O modelo orbital Apesar do sucesso em explicar as linhas do espectro eletromagnético do hidrogênio, o modelo atômico de Bohr (ver página 95 da obra Ser Protagonista – Química – Volume Único) não resolvia com precisão os espectros das espécies com mais de um elétron. Uma característica dessa partícula subatômica é a impossibilidade de medir simultaneamente sua posição e velocidade. Para medir a posição de um corpo, há necessidade de alguma interação com ele. Para observar uma borracha, por exemplo, é necessário que a luz incida sobre ela e reflita até os olhos do observador. Entretanto, devido à massa reduzida do elétron, qualquer interação de energia que permita identificar exatamente a sua posição altera sua velocidade (ou, mais precisamente, a sua quantidade de movimento: m ? v). A descrição descr ição do elétron depende de quatro números quânticos, os quais aparecem como consequência natural da teoria: o número quântico principal, o número quântico secundário, o número quântico magnético e o número quântico do spin do elétron. Os três primeiros descrevem a energia do elétron; o quarto é importante para elucidar a interação dos átomos em campos magnéticos. k c o t s n i t a L / L P S / s c i s y h P f o e t u t i t s n I n a c i r e m A / s e v i h c r A l a u s i V e r g e S o i l i m E
Werner Karl Heisenberg em visita à Universidade de Harvard (EUA), em 1973. Ele formulou o Princípio da Incerteza, segundo o qual é impossível medir com precisão simultaneamente a posição e a velocidade de uma partícula.
>
Edições SM
O número quântico principal (n) O número quântico principal corresponde ao nível de energia em que se encontra o elétron. Entre os elementos conhecidos, são necessárias, no máximo, sete camadas de elétrons para descrever o estado de menor energia (estado fundamental). Portanto, n pode apresentar os valores 1, 2, 3, 4, 5, 6 ou 7. Os O s elétrons que ocupam a mesma camada eletrônica possuem o mesmo n.
Número quântico secundário (º ) Corresponde ao subnível de energia em que se encontra o elétron. Cada valor de ℓ caracteriza um diferente subnível. Para cada camada, o número quântico secundário corresponde a valores inteiros entre 0 e n 2 1. Para a segunda camada eletrônica (n 5 2), por exemplo, há dois valores possíveis para º : 0 e 1, como mostrado na tabela a seguir seguir.. º
Subnível
No máximo de elétrons
0
s
2
1
p
6
2
d
10
3
f
14
Entretanto, os elementos conhecidos apresentam no máximo º 5 3, sendo apenas quatro os subníveis (ou subcamadas) de energia ocupados por elétrons no estado fundamental, designados pelas letras s, p, d e f . Os subníveis de energia estão associados a algumas linhas dos espectros de emissão dos elementos, pois somente com as camadas de energia não era possível explicar todas as transições eletrônicas observadas. Cada subnível de energia pode conter um número máximo de elétrons , o qual é dado pela expressão: 2(2º 1 1) Em cada subnível, os elétrons ocupam orbitais. Os orbitais de determinada subcamada apresentam a mesma energia, entretanto diferem quanto à orientação no espaço. Química | Ser Protagonista |
1
O modelo orbital
Número quântico magnético (m ou mℓ) O número quântico magnético representa um orbital e sua determinada orientação. O valor de mº é um número inteiro que varia entre 2º e e 1º . A tabela a seguir resume a quantidade de orbitais verificada nos elementos conhecidos. Valores de º
Subnível
Valores de mº
Número de orbitais
0
s
0
1
1
p
1, 0, 1
3
2
d
2, 21, 0, 1, 2
5
3
f
3, 22, 21, 0, 1, 2, 3
7
2 2 2
Um orbital acomoda, no máximo, dois elétrons, e cada orbital é caracterizado por uma distribuição e uma orientação espacial específicas. O mesmo orbital, em diferentes níveis de energia, apresenta o mesmo formato e as mesmas orientações, variando apenas o tamanho.
o i d u t S j M A
z
y
x
Modelo de orbital s. Quanto mais intensa a cor, maior a probabilidade de encontrar o elétron.
>
Número quântico do spin do elétron (s ou ms) O comportamento de átomos e agregados atômicos na presença de poderosos ímãs mostra que os elétrons interagem com campos magnéticos. Para explicar esse comportamento, é possível comparar o elétron a uma esfera que gira no sentido horário (ou anti-horário). De acordo com o movimento, o elétron cria um campo magnético correspondente, que interage com o ímã externo. Para a descrição completa do elétron, é necessária a introdução do número quântico do spin do elétron (ms), que pode assumir os valores 2½ ou 1½. Em um átomo, cada elétron é caracterizado por um único conjunto de números quânticos, o qual não pode ser repetido. Cada orbital é ocupado por, no máximo, dois elétrons – cada um deles com spins opostos.
o i d u t S j M A
S
e2
mS 5 1
1 2
Saiba mais N
A interpretação dos fenômenos quânticos As resoluções das equações matemáticas sugeridas pela abordagem de Schrödinger (Erwin Schrödinger, 1887-1961), as denominadas funções de onda, são uma ferramenta fundamental para físicos e químicos que estudam o comportamento do elétron. Os cálculos que envolvem a mecânica quântica possibilitam determinar, com precisão, os fenômenos que envolvem a interação entre luz e matéria, como a absorção, a fluorescência, a fosforescência e a transferência de elétrons. Esse conhecimento favorece a compreensão de fenômenos, como o da fotossíntese, o desenvolvimento de lasers, de dispositivos para a conversão de energia solar em energia elétrica, etc. Ao descrever o elétron como onda e matéria, suas características de partícula perdem o significado. Por isso, não há sentido em questionar a posição do elétron. A órbita passa a ser caracterizada como um valor de energia, deixando de ser descrita por sua distância ao núcleo. Os termos órbitas ou camadas são mais bem compreendidos como níveis de energia.
Edições SM
N
e2
mS 5 2
1 2
S
O spin do elétron pode ser representado como a rotação sobre o eixo de uma esfera carregada negativamente, gerando um campo magnético correspondent correspondente. e.
>
Química | Ser Protagonista | 2
O modelo orbital
Diagrama de Pauling Para compreender o comportamento dos átomos e as interações entre eles, é necessário conhecer a distribuição dos elétrons nos seus respectivos subníveis de energia na situação de menor energia, ou seja, em seu estado fundamental. Para cada elemento, as camadas (níveis) e subcamadas (subníveis) apresentam diferentes valores de energia, de acordo com o número atômico e o número de elétrons presentes. Os valores de energia das subcamadas de cada átomo são obtidos mediante a análise dos espectros de emissão dos átomos.
Saiba mais A distribuição eletrônica em subníveis e orbitais R B / D I
Para realizar a distribuição eletrônica de um átomo ou íon, deve-se conhecer o número máximo de elétrons de cada subnível e preencher as subcamadas em ordem crescente de energia, conforme o diagrama de Pauling. Para o átomo de ferro, que apresenta Z 5 26 e, consequentemente, 26 elétrons, a distribuição eletrônica é expressa da seguinte maneira. Fe é 1s2 2s 2 2p6 3s 2 3p6 4s 2 3d6
Diagrama que representa a energia relativa das camadas e subcamadas eletrônicas.
>
É importante ressaltar que o subnível mais energético nem sempre corresponde ao nível mais externo. No diagrama acima, o subnível 3d possui 4s – mais energia que o subnível 4s – mais externo. Seguindo-se as setas do diagrama acima, encontram-se os subníveis em ordem crescente de energia. Note que um subnível mais interno pode apresentar mais energia do que um subnível mais externo. A aplicação desse diagrama é adequada adequada para a maioria dos elementos da Tabela Periódica e condiz com resultados verificados experimentalmente. R B / D I
1s 2s
2p
3s
3p
3d
4s
4p
4d
4f
5s
5p
5d
5f
6s
6p
6d
7s
7p
Na natureza, é comum encontrar o elemento ferro na forma do cátion de carga 31 (Fe31). Nesse caso, a configuração eletrônica do íon seria expressa da seguinte forma para um total de 23 elétrons. Fe31 é 1s2 2 2ss2 2p6 3s 2 3p6 3d5
Segundo o Princípio da Exclusão de Pauli, cada orbital possui, no máximo, dois elétrons, os quais apresentam necessariamente spins opostos. Dessa forma, cada elétron de determinado átomo apresenta um conjunto distinto de números quânticos. Geralmente, cada orbital é representado por um quadrado em que os elétrons são indicados como setas apontadas para cima ou para baixo, dependendo do sinal do spin ( ) Pela Regra de Hund, os elétrons distribuem-se preferencialmente isolados em um mesmo subnível, e isso ocorre por causa da repulsão entre eles. A distribuição eletrônica, por orbitais, do átomo de sódio ( 11Na) pode ser representada da seguinte maneira: Na 1s
2s
2p
3s
Diagrama da energia dos subníveis.
>
Edições SM
Química | Ser Protagonista | 3
O modelo orbital
Atividades 1.
Explique como os Princípios da Dualidade e da Incerteza influenciaram as ideias sobre a natureza do elétron e o modelo atômico.
2.
Entre as opções a seguir, aponte o subnível de energia em que cabem mais elétrons. Justifique. a) 2s ou 2p b) 1s ou 2s c) 2p ou 3p
3.
Indique se um elétron absorve ou emite energia ao realizar as seguintes transições entre níveis ou subníveis eletrônicos. a) nível 1 é nível 4 b) subnível 2s é subnível 2p c) nível 5 é nível 3 d) subnível 4s é subnível 3d
4.
5.
a) Qual dessas configurações eletrônicas é mais estável? b) Quantos elétrons possui o átomo com a configuração eletrônica mais estável? Essa distribuição é de qual elemento químico? 6.
Observe as representações de quatro configurações eletrônicas. I) 1s 2s III) 1s 2s
II) 1s
2s
IV) 1s
2s
a) Indique qual(quais) é(são) a(s) a(s) configuração(ões) eletrônica(s) possível(is). b) Identifique o(s) elemento(s) químico(s) a que pertence(m) a(s) configuração(ões) possível(is).
Observe as configurações eletrônicas a seguir: I) 1s 2s 2p II) 1s 2s 2p
Observe a seguir cinco séries de números quânticos. Série
n
º
mº
I
0
0
0
II
1
1
0
III
1
0
0
IV
2
1
2
V
2
1
2
2 1
ms 1 __ 2 1 __ 1 2 1 __ 2 2 1 __ 1 2 1 __ 1 2 1
a) Quais delas especificam o estado de um elétron em um átomo? Justifique sua resposta. b) Em que tipo de orbital atômico (nível e subnível) os elétrons estariam situados? 7.
Escreva os valores dos números quânticos n, º e e m para cada um dos orbitais do subnível 4d e do nível de energia n 5 2.
9.
(Cefet-CE) Os quatro números quânticos do elétron diferenciador diferenciad or (maior energia) de um átomo são: 1 n 5 4; º 5 2; m 5 12; s 5 1__. Observação: Observação : elétron elé tron 2 emparelhado.
Vestibular e Enem 8.
(UFPR) O modelo atômico de Bohr Bohr,, apesar de ter sido considerado obsoleto em poucos anos, trouxe como principal contribuição o reconhecimento de que os elétrons ocupam diferentes níveis de energia nos átomos. O reconhecimento da existência de diferentes níveis na eletrosfera permitiu explicar, entre outros fenômenos, a periodicidade química. Modernamente, reconhece-se que cada nível, por sua vez, pode ser subdividido em diferentes subníveis. Levando em consideração o exposto, assinale a alternativa correta. a) Os três níveis de mais baixa energia podem acomodar no máximo, respectivamente, 2, 8 e 8 elétrons. b) O terceiro nível de energia é composto por quatro subníveis, denominados s, p, d e f. c) O que caracteriza os elementos de números atômicos 11 a 14 é o preenchimento sucessivo de elétrons no mesmo nível e no mesmo subnível. d) Os elementos de números atômicos 10, 18, 36 e 54 têm o elétron mais energético no mesmo nível, mas em diferentes subníveis. e) O que caracteriza os elementos de números atômicos 25 a 28 é o preenchimento sucessivo de elétrons no mesmo nível e no mesmo subnível.
Edições SM
O número atômico do átomo citado é: a) 53 d) 48 b) 46 e) 50 c) 43 10.
11.
(UFAC) Um elétron localiza-se na camada “2” e sub(UFAC) nível “p” quando apresenta os seguintes valores de números quânticos: a) n 5 4 e º 5 0 b) n 5 2 e º 5 1 c) n 5 2 e º 5 2 d) n 5 3 e º 5 1 e) n 5 2 e º 5 0 1 (FEI-SP) O número máximo de elétrons com spin 2__ 2 no subnível d é: a) 2 c) 8 e) 5 b) 10 d) 7
Química | Ser Protagonista | 4
Respostas dos Respostas exercícios O modelo orbital Página 4, Atividades 1. O elétron passou a ser visto como uma entidade que apresentava apresentava tanto o comporta-
2.
3.
4. 5.
6.
7.
mento de onda quanto o de partícula (Princípio da Dualidade). Como não era possível determinar ao mesmo tempo e com precisão a posição e velocidade do elétron (Princípio da Incerteza), houve a necessidade de reformular os modelos atômicos vigentes da época. a) 2p: 6 elétrons. b) Nos dois casos cabem 2 elétrons. c) Nos dois casos cabem 6 elétrons. a) absorve. b) absorve. c) libera. d) absorve. a) III. b) Lítio (Z 5 3). a) A configuração b, pois ela apresenta o maior número de elétrons desemparelhados. b) Esse átomo possui 7 elétrons e, portanto, 7 prótons. Como o número atômico (Z) está relacionado com o número de prótons, o elemento químico que apresenta Z 5 7 é o nitrogênio. a) As séries III e V, pois não existe n 5 0. O valor de º de de um átomo de n 5 1 não pode ser 1 e o valor de mº de um átomo de º 5 1 não pode ser 22. b) Série III: 1s e série V: 2p. O subnível 4d (n 5 4, º 5 2) contém cinco orbitais, cujos números quânticos são: n 5 4, º 5 2, mº 5 22; n 5 4, º 5 2, mº 5 21; n 5 4, º 5 2, mº 5 0; n 5 4, º 5 2, mº 5 1; n 5 4, º 5 2, mº 5 2. O nível n 5 2 contém os subníveis 2s e 2p. Subnível 2s: n 5 2, º 5 1, mº 5 0; Subnível 2p: n 5 2, º 5 1, mº 5 21; n 5 2, º 5 1, mº 5 0; n 5 2, º 5 1, mº 5 1.
Página 4, Vestibular e Enem 8. e 9. d 10. b 11. b
Edições SM
Química | Ser Protagonista | 5