Respirasi Seluler
Pengertian respirasi seluler
Pada hakikatnya, respirasi adalah pemanfaatan energi bebas dalam makanan menjadi energi bebas yang ditimbun dalam bentuk ATP. Dalam sel, ATP digunakan sebagai sumber energi bagi seluruh aktivitas hidup yang memerlukan energi. Menurut Campbell et al. (2002), aktivitas hidup yang memerlukan energi antara lain, kerja mekanis (kontraktil dan motilitas), transpor aktif (mengangkut molekul zat atau ion yang melawan gradien konsentrasi zat), produksi panas (bagi tubuh burung dan hewan menyusui). Namun, selain ketiga tujuan tersebut, energi dibutuhkan oleh tubuh untuk transfer materi genetik dan metabolisme sendiri.
Jadi respirasi seluler adalah proses perombakan molekul organik kompleks yang kaya akan energi potensial menjadi produk limbah yang berenergi lebih rendah (proses katabolik) pada tingkat seluler. Pada respirasi sel, oksigen terlibat sebagai reaktan bersama dengan bahan bakar organik dan akan menghasilkan air, karbon dioksida, serta produk energi utamanya ATP. ATP (adenosin trifosfat) memiliki energi untuk aktivitas sel seperti melakukan sintesis biomolekul dari molekul pemula yang lebih kecil, menjalankan kerja mekanik seperti pada kontraksi otot, dan mengangkut biomolekul atau ion melalui membran menuju daerah berkonsentrasi lebih tinggi.
Persamaan umum respirasi seluler
C6H12O6+ 6 O2 6 CO2 + 6 H2O + energi
Energi = ATP(Adenosine TriPhosphate) + panas
Struktur dan Fungsi mitokondria
Mitokondria adalah salah satu dari beberapa bagian yang terdapat di dalam sel atau yang biasa disebut sebagai organel sel. Mitokondria dalam sebuah sel memiliki jumlah yang bervariasi tergantung pada kebutuhan energi pada sel tersebut. Pada beberapa jenis sel, mitokondria memiliki susunan yang kompak yaitu pada bagian yang paling banyak membutuhkan energi. Sebagai salah satu contoh, mitokondria ada pada tubuh manusia yang terletak diantara unit-unit kontraktil pada sel otot jantung. Mitokondria berbentuk seperti batang atau cenderung oval, memiliki ukuran yang besar seperti bakteri. Mitokondria memiliki dua lapisan, yaitu lapisan luar dan lapisan dalam. Lapisan luar bersifat halus dan mengelilingi mitokondria. Sedangkan lapisan dalamnya berbentuk lipatan-lipatan yang disebut krista. Ada bukti yang menyebutkan bahwa mitokondria merupakan turunan dari bakteri yang menginvansi dan kemudian ditelan oleh sel primitif. Hal itu terjadi akibat adanya hubungan simbiotik antara mitokondria dan bakteri, sehingga menyebabkan mitokondria berkembang dan menjadi organel permanen.
Fungsi mitokondria mengambil energi dari zat-zat gizi dalam makanan dan mengubahnya menjadi suatu bentuk yang dapat digunakan untuk menjalankan aktivitas sel. Sehingga mitokondria disebut juga dengan "organel energi". Pada mitokondria terdapat lipatan-lipatan yang mengarah ke dalam dan menonjol ke rongga dalam yang disebut krista. Krista diisi oleh cairan yang berbentuk gel yang dinamakan matriks. Selain itu krista juga ditempeli oleh protein-protein transportasi elektron yang bertanggung jawab untuk mengubah sebagian besar energi yang terkandung dalam makanan menjadi bentuk yang dapat digunakan. Sedangkan cairan gel di dalam krista atau yang disebut matriks. Matriks merupakan cairan yang mengandung campuran pekat ratusan enzim berbeda yang memiliki fungsi untuk mempersiapkan molekul-molekul nutrien untuk pengambilan akhir energi yang dapat digunakan oleh protein-protein yang terdapat di krista.
Mekanisme respirasi seluler
Secara garis besar, respirasi sel melibatkan proses-proses yang disebut glikolisis, siklus Krebs atau siklus asam sitrat, dan rantai transpor elektron. Perhatikan diagram respirasi seluler berikut:
Gambaran umum respirasi seluler pada eukarioti.
Sumber: Pearson education inc.
Glikolisis (di sitosol/sitoplasma)
Kata "glikolisis" berarti "menguraikan gula" dan itulah yang tepatnya terjadi selama jalur ini. Glukosa, gula berkarbon enam, diuraikan menjadi dua gula berkarbon tiga. Gula yang lebih kecil ini kemudian dioksidasi, dan atom sisanya disusun ulang untuk membuat dua molekul piruvat (champbell, 2002)
NADH merupakan sumber elektron berenergi tinggi, sedangkan ATP adalah persenyawaan berenergi tinggi. Selama glikolisis dihasilkan 4 molekul ATP, akan tetapi 2 molekul ATP diantaranya digunakan kembali untuk berlangsungnya reaksi-reaksi yang lain sehingga tersisa 2 molekul ATP yang siap digunakan untuk tubuh. Seluruh proses glikolisis tidak memerlukan oksigen. Reaksi glikolisis terjadi di sitoplasma (di luar mitokondria). Hasil akhir sebelum memasuki siklus krebs adalah asam piruvat. Ada yang membedakan tahap ini menjadi dua yaitu glikolisis dan dekarbosilasi oksidatif. Glikolisis mengubah senyawa 6C menjadi senyawa 2C pada hasil akhir glikolisis. Yang dimaksud dekarbosilasi oksidatif adalah reaksi asam piruvat diubah menjadi asetil KoA (syamsuri, 1980)
Dekarboksilasi Oksidatif
Setelah memasuki mitokondria,asam piruvat mula-mula diubah menjadi suatu senyawa yang disebut asetilCoA. Dekarboksilasi Oksidatif ini merupakan persambungan antara glikolisis dan siklus krebs, yang diselesaikan oleh kompleks multi enzim yang mengkatalis 3 reaksi:
Gugus karboksil piruvat dikeluarkan dan dilepaskan sebagai molekul CO2
Fragmen ber-karbon dua yang tersisa dioksidasi untuk membuat senyawa yang dinamai asetat. Suatu enzim mentransfer electron yang diekstraksi ke NAD+ dan menyimpan energy dalam bentuk NADH.
Koenzim A (senyawa yang mengandung sulfur diikatkan pada asetat tadi oleh ikatan yang tidak stabil yang membuat gugus asetil sangat reaktif.
Siklus kreb / siklus asam sitrat (di mitokondria)
Glikolisis melepas energi kurang dari seperempat energi kimiawi yang tersimpan dalam glukosa, sebagian besar energi itu tetap tersimpan dalam dua molekul piruvet. Jika ada oksigen molekuler, piruvat itu memasuki mitokondria dimana enzim siklus krebs menyempurnakan oksidasi bahan bakar organiknya (champbell, 2002)
Memasuki siklus krebs, asetil KoA direaksikan dengan asam oksaloasetat (4C) menjadi asam piruvat (6C). selanjutnya asam oksaloasetat memasuki daur menjadi berbagai macam zat yang akhirnya menjadi asam oksalosuksinat. Dalam perjalanannya, 1C (CO2) dilepaskan. Pada tiap tahapan, dilepaskan energi dalam bentuk ATP dan hidrogen. ATP yang dihasilkan langsung dapat digunakan. Sebaliknya, hidrogen berenergi digabungkan dengan penerima hidrogen yaitu NAD dan FAD, untuk dibawa ke sistem transport elektron. Dalam tahap ini dilepaskan energi, dan hidrogen direasikan dengan oksigen membentuk air. Seluruh reaksi siklus krebs berlangsung dengan memerlukan oksigen bebas (aerob). Siklus krebs berlangsung didalam mitokondria (Syamsuri, 1980).
Sistem Transpor Elektron (di mitokondria)
Energi yang terbentuk dari peristiwa glikolisis dan siklus krebs ada dua macam. Pertama dalam bentuk ikatan fosfat berenergi tinggi, yaitu ATP atau GTP (Guanin Tripospat). Energi ini merupakan energi siap pakai yang langsung dapat digunakan. Kedua dalam bentuk transport elektron, yaitu NADH (Nikotin Adenin Dinokleutida) dan FAD (Flafin adenine dinukleotida) dalam bentuk FADH2. Kedua macam sumber elektron ini dibawa kesistem transfer elektron. Proses transfer elektron ini sangat komplek, pada dasarnya, elektron dan H+ dan NADH dan FADH2 dibawa dari satu substrak ke substrak yang lain secara berantai. Setiap kali dipindahkan, energi yang terlepas digunakan untuk mengikatkan fosfat anorganik (P) kemolekul ADP sehingga terbentuk ATP. Pada bagian akhir terdapat oksigen sebagai penerima, sehingga terbentuklah H2O. katabolisme 1 glukosa melalui respirasi aerobik menghasilkan 3 ATP. Setiap reaksi pada glikolisis, siklus krebs dan transport elektron dihasilkan senyawa – senyawa antara. Senyawa itu digunakan bahan dasar anabolisme (Syamsuri, 1980).
Selama respirasi seluler, pemanenan energi makanan untuk sintesis ATP jika satu molekul glukosa terurai secara sempurna maka fosforilasi tingkat substrat menghasilkan 4 ATP dan fosforilasi oksidatif menghasilkan 34 ATP. Proses oksidasi satu molekul glukosa dapat memanen energi sebanyak 38 ATP. Sementara itu, dalam oksidasi sempurna satu molekul glukosa melepaskan 686 kkal (DG = -686 kkal/mol), dan fosforilasi ADP menjadi ATP menyimpan sedikitnya 7,3 kkal per mol ATP. Oleh karena itu, efisiensi respirasi adalah 7,3 kali 38 dibagi 686, atau kira-kira 40%. Sedangkan sisa energi simpanan hilang sebagai panas untuk mempertahankan suhu tubuh, dan menghamburkan sisanya melalui keringat dan mekanisme pendinginan lainnya (Campbell et al., 2002)
ATP yang dihasilkan dari sebuah molekul glukosa yang dioksidasi di dalam sel, dari glikolisis sampai rantai respirasi antara lain:
a. Glikolisis menghasilkan
1 NADH + H+ = 1 X 2 X 3 ATP = 6 ATP
2 ATP = 2 X 2 X 2 ATP = 4 ATP
Jumlah = 10 ATP
Dipakai = 2 ATP
Hasil bersih ATP glikolisis = 8 ATP
Dekarboksilasi oksidatif menghasilkan
1 NADH + H+ = 1 X 2 X 3 ATP = 6 ATP
Siklus krebs menghasilkan
3 NADH+H+ = 3 X 2 X 3 ATP = 18 ATP
1 FADH2 = 1 X 2 X 2 ATP = 4 ATP
1 ATP = 1X 2 X 1 ATP = 2 ATP
Jumlah b + c = 30 ATP
Jadi hasil bersih ATP dalam respirasi dari 1 molekul glukosa adalah 38 ATP
Daftar Pustaka
Mahmuddin.(2009). Respirasi Seluler atau Respirasi Aerob. http://mahmuddin.wordpress.com.Diakses tanggal 21 Desember 2012.
Campbell, Neil A,dkk.(2002).Biologi.Jakarta:Erlangga.
Parera, Herens Andreano.(2010).Siklus Krebs.www.scbrid.com. 22 Desember 2012.
Lestari,Iis.(2012). Respirasi Sel.http://www.kamusq.com. 30 Desember 2012.
Charisma, Nanik.(2012). Fotosintesis dan Respirasi Seluler. http://csbioinformatika.blogspot.com. 30 Desember 2012.
Dejavu, Lan.(2010). Katabolisme Respirasi Seluler. http://landejavu.wordpress.com. 30 Desember 2012.
10 " Page