4 cos 4 = 21 2 sin 2 cos 2 = 2 sin 8 8 8 8 8
1 3 = 21 = ] 2 4
(ii) tan2
2
tan Q.14
=
2
1 cos
=
1 cos 1
=
3
4
1
or –
1 5 = 4 9 1 5 1 3
Ans. ] [5]
If log1227 = a find the value of log616 in term of a. 3 log 2 3
[Sol.
2 log 2 3 = a 3 log2 3 = 2a + a log 23 (3 – a) log23 = 2a log23 =
Q.15
2a 3 a log 2 16
4
now
log616 = log 6 = 1 log 3 2 2
but
1 + log23 = 1 +
log616 =
2a 3a
4(3 a ) 3a
=
3 a 3a
Ans. ]
sin x cos x 1
Prove the identity,
sin x cos x 1
=
1 sin x cos x
x , wherever it is defined. Starting with left 4 2
= tan
[5]
hand side only. [Sol.
LHS =
=
Q.16
(sin 2 x ) (cos x 1) 2 (sin x cos x 1) 2 cos x 1 sin x
=
(1 sin x ) cos x
=
2 cos x (cos 2 x 1) 2 2 sin x cos x 2 cos x 2 sin x cos( x 2) sin( x 2)
=
2 cos x (1 cos x ) 2(1 sin x )(1 cos x )
1 tan(x 2)
x = = = tan ] cos( x 2) sin( x 2) 1 tan( x 2) 4 2
[5]
Find the exact value of cos 24° – cos 12° + cos 48° – cos 84°. [Ans. 1/2]
[Sol.
LHS = (cos 24° – cos 84°) – (cos 12° – cos 48°) 2 sin 54° sin 30° – 2 sin 30° sin 18° sin 54° – sin 18° cos 36° – sin 18° 5 1 4
–
5 1 4
=
1 2
Ans. ]
Q.9
[Sol.
Q.10
Assuming that x and y are both + ve satisfying the equation log (x + y) = log x + log y find y interms of x. Base of the logarithm is 10 everywhere. [3] x [Ans. y = ] x 1 log(x + y) = log x + log y log(x + y) = logxy x + y = xy y(x – 1) = x x y= Ans. ] x 1 cos x cos 3x
If x = 7.5° then find the value of
sin 3x sin x
[3]
. [Ans. 2 –
[Sol.
Q.11
cos x cos 3x sin 3x sin x
2 sin 2 x sin x
=
2 sin x cos 2 x
= tan 2x = tan (2 × 7.5) = tan 15° = 2 –
Find the solutions of the equation, log
2 sin x
3]
3 Ans. ]
(1 cos x ) = 2 in the interval x [0, 2]. [4] [Ans. /3]
[Sol.
2
2 sin x = 1 + cos x 2 cos2x + cos x – 1 = 0 1
cos x =
but
x = and
or – 1
2
5 3
are rejected
x=
3
, ,
x=
Q.12
2 Given that log 2 (a 1) = 16 find the value of log
[Sol.
Given
a
now
5 3
3
a
Ans. ]
32
1 (a ) . a
log 2 (a 2 1) = 16
[Ans.
a
log
a
32
(
a2 1 a
[4]
31 32
]
)
a2 1 log 2 ( ) 1 a 1 a2 1 2 a 1) log 2 a log ( a log ( ) = = 2 2 a a a 16 16 a log 2 ( a 32 )
< x < and y = log 10(tan x + sec x). Then the expression E = 2 2 2 the six trigonometric functions. find the trigonometric function. [Ans. tan x] y = log10(tan x + sec x)
simplifies to one of [3]
1 sin x cos x
y = log10
y
E=
=
Q.8
10 10 2
y
1 sin x cos x 1 sin 2 x 2 sin x cos2 x cos x 1 sin x = = 2 cos x (1 sin x ) 2
2 sin 2 x 2 sin x 2 cos x (1 sin x )
=
2 sin x (1 sin x ) 2 cos x (1 sin x )
= tan x Ans. ]
If log 2 log 2 (log 2 x ) = 2 then find the number of digits in x. You may use log 102 = 0.3010. [Ans. 5 ]
[Sol.
log 2 log 2 (log 2 x ) = 2
log2(log2x) = 4 log2x = 16 x = 216 log10x = 16 log 2 = 16 × 0.3010 = 4.8160 Number of digits = 5 Ans. ]
[3]
M ATH EM ATIC S
BANSAL CLASSES Tar g et IIT JEE 200 7 CLASS : XIII (XYZ)
D a i ly Pra c t ic e Pro b l e m s
DATE : 24-25//07/2006
TIME : 45 Min.
DPP. NO.-11
This is the test paper of Class-XI (J-Batch) held on 23-07-2007. Take exactly 45 minutes. Q.1
If (sin x + cos x)2 + k sin x cos x = 1 holds x R then find the value of k. [Ans. k = – 2]
[Sol.
1 + sin 2x +
k 2
[3]
sin 2x = 1
k sin 2x 1 = 0 for this to be an identity 2 1
is expressed in the form of a sin x + b cos x find the value of a + b. – sin x – cos x + sin x + 18 cos x + cos x + 9 sin x 18 cos x + 9 sin x = a sin x + b cos x a = 9, b = 18 a + b = 27 Ans.
Alternatively:
put x = 0 and x =
2
[Ans. 27]
[3]
to get a and b directly]
3 statements are given below each of which is either True or False. State whether True or False with appropriate reasoning. Marks will be allotted only if appropriate reasoning is given. I (log3169)(log13243) = 10 II cos(cos ) = cos (cos 0°) III
[Hint:
= 0
3
Q.3
2
If the expression cos x
[Sol.
k
cos x +
2 log13
I
log 3
1 cos x ·
=
3
[Ans. True; True; False]
2
5 log 3 log13
[3]
= 10 True
cos(cos ) = cos(–1) = cos 1 and cos(cos 0°) = cos 1, hence True III If cos x > 0 then E 2 and if cos x < 0 then E – 2 Hence False ] II