Funcionamiento
Common Rail System 00400076S
© 2004 DENSO CORPORA CORPORATION TION
Todos los derechos reservados. Este libro no se puede reproducir ni copiar, total ni parcialmente, sin el permiso de la editorial por escrito.
CONTENIDO 1. DESCRIPCIÓN GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1-1. CAMBIOS CAMBIOS EN EL MEDIO MEDIO AMBIENTE AMBIENTE RELACIONA RELACIONADOS DOS CON EL MOTOR MOTOR DIESEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1-2. EXIGENCIAS EXIGENCIAS SOBRE EL EL SISTEMA SISTEMA DE INYECCIÓN INYECCIÓN DE COMBUSTIBL COMBUSTIBLE E . . . . .. . . . . .. . . . . .. . . . .. . . . .. . . . .. . .. . 1 1-3. TIPOS Y CAMBIOS EN LOS SISTEMAS SISTEMAS ECD (DIESEL (DIESEL CONTROL CONTROLADO ADO ELECTRÓNI ELECTRÓNICAMENTE) CAMENTE) . . . . . . . . . . . . . . . . . . 2 1-4. CARACTERÍSTICA CARACTERÍSTICAS S DEL "COMMON "COMMON RAIL RAIL SYSTEM" SYSTEM" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1-5. EL "COMMON "COMMON RAIL SYSTEM" Y LOS CAMBIOS CAMBIOS DE LA LA BOMBA DE SUMINISTRO SUMINISTRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1-6. CAMBIOS CAMBIOS DE INYECTOR INYECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1-7. CONFIGURACIÓN CONFIGURACIÓN DEL "COMMON "COMMON RAIL SYSTEM" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. PRESENTACIÓN DEL "COMMON RAIL SYSTEM" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2-1. DESCRIPCIÓN DESCRIPCIÓN GENERAL GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3. DESCRIPCIÓN DE LOS COMPONENTES PRINCIPALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3-1. BOMBA DE SUMINIST SUMINISTRO RO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3-2. RAMPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3-3. INYECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4. DESCRIPCIÓN DESCRIPCIÓN DE LOS COMPONENT COMPONENTES ES DEL SISTEMA SISTEMA DE CONTROL CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4-1. DIAGRAMA DIAGRAMA DEL SISTEMA SISTEMA DE CONTROL CONTROL DEL DEL MOTOR MOTOR (REFERENCIA) (REFERENCIA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4-2. ECU DEL MOTOR MOTOR (UNIDAD DE CONTROL CONTROL ELECTRÓNICO ELECTRÓNICO)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4-3. EDU (UNIDAD (UNIDAD DE CONDUCCIÓN CONDUCCIÓN ELECTRÓNICA) ELECTRÓNICA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4-4. SENSORES VARIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5. SISTEMAS DE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5-1. CONTROL CONTROL DE LA INYECCIÓN INYECCIÓN DE COMBUSTIBLE COMBUSTIBLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5-2. SISTEMA SISTEMA E-EGR (RECIRCU (RECIRCULACIÓN LACIÓN DE DE GASES DE ESCAPE ELÉCTRIC ELÉCTRICA) A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5-3. MARIPOSA MARIPOSA DE GASES GASES CONTROLADA CONTROLADA ELECTRÓNICAM ELECTRÓNICAMENTE ENTE (NO (NO FABRICAD FABRICADA A POR DENSO) DENSO) . . . . . . . . . . . . . . . . 73 5-4. SISTEMA DE CONTROL CONTROL DE DE LOS GASES DE ESCAPE ESCAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5-5. SISTEMA DPF (FILTRO (FILTRO DE PARTÍCULAS DIESEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5-6. SISTEMA DPNR DPNR (REDUCCIÓN (REDUCCIÓN DE PARTÍCU PARTÍCULAS LAS Y NOx DIESEL) DIESEL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6. DIAGNÓSTICO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6-1. DESCRIPCIÓN DESCRIPCIÓN GENERAL GENERAL DE LA FUNCIÓN FUNCIÓN DE DIAGNÓSTICO DIAGNÓSTICO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6-2. DIAGNÓSTICO CON DST-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6-3. DIAGNÓSTICO DIAGNÓSTICO CON CON EL INDICADOR INDICADOR DE DE AVERÍA AVERÍA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6-4. COMPROBACIÓN COMPROBACIÓN DEL DEL FUNCIONAMI FUNCIONAMIENTO ENTO DEL DEL CUERPO DE DE MARIPOSA MARIPOSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7. FIN DEL MATERIAL DEL VOLUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7-1. PARTÍCULAS (PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7-2. HISTORIA HISTORIA DEL DESARROLLO DESARROLLO DEL SISTEMA SISTEMA DE INYECCIÓN INYECCIÓN DE COMBUSTIBLE COMBUSTIBLE DEL TIPO DE "COMMON "COMMON RAIL SYSTEM" Y LOS FABRICANTES FABRICANTES MUNDIALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7-3. PRESIÓN DE INYECCIÓN INYECCIÓN MÁS ALTA, ALTA, RELACIONES RELACIONES DE INYECCIÓN OPTIMIZADA OPTIMIZADAS, S, MAYOR MAYOR PRECISIÓN PRECISIÓN DE CONTROL DEL CALADO DE INYECCIÓN, MAYOR MAYOR PRECISIÓN DE CONTROL DE LA CANTIDAD DE INYECCIÓN . . 82 7-4. IMAGEN DEL INTERIOR DE LA CÁMARA DE COMBUSTIÓN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
1. DESC DESCRI RIPC PCIÓ IÓN N GENE GENERA RAL L 1-1. CAMBIOS CAMBIOS EN EL MEDIO MEDIO AMBIEN AMBIENTE TE RELACION RELACIONADOS ADOS CON CON EL MOTOR MOTOR DIESEL DIESEL •
A nivel mundial hay una imperiosa imperiosa necesidad de mejorar la economía economía de combustible de los vehículos con el fin de prevenir el calentamiento global y de reducir las emisiones de los gases de escape que afectan la salud humana. Los vehículos con motor diesel son muy apreciados en Europa por la economía de combustible que ofrecen. Por otra parte, los "óxidos de nitrógeno (NOx)" y las "partículas (PM)" contenidas en los gases de escape deben ser reducidas en gran medida para cumplir con las regulaciones de los gases de escape. La tecnología se está desarrollando activamente con el objetivo de mejorar el ahorro de combustible y de reducir los gases de escape.
< Aviso > Para obtener más información sobre las partículas (PM), consulte el material que hay al final de este documento. •
A. Exigencias sobre sobre los vehículos vehículos diesel • Reducir los gases de escape (NOx, PM, monóxido de carbono (CO), (CO), hidrocarburo (HC) (HC) y humo). • Mejorar Mejorar la economía economía de combustible combustible.. • Redu Reduci cirr el rui ruido do.. • Mejorar Mejorar el rendimient rendimiento o y el ejercicio de de la conducción. conducción.
B. Cambios en las Regulaciones Regulaciones de gases de de escape (ejemplo de regulaciones regulaciones para para los vehículos vehículos diesel grandes) Las regulaciones EURO IV entrarán en vigor en Europa a partir de 2005 y las regulaciones 2004 MY han entrado en vigor en América del Norte a partir de 2004. Además, las regulaciones EURO V entrarán en vigor en Europa a partir de 2008 y las regulaciones 2007 MY entrarán en vigor en América del Norte a partir de 2007. A través de estas medidas, las emisiones de PM y NOx se reducirán progresivamente. NOx
PM g/kWh
g/kWh Europa EURO
EURO
Norteamérica 1998 MY 2004 MY
Europa EURO
EURO
EURO
2007 MY
EURO
3,5 Norteamérica
2,7 2,0
0,11
0,13
1998 MY
0,03 2004 2005
2007 2008
0,013
2004 MY
2004 2005
2007 MY 0,27 2007 2008 Q000989S
1-2. EXIGENCIA EXIGENCIAS S SOBRE SOBRE EL SISTEMA SISTEMA DE DE INYECCIÓN INYECCIÓN DE DE COMBUSTIB COMBUSTIBLE LE •
Para cumplir con las diversas exigencias que se imponen sobre los vehículos diesel, el sistema de inyección de combustible (incluyendo la bomba de inyección y las toberas) juega un papel significativo porque afecta directamente al rendimiento del motor y del vehículo. Algunas de estas exigencias son: presión de inyección más alta, relación de inyección optimizada, mayor precisión del control del calado de inyección y mayor precisión del control de la cantidad de inyección del combustible.
< Aviso > Para obtener más información sobre la presión de in yección más alta, la relación de inyección optimizada, la mayor pre• cisión del control del calado de inyección y la mayor precisión del control de la cantidad de inyección del combustible, consulte el material que hay al final de este documento.
-1-
1-3. TIPOS Y CAMBIOS EN LOS SISTEMAS ECD (DIESEL (DIESEL CONTROLADO ELECTRÓNICAMENTE) ELECTRÓNICAMENTE) •
Los sistemas ECD incluyen la serie ECD-V (V3, V4 y V5), que implementa el control electrónico mediante bombas distribuidas (bombas del tipo VE), y "common rail systems" que constan de bomba de suministro, rampa e inyectores. Los distintos tipos son el ECD-V3 y V5 para los vehículos de pasajeros y RV, el ECD-V4, que puede admitir también camiones pequeños, los "common rail systems" para camiones y lo s "common rail systems" para vehículos de pasajeros y RV. Además, hay una segunda generación de sistemas "common rail systems" que admite tanto la aplicación en vehículos grandes como en vehículos de pasajeros. El siguiente gráfico muestra las características de estos sistemas.
'85
'90
'95
'00
ECD-V1 ECD-V3 ECD-V4 ECD-V5
· El primer sistema SPV del mundo (sistema de válvula electromagnética de descarga electromagnetic spill valve-) se utiliza para el control de la cantidad de inyección de combustible, de modo que se puede controlar el volumen inyectado por cada uno de los cilindros. · Presión de inyección máxima 60 Mpa
· Mecanismo de bombeo de leva interior · Presión de inyección máxima 130 Mpa
· Utiliza la inyección piloto para reducir el sonido de combustión del motor. · Presión de inyección máxima 100 Mpa
ECD-V3
ECD-V4
ECD-V5
Tipos de sistemas y cambios
“common rail” de vehículos grandes (HP0) “common rail” de turismos (HP2)
Common Rail System · El combustible sometido combustible sometido a una presión superior mediante la bomba de suministro se acumula temporalmente en la rampa para después inyectarse tras la excitación del inyector. · Utiliza la inyección piloto para reducir el sonido de combustión del motor · Presión de inyección máxima 180 Mpa
Bomba de suministro
Inyector
Rampa
Q000750S
-2-
1-4. CARACTER CARACTERÍSTI ÍSTICAS CAS DEL "COMMON "COMMON RAIL RAIL SYST SYSTEM" EM" •
El "common rail system" utiliza un tipo de cámara de acumulación llamada rampa para almacenar el combustible a presión y para que los inyectores, que contienen válvulas electromagnéticas controladas electrónicamente, inyecten dicho combustible en el interior de los cilindros.
•
El sistema de inyección, al ser controlado por la ECU del motor (la presión, la relación y el calado de inyección), es independiente, y por lo tanto, no se ve afectado por el régimen o la carga del motor.
•
Como la ECU del motor puede controlar la cantidad y el calado de inyección con un alto grado de precisión, es posible incluso la inyección múltiple (múltiples inyecciones de combustible en una sola carrera de inyección).
•
Con ello se garantiza una presión de inyección estable en todo momento, incluso con un régimen del motor bajo, y se disminuye drásticamente la cantidad de humo negro que emiten normalmente los motores diesel en el arranque y en la aceleración. Como consecuencia, las emisiones de gases de escape son menores y más limpias, a la vez que se co nsigue un mejor rendimiento.
< Aviso > Para obtener más información sobre el origen de los si stemas de inyección de combustible de "common rail", consulte • el material que hay al final de este documento.
A. Funciones del del control de inyección inyección a.
Cont Contro roll de la pre presi sión ón de de inye inyecc cció ión n • Posibilita Posibilita la inyección inyección a alta presión presión incluso a un régimen régimen bajo del motor. motor. • Optimiza Optimiza el control para para reducir al mínimo mínimo las emisiones emisiones de partículas partículas y NOx.
b.
Cont Contro roll del del cala calado do de inye inyecc cción ión Posibilita un control óptimo y preciso de acuerdo con las condiciones de la conducción.
c.
Cont Contro roll de la rela relació ción n de de inye inyecc cció ión n El control de la inyección piloto inyecta una pequeña cantidad de combustible antes de la inyección principal.
Common Rail System
Control de la presión de inyección
Control del calado de inyección
Inyección piloto
Presión optimizada y más alta · La presión de inyección es más del doble de la presión actual, lo que hace que sea posible reducir enormemente las partículas.
n ó i c c e y n i e d n ó i c a l e R
Tipo control electrónico
Common Rail System n ó i c c e y n i e d n ó i s e r P
s a l u c í t r a P C a n n t t i i d a d d d e i n y e e c cc c i i ó n n
Bomba convencional
Velocidad
Control de la relación de inyección
Presión de inyección
e c n a v a e d o l u g n Á
Velocidad
Inyección secundaria
Inyección previa
Post-inyección
Inyección principal
Ángulo Ángu lo del del cigüeñal cigüeñal
Control de la cantidad de inyección Corrección de la cantidad de inyección del cilindro e d n i d ó a c d c i t e n y i a n C
1 3 2 4
Q000751S
-3-
1-5. EL "COMMON "COMMON RAIL RAIL SYSTEM" SYSTEM" Y LOS LOS CAMBIOS CAMBIOS DE LA LA BOMBA BOMBA DE SUMINIS SUMINISTRO TRO •
El primer "common rail system" para camiones del mundo apareció en 1995. En 1999 se lanzó el "common rail system" para vehículos de pasajeros (la bomba de suministro HP2), y luego, en 2001, s e lanzó un "common rail system" que utilizaba la bomba HP3 (una bomba de suministro más más ligera y más compacta). En 2004 se lanzó la HP4 de tres cilindros, basada en la HP3.
A. Tipos de bombas bombas de suministro suministro y cambios cambios 1996 Common Rail System
1998
2000
2002
“common ra rail sy syst ste em” de de 1ª 1ª ge generació ión n
HP0
2004
2006
“common ra rail sy system” de de 2ª 2ª ge generación
120MPa
Camiones grandes
HP4 Camiones de tamaño medio Cantidad de ajuste de precarrera
HP3
180MPa Ajustee de la cantidad Ajust cantidad de succión
HP2 Camiones compactos 180MPa
Turismos Ajuste Ajus te de de la cant cantidad idad de succión
135MPa
Ajuste de de la cantidad cantidad de succión Q000752S
1-6. 1-6. CAMB CAMBIO IOS S DE INYE INYECT CTOR OR 97
98
99 1ª generación
X1
00
01
02 03 2ª generación G2
· 120MPa · Inyección piloto
· 180MPa · Inyección múltiple X2 · 135MPa · Inyección piloto
Q000753S
-4-
1-7. CONFIGURA CONFIGURACIÓN CIÓN DEL "COMMON "COMMON RAIL SYSTEM" SYSTEM" •
El sistema de control de rampa común se puede dividir en líneas generales en las cuatro áreas siguientes: sensores, ECU del motor, EDU y actuadores.
A. Sensores Detectan el estado del motor y de la bomba.
B. ECU de del mo motor Recibe señales de los sensores, calcula la cantidad y el calado de inyección adecuados para un funcionamiento óptimo del motor y envía las señales apropiadas a los actuadores.
C. EDU Posibilita la activación de los inyectores a regímenes altos. También hay algunos tipos con circuitos de carga dentro de la ECU que tienen la misma función que la EDU, por lo que no hay EDU en estos casos.
D. Actuadores Proporcionan la cantidad y el calado de inyección óptimos según las señales recibidas desde la ECU del motor.
Sensor de régimen del motor / Sensor TDC (G)
Sensor de posición del acelerador
Bomba de suministro (SCV: válvula de control de succión)
EDU
Inyector
ECU del motor
Otros sensores e interruptores
Otros actuadores
Diagnóstico
-5-
Q000754S
2. PRESE PRESENTA NTACIÓ CIÓN N DEL DEL "COMM "COMMON ON RAIL RAIL SYST SYSTEM" EM" 2-1. 2-1. DESC DESCRI RIPC PCIÓ IÓN N GENER GENERAL AL •
Los "common rail systems" se componen principalmente de la bomba de suministro, la rampa y los inyectores. Existen los siguientes tipos según la bomba de suministro que se utilice.
A. Tipo HP0 Éste es el primer "common rail system" comercializado por DENSO. Utiliza el tipo de bomba de suministro HP0 y se monta en camiones y autobuses grandes. a.
Vista Vista exter exterior ior de los los compon component entes es princ principa ipales les del del sistem sistema a
Rampa
Bomba de suministro (tipo HP0)
Inyector Q000755S
b.
Configurac Configuración ión de de los componente componentess principal principales es del del sistema sistema (ejemplo (ejemplo de de HP0) HP0) ECU del motor
Sensor de posición del acelerador
Rampa Sensor de presión de la rampa
Sensor de temperatura del combustible
Inyector
Sensor de temperatura del refrigerante
PCV (válvula de control de la bomba) Bomba de suministro Sensor de identificación de cilindro (sensor TDC (G))
Sensor de posición del cigüeñal (sensor de régimen del motor)
Q000756S
< Aviso > Para obtener más detalles sobre la configuración, consulte las explicaciones de las piezas de control y los elementos • del diagrama del sistema de control del motor.
-6-
B. Tipo HP2 Este sistema utiliza un tipo de bomba de suministro HP2 que se ha hecho más ligera y compacta y es el "common rail system" que se utiliza en vehículos de pasajeros y RV en vez del ECD-V3. a.
Vista Vista exter exterior ior de los los compon component entes es princ principa ipales les del del sistem sistema a
Rampa
Bomba de suministro (tipo HP0)
Inyector Q000757S
b.
Diagra Diagrama ma de montaj montaje e de los compon component entes es princi principal pales es del siste sistema ma Sensor de presión de aire de admisión
Válvula de EGR ECU del motor
Sensor de posición del acelerador Inyector Sensor de presión de la rampa E-VRV
Sensor de temperatura del refrigerante
Sensor de temperatura de aire de admisión Sensor de posición del cigüeñal (sensor de régimen del motor)
ECU (unidad de conducción electrónica) Rampa
Bomba de suministro Sensor de identificación de cilindro (sensor TDC (G))
-7-
Q000758S
c.
Fluj Flujo o del del siste sistema ma glob global al (com (combu bust stib ible le))
Sensores varios
ECU del motor moto r
EDU
Sensor de presión Sensor de presión de la rampa
Rampa
TWV Limitadorr Limitado de presión
Válvula reguladora
Filtro de de combustible combustible
Válvula de descarga Válvula Inyector Inyector
Bomba de suministro sumini stro
SCV (válvula de control de succión)
Válvula de retenció rete nción n Bomba de alimentación
Émbo mbolo lo buzo Leva inte Leva interior rior
Flujo de inyección de com combustible bustible Flujo de fuga del combustibl combustible e Depós epósito ito de combustible Q000926S
-8-
C. Tipo Tipo HP3, HP3, Tipo Tipo HP4 HP4 a.
Tipo HP3 Este sistema utiliza una bomba de suministro de tipo HP3 que es compacta, pesa poco y proporciona una presión más alta. Se monta sobre todo en vehículos de pasajeros y en camiones pequeños.
b.
Tipo HP4 Este sistema es en esencia el mismo que el del tipo HP3, pero utiliza la bomba de suministro de tipo HP4, que cuenta con un mayor volumen de bombeo para poder manejar motores más grandes. Se monta sobre todo en camiones de tamaño medio.
c.
Vista Vista exter exterior ior de de los comp compone onente ntess princi principal pales es del del sistema sistema
Rampa
HP3
HP4
Bomba de suministro
Inyector Q000759S
d.
Diagra Diagrama ma de montaj montaje e de los compon component entes es princi principal pales es del siste sistema ma ECU del motor
Cuerpo de mariposa Sensor de presión Válvula de EGR de aire de admisión
E-VRV para EGR Conector DLC3
Caudalímetro de aire (con sensor de temperatura de aire de admisión)
Sensor de posición del acelerador EDU R/B
VSV de cierre de EGR Sensor de presión de la rampa Válvula de descarga de presión
Inyector Sensor de posición del cigüeñal (sensor de régimen del motor)
Bomba de suministro HP4
HP3
Sensor de temperatura del combustible
Sensor de identificación de cilindro (sensor TDC (G)) SCV (válvula de control de succión)
-9-
Sensor de temperatura del combustible
Sensor de posición del acelerador
SCV (válvula de control de succión)
Q000760S
e.
Fluj Flujo o del sis siste tema ma glob global al (com (combu bust stib ible le))
EDU Sensores varios
ECU
Válvula de descarga de presión Rampa Limitador de presión
Sensor de presión de la rampa
Bomba de suministro (HP3 o HP4)
Válvula de descarga
Inyector
Émbolo buzo
SCV (válvula de control de succión) Bomba de alimentación
: Flujo de inyección de combustible : Flujo de fuga del combustible
Filtro de combustible Depósito de combustible
Q000927S
-10-
3. DESCRI DESCRIPCI PCIÓN ÓN DE LOS LOS COMPON COMPONENT ENTES ES PRINC PRINCIPA IPALES LES 3-1. 3-1. BOMB BOMBA A DE SUMI SUMINI NIST STRO RO A. Tipo HP0 a.
Cons Constr truc ucci ción ón y car carac acte terí ríst stic icas as • La bomba de suministro HP0 se compone principalmente de un sistema de bombeo como el de las bombas en serie serie convencionales (dos cilindros), la PCV (válvula de control de la bomba) para controlar el volumen de descarga d el combustible, el sensor de identificación de cilindro (sensor TDC (G)), y la bomba de alimentación. • Admite el número de cilindros del motor cambiando cambiando el número de picos de la leva. La bomba de suministro gira a la mitad del régimen del motor. En la siguiente tabla se muestra la relación entre el número de cilindros del motor y la bomba de suministro que bombea. Bomba de suministro Número de cilindros del
Relación de velocidad
motor
(bomba: motor)
Número de cilindros
4 cilindros 6 cilindros
1:2
2
8 cilindros
Número de rotaciones de bombeo por 1 ciclo del motor
Picos de leva
(2 rotaciones)
2
4
3
6
4
8
• Al incrementar el número número de picos de leva para soportar el número de cilindros del motor, se logra logra una unidad de bomba compacta de dos cilindros. Además, debido a que esta bomba tiene tantas carreras de bombeo como inyecciones, mantiene una presión de rampa estable estable y homogénea.
PCV (válvula de control de la bomba) Válvula de descarga
Elemento
Válvula de rebose
Sensor de identificación de cilindro (sensor TDC (G)) Generador de impulsos del sensor TDC (G)
Bomba de alimentación
Empujador de válvula Leva x 2
-11-
Q000768S
b.
Despiezo
PCV (válvula de control de la bomba)
Válvula de descarga
Elemento
Sensor de identificación de cilindro (sensor TDC (G))
Empujador de válvula Leva
Rodillo
Árbol de levas
Bomba de cebado
Bomba de alimentación
Q000769S
-12-
c.
Funcio Funciones nes de de las piez piezas as compo componen nentes tes de de la bomba bomba de de sumini suministr stro o Piezas componentes
Funciones
Bomba de alimentación
Aspira el combustible desde el depósito del mismo y se lo suministra al mecanismo de bombeo.
Válvula de rebose
Regula la presión del combustible en la bomba de suministro.
PCV (válvul (válvula a de cont control rol de la bomba) bomba)
Contro Controla la el volume volumen n de comb combust ustible ible que se se sumini suministr stra a a la ramp rampa. a.
Leva
Activa el empujador de válvula.
Mecanismo de
Empujador de vál-
Transmite un movimiento de vaivén al émbolo buzo
bombeo
vula Émbo Émbolo lo buzo buzo
Se muev mueve e en en vai vaivé vén n par para a asp aspir irar ar y com compr prim imir ir el comb combus usti tibl ble. e.
Válvula de descarga
Detiene el flujo inverso del combustible que se bombea a la rampa.
Sensor de identificación de cilindro (sen- Identifica los cilindros del motor. sor TDC (G)) (1) (1)
Bomba omba de ali alime men ntaci tació ón La bomba de alimentación, que está integrada en la bomba de suministro, aspira combustible del depósito del mismo y se lo suministra a la cámara de la bomba a través del filtro de combustible. Hay dos tipos de bombas de alimentación, el tipo trocoide y el tipo paleta.
A)
Tipo trocoide El árbol de levas activa los rotores externo e interno de la bomba de alimentación, haciendo que éstos empiecen a girar. Según el espacio producido por el movimiento de los rotores externo e interno, la bomba de alimentación aspira combustible dentro de la lumbrera de succión y bombea el combustible fuera de la lumbrera de descarga. Rotor externo
A la cámara de la bomba
Lumbrera de descarga
Lumbrera de succión
Rotor interno Del depósito de combustible
-13-
Q000770S
B)
Tipo paleta El árbol de levas activa el rotor de la bomba de alimentación y las paletas se deslizan por la circunferencia interior del anillo excéntrico. Al girar el rotor, la bomba aspira combustible combustible del depósito del mismo y lo descarga en la SCV y el mecanismo de bombeo. Lumbrera de descarga Rotor
Anillo excéntrico
Paleta
Lumbrera de succión
Q000771S
(2) (2)
PCV: PCV: válv válvul ula a de de con contr trol ol de la bomb bomba a La PCV (válvula de control de la bomba) regula el volumen de combustible que se descarga de la bomba de suministro para controlar la presión de rampa. El volumen de combustible que se descarga de la bomba de suministro a la rampa se determina mediante la temporización con la que se aplica la corriente a la PCV.
A)
Circuito de activación El diagrama a continuación muestra el circuito de activación de la PCV. El interruptor de encendido gira el relé PCV a la posición ON y OFF para aplicar corriente a la PCV. La ECU maneja el control de l a posición ON/OFF de la PCV. Basándose en las señales de cada sensor, determina el volumen de descarga que se requiere para proporcionar la presión de rampa óptima y controla la temporización de la posición ON/OFF para que la PCV consiga ese volumen de descarga deseado. Del relé de la PCV PCV A la rampa Relé de la PCV
Interruptor de encendido +B
PCV1 PCV2
Q000772S
-14-
(3) (3)
Meca Mecani nism smo o de bomb bombeo eo El motor activa el árbol de levas y la leva activa el émbolo buzo a través del empujador de válvula para bombear el combustible enviado por la bomba de alimentación. La PCV controla el volumen de descarga. El combustible se bombea desde la bomba de alimentación al cilindro, y luego a la válvula de descarga. PCV (válvula de control de la bomba) Válvula de descarga A la rampa
Émbolo buzo
Árbol de levas Bomba de alimentación
Generador de impulsos del sensor TDC (G)
Leva (3 lóbulos: 6 cilindros)
-15-
Q000773S
(4)
SENSOR SENSOR DE DE IDENTI IDENTIFIC FICACI ACIÓN ÓN DE CILI CILIND NDRO RO (SENS (SENSOR OR TDC TDC (G)) (G)) El sensor de identificación de cilindro (sensor TDC (G)) utiliza la tensión de corriente alterna generada por el cambio de las líneas de la fuerza magnética que pasa a través de la bobina para enviar la tensión de salida a la ECU. Lo mismo ocurre con el sensor de régimen del motor instalado en el lado del motor. Hay un engranaje con forma de disco en el centro del árbol de levas de la bomba de suministro que tiene cortes colocados a in tervalos de 120°, más un corte extra. De ese modo, este engranaje emite siete impulsos por cada dos revoluciones del motor (para un motor de seis cilindros). Mediante la combinación de los impulsos del régimen del motor del lado del motor y los impulsos del TDC, el impulso del corte extra se identifica como el cilindro nº 1. · Para un motor de 6 cilindros (referencia)
Sensor de identificación de cilindro (sensor TDC (G))
Impulso estándar del TDC (G) del cilindro nº 1
· Impulso TDC (G)
Impulso estándar del TDC (G) del cilindro nº 6
Impulso estándar del TDC (G) de la identificación del cilindro nº 1
· Impulso de régimen del motor 12 0 2 4 6 8 10 101214 0 2 4 6 8 10 1214 0 2 4 6 8 10 101
0 2 4 6 8 101214 0 2 4 6 8 101214 0 2 4 6 8 1012
Impulso estándar del régimen del motor del cilindro nº 6 Impulso estándar del régimen del motor del cilindro nº 1
-16-
02 46 8
Q000774S
d. (1)
Funcio Funcionam namien iento to de la bomba bomba de sumini suministr stro o Flujo Flujo de de combu combusti stible ble global global de la la bomba bomba de sumi suminis nistro tro La bomba de alimentación aspira el combustible del depósito del mismo y lo envía al mecanismo de bombeo a través de la PCV. La PCV ajusta el volumen de combustible que bombea el mecanismo de bombeo al volumen de descarga necesario y el combustible se bombea hacia la rampa a través de la válvula de descarga.
(2)
Contro Controll del del volum volumen en de de desc descarg arga a de combus combustib tible le El émbolo buzo bombea el combustible enviado desde la bomba de alimentación. La PCV controla el volumen de descarga para ajustar la presión de rampa. El funcionamiento real es el siguiente.
A)
Funcionamiento de la PCV y el émbolo buzo durante cada cada carrera
a)
Carr Carrer era a de de adm admis isió ión n (A) (A) En la carrera descendente del émbolo buzo, la PCV se abre y el combustible a baja presión se succiona hacia la cámara de émbolo buzo a través de la PCV.
b)
Precarrera (B) Incluso cuando el émbolo buzo entra en su carrera de ascenso, la PCV permanece abierta mientras no se excite. Durante este tiempo, el combustible que se aspira a través de la PCV retorna a través de la PCV sin ser sometida a presión (precarrera).
c)
Carre arrera ra de bom bombe beo o (C (C) Con una temporización adecuada al volumen de descarga requerido, se suministra alimentación para cerrar la PCV, el paso de retorno se cierra y la presión de la cámara de émbolo buzo buzo se eleva. Por consiguiente, consiguiente, el combustible pasa a través de la válvula de descarga (válvula de cierre del regreso de combustible) y se bombea hacia la rampa. Concretamente, la porción del levantamiento del émbolo después de cerrarse la PCV se convierte en el volumen de descarga; mediante la variación de la temporización para el cierre de la PCV (el punto final de la precarrera del émbolo), se varía el volumen de descarga para controlar la presión de rampa.
d)
Carr Carrer era a de de adm admis isió ión n (A) (A) Cuando la leva excede el levantamiento máximo, el émbolo buzo entra en su carrera de descenso y la presión de la cámara de émbolo buzo disminuye. En ese momento, la válvula de descarga se cierra y el bombeo de combustible se detiene. Además, la PCV se abre porque se desactiva, y el combustible a baja presión se succiona hacia la cámara de émbolo buzo. En concreto, el sistema va al estado A.
Carrera de admisión
Carrera de bombeo
Cantidad de descarga
Q=
d 2 (H-h) 4
Levantamiento de leva
h
H
Precarrera Funcionamiento de la PCV Válv Vá lvul ula ce cerr rrad adaa
Válvula abierta
Cuando aumenta Cuando disminuye la cantidad la cantidad de descarga de descarga
Funcionamiento de la bomba
Bombeo de la cantidad de descarga necesaria
PCV Retorno Del depósito de combustible Mecanismo de bombeo
A la rampa Válvula de descarga
Émbolo buzo
d
(A)
(B)
(C)
-17-
(A')
Q000775S
B. Tipo HP2 a.
Cons Constr truc ucci ción ón y car carac acte terí ríst stic icas as • La bomba de suministro se compone principalmente de dos sistemas de mecanismo de bombeo bombeo (leva interior, rodillo, dos émbolos buzo), la SCV (válvula de control de succión), el sensor de temperatura del combustible y la bomba de alimentación (tipo paleta) y se activa con la mitad de la rotación del motor. • El mecanismo de de bombeo consiste en una leva interior y un émbolo buzo y forma una configuración configuración en tándem en la cual dos sistemas se disponen en forma axial, lo que hace la bomba de suministro compacta y reduce el par máximo. • La cantidad de combustible que se descarga en la rampa se controla mediante mediante el volumen de succión succión de combustible que utiliza el control de la SCV (válvula de control de su cción). Para controlar el volumen de descarga con el volumen de succión, se eliminan las operaciones de bombeo excesivo, reduciendo así la carga de actuación y evitando el aumento de la temperatura del combustible. Sensor de temperatura del combustible Válvula de descarga
Rebose
SCV (válvula de control de succión)
Válvula de retención b.
Succión de combustible (del depósito de combustible) Válvula reguladora
Bomba de alimentación Émbolo buzo Rodillo Leva interior
Q000818S
Par de activac activación ión de la bomb bomba a de sumini suministr stro o Debido a que el mecanismo de bombeo está en una configuración en tándem, su par de activación máximo es la mitad del de una bomba simple con la misma capacidad de descarga. Tipo sencillo
Tipo tándem Bombeo Bombeo
Émbolo buzo 2
Émbolo buzo 1
n ó i c i s o p m o C
Suministro Suministro
r a p e d o l e d o M
) e t i e c a e d o e b m o b e d a s a T ( r a P
Bombeo
) e t i e c a e d o e b m o b e d a s a T ( r a P
Succión
Bombeo
Línea continua: Émbolo buzo 1 Línea discontinua: Émbolo buzo 2
Q000819S
-18-
c.
Despiezo
Válvula reguladora
Sensor de temperatura del combustible
Árbol de levas Leva interior Rodillo Cuerpo de la bomba Bomba de alimentación Zapata
Válvula de descarga
SCV (válvula de control de succión)
Válvula de retención
Q000820S
-19-
d.
Func Funcio ione ness de las las piez piezas as com compo pone nent ntes es Piezas componentes
Bomb Bomba a de alim alimen enta taci ción ón
Funciones Aspi Aspira ra el el comb combus ustitibl ble e desd desde e el dep depós ósitito o del del mism mismo o y se lo sum sumin inis istr tra a al meca mecani nism smo o de bombeo.
Válvu álvula la regul egulad ador ora a
Regula gula la pres presió ión n inte intern rna a del del com combust bustib ible le de la bomb bomba a de sumi sumini nist strro.
SCV (válvula de control de
Controla la cantidad de combustible que se suministra al émbolo buzo para controlar la
succión)
presión de combustible de la rampa.
Mecanismo de bombeo
Leva Leva int inter erio iorr
Acti Activa va el el émbo émbolo lo buz buzo. o.
Rodillo
Activa el émbolo buzo.
Émbolo Émbolo buzo buzo
Se mueve mueve en vaivén vaivén para aspirar aspirar y comprimir comprimir el combust combustible. ible.
Válv Válvul ula a de de des desca carg rga a
Mant Mantie iene ne la pres presió ión n alt alta a med media iant nte e la la sep separ arac ació ión n del del área área some someti tida da a pre presi sión ón (ram (rampa pa)) del del mecanismo de bombeo.
Sensor de temperatura del
Detecta la temperatura del combustible.
combustible Válv Válvul ula a de de ret reten enci ción ón (1) (1)
Evit Evita a que que el comb combus usti tibl ble e a pres presió ión n del del meca mecani nism smo o de de bom bombe beo o vue vuelv lva a al al lad lado o de de suc succi ción ón..
Bomba omba de ali alime men ntaci tació ón La bomba de alimentación es un tipo de cuatro paletas que aspira combustible del depósito y lo descarga en el mecanismo de bombeo. La rotación del eje impulsor hace que el rotor de la bomba de alimentación gire y que la paleta se mueva deslizándose por la superficie interior de la carcasa (anillo excéntrico). Al girar el rotor, la bomba aspira combustible del depósito depósito y lo descarga en la SCV y el mecanismo de bombeo. bombeo. Dentro de las paletas hay un muelle para que se mantengan apretadas apretadas contra la circunferencia interior, con el fin de reducir al mínimo l a fuga de combustible dentro de la bomba.
Anillo excéntrico Muelle Rotor
Paleta
Cubierta delantera
Cubierta trasera Q000821S
(2) (2)
Válvu álvula la regu regula lado dora ra El propósito de la válvula reguladora es controlar la presión de alimentación (presión del bombeo de combustible) que envía combustible al mecanismo de bombeo. Cuando aumenta el movimiento rotatorio de la bomba y la presión de suministro excede la presión fij ada en la válvula reguladora, la válvula se abre venciendo la fuerza del muelle y permitiendo el retorno del combustible al lado de succión.
Válvula reguladora
Entrada de succión Cuerpo de la válvula reguladora ) o r t o s e i n b i m o m u b s e e d d n n ó i ó i s s e e r r p ( P
Filtro Muelle Pistón Bomba de alimentación (lado de la descarga)
Bomba de alimentación (lado de la succión)
Casquillo
-20-
Válvula reguladora presión sticas de de la pres aracterí rísticas Caracte lvula ab abierta con la vá válvula Alta presión presión con con la válvula abierta
Baja presión con la válvula abierta
Velocidad Q000822S
(3) (3)
SCV: SCV: válv válvul ula a de de con contr trol ol de succ succió ión n El sistema ha incorporado un tipo de válvula electromagnética. La ECU controla la duración de la corriente aplicada a la SCV para controlar el volumen de combustible aspirado haci a el mecanismo de bombeo. Sólo se su ministra la cantidad de combustible necesaria para conseguir la presión deseada en la rampa, por lo que la carga de actuación de la bomba de suministro disminuye, mejorando de ese modo la economía de combustible.
Tope
Bobina
Válvula de aguja Muelle Q000823S
A)
Funcionamiento
a)
SCV ON Cuando se aplica corriente a la bobina, ésta empuja la válvula de aguja hacia arriba, permitiendo el suministro de combustible en el mecanismo de bombeo de la bomba de suministro. Al mecanismo de bombeo de la bomba
De la bomba de alimentación b)
Q000824S
SCV OFF Cuando se deja de aplicar corriente a la bobina, la válvula de aguja se cierra y se detiene la succión de combustible.
De la bomba de alimentación Q000825S
-21-
(4)
Mecani Mecanismo smo de de bombeo bombeo (émb (émbolo olo buzo buzo,, leva leva interi interior, or, rodi rodillo llo)) • El mecanismo de bombeo consta de émbolo buzo, leva interior y rodillo; aspira el combustible descargado por la bomba de alimentación y lo bombea hacia la rampa. Como el eje impulsor y la leva interior están integrados uno en otro, la rotación del eje impulsor se convierte en la rotación de la leva interior. • Dentro de la leva interior hay dos sistemas de émbolos buzo dispuestos en serie (tipo tándem). El émbolo buzo 1 está colocado horizontalmente y el émbolo buzo 2 está colocado verticalmente. La succión y las carreras de compresión de los émbolos buzo 1 y 2 están invertidas (cuando uno está en admisión el otro otro está en descarga), y cada émbolo buzo descarga dos veces por cada rotación, de forma que por una rotación de la bomba de suministro, descargan un total de cuatro veces a la rampa. Émbolo buzo 1 (horizontal)
Émbolo buzo 2 (vertical)
Combinación de longitudes de los émbolos buzos · Émbolo buzo 1: Medio + Medio · Émbolo buzo 2: Corto + Largo Rodillo Diámetro del rodillo: 9 Longitud del rodillo: 21 mm Material: cerámica reforzada
Leva interior (levantamiento de la leva: 3,4 mm)
Émbolo buzo 1
Rotación de leva de 90
Émbolo buzo 2 Émbolo buzo 1: inicio de la succión Émbolo buzo 2: inicio del bombeo (5) (5)
Émbolo buzo 1: inicio del bombeo Émbolo buzo 2: inicio de la succión
Q000826S
Válv Válvul ula a de desc descar arga ga La válvula de descarga, que contiene dos bolas de válvula, descarga el combustible a presión desde los émbolos buzo 1 y 2 hacia la rampa en carreras alternas. Cuando la presión del émbolo buzo excede la presión de la rampa, la válvula se abre para descargar combustible.
Desde el émbolo buzo 1 A la rampa Desde el émbolo buzo 2
Pasador Guía Tope Bola de la válvula Junta · Cuando el émbolo buzo 1 bombea
Soporte · Cuando el émbolo buzo 2 bombea
Q000827S
-22-
(6) (6)
Sens Sensor or de de temp temper erat atur ura a del del comb combus ustitibl ble e El sensor de temperatura del combustible está instalado en la parte de admisión del combustible y tiene las características de un termistor en el cual la resistencia eléctrica cambia con la temperatura para poder detectar la temperatura del combustible. Termistor a i c n e t s i s e r a l e d r o l a V
Resistencia - Característica temperatura
Temperatura Q000828S
(7) (7)
Válv Válvul ula a de de ret reten enci ción ón La válvula de retención, que está situada entre la SCV (válvula de control de succión) y el mecanismo de bombeo, evita que el combustible a presión vuelva del mecanismo de bombeo a la SCV. Caja de la bomba
Muelle
Válvula
Al mecanismo de bombeo
Tope A)
A la SCV
Tapón
Q000829S
Válvula de retención abierta Durante la succión del combustible (SCV ON), la presión de suministro abre la válvula, permitiendo el suministro de combustible en el mecanismo de bombeo.
Al mecanismo de bombeo
Desde la SCV
Q000830S
B) Válv Válvul ula a de rete retenc nció ión n cerr cerrad ada a Durante el bombeo del combustible (SCV OFF), el combustible a presión del mecanismo de bombeo cierra la válvula, evitando que el combustible vuelva a la SCV.
Desde el mecanismo de bombeo
Q000831S
-23-
e. (1)
Funcio Funcionam namien iento to de la bomba bomba de sumini suministr stro o Flujo Flujo de de combu combusti stible ble global global de la la bomba bomba de sumi suminis nistro tro La bomba de alimentación succiona el combustible del depósito y lo envía a la SCV. En ese momento, la válvula reguladora ajusta la presión del combustible por debajo de cierto nivel. El volumen de descarga requerido del combustible enviado a la bomba de alimentación se ajusta mediante la SCV y el combustible se introduce en el mecanismo de bombeo a través de la válvula de retención. Luego el mecanismo bombea el combustible hacia la rampa a través de la válvula de descarga.
Orificio de rebose Válvula reguladora Del depósito de combustible
Al depósito
Válvula de descarga
A la rampa Leva SCV1
Válvula de retención 1 Válvula de retención 2 Culata SCV2 Bomba de alimentación Émbolo buzo Q000832S
-24-
(2)
Contro Controll del del volum volumen en de de desc descarg arga a de combus combustib tible le t emporización n de arranque de la succión (SCV (válvula de control de succión) ON) es constante • El siguiente diagrama muestra que la temporizació (y está determinada por el régimen de la bomba) debido a la señal del sensor de posición del cigüeñal. Por esta razón, el volumen de succión del combustible se controla cambiando la temporización del final de la succión (SCV OFF). Por lo l o tanto, el volumen de succión disminuye cuando la SCV se pone en OFF pronto y aumenta cuando la SCV se pone en OFF tarde.
• Durante la carrera de admisión, el émbolo buzo recibe la presión de alimentación de combustible y desciende a lo largo de la superficie de la leva. Cuando la SCV se pone en OFF (final de la succión), termina la presión de suministro sobre el émbolo buzo y se detiene el descenso. Como el volumen de succión varía, al terminar la succión (excepto con la succión máxima) el rodillo se separa de la superficie de la leva.
• Cuando el eje impulsor gira, el pico de leva sube y el rodillo entra entra en contacto con la superficie de la leva de nuevo, la leva aprieta el émbolo buzo y comienza el bombeo. Como el volumen de succión es igual al volumen de descarga, el volumen de descarga está controlado por la temporización con la cual la SCV se pone en OFF (volumen de succión). 360 CR
Ángulo del cigüeñal Punto muerto superior en compresión Señal del sensor de identificación del cilindro
TDC #3
TDC #1
0 2 4 6 8 101214 16 0 2 4 6 8 1012 14
Señal del sensor de posición del cigüeñal
TDC #2
TDC #4
0 2 4 6 8 1012 14 16 0 2 4 6 8 1012 14
Volumen de succión aumentado Succión
SCV 1 ON OFF Succión
SCV 2 ON OFF
Succión
Volumen de succión Succión disminuido
Descarga de la válvula de descarga
Levantamiento de leva horizontal Bombeo Succión
Bom ombe beoo Su Succ cció iónn
Levantamiento de leva vertical
Combustible Válvula de retención Émbolo buzo
Bom ombe beoo Su Succ cció iónn
Bomb Bo mbeo eo Su Succ cció iónn
Combustible
SCV ON
OFF
OFF
OFF
Combustible
Válvula de descarga
Rodillo
Succión Inicio de la succión
Bombeo
Fin de la succión
Inicio del bombeo
Fin del bombeo Q000833S
-25-
C. Tipo HP3 a.
Cons Constr truc ucci ción ón y car carac acte terí ríst stic icas as • La bomba de suministro se compone principalmente de la unidad de bomba (leva excéntrica, leva anular, dos émbolos buzo), la SCV (válvula de control de succión), el sensor de temperatura del combustible y la bomba de alimentación (tipo trocoide), y se activa con una rotación o con media rotaci ón del motor. • Los dos émbolos buzo de la unidad de bomba bomba compacta están colocados simétricamente simétricamente por encima y por por debajo de la parte exterior de la leva anular. • Al igual que en el tipo HP2, la SCV SCV controla el volumen de descarga del combustible, con el el fin de reducir la carga carga de actuación y evitar la subida de temperatura del combustible. Además, hay dos tipos de SCV de HP3: el tipo normalmente abierto (la válvula de succión se abre cuando no está excitada) y el tipo normalmente cerrado (la válvula de succión se cierra cuando no está excitada). • Con el sistema DPNR (sistema diesel de reducción de NOx y partículas), también hay un amortiguador de flujo. El propósito de este amortiguador de flujo es cerrar automáticamente el combustible si hay una fuga en el paso de l a válvula de adición de combustible dentro del DPNR.
Válvula de succión
Émbolo buzo
Leva anular
Bomba de alimentación
SCV (válvula de control de succión) Válvula de descarga
Sensor de temperatura del combustible Q000835S
-26-
b.
Despiezo
Válvula de descarga
Subconjunto del elemento
Válvula de descarga Sensor de temperatura del combustible
Émbolo buzo
Bomba de alimentación Válvula reguladora
SCV (válvula de control de succión) Leva anular Émbolo buzo
Caja de la bomba
Leva excéntrica Árbol de levas
Válvula de descarga
Subconjunto del elemento
Q000836S
-27-
c.
Funci Funcion ones es de de las las piez piezas as com compo pone nent ntes es Piezas componentes
Funciones
Bomba de alimentación
Aspira el combustible desde el depósito y se lo suministra al émbolo buzo.
Válvula reguladora
Regula la presión del combustible en la bomba de suministro.
SCV (vá (válvul lvula a de cont contro roll de succ succió ión) n)
Cont ontrola rola el volu volum men de comb combus usti tibl ble e que que se sumi sumini nist stra ra a los los émbol mbolos os buzo.
Unidad de bomba
Leva excéntrica
Activa la leva anular.
Leva anular
Activa el émbolo buzo.
Émbolo buzo
Se mueve en vaivén para aspirar y comprimir el combustible.
Válvula de succión
Evita el flujo inverso de combustible comprimido hacia la SCV.
Válvula de descarga
Evita el flujo inverso desde la rampa del combustible que se bombea desde el émbolo buzo.
Senso ensorr de temp temper erat atur ura a del del comb combu ustib stible le (1) (1)
Detec etectta la tempe empera ratu tura ra del del comb combus usti tibl ble. e.
Bomba omba de ali alime men ntaci tació ón La bomba de alimentación de tipo trocoide integrada en la bomba de suministro aspira el combustible del depósito y lo suministra a los dos émbolos buzo a través del filtro de combustible y la SCV (válvula de control de succión). El eje impulsor activa los rotores externo e interno de la bomba de alimentación, haciendo haciendo que éstos empiecen a girar. Según el espacio que aumenta y disminuye por el movimiento de los rotores externo e interno, la bomba de alimentación aspira combustible dentro de la lumbrera de succión y bombea el combustible fuera de la lumbrera de descarga. Rotor externo
A la cámara de la bomba
Lumbrera de descarga
Lumbrera de succión
Rotor interno Del depósito de combustible
-28-
Q000770S
(2) (2)
Válvu álvula la regu regula lado dora ra La válvula reguladora mantiene la presión de alimentación de combustible (presión de descarga) por debajo de un cierto nivel. Si aumenta el régimen de la bomba y la presión de suministro excede la presión fijada en la válvula reguladora, la válvula se abre venciendo la fuerza del muelle para permitir el retorno del combustible al lado de succión. Caja de la bomba
Casquillo
Pistón Bomba de alimentación
Muelle
SCV Tapón Q000837S
(3) (3)
SCV: SCV: válv válvul ula a de de con contr trol ol de succ succió ión n A diferencia del control ON y OFF de HP2 (todo abierto o todo cerrado), la SCV de HP3 HP3 utiliza una válvula electromagnética de tipo solenoide lineal para controlar el tiempo durante el cual se aplica corriente desde la ECU a la SCV (control de porcentaje de servicio), y de esta forma controla el volumen de flujo de combustible al émbolo buzo a alta p resión. Cuando la corriente fluye a través de la SCV, el inducido de su interior se mueve según el porcentaje de servicio. El volumen de flujo de combustible cambia según el funcionamiento del in ducido y se controla en función del tamaño de la apertura del conducto de combustible del cilindro. Como resultado, se controla el volumen de combustible de admisión para conseguir la presión de rampa deseada y disminuye la carga de actuación de la bomba de suministro.
-29-
A)
Tipo normalmente abierto y tipo normalmente cerrado cerrado Hay dos tipos de SCV de HP3: el tipo normalmente abierto (la válvula de succión se abre cuando no está excitada) y el tipo normalmente cerrado (la válvula de succión se cierra cuando no está excitada). Cada uno de estos tipos funciona a la inversa del otro.
a)
Tipo Tipo nor norma malm lmen ente te abi abier erto to • Cuando la válvula solenoide no está excitada, excitada, el muelle de retorno empuja el cilindro, cilindro, abriendo por completo completo el conducto de combustible y suministrando combustible a los émbolos buzo. (Cantidad total de admisión y de descarga) • Cuando la válvula solenoide está excitada, el inducido aprieta aprieta el cilindro, que comprime el muelle de retorno y cierra el conducto de combustible. • La válvula solenoide se activa a las posiciones ON/OFF mediante el control del porcentaje de servicio. La cantidad de combustible que se suministra corresponde al área de la superficie abierta del conducto y luego se descarga mediante los émbolos buzo.
Muelle de retorno
Cilindro
Solenoide
Cuerpo de válvulas Aguja de la válvula Sección transversal
Vista exterior
Q000838S
•
Cont Contro roll del del porc porcen enta taje je de serv servic icio io La ECU del motor emite señales de onda en diente de sierra con una frecuencia constante. constante. El valor de la corriente es el valor efectivo (medio) de estas señales. Cuando aumenta el valor efectivo, disminuye la apertura de la válvula, y cuando disminuye el valor efectivo, la apertura de la válvul a aumenta. Volumen n ó i c a v ON i t c a e d n OFF ó i s n e T e t n e i r r o C
de succión bajo
Volumen de succión alto
Diferencia de corriente media QD0710S
-30-
•
Cuando Cuando la durac duración ión de de la exci excitac tación ión de de la SCV SCV (tie (tiempo mpo de de servic servicio io ON) ON) es es corta corta La corriente media que fluye a través de la válvula solenoide es pequeña, el cilindro retorna por la fuerza del muelle y la apertura de la válvula es grande. Como resultado, el volumen de succión de combustible aumenta. Bomba de alimentación
SCV Cilindro
Apertura grande Cilindro Q000839S
•
Cuando Cuando la durac duración ión de de la exci excitac tación ión de de la SCV SCV (tie (tiempo mpo de de servic servicio io ON) ON) es es larga larga La corriente media que fluye a través de la válvula solenoide es grande, el cilindro se aprieta hacia afuera y la apertura de la válvula es pequeña. Como resultado, el volumen de succión d e combustible disminuye. Bomba de alimentación
SCV Cilindro
Apertura pequeña Cilindro Q000840S
-31-
b)
Tipo Tipo nor norma malm lmen ente te cer cerra rado do • Cuando se excita la válvula solenoide, el inducido aprieta el cilindro, abriendo por completo completo el conducto de combustible y suministrando combustible a la parte del émbolo buzo. (Cantidad total de admisión y de descarga) • Cuando termina la excitación de la válvula solenoide, el muelle de retorno aprieta el cilindro y lo hace retornar, retornar, cerrando el conducto de combustible. • La válvula solenoide se activa a las posiciones ON/OFF mediante el control del porcentaje de servicio. La cantidad de combustible que se suministra corresponde al área de la superficie abierta del conducto y luego se descarga mediante los émbolos buzo.
Muelle de retorno
Cilindro
Aguja de la válvula Sección transversal
Solenoide
Cuerpo de válvulas Vista exterior Q000841S
•
Cont Contro roll del del porc porcen enta taje je de serv servic icio io La ECU del motor emite señales de onda en diente de sierra con una frecuencia constante. constante. El valor de la corriente es el valor efectivo (medio) de estas señales. Cuando aumenta el valor efectivo, aumenta la apertura de la válvula, y cuando disminuye el valor efectivo, la apertura de la válvula d isminuye.
n Volumen ó i c a v i t ON c a e d n OFF ó i s n e T e t n e i r r o C
de succión alto
Volumen de succión bajo
Diferencia de corriente media
Q000844S
-32-
•
Cuando Cuando la durac duración ión de de la exci excitac tación ión de de la SCV SCV (tie (tiempo mpo de de servic servicio io ON) ON) es es larga larga La corriente media que fluye a través de la válvula solenoide es grande, el cilindro se aprieta hacia afuera y la apertura de la válvula es grande. Como resultado, el volumen de succión de combustible aumenta. Bomba de alimentación
SCV
Apertura grande Cilindro Q000842S
•
Cuando Cuando la durac duración ión de de la exci excitac tación ión de de la SCV SCV (tie (tiempo mpo de servi servicio cio ON) es corta corta La corriente media que fluye a través de la válvula solenoide es pequeña, el cilindro retorna por la fuerza del muelle y la apertura de la válvula es pequeña. Como resultado, el volumen de succión de combustible disminuye. Bomba de alimentación
Cilindro
SCV
Aperturaa pequeña Apertur peque ña Q000843S
-33-
(4)
Unidad Unidad de de bomba bomba (leva (leva excé excéntr ntrica ica,, leva leva anular anular,, émbolo émbolo buzo buzo)) La leva excéntrica está conectada al árbol de levas y la leva anular está instalada sobre la leva excéntrica. Hay dos émbolos buzo en posición simétrica por encima y por debajo de la leva anular. Leva anular
Émbolo buzo A
Árbol de levas
Bomba de alimentación Leva excéntrica
Émbolo buzo B
Q000845S
• Debido a que la rotación del árbol de levas hace que la leva excéntrica rote excéntricamente, la leva anular sigue este movimiento y se mueve de arriba abajo, lo que a su vez mueve los dos émbolos buzo recíprocamente. (La propia leva anular no gira)
Leva excéntrica
Leva anular
Árbol de levas
Q000846S
-34-
(5) (5)
Válv Válvul ula a de desc descar arga ga La válvula de descarga de HP3 cuenta con un elemento integrado que consta de la bola de retención, muelle y montura. Cuando la presión del émbolo buzo excede la presión de la rampa, la bola de retención se abre para descargar combustible.
Elemento
Bola de retención Muelle
Soporte
Émbolo buzo
Q000847S
(6) (6)
Sens Sensor or de de temp temper erat atur ura a del del comb combus ustitibl ble e El sensor de temperatura del combustible está instalado en la parte de admisión del combustible y tiene las características de un termistor en el cual la resistencia eléctrica cambia con la temperatura para poder detectar la temperatura del combustible.
Resistencia - Características temperatura
Termistor a i c n e t s i s e r
a l e d r o l a V
Temperatura
Q000848S
-35-
d. (1)
Funcio Funcionam namien iento to de la bomba bomba de sumini suministr stro o Flujo Flujo de de combu combusti stible ble global global de la la bomba bomba de sumi suminis nistro tro La bomba de alimentación succiona el combustible del depósito y lo envía a la SCV. En ese momento, la válvula reguladora ajusta la presión del combustible por debajo de cierto nivel. El volumen de descarga requerido del combustible enviado desde la bomba de alimentación se ajusta mediante la SCV y se introduce en la unidad de bomba a través de la válvula de succión. La unidad de bomba bombea el combustible hacia la rampa a través de la válvula de descarga.
Inyector
Rampa
Válvula de descarga Válvula de succión Desde la bomba
Presión de succión Presión de suministro Alta presión Presión de retorno
Émbolo buzo Muelle de retorno
A la rampa Retorno Rebose de la combustión Válvula reguladora
Filtro
Bomba de alimentación Lumbrera de admisión de combustible
Árbol de levas
Succión
Filtro de combustible (con bomba de cebado) Depósito de combustible Q000849S
-36-
(2)
Funcionamient ento • Al igual que en HP2, el volumen de descarga se controla mediante el control de la SCV, SCV, sin embargo, se diferencia de HP2 en que la apertura de la válvula se ajusta mediante el control del porcentaje de servicio. • En la carrera de admisión, el muelle hace que el émbolo buzo siga el movimiento de la leva anular, de modo que el émbolo buzo desciende junto con la leva anular. Así, a diferencia de HP2, el propio émbolo buzo succiona también el combustible. Cuando el combustible succionado pasa a través de la SCV, SCV, el volumen de flujo se controla hasta el volumen de descarga requerido mediante la apertura de válvula y se introduce en la unidad principal de la bomba. • El volumen de combustible ajustado por la SCV SCV se bombea bombea durante la carrera de bombeo.
Válvula de succión Émbolo buzo A
SCV Émbolo buzo B
Válvula de descarga Leva excéntrica
Leva anular
Émbolo buzo A: Fin de la compresión
Émbolo buzo A: Inicio de la succión
Émbolo buzo B: Fin de la succión
Émbolo buzo B: Inicio de la compresión
Émbolo buzo A: Inicio de la compresión
Émbolo buzo A: Fin de la succión
Émbolo buzo B: Inicio de la succión
Émbolo buzo B: Fin de la compresión QD0707S
-37-
D. Tipo HP4 a.
Cons Constr truc ucci ción ón y car carac acte terí ríst stic icas as • La construcción básica de la bomba de suministro suministro HP4 es la misma que la de HP3. La composición es también la misma misma que la de HP3; consta de la unidad de bomba (leva excéntrica, leva anular, émbolo buzo), la SCV (válvula de control de succión), el sensor de temperatura del combustible y la bomba de alimentación. La diferencia principal es que hay tres émbolos buzo. • Debido Debido a que hay tres émbolos buzo, buzo, éstos están colocados colocados a intervalos intervalos de 120° alrededor del exterior de la leva anular. Además, la capacidad de suministro de combustible es de 1,5 veces veces la de HP3. • El volumen de descarga de combustible se controla controla mediante la SCV, al igual que en HP3.
SCV (válvula de control de succión)
Sensor de temperatura del combustible Válvula de descarga
Bomba de alimentación
Émbolo buzo Válvula de succión
Leva excéntrica
Q000850S
-38-
b.
Despiezo
SCV
IN Filtro
Sensor de temperatura del combustible Bomba de alimentación Válvula reguladora
Cuerpo de la bomba
OUT
Leva anular Árbol de levas
Q000457S
-39-
c.
Funci Funcion ones es de de las las piez piezas as com compo pone nent ntes es Piezas componentes
Bomba de alimentación
Funciones Aspira el combustible desde el depósito y se lo suministra al émbolo buzo.
Válvula reguladora
Regula la presión del combustible en la bomba de suministro.
SCV (vá (válvul lvula a de cont contro roll de succ succió ión) n)
Cont ontrola rola el volu volum men de comb combus usti tibl ble e que que se sumi sumini nist stra ra a los los émbol mbolos os buzo.
Unidad de bomba
Leva excéntrica
Activa la leva anular.
Leva anular
Activa el émbolo buzo.
Émbolo buzo
Se mueve en vaivén para aspirar y comprimir el combustible.
Válvula de succión
Evita el flujo inverso de combustible comprimido hacia la SCV.
Válvula de descarga
Evita el flujo inverso desde la rampa del combustible que se bombea desde el émbolo buzo.
Senso ensorr de temp temper erat atur ura a del del comb combu ustib stible le
Detec etectta la tempe empera ratu tura ra del del comb combus usti tibl ble. e.
Las funciones y las piezas componentes de HP4 son fundamentalmente las mismas que las de HP3. Las explicaciones que se encuentran a continuación cubren sólo los puntos en los que HP4 se diferencia de HP3. Para obtener información sobre otras piezas, consulte la sección correspondiente en la explicación sobre HP3. (1)
Unidad Unidad de de bomba bomba (leva (leva excé excéntr ntrica ica,, leva leva anular anular,, émbolo émbolo buzo buzo)) • Hay una leva anular triangular instalada en la leva excéntrica del eje impulsor, impulsor, y tres émbolos buzo instalados en la leva anular a intervalos de 120°. Émbolo buzo Árbol de levas
Leva excéntrica
Leva anular
Q000851S
-40-
• Debido a que la rotación del árbol árbol de levas hace que la leva excéntrica rote excéntricamente, la leva anular sigue este movimiento, lo que a su vez mueve los tres émbolos buzo recíprocamente. (La propia leva anular no gira)
Leva anular
Émbolo buzo nº 1
Émbolo buzo nº 2 Fin del bombeo
Bombeo
Leva excéntrica Árbol de levas Gira 120º en el sentido de las agujas del reloj
Árbol de levas Árbol de levas Gira 120º en el sentido de las agujas del reloj
Succión Émbolo buzo nº 3
Bombeo
Succión
Succión
Fin del bombeo
Árbol de levas Gira 120º en el sentido de las agujas del reloj Bombeo
Fin del bombeo
D000852S
-41-
d. (1)
Funcio Funcionam namien iento to de la bomba bomba de sumini suministr stro o Flujo Flujo de de combu combusti stible ble global global de la la bomba bomba de sumi suminis nistro tro La bomba de alimentación succiona el combustible del depósito y lo envía a la SCV. En ese momento, la válvula reguladora ajusta la presión del combustible por debajo de un cierto nivel. El volumen de descarga requerido del combustible enviado desde la bomba de alimentación se ajusta mediante la SCV y se introduce en la unidad de bomba a través de la válvula de succión. La unidad de bomba bombea el combustible hacia la rampa a través de la válvula de descarga. Bomba de alimentación desde el depósito de combustible (succión) SCV desde la bomba de alimentación (baja presión) Unidad de bomba desde SCV (ajuste de baja presión completo) Desde la unidad de bomba a la rampa (alta presión) SCV
Árbol de levas
A la rampa Del dep depósito sito de combustible
Bomba de alimentación
Leva anular
Émbolo buzo Válvula de descarga
Válvula de succión Q000853S
(2)
Funcionamient ento El volumen de descarga se controla mediante la SCV. Al igual que en HP3, la apertura de válvula se ajusta mediante el control del porcentaje de servicio. La única diferencia con HP3 es la forma de la unidad de bomba. El funcionamiento y el control son esencialmente los mismos. Para obtener más detalles sobre el funcionamiento y el control, consulte la explicación de HP3.
-42-
3-2. RAMPA A. Funciones y composición composición de la rampa • La función de la rampa es distribuir el combustible a presión a cada inyector de cilindro mediante la bomba de suministro. • La forma de la rampa depende depende del modelo y las piezas componentes varían en en consonancia. • Las piezas componentes son son el sensor de presión de la rampa (sensor Pc), el limitador de presión y en algunos modelos un amortiguador de flujo y la válvula de descarga de presión. Limitador de presión Amortiguador de flujo
Rampa
Sensor de presión de la rampa (sensor Pc)
Válvula de descarga de presión Rampa
Limitador de presión
Sensor de presión de la rampa (sensor Pc) Q000854S
B. Construc Construcción ción y funci funcionam onamient iento o de las pieza piezass compone componentes ntes Piezas componentes Rampa
Funciones Almacena el combustible a presión bombeado por la bomba de suministro y distribuye el combustible a cada inyector de cilindro.
Limitador de pr presi esión
Abre la la vá válvula pa para liliberar la la pr presión si si és ésta es es an anorm ormalmente al alta en en la la ra rampa.
Sensor de presión de la rampa
Detecta la presión del combustible de la rampa
(sensor Pc) Amortiguador de flujo
Reduce las pulsaciones de la presión del combustible de la rampa. Si el combustible fluye hacia fuera en exceso, el amortiguador cierra el conducto de co mbustible para evitar que siga fluyendo. Se utiliza sobre todo en los motores de vehículos grandes.
Válvula Válvula de descarga descarga de presión presión
Controla Controla la la presión presión del del combustib combustible le de la rampa. rampa. Se utiliza utiliza sobre sobre todo en los motores motores de vehículos de pasajeros.
-43-
a.
Limi Limittador ador de pre presi sión ón El limitador de presión se abre para liberar la presión en caso de que se genere una presión anormalmente alta. El limitador de presión funciona (se abre) si se alcanza una presión anormalmente alta en el interior de la rampa. Reanuda su funcionamiento (se cierra) una vez que la presión ha caído a un cierto nivel. El combustible liberado por el limitador de presión vuelve al depósito de combustible.
< Aviso > •
Las presiones que hacen funcionar el limitador de presión dependen del modelo de vehículo y son aproximadamente 140230MPa para la presión de apertura de la válvula y aproximadamente 30-50MPa para la presión de cierre de la misma.
Limitador de presión
Fuga (al depósito de combustible) Presión anormalmente alta
Válvula abierta
Válvula cerrada
Retorno Presión de la rampa
b.
Q000855S
Sensor Sensor de presió presión n de de la la ramp rampa a (sen (sensor sor Pc) El sensor de presión de la rampa (sensor Pc) está instalado en la rampa. Detecta la presión del combustible en la rampa y envía una señal a la ECU del motor. Se trata de un sensor semiconductor que utiliza el efecto piezoeléctrico de la resistencia eléctrica que varía cuando se aplica presión al elemento de silicona. Diagrama de conexiones del sensor Vcc Pc
Vout
Vout
Vout
Vcc=5V
+5V a d i l a s e d n ó i s n e T
ECU
GND GND
Tensión - Características de la presión de salida de la rampa común
Vcc
Presión de la rampa
Q000856S
• También hay sensores de de presión de la rampa rampa que tienen sistemas duales para proporcionar una reserva en caso de avería. La tensión de salida está desfasada. E2S PR2 VCS
Pc Sensores
VC VCS
+5V
PR PR2
ECU ECU
E2 E2S VC
PR
E2
Vout/Vcc
1 a d i l a s e d n ó i s n e T
Vcc=5V
Presión de la rampa
2 a d i l a s e d n ó i s n e T
Q000857S
-44-
c.
Amort mortig igua uado dorr de de flu flujo jo El amortiguador de flujo reduce las pulsaciones de la presión del combustible en el tubo a presión y suministra combustible a los inyectores a una presión estabilizada. Asimismo, el amortiguador de flujo presenta una descarga anormal de combustible al cerrar el conducto de combustible en caso de que haya una descarga excesiva del mismo, por ejemplo debido a la fuga de combustible desde un tubo de inyección o inyector. Algunos amortiguadores de flujo combinan un pistón y una bola y otros tienen solamente un pistón. Tipo que combina pistón y bola Pistón
Bola
Asiento (1) (1)
Tipo de sólo pistón Pistón
Muelle
Asiento
Muelle
Q000858S
Func Funcio iona nami mien ento to del del tip tipo o de pist pistón ón y bol bola a Cuando hay un impulso de presión en un tubo de alta presión, su resistencia al pasar a través del orificio rompe el equilibrio entre la presión de la parte de la rampa y la presión de la parte del inyector, de modo que el pistón y la bola se desplazan a la parte del inyector, absorbiendo el impulso de presión. Cuando los impulsos de presión son normales, como la presión del lado de la rampa y la presión del lado del inyector se equilibran rápidamente, el muelle hace retroceder el pistón y la bola hacia el lado de la rampa. Si hay una descarga irregular, por ejemplo debido a una fuga de combustible en el lado del inyector, la cantidad de combustible que pasa a través del orificio no se puede compensar y el pistón aprieta la bola contra el asiento, de modo que el paso del combustible hacia el inyector se cierra. · Durante la absorción de impulsos de presión Pistón
· Corte de combustible
Bola
Muelle
Asiento Q000859S
(2) (2)
Func Funcio iona nami mien ento to del del tip tipo o de sólo sólo pist pistón ón El pistón está directamente en contacto con el asiento y cierra el el conducto de combustible directamente. Funciona igual que el tipo de pistón y bola. · Durante la absorción de impulsos de presión
· Corte de combustible
Pistón
Asiento
Muelle
Q000860S
-45-
d.
Válv Válvul ula a de de des desca carg rga a de de pre presi sión ón La válvula de descarga de presión controla la presión del combustible de la rampa. Cuando la presión del combustible de la rampa excede la presión de inyección deseada, o cuando la ECU del motor detecta que la presión del combustible de la rampa excede el valor meta, se excita la bobina solenoide de la válvula de descarga de presión. Se abre así el paso de la válvula de descarga de presión, permitiendo que el combustible vuelva de nuevo a su depósito y reduciendo la presión del combustible de la rampa hasta la presión deseada.
Bobina solenoide
Válvula de descarga de presión
Rampa
Funcionamiento ON
ECU Al depósito de combustible
Q000861S
-46-
3-3. INYECTOR A. Descripción general • El inyector inyecta el combustible a presión de la rampa en la cámara cámara de combustión del motor motor al calado, volumen, relación y modelo de inyección óptimos, en función de las señales de la ECU. • La inyección se controla utilizando utilizando una TWV (válvula de de dos vías) y un orificio. La TWV controla la presión de la cámara de control para controlar el principio y el final de la inyección. El orificio controla la relación de inyección moderando el régimen en el cual se abre la tobera. • El pistón de mando abre y cierra la válvula al transmitir la presión presión de la cámara de control a la aguja de la tobera. • Cuando la válvula de la aguja de la tobera se abre, la tobera tobera pulveriza el combustible y lo inyecta. • Hay tres tres tipos de de inyectores: inyectores: el el X1, X2, y G2. G2.
TWV
Sensor de presión de la rampa
Orificio ECU Parte de la cámara de control Rampa Pistón de mando
Bomba de suministro
Aguja de la tobera
Tobera
Q000862S
-47-
B. Construc Construcción ción y carac caracterís terísticas ticas del inyector inyector El inyector consiste en una tobera similar a la “tobera y portainyector” convencionales, un orificio que controla la relación de inyección, el pistón de mando y una TWV (válvula electromagnética de dos vías). La construcción básica es la misma en los tipos X1, X2 y G2. a.
Tipo X1 El control de precisión se logra mediante el control electrónico de la inyección. La TWV consta de dos válvulas: la válvula interior (fija) y la válvula exterior (móvil).
Solenoide TWV Válvula interior Válvula exterior
Pistón de mando
Orificio 1
Orificio 2
Tobera
Q000863S
-48-
b.
Tipo X2 Al reducir la carga de actuación del inyector, éste se ha hecho más compacto y eficaz en cuanto a la energía, a la vez que se ha mejorado la precisión de la inyección. La TWV abre y cierra directamente el orificio de salida.
Tornillo hueco con amortiguador
Válvula electromagnética
Cámara de control
Desde la rampa
Junta tórica Pistón de mando
Muelle de la tobera Pasador de presión Asiento
Paso de fuga
Combustible a alta presión
Aguja de la tobera
Q000864S
-49-
c.
Tipo G2 Para asegurar una presión alta, el tipo G2 ha mejorado la fuerza de la presión, el rendimiento del sellado y la resistencia del desgaste de la presión. Ha mejorado también el funcionamiento a un régimen alto, haciendo posible un control de la inyección más preciso y la inyección múltiple.
Al depósito de combustible
Conector
Válvula electromagnética
Desde la rampa Pistón de mando
Muelle de la tobera Pasador de presión
Aguja de la tobera Asiento
Paso de fuga Q000865S
< Aviso > La inyección múltiple significa que la inyección principal se realiza mediante un número de inyecciones de combustible • entre uno y cinco sin que cambie la cantidad de inyección, con el fin de reducir las emisiones de gases de escape y el ruido. Ejemplo: modelo con cinco inyecciones n ó i c c e y n i e d d a d i t n a C
Inyección principal
Inyección secundaria
Inyección piloto Inyección previa
Tiempo
-50-
Post-inyección
Q000866S
C. Funcio Funciona namie miento nto del inyect inyector or El inyector controla la inyección a través de la presión del combustible de la cámara de control. La TWV lleva a cabo el control de fugas de combustible en la cámara de control para controlar la presión del combustible dentro de esa cámara. La TWV varía según el tipo de inyector. a.
Sin inyección Cuando la TWV no está excitada, cierra el paso de fuga desde l a cámara de control, de forma que la presión del combustible de la cámara de control y la presión del combustible que se aplica a la aguja de la tobera sean la misma presión de la rampa. Así, la aguja de la tobera se cierra debido a la diferencia entre el área de la superficie sometida a presión del pistón de mando y la fuerza del muelle de la tobera, y el combustible no se inyecta. En el tipo X1, el paso de fuga desde la cámara de control se cierra mediante la válvula exterior, que se aprieta contra el asiento por la fuerza del muelle y la presión del combustible dentro de la válvu la exterior. En los tipos X2 y G2, el orificio de salida de la cámara de control se cierra directamente por la fuerza del muelle.
b.
Inyección Cuando empieza la excitación de la TWV, esta válvula se levanta, abriendo el paso de fuga de la cámara de control. Cuando este paso de fuga se abre, el combustible de la cámara de control sale y la presión baja. Debido a la caída de presión dentro de la cámara de control, la presión de la aguja de la tobera vence la fuerza que la aprieta hacia abajo, la aguja es empujada hacia arriba y empieza la inyección. Cuando hay fugas de combustible desde la cámara de control, el volumen del flujo se restringe mediante el orificio, de modo que la tobera se abre gradualmente. La relación de inyección sube cuando la tobera se abre. Al continuar aplicando corriente a la TWV, llega un momento en que la aguja de la tobera alcanza la elevación máxima, lo que da como resultado la máxima relación de inyección. El combustible excedente vuelve al depósito de combustible a través del camino mostrado.
c.
Fina Finall de de la la iny inyec ecci ción ón Cuando termina la excitación de la TWV, la válvula desciende, cerrando el paso de fuga de la cámara de control. Cuando se cierra el paso de fuga, la presión del combustible dentro de la cámara de control vuelve instantáneamente a la presión de rampa, la tobera se cierra de repente y la inyección se detiene. X2 · G2
Solenoide
Al depósito de combustible
Paso de fuga
TWV X1
Corriente de funcionamiento
Válvula exterior Rampa
Orificio de salida Orificio de entrada Pistón de mando
Presión de la cámara de control
Válvula interior
Corriente de funcionamiento
TWV Paso de fuga Orificio de salida
Presión de la cámara de control
Relación de inyección
Tobera
Sin inyección
Corriente de funcionamiento
Relación de inyección
Inyección
Presión de la cámara de control
Relación de inyección
Final de la inyección Q000867S
-51-
D. Circuito Circuito de funcionam funcionamiento iento del inyector inyector Para mejorar la respuesta del inyector se ha cambiado la tensión de funcionamiento a alta tensión, lo que acelera tanto la magnetización del solenoide como la respuesta de la TWV. La EDU del circuito de carga de la ECU aumenta la respectiva tensión de la batería a aproximadamente aproximadamente 110V, lo que suministra al inyector inyector la señal de la ECU para para activarlo.
Funcionamiento de la EDU EDU
Circuito de amperaje constante
Circuito de carga
Circuito de producción de alta tensión
Inyector
INJ#1 (Cilindro (Cilindro nº 1) 1) Corriente de funcionamiento
IJt
INJ#2 (Cilindro (Cilindro nº 3) 3) ECU
INJ#3 (Cilindro (Cilindro nº 4) 4)
Circuito de control
IJf
INJ#4 (Cilindro (Cilindro nº 2) 2)
Activación directa de la ECU Común 2 Común 1
ECU
Circuito de amperaje constante Circuito de amperaje constante Circuito de producción de alta tensión
Inyector
2WV#1 (Cilindro (Cilindro nº 1) 1)
Corriente de funcionamiento 2WV#2 (Cilindro (Cilindro nº 5) 5) 2WV#3 (Cilindro (Cilindro nº 3) 3) 2WV#4 (Cilindro (Cilindro nº 6) 6) 2WV#5 (Cilindro (Cilindro nº 2) 2) 2WV#6 (Cilindro (Cilindro nº 4) 4)
Q000868S
-52-
E. Otras Otras pieza piezass compo componen nentes tes del del inyec inyector tor a.
Torn Tornilillo lo huec hueco o con con amor amortitigu guad ador or El tornillo hueco con amortiguador mejora la precisión de la cantidad de inyección al reducir las pulsaciones de la presión de retroceso (fluctuaciones de presión) del combustible de fuga. Además, minimiza la dependencia de la presión de retroceso del combustible del tubo de fugas (el efecto de la presión en el tubo de fugas cambia la cantidad de inyección aunque la orden de inyección sea la misma). Tornillo hueco con amortiguador Junta tórica
Amortiguador
Junta tórica Al depósito de combustible Q000869S
b.
Cone Conect ctor or con con el el resi resist stor or de de corr correc ecci ción ón El conector con el resistor de corrección cuenta con un resistor de corrección integrado en la sección del conector, para minimizar la variación de la cantidad de inyección entre los cilindros. Terminal de la resistencia de corrección Terminal del solenoide
Q000870S
c.
Inye Inyect ctor or con con códi código goss QR Se han adoptado los códigos QR (respuesta rápida) para mejorar la precisión de la corrección. El código QR, que contiene los datos de corrección del inyector, está escrito en la ECU del motor. Los códigos QR han dado como resultado un aumento considerable de los puntos de corrección de la cantidad de inyección del combustible, mejorando mucho la precisión de la cantidad de inyección. · Puntos de corrección de código QR (ejemplo) Códigos QR 10EA01EB 13EA01EB 0300 0000 0000 BC
Códigos ID
n ó i c c e y n i e d d a d i t n a C
Parámetro de presión
Anchura Anch ura de de impulso impulso de acciona accionamien miento to TQ TQ
Q000871S
< Aviso > Los códigos QR son unos nuevos códigos de dos dimensiones que han sido desarrollados por DENSO. Además de los • datos de corrección de la cantidad de inyección, el código contiene el número de pieza y el número de producto, que se pueden leer a velocidades sumamente altas.
-53-
(1)
Manejo Manejo de los los inye inyecto ctores res con código códigoss QR (refer (referenc encia) ia) Los inyectores con códigos QR tienen la ECU del motor reconocida y corrigen los inyectores, de modo que cuando se reemplaza un inyector o la ECU del motor, es necesario registrar el código ID del inyector en la ECU del motor.
A)
Cuando se reemplaza el inyector Es necesario registrar en la ECU del motor el código ID del inyector que ha sido reemplazado. "No hay resistencia de corrección, por lo tanto no hay capacidad de identificación eléctrica"
Inyector de repuesto ECU del motor
* Necesario para registrar los códigos ID del inyector en la l a ECU del motor.
QD1536S
B)
Cuando Cuando se reem reempla plaza za la ECU ECU del motor motor Es necesario registrar en la ECU del motor los códigos ID de todos los in yectores del vehículo. "No hay resistencia de corrección, por lo tanto no hay capacidad de identificación eléctrica" eléctrica "
Inyector del lado del vehículo
ECU de motor de repuesto
* Necesario para registrar los códigos ID del inyector en la ECU del motor.
Q000985S
-54-
4. DESCRIPC DESCRIPCIÓN IÓN DE DE LOS COMPONEN COMPONENTES TES DEL SISTEMA SISTEMA DE CONTRO CONTROL L 4-1. DIAGRAMA DIAGRAMA DEL DEL SISTEMA SISTEMA DE CONTR CONTROL OL DEL MOTOR MOTOR (REFERE (REFERENCIA NCIA)) Sensor de posición del acelerador Señal del interruptor de encendido Señal del motor de arranque Señal del interruptor de calentamiento c alentamiento Señal de velocidad del vehículo
Bomba de suministro PCV(HP0) SCV(HP2·3·4) Sensor TDC (G) (HP0)
ECU del motor
Sensor de temperatura del combustible (HP2·3·4)
Circuito de carga EDU Válvula de descarga de presión
Sensor de presión de la rampa
Limitador de presión Amortiguador Amort iguador de flujo (vehículos grandes)
Rampa
Sensor de temperatura de aire de admisión
Caudalímetro de aire (con sensor de temperatura de aire de admisión)
E-VRV para EGR Al depósito de combustible Sensor de temperatura del combustible (HP0)
Sensor de presión de aire de admisión
Inyector
Sensor de temperatura del refrigerante
VSV de cierre de EGR Sensor de identificación de cilindro (sensor TDC (G): HP2, 3, 4) Sensor de posición del cigüeñal (sensor de régimen del motor)
Volante de inercia
Bomba de suministro PCV
Sensor TDC (G)
Sensor de temperatura del combustible SCV
HP0
HP2
Sensor de temperatura del combustible HP3
Sensor de temperatura del combustible SCV SCV
HP4 Q000874S
-55-
4-2. ECU DEL DEL MOTOR MOTOR (UNIDA (UNIDAD D DE CONTR CONTROL OL ELECTR ELECTRÓNICO) ÓNICO) •
La ECU del motor determina constantemente el estado del motor a través de las señales de los sensores, calcula las cantidades de inyección de combustible, etc. apropiadas a las condiciones, activa los actuadores y lleva a cabo un control para mantener el motor en el estado óptimo. Los inyectores se ac tivan bien mediante la EDU o bien mediante el circuito de carga de la ECU del motor. Este circuito de activación depende de las especificaciones del modelo en el que esté montado. La ECU tiene también una función de diagnóstico para registrar las averías del sistema.
Sensores
ECU del motor
Actuadores Circuito de activación
EDU o
Sensor de identificación de cilindro (sensor TDC (G))
Inyector
Circuito de carga (incorporado en la ECU)
Sensor de posición del cigüeñal (sensor de régimen del motor)
ECU del motor
Bomba de suministro (PCV : HP0, SCV : HP2 · HP3 · HP4)
Sensor de posición del acelerador
Otros sensores
Otros actuadores Q000875S
4-3. EDU (UNIDAD (UNIDAD DE DE CONDUC CONDUCCIÓN CIÓN ELECTRÓ ELECTRÓNICA NICA)) A. Descripción general El sistema cuenta con una EDU para posibilitar el funcionamiento de los inyectores a alta velocidad. La EDU tiene un dispositivo generador de alta tensión (convertidor DC/DC) y suministra alta tensión a los inyectores para activarlos a alta velocidad.
Señal de activación Emisión de activación ECU
Señal de comprobación
EDU
Q000876S
-56-
B. Func Funcio iona nami mien ento to El dispositivo generador de alta tensión de la EDU transforma en alta tensión la tensión de la batería. La ECU envía señales a los terminales B a E de la EDU según las señales captadas por l os sensores. Al recibir estar señales, la EDU emite señales a los inyectores de los terminales H a K. En ese momento, el terminal F emite la señal de verificación de inyección IJf a la ECU.
+B
COM
A
L
Circuito de producción de alta tensión
IJt#1 IJt#2 ECU
IJt#3
B
H
C
I Circuito de control
D
IJt#4
J K
E
IJf
IJt#1 IJt#2 IJt#3 IJt#4
F
G
M
GND
GND Q000877S
4-4. 4-4. SENS SENSOR ORES ES VARI VARIOS OS A. Funciones de de los diversos sensores sensores Sensor Sensor de posición del cigüeñal (sen-
Funciones Detecta el ángulo del cigüeñal y emite la señal de régimen del motor.
sor de régimen del motor) Sensor de identificación de cilindro
Identifica los cilindros.
(sensor TDC (G)) Sens Sensor or de de posic posició ión n del del acel aceler erad ador or
Dete Detect cta a el áng ángul ulo o de aper apertu tura ra del del ped pedal al del del ace acele lera rado dorr.
Sensor de temperatura de aire de
Detecta la temperatura del aire de admisión una vez que ha pasado a través del
admisión
turbocompresor.
Medi Medido dorr de caud caudal al de aire ire
Detec etectta el el flu flujo jo de air aire de de adm admis isió ión. n. Conti ontien ene e tam tamb bién ién un un sen senso sorr de tem tempera peratu tura ra de aire de admisión que detecta la misma (temperatura atmosférica).
Sensor Sensor de temperatura temperatura del refriger refrigerante ante Detecta Detecta la temperatura temperatura del refriger refrigerante ante del motor motor. Sensor Sensor de temperatur temperatura a del combustible combustible Detecta Detecta la temperatura temperatura del combustibl combustible. e. Sensor Sensor de presión presión de de aire de de admisión admisión Detecta Detecta la presión presión del aire aire de admisión. admisión. Sens ensor de de pr presión at atmosférica
Detecta la la pr presión at atmosféri érica.
-57-
a. (1)
Senso ensorr de de pos posic ició ión n del cigüeñal (sensor de régimen del motor) y sensor de identificación de cilindro (TDC (G)) Sensor Sensor de de posició posición n del cigü cigüeña eñall (senso (sensorr de régim régimen en del del motor) motor) El sensor de posición del cigüeñal está instalado cerca del engranaje de distribución del cigüeñal o del volante de inercia. La unidad del sensor es de tipo MPU (captor magnético). Cuando el engr anaje generador de impulsos del régimen del motor instalado en el cigüeñal pasa la sección del sensor, el campo magnético de la bobina dentro del sensor cambia, generando tensión de CA. Esta tensión de CA es detectada por la ECU del motor como la señal de detección. El número de impulsos por generador de impulsos del régimen del motor depende de las especificaciones del vehículo en el que está montado el sensor.
(2)
Sensor Sensor de ident identific ificaci ación ón de de cilind cilindro ro (sen (sensor sor TDC (G)) (G)) El sensor de identificación de cilindro está instalado en la l a unidad de la bomba de suministro en el sistema HP0, pero en los sistemas sist emas HP2, HP3 o HP4, está instalado i nstalado cerca del engranaje de distribución de la bomba de suministro. La estructura de la l a unidad del sensor es del tipo MPU, que es el mismo que el del sensor de posición del cigüeñal y del tipo MRE (elemento de resistencia magnética). En el tipo MRE, cuando el generador de impulsos pasa el sensor, la resistencia magnética cambia, al igual que la tensión que pasa a través del sensor. Este cambio de tensión se amplifica mediante el circuito IC interno y se emite a la ECU del motor. El número de impulsos por generador de impulsos TDC depende de las especificaciones del vehículo en el que está montado el sensor.
Posición de montaje del sensor (referencia)
Sensor de identificación de cilindro (sensor TDC (G))
Generador de impulsos (sección sin engranaje)
Generador de impulsos del régimen del motor
Para el Para el tipo MPU tipo MRE Generador de impulsos TDC (G)
Sensor de posición del cigüeñal (sensor de régimen del motor)
Vista exterior del sensor NECable TDC(G)- TDC(G) blindado NE+
Diagrama del circuito VCC GND TDC(G)
Tipo MPU
ECU TDC(G)
Circuito de entrada TDC (G)
VCC TDC(G) GND
Tipo MRE Tipo MPU
Generador de impulsos
NE
Tipo MRE
Circuito de entrada del régimen del motor
Sensor de posición del cigüeñal Sensor de identificación de cilindro (sensor de régimen del motor) (sensor TDC (G))
Gráfico de impulsos (referencia) 360 CA
360 CA
Impulso de régimen del motor
Impulso TDC (G)
Tipo MPU Tipo MRE 0V 720 CA
-58-
Q000878S
b.
Sens Sensor or de de posic posició ión n del del acel aceler erad ador or El sensor de posición del acelerador convierte la apertura del acelerador en una señal eléctrica y la emite a la ECU del motor. Hay dos tipos de sensor de posición del acelerador: el tipo generador a efecto Hall y el tipo contacto. Además, con el fin de proporcionar una reserva en caso de avería, hay dos sistemas y la tensión de salida está desfasada.
(1) (1)
Tipo Tipo gen gener erad ador or a efec efecto to Hall Hall Este sensor utiliza un generador a efecto Hall para generar tensión del cambio de dirección del campo magnético. El eje tiene instalado un imán y rota en conexión con el pedal del acelerador; la rotación de este eje cambia el campo magnético del generador a efecto Hall. La tensión generada mediante este cambio del campo magnético se amplifica mediante un amplificador y se aplica a la ECU del motor. Amplificador ficador nº 1 Imanes (par)
A-VCC +5V VACCP1 A-GND A-VCC
P C C A V e d ) V ( a d i l a s e d n ó i s n e T
+5V
VACCP2 A-GND
ECU Pedal del acelerador
Amplificador nº 2 Generadores a efecto Hall (2) (2)
4 3 2 1 0
50 100 Apertura del acelerador (%)
Q000879S
Tipo contacto El sensor utiliza una resistencia variable de tipo contacto. Como la palanca se mueve en conexión con el pedal del acelerador, el valor de la resistencia del sensor varía con la apertura del pedal del acelerador. Por lo tanto, la tensión que pasa por el sensor cambia, y esta tensión se aplica a la ECU del motor como señal de apertura del acelerador. Sensor de posición del acelerador Diagrama de circuito del sensor de posición del acelerador Totalmente abierto
Totalmente cerrado
Totalmente cerrado
Totalmente abierto
EP2 VPA2 VCP2 EP1 VPA1 VCP1
Característica de la tensión de salida del sensor de posición del acelerador a d i l a s e d n ó i s n e T
VPA2
Totalmente cerrado
VPA1 Totalmente abierto
Posición del pedal del acelerador
Q000880S
-59-
c.
Sensor Sensor de temper temperatu atura ra de aire aire de de admi admisió sión n El sensor de temperatura de aire de admisión detecta la temperatura del aire de admisión después de que haya pasado por el turbocompresor. La parte del sensor que detecta la temperatura contiene un termistor. El termistor, provisto de una resistencia eléctrica que cambia con la temperatura, se utiliza para detectar la temperatura del aire de admisión. Resistencia - Característica temperatura
Termistor
a i c n e t s i s e R
Temperatura d.
Q000881S
Medidor Medidor de caudal caudal de aire (con (con sensor sensor de temper temperatura atura de aire aire de admisión admisión incorpor incorporado) ado) El medidor de caudal de aire está instalado detrás del filtro de aire y detecta el caudal de aire de admisión (caudal de aire). Este sensor es de tipo de cable caliente. Como la resistencia eléctrica del cable caliente varía con la temperatura, esta característica se utiliza para medir el volumen de aire de admisión. El medidor de caudal de aire cuenta también con un sensor de temperatura de aire de admisión incorporado (tipo termistor) y detecta la temperatura del aire de admisión (temperatura atmosférica). Resistencia del sensor de temperatura Característica - de temperatura de aire de admisión
Sensor de temperatura de aire de admisión
+B
E2G
VG THAF
a i c n e t s i s e R
E2
Cable caliente
Temperatura C e.
Q000882S
Sensor Sensor de temper temperatu atura ra del refrig refrigera erante nte El sensor de temperatura del refrigerante está instalado en el bloque de cilindros y detecta la temperatura del refrigerante. Este sensor es de tipo termistor.
ECU Termistor
Resistencia del sensor Característica de la de temperatura del refrigerante temperatura del agua
+5V VTHW
A-GND
a i c n e t s i s e r a l e d r o l a V
Temperatura del refrigerante Q000883S
-60-
f.
Sens Sensor or de temp temper erat atur ura a del del comb combus ustitibl ble e Este sensor es de tipo termistor y detecta la temperatura del combustible. En los sistemas HP2, HP3 y HP4, este sensor está instalado en la unidad de la bomba de suministro, mientras que en el sistema HP0, se encuentra en el tubo de fugas de un inyector. Característica Resistencia - de la temperatura
ECU del motor Termistor
+5V VTHL
A-GND
a i c n e t s i s e r a l e d r o l a V
Temperatura Q000884S
g.
Sensor Sensor de temper temperatura atura de aire aire de admisión admisión y sensor sensor de presión presión atmosférica atmosférica Este sensor es de tipo semiconductor. Mide la presión utilizando el efecto piezoeléctrico, que consiste en la variación de la resistencia eléctrica cuando cambia la presión del elemento de silicona del sensor. Además, la presión del aire de este sensor se conmuta entre la presión del colector de admisión y la presión atmosférica, de forma que tanto la presión del aire de admisión como la presión atmosférica se detectan con un único sensor. El cambio entre la presión del aire de admisión y la presión atmosférica es controlada por la VSV (válvula de conmutación de vacío). Cuando se establece alguna de las condiciones siguientes, la VSV es activada durante 150 mseg. por la ECU del motor, para detectar la presión atmosférica. Si no se cumple ninguna de dichas condiciones, la VSV se desactiva para detectar la presión del aire de admisión.
(1)
Condic Condicion iones es de de medid medida a de de la presió presión n atmos atmosfér férica ica • Régime Régimen n del del motor motor = 0 rpm • Motor Motor de arran arranque que acti activad vado o • Estado Estado de estabiliza estabilización ción del régime régimen n de ralentí ralentí
VC
PIM
E2
Tensión - Característica de salida PIM de la presión a d i l a s e d n ó i s n e T
Presión absoluta Q000885S
-61-
5. SIST SISTEM EMAS AS DE CO CONT NTRO ROL L 5-1. CONTROL CONTROL DE DE LA INYECCIÓN INYECCIÓN DE COMBUSTI COMBUSTIBLE BLE A. Descripción general Este sistema controla la cantidad de inyección de combustible y el calado de inyección de manera más apropiada que el regulador mecánico y el variador de avance utilizados en la bomba de inyección convencional. La ECU del motor efectúa los cálculos necesarios basándose en las señales que se reciben desde los sensores situados en el motor y el vehículo. Luego, la ECU controla la temporización y la duración de la corriente que se aplica a los inyectores para obtener la cantidad de inyección y el calado de inyección óptimos.
B. Varios Varios tipos tipos de de controle controless de inyec inyección ción del combu combustibl stible e Control
Funciones
Control de la cantidad de inyección de
Este control reemplaza la función del regulador de la bomba de inyección conven-
combustible
cional. Consigue la cantidad de inyección óptima realizando el control según el régimen del motor y las señales de apertura del acelerador.
Control del calado de inyección de
Este control reemplaza la función del variador de avance de la bomba de inyec-
combustible
ción convencional. Consigue el calado de inyección óptimo realizando el control según el régimen del motor y la cantidad de inyección.
Control de la relación de inyección de
Esta función controla la relación de la cantidad de combustible que se inyecta
combustible (control de la inyección
desde el orificio del inyector dentro de una unidad de tiempo determinada.
piloto) Control de la presión de la inyección
Este control utiliza el sensor de presión de la rampa para medir la presión del
de combustible
combustible y suministra estos datos a la ECU del motor para controlar la cantidad de descarga de la bomba.
-62-
C. Control Control de de la canti cantidad dad de de inyecci inyección ón de combustib combustible le a.
Descr escrip ipci ción ón ge genera nerall Este control determina la cantidad de inyección de combustible añadiendo la temperatura del refrigerante, la temperatura del combustible, la temperatura del aire de admisión y las correcciones de la presión del aire de admisión a la cantidad de inyección básica. La ECU del motor calcula la cantidad de inyección básica basándose en las condiciones de funcionamiento del motor y en las condiciones de la conducción.
b.
Método Método de cálcul cálculo o de la cant cantida idad d de de inyec inyecció ción n El cálculo consiste en la comparación de los dos valores siguientes: 1. La cantidad de inyección básica que se obtiene desde el patrón del regulador, que se calcula a partir de la posición del acelerador y el régimen del motor. 2. La cantidad de inyección que se obtiene mediante la adición de varios tipos de correcciones a la cantidad de inyección máxima obtenida a partir del régimen del motor. La menor de las dos cantidades de inyección se utiliza como base para la cantidad de inyección final. Apertura del acelerador e d n i d ó a c c d i t e y n n a i C
Apertura Apertura del del acelera acelerador dor
Régimen del motor
n ó i d c a c d i e t y n n a i C e d
Régimen del motor
Cantidad de inyección básica Cantidad de inyección máxima
Régimen del motor
Lado del volumen bajo seleccionado
Cantidad de inyección final corregida
Cálculo del periodo de activación del inyector Cantidad de corrección del cilindro individual Corrección de la velocidad Corrección de la presión de inyección
Corrección de la presión de aire de admisión Corrección de la temperatura del aire de admisión Corrección de la presión atmosférica Corrección de la temperatura ambiente Corrección de la cantidad de inyección máxima con el motor frío
-63-
Q000887S
c. (1) (1)
Cant Cantid idad ades es de inye inyecc cció ión n fij fijad adas as Cant Cantid idad ad de de inye inyecc cció ión n bási básica ca Esta cantidad está determinada por el régimen del motor y la apertura del acelerador. Con el régimen del motor constante, si la apertura del acelerador aumenta, la cantidad de inyección aumenta; con la apertura del acelerador constante, si el régimen del motor sube, la cantidad de inyección disminuye.
(2) (2)
a c i s á b n ó i c c e y n i e d d a d i t n a C
Apertura del acelerador
Régimen del motor
Q000888S
Cant Cantid idad ad de inye inyecc cción ión de arra arranq nque ue Esta cantidad se determina basándose en la cantidad de inyección básica cuando arranca el motor y las correcciones añadidas para el tiempo de encendido del motor de arranque, el régimen del motor y la temperatura del refrigerante. Si la temperatura del refrigerante es baja, la cantidad de inyección aumenta. Cuando el motor ha arrancado por completo, este modo se cancela.
n ó i c c e y n i e d d a d i t n a C
Temperatura del refrigerante Alta Baja Cantidad de inyección base en el arranque
Tiempo STA ON STA ON
Arranque Q000889S
(3)
Cantid Cantidad ad de inye inyecci cción ón para para fijac fijación ión de de régimen régimen máximo máximo de de motor motor Está determinado por el régimen del motor. La cantidad de inyección se restringe para prevenir una subida excesiva del régimen del motor (arrastre del motor).
n ó i c c e y n i e d d a d i t n a C
Cantidad de inyección para fijación de régimen máximo de motor
Régimen del motor (4) (4)
Q000890S
Cant Cantid idad ad de de inye inyecc cció ión n máxi máxima ma Se determina basándose en la cantidad de inyección máxima básica determinada por el régimen del motor y las correcciones añadidas para la temperatura del refrigerante, la temperatura del combustible, la temperatura del aire de admisión, la temperatura atmosférica, la presión del aire de admisión, la presión atmosférica y la resistencia de ajuste total Q (sólo para el sistema HP0 de la primera generación), etc.
n ó i c a c i e c s y á n b i e d a m d i x a á d i t m n a C
Régimen del motor QB0717S
-64-
d. (1)
Correcciones Correc Correcció ción n de la cant cantida idad d de inyec inyecció ción n máxima máxima con con el moto motorr frío frío Cuando la temperatura del refrigerante es baja, ya sea durante el arranque o durante el funcionamiento normal, esta corrección aumenta la cantidad de inyección.
n ó i c c e y n i e d d a d i t n a C
Régimen del motor Q000891S
(2)
Correc Correcció ción n de de la la pres presión ión de aire aire de de admi admisió sión n Cuando la presión del aire de admisión es baja, la cantidad de inyección máxima se restringe para reducir la emisión n ó i c c e y n i e d d a d i t n a C
de humo negro.
Cantidad de corrección de la presión de aire de admisión
Régimen del motor Q000892S
(3) (3)
Corr Correc ecci ción ón de de la pres presió ión n atmo atmosf sfér éric ica a La cantidad de inyección máxima se aumenta o disminuye según la presión atmosférica. Cuando la presión atmosférica es alta, se aumenta la cantidad de inyección máxima.
n ó i c c e y n i e d d a d i t n a C
Cantidad de corrección de la presión atmosférica Régimen del motor Q000893S
(4)
Corrección Corrección del retardo retardo de la cantidad cantidad de inyecci inyección ón durante durante la acelera aceleración ción Durante la aceleración, si hay un gran cambio en la apertura del pedal del acelerador, se retrasa el aumento de la cantidad de inyección para prevenir las emisiones de humo negro.
n ó i c c e y n i e d d a d i t n a C
Cambio de posición del pedal del acelerador Cantidad de inyección después de la corrección Retardo Tiempo Q000487S
-65-
(5)
Resistencia Resistencia de ajuste ajuste total total Q (sólo para los sistema sistemass HP0 de la primera primera generació generación) n) La resistencia Q total sirve para corregir la cantidad de inyección de la carga completa. El fabricante del vehículo aumenta o disminuye la cantidad de inyección máxima para cumplir con las normas. Hay 15 tipos de resistencia de ajuste total Q. Se selecciona y se utiliza el tipo apropiado. n d ó a i d c i t c n e a r r o C / c e a t s l u e j a d e n d ó i d c a c e d i y t n n i a e C d
ECU +5V VLQC
A-GND
Cantidad de ajuste/T ajuste/Tensión ensión de corrección del resistor Q000894S
D. Control Control de de la relac relación ión de de inyecció inyección n de combu combustib stible le a.
Descr escrip ipci ción ón ge gener neral Aunque la relación de inyección aumenta con la adopción de la inyección de combustible a alta presión, el retraso del encendido, es decir, el tiempo que pasa desde el comienzo de la inyección hasta el inicio d e la combustión, no se puede reducir por debajo de un periodo d e tiempo determinado. Por consiguiente, la cantidad de combustible inyectado hasta que tiene lugar el encendido aumenta (la relación de inyección inicial es demasiado alta), lo que da como resultado una combustión explosiva simultánea al encendido, y un aumento de l NOx y del ruido. Con el fin de contrarrestar esta situación, el sistema proporciona la inyección piloto, para mantener la inyección inicial en la relación mínima requerida, para amortiguar la combustión explosiva primaria y para reducir el NOx y el ruido. [Inyección corriente]
[Inyección piloto]
Relación de inyección
Pequeña combustión de primera etapa
Gran combustión de primera etapa
Tasa de disipación de calor
-20
TDC
20
40
-20
Ángulo del cigüeñal (grad.)
TDC
20
40
Ángulo del cigüeñal (grad.) Q000895S
< Aviso > Para obtener una imagen del interior de l a cámara de combustión, hay un plano de muestra de la cantidad ca ntidad de inyección • piloto básica en el material que se encuentra al final de este documento.
-66-
E. Control Control del del calado calado de inyecc inyección ión de combus combustibl tible e a.
Descr escrip ipci ción ón ge genera nerall El calado de inyección del combustible se controla mediante la temporización de la corriente aplicada a los inyectores. Una vez que se decide el periodo de inyección p rincipal, se determina la inyección piloto y otro calado de in yección.
b. (1) (1)
Contro Controll del calado calado de de inyec inyecció ción n princi principal pal y piloto piloto Cala Calado do de inye inyecc cció ión n prin princip cipal al El calado de inyección básica se calcula a partir del régimen del motor (pulsación de régimen del motor) y la cantidad de inyección final, a lo que se añaden varios tipos de correcciones para determinar el calado de inyección principal óptimo.
(2)
Calado Calado de inyecc inyección ión piloto piloto (inter (interval valo o pilo piloto) to) El calado de inyección piloto se controla añadiendo el valor del intervalo piloto a la inyección principal. El intervalo piloto , por su parte, se calcula en base a la cantidad de inyección final, el régimen del motor, la temperatura del refrigerante, la temperatura atmosférica y la presión atmosférica (corrección de la presión absoluta del colector). El intervalo piloto, en el momento en el que se arranca el motor, se calcula a partir de la temperatura del refrigerante y el régimen del motor.
Intervalo piloto
a c i s á b n ó i c c e y n i e d o d a l a C
o t o l i p o l a v r e t n I
Calado de inyección básica
Régimen del motor
Régimen del motor
1. Presentación de la temporización del control del calado de inyección Punto muerto superior real 0 1 Impulso de régimen del motor
NE
Inyección piloto
Inyección principal
Impulso de mando de la válvula INJ electromagnética del inyector Levantamiento de la aguja de la tobera
lift Calado de inyección piloto
Calado de inyección principal
Intervalo piloto 2. Método de cálculo del calado de inyección
Régimen del motor Cantidad de inyección
Calado de inyección básica
Corrección
Calado de inyección principal Calado de inyección piloto Corrección de la tensión Corrección de la presión de aire de admisión Corrección de la temperatura del aire de admisión Corrección de la presión atmosférica Corrección de la temperatura del refrigerante Q000896S
-67-
(3) (3)
Inye Inyecc cció ión n divi dividi dida da El propósito de la inyección dividida es mejorar el arranque con el motor frío. Antes de que se realice la inyección principal convencional, esta función inyecta dos o más inyecciones de combustible sumamente pequeñas.
Inyección principal
Inyección principal
Inyección piloto
Es igual a la inyección de combustible convencional Inyección piloto Antes de la inyección principal se inyecta una pequeña cantidad de combustible.
Inyección piloto
Inyección previa
Inyección múltiple Si la temperatura al arrancar el motor es baja, antes de la inyección principal se inyecta una pequeña cantidad de combustible dividida entre Q000897S las inyecciones múltiples.
(4)
Contro Controll de inyec inyecció ción n múltip múltiple le (sólo (sólo para para algu algunos nos mode modelos los)) El control de inyección múltiple se produce cuando se llevan a cabo pequeñas inyecciones (hasta cuatro veces) antes y después de la inyección principal, según el estado de la inyección principal y el funcionamiento del motor. Este intervalo (el tiempo A-D en el diagrama inferior) se basa en la cantidad de inyección final, el régimen del motor, la temperatura del refrigerante y la presión atmosférica (corrección de la presión absoluta del corrector). El intervalo durante el arranque se basa en la temperatura del refrigerante y el régimen del motor. TDC Impulso TDC (G)
A
B
C
D
Relación de inyección Q000898S
F. Control Control de de la presión presión de la inyecció inyección n de combustib combustible le La ECU del motor calcula la presión de inyección del combustible, que está determinada por la cantidad de inyección final y el régimen del motor. El cálculo se basa en la temperatura del refrigerante y el régimen del motor durante el arranque.
a p m a r a l e d n ó i s e r P
Cantidad de inyección final
Régimen del motor
-68-
Q000899S
G. Otro control control de la la cantid cantidad ad de de inyecci inyección ón a.
Sistem Sistema a de contro controll del del régim régimen en de de ralen ralentí tí (ISC (ISC)) El sistema de control del régimen de ralentí controla el régimen de ralentí regulando la cantidad de inyección para que el régimen real corresponda con el régimen meta de revoluciones calculado por el ordenador. El ISC puede ser automático o manual.
(1)
ISC ISC automático ico Con el ISC automático, la ECU del motor fija el régimen meta de revoluciones. El régimen meta de revoluciones varía según el tipo de transmisión (manual o automática), según esté encendido o apagado el aire acondicionado, según la posición de cambio y según la temperatura del refrigerante. Condiciones de control del régimen de ralentí Condiciones Condi ciones cuando cuando empieza empieza el control control Condic Condiciones iones que afectan afectan al control control · Interruptor de régimen de ralentí
· Temperatura del agua
· Apertura del acelerador
· Carga del Aire acondicionado
· Velocidad del vehículo
· Posición de cambio
ECU del motor Cálculo del régimen meta de revoluciones
Comparación
Régimen del motor real
Corrección de la cantidad de inyección de combustible
Instrucción de la cantidad de inyección de combustible
Actuadores Q000900S
(2)
ISC manual El régimen de ralentí del motor se controla fijando el botón d e configuración del ralentí en el asiento del conductor. ECU A-VCC V-IMC A-GND
+5V
s e n o i c u l o v e r e d a t e m n e m i g é R
Tensión del terminal del volumen IMC Q000901S
-69-
b.
Regula Regulació ción n de reducc reducción ión de vibr vibraci ación ón de de ralen ralentí tí Este control reduce la vibración del motor durante el ralentí. Para conseguir que el motor funcione suavemente, compara las velocidades angulares (tiempos) de los cilindros y regula la cantidad de inyección para cada cilindro particular en caso de que haya una gran diferencia.
#1
#3
t1
#4
t3
t4
(Iguala el t de todos los cilindros)
Régimen angular #1
#3
#4
#2
Ángulo del cigüeñal
#1
Corrección
#3
#4
#2
Ángulo del cigüeñal Q000902S
-70-
5-2. SISTEMA SISTEMA E-EGR E-EGR (RECIRCU (RECIRCULACI LACIÓN ÓN DE GASES GASES DE ESCAPE ESCAPE ELÉCTRIC ELÉCTRICA) A) A. Descripción general El sistema E-EGR es un sistema EGR controlado electrónicamente. El sistema EGR recircula una porción de los gases de escape del colector de admisión para bajar la temperatura de la cámara de combustión y reducir las emisiones de NOx. Sin embargo, el funcionamiento del sistema EGR puede reducir la potencia de salida d el motor y afectar la mane jabilidad. Por esta esta razón, en el sistema E-EGR, E-EGR, la ECU del motor controla la EGR para conseguir una cantidad de EGR óptima. a.
Ejempl Ejemplo o de de cond condicio iciones nes de funcion funcionami amient ento o Funciona en el área de funcionamiento que cumple con las condiciones de arranque que se especifican a continuación (un ejemplo). n ó i c c e y n i e d d a d i t n a C
· Condiciones de funcionamiento del motor · · · · · Excepto Excepto durante el arranque y el calentamiento del motor, no se recalienta, etc. · Ciclo de funcionamiento de la EGR · · · · · · · · Para una carga media del motor
Régimen del motor
Q000501S
B. Func Funcio iona nami mien ento to • Después de que la bomba de vacío genere el vacío, la E-VRV (válvula eléctrica de regulaci ón de vacío) regula este vacío y lo dirige a la cámara del diafragma de la válvula de EGR. En respuesta a este vacío, el diafr agma empuja el muelle hacia abajo, lo que determina la apertura de la válvula de EGR y controla el volumen de recirculación de gases de escape.
• El enfriador de EGR, EGR, que está en el paso de EGR entre la culata y el el paso de admisión, enfría la EGR para aumentar aumentar el volumen de recirculación de gases de escape. • El corte VSV para EGR, que abre la c ámara del diafragma al exterior cuando se cierra la válvula de EGR, contribuye a mejorar la respuesta. Diafragma
Bomba de vacío
Amortiguador de vacío Válvula de EGR E-VRV Muelle
VSV de cierre de EGR
Refrigerante
Enfriador de EGR Régimen del motor Apertura del acelerador acel erador Presión del aire de admisión y presión atmosférica Temperatura del refrigerante Aire de admisión
Motor Unidad de control Colector de escape
Relación entre la presión de vacío y la apertura de la válvula de EGR Vacío
Bajo Pequeña
Apertura de la válvula de EGR
Alto Grande Q000903S
-71-
a.
Para Para aume aument ntar ar la cant cantid idad ad de EGR EGR El porcentaje de servicio de E-VRV está controlado*1. En las condiciones estables que se muestran en el diagrama central inferior, el aumento de la corriente que se aplica a la bobina hace que aumente la fuerza de atracción FM de la bobina. Cuando esta fuerza es mayor que la fuerza de la presión de vacío FV que actúa en el diafragma, el núcleo móvil se mueve hacia abajo. En conjunción con este movimiento, se abre la lumbrera de la bomba de vacío hacia la cámara superior del diafragma. Por consiguiente, aumenta la presión de vacío de salida, lo que hace que se abra la válvula de EGR y que aumente el volumen de recirculación de gases de e scape. Mientras tanto, debido a que "el aumento de la presión de vacío de salida es igual al aumento de la FV", el núcleo móvil se mueve hacia arriba al aumentar la FV. Cuando FM y FV son iguales, la lumbrera se cierra y las fuerzas se estabilizan. Debido a que el circuito de presión de vacío de la EGR es un bucle cerrado, la presión de vacío se mantiene en estado estable, siempre y cuando no haya cambios en el amperaje.
*1: La ECU del motor emite señales señales de onda en diente de sierra con una frecuencia constante. El valor valor de la corriente es el valor efectivo (medio) de estas señales. Para obtener más detalles, consulte la explicación de la SCV y la bomba de suministro HP3
b.
Para Para disminu disminuir ir el volum volumen en de recir recircul culaci ación ón de gases gases de esca escape: pe: La disminución de la corriente que se aplica a la bobina hace que FV sea más grande que FM. Como resultado, el diafragma se mueve hacia arriba. El núcleo móvil se mueve también hacia arriba en conjunción con el movimiento del diafragma, haciendo que se abra la válvula que sella las cámaras superior e inferior del diafragma. En consecuencia, la presión atmosférica de la cámara inferior se introduce en la cámara superior, reduciendo por tanto la presión de vacío de salida. Esto hace que la válvula de EGR se cierre y el volumen de recirculación de gases de escape disminuya. Debido a que "la disminución de la presión de vacío de salida es igual a la disminución de la FV", el núcleo móvil se mueve hacia abajo al disminuir la FV. Cuando FM y FV son iguales, la lumbrera se cierra y las fuerzas se estabilizan.
Desde la bomba de vacío A la válvula de EGR
FV Válvula Muelle
Núcleo móvil Diafragma
FM Bobina
Núcleo del estátor FM > FV Aumento del volumen de EGR
Exterior
FM < FV Disminución del volumen de la EGR
Q000904S
-72-
5-3. MARIPOSA DE GASES GASES CONTROLADA CONTROLADA ELECTRÓNICAMENTE ELECTRÓNICAMENTE (NO FABRICADA FABRICADA POR DENSO) DENSO) A. Descripción general La mariposa de gases controlada electrónicamente está situada hacia arriba de la válvula de EGR en el colector de admisión. Controla la mariposa reguladora a un ángulo óptimo para regular el gas EGR y reducir el ruido y los gases de escape perniciosos.
B. Func Funcio iona nami mien ento to Las señales de la ECU del motor activan el motor paso a paso, que regula la abertura de la mariposa reguladora. a.
Control de de EG EGR Para aumentar más el volumen de recirculación de los gases de escape cuando la válvula de EGR está totalmente abierta, se puede aumentar la presión de vacío del colector de admisión reduciendo la abertura de la válvula reguladora que restringe el flujo del aire de admisión.
b.
Reducc Reducción ión del ruido ruido y de los gases gases de de escap escape e • Cuando se arranca el motor, la mariposa reguladora se abre totalmente totalmente para reducir las emisiones de humo negro y de humo blanco. • Cuando se para el motor, la mariposa reguladora reguladora se cierra totalmente para reducir la vibración vibración y el ruido. • Durante la conducción normal, normal, la apertura de la mariposa reguladora se controla según las condiciones del motor, la temperatura del refrigerante y la presión atmosférica.
Motor paso a paso
Mariposa reguladora
Q000905S
-73-
5-4. SISTEMA SISTEMA DE CONTRO CONTROL L DE LOS GASE GASES S DE ESCAPE ESCAPE A. Descripción general El sistema de control de los gases de escape se proporciona para mejorar el calentamiento y el rendimiento de la calefacción. Este sistema activa la válvula de control de los gases de escape VSV, que está conectada al colector de escape. Aumenta la presión de escape para aumentar la temperatura de escape y la carga del motor, con el fin de mejorar el calentamiento y el rendimiento de la calefacción. Bomba de vacío
Válvula de control de los gases de escape
Filtro de aire
VSV
Sensor de turbocompresión Sensor de temperatura del refrigerante Sensor de posición de la válvula de EGR Interruptor de calentamiento
Válvula de control de los gases de escape
Medidor de caudal de aire Sensor de identificación de cilindro (sensor TDC (G)) Sensor de posición del acelerador Sensor de presión atmosférica
ECU
Q000906S
B. Func Funcio iona nami mien ento to El sistema de control de los gases de escape funciona cuando el interruptor de calentamiento está en ON y se cumplen todas las condiciones enumeradas a continuación. a.
Cond Condic icio ione ness de de func funcio iona nami mien ento to • La EGR EGR está está func funcion ionand ando o • La temperatur temperatura a del refrigera refrigerante nte es inferior inferior a 70 70°C. • La temperatu temperatura ra ambiente ambiente es es inferior inferior a 5°C. • Han pasado pasado 10 segundos segundos como mínimo mínimo después después de arrancar arrancar el motor. motor. • El régimen del motor y la cantidad de inyección del combustible combustible están en el estado que se muestra muestra en el siguiente grágráfico.
[Intervalo de funcionamiento del sistema de control de los gases de escape] n ó i c c e y n i e d d a d i t n a C
CALENTAMIENTO
Ciclo de funcionamiento Par o margen del régimen del motor extremadamente bajos
Régimen del motor Q000907S
-74-
5-5. SISTEMA SISTEMA DPF (FILTRO (FILTRO DE PARTÍCULA PARTÍCULAS S DIESEL DIESEL)) A. Descripción general Este sistema reduce las emisiones de PM (partículas). Para recoger las partículas hay un depurador DPF con un filtro catalítico incorporado montado en el tubo central. Las partículas recolectadas se tratan con el proceso de combustión durante el funcionamiento.
B. Conf Config igur urac ació ión n del del siste sistema ma Rampa
Inyector G2
Intercooler
Sensor de presión de aire de admisión
Enfriador de EGR Actuador VNT Válvula de EGR
Actuador de equilibrio Bomba de suministro DPF (con catalizador de oxidación)
Sensor de temperatura de los gases de escape
ECU y EDU Sensor de presión del diferencial Sensor de temperatura de los gases de escape
Q000908S
C. Vari Varios os sens sensor ores es a.
Sensor Sensor de temp tempera eratur tura a de los gases gases de de escap escape e El sensor de temperatura de los gases de escape está instalado en la parte delantera y la parte trasera del DPF para detectar la temperatura en estas posiciones. La ECU del motor controla la temperatura de escape para la combustión de partículas basándose en las señales de este sensor. El elemento sensor es un termistor.
)
Elemento del termistor
( a i c n e t s i s e r a l e d r o l a V
Cubierta
Temperatur emperaturaa de los gases de escape (
-75-
)
Q000909S
b.
Sens Sensor or de de pre presi sión ón del del dif difer eren enci cial al El sensor de presión del diferencial detecta la diferencia de presión en la parte delantera y la parte trasera del DPF y emite una señal a la ECU del motor. La porción del sensor es un sensor de presión de tipo semiconductor que utiliza el efecto piezoeléctrico mediante un elemento de silicona y amplifica y emite la tensión con su circuito IC. Cuando se recolectan las partículas y se acumulan en el DPF, el filtro se obstruye y aumenta la diferencia de presión en la parte delantera y la parte trasera del DPF. Por consiguiente, basándose en las señales de este sensor, la ECU del motor determina si hay que someter o no las partículas al proceso de combustión.
a d i l a s e d n ó i s n e T
GND VP VC
P
V ) V (
Presión (kPa) Q000910S
D. Func Funcio iona nami mien ento to Al optimizar el modelo de inyección y controlar la temperatura de los gases de escape basándose en la temperatura temperatura de los gases de escape y la diferencia de presión en la parte delantera y la parte trasera del DPF, las partículas se recolectan, se oxidan y se queman a sí mismas. Cuando la temperatura de escape es baja, al añadir la postinyección después de la inyección principal sube la temperatura de los gases de escape a aproximadamente 250°C y se potencia la oxidación de las partículas. Cuando las partículas se recolectan y se acumulan, se añade la postinyección y se añade HC al catalizador para aumentar la temperatura del mismo a 600°C, que es la temperatura de autocombustión de las partículas. Esto provoca la combustión de las partículas en poco tiempo. La ECU del motor controla los tiempos A, B y C y los tiempos de inyección.
TDC
B
A
C
Inyección secundaria
Post-inyección
Q000506S
-76-
5-6. SISTEMA SISTEMA DPNR DPNR (REDUC (REDUCCIÓN CIÓN DE DE PARTÍCU PARTÍCULAS LAS Y NOx NOx DIESEL) DIESEL) A. Descripción general Este sistema reduce las emisiones de PM (partículas) y de NOx. El catalizador DPNR montado en el tubo central recolecta y regenera las partículas y reduce a la vez el NOx. Las partículas recolectadas se tratan con el proceso de combustión durante el funcionamiento.
B. Conf Config igur urac ació ión n del del siste sistema ma Bomba de suministro
Indicador de visualización del dispositivo de limpieza de los gases de escape Interruptor del dispositivo de limpieza de los gases de escape
Válvula de restricción de admisión
Inyector VSV del retardador de escape
ECU del motor Catalizador DPNR Catalizador de oxidación
Catalizador de oxidación Antes Antes del enfriador ador de EGR EGR Válvula de adición de combustible Sensor A/F Retardador de escape
Sensor A/F
NSR
Sensor de presión del diferencial
-77-
Sensor de temperatura de los gases de escape
Q000911S
6 DIAGNÓSTICO 6-1. DESCRIPC DESCRIPCIÓN IÓN GENERA GENERAL L DE LA FUNCIÓN FUNCIÓN DE DIAGN DIAGNÓSTIC ÓSTICO O La función de diagnóstico permite al sistema diagnosticar sus propias averías. Si se producen anomalías en los sensores o en los actuadores utilizados en los sistemas de control, los sistemas respectivos convierten las señales de avería en códigos y se los transmiten a la ECU del motor. La ECU del motor registra en la memoria los códigos de avería transmitidos. Los códigos registrados se emiten al conector de diagnósticos del vehículo. Para informar de la avería al conductor, la ECU del motor hace que el MIL (indicador de avería) del juego de instrumentos se ilumine. Se puede llevar a cabo una precisa localización y reparación de desperfectos mediante los DTC (códigos de diagnóstico) que se emiten al conector de diagnóstico. Para obtener información sobre los códigos de diagnóstico reales, consulte el manual del vehículo. Antes de empezar la inspección, es necesario que el vehículo esté como se indica a continuación:
A. Preparación Preparación previa a la la inspección a.
Coloqu Coloque e la palanc palanca a de cambio cambioss en "N" o "P". "P".
b.
Apag Apague ue el aire aire acon acondi dici cion onad ado. o.
c.
Asegúr Asegúrese ese de que que la maripos mariposa a regulad reguladora ora está está totalm totalment ente e cerrada cerrada..
6-2. 6-2. DIAG DIAGNÓ NÓST STIC ICO O CON DST DST-1 -1 • La DST-1 puede utilizarse tanto en el modo modo de comprobación como en el modo normal. En comparación con el modo normal, el modo de comprobación tiene una mayor sensibilidad para detectar averías. • La inspección en modo de comprobación comprobación se lleva a cabo cuando se emiten emiten códigos normales en el modo normal a pesar de que pueda haber averías en los sistemas de señales del sensor.
A. Lectura de los los DTC a.
Conexi Conexión ón de la DSTDST-1: 1: Conec Conecte te la DSTDST-1 1 al termin terminal al DLC3. DLC3.
DLC3 1 6 1 5 14 14 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1
Q000914
b.
Lectur Lectura a de los DTC: DTC: Siga Siga las las instruc instruccio ciones nes most mostrad radas as en la pantalla para que aparezca en la misma "DTC check". Seleccione el modo normal o el modo de comprobación y lea el DTC.
Diagnostic Trouble Codes (DTC) 1.
···
Execute: Execute Q000915S
< Aviso > • Si no aparece aparece ningún DTC en en la pantalla, pantalla, es posible posible que que haya un un fallo en la ECU ECU del del motor. motor.
-78-
c.
Comprobaci Comprobación ón de los datos datos de imagen imagen fija: Si Si no puede reproduc reproducirse irse el síntoma síntoma que emite emite un DTC, DTC, compruebe compruebe los los datos de imagen fija.
d.
Borrad Borrado o de los los DTC DTC de la memo memoria ria:: Siga Siga las instr instrucc uccion iones es mostradas en la pantalla para que aparezca en la misma
Diagnostic Trouble Code (ECD Erasure)
"DTC check". Seleccione "Erase DTCs" para borrar los
This will erase the DTC and freeze frame data. Erase OK?
DTC.
NG : - OK : + Q000916S
< Aviso > • Si no es posible posible borrar borrar algún algún DTC, DTC, ponga ponga el interrupt interruptor or de encendido encendido en en posición posición OFF y repita repita el proceso. proceso. e.
Comprobació Comprobación n de circuitos circuitos abiertos abiertos en mazo mazo de cables cables y conecto conectores res
< Aviso > • Si el DTC emitido emitido durant durante e el diagnóstico diagnóstico (en (en el modo de comprob comprobación) ación) ha identificad identificado o una avería avería en el sistema, sistema, utilice utilice el método indicado a continuación para reducir el área de la avería. (1) Borrado Borrado de los DTC DTC de la memoria: memoria: Después Después de leer leer los DTC en en el modo de comproba comprobación, ción, bórrelos bórrelos de la memoria. memoria. (2) Arranque Arranque del motor: motor: Seleccione Seleccione el modo de comproba comprobación ción y arranq arranque ue el motor. motor. (3) Sistema Sistema averiado, averiado, comproba comprobación ción 1: Con el motor motor en marcha marcha en régimen régimen de ralentí, ralentí, agite agite el mazo de cables cables y los conectores del sistema del que se señala la avería durante el diagnóstico (modo de comprobación). (4) Sistema Sistema averiado, averiado, comprobac comprobación ión 2: Si el MIL (indicad (indicador or de avería) avería) se enciende enciende al mover el el mazo de cables cables y los conectores, hay un contacto defectuoso en el mazo de cables o en los conectores de ese área.
6-3. DIAGNÓST DIAGNÓSTICO ICO CON CON EL EL INDICA INDICADOR DOR DE AVERÍA AVERÍA • Antes de leer un DTC, ponga el interruptor de encendido en en posición ON para asegurarse de que el MIL (indicador de avería) se enciende. • No pueden realizar realizarse se inspecciones inspecciones en el modo de comprobac comprobación. ión.
A. Lectura de los los DTC a.
Corte Corte de circuito circuito del conector: conector: Con Con la ayuda de de la STT, realice realice un cortocir cortocircuito cuito entre entre los terminal terminales es 8 (TE1) y 3 (E1) (E1) del DLC1 o entre los terminales 13 (TC) y 4 (CG) del DLC3. DLC1
DLC3
E1
TC 1 2 3
TE1
4
7 8 9 12 13 14
5 6
18
16 15 14 13 12 11 10 9
19
8 7 6 5 4 3 2 1
10 11 20 15
16 1 7
21
22 23
CG Q000917S
< Precaución > • Tenga cuidad cuidado o de no conectar conectar nunca nunca terminale terminaless incorrectos incorrectos de de los conectore conectoress o provocará provocará una avería avería..
-79-
b.
Lectura Lectura de los DTC DTC 1: Coloque Coloque el interru interruptor ptor de encendid encendido o en posición posición ON y cuente cuente el número número de veces veces que destel destella la el MIL (indicador de avería)
· Funcionamiento normal 0,26sec
0,26sec
Repetir
ON OFF
Indicador de advertencia de revisión del motor
0,26sec
Terminales de salto TE1 y TC
· Avería (se emiten los códigos "12" y "23") 0,52sec 1,5sec
2,5sec
1,5sec
4,5sec
4,5sec
Repetir a partir de ahí
ON OFF
0,52sec Terminales de salto TE1 y TC
0,52sec Q000918S
< Aviso > • Si el MIL (indica (indicador dor de avería) avería) no no emite ningún ningún código código (el indicad indicador or no destella) destella),, puede haber haber un circuito circuito abierto abierto en el sistema del terminal TC, o una avería en la ECU del motor. • Si el indicador indicador de de avería avería está constant constantement emente e encendido, encendido, puede puede haber un cortocircu cortocircuito ito (pinzami (pinzamiento) ento) en el el mazo de cacables o una avería en la ECU del motor. • Si se emiten DTC sin sin sentido, sentido, puede haber una avería avería en la ECU del motor. motor. • Si el MIL (indica (indicador dor de avería) avería) se ilumina ilumina sin emitir emitir ningún ningún DTC con con el motor motor funcionando funcionando a un un régimen régimen mínimo mínimo de 1000rpm, coloque el interruptor de encendido en OFF una vez y a continuación reanude la inspección. c.
Lectura Lectura de los los DTC 2: Si se emite un un DTC anormal, anormal, compruébe compruébelo lo en la lista de los DTC. DTC.
d.
Borrad Borrado o de los DTC DTC de la la memori memoria: a: Extra Extraiga iga el el fusible fusible ECD ECD (15A) e instálelo de nuevo pasados 15 segundos.
Bloque de relés del compartimiento del motor Fusible ECD (15 A)
Q000919S
< Precaución > • Cuando Cuando haya finalizado finalizado la la inspección inspección del sistema sistema ECD, ECD, borre borre la memoria memoria de los los DTC y compruebe compruebe si si se emite el el código normal.
-80-
6-4. COMPROBA COMPROBACIÓN CIÓN DEL DEL FUNCIONAM FUNCIONAMIENT IENTO O DEL CUERPO CUERPO DE MARIP MARIPOSA OSA < Precaución > • Asegúrese Asegúrese de comprob comprobar ar el funcionami funcionamiento ento del cuerpo cuerpo de maripos mariposa a después después de haberlo haberlo desmontad desmontado o y montado de de nuevo o después de haber extraído e instalado de nuevo cualquiera de sus componentes. • Inspección Inspección del del motor de de mariposa: mariposa: Comprue Compruebe be si oye el el ruido de funcion funcionamient amiento o del motor motor al colocar colocar el interrup interruptor tor de encendido en la posición ON. Compruebe también si hay ruidos de interferencias.
A. Borrado de de los DTC a.
Cone Conect cte e la DSTDST-1 1 al al cone conect ctor or DLC3 DLC3..
DLC3 1 6 1 5 14 14 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1
Q000914
b.
Siga Siga las inst instruc ruccio ciones nes most mostrad radas as en la la pantal pantalla la para para que que aparezca en la misma "DTC check". Seleccione "Erase DT-
Diagnostic Trouble Code (ECD Erasure)
Cs" para borrar los DTC.
This will erase the DTC and freeze frame data. Erase OK?
NG : - OK : + Q000916S
B. Inspección a.
Arranque Arranque el motor. motor. El El MIL (indicad (indicador or de avería) avería) no debe debe encenderse encenderse y el el régimen régimen del motor motor debe debe estar dentro dentro de los los valores estándar al encender y apagar el aire acondicionado después de que se haya calentado el motor.
< Precaución > • Asegúr Asegúrese ese de de que no se se aplica aplica ning ninguna una carga carga eléc eléctri trica. ca.
C. Insp Inspec ecci ción ón fina finall a.
Después Después de comprobar comprobar el el funcionamien funcionamiento to del cuerpo cuerpo de mariposa, mariposa, haga haga la prueba prueba de conducción conducción para para confirmar confirmar que el el funcionamiento es normal.
-81-
7. FIN FIN DEL DEL MATE MATERI RIAL AL DEL DEL VOLU VOLUME MEN N 7-1. 7-1. PART PARTÍC ÍCUL ULAS AS (PM) (PM) •
A altos niveles de concentración, está comprobado que esta sustancia afecta al sistema respiratorio. Consiste en materia orgánica soluble, como aceite sin quemar, combustible diesel sin quemar y otra "materia orgánica soluble" de los gases de escape y materia orgánica insoluble, como hollín (humo negro) y gas de ácido sulfúrico.
7-2. HISTORIA DEL DEL DESARROLLO DESARROLLO DEL DEL SISTEMA SISTEMA DE INYECCIÓN DE COMBUSTIBLE COMBUSTIBLE DEL TIPO TIPO DE "COMMON RAIL SYSTEM" Y LOS FABRICANTES MUNDIALES •
La bomba de inyección convencional se enfrentaba a ciertas cuestiones, como la presión de inyección que dependía del régimen del motor y los límites de la presión máxima de combustible. Otros tipos de control de inyección como la inyección piloto se enfrentaban también a algunas dificultades. Afrontando estas cuestiones de forma revolucionaria, DENSO se convirtió en el líder mundial al lanzar una aplicación comercial del "common rail system".
•
Hoy día se utilizan dos tipos de "common rail system". Uno es el "common rail system" que somete a presión el combustible y lo inyecta directamente en los cilindros. DENSO fue primero a nivel mundial en lanzar una aplicación comercial de este sistema. Este sistema, que está siendo sujeto de un desarrollo más amplio, ha sido adoptado en las aplicaciones de los vehículos de pasajeros. Otras compañías, como R. Bosch, Siemens y Delphi ofrecen también hoy día versiones comerciales de este sistema. El otro sistema es el sistema de inyección de unidad eléctrica hidráulica (HEUI), desarrollado por Caterpillar en Estados Unidos. Este sistema utiliza aceite de motor a presión para someter a presión el combustible accionando el pistón de la tobera (inyector) a través de la cual se inyecta el combustible a presión.
7-3. PRESIÓN DE INYECCIÓN INYECCIÓN MÁS MÁS ALTA, ALTA, RELACIONES RELACIONES DE INYECCIÓN INYECCIÓN OPTIMIZADAS, OPTIMIZADAS, MAYOR PRECISIÓN DE CONTROL DEL CALADO DE INYECCIÓN, MAYOR PRECISIÓN DE CONTROL DE LA CANTIDAD DE INYECCIÓN A. Presión de inyección inyección más alta alta El combustible que se inyecta desde la tobera se transforma en p artículas más finas cuando aumenta la presión de inyección. Esto mejora la combustión y reduce la cantidad de humo que contienen los gases de escape. Inicialmente, la presión de inyección máxima de la bomba en línea (tipo A) y la bomba rotativa (tipo VE) era de 60 Mpa. Debido al avance de las aplicaciones de alta presión, existen algunos sistemas de inyección de combustible desarrollados recientemente que inyectan el combustible a una presión de 100 Mpa o incluso superior. El "common rail system" de segunda generación inyecta combustible a una presión sumamente alta de 180 Mpa. a.
Comp Compar arac ació ión n de la la pres presió ión n de iny inyec ecci ción ón
Bomba de tipo A Bomba mecánica
Bomba de tipo distribución Bomba de tipo NB Bomba ECD V3
Serie ECD V
Bomba ECD V4 (1ª generación)
Serie “common rail”
Bomba HP0 Bomba HP2
(2ª generación) Bomba HP3, 4
1 Mpa es aproximadamente 10,2 kgf/cm2. 120 120 145 185 50 100 150 200 Presión de inyección (Mpa) Q000920S
-82-
B. Relaci Relacion ones es de inyec inyecció ción n optimi optimizad zadas as • La relación de inyección es la relación relación de los cambios de la cantidad de combustible que se inyecta sucesivamente desde la tobera dentro de una unidad de tiempo determinada. Relación de inyección alta
Relación de inyección t n ó i c c e y n i e d d a d i t n a C
Q000921S
• Cuando la presión de inyección aumenta, la relación de inyección aumenta en consecuencia. El aumento de la relación de inyección lleva a un aumento del volumen de la mezcla aire-combustible que se crea desde el comienzo de la inyección hasta el encendido (el periodo de retraso del encendido). Debido a que esta mezcla se quema posteriormente de una sola vez, se produce ruido (golpeteo diesel) y NOx. Por esta razón, es necesario controlar de forma apropiada la relación de inyección manteniendo una relación de inyección baja al principio de la inyección y suministrando una cantidad suficiente después del encendido. Para satisfacer esta necesidad, se han adoptado inyectores de dos muelles y un sistema de inyección piloto que ha sido desarrollado recientemente. Relación de inyección de inyector de 2 muelles
Control de la relación de inyección del “common rail system”
n ó i c c e y n i e d d a d i t n a C
n ó i c c e y n i e d d a d i t n a C
Inyección piloto
Q000922S
C. Mayor Mayor precisi precisión ón de control control del del calado calado de de inyecci inyección ón La reducción de las emisiones de los gases de escape y del consumo de combustible y la optimización del calado de inyección son importantes. Es sumamente difícil conseguir los niveles deseados de reducción de la emisión de escape mediante los métodos que ajustan el calado de inyección de acuerdo al régimen (o fuerza centrífuga), como el variador de avance mecánico convencional. Por esta razón, se han adoptado los sistemas controlados electrónicamente, para controlar el calado de inyección de forma libre y precisa según las características del motor. Tipo control electrónico
C a an n t t i i d da a d d d e e i n n y e ec c c ci i ó ón n
Temporizador mecánico
e c n o a l u v g a n e Á d
C a an n t ti i d da a d d d e e i n n y e ec c c ci i ó ón n
Régimen del motor
e c n o a l u v g a n e Á d
Régimen del motor
Q000923S
D. Mayor Mayor precisió precisión n de contro controll de la cantid cantidad ad de inyec inyección ción El ajuste de la potencia de salida de un motor diesel se logra mediante la regulación de la cantidad de inyección. La inadecuada precisión de control de la cantidad de inyección l leva al aumento de las emisiones de gases de escape, ruido y una deficiente economía de combustible. Por este motivo, se han desarrollado sistemas controlados electrónicamente para asegurar una alta precisión de control de la cantidad de inyección.
-83-
7-4. IMAGEN IMAGEN DEL DEL INTERIOR INTERIOR DE LA CÁMARA CÁMARA DE COMBUSTI COMBUSTIÓN ÓN •
Con los métodos de inyección convencionales, debido a que se inyectaba una cantidad excesiva de combustible en el periodo inicial, la presión de explosión se elevaba en exceso, lo que provocaba que se generaran ruidos como el sonido de golpeteo del motor. Para mejorar esta condición a través de la inyección piloto, inicialmente sólo se inyecta la cantidad de combustible necesaria y adecuada. Al mismo tiempo se eleva la l a temperatura de la cámara de combustión y se ayuda a la combustión de la inyección principal mientras que funciona de cara a prevenir el ruido y la vibración.
Q000924S
-84-
Fecha de publicación: agosto 2004
Editado y publicado por:
DENSO CORPORATION Departamento de servicio 1-1 Showa-cho, Kariya, Aichi Prefecture, Japón