LC FILTER FOR THREE PHASE INVERTER A Project report submitted by:
MUTHURAJ P
–
13MQ37
ELDHO JACOB
–
13MQ81
Dissertation submitted in partial fulllment of the reuirements reuirements for the de!ree of
MASTER OF MASTER OF ENGINEERING ENGINEERING Branch: EEE Branch: EEE
Specialization: POWER ELECTRONICS & DRIVES
of P"# COLLEGE OF
TECHNOLOGY
MARCH - 2014
ELECTRICAL & ELECTRONICS
PSG COLLEGE OF TECHNOLOGY $Autonomous %nstitution&
'(%M)A*(+, - ./1 00/
LC FILTER FOR THREE PHASE INVERTER LC FILTER FILTER DESIGN:
A low pass LC filter is required at te output ter!inal of Full "rid#e $S% to reduce reduce ar!oni ar!onics cs #enerat #enerated ed &' te pulsat pulsatin# in# !odula !odulatio tion n wa(efo wa(efor!) r!) *ile *ile desi#nin# LC filter+ te cut,off frequenc' is cosen suc tat !ost of te low order ar!onics is eli!inated) To operate as an ideal (olta#e source+ tat !eans no additi additiona onall (olta# (olta#ee distor distortio tion n e(en e(en tou# tou# under under te load load (ariat (ariation ion or a nonl nonlin inea earr load load++ te te outp output ut i!ped i!pedan ance ce of te te in(e in(ert rter er !ust !ust &e -ept -ept zero) zero) Terefore+ te capacitance (alue sould &e !a.i!ized and te inductance (alue sould &e !ini!ized at te selected cut,off frequenc' of te low,pass filter) Eac (alue of L and C co!ponent is deter!ined to !ini!ize te reacti(e power in tese co!ponents &ecause te reacti(e power of L and C will decide te cost of LC filter and it is selected to !ini!ize te cost+ ten it is co!!on tat te filter co!ponents are deter!ined at te set of a s!all capacitance and a lar#e inductance and consequentl' te output i!pedance of te in(erter is so i#) *it tese desi#n (alues+ te (olta#e wa(efor! of te in(erter output can &e sinusoidal under te linear load or stead' state condition &ecause te output i!pedance i!pedance is zero) "ut in case of a step can#e of te load or a nonlinear load+ te te outp output ut (olta (olta#e #e wa(e wa(efo for! r! will will &e dist distort orted ed cause cause &' te te slow slow s'ste s'ste! ! response as te output response is non,zero) Fi#ure / sows te power circuit of te sin#le pase P*0,$S% wit an' linear or nonlinear load) Te load current flows differentl' dependin# on te -ind of loads suc as linear and nonlinear load) Terefore it is difficult to represent te transfer function of in(erter output (olta#e to load current)Te plant co!posed of L,C low,pass filter satisfies linear propert'+ so it is possi&le to represent te s'ste! wic as two inputs of in(erter output (olta#e and load current) T1
T3
T5
T4
T6
T2
C 1
n V1 100Vdc R a
C 2
1k
R c 1k
F%G /
n
R b 1k
FLO* CHA2T TO 3ES%GN A PASS%$E4LC5 F%LTE2 STA2T
HA20ON%C ANALYS%S OF P*0 $OLTAGE AN3 NONL%NEA2 C622ENT
SELECT%NG C6T,OFF F2E76ENCY
SELECT%NG 0%N%060 CAPAC%TANCE "ASE3 ON COST
SELECT%NG C6T,OFF F2E76ENCY SELECT%NG CONT2OLLE2 2ESPONSE
%S THE CONT2OL 2ESPONSE 2EAL%9A"LE:
SELECT%NG CONT2OLLE2 GA%NS SAT%SF%NG CONT2OL 2ESPONSE
ANALYS%NG O6TP6T $OLTAGE HA20ON%CS 6N3E2 THE L%NEA2 AN3 NON,L%NEA2 LOA3
*D 2 4
SELECT%NG 3C L%N8 $OLTAGE AN CALC6LATE %N36CTANCE
F%G 1 STOP
FORMULA USED:
4i5To find inductor+ 1
L=
8
Vdc∗1
∗
Δi Lmax
Fs
∗
*ere+ $dc ; 3C (olta#e of te in(erter Δi Lmax ; Current ripple
4ripple current can &e cosen as /<= , />= of rated current5 Fs ; Switcin# frequenc'
4ii5To find capacitor+
C =15
Prated
∗
3
∗2
2
πf ∗V rated
*ere+ Prated
; 2eacti(e power rated
4reacti(e power is cosen as />= of te rated power5 $rated ; AC rated (olta#e
DESIGN OF INDUCTOR:
FILTER DESIGN: INVERTER LC FILTER SWITCHING FRREQUENCY = 5KHz OUTPUT CURRENT
= 1A RMS
LINE VOLTAGE
= !"V RMS
LINE FREQUENCY
= 5Hz
CAPACITANCE VALUE CALCUALATED = 1#F$ %V INDUCTANCE VALUE CALCULATED
= '5(H
INDUCTANCE DESIGN PROCEDURE
Se(eral factors need to &e considered wile desi#nin# an inductor+ few of wic are listed &elow 1' F)*+#*,-. /0 O*)2ti/, !' C/)* M2t*)i23 S*3*-ti/, "' E,*)4. H2,3i,4 C226i3it. /0 t7* I,#-t/) 8*t*)(i,*9 t7* 9iz* /0 t7* -/)* ' C23-#32t* N#(6*) /0 T#), 5' S*3*-ti/, /0 C/*) ;i)* %' E9ti(2ti/, /0 L/99*9 2, T*(*)2t#)* Ri9*
%n tis application te %nductor as to andle lar#e ener#' due to te 20S current is /
Te desi#n of te ac inductor requires te calculation of te (olt,a!p 4$A5 capa&ilit') %n tis applications te inductance (alue is specified)
R*32ti/,97i /0$ A)*2 P)/#-t A$ t/ t7* I,#-t/) V/3t
Te (olt,a!p capa&ilit' of a core is related to its area product+ Ap+ &' te equation tat !a' &e stated as Follows)
Fro! te a&o(e+ it can &e seen tat factors suc as flu. densit'+ "ac+ te window utilization factor+ 8u 4wic defines te !a.i!u! space occupied &' te copper in te window5+ and te current densit'+ ?+ all a(e an influence on te inductor area product+ Ap)
F#,2(*,t23 C/,9i*)2ti/,9
Te desi#n of a linear ac inductor depends upon fi(e related factors@ / ) 3esired inductance 1) Applied (olta#e+ 4across inductor5 ) Frequenc' B) Operatin# Flu. densit' wic will not saturate te core >) Te!perature 2ise
Te inductance of an iron,core inductor+ wit an air #ap+ !a' &e e.pressed as@
Final deter!ination of te air #ap requires consideration of te effect of frin#in# flu.+ wic is a function of #ap di!ension+ te sape of te pole faces+ and te sape+ size+ and location of te windin#
Frin#in# flu. decreases te total reluctance of te !a#netic pat+ and terefore increases te inductance &' a factor+ F+ to a (alue #reater tan tat calculated fro! Equation
W7*)* G i9 ;i,i,4 3*,4t7 /0 t7* -/)*
Now tat te frin#in# flu.+ F+ as &een calculated+ it is necessar' to recalculate te nu!&er of turns usin# te frin#in# flu.+ Factor F
wit te new turns+ N4new5+ and sol(e for "ac
Te losses in an ac inductor are !ade up of tree co!ponents@ /) Copper loss+ Pcu 1) %ron loss+ Pfe ) Gap loss+ P#
Te copper loss+ Pcu+ is %12 and is strai#tforward+ if te s-in effect is !ini!al) Te iron loss+ Pfe+ is calculated fro! core !anufacturers data) Gap loss+ P#+ is independent of core !aterial strip tic-ness and per!ea&ilit')
INDUCTOR DESIGN STEPS
/ 3esi#n Spec
$L
1<
A
%nductance
L
"
Line Current
%L
/< A
C
Line Frequenc'
f
>< Hz
3
Current 3ensit' ?
E
Efficienc' #oal
F
<) H
<< ADc!1
ef
< = %ron Powder
0aterial 0a#netic
G
per!ia&ilit'
u!
/1<<
H
Flu. 3ensit'
"ac
/)B Tesla
%
*indow 6tilisation
8u
<)B
?
Te!p 2ise Goal Tr
< C
Calculate Apparent 1 power Pt Pt $A $L%L
1<< A
Calculate Area Product AP
AP $A/
/)JJ// K c!B
B
Select Core %ron Powder Core E%11J core 0aterial
0a#netic Pat Len#t
0PL
B) c! 1JBB #
0ean Len#t Turn
0LT
%ron Area
Ac
/)<1J c!1
*indow Area
*a
1B)B c!1
Area product
Ap
K<)<B c!B
Coef
8#
1JJ) c!>
Surface Area
At
/
0aterial P
P
*indin# Len#t
G
La!ination E
1)K c!
J)>K >)K/>
Calculate Nu!&er of > Turns
N
%nductance 2equired
L
Calculate required K air#ap
l#
l# 4<)BpiN1Ac/<, BDL5 , 40PLDu!5
1)J8G windin# wei#
l#
1J)><1>> turns
<) H
<)BB
B)B
Calculate Frin#in# flu. J F
F
Calculate New nu!&er of turns
N/
N/sqrt4l#LD<)BpiAC F/<,J5
/)<<K >/
1<1)K< 1K turns
/< Calculate flu. densit' "ac $L/
"ac
/)B>//>< K Tesla
Calculate "are wire // area Awl
<)< c!1
Awl%LD?
Select wire fro! *ire /1 ta&le A* G /B
Calculate *indin# 2esistance
Aw
<)<1 c!1
uO!Dc !
uO!Dc J1)J !
1<
/ 20LTN/uOH!/ <,
2
<)>B>BB> 1 O!s
/B Calculate Copper Loss PL %L1 2L
PL
>B)>BB>1 > *
wD-
/)>BB>> O!
Pfe
<)1
P#
>>)1BKBJ BJ *
PL
///)><11B 11 *
Calculate *atts per /> -ilo#ra! *D8 <)<<<>>KfI/)J"I/) J
/ Calculate Core Loss Pfe wD- *tfe
/K Calculate Gap Loss P# 8iEl#f"1
/J Calculate Total Loss su! of losses
Calculate surface area watt / densit' psi PLDAt
psi
<)/<BB 1 watts per c!1
Tr
)K> >
Calculate te 1< Te!perature rise Tr B><psiI<)J1
Calculate *indow 1/ utilisation <)/>K/B/ watt
8u N/AwD*a
%N36CTO2 *%N3%NG 3ETA%LS
3
510 2
50
I 1
0
I
Inductor Termination
Winding Arrangement
*%N3%NG 3ETA%LS N o)
*indin# no)
Ter!inals
No *ire %nsulation of #au#e &etween turn S*G windin# La'ers s
/
%
/M1
1<<
/B
Nil 4$arnisin# 2eqd5
1
%
Tappin#
C/)* D*t2i39 : EI !!5
1/<
2e!ar-s
CORE DIMENSIONAL DETAILS
WIRE TALE
S%06LAT%ON C%2C6%T@
S%06LAT%ON 2ES6LTS@ *itout Filter@
*it Filter@
2EFE2ENCES@ [1] 0iss) San#ita 2 Nandur-ar + 0rs) 0ini 2aee( +3esi#n and Si!ulation of tree pase %n(erter for #rid connected Poto(oltic s'ste!s+ Proceedings of Third Biennial National Conference, NCNTE !"#!, Fe$ !%!&