ESTADÍSTICA INFERENCIAL NOMBRE: BLANCA PAZMIÑO FECHA: 16/06/2015 UNIDAD 6 6.1 Los posibles resultados de un experimento que implica el lanzamiento de un dado son: uno, dos, tres, cuatro, cinco y seis. a) Elabore la distribución de probabilidad para el número de posibles resultados. b) Represente gráficamente la distribución de probabilidad. c) ¿Cuál es la suma de las probabilidades?
6.2 Pizza Palace ofrece tres tamaños de refresco de cola —chico, mediano y grande— para acompañar su pizza. Los refrescos cuestan $0.80, $0.90 y $1.20, respectivamente. Treinta por ciento de los pedidos corresponde al tamaño chico; 50%, al mediano, y 20%, al grande. Organice el tamaño de los refrescos y la probabilidad de venta en una distribución de probabilidad. a) ¿Se trata de una distribución de probabilidad discreta? Indique por qué. b) Calcule la suma promedio que se cobra por refresco de cola. c) ¿Cuál es la varianza de la cantidad que se cobra por un refresco de cola? ¿Cuál es la desviación estándar?
6.3 Ocho por ciento de los empleados de la planta de General Mills en Laskey Road recibe su sueldo bimestral por medio de transferencias de fondos electrónicos. Este mecanismo también recibe el nombre de depósito directo. Suponga que selecciona una muestra aleatoria de siete empleados. a) ¿Esta situación cumple los supuestos de la distribución binomial? b) ¿Cuál es la probabilidad de que a los siete empleados se les haga un depósito directo? c) Aplique la fórmula (6-3) para determinar la probabilidad exacta de que a cuatro de los siete empleados de la muestra se les haga un depósito directo. d) De acuerdo con el apéndice B.9, verifique sus respuestas a los incisos b) y c).
6.4 Si n 4 y 0.60, determine la probabilidad de los siguientes eventos. a) x =2. b) x<_ 2. c) x > 2.
Horwege Discount Brokers hace planes para contratar este año a 5 analistas financieros. Hay un grupo de 12 candidatos aprobados, y George Horwege, el propietario, decide elegir al azar a quienes va a contratar. De los solicitantes aprobados, 8 son hombres y 4 mujeres. ¿Cuál es la probabilidad de que 3 de los 5 contratados sean hombres?
6.6 A partir de las tablas actuariales, Washington Insurance Company determinó que la probabilidad de que un hombre de 25 años muera en el transcurso del próximo año es de 0.0002. Si Washington Insurance vende 4 000 pólizas a hombres de 25 años durante este año, ¿cuál es la probabilidad de que éstos paguen exactamente una póliza?
UNIDAD 7
Los perros ovejeros australianos tienen una vida relativamente corta, pues su duración obedece a una distribución uniforme de entre 8 y 14 años. a) Trace la distribución uniforme. ¿Cuáles son los valores de la altura y de la base? b) Demuestre que el área total bajo la curva es de 1.00. c) Calcule la media y la desviación estándar de esta distribución. d) ¿Cuál es la probabilidad de que un perro en particular viva entre 10 y 14 años? e) ¿Cuál es la probabilidad de que un perro viva menos de 9 años?
De acuerdo con la información del ejemplo anterior $1000y $100), convierta: a) El ingreso semanal de $1 225 en un valor z. b) El ingreso semanal de $775 en un valor z.
La distribución de los ingresos anuales de un grupo de empleados de mandos medios en Compton Plastics se aproxima a una distribución normal, con una media de $47 200 y una desviación estándar de $800. a) ¿Entre qué par de valores se encuentran aproximadamente 68% de los ingresos? b) ¿Entre qué par de valores se encuentran aproximadamente 95% de los ingresos? c) ¿Entre qué par de valores se encuentran casi todos los ingresos? d) ¿Cuáles son los ingresos medio y modal? e) ¿La distribución de ingresos es simétrica?
La temperatura del café que vende Coffee Bean Cafe sigue una distribución de probabilidad normal, con una media de 150 grados. La desviación estándar de esta distribución es de 5 grados. a) ¿Cuál es la probabilidad de que la temperatura del café esté entre los 150 y los 154 grados? b) ¿Cuál es la probabilidad de que la temperatura del café sea de más de 164 grados?
Un análisis de las calificaciones del examen final de introducción a la administración revela que tienen una distribución normal. La media de la distribución es de 75, y la desviación estándar, de 8. El profesor quiere recompensar con una A a los estudiantes cuyas calificaciones se encuentren dentro del 10% más alto. ¿Cuál es el punto de división de los estudiantes que merecen una A y los que merecen una B?
Un estudio de la compañía Great Southern Home Insurance reveló que en 80% de los robos que se reportaron, los bienes no fueron recuperados por los dueños. a) Durante un periodo en el que ocurrieron 200 robos, ¿cuál es la probabilidad de que los bienes robados no se recuperen en 170 o más casos? b) Durante un periodo en el que ocurrieron 200 robos, ¿cuál es la probabilidad de que no se recuperen los bienes robados en 150 o más casos?
El tiempo entre la llegada de ambulancias a la sala de urgencias del Methodist Hospital sigue una distribución exponencial, con una media de 10 minutos. a) ¿Cuál es la probabilidad de que la próxima ambulancia llegue en 15 minutos o menos? b) ¿Cuál es la probabilidad de que la próxima ambulancia llegue en más de 25 minutos? c) ¿Cuál es la probabilidad de que la próxima ambulancia llegue en más de 15 minutos, pero menos de 25? d) Encuentre el 80o. percentil para el tiempo entre las llegadas de las ambulancias. (Esto significa que sólo un 20% de las corridas son más largas que este lapso.
UNIDAD 8 La siguiente lista incluye a los estudiantes que se matricularon en un curso de introducción a la estadística administrativa. Se eligen al azar tres estudiantes, a quienes se formulan varias preguntas relacionadas con el contenido del curso y el método de enseñanza. a) Se escriben a mano los números 00 a 45 en papeletas y se colocan en un recipiente. Los tres números seleccionados son 31, 7 y 25. ¿Qué estudiantes se van a incluir en la muestra? b) Ahora utilice la tabla de dígitos aleatorios, apéndice B.6, para seleccionar su propia muestra. c) ¿Qué haría si localizara el número 59 en la tabla de números aleatorios?
Consulte la autoevaluación 8-1 y la lista de alumnos de la página 269. Suponga que en un muestreo aleatorio sistemático se debe elegir a cada noveno estudiante de la clase. Al principio se elige al azar al cuarto estudiante de la lista. Dicho estudiante es el
número 03. Recuerde que los números aleatorios comienzan con 00, entonces, ¿qué estudiantes se elegirán como miembros de la muestra?
Los tiempos de servicio de los ejecutivos que laboran en Standard Chemicals son los siguientes: a) De acuerdo con la fórmula de las combinaciones, ¿cuántas muestras de tamaño 2 son posibles? b) Elabore una lista de todas las muestras posibles de 2 ejecutivos de la población y calcule las medias. c) Organice las medias en una distribución muestral. d) Compare la media poblacional y la media de las medias de las muestras. e) Compare la dispersión en la población con la dispersión de la distribución muestral de la media. f) A continuación se muestra una gráfica con los valores de la población. ¿Tienen los valores de población una distribución normal (en forma de campana)? g) ¿Comienza la distribución muestral de la media que se calculó en el inciso c) a indicar una tendencia a adoptar forma de campana?