(2) Calculate the response by using the central difference method (dt=0.1s) ▪ matlab code %---------------------------------------% Central Diffenence Method %----------------------------------------
% input data m=44.357;
% mass (unit=kN.s2/m)
k=1751.18;
% stiffness (unit=kN/m)
h=0.05;
% dampin ratio (h=c/ccr=c/2mw)
w=2*pi;
% natural angular frequency of structure (unit=rad/s)
T=1.0;
% period (unit=sec)
c=2*h*m*w;
% damping coefficient
% define input loading dt=0.1;
% for stability, dt <= 0.318T
t=[0:dt:10]';
% time
P=44.48*sin(pi*t/0.6); n=size(P,1);
% input loading (unit=kN) % lengh of load vector(n=101)
d(i+1)=1/(k+2*c/dt+4*m/dt^2)*(P(i+1)+m*(4/dt^2*d(i)+4/dt*v(i)+a(i))+c*(2/dt*d(i)+ v(i))); v(i+1)=2/dt*(d(i+1)-d(i))-v(i); a(i+1)=4/dt^2*(d(i+1)-d(i))-4/dt*v(i)-a(i); end
4
구조동역학
(4) Calculate the response by using the linear acceleration method (dt=0.1s) ▪ matlab code %---------------------------------------% Linear Acceleraion Method %----------------------------------------
% input data m=44.357;
% mass (unit=kN.s2/m)
k=1751.18;
% stiffness (unit=kN/m)
h=0.05;
% dampin ratio (h=c/ccr= (h=c/ccr=c/2mw) c/2mw)
w=2*pi;
% natural angular frequency of structure (unit=rad/s)
T=1.0;
% period (unit=sec)
c=2*h*m*w;
% damping coefficient
% define input loading dt=0.1;
% for stability, dt <= 0.318T
t=[0:dt:10]'; P=44.48*sin(pi*t/0.6); n=size(P,1);
% time % input loading (unit=kN) % lengh of load vector(n=101)
d(i+1)=1/(k+6*m/dt^2+3*c/dt)*(P(i+1)+(6*m/dt^2+3*c/dt)*d(i)+(6*m/dt+2*c)*v(i)+(2* m+c*dt/2)*a(i)); v(i+1)=3/dt*(d(i+1)-d(i))-2*v(i)-dt/2*a(i); a(i+1)=6/dt^2*(d(i+1)-d(i))-6/dt*v(i)-2*a(i); end