TOROIDAL COIL
J J B . da = r t '!T 2'!T)l(R+pNI cos 8 ) pdpd8 0
0
( )l0 NI /2 '!T)
0
rt
0
0
'!T
d8 R+ p cos 8 pdp
The integration with resp ect to 8 mus t be done with care , taking into account the two branches of the curve . We integrate from -'!T /2 to +'!T/2 , where cos 8 is pos itive , and then from '!T/2 to 3'!T /2 , where cos 8 is negative . Then '!T/2 d 8 3'!T /2 d8 '!T/2 d8 '!T /2 d 8 2'!T _d_8--:: + + -=:':: '::: -= R-p cos 8 8 cos R+p -:::8 cos p R s 8 c R+ P o + R+p c o s 8 - '!T /2 -'!T/2 '!T /2 o - '!T /2
J
J
J
=
-p I (R�- p 2 ) !
tan )
43
J
J
tan ( 8 / 2 ) 1
\
] '!T/2
-'!T/2
Tr/2 f R-pd8cos 8 -Tr/2 J
o
=
2 Tr _-=d-=-8_ R+ p cos 8
4 1 ) arc tan �-p 1. + arc tan �+p ! 2 2 _ (R _ p 2 ) ! \ (R _ p 2 ) 2 (R P ) 2 1
Since arc tan a + arc tan b = arc tan [( a+b)/( l-ab )] , Tr d 8 2Tr 4 ( Tr / 2 ) 4 2R/ (R2 _ p 2 ) ! tan arc 2 -p 2 ) = (R2 _ p 2 ) ! - (R2 _ p l ! 2 2 2 2 R+p cos 8 (R _ p ) ! l- ( R -p ) / (R 0 r Thus 1> ( � oNI /2Tr) f 2 2Tr 2 1 p dp � oNI [ R- ( R2 -r 2 ) 1.2 ] (R _ p ) 2 o
}
1
t
The integration is more difficult wi th Cartes ian coordinates . 1':\ . b) B = � oNI [R- (R2 -r 2 ) ! ] /Trr 2 at the radius V\ S et a{ = R + p cos e . Then � oNI /2 Tr I/{ � 0 NI [ R- (R2 -r 2 ) 1.2 ] /Trr 2 � � r 2 / 2 [ R- ( R2 -r 2 ) ! ] r 2 / 2R[ 1- ( 1-r 2 / R2 ) ! ] =
=
=
For r 2 « R2 ,
� II<
'"
r 2 /2R(r 2 /2R2 )
=
R
CHAPTER 10 There is an interes ting ar ticle on the crossed-field mas s spec trometer in The Journal of Phys ics E , S cientific Ins truments , Volume 10 ( 19 7 7 ) page 458 . 10-1 ( 10 . 1) THE CYCLOTRON FREQUENCY mv 2 /R. a) The cen tripe tal force being BQv , BQv b) Then W viR = BQ/m . c) BQ/2Trm = l x 1 . 6 x lO -19 /27f x 2 x 1 . 7 x lO -2 7 = 7 . 5 megahertz . 10-2 ( 10 . 1) MOTION OF A CHARGED PARTI CLE UN A UNIFORM B -+ The velocity component p arallel to B is unaffected . The component -+ normal to B gives a circular motion as in the preceding problem . 44
10 - 3 ( 10 . 1) MAGNETIC MIRRORS The figure shows part of a helical orbit for a positive particle . The particle drif ts to the right . The magnetic force points to the lef t . After a while , the drif t velocity will also p oint to the left . Reference . There is a good article on the magnetosphere in Contemporary Physics , �, 165 ( 19 7 7 ) . 10 - 4 ( 10 . 1) HIGH ENERGY ELECTRONS IN THE CRAB NEBULA a) W 2 x l0 14 x 1 . 6 x lO - 19 '" 3 . 2 x lO - 5 J . 3 . 2 x lO - 5 /9 x l0 16 3 . 6 x lO - 22 kg , mc 2 /m 0 c 2 3 . 6 x lO - 22 / 9 . l x lO - 3l 4 x lO S
b) m
=
m/mo
=
c) R
=
d) ( 2 1T x 3 . 4 x l0 13 /3 x lO S ) / ( 2 4 x 3 , 6 00)
=
S . 2 days
10 - 5 ( 10 . 1) MAGNETIC FOCUSING a) An electron goes through one full circle in a time T 2 1T/W . During that time it travels a dis tance L vx T . S o 1. 1. L ( 2eV/m) 2 2 1T (m/Be) 2 3/2 1T (mV/e) 2 /B , B 2 3 /2 1T (mv/e) ! /L =
b) B IN '
=
=
2 3 / 2 1T ( 9 . l x lO - 3l x 10 4 /1 . 6 x 10 - 19 ) ! /0 . 5 = 4 . 2 4 x lO - 3 T
B / �o
=
3 37 3 A
10 - 6 ( 10 . 1) DEMPSTER MAS S SPE CTROMETER a) mv 2 /R = BQv , mv BQR , (2m ( 1 / 2 ) mv 2 ) 1.2 1. QR2 B 2 /2V ( 2mQV) 2 BQR, m
BQR
1
b) B ( 2mV/Q) 2 /R For HI + B l ( 2 x 1 . 7 x lO - 2 7 x lOOO/1 . 6 x lO - 19 ) ! /0 . 06 0 . 11 T . 0 . 09 4 T . '
45
=
7 . 7 x lO - 2 T .
Note that 6m/m 26B /B . Thus , for large m ' s , where 6m/m b ecomes small from one iso tope to the nex t , 6B /B becomes even smaller . =
c) B
1,.
( 2mV/Q) 2 /R ( 2xl . 7xlO -2 7 AxlOOO / l . 6xlO -19 ) ! /0 . 06
( 3 . 4xlO - 5 / 1 . 6) !A! /0 . 06 = 7 . 6 8xlO - 2A! where A is the atomic weight . This value of m is approximate . =
10- 7 ( 10 . 1) MAS S SPE CTROMETER mv 2 /R BQv , R mv/BQ x = 2R ( 2 /B ) (m/Q ) v The time of flight from A to the target is TIR/v TI /B (m/Q) . During that time the ion drifts through a distance y = ( 1 / 2 ) (QE /m) ( TIID / BQ) 2 ( TI 2 E /2B 2 ) (m/Q) . Reference : Rev . S ci . Ins tr . �, 819 ( 19 7 4) . =
=
z�o
=
=
=
10-8 ( 10 . 1) HIGH-TEMPERATURE PLASMAS 1,. a) mv2 /R BQv, R mV/BQ ( 2mmv 2 /2) 2 /BQ . : 0 . 225 m =
=
=
b ) A D+ ion has the same velocity , but half the mas s , so R 113 mm . Reference : Glas s tone and Loveb erg , Controlled Thermonuclear Reactions pages 156 and 395 . =
10-9 ( 10 . 1) HIGH TEMPERATURE PLASMAS a) By symme try , B can only be azimuthal . But the line integral -+ -+ of B · d � over a circle perpendicular to the paper and with its center on the axis of symm e try mus t be zero , s ince the net cur rent is zero . Then B O . S imilarly , B = 0 ins ide the inner cylinder . =
b ) See figure . c) I t bends downwards .
46
0
0
0
0
B
=
0
--
0
0
0
0
0
0
r/ ///////_//// /////
®
(f)
®
(£) (t) B ":. 0 0
(±) (±) B "= 0
(t)
(t)
(±)
®
0
d) I t b ends upwards
e) They als o return to the discharge .
Reference : G1as s tone and Loveb.erg , Controlled Thermonuclear Reactions, p 2 78 . 10- 10 ( 10 . 1) a) I
ION BEAM DIVERGENCE
vA , A = I /v
Q ( A/21TE o R) = QI/21TE 0Rv
b ) QE
QV ( ll o I /2 1TR) = QIll o V/21TR d) QE - QvB (QI /21TR) ( 1 ! E o v - ll oV) c) QvB
=
10-11 ( 10 . 1) ION THRUSTER S ee the s olution to Prob . 2-14 . Here , the force exerted on the ej ected fuel , in the reference frame of the vehicle, is BIs , or m ' v . I 2 R I 2 ( s /oA) , where A is the area of one of the electrodes , =
n
C or D .
J
/[
_2_ l / ( l+P D /P G) = 1 1 + D oA BIsv 1 / ( 1 + 2m ' /oB 2 T)
Also , 2 I / oABv
=
2oE /oBv
2J /oBv
=
1 / ( 1 + 2BIs /oB 2 w)
2E /Bv ,
n 1 / ( 1 + 2E /Bv) . As v increas es , n ->- l , and n ", l for v » 2E /B . 10-12 ( 10 . 3 ) GAMMA ( 1- S 2 ) ! 1 / 1.01 , S 2 =
1 - 1 / lt0 1 , S =, 0;{9 9504 .
10-13 ( 10 . 5 ) REFERENCE FRAMES 1 1 / ( 1-1/4) 2 1 . 155 1 . 155 ( 1-1 . 5x10 8x1) -1 . 7 32 x 10 8 m
Y
=
=
Y1 = 1 m , z2 = zl = 1 m 1 . 155 s . 1 . 155 ( 1-1/2�3x10 8 ) =
47
10-14 ( 10 . 5 ) REFERENCE FRAMES 1 . 15 5 as above y \ 1 . 7 32 x 10 8m , 1 . 155 ( 1+l . 5xlO 8xl)
1m , t l
zl
Yl
1 . 15 5 s
..;- ..;- ..;- ..;..;- ..;- ..;..;- ..;-
10-15 ( 10 . 8) HALL EFFECT
a) v
vxB
=
-M(E +vxB) , where i
vx 0
=
vxi + v j + v z k Y vx
j
k
v Y 0
vz
=
B
[
-M(E -vxB ) ' v z O . Y M(-E x +MBE ) -ME x +M2 BE "';l "';l -M[E x-M(E -vxB ) B ] Y 1+M2 B 2 l+M2 B 2
-M(E x +v B ) , v Y Y
b) vx
� [f
=
MB ( -E x MBE y ) l+M2 B 2
-M y -
=
Jy
=
)
]
]
2 2 MBE M _ _ (E +MBEx ) - M 2 Ey + l+M2 B 2 y 1+M B 1+M2 2 neM(E x-ME B) / ( l+M2 B 2 ) Y neM(E y +ME xB ) / ( l+M2 B 2 ) (b / a) MVxB ( 10 -3 /5xlO - 3 ) 7 x 1 x 10 - 4 1 . 4 x 10 -4 V . -M
c) Vy
=
=
v Y
Jx
]
-M E xi+E j+v B t-vxB r , Y Y
�
:
__
=
d ) When E
0, Y Jx = neME x / ( l+M2 B 2 ) , I x b cneM(Vx /a) / (l+M2 B 2 ) , R Vx II x a ( 1+ � B 2 ) /b cneM, LIR/Ro M2 B 2 Let us calculate the mob ility in copper . J p v aE , v (a /p ) E . · . a /p a /ne 5 . 8 x lO 7 / 8 . 5 x 10 28 x 1 . 6 x 10 -19 Thus the mob ilitY :Ls -3 . = 4 . 3 x lO References : H . H . Wieder , Hall Generators and Magnetores is tors ; =
=
=
=
•
=
=
=
48
=
=
H . Weis s , S tructure and Applications of Ga1vanomagnetic Devices . 10-1 7 ( lO . 8) V vBa
ELECTROMAGNETIC FLOWMETERS
=
CHAPTER 11 11-1 ( 11 . 1)
a) Bv 9, b) Zero .
=
BOAT TESTING TANK 2 x 10 -5 x 20 x 3 1 . 2 mV =
11-2 ( 11 . 1) EXPANDING LOOP a) I = Bvs /R b ) (B ls ) v (Bvs) 2 /R c) I 2 R = (Bvs ) 2 /R. The power exp ended to move the bar appears as heat in the resis tance R . =
11-3 ( 11 . 2)
INDUCED CURRENTS
t
t
Reference : Rev . S ci . Ins trum . , � , 1581 ( 19 7 7 ) . 49
11-4 ( 11 . 1) INDUCED CURRENTS a) Counterclockwise b ) Counterclockwise c) S ince the flux linkage is con -+ -+ s tant , and s ince v x B = 0 , the induced electromotance is zero .
11-5 ( 11 . 2)
'1J
=
dfl/dt
INDUCED ELECTROMOTANCE NA( dB /dt) = 100 x 10 - 2 x 10 -2 x
sin ( 2Tf x 60 t)V We have disregarded the s ign .
2Tr
x 60 s in ( 2 Tf x 60 t)
3 . 77
11-6 ( 11 . 2 )
ELECTROMAGNETIC PROSPECTION
B
J
a) The induced elec tromotance is azimuthal . Over a circle of radius r , 2TfrE Tfr 2B o wsinwt , E = (rB 0 w/2) s inwt . The induced current density is a E and is also azimuthal J (arB o w/2) s inwt . =
=
b) With our s ign convention , a positive J gives a posi tive B . At t 0 , dB /dt 0 and J = O . Then , as B decreas es , J increases as per Lenz ' s law , etc . =
=
11- 7 ( 11 . 2 )
INDUCTION HEATING a) -d� /dt - Tfr 2 (d /dt) ( V o N ' I 0 coswt) b ) The length of the conductor is 2 Tfr and its cros s-section is Ldr . =
50
Hence R c) dP av
=
21Tr /crLdr 2 2 ( 11 U WN ' I 0 ) o 2x2 rrr /crLdr
=
[Ilo2rrcrw2N ' 2
1
0
)
2 / 4 Lr 3 dr ,
Th e average va 1ue 0 f S ln equa 1 to 0 . 5 . , 2 wt b elng ' R d) P av ( ) L r 3 dr ( ) LR4 / 4 = ( 4rr x lO -7 x 21T x 60 x 5000 x 2 ) 2
J
=
o
( 1T x lO 5 /16) ( 6 x lO -2 ) 4 x l
=
5 . 71
W
Note The power dis s ipated in the winding is I 2 R , where R is its resis tance . The conduc tivity of copper being 5 . 8 x 10 7 siemens per meter , if there are n layers , the cross-section of the wire is rr (n /5000) 2 /4 and R 2 1T x 6 x lO -2 x 5000 / [ 5 . 8 x l0 7 1T (n/5000) 2 / 4 J , I 2 R '" 10 3 I 2 /n 2 . =
I f n 10 , I 2 R � 40 W . Reference : S t andard Handb ook for Elec trical Engineers , p 22-28 and following . =
z
11-8 ( 11 . 2 ) INDUCED ELECTROMOTANCE y vt ( w A /21T) t , wt = 21TY / A Y + A /4 � B o s in ( 2 1TY / A) s inwt ( A / 4) dy y =
=
J
[
B o sinwt ( A/4) ( A /2 1T) -cos ( 2 1TY /A)
] y+
A/4
y U 2 /81T) B o s inwtC -cos ( 2 rrY / A+1T/2) + cos ( 2 rrY /A) J
CU"=
( A 2 /8rr) B o ( s in 2 wt + s inwtcoswt) (B VA /4) ( s in2wt + cos2wt) O
11-10 ( 11 . 4) THE TOLMAN AND BARNETT EFFECTS In the reference frame of the conductor , the force on a particle of charge -e and mas s m is Reference : Landau and Lifshi tz , Electrodynamics of Continuous Media , p 210 . 51
11-11 ( 11 . 5) ELE CTRIC CONDUITS From the definition of A (Eq . 8-18) , A is p arallel to the wire . Then aA/ a t is also parallel to the wire and , if there is a single wire , there is a longitudinal induced electromotance in the wire . Reference : S t andard Handb ook for Electrical Engineers , Sec . 17-11 . 11- 12 ( 11 . 5) THE POTENTIALS V and A -+
-+
-+
S ince Vx (A - VC) =: V x A , B is not affected . Also -V(V + ac/ at) - ( a / a t) (A - VC) =: -vv - aA / a t and E is not affected either .
CHAPTER 12 12-1 ( 12 . 1) [H ]
=
[ Jl o ] [L ] , [ Jl o ]
[H] / [ L ]
12-2 ( 12 . 1) MUTUAL INDUCTANCE Assume a current I in the wire . toroidal coil is
The flux linkage through the
( Jl o IbN /2TI) �n C l+b /a) ,
M
=
( Jlo bN /2TI) �n ( 1+b /a) .
12-3 ( 12 . 1) MUTUAL INDUCTANCE a) From S ec . 8 . 1 . 2 , coil a produces at b a magnetic induction B = JloN a I a a 2 /2 C } + z 2 ) 3 /2 . S o M = "' ab /I a = Jl oN a a 2 /2 ( a2 + z 2 ) 3 /2 Nb TIb 2 TIJl oN aNb a 2b 2 /2 ( a 2 + z 2) 3 / 2 b ) M varies as the cosine of the angular displacement . c) No .
{
}
=
12-4 ( 12 . 2 ) A OUTSIDE A SOLENOID The magnetic flux inside the solenoid is TI R2Jl oN ' I . Then the electromotance induced in a loop of radius r > R coaxi al with the solenoid is TIR2 Jl oN ' dI /dt = 2TIrdA/dt , A = (Jl o /2r) N ' R2 I . 52
12-5 (12 . 2) A INS IDE A SOLENOID The magnetic flux inside a loop of radius r < R , coaxial with the solenoid , is ( d/dt) ( rrr 2 )JoN ' I) 2 rrrdA/d t , A ( )J o /2)N ' I. r . 12-6 ( 12 . 3) MAGNETIC MONOPOLES The flux due to the current mus t exactly cancel that due to the monopoles . Then -15 LI nNe* , I nNe* /L 100 x 1 , 200 x 8 . 26 x 10 / 75 x 10 -3 1 . 322 x 10 -8 A =
_
12- 7 (12 . 3 ) ROGOWSKI COIL Reference : Glass tone and Loveberg , Controlled Thermonuclear Reactions , p 16 4 ; Rev . S ci . Ins tr . �, 6 6 7 ( 19 71) . 12-8 (12 . 3) INDUCED CURRENTS a) In the azimuthal direction , R 2 rra/crb£, B )J o I / £ , � L � /I )J o rra 2 / £ . b ) L 4rr x lO -7 x rr x 2 5 x lO -6 /1 = 9 . 87 x lO -11 H R 2 rr x 5 x 10 -3 /5 . 8 x 10 7 x 10 -3 x 1 5 . 42 x 10 -7 " =
=
L /R
=
1 . 82 x lO -4 s .
12-9 (12 . 3) COAXIAL LINES In the annular region , B is due only to the current in the inner conductor , from Ampere ' s circuital law . Thus R2 dr/r B )J o I /2 rrr , � ' = ()J o I /2rr) Rl =
J
12-10 ( 12 . 3) COAXIAL LINES From Ampere ' s circuital law , the B in the annular region between the conductors is the same at all frequencies . Inside the conduc tors there is more field at lower frequencies . Hence Wm is larger at low frequencies and L £f > Lhf · 53
12- 1 1 ( 12 . 5) LONG SOLENOID WITH CENTER TAP 2 2 2 2 LAC ( � oN /�) rr R , LAB LBC ( � oN /2 �) rrR , M O . Our formula for a long solenoid is based on the assumption that B is � o (N /�) I ins ide , and zero outs ide . Wi th this assumption , the coup ling coefficient k is zero , and M is zero . =
12-1 3 ( 12 . 7)
=
=
VOLTAGE SURGES ON INDUCTORS
I +
R L
( R + Rs ) I + LdI /dt "" Rs I + LdI /dt , 100 "" Rs I - 10 4 4 Th e v o1 tages acros s Rs an d 1 are b oth ab out 10 V . a) V
=
b ) Connect the diode as in figure b . current is I - (V/R) e -Rt /1 10 e-t .
Upon opening the switch , the
=
12-14 ( 12 . 7) TRANSIENT IN R1C CIRCUIT In circui t a, V/V s 1-exp (-t /RC) 3 In circuit b , 1 10 4 x 10 -6 / 4 2 . 5 x 10 =
=
=
1d 2 Q / dt 2 + RdQ /dt + Q / C
=
Vs .
H,
As in P rob . 12-1 5 , the particular solution is Q .1 1n 2 + Rn + l / C 0 , n = - (R/2L) ± (R2 / 41 2 - 1/1C) 2 , 3 R/2L 100 /5 x 10 2 x 10 4 1/1C . =
=
=
=
Thus the two values o f n are equal and Q (A + Bt) exp (-Rt /21) + V s C . =
At t
=
0, Q
=
0 and A
=
-V s C . Also ,
I dQ /dt exp (-Rt /21) [B - (R/21) (A + B t) J . At t 0 , I = 0 and B - (R/21) V s C . =
=
=
54
Vs C
-Vs C ( 1+Rt /2L) exp (-Rt / 2L) + V s C 2 /RC , Q Vs C[ 1 - ( 1+2t /RC) exp ( - 2 t /RC ) J ,
Finally , Q
S ince R/2L
v
=
Q / C , V/Vs 1- ( 1+2 t /RC) exp ( - 2 t /RC) . Summarizing , V/V s l-exp ( - t /RC) , for circuit a . =
V/Vs
=
1- ( 1+2 t /RC) exp (-2t /RC) , for circui t
S etting t /RC = t ' , V/V s l - exp ( - t ' ) , for a , V/Vs 1 - ( 1+2 t ' ) exp ( - 2t ' ) , for
b.
/. 0 b.
The figure shows Q /V s C as a function of t for the two circuits . The charges are the same at t 1 . 2 6 RC . The circuit with the inductor is slower at firs t , and then faster . The inductor is not us eful . =
0
12 - 15 (12 . 7 ) TRANS IENT IN RLC CIRCUIT a) LdI /dt + RI = V, I Aexp ( - Rt /L) + V/R S ince I 0 at t 0 , I (V/R) [ l - exp ( -Rt /L) J 2 b ) LdI /dt + RI + Q / C V , Ld Q /dt 2 + RdQ /dt + Q / C The particular solution is Q vc = 10 -4 .
t'
3
=
=
=
=
=
lO [ (l - exp ( -lOt ) J .
V
=
The complementary function is Q Aent , n [ - R± (R 2 - 4L / C) ! J / 2L - 5 ±10 3 J. , Q exp (-5t) (BcoslO 3 t + Ds inlO 3 t) + 10 - 4 . . S lnce Q 0 at t = 0, B - 10 -4 , Q exp (-5t) ( - 10 -4 cosIO 3 t + DsinlO 3 t ) + 10 -4 , dQ /dt exp ( - 5 t ) ( 5 x 10 - 4 cosIO 3 tHO -1 s inlO 3 t - 5Ds inlO 3 t +10 3 Dcos lO 3t) I Als o , 1 = 0 at t O . Then D -5 x lO - 7 Q = exp (-5t) ( - 10 - 4 cosIO 3 t -5 x 10 - 7 s inlO 3 t ) + 10 - 4 ;::; -10 - 4 exp (-5t) cos IO 3t + 10 -4 . I -10 -4 exp ( - 5t) ( - 10 3 s inlO 3 t) + 5 x 10 -4 exp ( -5 t ) coslO 3 t -4 = 0 . lexp ( - 5t) s inlO \ + 5 x 10 exp ( - 5 t ) coslO \ ;::; 0 . lexp ( - 5t) s inlO \ . =
=
=
=
=
55
CHAPTER 13 13-1 ( 13 . 1) MAGNETIC FORCE BIL = 5 x 10 -2 x 400 x 5 x 10 - 2
--
13-2 (13 . 1) MAGNETIC FORCE a) Let the wire have a cross-section a , and let the current density be J . For a length o f one meter , BJa p ag , J pg/B = 8 . 9 x l0 3 x 9 . 8 x lO - 4 8 . 7 x l0 8A/m2 8 . 7 x l0 8 a A I 1 / 5 . 8 x 10 7 a . "/m b) R' p' ( 8 . 7 x l0 8 a) 2 /5 . 8 x l0 7 a 1 . 3 x lO lO a W/m 10 - 8 , then p ' 130 W/m . The wire will become very hot . If a =
=
=
Convection will spoil the measurement .
c) In the Northern hemisphere there is a South magnetic pole . lines of B point S outh . The current mus t p oint Wes t .
The
d ) At the p oles the lines o f B are vertical and the magnetic force on a horizontal wire is horizontal and perpendicular to the wire . 13-3 (13 . 1) MAGNETIC FORCE -F 50 x 100 x 0 . 5 x 10 -4 x s in 70 a
0 . 235 N
=
13-4 ( 13 . 1) +
F
=
+
MAGNETIC FORCE +
I a y),h d,Q, a x B
=
+
+
-I aB x ':I',h d,Q, a
O.
13 - 5 ( 13 . 1) ELECTROMAGNETIC PUMPS Cons ider an element of volume dxdydz , as in the figure , with the current flowing along the z-axis . + The current is Jdxdy . Both J and + B are uniform ins ide the infini tesimal element of volume . The force per unit volume is
56
-
-
8
J dx
dx
dy
HOMOPOLAR GENERATOR AND HOMOPOLAR MOTOR
13-6 ( 1 3 . 1)
v
2 B wR /2
=
=
1 3 - 7 (13 . 1 )
=
I x ( 3 000 X 2 1T / 6 0 ) 0 . 2 5 / 2
=
39 . 2 7 V .
HOMOPOLAR MOTOR
The curr ent has a radial comp onent p o in t ing towards the axi s .
The
a z imuthal c omp onent o f the current g ives a B p o in t ing to the righ t . The whe e l turns counterclo ckwis e . 13-8 ( 1 3 . 2 )
MAGNETI C P RE S SURE -
-
- - -
-
- -
.
-----c:)--::=::----
---{Br--.__ --------.. - - -
- _.
�
---{B,---
------c:)r----
------c:)1----
a) We h ave p r e c i s e ly the s i tuation des crib ed in S e c . 13 . 2 .
b ) Inside the inner s o lenoid , there i s zero magnetic f i eld . B e tween 2 the two s o l enoids th e f ield is B . The magnetic p r e s s ur e B / 2 � pushes o inward on the inner s o lenoid . 13-9 ( 13 . 2 ) 2
a) B / 2� o
MAGNETI C P RE S S URE 2
=
B / 2 X 41T x lO
�
4 B
2
-7
2 -7 -5 P a '" ( B / 2 x 41T x lO ) 10 a tmo spheres
atmospheres .
b)
57
c) ( i) The pres s ure is always equal to the energy den s i ty ( ii ) The e l ectric "pres sur e " we have cons idered is as s o ciated with th e fact tha t lines o f force are under tens ion .
This "pres s ur e " is
(We have no t cons idered the r epuls ion b e tweeen 2 electric lines of force , whi ch gives a p o s i t ive pres s ure of E E / 2 . o For examp l e , if we have two electric charges of the s ame s ign , one 2 can f ind th e corre c t force o f r epul s i on by in tegrating E E / 2 over o the p lane half-way b e tween the charges , where the lines of force clash) . always attractive .
( iii) The magnetic p r e s s ur e we are concerned with here is as s o ciated with the lateral repul s i on b e tween l ines of force .
This p r e s s ure is
repuls ive .
I n P rob . 15-6 we are concerned wi th the tens ion in the 2 lines of force , which gives an at trac tive "pressure" of B / 2 )1 . o ( iv) In pratice , the electric " p res sure" is nearly always negligib le
while magnet i c pres sure is o f t en larg e . For examp le , a large E of 6 10 V /m g ives an electric " p re s s ure" o f 5P , wh ile a large B o f 1 T 5 g ives a magnetic p r e s s ure of 4 x 10 P . 13-10 ( 1 3 . 2 )
MAGNETIC PRE S S URE
0 ins ide , from Ampere ' s circuital law . a) B = )1 I /2 �R out s ide , B o 2 , 2 2 ( 1 /2 )1 ) ( )1 I / 2 �R) = ( )1 / 8 � ) ( I /R) . o o o -7 2 8 -8 7. b) P ( 4 rr x lO / 8 � ) ( 9 x 10 / 2 5 x lO ) = 5 . 7 3 x 10 Fa :::; 5 . 7 3 a tmom spheres . =
Thus P m
Re ference : J . Phys . D . App 1d Phy s . �, 2 1 8 7 ( 19 7 3 ) . 13-11 ( 1 3 . 2 )
--
MAGNETI C P RE S S URE 5 -7 "" 4 x 10 P a "" 4 atmospheres .
a) P = 1 / 8 � x 10
b ) The p r e s s ure would b e unchanged , s ince B is uniform in side a long s ol eno i d . 13-12 ( 1 3 . 3 ) ENERGY S TORAGE 2 3 12 -12 E /2 8 . 85 x lO x 10 / 2 4 . 43 J /m o 2 5 3 -7 1 / 8 � x 10 B / 2 )1 = 3 . 9 8 x l0 J /m o E
13-13 ( 1 3 . 4 )
=
MAGNETI C PRE S S URE
a) The magneti c force i s 2 �R2p ' It a c t s through a d i s tance dR . m Then the work done by the magnetic force is 2 �R2p dR . m 58
b ) The mechanical work done i s Z Z Z 'TTR f(, (B / Z )l ) d R = Z 'TTR j(, [<)l NI / f(, ) / Z )l J dR o 0 0
Z 2 'TT )l I N RdR / ,Q" 0
=
Z
c) I (Nd 1»
= INd ( 'TTR )l NI / f(,) o
13-14 ( 1 3 . 4)
FLUX COMPRE S S I ON
a) As the tub e shrinks in d i ameter ,
E x p l o . i ve
an a z imuthal current is indu c ed that main t ains the enclosed mag netic f lux app roximately con s t ant . Z Hence B B (R / R) . o 0
Tu b e
�
b) B
c) B
�
)l a , a o 9 10 A/m
�
10 ( 10 / 1)
=
3 -7 10 / ( 4 'TT X 10 )
=
(1) Z
10
=
3
(Z)
T.
d) The s o lenoid maint ains a con s t an t B
i n i ts interior . The curren t o in the tub e in creas e s the induction ins i de the tub e to B . Thus the increas e in magne t i c energy i s lM m
(
Z Z Z 'TTR L B -B o 'TT x ( 10
-4
Jj
Z )l
Z = 'TTR L
o
(
R
o
4
/ R4 _ 1J B o Z / Z )lo '
4 Z -7 /4 ) x O . Z ( 10 _ l) 10 / 8 'TT x lO
�
6 x l0
6
(3) ( 4)
J.
The s ource s upp lies an extra en ergy oo Z 6W N I ( d 1> / d t ) dt = NI 6 1> NI 'TTR ( B -B ) , s 0 0 0 0 0 Z Z Z Z Z Z 'TT R (B L / )l ) R NI IlR R , R - 1 B R -1 B , o 0 / 0 0 0 0 1 0
J
(
J
1
Z Z 2 ( 'TT / )l ) LB (R -R ) o o o �
1 . 3 x l0
5
=
=
=
( 'TT / 4'TT x lO
-7
[ ' )
f
R
R o
J.
(7)
Note that
J
[
Z Z Z 1TrL ( B -B ) / Z )l dr o o
( 'TTL / )l ) B o 0 6W
m
(6)
2 -Z -4 ) O . Z x lO ( 10 -10 ) / 4
Th e exp l o s ive s up p l i e s an energy -
(5)
Z
[
R
0
4
- ( 'TTL / )l ) o
Z Z /ZR + R / Z _ R
= 6W + W exp 1 s
0
z)
�
J[ / R
R
R
o
6 x l0
0
6
4
J.
4 r _l
h
) 0
Z
rdr ,
(8)
(9)
Note also tha t , although the magnet i c f ield j us t ins ide the s o l enoid
59
is unaffected by the current I in the tub e , the current I produces a a A/a t in the s o leno id that makes W
'" O . The exp los ive s upp lies mos t s We have neglected the mechanical en ergy required t o
of the energy .
crush the tub e , acous tic energy , e t c . 13- 15 --
( 13 . 4 ) PULSED MAGNETI C FIELDS 6 6 2 a) W = ( B / 2 ]1 ) V = 4 x 10 J . C o s t ", $ 8 x 10 o m
6 6 6 b) W 4 x 10 J 4 x 10 / 3 . 6 x 10 '" 1 kwh . m depending on p r evai l ing rates . =:
c) p
=:
=:
2 B / 2 ]1
13-16 ( 1 3 . 5 ) a) W m
=:
'" 4 x 10
o
9
P a '" 4 x 10
MAGNETI C ENERGY
I ' / 2 + I fl /2 b b / a
I ( fl + a aa
=:
b) W m 13-17 ( 13 . 5 ) a) W m
=
LI / 2
=
13-18 ( 13 . 5 )
1 (11) / 2 =:
2 INTIR ]1 NI / 2 £
=
( V /L) t 2 2 (V / 2L) t
2 L ( Vt /L) / 2
=
Q/C
=
2 i i i ) CV / 2
a)
2
E E /2 r 0 2 B / 2 ]1 o E
=
2 2 (V /2L) t
=
( I/C) t
i i ) ( 1 /2 ) [ ( I t /C ) I J t
13-19 ( 1 3 . 4 )
2 2 2 ]1 TIR N I / 2 £ o
0
V, I
=
2 11 / 2
i) V
I fl / 2
=
i i ) ( 1 / 2 ) (Vt /L) Vt
b)
\ a ) /2 + I b ( flab + \ b ) / 2
ENERGY S TORAGE
i) LdI / d t
} ii)
atmospheres .
ENERGY S TORAGE
2
b) W = I (N ¢ ) / 2 m
a)
4
Co s t '" 2 to 10 cents ,
=
2 2 ( 1 /2C) t
2 C (It/C) /2
=
2 2 (I /2C) t
ENERGY S TORAGE 3 . 2 x 8 . 85 x 10 6 4 / 2 x 4TI x 10
2 7 b ) ( TID / 4 ) L x 2 . 5 x 10
=
-12
-7
x 10
16
/ 2 = 1 . 4 x 10
= 2 . 5 x 10
7
J /m
5
J /m
3
3
7 10 13 2 ( TID / 4 ) 2 0 D x 2 . 5 x 10 = 10 x 3 , 6 00 = 3 . 6 x 10 , 60
D = 45 m , L
900 �.
=
2 5 0 atmospheres A = 1TDL = 1T x 45 x 9 00 = 1 . 2 7 x 10
5
m
2
Referen c e : Foner and S chwar t z , Superconduc ting Machines and Devi c e s , p 41 . SUPERCONDUCTING P OWER TRANSMI S S ION LINE
13-20 ( 13 . 6 )
10
o 6
N /m
2 Il I / 2 1T ( D / 2 ) o
b) B
2 B /2 Il c) W
2 -7 11 5 2 -2 ll o I / 2 1TD = 4 1T x 10 x ( 10 / 2 x 10 ) / 2 1T x 5 x 10
( 11 I /2 1TD) I
a) F
o
= 6 4 / 4 1T x 10
( 1 / 2 ) 11
=
=
2
C o s t = 5 x 10
2 Il I / 1TD = 8 x 10 o -7
= 5 x 10
= ( 1 / 2 ) ( 6 . 6 x 10 -3
( 8 . 2 5 x 10
10
7
J /m
-7
-7
5 -2 x 5 x 10 / 5 x 10
8 T.
3
5 2 6 x 10 ) ( 5 x 10 )
8 . 2 5 x 10
10
J
6
/ 3 . 6 x 10 ) = $ 115 .
Referen c e : P r o c . I . E . E . E . , Ap ril 19 6 7 p age 5 7 . 13-21 ( 13 . 8 )
ELE CTRI C MOTORS AND MOVING-COIL METERS
a) F
=
NIBb , p e rpendi cular to
F
=
NIB a , in the ver t i cal
F
=
F
=
1 b o th 1 and B
o
2 direc tion
1
NIBb , p erpendi cular to
3 b o th 3 and B
b
NIB a , in the vertical 4 dire c t i on = 2NIBb ( a s in 8 / 2 ) = NIB ab s in e
b) T
13-22 ( 1 3 . 8 ) I d
a) T ->-
b) T
MAGNETI C TORQUE
ISB s in e
=
->-
I d (B S cos e ) / 3 8
->-
mxB
61
� 2 I
3
-
B
13- 2 3 ( 13 . 8 ) a) iJl
ATTITUDE CONTROL FOR SATELLITES
NBA cos 8 , T
=
=
I ( a / a 8 ) (NBA cos 8 )
=
NIBA s in 8
S ee figure for P r ob . 13-22 . b ) IN
=
T /BA s in 8
13-24 ( 13 . 9 ) nw
f
s
10
-3
/ 4 x 10
-5
2 x ( 11 / 4 ) 1 . 14 x O . 0 8 7 3
2 8 0 At
ME CHANI CAL FORCE S ON AN I SOLATED CIRCUIT
I ( d iJl / d t ) d t
2 n (LI / 2 )
nW m
=
=
=
I n iJl
2 ( 1 /2 ) I nL
=
2 ( 1 / 2 ) I n ( iJl jI )
Thus the mechani cal work , nw s
=
( 1 / 2 ) I n iJl
nW , is equal to nW . m m
CHAPTER 14 14-1 ( 14 . 2 ) C!
e
MAGNETI C FIELD OF THE EARTH
N
M s in 8
=
If the sphere carried a surface
+
charge den s i ty cr and rotated at an angular velocity
+
w , we would
have Cl
=
crv
crwR s in 8 , crwR
14-2 ( 1 4 . 3)
=
+
M
+
EQUIVALENT CURRENTS
s
+
The surf ac e current density is the s ame as if a toroidal coil were wound on the torus , and C!
14-3 ( 1 4 . 4)
e
=
M.
EQUIVALENT CURRENTS
The equivalen t curren t s are equal and in opp o s ite dir e c t ions .
-+-
B
=
Thus
0 ins ide the tub e . --
M
62
14-4 ( 1 4 . 4)
+
+
+
DIELE CTRI C S AND MAGNETIC MATERIALS COMPARED
+
+
+
+
+
+
+
( oj
+
+
+
+
+
+
+
( b)
a) b ) D i s unaffec ted , E i s reduced by c)
+
The energy is minimum .
E:
r
'
S e e Figs . a and b .
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
(C)
(d )
d) e) H is unaff e c ted , B is increased by ll ' r f) The energy is minimum . S e e Fig . e .
S ee Figs . c , d
Th e loop i s in s tab le equilib r ium .
(e) 14-5 ( 14 . 4 )
MAGNE T I C TORQUE
The magnet acts like a s o leno id . 14-6 ( 1 4 . 4 ) Boo s in 8 cos 8
S ee P rob s 13-22 and 13- 2 3 .
MEASUREMENT OF M 00
s in 2 8
The f i e ld i s larg es t a t 8
45 degrees .
63
14- 7 ( 14 . 4 ) a) V
MI CROMETEORITE DETE CTOR
( d / d t) (Ml ) b
2 2 11)1 N a b O a ( d/dt) 2 2 3 /2 2(a + z )
I
z
b
b ) S ee the figure Reference : Rev . S c i . Ins tr . 42 6 6 3 ( 1 9 7 1 ) 14-8 ( 14 . 4 )
ME CHANI CAL DISPLACEMENT TRANSDUCER
a) S ee curve . 2 2 5/2 b ) xz / (x + z )
4 0 . 9 5 x l0 z ,
3 2 5/2 = 9 . 5 x 10 , O . l / ( O . Ol + z ) z = 14 . 4 mm
Reference : H . Wieder , Hall Genera tors and Magnetores i s tors , p 9 5 . 14-9
( 14 . 5 )
MAGNETIZED DISK
Out s ide , we can us e th e field of a curr ent loop : B
ex
=
2 3 /2 . Mt } / 2 ( } + z )
2 3 /2 , H )1 Mt } /2 ( } + z ) ex o
Ins ide , we have the s ame value of B , wi th z
14-10 ( 14 . 6 )
2
2 « a :
T OROIDAL COIL WITH MAGNETI C CORE
Let N ' be the numb er of turns p e r meter in b o th cases . 14-15 , H
=
N i l in b o th cases .
Wi th the air core , B
From Eq . )1 N ' L a
th e magnetic core , B is larger by a factor )1 . r Th e equivalen t curren t s f l ow in the s ame direction as I . 14-11 ( 14 . 6 )
EQUIVALENT CURRENTS
64
With
b ) On the inner surfac e ,
a
M
=
e
=
B / Il - H o
=
X H m
( Il - l) H r
=
X I / 2 rrb , m
in the s ame direc tion as the curren t On the outer surface , c) B
=
+ V ·H
;<
e
=
X I / 2 rr c , in the opp o s i te direction . m
ll o I /2 rrr , as if the i ron were ab s ent . THE DIVERGENCE OF H
14-12 ( 14 . 7 ) V .B
a
';7 · ( ll ll B) = 1l V Il . li + ll ll v . li 0 r o r o r 0 if VIl
r
14-13 ( 14 . 8 )
;<
0 and if VIl
r
=
0 +
is n o t p erp endi cular to H .
THE MAGNETI ZATION CURVE
Interp olating logar i thmically b e tween the p oin ts marked 2 x 10 4 2 x 10 , 4 3 6 . l x 2 x l0 1 . 2 2 x l0 . Il r =
and
=
14-14 ( 14 . 8 ) a) H
b) V
3
=
ROWLAND RING
5 00 x 2 . 4 / 2 rr x O . 2 ,::; 1000 A/m , B ,::; 0 . 5 T -4 x O . 5 ( 10 / 2 . 4 ) N S dB / d t 10rr x lO
Nd CJi / dt
14-15 ( 1 4 . 9 )
=
=
6 . 6 mV
THE WEBER AMPERE-TURN
A web er is a uni t of magnetic f lux , and d CJi / d t is a voltage . Thus a web er is a vo l t s econd .
The numb er of turns is a pure numb er .
S o [web er ] [ ampere ] = [ volt s e c ond ] [ amp e r e ] 14-17 ( 14 . 9 )
=
[watt ] [ s e cond ]
=
[ j oule]
TRANS FORMER HUM
The hum is due to magne tos tric tion Reference : S tandard Handb ook for . Elec trical Engineers , S e c 11- 9 6 and f o llowing . 14-18 ( 14 . 9 )
P OWER LOS S DUE TO HY S TERE S I S
The area of the loop is app r oximately 2 . 8 x 16 , or 45 W /m
65
3
cycle .
THE FLUXGATE MAGNETOMETER AND THE PEAKING S TRIP
14-19 (14 . 9 )
Referen ce : H . Zij ls tra , Experimental Methods in Magne tism , Vo l 2 , p 3 7 , B r an d t , Introduc tion to the S o lar Wind p 145 ; M . S tanley L ivings ton and John P . B lewe t t , P ar ticle Accelerators , p 2 7 6 .
CHAPTER 15 15-1 ( 1 5 . 2 )
RELUCTANCE
( 1 / 2 ) LI
W m
2
15- 2 ( 15 . 2 ) L
=
N
=
=
( 1 / 2 ) (LI ) I
( 1 / 2 ) (N
2 ( 1 / 2 )
RELUCTANCE 2
N
15-3 ( 15 . 3 ) a)
=
2 N /
G(
CLIP-ON AMME T ER I (2 rrR-L ) / V V A + L /V A g r o g o
�
V IA/L ' B 0 g
�
V I /L 0
g
Without the iron core , B i s V I / 2 1fR and is much smal ler . o b ) The p o s i tion of the wire is unimp ortan t . 15-4 (15 . 3 ) For V B = =
r
=
MAGNET I C CIRCUIT
500 ,
NI 2 1fR / V V +t / V r 0 g 0
fl NI o 21fR/V H r g
-7 x 5 00 x 2 . 4 -3 2 1f x 0 . 2 / 5 0 0+ 10 41f x 10
0 . 43 T .
66
1 . 508 x 10
-3
1 . 2 5 7 / 5 00+10
-3
Thi s B is too large ; for � B
=
1 . 50 8 x lO
-3
1 . 2 5 7 / 5 2 5+ 1 0
-3
r
=
500 , B
=
=
r
525 , B
0 . 45 9 T , ins tead o f 0 . 5 o n the graph .
15-5 ( 1 5 . 3 )
MAGNE TORE S I S TANCE MULTIPLIER
1 5 - 7 ( 1 5 . 4)
RELAY
F
=
2 (B / 2 � ) A o ( 4 7T x lO
15-8 ( 15 . 3)
-7
=
(A/ 2 � ) ( � NI /t )
x lO
0
-4
Try �
525
r
0 . 44 T .
This B is again too large ; for � B
0 . 32 T .
0
2
=
=
0 . 38 T .
Try �
r
= 550
Thi s i s s at i s f ac tory .
( � A / 2 ) (NI / t ) 0
2
4 -2 -3 2 / 2 ) (10 x lO / 2 x lO ) = 0 . 16 N .
MAGNET I C FLUIDS
a) Th e magnetic f lux is concen trated in the f lui d , where B i s large enough to g ive an appreciab le magnetic pres s ure . b ) S ee the l i terature p ub lished by Ferr o f luid ics Corp .
CHAPTER 16 16-1 (16 . 1)
RE CTIFIER CIRCUITS COMPARED
b
67
1 6 - 2 ( 16 . 2 ) V
!mS
16-4 ( 16 . 2 )
i
V
0
o
a) V ' O c)
f
( l /T)
RMS VALUE O F A S INE WAVE
T
[
r[
0
2
[
2 co S Wtdt
RMS VALUE
b ) 4V
( l /T)
2
/2
}
�
=
V o ( 1- 2 t /T)
� 2 V
V
0
2
/WT
Jf : 2
0
O
] 2 dt } �
=
2 os ada
� ( Vo /T )
[r
y
2 ( 1- 2 t /T) c:lt
,
V / 2 2 , so that the me an s quare d) For the comp l ete s ine wave , V O rill S 2 value i s V / 2 . For the half s ine wave , th e mean s quar e value i s 0 2 = V /2 . V o / 4 , and V O rms 16-5 ( 1 6 . 3) THREE-WIRE S IN GLE-PHASE CURRENT 339 V 2 2 ( 2 40)
----r-
=
16-6 (16 . 4)
THREE-PHASE CURRENT
c o s wt + coswtCO S ( 2 1T / 3 ) - s inwt s in ( 2 1T / 3 ) + c o s w t COS ( 4 1T / 3 ) - s inwt s in ( 41T / 3 ) cos wt [ 1+ cos ( 2 1T / 3 ) + co s ( 41T / 3 ) ] - s inwt [ s in ( 2 1T / 3 ) + s in ( 41T / 3)] 0 0 cos wt [ l+ c o s 120 + c o s 2 40 ° ] - s inwt C s in 120 + s in 2 4 0 ° ] 0 0 0 0 coswt [ l+ cos 120 +c os ( - 120 )] - s inwt [ sin 120 + s in ( -120 )] 0 0 c o s w t ( 1-0 . 5-0 . 5 ) - s inwt ( s in 120 - s in 120 ) = 0 1 6 - 7 ( 1 6 . 4)
ROTATING MAGNETIC FIELD
a) Us ing trigonome tric fun c t ions , B
x
= B [ co s w t - 0 . 5 co s (wt+ 2 1T / 3 ) - 0 . 5 c o s (wt + 4 1T / 3 ) ] o
B [ co s w t - 0 . 5 (cos wt c o s 2 1T / 3 - s inwt s in2 1T / 3 ) o -0 . 5 (cos wt cO S 4 1T / 3 - s inwt s in41T / 3 ) ] = =
B [ co s wt - 0 . 5 (-0 . 5 cos wt - O . 5 /3 s inwt) -0 . 5 ( - 0 . 5 c o s w t+ 0 . 5 !:3 s inwt) ] ° 1 . 5 B cos wt °
68
B
B 0[ 0 . s l3c O S ( Wt+21T/3) - 0 . s l3 coS (Wt+41T/3) ]
y
O . S !3B o (cosWtc O S21T/3 - sinwtsin21T / 3 - coswtcos41T/3+ s inwts in41T/3)
O . S I3B o (-0 . Scoswt - O . S /3 s inwt + O . Scoswt - O . S l3 s inwt) -2 ( 0 . S I3) 2 B o s inwt -l . SB 0 s inwt 7 7 7 S o B 1 . SB coswti - 1 . SB s inwtj , B 1 . S B O ' O O =
=
=
Using exponential functions , B x B o [ expj wt - O . S expj (Wt+2 1T 13) - O . S expj ( Wt+41T 13) J , B o expj wt ( 1-0 . S expj 2 1T/ 3-0 . Sexpj 41T/3) ,
b)
=
=
=
=
By
B o exp j wt [ 1 - O . S (-O . S+O . S l3j ) - 0 . S (-0 . S-0 . S /3j ) J , 1 . SB o exp j w t ,
B 0 [ 0 . S l3expj (wt+21T/3) - 0 . S !3expj (wt+41T/3) J , O . S I3B o expj wt (expj 2 1T 1 3-expj 41T 13) ,
O . S I3B o expj wt (-0 . S+0 . s l3j +0 . S+0 . S /3j ) , 2 ( 0 . S I3 ) 2 B o j expj wt , 1 . SB 0 expj (Wt+1T 1 2 )
Thus B
•
=
1 . SB o (coswt! - s inwtj) as previous ly .
16-8 (16 . 4)
a)
1
DIRE CT - CURRE NT HIGH VOLTAGE TRANSMI S S ION LINE S
2 (V / 2 2 ) I Sp o .1 2 b) 3 (V /2 ) I o TP
2V I ' I o DC Sp =
2V I ' I TP o DC
.1
2 2 1 DC
.1
( 2 / 3) 22I
69
DC
0 . 9 4I
DC
ELECTROMAGNET OPERATING ON ALTERNATING CURRENT
16-9 ( 16 . 5 ) q,
rms
=
NI
rms
jQ=
1 6 - 10 ( 16 . 6 ) a) 1 + 2 j
=
-1 - 2j
1 / ( 1+ 2 j )
j s inx
=
2
=
=
5;
=
- 3 + 4j
=
1 / C- 3+ 4 j )
=
-0 . 12 - 0 . 16 j
i Nw , from P r ob 15- 2 .
=
( - 3-4j ) / (- 3+ 4j ) ( - 3-4j ) = ( - 3-4j ) / ( 9+ 1 6 )
( 1+ 2 j ) ( 1+2 j ) / (1+ 4)
=
-0 . 6 + O . 8j
COMPLEX NUMBERS
COMPLEX NUMBERS
4 5 3 2 1 + jx - x /2 ! _ j x /3 ! + x / 4 ! + j x /5 ! 1 3 - J. X / 3 '
+ jx
16-13 ( 16 . 6 ) expj 1l
1 +4
=
1 - 4 + 4j
=
16-12 ( 16 . 6 )
=
I
2 . 2 3 6 £-1 . 10 7
2 . 2 3 6 L 1 . 10 7
cosx
rms
2 . 2 3 6 L 4 . 2 4 9 ; 1 - 2j
1 6 - 11 ( 1 6 . 6 )
=
V
COMPLEX NUMBERS
( 1+ 2 j ) / ( 1- 2 j )
exp j x
=
2 . 236L 2 . 034 ;
=
2
./ wL ) /Q.
rms ,
2 . 2 3 6 L 1 . 10 7 ; - 1 + 2 j
b ) ( 1+ 2 j ) ( 1- 2 j ) ( 1+ 2 j )
(NV
•
COMPLEX NUMBERS
C O S 1l + j s in1l
16-14 (16 . 6)
=
-1
COMPLEX NUMBERS
a) Multip lication by j in creases the argumen t e by 1l / 2 radians .
b ) e increases by 1l .
c ) e decreases b y 1l / 2 .
16-15 ( 16 . 7 ) THREE-PHASE ALTERNAT ING CURRENT o o 0 cos wt - c o s w t c o s 1 2 0 + s inwts in120 cos wt - c o s ( wt+120 ) 1 o 0 coswt ( l + c o s 6 0 ) + s inwtsin 6 0 0 / 2 ) cos wt + 0 2 / 2 ) s inwt o 0 3 /2) c o w t + C 2 ) s inwt ( co s 3 0 coswt + s in30 s inwt) 3 2 c o s ( wt-1l / 6 ) 3 2 cos ( wt-30 ) =
: [o!
�
F
=
J
=
=
o!)
70
CALCULATING AN AVERAGE POWER WITH PHASORS T ( l /T) V0 coswtI 0 cos (wt+�) dt
16 - 16 ( 16 . 7 ) a) P av
=
(v I 0 /T) o
I
o
I coswt ( coswtcos � - s inwtsin�) dt T
[
o
!
" (V 1 0 /T) C O ", c " e 2 wc" - eln " (V o I 0 /2) cos l.!(
{
coewMnw" C
!
(v I 0 /T) cos�(T /2) o
The integral of sinwt C O E Wt over one period is zero . b)
P av
=
(1/2) R c fv0 exp ( j wt) I 0 exp - j ( wt+�) L
J
=
( 1 / 2 ) V0 I 0 cos
CHAPTER 17 17 - 1 ( 17 . 1) a) Z
=
wC R + J. wL + RR/j + 1/ j wC
- Rj wC) R + J' wL + R(l R2 w 2 C 2 + 1 2 + J WL - 2 R2 wC2 R + 2 2 R2 R w C +1 R w C +1 =
1
.[
2R at f = 0 and Z + j wL at f + 00 R + R/ (R2 w 2 C 2 +1) 10 + 10 / ( 100x41T 2 x10 6 x25x10 - 18 +1) = 20(1 wL - R2 wC / ( R2 w 2 C 2 +1) 2 1Tx10 3x5x10 -3 - 100x21Tx10 3 x5x10 -9 / 1 31 . 4(1 0 3 7 . 2 (1 � = arc tan ( 3 1 . 4 / 20) 5 7 . 5 ( 2 0 2 +3 1 . 4 2 ) ! 1Z1 Z
b)
IMPEDANCE
=
=
=
c) I y l
d) e)
f) g)
P
No
l/ I Z I 201 2
2 . 69 x 10 - 2 S , 0 . 20 W
is induc tive (posi tive) for L true
X
X
is zero at f
-5 7 . 5
� =
O.
71
>
0
R2 C / CR2 w 2 C 2 +1) , which is always
1 7 - 2 ( 17 . 1) Z
=
REAL INDUCTORS
( R+j wL) / j wC R+ j wL+1 /j wC
2 ( R+j WL) [ ( 1-W LC) - Rj wC J 2 2 2 2 2 ( l-w LC) + R w C
R+j wL 2 . RJ wC-w L C+1
2 2 . R+J w [ L ( l-w LC) - R c J 2 2 2 2 2 ( l-w LC) + R w C
2 2 2 2 R ( l- w LC) + Rw LC + j w[ L ( l-w LC) - R c J 2 2 2 2 2 ( l- w L C ) + R w C 17-3 ( 1 7 . 3)
COMPENSATE D VOLTAGE DIVIDER
R /j wC 2 2 R + 1 / j wC 2 2 R / j wC R / j wC 1 1 2 2 + R +1 / j wC R + 1 / j wC 1 2 1 2
V /V a i
17-4 ( 17 . 3)
R R 1 2 + R j wC +1 R j wC + 1 2 2 1 1
RC FILTER
0. "1
10
0,/
a) Call V ' the po tential at the conne c t i on b e tween A and C v /V ' o
=
D / ( C +D) ,
B ( C+D) , B ( C+D) + A (B+ C+D) BD V /V = ( V /V ' ) ( V ' / V ) = o i i B ( C +D) + A ( B + C+D ) o b) A V /V a i
R, B
=
=
=
l / j wC , C
l/jwC , D
=
R/j wC R/j wC + (R+ 1 / j wC)
2
=
2
=
BD AB + (A+B ) ( C+D)
R R
R + R j WC + l / j wC + 2R
72
=
1 3 +j (RIDC - l / RwC)
I vo /V1.. I
When
is maximum at RwC
I v o /v1.. 1 =
b road .
1 7 -5 ( 1 7 . 3) r
=
Z
RT = Z
R
=
R i' =
=
Then V I v . = 1 / 3 . 0 1.
1.
( 1 / 3 ) / 2 2 , RwC = 0 . 30 3 or 3 . 30 .
The p a s s -b and is very
MEASURING AN IMPEDANCE WITH A PHAS E - S EN S ITIVE VOLTMETER
V / V = Z / (R ' +Z ) , 2 1
R ' r / ( l-r) = R ' (a+b j ) / ( l-a-bj ) ( a+b j ) ( l-a+b j ) 2 2 ( I-a) + b
S e t t ing Z
RT
1
2 a (1-a) - b + j b ) 2 2 ( I-a) + b
=
R + jX, 2 a_a _b 2 2 1 + a + b _ 2a 2
1 + Ir
2 r co s e _ r X 0 o 2 1+ r - 2r c o s e , i' o 0
I2 =
x
-
, "'jiV =
2a
b
1+ IrI
2
-
r s in e 0
1+ r
o
2
_ 2r cos e 0
Reference :
E lec troni c s , July 2 5 , 1 9 7 4 , p 1 1 7 .
1 7- 6 ( 1 7 . 3 )
IMP EDANCE BRIDGE S .
THE WIEN B RIDGE
73
2a
1 R /2 , R C ' the firs t equation is s atis f i ed For R R , C 4 4 1 3 2 3 and the s e cond one yields R wC 1. 3 3 =
=
=
=
17-7 (17 . 3)
LOW-PAS S RC FILTER
_0 I1z � 0r-___________________15
a ) V /V ' 0
b)
l
=
I V /V . I o l
c) db
l / j wC R + l / J' " ,C =
� 2 2 2 l/ (R w C +1) 2
2 0 log l V Iv . o l
=
1 Rj wC + l '
w
17-8 (17 . 3)
=
O
1 50 H z O ------------------___ �
I V0 / V l. I
::; 1 / RwC l. f Rw C
8 2 2 -8 -' 1 / ( 10 X41T xf x10 + 1 ) 2
I.
PHASE SHIFTER
o
_ I ?O°L-0, J
-:-___�
____
V
I. �
Rw C
ItJ
)
R-1 / j wC [ R l / j WC v V R+1 / j wC i = R+ 1 / j wC i o = [R+1 / j wC
V /V . o l
=
exp
2 j arc tg ( l /Rw C)
17-9 ( 1 7 . 3) a) V
=
cr
=
d E a a
=
MEASURING SURFACE POTENTIALS =
d E ' d d
E E + E E E r o d o a
E E + E E ( d E /d ) o a r o a a d 74
R+ j /wC R-j /wC
=
»
1
•
2 2 -' 1 / ( 41T f +1) 2
E
( a / E ) / ( l+ E d / d ) o r a d
a
b) a .
E E o a
a / ( l+ E d /d ) r a d
c) V
d E a a
( ad / E ) / (l+ E d / d ) r a d a 0
J.
d) IR
( dQ / d t ) R
=
C
( 10
IR
( 10
=
-13 -13
V ( dC / dt) R
=
dC/dt
/ 2 ) ( l+ exp j wt ) ,
( 10
- 13
/ 2 ) j w exp j wt
/ 2 ) j w ( exp j wt ) RV
References : S tatic E l e c tr i f ication 19 7 5 , p ages 1 7 3 , 1 8 2 ; Catalog o f Monroe E l e c troni cs . 1 7- 1 0 ( 1 7 . 3 )
RE FERENCE TEMPERATURE S NEAR AB S OLUTE ZERO
Let I
be th e currents in the primar ies and in th e s e condaries ,
and I
p s respec tively .
Reference :
=
O.
R I ' j wM I = R I ' M /M 2 p l 2 2 s 1 S
j wM I 1 p
Then
At balance , V
=
Rl /R2
Rev . S c i . Ins tr . 4 4 , 1 5 3 7 ( 1 9 7 3 ) .
1 7 - 11 ( 1 7 . 3 )
REMOTE-READING MERCURY THERMOMETER
a) S in c e C » C , the c ap a c i t ance of C and C in s e r i es may b e s e t l l 2 2 equal to C and 2 V ' /V
s
R R + l / j wC
=
where C
2
=
2
Rj wC / (Rj WC +l) , 2 2
varies l inearly wi th the temperature .
b ) S in c e V ' i s to vary linearly wi th C , w e mus t have that Rw C « 2 2 and then V ' « V S
1,
c) C is a cylindrical c ap a c i t or wi th an out s i d e radius o f , s ay , 2 mm . 2 The mercury column has a radius o f , s ay , 0 . 05 mm . Then C
2
::::; 2 1fE E L / 9,n (2 / 0 . 0 5 ) o r "" (2 1fx8 . 85xlO
-12
=
2 1fE E L / 9,n 4 0 , o r
x3 / 9,n 40 ) L "" 4 5 L pF .
We have s e t E
"" 3 . Here L is the leng th of the mercury c o lumn ins ide r the e l e c t rode C . S et ting L "" 1 0 0 mm , if R » j wL ' R » j wL ' l ls 2 2s
75
d) C
'" 5 pF , R « 1 /w C
2
. 7 -1 2 1 / 2 -rr x 10 x 5 x 10
2
3000 11 .
S et t ing R '" 3011 , RwC '" 1 / 100 , V ' /V '" 1 / 100 , V' '" 0 . 1 volt . s 2 Reference : Review o f S ci en t i f i c Ins trument s � , 1 9 5 ( 1 9 7 6 ) . 1 7 - 12 ( 1 7 . 3 ) S ince wL «
WATTMETER
Z , we may s e t th e voltage acro s s the load equal to that
a t th e s ourc e .
Als o , s ince R » Z , we may set the curren t through 1 the load equal to the curren t supplied by the s ource .
The coil produces a B that is proportional to , and in phas e with , the curren t through Z . The vo l tage acr o s s R i s R / ( R +R ) t imes the voltage acro s s the 2 l 2 2 s ource . Then
v ' av
=
0 0
KV I (co s tp/ 2 )
1 7- 1 3 ( 1 7 . 3 )
=
KV
I costp rms rms
TRANS IENT SUPPRE S S OR FOR
AN
INDUCTOR
We can calculate the voltage acros s the induc tor , after the swi tch is opened , in ano ther way .
We consider a clo ckwi s e mesh curren t in
L and C . a) Firs t , we f ind Q and I as functions of t , with th e swi t ch open . From Kirchoff ' s vo ltage law , 2 2 C , Ld Q / d t + 2 RdQ / d t + Q / C
LdI / d t + 2 RI + Q / C
O. 2 Then Ln + 2Rn + l / C
=
Try a s o lution of the form Q Q exp n t . 0 2 2 2 -R/L ± (R /L - l /LC ) -R/L , s in ce R =
n
=
=
=
=
L/C .
0
The two roots are
equal . Then Q
( A+B t ) exp ( -Rt/L) .
Set
Q
Q
N ow
I
S et
at t o dQ / d t
I
=
10 a t t O. Then B 1 + RQ /L , 0 o exp ( -Rt /L) ( Q +l t+RQ t /L ) , o o o exp (-Rt /L) [ - (R/L) ( Q +1 t+RQ t iL) + 1 + RQ . /L J , =
Q I
O. Then A Q . o exp (-Rt /L) [ - (R/L) (A+B t ) +B J
=
0
0
0
exp ( -Rt/L) [ I - (R/L) ( I +RQ /L) t J . 0 o 0
0
0
and 1 . S e t I and I the 0 o L C currents through the inductor and c apaci tor b efore t 0 in the
b ) Now let us f ind a rela tion b e tween Q
=
76
directions shown , s o as to give a clockwis e current in the right hand mesh when the switch is open . Then V 1 = � 2 12 cos [ wt-tan-1 ( w1/R) ] , 2 1 ( R +w 1 )
=
Q I
=
+
Vo -1 2 l/w 2 C 2 2i cos [w tHan ( l/RwC) ] ) (R + d Q /dt , Vo -1 2 2 2i sinew t + tan ( l / RwC ) ] , 2 W(R +l/w C ) 2 2 2 -Vo R/ (R +w 1 ) ,
o Vo
-1 2 2 � sin [ tan ( l /RwC) ] 2 W(R + l /w C ) 2 Io Qo -
2 2 2 R (R w C +1) C (R 2 + w 2 1 2 )
If the source supplied be VC , and I o / Q o would Since 1 0 -RQ o /1 , Q =
-R/1
=
�
-1 / ( 1C) 2 .
DC , ins tead of AC , I o would be - Vi R , Q o wou l d l again be -l/RC , or -1/ (1C) 2 . Q o exp (-Rt /1) , I = I o exp (-Rt /1)
c) The vol tage acros s the inductor , after the swi tch has been opened , is 0, RI + 1dI /dt = RI o exp ( ) + 1 (-R/1) exp ( ) desp i te the fact that I decreases exponential ly with time . Reference : R eference Data for Radio Engineers , p 6 - 12 . =
17-14 ( 1 7 . 3 ) SE RIES RESONANCE R + j ( w1-l /wC) Z ->- _00 j for w ->- 0 , Z R for w 2 1C = 1 , Z ->- ooj for w ->- 00
Z
=
77
j
y
R
X
PARALLEL RESONANCE
17-15 (1 7 . 3)
Q
1 4 Ie liz.
-100
a)
°
t 90
1 00
Z
(R+ j wL) (1-w 2LC-Rj wC) 2 2 2 2 (l-w 2 LC) + R w C
Phase of
Z
Z
=
R + j w [ L ( 1-w 2 LC) - R2 C J (l-w 2 LC) 2 + R2 w 2 C 2
21Tf[ 10 - \ 1-41T 2 f 2 10 -9 ) _ 10 -4 J ( ) 2 + 10 -10 41T 2 f 2
�
{ 100 + 4 1T 2 f 2 [ J 2 } � ) 2 + 10 -10 41T 2 f 2
��������- �
J /R
= arc tan w[
Z
=
R 2 ( l-w LC) 2 + (R2 w 2 C 2 )
Z
Imaginary part of Magnitude of
-IfI
R+j wL RJ. wC-w 2LC+ 1
(R+j wL) / j wC -_ R+j wL+1/j wC
Real part of
I O � j.f'Z.
b ) X = 0 when [ J 0 , or when ( l-R2 C /L) /LC L ( l-w 2 LC) R2 C , 1 - w 2 LC R2 C /L , w 2 f [( 1-R2 C /L) /LC] � /21T = [ ( 1-10 - � /10 -3 ) /10 -9] � /21T = 4 . 7 7 =
=
=
=
=
c) 1 - w 2LC
1 - 41T 2 x 6 4 x 10 6 x 10 -3 x 10 -6 1 - 41T 2 x 64 x 10 -3 = -1 . 5 27 10 + j ( 2rrx8x10 3 ) [ 10 -3 (-1 . 52 7) - 10 2 x 10 -6 ] = 10 - 81 . 7 8j 2 . 584 2 . 33 2 + 10 2 x 41T 2 x 64 x l0 6 x 10 -12
Z =
d)
kH z
Z
=
=
R ' + l/j wC ' , R '
=
=
3 . 86 9 , C'
=
0 . 629
]IF
Reference : Philips Technical Review 31 No 4 ( 19 7 1) .
78
S TAR-DELTA TRANSFORMATION
17-16 ( 17 . 4)
,o,,��� ,, -, - 0 .1 5 92
T1
J
- 8.063 X
10-7 j
- 2. 533
10- 4
X
17-17 ( 17 . 4)
STAR-DELTA TRANSFORMATION
17-19 (17 . 4) R + Z 0, R
B RID GED-T
=
1 /R
=
A
=
-Z ,
- [Zj W C - wZ C Z ( r+j wL)] -Zj wC + wZ C Z r + j W3 LC Z -Y
=
Then wZ C Z rR
=
1 , wZ LC
=
Z.
R
79
('
17-20 ( 17 . 5 ) MUTUAL INDUCTANCE Trans form the circuit into the one shown in the figure of the preceding pag e . 10 3 I 1 - I 2 -- C ! ) x1 . 9 j 2 rrx 10 3x 0 . 9 J 5+ 10+2rrx10 ' 2 2 2 1 = 5 / 1 5+5+100rrj l = 5 / 1 10+314j l = 5 / ( 10 +314 ) 2 = 1 . 5 92 x 10 -2A = 15 . 9 2 rnA
(5
Ul �
<
-;-
_
(!)
0 �
....
CHAPTE R 18 18-1 ( 18 . 1) DIRE CT - CURRENT MOTO RS a) R eplace V ' by a resis tance R ' V ' /I . Then the power supplied by the s ource is IV = I ( I R+I R ' ) The first term represents the var ious los s es and IV ' is the useful power . c) At no load , V ' -+ V , 1 = (V-V ' ) /R -+ O , B -+ O . Since V "" V ' ''' wB , w -+ oo . d ) IV ' increases . The motor slows down and V ' decreases , s o I increases faster , R ' V ' /I decreases and the efficiency decreases . =
18-2 ( 18 . 2) POWER-FACTOR CORRECTION 600 / 100 6 . 00 Q a) I z l 6 x 0 . 65 3 . 9 0 $I , R x = 6 x sin (arc cos 0 . 65 ) = 4 . 55 Q b)
I
viz
=
V(R-j x) / l z I 2
(600 /36) (3 . 9 0-j 4 . 55) The in-phase componen t is (600 /36) 3 . 90 65 . 0 A . The quadrature comp onent is 76 . 0 A , 2 lagging . Check : 6 5 . 0 2 + 76 . 0 2 = 100 •
80
�x R
c) VwC = 7 6 , C 7 6 / ( 600x21rx60) 366 ]l:F . This capacitor would cos t ab out $ 400 . 00 . R eference : S tandard Handb ook for Elec trical Engineers , 5 - 9 8 and 16-185 . =
=
18-3 ( 18 . 2 ) POWER-:FACTO R CORRECTION WITH :FLUORES CENT LAMPS The in-phas e component of the current is 80 /120 = 0 . 6 6 7 A . S in ce cos 'i' 0 . 5 , 'i' 60 degrees . The current is 2 x 0 . 66 7 1 . 33 A The reac tive current i s 1 . 33 sin 60 0 1 . 16 A . Then VwC 1 . 16 , C 1 . 16 / (2�60x120) � 20 ]l:F . References : Henderson and Marsden , Lamps and Lighting , p 32 5 S tandard Handbook for Electrical Engineers , 19 -33 . =
=
=
=
18-4 ( 18 . 3)
=
ENE RGY TRANS :FE R TO A LOAD
R
L
R(I
c
a) rI
RI ' + (Q ' / C) , rj wQ (r /R) Q , xco (r/ R C) Q
Q'
�
b)
W =
=
=
Rj wQ '
fVIdt f VdQ co fYd
0
+
Q'
X
one cycle one cycle
81
/C
�
Rj wQ '
t-
j)
V o coswt ,
c) i) For a resis tor , V Q (V 0 /wR) sinwt . See Fig . R
I
(V o /R) coswt
dQ /dt ,
=
V0 coswt , Q
ii) For a capacitor , V S ee Fig . C .
CV 0 cos wt .
iii) For an inductor , V Vo coswt , Ldl /d t Vo coswt , 2 Ld 2 Q /dt 2 Vo cos wt , Q - (V o / W L) coswt . See Fig . L . =
=
=
=
iv) For a resistor in series with an inductor , with R jwQ
=
=
I
=
Vo exp j wt / (R+j wL) l
=
( V o /2 2 R) exp j (wt-1T/4) ,
(V/ R) exp j wt / ( 1+j )
=
j wL ,
;L
Q ( V o /22 wR) exp j (wt-1T/4- 1T/2) See the fourth figure . Reference : Rev . S ci . lns tr . �, 109 ( 19 7 1) . =
lS-5 ( lS . 3) ENERGY TRANSFE R TO A LOAD , Let the voltage across G , at a V given ins tant , be V . The voltage at y is then approximately equal to V . Let the current through Z , at a given ins tant , b e l , and the pulse duration be T . Then the energy dis sipated in Z during a pulse is T Vd Q W VIdt one cycle o
J
J
ale
The voltage a t x i s Q /C . Then the spot on the os cilloscop e s creen des cribes a curve as in the figure . The area under this curve is proportional to the above integral . Reference : Rev . S ci . lns tr . �, 1004 ( 1974) .
S2
A positive X2 is equivalent to a negative X in the primary . lS- 7 ( IS . 4) MEASUREMENT OF THE COEFFICIENT OF COUPLING k With the secondary open , Z oo Z l j wL 1 . With the secondary short- circuited , 2 2 Z o j WL l + w i /j wL 2 j wL l - j wL lj WL 2k /j WL2 2 Z O /Z oo 1 - k . =
=
=
=
=
lS - S ( lS . 4) a ) Z in
=
REFLECTED IMPEDANCE 2 2 Rl + j wL l + W M / (R2 +j WLZ ) 2 ( 1+j R2 ) R2 / R2 +1
[
b)
J
10
0.1
lS-9 (IS . 4) MEASURING THE AREA UNDER A CURVE Draw a line around the periphery of the figure with conducting ink . Then measure the voltage induced when the Helmholtz coils are fed , say at 1 kilohertz . The sys tem can b e calib rated with a circle or with a rectangle of known area . Reference : Rev . S ci . Ins tr . 41 , 1663 (19 70) . lS-lO ( lS . 4) a) R
=
I sec b ) Ipri
9v / Acr
=
S OLDE RING GUNS 10 -1 /4 x lO - 6 x S . S x lO 7
(100 /4 . 3 x lO -4 ) ! 100/120 = O . S A .
=
4S0 A ,
S3
=
4 . 3 x lO -4
V se c
=
>l
4S0 x 4 . 3 x lO -4 ",, 0 . 2 volt
18-11 (18 . 4) CURRENT TRANSFORMER Disregarding the s ign , the induced electromo tance is d�/dt , with b+a (v o I /2 rrr) 2 adr ( V o a /rr) Itn[ (b+a) / (b-a) J , b-a
I
v
( v a/ rr) tn[ (b+a) / (b-a) J dI / d t .
=
o Reference : Rev . S ci . Ins tr . �, 32 4 ( 1 9 7 5) . 18-12 ( 18 . 4) INDUCED CURRENTS Rt t /aA 2rra/ iba =
=
The tube is a single- turn s olenoid .
Hence L
18-13 ( 18 . 5 ) EDDY-CURRENT LOSSES S ee the s tandard Handbook for Electri cal Engineers , Sec . 2- 7 4 . 18-14 ( 18 . 5) EDDY-CURRENT LOSSES For a s olid core , the p ower loss is P I = V2 /R f'O (d� /dt) 2 / ( 4a/abL) (abL/4a) (diJ> /dt) 2 . If the core is split into n laminations , insulated one from the othe� P n n [ d (iJ> /n) /dt J 2 / ( 4an /abL) P l /n 2 . Reference : S tandard Handbook for Electrical Engineers , Sec . 2- 7 4 , 9 1 , 9 2 , 9 3 and following . =
=
=
18-15 (18 . 5 ) HYS TERESIS LOS SES Place the laminations inside a sole( R- A ) / f noid and measure the resis tive part R of the imp edance of the solenoid as a func tion of the fr equency . Then B R A + B f + Cf 2 , where A is the DC resis tance . Then (R-A) / f B + Cf . A plot of ( R-A) /f as a function of f gives both B and C . =
=
84
18-16 ( 1 8 . 5 )
V
a)
CLIP-ON AMME T ER
NAdB / d t
=
NAwB
3
10 ( 0 . 6 4 x 10
-4
=
NAw� � I / 2TIr r 0
) ( 2 TI x 6 0 ) ( 4TI x 10
-7
4 -2 x 10 ) / 2TI x 1 . 5 x 10
=
3 . 12
b) Loop the wire c arrying the unknown current s everal t imes around the core .
CHAPTER 19 19-2 ( 19 . 3)
MAXWELL ' S EQUATIONS 6 .5
-+
-+
-+
� V x (H + M) - E � a E / a t o o o Dividing by � -+
VxM
=
-+
-+
-+
±
J + ( a / a t ) ( E E + l' ) o f
1 9 - 3 ( 19 . 3 )
-+
and c anc eling V x M on b o th s id es ,
o
-+
=
-+-
� ( J + ap / a t + V x M) , from Eq . 14-20 . o f
=
-+
-+
J + a D / a t , f r om E q . 6 - 5 f
MAXWELL ' S EQUATIONS
Us e the equat ions o f the pr evious prob lems , s e t ting
B
=
V
V
r 0
a, a / a t
19-4 ( 19 . 3 ) VxB- E
V
o 0
=
jw
n
=
E E E, r 0
MAXWELL ' S E QUATI ONS
aE / a t =
V
j
0 m
-+
T aking the divergence of b o th s i de s and r ememb ering that V ' V x B -+
for any vector B ,
85
=
0
V
19-5 ( 19 . 3) MAGNETIC MONOPOLES AND MAXWELL ' S EQUATIONS a) Taking the divergence of the equation for'V'x E and remembering that the divergence of a curl is always equal to zero , ->-
( 3 / 3t) (V .B)
b)
=
-v . !* , V .!*
=
-
From the equation for the curl o f
JV x E · da f E. J2 -J!*.�
s
3p */ 3t .
-+
=
=
-+
-+
E,
-1 * .
c
19-6 ( 19 . 3) 11
1N . m
1W
11/ s
1C
lAs
1V
lJ /C
111 1S
1V/A 1 11-1
1F
1C/V
1Wb
1Vs *
1T
1Wb /m2
1H
=
1 kg(m/s 2 ) m 1 kg m2 /s 3
=
1 kg m 2 /s 2
1 kg m2 /As 3
l (kg m2 /s 2 ) /As 1 kg m2 /A2 s 3 1A2 s 3 /kg m2
=
=
=
lAs / (kg m2 /As 3 ) 1 kg m2 /As 2
=
1 kg /As 2 1Wb /A**= 1 kg m2 /A 2 s 2
*From the fact that , in a changing magnetic field , the induced voltage is equal to the rate of change of the magnetic flux **From L
=
'1! /I
Let us check a) j wLI
=
V
. 1 kg m2 s -Z--Z A glves A s
=
kg m-2 , ---A s3
Correct
The energy s tored in a capacitor is CV2 / 2 . 2 kg -m-2 = A2 s 4 kg m2 Correct 2 2 kg m s A s3 b)
--
[ ]
86
Then
�Itored
c) The energy kg m s
2
2
2 2 kg m _ - 2 2 A A s
LI 2 /2 .
in an induc tor is
Corre c t
2 The p ower l o s s in a res is tor i s I R .
d)
Then
2 2 kg m Corre c t = A2 � 2 3 A s3 s 2 . e ) w LC lS a pure numb e r . Then 2 2 4 l � � - l . Correct 2 2 2 2 s A s kg m
Then
etc .
20
CHAPTER
20 - 1 ( 20 . 4) E
=
E exp o
where E
o
PLANE WAVE IN FREE SPACE
j ( w t- z /'te..) , and H
o
H exp o
=
j ( wt- z / J:) , x,
are ind ependen t o f
a) Then , from V · E
( a / ax)
H
= 0,
� oxexp j ( ) ]
0 , ( a / ay)
=
y, z , t and have no z-comp onent
[E oyexp j ( ) ]
=
0
Thes e equatiop s are iden t i t i e s
!I
b ) We have s imilar equation s for H . c ) From V -+
-+
0
0
i
E
x
Thus ,
x l
o
ag / at ,
k
-�
°
ag/ at ,
0
Y
-+
H
20 - 2 ( 20 . 4)
E
=
0
0 -j / x
-+
0
,...
-+
-j w�H , k x E -+
-+
=
a l/ a t , k x H =
�
E
x 0
-E
-+
j
-+
wJ:H °
k
=
o
max
= 10
-+
�J cH °
-+
max
8
=
10
30 (2 rr x 3 x 10 ) 0 . 1 /3 x 10 = 5 4 . 4 87
-+
-j w� H o
cE
o c o s 3 0 ( dB / d t ) 6
=
0
y
LOOP ANTENNA
10 ( d 1> / d t ) lO c o s
-+
E
C-j /1e") k x l = x
-+
i
a/ az
d) From V
1rmax
-�
-+
j
E
=
o c o s 3 0 ( dE / d t ) mV .
max
/c
2 0- 3 ( 2 0 . 6 ) P
P OYNTING VE C TOR
a) Jl9- = 3 . 8 x lO
iU b ) ,e9f -s c)
E
=
'&E = =
/ 47r x 49 x lO
16
= 2 . 6 5 x lO
-3 2 5 E 1 . 5 3 x lO V im E rms ' rms =
2 2 2 2 = E /E = ( l /R _ ) / ( l / R ) , E /E = RS /R _ E S s E S S E E S
q
E
26
5 11 8 ( 7 x 10 / 1 . 5 x 10 ) 1 . 5 3 x 10 = 7 0 0 Vim
2 . 6 5 x lO
-3
x ( 700)
2
= 1 . 3 x l0
3
W/m
2
3 4 2 6 0 x 1 . 3 x lO ( cal / 4 . l9 ) / ( 10 cm ) = 1 . 8 6 calorie /minute centi2 meter
Thi s quan t i ty i s called the s o lar cons tant We have neglected ab s o rp ti on in th e atmosph ere . The average daily f lux at the ground , in the United S tate s , is ab out 2 0 . 4 calorie /minute centime ter . Reference : Ameri c an Ins t i tute of Phy s i c s Han db o ok , 3rd e d , p 2-143 . 20-4 ( 2 0 . 6 )
SOLAR ENERGY
f
At the surface of the earth , -6
=
1 . 3 x 10
7 3 P = �A / 5 0 , A = 5 0 P 0 = 5 x l0 / 1 . 3 x l0
3
2 W /m , from P rob . 20-3 . �
4 i l0
4
2 m ,
or a s quare 2 0 0 me ters on the s ide .
20-5 ( 2 0 . 6 )
.Rf1
=
CE
o
E
2
P OYNTING VE CTOR 8 2 2 -12 = 3 x 10 x 8 . 8 5 x 10 x 2 0 = 1 . 0 6 W /m
In one s e c ond , the energy ab s orb e d by one s quare meter of the copp er she e t is 1 . 06 J .
This energy will increase the temperature of one kilogram of copper by 1 . 0 6 / 400 ke lvin . In one s econd the temp e ratur e of the she e t rises by 100 x L 06 / 400 = 1 . 06 / 4
=
0 . 2 6 5 kelvin .
20-6 ( 2 0 . 6 )
P OYNTING VE CTOR
a)
GJA CD oAjot Or ct - -
---
- --88
b ) Energy f lows into the field . 20-7 (20 . 6)
"*
.J.av
P OYNTING VE CTOR
=
20-8 ( 2 0 . 6 )
P OYNTING VECTOR
N e ar the s ur face o f th e wir e , E
= =
I R ' , H = I / 2 rra , 2 I R ' / 2 rra
l B" x It I
Thus the p ower loss per meter is 2 I R' 20-10 ( 2 0 . 6 ) E
=
J
2 rr€ V / �n ( R /Rl ) ' E 2 o
A H
J
COAXIAL LINE R 2 A / 2 rr€ r , ( A / 2 rr € r) dr o o R l
I
V , ( A / 2 rr € ) �n ( R /R ) 2 l 0
=
V,
v/ r�n ( R / R ) 2 l
I / 2 rrr R2
R
[ v/ r �n ( R /R ) J (I / 2 rrr) 2Tf r dr 2 l
VI
l
20-11 ( 2 0 . 7 )
220
x
10
2200 W
RE FLE CTION AND RE FRACTI ON , FRESNEL ' S EQUATION S
S e e E l e c t romagnetic Fie lds and Wave s , S e c 12 . 2 . 2 .
89