Simple scilab codes for 2nd year Physics course. It includes code for solving Differential equation to Fourier analysis and simple Fourier Transform
Teoría de como generar los scripts en Scilab para metodos numéricos de integracion, con ejemplos, sencillo de entenderFull description
Numerical Method is the important aspects in solving real world problems that are related to Mathematics, science, medicine, business etc. In this paper, We comparing the two methods by using the scilab 6.0.2 software coding to solve the iteration pr
Numerical Method is the important aspects in solving real world problems that are related to Mathematics, science, medicine, business etc. In this paper, We comparing the two methods by using the scilab 6.0.2 software coding to solve the iteration pr
Description complète
Pengaturan nihDeskripsi lengkap
rwerqwerqwFull description
All the Latin roots listed here have the legacy with thousands of English words
A handbook for matlab -scilab equivalent command, useful for those who use matlab or scilab (can be downloaded free from its official web) for mechanical or thermal problems of materials or …Full description
Solving Linear and Non-linear Optimization problems Using Scilab.Full description
Descripción: scilab
Learn Ethical Hacking from Beginning. Get awareness about latest cyber security threats. From the phishing to RFI everything is explained in simple manner. Even n00bs will learn.
Learn Ethical Hacking from Beginning. Get awareness about latest cyber security threats. From the phishing to RFI everything is explained in simple manner. Even n00bs will learn.
Jimmy SmithFull description
Solucionário de oito problemas de Engenharia Química utilizando o software livre Scilab
Solucionário de oito problemas de Engenharia Química utilizando o software livre Scilab
// NEWTON RAPHSON // Finding the root of any given polynomial // // // // // // // //
Algorithm Given the function f(x), solve for the first derivative f'(x). Assume an initial value for f(xi). Repeat: a. Substitute xi to the function f(xi) and f'(xi). b. Solve for the next value of xi: x(i+1) = xi - f(xi)/f'(xi) c. Until abs(f(xi)) < e or abs(x(i+1) - xi) < e.
// // // //
EXAMPLE polynomial = [ 1 5 -6] test point = - 3 root = -6
funcprot(0); //INITIALIZE FUNCTIONS // DERIVATIVE OF A POLYNOMIAL TEST FUNCTION function [newpoly]=derivativepoly(polynomial) terms = length(polynomial); //DETERMINE NUMBER OF TERMS base = terms - 1; //BASE TERM element = 1; //ELEMENT NUMBER while element ~= terms newpoly(1,element) = polynomial(1,element) * base; element = element + 1; //INCREMENT ELEMENT base = base - 1; //DECREMENT BASE TERM end endfunction //POLYNOMIAL EVALUATION FUNCTION function [sumpoly]=evalpoly(polynomial, point) terms = length(polynomial); //DETERMINE NUMBER OF TERMS power = terms - 1; //HIGHEST POWER WOULD BE element = 1; sumpoly = 0; //INITIALIZE SUM = 0; while element ~= terms + 1 base = point**power; //POWER OF THE VARIABLE sumpoly = sumpoly + polynomial(1,element) * base; element = element + 1; //INC ELEMENT power = power - 1; //DEC POWER end endfunction // NEWTON'S METHOD OF ROOT FINDING MAIN PROG disp("NEWTON''S METHOD OF ROOT FINDING a.k.a Newton Raphson") polynomial = input("Enter polynomial coefficients: "); //ENTER POLYNOMIAL x = input("Enter test point: "); //TEST POINT root = evalpoly(polynomial,x); //FIRST EVALUATION newpoly = derivativepoly(polynomial); //FIRST DERIVATIVE while abs(root) > 10**-15 //LOOP STARTS UNTIL ROOT ~ 0 num = evalpoly(polynomial,x) //NUMERATOR den = evalpoly(newpoly,x); //DENOMINATOR x = x - num/den; //NEW X root = evalpoly(polynomial,x); //EVALUATE NEW X end disp(x, "One root is: ")