d tan2 dr
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
x
8
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
So, differential equation of orthogonal trajectory, r
d cot 2 dr
dr r ln(cos 2) = 2 ln r + k r2 = c cos 2
Solving tan 2 d
9.
Let f x x 3 bx 2 cx 1.
f 0 1 0, f 1 b c 0
So, 1,0 . So, 2 tan1 cosec tan1 2sin sec 2
1 1 1 1 2sin 1 2 tan1 tan 2 tan tan sin 2 sin sin 1 sin 2 as sin 0 2
1
2
10.
is continuous every where except where 1 + z = 0 1 z2 z = i so when |z| < 1 then above points are excluded so f(z) is continuous
11.
Continuity : for any point z, lim f z lim x x 0 f z0 . Non differentiable : for any point z, z z0
f ' z lim
f z z f z
z 0
12.
z
y1 cos m sin 1 x
lim
z z0
z 0
x x x 0 and lim 1 now lim x 0 x iy y 0 x iy x iy y 0
x 0
m 1 x2
1 x2 y1 mcos msin1 x 1 x 2 y 2 xy1 m2 y 0
n n 1 2 2 yn xyn1 n.1.yn m2 yn 0 1 x yn 2 n 2x yn1 2 2 Simplifying we get, 1 x y n 2 2n 1 yn1 n2 m2 yn 0 13.
dy 3at 2 t 3 dt 1 t 3 2 1 3 t dx 6a 2 2 dt 3 1 t
Now
dy 1/3 at t (2) dx
14.-16. Here, Pv P2 PK so Pv will make acute angle with all the vectors from P2 , P3 , ....., Pk Pn–2 Pn–1 Pn
Pk
Pm P3 P2 P1
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
9
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
So, OPv OP2 OP3 ..... OPk 1 0
Again, if n is odd n = 2k – 1 OP1 OP2k 1 OPk Now OPk will make acute angle with all the vectors from OP1, OP2 ..... OP2k 1 OPk OP1 OP2 ..... OPk OPk 1 ..... OP2k 1 OPk OPk 1 Now, OPk OP1 OP2 ..... OP2k 1 OPk OP1 ..... OP2k 1 = OP1 OP2 ..... OPn Again, V makes acute angle with all the vectors OP1, OP2 , ....... OP7 So, V S OP1 + OP2 +.......+ OP7 1 V S 1 17.
Eigen values are roots of the equation A – X = 0 (A – I)X = 0 |A – I| = 0 8 4 0 2 2 ( – 4)( – 6) = 0 = 4, 6
18.
When = 6 8 6 4 x1 2 4 x1 0 2 2 6 x 2 2 4 x2 0 2x1 – 4x2 = 0 x1 = 2x2 2 X C 1
19.
|A – I| = 0 1 0 1 1 2 1 0 2 2 3 3 2 – 6 + 11 – 6 = 0 = 1, 2, 3, For = 3 1 X C 1 which is orthogonal 2 SECTION – B
1.
2
2
2
(A) Assume sphere as, x + y + z + 2ux + 2vy + 2wz = 0 Now P, Q, R are (–2u, 0, 0), (0, –2v, 0), (0, 0, –2w) x y z So, equation of plane is 1 2u 2v 2w 1 2 3 Since it passes through (1, 2, 3) 1 2u 2v 2w If centre is (x, y, z) (–u, –v, –w) 1 2 3 locus is 2 x y z 2 2 (B) Assume equation of sphere as, x + y + 2ux + 2vy + 2wz = 0
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
10
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
It passes through (, 0, 0), (0, , 0), (0, 0 ) r u , v= , 2 2 2 2
2
2
1 2 2 2 2 2 2 + + = 4 if (x, y, z) are coordinates of centroid 4 x , y , z x 2 y 2 z2 3 3 3 9 (C) P (, 0, 0), Q (0, , 0), OPQ = 15º tan 15º = ….. (1) Now if sphere is made with PQ as diameter (x – )x + (y – )y + z2 = 0 2 2 2 x + y + z = ax + by ….. (2) A plane through PQ parallel to z–axis is x y 1 ….. (3) x y Using (1), (2), (3) we get x 2 + y2 + z2 = (x + y)
Radius = 1
z2 0 2 (D) Using family of planes any plane through line of intersection is x + y – 6 + (x – 2z – 3) = 0 1 6 3 Now, its distance from centre of sphere is radius 3 , = 1, 2 2 2 1 1 4 z2 = xy(tan 15º + cot 15º) 2xy
Equation is x + 2y + 2z = 9; 2x + y – 2z = 9 2.
y z , sin (y – z) 0 2 1 1 p cos z sin x y sin x y cos2 z 2 2 As, sin (x – y) 0 and sin (x + y) = cos z 1 1 2 3 p 1 cos 2z 1 cos 4 4 6 8
(A) Let p = cos x sin y cos z. As,
(B) The equation can be written as 3u2 8u 3 0 u1 Clearly, u1, u2 are negative so
8 2 7 8 2 7 u2 6 6
x1, x2 2
3 < x1 + x2 < 2 as cot x tan x = 1 = cot x cot x = cot x cot x 2 2 3 7 x1 x 2 and another pair, x '1 x '2 x '1, x'2 2 2 2 x1 + x '1 + x2 + x '2 = 5
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
11
AITS-FT-I-(Paper-1)-PCM(S)-JEE(Advanced)/14
(C) |EF| |E1F1| = a – [|BF| cos B + |CF| cos C] |DE| C – [|AE| cos A + |BD| cos B] |FD| b – [|CD| cos C + |AF| cos A] 1 |DC| + |CE| = |EA| + |AF| = |FB| + |BD| = a b c 3 |DE| + |EF| + |FD| 1 1 a b c a b c cos A cosB cosC a b c 3 2 1 So, minimum value is 2 2 2 2 (D) sin x1 + sin x2 + ….. + sin x10 = 1 cos xi
2
sin
A E F B
F1
D
E1
xj
j 1
sin x For each 1 i 10 we have cos xi
2
sin
xj
j i
10
i1
3.
10
cos xi
i1 j i
sin x j 3
10
9 i1
j
j i
3
sin x i 3
cos x1 cos x 2 ..... cos x10 3 sin x1 sin x 2 ..... sin x10
(A) Property of ellipse (B) Normal chord is made between points A 2, 2 2 and B 8, 4 2 so its length is 6 3 (C) Q (4, 2), S : (x – 4)2 + (y – 2)2 = 16 then required circle is (x – 1)2 + (y – 1)2 + (x – y) = 0 162 Here, = 9 and radius = 2 2 3y (D) x 2 c 2 5 5 e (c > 0) and e (c < 0) 3 2
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
C