2
S ISTEM P ERSAMAAN L INIER
istem persamaan linier merupakan salah satu model dan masalah matema matematika tika yang yang banyak banyak dijump dijumpai ai di dalam dalam berbag berbagai ai disipl disiplin, in, termasuk termasuk matematika, statistika, fisika, biologi, biologi, ilmu-ilmu ilmu-ilmu sosial, teknik, dan bisnis. Sistem-siste Sistem-sistem m persamaan persamaan linier muncul secara langsung dari dari masala masalah-m h-masal asalah ah nyata, nyata, dan merupa merupakan kan bagian bagian dari dari proses proses penyelesaian masalah-masalah lain, misalnya penyelesaian sistem persamaan non-linier simultan. Suatu sistem persamaan linier terdiri atas sejumlah berhingga persamaan linier dalam sejumlah berhingga berhingga variabel. variabel. Menyelesaika Menyelesaikan n suatu sistem persamaan linier adalah mencari nilai-nilai variabel-variabel terse but yang memenuhi semua persamaan linier yang diberikan. Pada dasarnya terdapat dua kelompok metode yang dapat digunakan untuk menyelesaika menyelesaikan n suatu sistem persamaan linier. linier. Metode pertama tama dikena dikenall sebagai sebagai metode metode langsung, yakni yakni meto metode de yang yang menc mencar arii penyelesaian suatu sistem persamaan linier dalam langkah berhingga. Metode-metode ini dijamin berhasil dan disarankan untuk pemakaian secara umum. Kelompok kedua dikenal sebagai metode tak langsung atau metode iteratif , yang bermul bermulaa dari dari suatu suatu ham hampir piran an penyele penyelesai saian an awal awal dan kemudian berusaha memperbaiki hampiran dalam tak berhingga namun langkah konvergen. konvergen. Metode-metod Metode-metodee iteratif digunakan untuk menyelesaikan sistem persamaan linier berukuran besar dan proporsi koefisien nolnya besar, seperti sistem-sistem yang banyak dijumpai dalam sistem persamaan diferensial.
2.1 Penger Pengertia tian n dan Conto Contoh h Suatu Suatu persam persamaan aan dalam dalam matema matematik tikaa merupa merupakan kan sebuah sebuah ekspre ekspresi si kesamaan (memuat tanda sama dengan, “=”) yang melibatkan konstanta, variabel, variabel, dan operasi-opera operasi-operasi si hitung/matematika hitung/matematika.. Di dalam sebuah persamaan, komponen-komponen yang dijumlahkan atau dikurangkan dise51
53
2.1 Pengertian dan Contoh maan linier linier..
.. .
(2.1)
Kuantitas-kuantitas (untuk ) disebut koefisien. Nilai koefisien-koefisien dan ruas kanan pad padaa seti setiap ap per persam samaan aan dik diketah etahui. ui. Kuantitas-kuantitas disebut variabel, yang nilainya belum diketahui dan hendak dicari. Sistem persamaan di atas dapat ditulis dalam bentuk matriks matriks sebagai
dengan
adalah sebuah matriks
.. . dan
dan
:
.. .
.. .
Penulisan SPL SPL (2.1) (2.1) dalam bentuk persamaan matriks. Pengertian matriks koefisien, matriks konstanta, dan matriks augmented.
.. .
adalah vektor-vektor -komponen:
dengan pangkat menyatakan operasi transpose matriks, yakni mengu bah baris menjadi kolom kolo m dan kolom menjadi baris. Matriks disebut matriks koefisien , vektor kolom sering disebut vektor konstanta. Gabung Gabungan an matriks matriks dan vektor kolom , yakni yakni matriks , disebut matriks augmented dari SPL (2.1). Apabila semua nilai untuk , maka SPL (2.1) dise but sistem homogen . Jika terdapat untuk suatu , maka SPL (2.1) disebut sistem tak homogen . Sistem homogen memegang peranan ana n pen pentin ting g untu untuk k men menget getahui ahui ada tidakn tidaknya ya pen penyel yelesai esaian an SPL (2. (2.1). 1). Teorema berikut meringkaskan beberapa hasil penting tentang sistem-sistem persamaan linier linier.. Pengantar Pengan tar Komput Komputasi asi Numerik
c Sahid (2004 – 2012)
55
2.1 Pengertian dan Contoh Perhatikan bahwa titik potong kedua garis tersebut merupakan penyelesaian SPL di atas.
Gambar 2.1: SPL dengan penyelesaian Gambar penyelesaian tunggal tunggal dapat disajikan dengan grafik kurva-kurva linier yang berpotongan di satu titik.
C ONTOH 2.2. Perhatikan SPL
Contoh SPL dalam dua variabel yang tidak konsisten
Jika persamaan kedua dikurangi tiga kali persamaan pertama maka kita dapatka dapatkan n . Ini artinya SPL tersebut tidak mempunyai penyelesaian. Apabila kita plot kedua garis yang menyajikan kedua persamaan linier di atas kita dapatka dapatkan n dua buah kurva linier yang tidak berpotongan, seperti terlihat pada Gambar 2.2. Kedua garis tersebut saling sejajar satu sama lainnya. C ONTOH 2.3. Perhatikan SPL
Pengantar Pengan tar Komput Komputasi asi Numerik
Sebuah SPL yang terdiri atas dua buah persamaan linier yang ekivalen bersifat tidak konsisten.
c Sahid (2004 – 2012)
59
2.2 Eliminasi Gauss
2.2 Eliminasi Gauss Metode eliminasi Gauss digunakan untuk menyelesaikan sebuah sistem persamaan linier dengan mengubah SPL tesebut ke dalam bentuk sistem persamaan linier berbentuk segitiga atas, yakni yang semua koefisien di bawah diagonal utamanya bernilai nol. Bentuk segitiga atas ini dapat diselesaikan dengan menggunakan substitusi (penyulihan) balik. Untuk mendapatkan bentuk SPL segitiga dari SPL yang diketahui, metode eliminasi Gauss menggunakan sejumlah operasi baris elementer (OBE): 1. Menukar posisi dua buah persamaan (dua baris matriks augmented)
Operasi baris elementer pada metode eliminasi Gauss
2. Menambah sebuah persamaan (baris matriks augmented) dengan suatu kelipatan persamaan lain (baris lain) 3. Mengalikan sebuah persamaan (baris matriks augmented) dengan sebarang konstanta taknol. Pemakaian operasi-operasi baris elementer di atas pada sebuah SPL tidak akan mengubah penyelesaikan SPL yang bersangkutan. Jelas bahwa penyelesaian sebuah SPL tidak tergantung pada susunan penulisan persamaan, sehingga operasi baris nomor 1 dapat dipakai. Dalam setiap persamaan, kedua ruas menyatakan nilai yang sama, sehingga operasi baris nomor 2 dapat digunakan. Demikian pula, operasi baris nomor 3 menghasilkan persamaan yang ekivalen. Sekarang kita akan menjelaskan proses eliminasi Gauss ini melalui sebuah contoh. Perhatikan SPL (A) (B) (C) 1. Eliminasi
dari persamaan (B) dan (C): (A) (D) (E)
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
60
Bab 2. Sistem Persamaan Linier 2. Eliminasi
dari persamaan (E): (A) (D) (F)
3. Hitung : Dari (F) diperoleh diperoleh sukkan nilai-nilai
dan
saian SPL di atas adalah
. Masukkan nilai ke dalam (D) . Jadi, . Make dalam (A) untuk mendapatkan : , . Jadi, vektor penyele.
Metode Eliminasi Gauss terdiri atas dua tahap: 1. Eliminir secara berturut-turut variabel-variabel dari beberapa persamaan.
,
,
, ...,
2. Masukkan kembali nilai-nilai yang sudah didapat ke dalam persamaan-persamaan tersebut untuk mendapatkan nilai-nilai yang belum diketahui di antara , , , ... , . Secara umum, misalkan kita mempunyai SPL seperti pada (2.1):
.. . Berikut adalah langkah-langkah eliminasi Gauss untuk SPL (2.1): Tahap I: Eliminasi 1. Eliminir dari persamaan-persamaan kedua, ketiga, . . . , ke- . Dengan kata lain, buat koefisien-koefisien pada persamaanpersamaan kedua, ketiga, . . . ke- kenjadi nol. Hal ini dapat dilakukan dengan mengurangkan suatu kelipatan persamaan pertama dari persamaan-persamaan kedua, ketiga, . . . , ke- . Proses ini mengubah nilai-nilai koefisien-koefisien , , dan konstanta Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
62
Bab 2. Sistem Persamaan Linier ,
, . . . , dan ke– , dengan cara mengurangkan kelipatan baris ke– dari baris ke– , untuk : untuk
Akhir tahap I proses eliminasi Gauss adalah SPL bentuk segitiga atas yang ekivalen dengan SPL semula.
dan
(2.2) (2.3)
4. Akhirnya, setelah kita berhasil mengeliminir variabel-variabel , , , .. ., dengan menggunakan operasi-operasi seperti di atas kita dapatkan SPL
(2.4)
.. .
dengan matriks koefisien berupa matriks segitiga atas (elemenelemen di bawah diagonal utama bernilai nol).
Tahap II metode eliminasi Gauss adalah proses substitusi (penyulihan) mundur.
Tahap II: Substitusi Pada tahap ini kita perlu menghitung nilai-nilai , , . Dari SPL (2.4) kita dapat melakukan substitusi mundur sbb.:
1. Dari persamaan terakhir didapat 2. Dengan memasukkan nilai oleh
.
ke dalam persamaan ke.
3. Secara umum, setelah diperoleh nilai-nilai diperoleh dengan rumus
, ...,
diperakan
(2.5) Elemen pivot, baris pivot, penentuan pivot parsial
Persamaan (2.5) dapat digunakan untuk menghitung nilai-nilai setelah diketahui.
Permasalahan yang mungkin muncul Perhatikan persamaan-persamaan (2.2), (2.3), (2.5). Dari rumus-rumus tersebut, tampak bahwa metode eliminasi Gauss akan gagal apabila nilaiPengantar Komputasi Numerik
c Sahid (2004 – 2012)
63
2.2 Eliminasi Gauss nilai sama dengan nol, sebab nilai-nilai tersebut digunakan sebagai pembagi pada pengali maupun di dalam proses substitusi mundur (2.5). Nilai pada baris ke- di mana untuk , disebut elemen pivot pada langkah ke- . Baris yang memuat elemen pivot dise but baris pivot. Eliminasi juga dapat menyebabkan hasil yang jelek apa bila pada beberapa langkah digunakan pengali yang nilainya lebih besar daripada 1. Hal ini dikarenakan pada langkah ke– , galat pembulatan pada koefisien-koefisien , , .. ., dan , serta diperbesar oleh faktor . Apabila nilai-nilai pada langkah-langkah berurutan hampir sama besar, maka galat pembulatanya akan terakumulasi secara cepat, menyebabkan metode yang tidak stabil. Angka-angka signifikan mungkin juga akan hilang pada proses penyulihan mundur apabila terdapat elemen-elemen pivot yang bernilai sangat kecil. Salah satu metode untuk mengatasi masalah-masalah ini disebut metode penentuan pivot parsial, yang akan dijelaskan setelah kita bahas contoh berikut ini. C ONTOH 2.5. Selesaikan SPL di bawah ini dengan menggunakan metode eliminasi Gauss.
Penyelesaian: Matriks augmented-nya adalah
1. Pilih elemen pivot . Misalkan menyatakan baris ke- matriks augmented. Maka dengan melakukan operasi-operasi , , dan , didapat matriks baru
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
65
2.2 Eliminasi Gauss tidak mempunyai penyelesaian atau mempunyai tak berhingga banyak penyelesaian. Selanjutnya, apabila semua elemen tersebut sangat kecil, maka elemen pivot yang terpilih juga sangat kecil. Akibatnya, dari persamaan (2.5) terlihat bahwa nilai-nilai sangat sensitif terhadap perubahan kecil pada koefisien. Hal ini menunjukkan bahwa SPL yang bersangkutan dalam kondisi sakit. Suatu strategi penentuan pivot yang sering digunakan di dalam metode Eliminasi Gauss dikenal sebagai penentuan pivot parsial. Di dalam metode ini, suatu elemen pivot merupakan elemen maksimum pada kolom di bawah baris ke- , untuk , yakni elemen pivot
Strategi penentuan pivot parsial
(2.6)
untuk Kata parsial digunakan untuk membedakan prosedur ini dengan metode penentuan pivot total, yang menggunakan pertukaran baris dan kolom. Penentuan pivot total menghasilkan reduksi tambahan yang mempengaruhi galat-galat pembulatan dan hal ini sangat penting demi keakuratan penyelesaian sistem-sistem tertentu. Kita tidak akan membahas strategi penentuan pivot total di sini. Apabila elemen pivot pada langkah ke- bernilai nol, maka terdapat tiga kemungkinan: 1. SPL mempunyai solusi tunggal. Dalam hal ini baris pivot ditukar dengan salah satu baris di bawahnya sedemikian hingga diperoleh elemen pivot yang tak nol. 2. SPL yang bersangkutan tidak bebas. Apabila elemen pivot nol tidak dapat dihindari dan SPL-nya bersifat konsisten, maka SPL tersebut mempunyai tak berhingga penyelesaian. Sebagai contoh, SPL di bawah ini bersifat tidak bebas.
Contoh SPL yang tak bebas
Perhatikan, persamaan pertama merupakan jumlah persamaan kedua dan ketiga, sehingga SPL tersebut tidak bebas. SPL tersebut dikatakan bergantung secara linier , karena salah satu persamaan merupakan kombinasi linier kedua persamaan yang lain. Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
67
2.2 Eliminasi Gauss langkah kedua, menghasilkan
Dari persamaan ketiga diperoleh bahwa dapat bernilai berapa saja. Penyelesalain SPL di atas dapat ditulis sebagai , untuk sebarang nilai . Jadi SPL tersebut konsisten namun tidak bebas, mempunyai tak berhingga penyelesaian. 3. SPL yang bersangkutan tidak konsisten . Dengan mengganti ruas kanan persamaan pertama SPL di atas akan diperoleh SPL lain yang bersifat tidak konsisten. Misalnya, jika ruas kanan persamaan pertama diganti menjadi 1, diperoleh SPL
Contoh SPL yang tidak konsisten
Setelah langkah eliminasi kedua diperoleh
Di sini jelas tidak ada nilai yang memenuhi persamaan ketiga, sehingga SPL tersebut bersifat tidak konsisten. (Jumlah persamaan kedua dan ketiga pada SPL semula adalah , yang bertentangan dengan persamaan pertama.) Suatu SPL yang bersifat bahwa tidak ada satu persamaanpun yang dapat dinyatakan sebagai kombinasi linier persamaan-persamaan yang lain disebut bebas linier . Dari teorema dasar dalam aljabar linier diketahui bahwa setiap SPL bebas linier yang terdiri atas persamaan dalam variabel mempunyai penyelesaian tunggal. Akan tetapi di dalam komputasi numerik, karena digunakan pendekatan hampiran dengan menggunakan pehitungan-perhitungan aritmetika oleh komputer, pernyataan tersebut diartikaan secara kurang persis. Khususnya, jika pada suatu langkah eliminasi Gauss diperoleh elemen pivot yang tidak tepat bernilai nol, namun sangat kecil (mendekati nol) dibandingkan dengan koefisienPengantar Komputasi Numerik
Secara teoritis, SPL yang bebas linier mempunyai solusi tunggal, namun secara numerik dapat diperoleh solusi hampiran yang tidak valid, jika terdapat elemen pivot yang nilainya mendekati nol.
c Sahid (2004 – 2012)
68
Bab 2. Sistem Persamaan Linier koefisien lain dalam baris pivot, pembagian oleh elemen pivot tersebut mengakibatkan penyelesaian numerik yang memuat galat pembulatan yang mungkin cukup berarti, sehingga penyelesaian yang diperoleh tidak valid. Algoritma eliminasi Gauss (2.1) dapat secara mudah dimodifikasi untuk menerapkan strategi pencarian pivot parsial. Dalam hal ini kita ganti langkah 1(a) dengan mencari di antara sedemikian hingga
Strategi penentuan pivot parsial bertujuan untuk menghindari pemakaian elemen pivot yang bernilai hampir nol. Akan tetapi alasan lain yang sama penting adalah, dalam kebanyakan kasus penentuan pivot parsial menurunkan efek perambatan galat akibat pembulatan. Dengan stratedi penentuan pivot parsial, pengali-pengali pada (2.2) dan (2.3) memenuhi Hal ini akan mengurangi timbulnya kasus galat akibat kehilangan angka signifikan, karena perkalian dengan tidak akan menghasilkan bilangan yang lebih besar. Apabila algoritma tersebut gagal dalam menggunakan suatu strategi penentuan pivot, maka kita tidak perlu mencari strategi lain karena permasalahannya pada matriks , bukan pada strateginya. Khususnya, apa bila matriks singular, maka proses akan berakhir dengan suatu elemen pivot dan semua elemen di bawahnya bernilai nol. Dalam hal ini metode gagal, dalam arti kita tidak dapat menemukan penyelesaian tunggal. Apabila matriks koefisien “hampir singular”, maka SPL tersebut secara numerik tidak stabil. Artinya, suatu perubahan kecil nilai elemenelemen atau akan menghasilkan suatu perubahan drastis pada vektor penyelesaian pada SPL . Apabila SPL secara numerik stabil, maka suatu perubahan kecil nilai elemen-elemen atau akan menghasilkan suatu perubahan kecil pada vektor penyelesaian . Dengan menggunakan program MATLAB kita dapat menyelesaikan sebuah SPL secara mudah. Sebagai contoh SPL pada contoh 2.5 dapat diselesaikan dengan MATLAB sebagai berikut. >> A=[1 -1 2 -1;2 -2 3 -3;1 1 1 0;1 -1 4 3] Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
70
Bab 2. Sistem Persamaan Linier Penyelesaian: Matriks augmented dalam SPL ini adalah
1. Elemen pivot dapat digunakan untuk mengnolkan elemen-elemen di bawahnya melalui operasi-operasi , , dan :
2. Elemen pivot , sehingga perlu dicari elemen tak nol di bawahnya. Ternyata semua elemen di bawah bernilai nol, sehingga proses berakhir. SPL tidak mempunyai penyelesaian tunggal. Untuk mengetahui apakah SPL tersebut tidak mempunyai penyelesaian atau mempunyai tak berhingga banyak penyelesaian, kita lakukan operasi dan kita dapatkan matriks augmented
Dari matriks terakhir kita dapatkan
Dalam penyelesain ini nilai dinyatakan dalam , sehingga apa bila ditentukan maka dapat dihitung. Oleh karena dapat bernilai berapa saja, maka SPL di atas memiliki tak berhingga banyak penyelesaian. Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
72
Bab 2. Sistem Persamaan Linier Dengan substitusi mundur kita dapatkan
dari baris ketiga dari baris kedua Ternyata nilai tidak tunggal. Ini artinya SPL di atas tidak mempunyai penyelesaian. Dengan kata lain SPL di atas tidak konsisten.
2.2.1 Analisis Algoritma Eliminasi Gauss Untuk mengetahui banyaknya operasi hitung yang diperlukan oleh Algoritma (2.1) untuk menyelesaikan SPL dengan variabel kita lihat langkah-langkah pada algoritma tersebut. Tabel 2.1 menyajikan hasil analisis ini.
Tabel 2.1: Analisis Algoritma Eliminasi Gauss Langkah (perhitungan) 1(d)i.
Cacah Penjumlahan/ Pengurangan 0
Cacah Perkalian/ Pembagian
0
1
1(d)ii. 1(d)iii. 3. 4. Jumlah =
=
Sistem tridiagonal Metode eliminasi Gauss merupakan metode yang sederhana untuk digunakan khususnya jika semua koefisien tak nol terkumpul pada diagonal utama dan beberapa diagonal di sekitarnya. Suatu sistem yang bersifat Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
73
2.2 Eliminasi Gauss demikian disebut banded dan banyaknya diagonal yang memuat koefisienkoefisien tak nol disebut bandwidth. Sebuah contoh khusus, namun sering dijumpai, adalah sistem tridiagonal
.. .
.. .
..
.
..
.
..
.
.. .
.. .
.. .
.. .
Bandwidth suatu SPL, sistem tridiagonal
(2.7)
yang mempunyai bandwidth tiga. Sistem-sistem demikian muncul, misalnya, pada penyelesaian numerik untuk menyusun spline kubik dan pada penyelesaian masalah syarat batas. Proses eliminasi untuk sistem demikian bersifat trivial karena hanya dengan membentuk sebuah subdiagonal nol tambahan, proses penyulihan mundur segera dapat dilakukan. Dengan operasi baris yang dilakukan berurutan: (2.8) untuk diperoleh sistem dalam bentuk
.. .
.. .
..
.
..
.
..
.
.. .
.. .
.. .
.. .
(2.9)
yang memiliki penyelesaian
Penyelesaian SPL tridiagonal
(2.10) Keseluruhan prosedur (2.8) dan (2.10) untuk menyelesaikan SPL Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
76
Bab 2. Sistem Persamaan Linier 5. Dengan menggunakan operasi-operasi , , dan matriks augmentednya menjadi
6. Sekarang kita bagi baris keempat dengan 2 dengan operasi kemudian lakukan operasi-operasi , untuk memperoleh
dan , dan
7. Sekarang kita telah memperoleh matriks diagonal satuan, sehingga penyelesaian SPL di atas dapat dibaca pada kolom terakhir, yakni . Catatan: Metode ini memerlukan lebih banyak operasi daripada eliminasi Gauss, selama proses reduksi matriks. Akan tetapi setelah itu kita tidak lagi memerlukan operasi hitung untuk mendapatkan penyelesaian SPL. Dengan demikian metode eliminasi Gauss–Jordan kurang efisien untuk menyelesaian sebuah SPL, tetapi lebih efisien daripada eliminasi Gauss jika kita ingin menyelesaikan sejumlah SPL dengan matriks koefisien sama.
2.2.3 Penyelesaian Persamaan dalam Variabel Pada pembahasan-pembahasan sebelumnya kita membatasi SPL yang terdiri atas persamaan dalam variabel. Sekarang kita akan memperumum penyelesaian SPL yang terdiri atas persamaan dalam variabel. Misalkan kita gunakan metode eliminasi Gauss–Jordan. Prosesnya tidak berbeda dengan yang sudah dijelaskan di atas. Langkah terakhir pada metode Gauss-Jordan akan memberikan solusi tunggal, jika ada, atau dapat digunakan untuk menjelaskan keberPengantar Komputasi Numerik
c Sahid (2004 – 2012)
78
Bab 2. Sistem Persamaan Linier digunakan fungsi rref(A) . Penyelesaian SPL juga dapat diperoleh dengan menggunakan fungsi rref pada MATLAB, yakni dengan menggunakan perintah rref([A b]). Jika rank(A)=rank([A b])=n , maka kolom terakhir merupakan vektor penyelesaian SPL tersebut.
LATIHAN 2.2 1. Tulis algoritma eliminasi Gauss–Jordan dengan melengkapi Algoritma (2.1). 2. Tulis program MATLAB tridiagonal.m untuk menyelesaikan SPL tridiagonal berukuran . 3. Lakukan analisis algoritma eliminasi Gauss–Jordan dengan mengu bah/melengkapi Tabel (2.1). Bandingkan keduanya! 4. Selesaikan SPL-SPL di bawah ini dengan menggunakan metode eliminasi Gauss (i) tanpa pivoting (ii) dengan pivoting parsial. (a)
(b)
(c)
Gunakan tiga angka signifikan dan berikan komentar mengenai hasilnya! 5. Selesaikan SPL
dengan menggunakan metode eliminasi Gauss dengan pivoting parsial. Gunakan tiga angka signifikan. Ubah ruas kanan persamaan Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
80
Bab 2. Sistem Persamaan Linier 9. Selesaikan SPL tridiagonal
dengan
Gunakan MATLAB untuk menghasilkan matriks dan vektor . Selesaikan SPL tersebut dengan program tridiagonal . 10. Tunjukkan bahwa banyaknya perkalian dan pembagian yang diperlukan untuk menyelesaikan SPL tridiagonal adalah .
2.3 Dekomposisi (Faktorisasi) LU
Faktorisai LU matriks menyatakan matriks sebagai hasil kali matriks segitiga bawah dan matriks segitiga atas .
Suatu masalah yang sering dihadapi di dalam menyelesaikan SPL X=B adalah perlunya mendapatkan beberapa penyelesaian untuk berbagai vektor B, sedangkan matriks tetap. Penggunaan metode eliminasi Gauss mengharuskan penyelesaian setiap SPL X=B secara terpisah untuk setiap vektor B , dengan menggunakan operasi aritmetika yang pada prinsipnya sama sampai dilakukan proses penyulihan balik. Suatu proses yang dikenal sebagai faktorisasi LU menangani permasalahan ini dengan hanya berkonsentrasi pada matriks koefisien, . Jika matriks bujur sangkar dapat difaktorkan menjadi , dengan adalah suatu matriks segitiga bawah dan matriks segitiga atas, maka kita menyebut hal ini sebagai faktorisasi dari . Sebagai contoh sekaligus penjelasan, misalkan matriks berukuran , (2.11)
Penyelesaian SPL bagai berikut:
X=B kemudian dapat diperoleh dengan cara se-
dengan Y= X. Jadi permasalahnnya sekarang dapat diselesaikan melalui dua tahap, yakni (1) mencari vektor Y yang memenuhi Y=B, dan (2) mencari vektor X yang memenuhi Y= X. Oleh karena adalah matriks segitiga bawah, penyelesaian Y=B Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
82
Bab 2. Sistem Persamaan Linier C ONTOH 2.9. Perhatikan SPL
Matriks koefisien dari SPL ini adalah
Elemen pivotnya adalah ; pengali-pengalinya adalah dan . Setelah membuat nol elemen-elemen di bawah pivot, matriks koefisien menjadi
Misalkan matriks dibentuk dengan menggunakan pengali-pengali dan . Elemen-elemen pada diagonal utama bernilai 1, kolom pertama di bawah diagonal utama merupakan negatif dari pengali-pengali tersebut, sedangkan semua elemen lainnya bernilai nol. Maka adalah
Perhatikan hasil kali
dan
Ternyata diperoleh (2.14) Apabila kita lanjutkan proses eliminasi untuk membuat nol elemen-elemen pada kolom kedua di bawah diagonal utama dengan menggunakan pengali , maka kita peroleh matriks yang tereduksi, Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
83
2.3 Dekomposisi (Faktorisasi) LU
Sekarang misalkan matriks adalah suatu matriks dengan diagonal utama satuan, kolom kedua di bawah diagonal utama merupakan negatif dari pengali di atas, dan elemen-elemen lainnya bernilai nol, yakni
Perhatikan hasilkali
dan
:
Ternyata diperoleh hubungan (2.15) Dari (2.14) dan (2.15) diperoleh (2.16) Misalkan Maka
adalah invers matriks
dan
adalah invers matriks
.
dan Dari (2.16) kita dapatkan
(2.17) Akan tetapi, oleh karena bawah, maka demikian juga segitiga atas. Jika kita tuliskan
dan adalah matriks-matriks segitiga . Juga kita tahu merupakan matriks dan , maka dari (2.17)
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
85
2.3 Dekomposisi (Faktorisasi) LU 4. 0. 0. L = 1. 0.5 0.25 >>L*U ans = 4. 2. 1. >>E*A ans = 4. 2. 1. -
1. 3.5 0.
- 2. - 1. 5.1428571
0. 1. - 0.3571429
1. 4. 1.
2. - 2. 5.
1. 4. 1.
2. - 2. 5.
0. 0. 1.
Ternyata hasil faktorisasi LU yang diberikan oleh MATLAB ber beda dengan hasil faktorisasi kita di atas. Hal ini tidaklah mengherankan, karena faktorisasi LU tergantung pada operasi-operasi baris yang digunakan di dalam proses eliminasi. Dengan kata lain, faktorisasi LU tidak bersifat tunggal. Pada hasil keluaran MATLAB di atas merupakan matriks permutasi yang menunjukkan proses eliminasi, dan hubungannya dengan matriks , , dan adalah .
Faktorisasi LU tidak bersifat tunggal.
2.3.1 Beberapa Metode Faktorisasi Lain Misalkan kita ingin memfaktorkan matriks
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
87
2.3 Dekomposisi (Faktorisasi) LU Jadi, berbentuk
Nilai-nilai dan dapat dihitung dengan cara mirip rumus (2.18) dan (2.19). Akan tetapi menarik untuk diperhatikan bahwa, jika menunjukkan matriks diagonal dengan elemen-elemen diagonal utamanya dan dan adalah hasil faktorisasi LU dengan metode Doolitle, maka
Jadi faktorisasi Crout dan Doolitle saling terkait erat.
Faktorisasi Crout menghasilkan , dengan dan , adalah hasil faktorisasi Doolitle, dan matriks diagonal dari .
Metode Choleski. Jika matriks nyata, simetris, dan definit positif, Faktorisasi Choleski menghasilkan maka kita dapat menemukan suatu matriks segitiga bawah seuntuk demikian hingga . Cara ini dikenal sebagai faktorisasi matriks bersifat Choleski. Matriks dihitung dengan menyelesaikan persamaansimetris dan definit persamaan positif.
(2.20) untuk
dan untuk setiap
C ONTOH 2.10. Dengan menggunakan metode Doolitle matriks jadi
. di atas dapat difaktorkan men-
Dengan mengalikan kedua matriks pada ruas kanan diperoleh matriks
Dengan menyamakan matriks tersebut dan matriks diperoleh
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
88
Bab 2. Sistem Persamaan Linier
atau
atau
atau
atau
atau
dan atau
Jadi, matriks
dan
tersebut adalah
dan
C ONTOH 2.11. Carilah dekomposisi Choleski dari matriks
Pengantar Komputasi Numerik
sebagai berikut
c Sahid (2004 – 2012)
90
Bab 2. Sistem Persamaan Linier melalui substitusi mundur. Metode ini bermanfaat khususnya apabila kita mempunyai sejumlah SPL dengan matriks koefisien sama. C ONTOH 2.12. Selesaikan SPL
Penyelesaian: SPL tersebut dapat ditulis sebagai
dengan
adalah matriks koefisien
Dalam contoh sebelumnya kita sudah menghitung faktorisasi LU dari
, yakni
dan
SPL
sehingga
diberikan oleh
,
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
92
Bab 2. Sistem Persamaan Linier 0 0
0 0
37/10 0
-9/10 191/74
E = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 >> b=[9;13;11;8] b = 9 13 11 8 >> Z=L\b % Penyelesian LZ=b Z = 9 10 15/2 382/37 >> X=U\Z % Penyelesaian UX=Z X = 1 2 3 4 >> X=A\b % Bandingkan dengan penyelesaian langsung X = 1 2 3 4
LATIHAN 2.3 1. Carilah faktorisasi LU matriks-matriks selesaikan SPL . Pengantar Komputasi Numerik
di bawah ini, kemudian
c Sahid (2004 – 2012)
94
Bab 2. Sistem Persamaan Linier , dengan
adalah
2.4 Galat dalam Penyelesaian SPL Reliabilitas penyelesaian suatu SPL yang diperoleh dengan suatu metode numerik merupakan hal yang sangat penting dan perlu mendapat perhatian. Kecuali terjadi kasus bahwa semua perhitungan melibatkan bilangan bulat atau rasional, eliminasi Gauss menyangkut galat pembulatan atau pemotongan di dalam operasi aritmetika, yang mengakibatkan galat dalam hampiran penyelesaian yang diperoleh. Apabila perhitungan dilakukan dengan MATLAB, mungkin Anda menemukan bahwa hasil perhitungan mungkin “hampir” sama dengan penyelesaian eksak. Hal ini dikarenakan MATLAB menggunakan tingkat keakuratan dengan presisi ganda (sampai 15 atau 16 angka signifikan) dalam operasi-operasi aritmetika. MATLAB menggunakan besaran eps untuk menyatakan galat setiap bilangan yang dapat disajikan olehnya. Artinya, eps adalah harga mutlak MATLAB penyelesaian terkecil dari relasi . Jadi, untuk setiap hasil perhimenggunakan besaran tungan , galat relatifnya, , tidak akan pernah kurang daripada eps. eps untuk Jelas bahwa proses penyelesaian suatu SPL akan menghasilkan akumulasi menyatakan galat dari galat-galat minimum tersebut. Pembagian dengan suatu bilangan setiap bilangan yang yang sangat kecil, atau pengurangan dua buah bilangan yang hampir dapat disajikan olehnya. Artinya, eps sama dapat menghasilkan efek penurunan tingkat keakuratan hasil secara adalah harga mutlak dramatis. Konsep norm dan bilangan kondisi suatu matriks, yang akan penyelesaian terkecil dijelaskan di bawah ini, merupakan alat yang berguna untuk mengestidari relasi . masi akumulasi galat yang terjadi dalam penyelesaian SPL . Kita mulai dengan memisalkan adalah hampiran penyelesaian (hasil perhitngan) SPL dan adalah penyelesaian eksaknya. Galat hampiran adalah Selanjutnya, definisikan Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
95
2.4 Galat dalam Penyelesaian SPL Besaran ini disebut residu di dalam penghampiran oleh apabila , maka . Oleh karena , maka diperoleh hubungan
. Jelaslah
Jadi, galat memenuhi suatu SPL dengan matriks koefisien , dan vektor residu, , sebagai vektor konstanta. Dalam praktek, nilai galat mungkin tidak diketahui, karena kita tidak tahu , namun nilai residu , sebagai hampiran nilai , adalah diketahui (dihitung dari definisinya). Oleh karena itu diperlukan adanya relasi antara galat dan residu . Untuk ini diperkenalkan pengertian ukuran besar (panjang) vektor dan matriks. Ukuran besar (panjang) suatu vektor , ditulis dengan notasi , dan matriks , ditulis dengan didefinisikan3 sebagai
Pengertian norm suatu vektor dan matriks
(2.21)
T EOREMA 2.2. Misalkan matriks nonsingular. Maka penyelesaian-penyelesaian memenuhi
dan
(2.22)
B UKTI : Dengan mengurangkan kedua SPL
dan
diperoleh
Dengan menggunakan sifat norm, dipenuhi hubungan
3
Terdapat beberapa definisi norm lain, namun definisi tersebut cukup untuk keperluan pembahasan hal di atas. Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
97
2.4 Galat dalam Penyelesaian SPL Untuk
misalnya, matriks Hilbert dan inversnya berturut-turut adalah
Dengan meggunakan rumus norm (2.21) dan rumus bilangan kondisi (2.23), didapatkan
yang cukup besar. Untuk melihat bahwa matriks Hilbert memang sangat sensitif terhadap perubahan kecil pada elemen-elemennya, kita ambil hampiran sampai lima angka signifikan, yakni
Invers matriks hampiran
tersebut adalah
Terlihat bahwa galat pada terjadi pada tempat desimal keenam, sedangkan beberapa galat pada terjadi pada tempat desimal kedua. Berarti telah terjadi perubahan angka signifikan yang cukup berarti pada dibandingkan pada . MATLAB memiliki fungsi cond yang dapat digunakan untuk menghitung bilangan kondisi suatu matriks. MATLAB juga menyediakan fungsi hilb untuk menghasilkan matriks Hilbert, dan fungsi invhilb untuk menghitung invers matriks Hilbert. Cobalah Anda gunakan MATLAB untuk mengkonfirmasikan penjelasan di atas dan untuk menyelesaikan SPL , dengan . Dari perhitungan di atas terlihat bahwa penyelesaian eksak SPL tersebut adalah
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
99
2.4 Galat dalam Penyelesaian SPL 3. (a) Selesaikan SPL dan SPL pertubasinya . (b) Hitung bilangan kondisi matriks koefisien SPL tersebut. (c) Gambarkan kurva kedua persaamaan linier pada SPL pertama. Jelaskan efek perubahan ruas kanan secara geometris. Jelaskan sifat kondisi sakit moderat SPL tersebut secara geometris. 4. Hitunglah bilangan kondisi matriks
Kapan matriks menjadi berkondisi sakit? Jelaskan dalam hubungannya dengan penyelesaian SPL ! Bagaimanakah hu bungan bilangan kondisi matriks dan determinannya? 5. Tunjukkan bahwa bilangan kondisi suatu matriks selalu lebih besar atau sama dengan 1! 6. Tulislah fungsi MATLAB kond untuk menghitung bilangan kondisi suatu matriks berdasarkan rumus norm (2.21) dan rumus bilangan kondisi (2.23). Gunakan fungsi kond untuk menghitung bilangan kondisi matriks-matriks koefisien dalam latihan ini. Bandingkan hasilnya jika Anda menggunakan fungsi cond yang sudah tersedia di sistem MATLAB. 7.
(a) Gunakan MATLAB untuk menghasilkan matriks
.. .
..
.
.. .
untuk . (b) Hitunglah secara eksplisit, dan hitunglah dengan MATLAB untuk . (c) Hitunglah bilangan kondisi matriks . (d) Tentukan penyelesaian SPL dengan dan . Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
102
Bab 2. Sistem Persamaan Linier piran pertama terhadap penyelesaian SPL tersebut adalah
Sekarang dengan menggunakan nilai-nilai ini pada ruas kanan persamaan (P5) – (P8), kita dapat menghitung hampiran kedua. Proses ini dapat diulang-ulang sampai keakuratan hampiran yang diinginkan tercapai. Berikut adalah hasil proses iterasi dengan menggunakan komputer Tabel 2.2: Hasil iterasi P5, P6, P7, P8
Setelah iterasi ke-8 diperoleh hampiran penyelesaian
Bandingkan dengan penyelesaian eksaknya, yakni
.
C ONTOH 2.14. Selesaikan SPL berikut ini dengan menggunakan metode Iterasi Jacobi.
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
106
Bab 2. Sistem Persamaan Linier menjadi persamaan ketiga dan keempat, metode Jacobi ternyata berhasil memberikan penyelesaian tersebut, sebagaimana terlihat pada hasil keluaran MATLAB berikut ini. >> A=[10 -1 2 0;-1 11 -1 3;2 -1 10 0;0 3 -1 8] A = 10 -1 2 0 -1 11 -1 3 2 -1 10 0 0 3 -1 8 >> b=[6;25;-11;-11] b = 6 25 -11 -11 >> X0=[-2;1;3;-1]; >> [X,g,H]=jacobi(A,b,X0,T,N) X = 1.1039 2.9965 -1.0211 -2.6263 g = 1.0e-004 * 0.0795 0.2004 0.0797 0.1511 H = -2.0000 1.0000 3.0000 -1.0000 0.1000 2.6364 -0.6000 -1.3750 0.9836 2.6023 -0.8564 -2.4386 1.0315 2.9494 -1.0365 -2.4579 1.1022 2.9426 -1.0114 -2.6106 1.0965 2.9930 -1.0262 -2.6049 1.1045 2.9895 -1.0200 -2.6256 1.1030 2.9965 -1.0220 -2.6236 1.1040 2.9956 -1.0209 -2.6264
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
107
2.5 Iterasi Jacobi 1.1037 1.1039 1.1039 1.1039 1.1039
2.9966 2.9964 2.9965 2.9965 2.9965
-1.0212 -1.0211 -1.0211 -1.0211 -1.0211
-2.6260 -2.6264 -2.6263 -2.6263 -2.6263
Iterasi Jacobi konvergen (dengan menggunakan batas toleransi 0.0001) setelah iterasi ke-13. Penyelesaian yang diberikan persis sama dengan yang dihasilkan dengan metode langsung. Hampiran penyelesaian SPL kita adalah . Catatan: Dari contoh di atas kita dapat mengambil kesimpulan bahwa urutan persamaan di dalam suatu SPL sangat berpengaruh terhadap penampilan metode iterasi Jacobi. Kalau kita amati lebih lanjut contoh di atas, kekonvergenan iterasi Jacobi pada strategi kedua dikarenakan kita telah mengubah susunan SPL sedemikian hingga elemen-elemen merupakan elemen-elemen terbesar pada setiap baris. Dengan kata lain, apa bila matriks koefisien merupakan matriks dominan secara diagonal, maka metode iterasi Jacobi akan konvergen. Suatu matriks berukuran dikatakan dominan secara diagonal apabila
Syarat metode iterasi Jacobi konvergen adalah bahwa matriks koefisien bersifat dominan secara diagonal.
untuk
LATIHAN 2.5 1. Tentukan di antara SPL-SPL di bawah ini mana yang apabila diselesaikan dengan metode iterasi Jacobi konvergen. Selesaikan SPLSPL tersebut dengan menggunakan program MAATLAB jacobi dengan menggunakan hampiran awal vektor nol, batas toleransi 0.00001, dan maksimum iterasi 10. Hitunglah galat pada setiap hampiran penyelesaian yang Anda dapatkan dengan membandingkan dengan penyelesaian eksaknya. (a)
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
111
2.6 Iterasi Gauss-Seidel Tabel 2.3: Hasil iterasi untuk
,
,
, dan
dengan dan berturut-turut adalah matriks segitiga bawah dan atas dengan diagonal nol dan matriks diagonal. Maka persamaan 2.26 dapat ditulis dalam bentuk
yang menghasilkan
Rumus iterasi matriks Gauss–Seidel
(2.27) Suatu iterasi matriks (2.28)
Pengertian iterasi matriks stasioner. Iterasi Gauss–Seidel bersifat stasioner.
dikatakan stasioner jika dan tidak tergantung pada , sehingga iterasinya dapat ditulis dalam bentuk (2.29) Jelas bahwa metode iterasi Gauss–Seidel bersifat stasioner dengan dan .
Kekonvergenan Iterasi Matriks Penyelesaian SPL merupakan titik tetap iterasi matriks (2.28). Ini artinya, dapat digunakan untuk mengganti masukan maupun Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
112
Bab 2. Sistem Persamaan Linier keluaran pada persamaan iterasi (2.28), yakni
Dari kesamaan ini didapatkan (2.30) Sekarang, misalkan
adalah galat hampiran ke- , (2.31)
Dengan menggunakan (2.28) dan (2.30) diperoleh
.. .
dengan adalah galat hampiran awal. Untuk iterasi matriks stasioner (termasuk iterasi Gauss–Seidel) matriks galat hampiran ke- adalah (2.32) Dengan menggunakan sifat norm kita dapatkan (2.33) Iterasi matriks (2.28) dikatakan konvergen jika . Dari pertidaksamaan terakhir jelas bahwa hal ini akan dipenuhi jika . Teorema berikut ini memberikan kriteria kekonvergenan iterasi Gauss– Seidel. T EOREMA 2.3 (K EKONVERGENAN I TERASI G AUSS –S EIDEL ). Iterasi Gauss–Seidel konvergen untuk setiap vektor awal jika dan hanya jika
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
113
2.6 Iterasi Gauss-Seidel matriks koefisien
bersifat simetris dan definit positif.5
Bukti teorema tersebut dapat dilihat pada [7] halaman 374. Sekalipun teorema di atas memberikan suatu kriteria kekonvergenan iterasi Gauss– Seidel, namun kriteria yang diberikan tidaklah mudah dicek secara praktis, karena harus mengecek apakah matriks koefisiennnya definit positif. Teorema berikut memberikan kriteria yang lebih praktis. T EOREMA 2.4 (K EKONVERGENAN ITERASI JACOBI & GAUSS –S EIDEL ). Iterasi Jacobi dan Gauss–Seidel konvergen untuk setiap SPL yang memiliki matriks koefisien bersifat dominan secara diagonal.
Metode iterasi Jacoib dan Gauss–Seidel konvergen jika matriks koefisien bersifat dominan secara diagonal.
Teorema di atas memberikan kriteria kekonvergenan baik untuk iterasi Jacobi maupun Gauss–Seidel. Untuk iterasi Jacobi kriteria tersebut telah disebutkan sebelumnya, dengan melihat contoh nyata. Perlu dicatat bahwa teorema 2.3, sekalipun agak susah dicek secara praktis, memberikan syarat perlu dan cukup, sedangkan teorema 2.4 hanya memberikan syarat perlu, bukan syarat cukup kekonvergenan iterasi Gauss–Seidel. Artinya, suatu SPL yang tidak bersifat dominan secara diagonal, mungkin dapat disusun ulang menjadi demikian, sehingga iterasi Gauss–Seidel akan konvergen. B UKTI T EOREMA 2.4: Ingat kembali (lihat persamaan (2.25) dan (2.29)), bahwa iterasi matriks untuk mencari hampiran penyelesaian SPL , dengan dan , dapat ditulis dalam bentuk
1. Untuk iterasi Jacobi,
dan
2. untuk iterasi Gauss-Seidel,
; dan dan
;
dengan , matriks segitiga bawah dari , matriks diagonal dari , dan matriks segitiga atas dari . Dengan mendefinisikan sebagai galat hampiran ke- , seperti (2.31), selanjutnya kita telah mendapatkan hubungan (2.33) dan akhirnya kita tahu bahwa syarat iterasi tersebut konvergen adalah
5
Matriks
dikatakan definit positif jika untuk setiap vektor ,
Pengantar Komputasi Numerik
.
c Sahid (2004 – 2012)
114
Bab 2. Sistem Persamaan Linier Sekarang, kekonvergenan kedua iterasi dapat ditinjau secara terpisah. Untuk iterasi Jacobi,
.. .
..
.
.. .
.. .
..
.
.. .
Dari definisi norm (2.21), diperoleh
sehingga syarat
mengharuskan
yang tidak lain adalah sifat dominan secara diagonal matriks . Untuk iterasi Gauss–Seidel, perhitungan tidak dapat langsung menggunakan matriks , karena tidak terlalu mudah. Metode pembuktian untuk kekonvergenan iterasi Gauss–Seidel memerlukan teorema lain tentang nilai-nilai eigen matriks . Bukti lengkapnya tidak diberikan di sini. Pembaca yang tertarik dipersilakan untuk melihat referensi [5] halaman 35–37 dan [1] halaman 287.
LATIHAN 2.6 1. Perhatikan SPL di bawah ini. Dengan menggunakan hampiran awal untuk 1, 2, . . . , 9, selesaikan SPL tersebut secara iteratif.
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
122
Bab 2. Sistem Persamaan Linier (a)
(b)
(c)
(d)
(e) Berapakah nilai parameter relaksasi yang optimal untuk masing-masing SPL di atas?
(f) Ulangilah penyelesaian soal (c) dan (d) dengan menggunakan hampiran awal .
2. Selesaikan SPL-SPL di bawah ini dengan metode Iterasi GaussSeidel dan metode SOR (dengan menggunakan nilai parameter relaksasi yang optimal). Bandingkan hasilnya! (a)
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
123
2.8 Rangkuman (b)
3. Metode SOR konvergen jika dan hanya jika nilai parameter relaksasi memenuhi untuk beberapa nilai dan yang tergantung pada SPL yang harus diselesaikan. Carilah nilai-nilai dan , teliti sampai satu angka desimal, untuk SPL di bawah ini
Carilah nilai
yang menghasilkan laju kekonvergenan tercepat!
2.8 Rangkuman Berikut adalah rangkuman dari beberapa metode yang dapat digunakan untuk mencari (hampiran) penyelesaian sistem persamaan (SPL)
dengan matriks koefisien berukuran , dan vektor yang akan dicari nilainya.
vektor konstanta
,
Matriks Augmented Matriks , yakni gabungan matriks koefisien dan vektor konstanta disebut matriks augmented.
Matriks augmented
Eliminasi Gauss Metode eliminasi Gauss dapat digunakan untuk menyelesaikan SPL yang terdiri atas persamaan dalam variabel. Proses eliminasi menghasilkan SPL baru yang ekivalen dengan SPL lama, yang memiliki matriks koefisien berbentuk segitiga atas (semua elemen di bawah diagonal utamanya nol). Proses eliminasi menggunakan operasi-operasi baris elementer (OBE):
Metode eliminasi Gauss
Pengantar Komputasi Numerik
c Sahid (2004 – 2012)
125
2.8 Rangkuman 2. Setiap leading 1 merupakan satu-satunya elemen bukan nol pada kolom yang bersangkutan. 3. Semua leading 1 tersusun secara diagonal dari kanan atas ke kiri bawah (tidak harus pada diagonal utama). 4. Baris-baris yang semua elemennya nol terletak pada bagian bawah matriks tersebut. Banyaknya baris yang memuat elemen tidak nol pada BEBR matriks disebut rank matriks , ditulis rank( ).
Fungsi MATLAB rank(A) menghitung
rank matriks
, dan
rref(A)
1. Jika rank( )=rank( )= , maka SPL tersebut mempunyai solusi tunggal untuk nilai-nilai , .
menghasilkan bentuk eselon baris tereduksi matriks .
2. Jika rank( )=rank( )= , maka SPL tersebut mempunyai penyelesaian tidak tunggal dan setiap penyelesaian dinyatakan dalam ( ) parameter bebas. 3. Jika rank( ) rank( saian.
), maka SPL tidak mempunyai penyele-
Faktorisasi LU Jika matriks koefisien berukuran dan eliminasi Gauss menghasilkan matriks tereduksi segitiga atas , maka dapat ditulis sebagai
Eliminasi Gauss dan Faktorisasi LU
dengan berbentuk
.. .
.. .
.. .
..
.
.. .
dengan adalah pengali-pengali yang digunakan untuk membuat nol pada proses eliminasi. Penyelesaian SPL (dengan ), dapat diperoleh dengan: (1) menyelesaikan melalui proses substitusi maju , dan (2) menyelesaikan melalui proses substitusi mundur . Pengantar Komputasi Numerik
c Sahid (2004 – 2012)