UNIVERZITET U NOVOM SADU Građevinski fakultet Subotica
Kandidat: Adam Mora
SPREGNUTI NOSAČ ME ĐUSPRATNE KONSTRUKCIJE - Semestralni rad iz predmeta SPREGNUTE KONSTRUKCIJE-
Subotica, april 2016.
SADRŽAJ ........................................................................... ............................................ ................... ‐ Zadatak grafičkog rada .................................................. Pretpostavljene dimenzije spregnute konstrukcije ..................................................... .....................................................1 1 ARMIRANO BETONSKA PLOČA Analiza opterećenje ................................................ ......................................................................... .................................................. ............................ ... 2 Statički proračun....................... un ................................................ .................................................. .................................................. ................................. ........ 2 ‐ 3 Dimenzionisanje AB ploče ............................................... ........................................................................ ............................................ ...................4 4 ‐ 7 SPREGNUTI NOSAČ Statička šema i geometrijske karakteristike preseka .................................................. ..................................................8 8 ‐ 11 Analiza opterećenja ................................................ ......................................................................... .................................................. ............................ ... 12 Statički uticaji – uticaji – statički proračun...................... un ............................................... .................................................. ................................. ........ 13 ‐ 14 Proračun napona ............................................... ........................................................................ .................................................. ................................. ........ 15 ‐ 24 ......................................................................... ............................................ ...................25 25 ‐ Tabelarni prikaz napona ................................................ Kontrola napona ................................................ ......................................................................... .................................................. ................................. ........ 26 Dijagrami napona..................... napona............................................... ................................................... .................................................. ................................. ........ 27 Kontrola ugiba......................... ugiba.................................................. .................................................... ................................................... ................................. .........28 28 Proračun sprezanje AB ploče i čeličnog nosača (čepovima)........................................ epovima) ........................................29 29 ‐ 32 Proračun sprezanje AB ploče i čeličnog nosača (moždanik + anker)........................... anker)........................... 33 ‐ 35
1. OSNOVNE DIMENZIJE KONSTRUKCIJE L≔ 19.4 m λ ≔ 7.0 m l duz ≔ 6 ⋅ λ = 42 m
‐ raspon
konstrukcije ‐ osovinski razmak rebra kons. ‐ dužina kons.
2. USVOJENE DIMENZIJE SPREGNUTE KONSTRUKCIJE 2.1 Visina nosača d max ≔
L
15
= 1293.333
d min ≔
mm
d ≔ 1100 mm
L
25
= 776
‐ usvojena
‐ preporuke
mm
visina spregnutog nosača
2.2 Visina AB ploče λ
35
= 20
cm
‐ preporučena
d p ≔ 20 cm
‐ usvojena
vrednost je d p ≥
λ
35
visina AB ploče
2.3 Dimenzije "I" nosača ‐ gornja flanša:
b2 ≔ 300 mm
‐
⎛
b2 ⎞
⎝
20 ⎠
t 2.min ≔ max 10 mm ,
b2.min = 200~250mm /Milenko Pržulj ‐ Spregnute konstrukcije (str.12)
= 15
‐ min
mm
t 2 ≔ 28 mm
debljina gornje flanše
‐ usvojena
debljina gornje flanše
t 1 ≔ 28 mm
‐ usvojena
debljina donje flanše
hw ≔ d − 2 ⋅ d p − t 1 − t 2 = 644 mm
‐ visina
‐ rebro:
⎛
hw
⎝
60
t w.min ≔ max 8 mm ,
,8
mm
+
L
⎞
mm
λ
⎠
= 10.771
mm
t w ≔ 20 mm
‐ min
rebra
debljina rebra
‐ usvojena
debljina rebra
‐ donja flanša:
b1.min ≔ max
⎛ d L , ― , 0.25 ⋅ hw + 100 ⎝ 10 120
⎞ = 261 ⎠
mm
mm
b1 ≔ 450 mm
donje flanše
‐ usvojena širina
⎛
b1 ⎞
⎝
20 ⎠
t 1.min ≔ max 10 mm ,
‐ min širina
= 22.5
‐ min
mm
Page 1 of 35
donje flanše
debljina donje flanše
AB PLOČA 1 Analiza opterećenja 1.1 Stalno opterećenje −2
‐ Slojevi
poda............................ ‐ AB ploča u polju...................... ‐ AB ploča nad osloncem...........
g pod ≔ 1.25 kN ⋅ m −3 −2 g AB.1 ≔ 0.20 m ⋅ 25 kN ⋅ m = 5 kN ⋅ m −3 −2 g AB.2 ≔ 0.40 m ⋅ 25 kN ⋅ m = 10 kN ⋅ m _________________________________
‐ opterećenje
g1 ≔ g pod + g AB.1 = 6.25 kN ⋅ m −2 g2 ≔ g pod + g AB.2 = 11.25 kN ⋅ m
u poljima............. ‐ opterećenje iznad oslonaca.....
−2
1.2 Korisno opterećenje ‐ Pokretno
opterećenje...............
p ≔ 3.5 kN ⋅ m
−2
2 Stački sistem i ucaji ‐ napomena: ‐ stalno
stački proračun je sprovedena pomoću programskog paketa Radimpex Tower
opterećenje je raspoređena po celoj dužini konstrukcije
‐ promenljivo
opterećenje izaziva merodavan moment savijanja u šahovskom rasporedu
Page 2 of 35
Ulazni podaci - Optere ć enje, Stati čk i prora č un Opt. 1: stalno opt (g) 0 0 . 7
p=11. 250
p=11. 250
p=6. 250
0
0 0 . 7
p=11. 250
p=6. 250
1
0 0 . 7
0 0 . 7
p=11. 250
p=6. 250
2
p=11. 250
p=6. 250
3
0 0 . 7
p=11. 250
p=6. 250
4
0 0 . 7
p=11. 250
p=6. 250
5
6
Opt. 2: pokretno opt (p) - polje 0
0 0 . 7
p=3. 0 500 . 7
0
1
0
0 0 . 7
p=3. 0 500 . 7
2
3
0
0 0 . 7
p=3. 0 500 . 7
4
5
6
Opt. 3: pokretno opt (p) - iznad oslonca 0 0 . 7
0
p=3. 500
0 0 . 7
1
2
0 5 . 2 3 0 0 . 7
0 0
5 8 . 3 2
0 0 . 7
1
0 0 . 7
2 4 . 0 1
6 6 . 3 2 -
2
0 7
3
4
0 6 . 6 2 -
6 6 . 3 2 -
0 0 . 7
6 1 . 3 1
0 0 . 7
p=3. 0 500 .
0 0 . 7
3
6 1 . 3 1
4
0
p=3. 0 500 . 7
5
0 5 . 2 3 0 0 . 7
2 4 . 0 1
6
Opt. 1: stalno opt (g)
0 0 . 7
5
5 8 . 3 2
6
Uticaji u gredi: max M3= 23.85 / min M3= -32.50 kNm Opt. 2: pokretno opt (p) - polje
0 0 . 7
0 0
7 0 . 9 -
1
4 5 . 0 2 0 0 . 7
0
9 3 . 2 1
0 0 . 7
2
0 0 . 7
3
0 0 . 7
4
0 0 . 7
5
6
Uticaji u gredi: max M3= 17.12 / min M3= -9.07 kNm Opt. 3: pokretno opt (p) - iznad oslonca
0 0 . 7
1
7 0 . 9 -
8 5 . 3 1
5 3 . 4 1
2 1 . 7 1
0
0 0 . 7
2 4 . 7 -
4 2 . 0 1
0 0 . 7
2
4 2 . 8 -
3
0 0 . 7
8 0 . 4 1
0 0 . 7
4
Uticaji u gredi: max M3= 17.10 / min M3= -20.54 kNm
2 1 . 9 -
0 0 . 7
5
6
0 1 . 7 1
Page 3 of 35 Tower - 3D Model Builder 7.0 - x64 Edition
For non-commercial use only
Radimpex - www.radimpex.rs
3 Dimenzionisanje AB ploče −2
f b ≔ 2.55 kN ⋅ cm −2 σ v ≔ 40 kN ⋅ cm
MB 40 => RA 400/500 => a0 ≔ 2.5 cm
3.1 Presek u polju 3.1.1 glavna armatura u polju Mg ≔ 23.85 kN ⋅ m M p ≔ 17.12 kN ⋅ m Mu ≔ 1.6 ⋅ Mg + 1.8 ⋅ M p = 68.976 kN ⋅ m ‐ pretpostavka:
h ≔ d p − a0 −
Aa` ≔ 1.54 cm
RΦ14
Φ
2
= 16.8
2
Φ ≔ 14
mm
cm
b ≔ 100 cm
‾‾‾ f b ⋅ b k ≔ h ⋅ ― = 3.23
k usv ≔ 3.203
Mu
Aa1 ≔ μ` ⋅ b ⋅ h ⋅ min μ`
f b
σ v
= 11.101
cm
=> εa / εb =10/1.9 ‰; μ` ≔ 10.365%
2
≔ 0.1%
min Aa1
≔ min μ` ⋅ b ⋅ d p = 2
emin ≔ min
⎛ Aa` ⎝ Aa1
⋅ 100
cm
⎞
cm
⎠
2
= 13.873
cm
e≔ 12.5 cm
Aa1.stv ≔
Aa` e
‐ usvojeni
⋅ 100
cm
= 12.32 cm
razmak između šipki
2
A
―a1 = 0.901
‐ iskorišćenost
armature
Aa1.stv
Usvojeno: RΦ14 /12.5 za glavnu armaturu u polju
Page 4 of 35
3.1.2 podeona armatura u polju ‐ pretpostavka:
min Aa1p
≔ max
e p.rač ≔
Aa` min Aa1p
Aa` ≔ 0.5 cm
RΦ8
2
0.2 ⋅ Aa1.stv , min μ pod ⋅ b ⋅ h = 2.464
⋅ 100
cm
Φ≔8
cm
Aa` e p
⋅ 100
≔ 0.085%
= 20.292 cm
‐ usvojeni
cm
min μ pod
2
e p ≔ 20 cm
Aa1p ≔
mm
= 2.5
e p.max ≔ min 4 ⋅ d p , 30 cm
cm
razmak između šipki
2
= 30
cm
Usvojeno: RΦ8 /20 za podeonu armaturu u polju
Page 5 of 35
3.2 Presek nad osloncem 3.2.1 glavna armatura nad osloncem Mg ≔ −32.50 kN ⋅ m M p ≔ −20.54 kN ⋅ m Mu ≔ 1.6 ⋅ Mg + 1.8 ⋅ M p = −88.972 kN ⋅ m ‐ pretpostavka:
h ≔ d p − a0 −
Φ
2
Aa` ≔ 2.01 cm
RΦ16
= 16.7
2
Φ ≔ 16
mm
cm
b ≔ 100 cm
k ≔ h ⋅
‾‾‾ f b ⋅ b Mu
Aa1 ≔ μ` ⋅ b ⋅ h ⋅ min μ`
= 2.827 f b
σ v
k usv ≔ 2.781
= 14.881
cm
=> εa / εb =10/2.4 ‰; μ` ≔ 13.978%
2
≔ 0.1%
min Aa1
≔ min μ` ⋅ b ⋅ d p = 2
emin ≔ min
⎛ Aa` ― ⋅ 100 ⎝ Aa1
cm
⎞
cm
⎠
2
= 13.507
cm
e≔ 12.5 cm
‐ usvojeni
razmak između šipki
Aa` 2 Aa1.stv ≔ ― ⋅ 100 cm = 16.08 cm e Aa1 Aa1.stv
= 0.925
‐ iskorišćenost
armature
Usvojeno: RΦ16 /12.5 za glavnu armaturu iznad osloncima
Page 6 of 35
3.2.2 podeona armatura nad osloncem ‐ pretpostavka:
min Aa1p
≔ max
e p.rač ≔
Aa` min Aa1p
Aa` ≔ 0.5 cm
RΦ8
2
0.2 ⋅ Aa1.stv , min μ pod ⋅ b ⋅ h = 3.216
⋅ 100
cm
Φ≔8
cm
Aa` e p
⋅ 100
≔ 0.085%
= 15.547 cm
‐ usvojeni
cm
min μ pod
2
e p ≔ 15 cm
Aa1p ≔
mm
= 3.333 cm
e p.max ≔ min 4 ⋅ d p , 30 cm
razmak između šipki
2
= 30
cm
Usvojeno: RΦ8 /12.5 za podeonu armaturu iznad osloncima
Page 7 of 35
SPREGNUTI NOSAČ 1 Stačka šema ‐ prosta greda, raspona "L":
L = 19.4 m
2 Geometrijske karakteriske preseka 2.1 Čelični deo preseka
As ≔ 338.8 cm
2
y s ≔ 79.17 cm Is ≔ 231204 cm
4
E s ≔ 21000 kN ⋅ cm γ s ≔ 78.5 kN ⋅ m
2
−
3
−
‐ transformacija:
E` ≔ E s = 21000 kN ⋅ cm
ns ≔
E s
=
2
−
1
E`
As` ≔ ns ⋅ As = 338.8 cm
2
Is` ≔ ns ⋅ Is = 231204 cm
4
Page 8 of 35
2.2 Betonski deo preseka E b ≔ 3400 k N ⋅ cm
MB 40 => γ b ≔ 25
⋅
kN m
−2
−3
‐ efekvna širina
‐ PBAB
`87 (tab.8)
‐ spec.
težina armiranog betona
betonske flanše:
b0 ≔ 18.1 cm
‐ osovinsko
rastojanje čepova
Le3 ≔ 0.70 ⋅ L = 1358 cm
‐ EN
1994‐2/ Slika 5.1
λ − b0 bi ≔ ― 2
‐ EN
1994‐2/5.4.1.2
‐ EN
1994‐2/5.4.1.2
cm
⎞ , bi = 169.75 ⎝ 8 ⎠ be ff .1 ≔ b0 + 2 ⋅ bei = 357.6 cm bei ≔ min
⎛ Le3
= 340.95
cm
‐ efekvna širina
Page 9 of 35
betonske flanše /EN 1994‐2 (5.3)
‐ geometrijske
karakteris ke su određeni pomoću AutoCAD‐a:
---------------- REGIONS ---------------Area: 7982.9401 cm^2 Perimeter: 778.2940 cm Bounding box: X: -178.8000 -- 178.8000 cm Y: -28.0146 -- 11.9854 cm Centroid: X: 0.0000 Y: 11.9854 cm Moments of inertia: X: 536216.0743 cm^4 Y: 76343905.1533 cm^4
‐ efekvna
površina ‐ efekvni obim
‐ momen
inercije
_______________________________________________________ Ab ≔ 7982.94 cm
2
‐ površina
y b ≔ 11.9854 cm Ib ≔ 536216 cm
‐ težište
4
betonskog preseka
bet. preseka
‐ moment
inercije bet. preseka
‐ transformacija:
E` ≔ E s = 21000 kN ⋅ cm
nb ≔
E b E`
−2
‐ modul
= 0.162
‐ koef.
Ab` ≔ nb ⋅ Ab = 1292.476 cm Ib` ≔ nb ⋅ Ib = 86816 cm
4
2
elast. čelika
transformacije
‐
transformisana površina bet. preseka
‐
transformisani mom. inercije bet. preseka
Page 10 of 35
2.3 Spregnu presek y s = 79.17 cm y b = 11.985 cm
‐ težište čeličnog
dela ‐ težište betonskog dela
d c ≔ y s − y b = 67.185 cm
‐ rastojanje
2
As` = 338.8 cm 2 Ab` = 1292.476 cm A ≔ As` + Ab` = 1631.276 cm
transformisana površina čeličnog preseka ‐ transformisana površina betonskog preseka ‐
2
‐ površina
Ab` ⋅ d c Y s ≔ ―― = 53.231 cm A As` ⋅ d c Y b ≔ −― = −13.954 cm A Ib` = 86816 cm
spregnutog preseka
‐ težište čeličnog ‐ težište
dela spregnutog preseka
betonskog dela spregnutog preseka
4
Is` = 231204 cm I ≔ Ib` + Ab` ⋅ Y b
između težišta čeličnog i betonskog preseka
2
4
2
+ Is` + As` ⋅ Y s = 1529671.953
cm
4
Page 11 of 35
‐ mom.
inercije spregnutog preseka
3 Analiza optere ćenja 3.1 Faza I ‐ sopstvena
težina čeličnog nosača.............................
gI ≔ As ⋅ γ s = 2.66
kN
― m
3.2 Faza II ‐ sopstvena
težina svežeg betona...............................
gII ≔ Ab ⋅ γ b = 19.957
kN m
3.3 Faza III ‐ reakcija
privremenog oslonca...................................
Rc ≔
5 8
⋅ gII ⋅ L = 241.983
kN
3.4 Faza IV ‐ stalno
optere ćenje...................................................
Δg ≔ 1.25
kN m
2
⋅ λ = 8.75
3.5 Faza V ‐ pokretno
opterećenje...............................................
p` ≔ p ⋅ λ = 24.5
4 Stački ucaji ‐ stački
proračun je sproveden pomoću programskog paketa Radimpex Tower
Page 12 of 35
kN
― m
kN m
Ulazni podaci - Optere ć enje Faza 1: I Faza Opt. 1: sopstvena težina čeličnog nosača (gI)
p=2. 660
5 8 . 4
0
0
5 5 . 4 1
1
2
Faza 2: II Faza Opt. 2: težina svežeg betona (gII)
p=19. 957
5 8 . 4
0
0
5 5 . 4 1
1
2
Faza 3: III Faza Opt. 3: reakcija privremenog oslonca (Rc)
5 8 . 4
0
0
1
3 8 9 . 1 4 2 = P
5 5 . 4 1
2
Faza 4: IV Faza Opt. 4: težina poda (delta g)
p=8. 750
5 8 . 4
0
0
5 5 . 4 1
1
2
Faza 5: V Faza Opt. 5: korisno opterećenje (p`)
p=24. 500
5 8 . 4
0
0
5 5 . 4 1
1
2
Page 13 of 35 Tower - 3D Model Builder 7.0 - x64 Edition
For non-commercial use only
Radimpex - www.radimpex.rs
Stati čk i prora č un Faza 1: I Faza Opt. 1: sopstvena težina čeličnog nosača (gI)
0 0
5 8 . 4
5 5 . 4 1
1
7 7 . 3 9
Faza 1: I Faza Opt. 1: sopstvena težina čeličnog nosača (gI)
5 8 . 4
0 2
0
4 1 . 5 2 1
0
5 8 . 4
5 5 . 4 1
1
9 7 6 6 . . 2 7 1 3 1 1
5 8 . 4
0 2
1
2
Uticaji u gredi: max T2= 25.80 / min T2= -25.80 kN Faza 2: II Faza Opt. 2: težina svežeg betona (gII)
8 . 2 3 2 -
0
5 5 . 4 1
0 9 . 2 1 -
0 8 . 5 2 -
Uticaji u gredi: max M3= 125.14 / min M3= -0.00 kNm Faza 2: II Faza Opt. 2: težina svežeg betona (gII) 0
0 8 . 5 2
0
9 6 . 2 3 1
0 0 . 4 2
9 7 . 2 7
5 5 . 4 1
1
9 7 . 2 7 -
Uticaji u gredi: max M3= 132.69 / min M3= -232.80 kNm Faza 3: III Faza Opt. 3: reakcija privremenog oslonca (Rc)
9 7 . 0 2 1
2
9 7 . 0 2 1 -
Uticaji u gredi: max T2= 120.79 / min T2= -120.79 kN Faza 3: III Faza Opt. 3: reakcija privremenog oslonca (Rc) 9 9 . 0 2 1
0 0
5 8 . 4
5 5 . 4 1
1 1 8 . 6 8 5
5 8 . 4
0 2
0
2 6 . 3 7 1 1
1
5 5 . 4 1
2
9 9 . 0 2 1 -
Uticaji u gredi: max M3= 1173.62 / min M3= -0.00 kNm Faza 4: IV Faza Opt. 4: težina poda (delta g)
Uticaji u gredi: max T2= 120.99 / min T2= -120.99 kN Faza 4: IV Faza Opt. 4: težina poda (delta g) 8 8 . 4 8
0 0
5 8 . 4
5 5 . 4 1
1
5 4 . 8 0 3
5 8 . 4
0 2
0
4 6 . 1 1 4
2
4 4 . 2 4 -
8 8 . 4 8 -
Uticaji u gredi: max M3= 411.64 / min M3= -0.00 kNm Faza 5: V Faza Opt. 5: korisno opterećenje (p`)
1
5 5 . 4 1
Uticaji u gredi: max T2= 84.88 / min T2= -84.88 kN Faza 5: V Faza 5 6 Opt. 5: korisno opterećenje (p`) . 7 3 2
0 0
5 8 . 4
5 5 . 4 1
1
5 6 . 3 6 8
0 6 . 2 5 1 1
5 8 . 4
0 2
Uticaji u gredi: max M3= 1152.60 / min M3= -0.00 kNm
0
5 6 . 7 3 2 -
1
5 5 . 4 1
2
2 8 . 8 1 1 -
Uticaji u gredi: max T2= 237.65 / min T2= -237.65 kN
Page 14 of 35 Tower - 3D Model Builder 7.0 - x64 Edition
For non-commercial use only
Radimpex - www.radimpex.rs
5 Proračun napona 5.1 Faza I ‐ postavljanje čeličnog nosača gI nb = 0.162 ns = 1 d = 110 cm y s = 79.17 cm
‐ visina
spregnutog nosača ‐ težište čeličnog dela od gornje ivice betonskog preseka
y 1 ≔ d − y s = 30.83 cm y 2 ≔ 2 d p − y s = −39.17 cm Is = 231204 cm
4
5.1.1 napon na mestu L/2 (t=0): M ≔ 125.14 kN ⋅ m
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M Is M Is
kN
⋅ y 2 = −2.12 ―2 cm
kN
⋅ y 1 = 1.669 ―2 cm
5.1.2 napon na mestu L/4 (t=0): M ≔ 93.77 kN ⋅ m
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M Is M Is
⋅ y 2 = −1.589
kN cm
2
kN
⋅ y 1 = 1.25 ―2 cm
Page 15 of 35
5.2 Faza II ‐ podupiranje i betoniranje AB ploče gII nb = 0.162 ns = 1 y 1 = 30.83 cm y 2 = −39.17 cm Is = 231204 cm
4
5.2.1 napon na mestu L/2 (t=0): M ≔ −232.80 kN ⋅ m
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M Is M Is
kN
⋅ y 2 = 3.944 ―2 cm
⋅ y 1 = −3.104
kN cm
2
5.2.2 napon na mestu L/4 (t=0): M ≔ 117.67 kN ⋅ m
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M Is M Is
kN
⋅ y 2 = −1.994 ―2 cm
⋅ y 1 = 1.569
kN cm
2
Page 16 of 35
5.3 Faza III ‐ uklanjanje privemenog osloca (Rc) d = 110 cm d p = 20 cm Y b = −13.954 cm
ns = 1 nb = 0.162
y 3 ≔ Y b − y b = −25.939 cm y 2 ≔ 2 d p + y 3 = 14.061 cm y 1 ≔ d + y 3 = 84.061 cm I= 1529671.953 cm
kontrola ≔ y 3 − y 2
4
5.3.1 napon na mestu L/2 (t=0): M ≔ 1173.62 kN ⋅ m
σ b3 ≔ nb ⋅ σ b2 ≔ nb ⋅
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M I M I
M I M I
kN
⋅ y 3 = −0.322 ―2 cm kN
⋅ y 2 = 0.175 ―2 cm
kN
⋅ y 2 = 1.079 ―2 cm
kN
⋅ y 1 = 6.449 ―2 cm
5.3.2 napon na mestu L/4 (t=0): M ≔ 586.81 kN ⋅ m
σ b3 ≔ nb ⋅
σ b2 ≔ nb ⋅
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M I M I
M I M I
kN
⋅ y 3 = −0.161
cm
2
kN
⋅ y 2 = 0.087 ―2 cm
kN
⋅ y 2 = 0.539 ―2 cm
kN
⋅ y 1 = 3.225 ―2 cm
Page 17 of 35
= 40
cm
(debljina betonske ploče)
5.4 Faza IV ‐ dopunsko stalno optere ćenje Δg y 1 = 84.061 cm y 2 = 14.061 cm y 3 = −25.939 cm I= 1529671.953 cm
ns = 1 nb = 0.162
4
5.4.1 napon na mestu L/2 (t=0): M ≔ 411.64 kN ⋅ m
σ b3 ≔ nb ⋅
σ b2 ≔ nb ⋅
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M I M I
M I M I
kN
⋅ y 3 = −0.113 ―2 cm
kN
⋅ y 2 = 0.061
cm
2
kN
⋅ y 2 = 0.378 ―2 cm
kN
⋅ y 1 = 2.262 ―2 cm
5.4.2 napon na mestu L/4 (t=0): M ≔ 308.45 kN ⋅ m
σ b3 ≔ nb ⋅
σ b2 ≔ nb ⋅
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M I M I
M I M I
kN
⋅ y 3 = −0.085
cm
2
kN
⋅ y 2 = 0.046 ―2 cm
kN
⋅ y 2 = 0.284 ―2 cm
⋅ y 1 = 1.695
kN cm
2
Page 18 of 35
5.5 Faza V ‐ pokretno opterećenje (p) y 1 = 840.61 mm y 2 = 140.61 mm y 3 = −259.39 mm I= 1529671.953 cm
ns = 1 nb = 0.162
4
5.5.1 napon na mestu L/2 (t=0): M ≔ 1152.60 kN ⋅ m
σ b3 ≔ nb ⋅
σ b2 ≔ nb ⋅
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M I M I
M I M I
kN
⋅ y 3 = −0.316 ―2 cm
kN
⋅ y 2 = 0.172
cm
2
kN
⋅ y 2 = 1.059 ―2 cm
kN
⋅ y 1 = 6.334 ―2 cm
5.5.2 napon na mestu L/4 (t=0): M ≔ 863.65 kN ⋅ m
σ b3 ≔ nb ⋅
σ b2 ≔ nb ⋅
σ s2 ≔ ns ⋅
σ s1 ≔ ns ⋅
M I M I
M I M I
kN
⋅ y 3 = −0.237
cm
2
kN
⋅ y 2 = 0.129 ―2 cm
kN
⋅ y 2 = 0.794 ―2 cm
⋅ y 1 = 4.746
kN cm
2
Page 19 of 35
5.6 Ucaji od skupljanja betona ‐ geometrijske
karakteris ke usled skupljanja u vreme t=n
Ab = 7982.94 cm
2
‐ površina
O ≔ 2 ⋅ be ff .1 = 715.2 cm
2 Ab
d m ≔
= 22.324
O
‐ približni
efekvnog betonskog preseka obim izložene površine
‐ približna
cm
srednja debljina preseka
‐ srednja
debljina preseka ~20cm ‐ opterećenje nakon 90 dana, uklanjanje privremenih oslonaca ‐ relavna vlažnost sredine 90% φn ≔ 1.3
‐ koeficijent
E b = 3400 kN ⋅ cm E bφ ≔
−2
E b
‐ modul
= 2028.64
1 + 0.52 ⋅ φn
tečenja nearmiranog betona /PBAB`87 (tab.59/1)
⋅
kN cm
−2
elasčnos betona /PBAB`87
‐ imaginarni
računski modul elasčnos prema Fritz‐u / Milenko Pržulj S.Kons. (tab.4.1)
‐ srednja
debljina preseka ~20cm ‐ relavna vlažnost sredine 90% 1 εsk ≔ −0.12 ⋅ ― 1000
‐ konačan
vr. skupljanja nearmir. betona /PBAB`87 (tab.57/1)
______________________________________________ E` = 21000 kN ⋅ cm
−2
‐ merodavan
ψsk ≔ 0.55 nsk ≔
E` E b
modul elasčnos
‐ mulplikator koef. tečenja
⋅
1 + ψsk ⋅ φn = 10.593
‐ koef.
/EN 1994‐2 (5.4.2.2)/ Fritz=0.52
trans. pri skupljanju betona /EN 1994‐2 (5.4.2.2)
______________________________________________ Ask ≔ As +
Ab nsk
= 1092.43
cm
2
‐ idealna
y s = 79.17 cm y b = 11.985 cm
površina spregnutog preseka pri skupljanju
‐ težište čeličnog
dela ‐ težište betonskog dela
d c ≔ y s − y b = 67.185 cm
‐ rastojanje
između težišta čeličnog i betonskog preseka
−1
⋅ Ab ⋅ d c Y s.sk ≔ ――― Ask nsk
As ⋅ d c Y b.sk ≔ −― Ask Isk ≔
Ib nsk
+
Ab nsk
= 46.348
= −20.836 2
‐ težište čeličnog
cm
‐ težište
cm
2
⋅ Y b.sk + Is + As ⋅ Y s.sk = 1336813.459 cm
dela spregnutog preseka
betonskog dela spregnutog preseka
4
Page 20 of 35
‐ mom.
inerc. pri skupljanju
‐ rastojanje
karakteris čnih tačaka
y 3.sk ≔ Y b.sk − y b = −32.822 cm y 2.sk ≔ 2 d p + y 3.sk = 7.178 cm y 1.sk ≔ d + y 3.sk = 77.178 cm ‐ presečne
kontrola ≔ y 3.sk − y 2.sk
sile usled skupljanja
Nsk ≔ E bφ ⋅ Ab ⋅ εsk = −1943.341 kN Msk ≔ Nsk ⋅ Y b.sk = 404.919 kN ⋅ m
‐ napon
u betonu (t=n):
kN
εsk ⋅ E bφ = −0.243 ― cm
σ 3.sk.b ≔
Nsk nsk ⋅ Ask
+
2
Msk nsk ⋅ Isk
⋅ y 3.sk − εsk ⋅ E bφ = −0.018
kN cm
2
Nsk Msk kN σ 2.sk.b ≔ ―― + ― ⋅ y 2.sk − εsk ⋅ E bφ = 0.096 ―2 nsk ⋅ Ask nsk ⋅ Isk cm
‐ naponi u čeliku (t=n):
σ 2.sk.č ≔
Nsk Ask
+
Msk Isk
⋅ y 2.sk = −1.561
Nsk Msk σ 1.sk.č ≔ ― + ― ⋅ y 1.sk = 0.559 Ask Isk
kN cm
2
kN
―2 cm
Page 21 of 35
= 40
cm
(debljina betonske ploče)
5.7 Ucaji usled tečenje betona 5.7.1 karakteris ke preseka usled tečenje u vreme t=n
E` = 21000 kN ⋅ cm
−2
‐ merodavan
φn = 1.3 ψL ≔ 1.10 nte ≔
E` E b
‐ mulplikator
⋅
1 + ψL ⋅ φn = 15.009
Ate ≔ As +
Ab nte
= 870.683
cm
‐ koef.
2
dela ‐ težište betonskog dela
As ⋅ d c Y b.te ≔ −― Ate
nte
‐ rastojanje
između težišta čeličnog i betonskog preseka
−1
⋅ Ab ⋅ d c Y s.te ≔ ――― Ate
Ib
površina spregnutog preseka pri tečenju
‐ težište čeličnog
d c ≔ y s − y b = 67.185 cm
Ite ≔
koef. tečenja /EN 1994‐2 (5.4.2.2)/ Fritz=1,10
trans. pri skupljanju betona /EN 1994‐2 (5.4.2.2)
‐ idealna
y s = 79.17 cm y b = 11.985 cm
nte
modul elasčnos
+
Ab nte
= 41.042
= −26.143 2
‐ težište čeličnog
cm
‐ težište
cm
2
⋅ Y b.te + Is + As ⋅ Y s.te = 1201128.772
dela spregnutog preseka
betonskog dela spregnutog preseka
cm
4
Page 22 of 35
‐ mom.
inerc. pri tečenju
y 3.te ≔ Y b.te − y b = −38.128 cm y 2.te ≔ 2 d p + y 3.te = 1.872 cm y 1.te ≔ d + y 3.te = 71.872 cm
kontrola ≔ y 3.te − y 2.te
5.7.2 napon u preseku L/2 (t=n): MIII ≔ 1173.62 kN ⋅ m MIV ≔ 411.64 kN ⋅ m MIII.IV ≔ MIII + MIV = 1585.26 kN ⋅ m ‐ napon
u betonu:
σ 3.te ≔
MIII.IV nte ⋅ Ite
cm
MIII.IV σ 2.te ≔ ― ⋅ y 2.te = 0.016 nte ⋅ Ite ‐ napon
kN
⋅ y 3.te = −0.335
2
kN
―2 cm
u čeliku:
MIII.IV σ 2.te ≔ ― ⋅ y 2.te = 0.247 Ite
―2
MIII.IV σ 1.te ≔ ― ⋅ y 1.te = 9.486 Ite
―2
kN
cm
kN
cm
5.7.3 napon u preseku L/4 (t=n): MIII ≔ 586.81 kN ⋅ m MIV ≔ 308.45 kN ⋅ m MIII.IV ≔ MIII + MIV = 895.26 kN ⋅ m ‐ napon
u betonu:
MIII.IV σ 3.te ≔ ― ⋅ y 3.te = −0.189 nte ⋅ Ite
σ 2.te ≔
‐ napon
MIII.IV nte ⋅ Ite
⋅ y 2.te = 0.009
kN
―2 cm
kN cm
2
u čeliku:
MIII.IV σ 2.te ≔ ― ⋅ y 2.te = 0.14 Ite
kN
―2
MIII.IV σ 1.te ≔ ― ⋅ y 1.te = 5.357 Ite
cm
kN
―2 cm
Page 23 of 35
= 40
cm
(debljina betonske ploče)
5.8 Ucaji od temperaturne promene ΔT ≔ 15
‐ temperaturna
−5
αt ≔ 1.2 ⋅ 10
‐ koef.
−6
εsk = −120 ⋅ 10
temperaturne dilatacije /EN 1994‐2 (5.4.2.5)
‐ konačan
−6
εtemp ≔ αt ⋅ ΔT = 180 ⋅ 10
razlika između čelika i betona
vr. skupljanja nearmir. betona /PBAB`87 (tab.9)
‐ dilatacija pri
temperaturne promene
| εtemp | ― = 1.5 | εsk | ‐ napon
u betonu:
σ 3.temp ≔
| εtemp | kN ― ⋅ σ 3.sk.b = −0.028 ―2 | εsk | cm
σ 2.temp ≔
| εtemp | kN ― ⋅ σ 2.sk.b = 0.144 ―2 | εsk | cm
‐ napon
u čeliku:
σ 2.temp ≔
σ 1.temp ≔
| εtemp | kN ― ⋅ σ 2.sk.č = −2.342 ―2 | εsk | cm | εtemp | |
εsk
|
⋅ σ 1.sk.č = 0.838
kN cm
2
6 Tabelarni prikaz rezultata ‐ rezulta
su prikazani na sledećoj strani
Page 24 of 35
E + O J t Δ σ O K N E + N S Ć V V N E + O U R g N P E σ ) S O T = q n O D P σ = O t
7 9 6 . 0 -
8 2 4 . 0
3 7 7 . 0 -
E + O J t Δ σ O K N E + N S Ć V V N E + O U R g σ N P E = S O T q O D P σ O
2 7 4 . 0 -
8 7 3 . 0
2 5 5 . 6 -
9 1 3 . 4 1
0 1 6 . 8
E s J k σ O N + N E φ V Ć σ O E + I I N R + S E I O T g P = O σ
7 0 2 . 0 -
5 0 1 . 0
4 0 0 . 5 -
5 3 7 . 8
8 4 4 . 4 1
E + O J t Δ σ O K N E + S N Ć V V N E + g O U R σ N P E = O T S q O D P σ O
1 1 5 . 0 -
6 0 4 . 0
8 0 3 . 4 -
3 2 3 . 3 1
E J V O N I + N E I I V Ć I E I O + I N R + E S T I O P = g O σ
6 4 2 . 0 -
3 3 1 . 0
0 6 7 . 2 -
9 3 7 . 7
8 2 0 . 0 -
4 4 1 . 0
2 4 3 . 2 -
8 3 8 . 0
) e V I j ; n I I e I ( f č e = t φ
9 8 1 . 0 -
9 0 0 . 0
0 4 1 . 0
7 5 3 . 5
e j n ) a j s l k σ p ( u k s
8 1 0 . 0 -
6 9 0 . 0
1 6 5 . 1 -
9 5 5 . 0
7 3 2 . 0 -
9 2 1 . 0
4 9 7 . 0
6 4 7 . 4
a z ) a g f Δ ( V I
5 8 0 . 0 -
6 4 0 . 0
4 8 2 . 0
5 9 6 . 1
a z ) a c f R I ( I I
1 6 1 . 0 -
7 8 0 . 0
9 3 5 . 0
5 2 2 . 3
4 9 9 . 1 -
9 6 5 . 1
9 8 5 . 1 -
0 5 2 . 1
2 8 7 . 5 1
(
x a m
σ
E s J k σ O N + N E φ V Ć σ O E + I I N R + S E I O T g P = O σ
E + O J t Δ σ O K N E + S N Ć V V N E + g O U R σ N P E = O T q ) S 0 O D P σ = O t
x a m
σ
3 5 3 . 0 -
9 7 7 . 0 -
2 1 1 . 0
2 5 5 . 0
0 1 5 . 0
8 9 9 . 1
(
x a m
σ
A N O P A N Z A K I R P I N R A L E B A T
E J V O N I + N E I I V Ć I E I O + I N R + E S T I O P = g O σ
) n = t ( i
σ
) 0 = t ( i
σ
σ
6 3 2 . 0
1 8 2 . 3
6 7 2 . 7
8 2 0 . 0 -
4 4 1 . 0
2 4 3 . 2 -
8 3 8 . 0
) e V I j ; n I I e I ( f č e = t φ
5 3 3 . 0 -
6 1 0 . 0
7 4 2 . 0
6 8 4 . 9
e j n ) a j s l k σ p ( u k s
8 1 0 . 0 -
6 9 0 . 0
1 6 5 . 1 -
9 5 5 . 0
6 1 3 . 0 -
2 7 1 . 0
9 5 0 . 1
4 3 3 . 6
a z ) a g f Δ ( V I
3 1 1 . 0 -
1 6 0 . 0
8 7 3 . 0
2 6 2 . 2
a z ) a c f R I ( I I
2 2 3 . 0 -
5 7 1 . 0
9 7 0 . 1
9 4 4 . 6
) n = t ( σ
) 0 = t ( σ
a z a f I 3
2
4 4 9 . 3
4 0 1 . 3 -
0 2 1 . 2 -
9 6 6 . 1
2 1 b b s s σ σ σ σ
σ
a z ) a p f ( V
i
a z a f I I
2 / L
. t p ) m Δ σ e ( t
i
σ
a z ) a p f ( V
) 0 = t (
x a m
5 3 4 . 0 -
. t p ) m Δ σ e ( t
) n = t (
a z a f I I a z a f I
4 / L
Page 25 of 35
3
2
2 1 b b s s σ σ σ σ
7 Kontrola napona 7.1 Kontrola napona u čeliku: ‐ Osnovni
čelik S 235
materijal:
16 < t ≤ 40
mm
σ v ≔ 23.5 kN ⋅ cm ‐ drugi
−2
slučaj opterećenja II.S.O.:
ν II ≔
4 3
= 1.333
σ s.dop ≔ σ v ⋅ ν II
−1
= 17.625
σ s.max.II ≔ 15.782 kN ⋅ cm ‐ prvi
⋅
kN cm
−2
σ s.max.II
−2
σ s.dop
= 0.895
‐ iskorišćenost preseka
slučaj opterećenja I.S.O.: ν I ≔ 1.5 σ s.dop ≔ σ v ⋅ ν I
−1
= 15.667
σ s.max.I ≔ 14.448
⋅
k N cm
⋅
kN cm
−2
−2
σ
s.max.I = 0.922 ―
‐ iskorišćenost
preseka
σ s.dop
7.2 Kontrola napona u betonu: ‐ MB
40; debljina ploče = 20 / 40 cm>16cm σ b.dop ≔ 1.3 kN ⋅ cm
−2
σ b.max ≔ −0.779 kN ⋅ cm
‐ Milenko
−2
| σ b.max | | σ b.dop |
Page 26 of 35
= 0.599
Pržulj S.Kons. (tab.9)
‐ iskorišćenost preseka
II
I
III
IV
V
sigma g (t=0)
sigma q (t=0)
kN
[cm2]
3
-
+
-
+
-
+
-
+
-
+
L/2
2
t=0 -
+
-
+
1
skupljanje
tecenje (III+IV)
sigma g (t=n)
temperatura
sigma q (t=n)
3
-
+
-
+
-
+
-
+
-
+
L/2 t=n
2
1
II
I
III
IV
V
sigma g (t=0)
sigma q (t=0)
3
-
+
-
+
-
+
-
+
-
kN
[cm2]
+
L/4 2
t=0
-
+
-
+
1
skupljanje
tecenje (III+IV)
sigma g (t=n)
temperatura
sigma q (t=n)
3
-
+
-
+
-
+
-
+
-
+
L/4 t=n
2
Page 27 of 35 1
8 Kontrola ugiba δ≔
1 EI
⋅
MM` d z
4
Is = 231204 cm 4 I= 1529671.953 cm −1
gI = 2.66 kN ⋅ m −1 gII = 19.957 kN ⋅ m −1
Δg = 8.75 kN ⋅ m −1 p` = 24.5 kN ⋅ m
8.1 Pomeranje usled faze I:
⎛ ⎛ g⋅ 1 1 δI ≔ ⋅ ⎜2 ⋅ ⋅ 9.7 ⋅ 4.85 ⋅ ⎜125.14 + I ⎝ E` ⋅ Is ⎝ 3
2
0.5 L 8
⎞⎞ ⎟⎟ ⋅ kN ⋅ m ⎠⎠ 1
⋅
kN m
3
= 10.104
mm
8.2 Pomeranje usled faze III: 1 δIII ≔ ― E` ⋅ I
⋅
⎛ 1 ⎞ 2 ⋅ ⋅ 9.7 ⋅ 4.85 ⋅ 1173.62 ⎝ 3 ⎠
⋅
kN m
3
= 11.459
mm
8.3 Pomeranje usled faze IV: 2 ⎛ ⎛ ⎞⎞ g L Δ 1 ⋅ 0.5 1 ⎟⎟ δIV ≔ ― ⋅ ⎜2 ⋅ ⋅ 9.7 ⋅ 4.85 ⋅ ⎜411.64 + ――― ⋅ ― ⎝ E` ⋅ I ⎝ 3 kN ⋅ m ⎠⎠ 8
1
⋅
3
= 5.024
⋅
3
= 14.067
kN m
mm
8.4 Pomeranje usled faze V:
⎛ ⎛ p` ⋅ 1 ⎜ 1 δV ≔ ⋅ 2 ⋅ ⋅ 9.7 ⋅ 4.85 ⋅ ⎜1152.60 + ⎝ E` ⋅ I ⎝ 3
2
0.5 L 8
⎞⎞ ⎟⎟ ⋅ kN ⋅ m ⎠⎠ 1
kN m
mm
8.5 Pomeranje usled skupljanja betona: Msk = 404.919 kN ⋅ m
1 δsk ≔ ― E` ⋅ I
L
⋅ ⋅ 4.85 ⋅ Msk ⋅ m = 5.93
mm
2
8.6 Ukupni ugib: ‐ stalno
optere ćenje:
Σδ ≔ δI + δIII + δIV + δsk = 3.252
‐ stalno+korisno optere ćenje:
Σδ ≔ δI + δIII + δIV + δV + δsk = 4.658
cm
L f dop ≔ ― 300
= 6.467
Page 28 of 35
cm
cm
9 Proračun sprezanja AB ploče i čeličnog nosača ‐ ČEPOVIMA
2
As` = 338.8 cm Y s = 532.31 mm Sb ≔ Ab` ⋅ Y b = 18034.669 cm 3 Ss ≔ As` ⋅ Y s = 18034.669 cm I= 1529671.953 cm ‐ "T"
3
‐ kontrola
4
iznad oslonaca:
T I.o ≔ −25.80 kN T II.o ≔ −72.79 kN T III.o ≔ −120.99 kN T IV.o ≔ −84.88 kN T V.o ≔ −237.65 kN T o ≔ ‐ "T"
1 2
⋅
T I.o + T II.o
+ T III.o + T IV.o + T V.o = −492.815
kN
na polovini raspona:
T 0.5L ≔ T III.o = −120.99 kN
‐ Smičući
τ o ≔
naponi usled opterećenja
| T o ⋅ Sb | |
τ 0.5L ≔
I
|
= 5.81
kN
‐ iznad
oslonaca
cm
| T 0.5L ⋅ Sb | kN ―― = 1.426 ― | I | cm
‐ na
polovini raspona
________________________________________________
Page 29 of 35
‐ smičući
naponi usled skupljanja i temperaturne promene
be ff .1 = 357.6 cm b ΔT ≔
L
10
= 194
cm
b ΔT.usv ≔ min be ff .1 , b ΔT
= 194
‐ usvojena
dužina gde se uzima u obzir dejstva temperature i skupljanja kod proračuna smicanja
cm
nb = 0.162 −1 nb = 6.176 nsk = 10.593 ‐ položajni
Sb.sk ≔
‐ koef.
transformacije betonskog preseka ‐ primenjeni oblik koef. transformacija betonskog preseka ‐ koef. transformacija čeličnog dela preseka
moment inercije nakon skupljanja
| Ab | ― ⋅ Y b.sk = 15702.824 | nsk |
cm
Ss.sk ≔ As ⋅ Y s.sk = 15702.824 cm
3
3
‐ kontrola
Sb.sk ⎛ Ib ⎞ T sk ≔ εsk ⋅ E b ⋅ nsk ⋅ ― ⋅ Is + ― = 1025.336 kN Y b ⋅ Isk ⎝ nsk ⎠
T ΔT ≔ −αt ⋅ ΔT ⋅ E b ⋅ nb
−1
⎛ S I ⎞ ⋅ ―b ⋅ ⎜Is + ―b−1 ⎟ = 1015.711 Y b ⋅ I ⎝ nb ⎠
kN
‐ smi čuća
sila usled skupljanja
‐ smi čuća
sila usled temp. promene
_____________________________________________________________________
2 ⋅ T sk + T ΔT τ ΔT ≔ ――― b ΔT.usv
kN
= 21.042 ―
‐ napon
smicanja usled skupljanja i temp. promene na kraju nosača
cm
Page 30 of 35
‐ Proračun
napona smicanja u merodavnim presecima i određivanje dužine osiguranje:
τ a ≔ 0.13 kN ⋅ cm
−2
‐ dozvoljeni
b2 = 30 cm
‐ širina
τ dop ≔ τ a ⋅ b2 = 3.9
τ ≔ τ o + τ ΔT = 26.852 τ o − τ dop λ ≔ ―― τ o − τ 0.5L λusv ≔ 500 ‐ Dimenzije
⋅
kN cm
−1
⋅
kN cm
L
betonskog preseka na mestu kontakta sa čelikom
‐ dozvoljeni
−1
⋅ = 422.679
‐ ukupno
cm
2
cm
smičući napon u betonu MB40
smičući napon u betonu
smicanje iznad oslonaca
‐ potrebna
dužina osiguranje moždanicima
‐ usvojena
dužina osiguranje
i nosivost usvojenog čepa:
d ≔ 22 mm
‐ prečnik čepa
hč ep.min ≔ 4 ⋅ d = 88 mm
‐ min
hč ep ≔ 240 mm
‐ usvojena
Hdop.1 ≔ 87 kN
‐ nosivost čepa
h p.min ≔ hč ep + 4 cm = 28 cm ‐ Horizontalne
τ x2 ≔
visina čepa /M.P.S.Kons (str. 84, tab.6.2)
h p ≔ 2 ⋅ d p = 40 cm
‐ visina
smičuće sile:
τ o + τ dop
2
τ + τ x2 τ x1 ≔ ― 2 τ = 26.852
<
visina čepa
= 4.855
kN cm kN
= 15.854 ― cm
kN cm
λusv X 1 ≔ ― = 125 cm 4
τ + τ x1 H1 ≔ ― ⋅ X 1 = 2669.094 kN 2
λusv X 2 ≔ ― = 125 cm 4
τ x1 + τ x2 H2 ≔ ―― ⋅ X 2 = 1294.291 kN 2
X 3 ≔
λusv
2
= 250
cm
H3 ≔
τ x2 + τ dop
2
⋅ X 3 = 1094.39
Page 31 of 35
kN
ploče sa vutom
m≔3
‐ broj čepova
Hdop.1V ≔ m ⋅ Hdop.1 = 261 kN
‐ nosivost jedne
‐ potreban
n1 ≔
H1 Hdop.1V
H3 Hdop.1V
‐ podužni
= 10.226
= 4.193
<
n1.usv ≔ 11
<
n2.usv ≔ 5
<
n3.usv ≔ 5
razmak čepova
X 1 e1.1 ≔ ― = 11.364 cm n1.usv X 2
e1.2 ≔ ― = 25 cm n2.usv X 3 e1.3 ≔ ― = 50 cm n3.usv ‐ poprečni
veze
broj redova
H2 n2 ≔ ―― = 4.959 Hdop.1V n3 ≔
u jednoj vezi (u jednom redu)
‐ kriterijumi
>
e1.1.usv ≔ 10 cm
rasporeda čepova
e1min ≔ min 5 ⋅ d , 10 cm
= 10
cm
h p ≔ 2 ⋅ d p − hč ep = 16 cm
>
e1.2.usv ≔ 25 cm e1max ≔ max 4 ⋅ h p , 60 cm
>
= 64
cm
= 6.5
cm
e1.3.usv ≔ 50 cm
razmak čepova
‐ kriterijumi
e2 ≔ 9.0 cm
rasporeda čepova
e2min ≔ min 6.5 cm , 4 ⋅ d
e2.max ≔ b2 − 2 ⋅ 0.5 ⋅ d + 5 cm = 17.8 cm
Page 32 of 35
10 Proračun sprezanja AB ploče i čeličnog nosača ‐ MOŽDANIK + ANKER 10.1 dimenzije usvojenog moždanika ‐ UPN 200 b1 ≔ 200 mm h1 ≔ 125 mm c1 ≔ 75 mm s1 ≔ 8.5 mm
‐ dim.
paralelna sa flanšom ‐ dim. upravno na flanšu ‐ dim. paralelna sa rebrom ‐ debljina
10.2 dopuštena sila priska na beton ispred moždanika d o ≔ 2 d p = 40 cm
‐ debljina
bo ≔ b2 = 30 cm
‐ širina
F 1 ≔ b1 ⋅ h1 = 250 cm
‐ dop.
−2
betona na kontaktu sa čeličnom flanšom
2
F 2 ≔ max bo ⋅ d o , 2 d p
σ o ≔ 1 kN ⋅ cm
betonske ploče kod vute
2
,3
F 1 = 1200 cm
‐ dopušten
2
napon priska u betonu
lokalni prisak na beton usled troosnog naponskog stanja:
σ 1 ≔ σ o ⋅
‾‾ F 2
3
F 1
kN
= 1.687 ―2 cm
Nd ≔ σ 1 ⋅ F 1 = 421.716 kN
‐ dopuštena
sila priska u betonu
10.3 Dopuštena sila zatezanja u ankeru GA 240/360; II.S.O. σ v ≔ 24 kN ⋅ cm
σ a ≔
σ v ν
= 18
−2
⋅
kN cm
ν ≔
4 3
= 1.3
Φ ≔ 16
−2
μ ≔ 0.7
‐ za
Φ
2
⋅ π
Aa.1 ≔ ― 4
mm
= 2.011
cm
zatvorena sidra ‐ omče
2
Sa ≔ 2 ⋅ μ ⋅ Aa.1 ⋅ σ a = 50.668 kN
α ≔ 45
prvoj i krajnjoj trećini nosača petlje od glatke armature nagnute su prema horizonzali pod uglom 45 ° _______________________________________________________ °
‐ na
Ddop ≔ Nd + Sa ⋅ cos α = 457.544 kN
Page 33 of 35
10.4 Raspored moždanika ‐ horizontalne
smičuće sile
H1 = 2669.094 kN H2 = 1294.291 kN H3 = 1094.39 kN ‐ potreban
n1 ≔
broj moždanika
H1 Ddop
H2 n2 ≔ ― Ddop n3 ≔
H3 Ddop
‐ podužni
= 5.834
<
n1.usv ≔ 6
= 2.829
<
n2.usv ≔ 3
= 2.392
<
n3.usv ≔ 3
razmak moždanika
X 1 = 125 cm
X 1 e1.1 ≔ ― = 20.833 cm n1.usv
>
e1.1.usv ≔ 20 cm
X 2 = 125 cm
X 2 e1.2 ≔ ― = 41.667 cm n2.usv
>
e1.2.usv ≔ 40 cm
X 3 = 250 cm
e1.3 ≔
>
e1.3.usv ≔ 80 cm
X 3 n3.usv
= 83.333
cm
emax ≔ 2 ⋅ 2 ⋅ d p
= 80
cm
_________________________________________________________________ H1 Nmax ≔ ――― e1.1 n1.usv ⋅ ― e1.1.usv
= 427.055
kN
N prit.max ≔ Nmax − Sa ⋅ cos α = 391.228 kN
‐ max
sila koja se pripisuje najopterećenijem moždaniku
‐ max
sila priska na jedan moždanik (učešća sidra se zanemaruje, jer je ona zategnuta)
Page 34 of 35