Quick Reference Reference Guide
CAESAR II Quick Reference Guide (Version 4.40) The CAESAR II Quick II Quick Reference Guide is intended to aid users in quickly identifying needed information and to resolve common questions and problems. This Reference Guide is distributed with each copy of the software and users are urged to copy it (the Reference Guide) as necessary. Comments and suggestions concerning the CAESAR II program, II program, the User’s Guide, or the Quick Reference Guide are always welcome. Users with problems, questions, or suggestions can contact the COADE Development/Support staff.
CAESAR II CAESAR II is II is an advanced PC based tool for the engineer who designs or analyzes piping systems. CAESAR II II uses input spreadsheets, on-line help, graphics, and extensive error detection procedures to facilitate timely operation and solution. CAESAR II is II is capable of analyzing large piping models, structural steel models, or combined models, both statically and dynamically. ASME, B31, WRC, and rotating equipment reports combine to provide the analyst with a complete description of the piping system’s behavior under the applied loading conditions. Additional technical technical capabilities such as out-of-core solvers, force spectrum analysis (for water hammer and relief valve solutions), time history, and large rotation rod hangers provide the pipe stress engineer with the most advanced computer based piping program available today. The CAESAR II II program is continuously enhanced to incorporate new technical abilities, to provide additional functionality, and to modify existing computation procedures as the piping codes are updated. A complete list of the most recent changes to the CAESAR II program II program can be found in the later section of Chapter 1 of the User’s Guide. Users desiring software sales sales or seminar information information are urged to contact the COADE Sales staff at: Ph one: FAX:
281-890-4566 281-890-3301
E-mail: Web:
[email protected] www.coade.com
CAESAR II / Pipe Stress Seminars COADE offers seminars periodically to augment the Engineers knowledge of CAESAR II and Pipe Stress Analysis. The general seminar is held in the COADE Houston office and covers three days of statics statics and two days of dynamics. dynamics. This seminar emphasizes emphasizes the piping codes, static analysis, dynamic analysis, and problem solving. Custom seminars held at client locations locations are also also available. For additional seminar seminar details, please contact COADE and ask for seminar information. infor mation.
CAESAR II Quick Reference Guide Table of Contents System Requirements ..................................... ........................................................ ............................ ......... 1 Troubleshooting .............................. .............................................. ................................ ............................ ............ 1 Overview of CAESAR II Interfaces ...................................... ........................................... ..... 3 List of CAESAR II Piping Codes ...................................... ............................................... ......... 3 Restraints ................................ ................................................ ................................ ................................ .................... .... 4 List of Setup File Directives .................................. .................................................... ..................... ... 4 List of Materials ..................................... ....................................................... .................................... .................. 7 Intersection Types in CAESAR II ............................. ............................................. .................. 8 Code Stresses ............................... ............................................... ................................ ............................... ............... 9 Node Locations Locations on Bends ......... .............. .......... .......... .......... ......... ........ ......... .......... ......... ........ ...... 17 CAESAR II Combined Index .................................... ................................................... ............... 19 CAESAR II Quality Quality Assurance Assurance Manual ......... .............. ......... ......... ......... ......... ........ ... 50 Mechanical Engineering News ....................................... ................................................. .......... 50 Additional COADE Software Programs .................................. .................................... 50
System Requirements Pentium 400 or better CPU Windows 95 or later 128 Mbyte RAM 80 Mbyte Hard Disk Space Free VGA Graphics Board & Monitor 800x600
Troubleshooting The installation aborts with an error stating: “An error occurred during the move data process: 623”. This is caused by attempting to install the software when a previous copy is currently running. This error occurs because InstallShield could not rename an intermediate file during the file transfer process. This error can be caused by running the target target application during the installation, installation, as well as some virus-checking programs. When this error error occurs, shut down all running applications and restart the installation process. The installation aborts with an error stating: “An error occurred during the move data process: 115”. A problem has been encountered on Novell networks in that they may not work with long file file names. In builds of CAESAR II Version II Version 4.00 up through and including 980122, the file C2PIPENET.EXE is longer than 8.3 characters, and causes the installation to abort. This error is caused when the installation can can not write a file to the target hard disk. In addition to the Novell problem noted above, a lack of sufficient access rights will also cause this error. On some networks, other workstations using the software have caused caused this error. Any build after March 1, 1998 will report the file which can not no t be installed, prior to the termination of the installation process. The software will not startup properly and indicates an ESL (External Software Lock) problem. Check that the necessary necessary ESL drivers have been loaded correctly. Refer to ..\caesar\assidrv for documentation on the drivers. Check the file “patch.430” and insure the correct version (full run, limited run, dealer) has been installed, and matches
The Main Menu starts up but attempting to enter the piping input immediately fails. If this is an NT system, check the program directory for the files OPENGL32.DLL and GLU32.DLL. These files should not exist exist in the CAESAR II program II program directory, as they are Windows 95 components. Delete these two files. (Windows NT provides these DLLs as part of the operating system. system. The Windows 95 versions are not compatible with Windows NT.) Try a different input file. If the user takes a pre-3.24 input file and renames it from “_a” to “._a”, then the logic to upgrade the file to the new format is bypassed. This will crash the input processor which uses the file name format to detect pre versus post 3.24 versions. This problem can also be caused by the lack of a configuration configur ation file, CAESAR.CFG or changing the data directory to one containing an out-of-date configuration file. Only a portion of the window can be seen, some parts or controls are cut off. CAESAR II II was designed to operate in 800x600 resolution with “small fonts”. “Large fonts”, or “custom fonts” may be too large for this (800x600) resolution. Either decrease the font size or increase the screen resolution. When attempting to use a module which uses “tab controls”, such as: MISC, C2SETUP, ROT, or PREPIP, some users may get an abort in a “debug” message box. This is probably caused by an out of date date COMCTL32.DLL. Ask the user to check the date of COMCTL32.DLL, usually located in C:\WINDOWS\SYSTEM, but wherever the Windows directory is. The date on the one that works is 8/26/96 or newer, and is about 378K in size. The one that doesn’t work has a date in 1995 and and is about 178K. The only people with this problem are running Win95 OSR1 (OEM Service Release 1). They should get the latest latest service packs from the Microsoft WEB site. Additional troubleshooting tips can be obtained from the CAESAR II FAQ document located on the COADE web site at http://www.coade.com/. http://www.coade.com/. Troubleshooting issues are also discussed in the Discussion Forums, also located on the COADE web site.
Overview of CAESAR II Interfaces There are several external interfaces in existence which transfer data between CAESAR II and other software packages. These interfaces can be accessed via the TOOLS option of the main menu. CADWorx AUTOCAD COMPUTER VISION INTERGRAPH CADPIPE ISOMET PDMS PCF
(requies AutoCAD) (DXF Output) (mainframe) (mainframe) (requires AutoCAD) (mainframe) (mainframe) (Alias format)
Users interested in these interfaces should contact COADE for further information. We anticipate other interfaces in the future. We will keep users updated via the newsletter or revised documentation.
List of CAESAR II Piping Codes ANSI B31.1 (2001) December 10, 2001 ANSI B31.3 (1999) August 31, 2001 ANSI B31.4 (1998) September 30, 2001 ANSI B31.4 Chapter IX (1998) September 30, 2001 ANSI B31.5 (2001) November 1, 2001 ANSI B31.8 (1999) November 16, 2001 ANSI B31.8 Chapter VIII (1999) November 16, 2001 ANSI B31.11 (1989) June 28, 1991 ASME SECT III CLASS 2 (2001) July 1, 2001 ASME SECT III CLASS 3 (2001) July 1, 2001 U.S. NAVY 505 (1984) CANADIAN Z662 (9/95) BS 806 (1993, ISSUE 1, SEPTEMBER 1993) SWEDISH METHOD 1 (2ND EDITION STOCKHOLM 1979) SWEDISH METHOD 2 (2ND EDITION STOCKHOLM 1979) ANSI B31.1 (1967) STOOMWEZEN (1989) RCC-M C (1988) RCC-M D (1988) CODETI (1995) NORWEGIAN (1990, Rev 1)
Restraints Restraint Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-
Abbreviation
Anchor ........................................................................................... A Translational Double Acting ............................................ X, Y, or Z Rotational Double Acting ......................................... RX, RY, or RZ Guide, Double Acting ................................................................ GUI Double Acting Limit Stop ......................................................... LIM Translational Double Acting Snubber ............XSNB,YSNB, ZSNB Translational Directional ............................. +X, -X, +Y, -Y, +Z, -Z Rotational Directional .................................... +RX, -RX, +RY, etc. Directional Limit Stop .................................................. +LIM, -LIM Large Rotation Rod ..................................... XROD, YROD, ZROD Translational Double Acting Bilinear ............................ X2, Y2, Z2 Rotational Double Acting Bilinear ......................... RX2, RY2, RZ2 Translational Directional Bilinear ..................... -X2, +X2, -Y2, etc. Rotational Directional Bilinear ................ +RX2, -RX2, +RY2, etc. Bottom Out Spring ......................................... XSPR, YSPR, ZSPR Directional Snubber ......................... +XSNB, -XSNB, +YSNB, etc.
List of Setup File Directives The following list represents the possible directives which can be controlled by the user via the CAESAR II configuration file CAESAR.CFG. These directives can be changed by the user through the use of the CONFIGURE-SETUP program, accessed via MAIN MENU option #9. Directives are listed in groups corresponding to the configuration program's menu options. GEOMETRY DIRECTIVES CONNECT GEOMETRY THRU CNODES = MIN ALLOWED BEND ANGLE = MAX ALLOWED BEND ANGLE = BEND LENGTH ATTACHMENT PERCENT = MIN ANGLE TO ADJACENT BEND PT = LOOP CLOSURE TOLERANCE = THERMAL BOWING HORZONTAL TOLERANCE = AUTO NODE NUMBER INCREMENT= Z AXIS UP
YES .5000000E+01 .9500000E+02 .1000000E+01 .5000000E+01 .1000000E+01 .1000000E-03 .1000000E+02
34 36 37 38 39 42 92 109 129
DEFAULT .5000000E-01 .1000000E+13 1000000E 11
65 33 49 50
NO
COMPUTATION CONTROL USE PRESSURE STIFFENING = ALPHA TOLERANCE = HANGER DEFAULT RESTRAINT STIFFNESS = DECOMPOSITION SINGULARITY TOLERANCE
COMPUTATION CONTROL (Cont.) ROD INCREMENT = .2000000E+01 INCORE NUMERICAL CHECK = NO DEFAULT TRANSLATIONAL RESTRAINT STIFFNESS= .1000000E+13 DEFAULT ROTATIONAL RESTRAINT STIFFNESS= .1000000E+13 IGNORE SPRING HANGER STIFFNESS = NO MISSING MASS ZPA = EXTRACTED MINIMUM WALL MILL TOLERANCE= .1200000E+02 WRC-107 VERSION = MAR 79 1B1/2B1 WRC-107 INTERPOLATION = LAST VALUE AMBIENT TEMPERATURE = 70.00 BORDER PRESSURE = NONE COEFFICIENT OF FRICTION = 0. INCLUDE SPRING STIFFNESS IN FREE THERMAL CASES = NO
58 60 98 99 100 101 107 119 120 135 136 140 141
SIFS AND STRESSES REDUCED INTERSECTION = USE WRC329 = NO REDUCED SIF FOR RFT AND WLT B31.1 REDUCED Z FIX = CLASS 1 BRANCH FLEXIBILITY ALL STRESS CASES CORRODED = ADD TORSION IN SL STRESS = ADD F/A IN STRESS = OCCASIONAL LOAD FACTOR = DEFAULT CODE = B31.3 SUSTAINED CASE SIF FACTOR = ALLOW USERS BEND SIF = USE SCHNEIDER = YIELD CRITERION STRESS = USE PD/4T = BASE HOOP STRESS ON = APPLY_B318_NOTE2 = DISABLE_UNDO = LIBERAL ALLOWABLE = STREE STIFFENING DUE TO PRESS = B31.3 WELDING/CONTOUR TEE MEET B16.9 =
B31.1(POST1980) NO NO YES 54 NO NO DEFAULT DEFAULT .0000000E+00 B31.3 .1000000E+01 NO NO MAX 3D SHEAR NO NO NO NO YES NO NO
32 62 53 55 35 66 67 41 43 40 52 63 108 64 57 133 128 137 138 139
YES 110 YES 111 Design Strain CAESAR.FRP .3200000E+07 .2500000E+00 .1527272E+00 THREE .1200000E+02 .6000000E-01 NO
121 122 113 114 115 116 117 118 134
FRP PROPERTIES USE FRP SIF = USE FRP FLEXIBILITY = BS 7159 Pressure Stiffening= FRP Property Data File= Axial Modulus of Elasticity = Ratio Shear Mod : Axial Mod = Axial Strain : Hoop Stress = FRP Laminate Type = FRP Alpha = FRP Density = Exclude f2 from Bending Stress (UKOOA) PLOT COLORS PIPES HIGHLIGHTS
LIGHTCYAN GREEN
1 2
PLOT COLORS (Cont.) NODES STRUCTURE DISPLACEDSHAPE STRESS > LEVEL STRESS > LEVEL STRESS > LEVEL STRESS > LEVEL STRESS > LEVEL STRESS < LEVEL STRESS LEVEL 5 STRESS LEVEL 4 STRESS LEVEL 3 STRESS LEVEL 2 STRESS LEVEL 1
5 4 3 2 1 1
YELLOW LIGHTRED BROWN RED YELLOW GREEN LIGHTCYAN BLUE DARK BLUE .3000000E+05 .2500000E+05 .2000000E+05 .1500000E+05 .1000000E+05
18 31 30 24 25 26 27 28 29 19 20 21 22 23
AISC89.BIN CADWORX.VHD PATHWAY.JHD ANSI 88 1 SYSTEM ENGLISH.FIL
70 90 91
DATA BASE DEFINITIONS STRCT DBASE= VALVE & FLANGE= EXPANSION JT DBASE= PIPING SIZE SPECIFICATION DEFAULT SPRING HANGER TABLE = SYSTEM DIRECTORY NAME UNITS FILE NAME=
112 123 124
MISCELLANEOUS CONTROL OUTPUT REPORTS BY LOAD CASE DISPLACEMENT NODAL SORTING DYNAMIC INPUT EXAMPLE TEXT TIME HIST ANIMATE OUTPUT TABLE OF CONTENTS INPUT FUNCTION KEYS DISPLAYED MEMORY ALLOCATED USER ID ENABLE ODBC OUTPUT APPEND RE-RUNS TO EXISTING DATA ODBC DATAASE NAME ENABLE_AUTOSAVE AUTOSAVE_TIME_INTERVAL PROMPTED_AUTOSAVE
YES YES MAX YES ON YES 12 " " NO NO
YES 30. YES
87 89 94 104 105 106 NA NA 125 126 127 130 131 132
List of Materials The CAESAR II material table contains 17 different isotropic materials. Properties and allowed temperature ranges for each isotropic material are listed below: (see Chapter 5 of the CAESAR II Technical Reference Guide) MATERIAL ELASTIC POISSON’S NO. NAME MODULUS RATIO ______________________ (psi) _______________ 1 Low Carbon Steel 29.5 E6 0.292 2 High Carbon Steel 29.3 E6 0.289 3 Carbon Moly Steel 29.2 E6 0.289 4 Low Chrome Moly Stl 29.7 E6 0.289 5 Med Chrome Moly Stl 30.9 E6 0.289 6 Austenitic Stainless 28.3 E6 0.292 7 Straight Chromium 29.2 E6 0.305 8 Type 310 Stainless 28.3 E6 0.305 9 Wrought Iron 29.5 E6 0.300 10 Grey Cast Iron 13.4 E6 0.211 11 Monel 67%Ni/30%Cu 26.0 E6 0.315 12 K-Monel 26.0 E6 0.315 13 Copper-Nickel 22.0 E6 0.330 14 Aluminum 10.2 E6 0.330 15 Copper 99.8% Cu 16.0 E6 0.355 16 Commercial Brass 17.0 E6 0.331 17 Leaded Tin Bronze 1 14.0 E6 0.330
PIPE TEMPERATURE DENSITY RANGE (lb./cu.in) __ (deg.F) __ 0.28993 -325 1400 0.28009 -325 1400 0.28935 -325 1400 0.28935 -325 1400 0.28935 -325 1400 0.28930 -325 1500 0.28010 -325 1400 0.28990 -325 1400 0.28070 -325 1000 0.25580 70 1000 0.31870 -325 1400 0.30610 -325 1400 0.33850 -325 400 0.10130 -325 600 0.32290 70 400 0.30610 -325 1200 0.31890 -325 1200
In addition CAESAR II supports material types 18 or 19 for cut short and cut long cold spring elements. Material number 20 activates the CAESAR II orthotropic material model (i.e. Fiberglass reinforced plastic pipe); default coefficient of expansion is 12.0E-6in./in./°F. Material 21 indicates “user defined” properties. Material numbers over 100 are from the Material Data base and include allowable stress and other piping code data.
Intersection Types in CAESAR II
CAE SAR II TYPE B31.3 TYPE
NOTE S
1 R ein for ced
Rein for ced Fabricated Tee
- U sed t o low er S I F s - Not a fitting - Modified P ipe
2 U n r ein for ced
U n r ein for ced Fabricated Tee
- Rout in e I n t er sect ion - Not a fitting - Modified pipe - Usua lly the cheapest
3 Welded Tee
Weldin g Tee
- U sua lly size-on -size - G overned by B 16.9 - Usua lly the lowest S IF - Usua lly Expensive
4 S w eepolet
Welded-in contour Insert
- "Sit-in" fitting - Forged fitt ing on a pipe
5 Weldolet
B r a n ch Welded On Fitting
- "Sit-on" fitting - Forged fitt ing on a pipe
6 E xt r uded
E xt r u ded Welding Tee
- Seldom u sed - Used for thick wall manifolds - Extr uded from st ra ight pipe
SKE TCH
Code Stresses Listed below are the “code stress” equations for the actual and allowable stresses used by CAESAR II. For the listed codes, the actual stress is defined by the left hand side of the equation and the allowable stress is defined by the right hand side. The CAESAR II load case label is also listed after the equation. Typically the load case recommendations made by CAESAR II are sufficient for code compliance. However, CAESAR II does not recommend occasional load cases. Occasional loads are unknown in origin and must be specified by the user. Longitudinal Pressure Stress - Slp Slp = PD0 /4tn
code approximation
Slp = PDi2 /(D02 - Di2)
code exact equation, CAESAR II default
Operating Stress - unless otherwise specified S = Slp + Fax/A + Sb
<
NA
(OPE)
Sl = Slp + 0.75 i Ma / Z
<
Sh
(SUS)
i Mc / Z
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
Slp + 0.75 i Ma / Z + 0.75 i Mb / Z
<
k Sh
(OCC)
Sl = Slp + Fax/A + Sb
<
Sh
(SUS)
sqrt (Sb**2 + 4 St**2)
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
Fax/A + Sb + Slp
<
k Sh
(OCC)
B1 * Pmax Do + B2 * Ma / Z 2tn
<
1.5 Sh
(SUS)
i Mc / Z
<
f (1.25 Sc + 0.25 Sh) + Sh - Sl(EXP)
B1 * Slpmax + B2 * (Ma + Mb) / Z
<
1.8 Sh and < 1.5 Sy.
B31.1
B31.3
Sb = [sqrt ( (iiMi)2 + (i0M0)2 )]/Z ASME SECT III CLASS 2 & 3
Q-9
(OCC)
CAESAR II Quick Reference Guide - 5/2002
B31.1
(1967) and Navy Section 505
Sl = Slp + sqrt (Sb**2 + 4 St**2)
<
Sh
(SUS)
sqrt ( Sb**2 + 4 St**2 )
<
f (1.25Sc + 0.25Sh + (Sh-Sl))(EXP)
Slp + sqrt (Sb**2 + 4 St**2)
<
k Sh
<
0.9 (Syield)
(OPE)
If FAC = 0.001 (buried, but soil restraints modeled) Fax/A - ν SHOOP + Sb + SHOOP < 0.9 (Syield) (If Slp + Fax/A is compressive)
(OPE)
If FAC = 0.0 (fully above ground) Slp + Fax/A + Sb + S HOOP (If Slp + Fax/A is compressive)
<
0.9 (Syield)
(OPE)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
(0.75) (0.72) (Syield)
(SUS)
sqrt ( Sb**2 + 4 St**2 )
<
0.72 (Syield)
(EXP)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
0.8 (Syield)
(OCC)
(OCC)
B31.4
If FAC = 1.0 (f ully restrained pipe) FAC | E α dT - υ SHOOP| + SHOOP
B31.4 Chapter IX
Hoop Stress: Sh <= F1 Sy
(OPE, SUS, OCC)
Longitudinal Stress: |S L| <= 0.8 Sy
(OPE, SUS, OCC)
Equivalent Stress: S e <= 0.9 Sy
(OPE, SUS, OCC)
Where: Sy = specified minimum yield strength F1 = hoop stress design factor (0.60 or 0.72, see Table A402.3.5(a) of the B31.4 Code) Sh = (Pi – Pe) D / 2t SL = Sa + Sb or Sa - Sb, whichever results in greater stress value Se = 2[((SL - Sh)/2) 2 + St2]1/2
CAESAR II Quick Reference Guide - 5/2002
Q-10
B31.5
Sl = Slp + Fax/A + Sb
<
Sh
(SUS)
sqrt (Sb**2 + 4 St**2)
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
Fax/A + Sb + Slp
<
k Sh
(OCC)
Se + Sl
<
Syield
(OPE)
Sl = Slp + Sb
<
.75 (Syield)
(SUS)
Se = sqrt ( Sb**2 + 4 St**2)
<
0.72 (Syield)
(EXP)
Sb = [sqrt ( (iiMi)2 + (i0M0)2 )]/Z B31.8
B31.8 Chapter VIII
Hoop Stress: Sh <= F1 S T
(OPE, SUS, OCC)
Longitudinal Stress: |S L| <= 0.8 S
(OPE, SUS, OCC)
Equivalent Stress: S e <= 0.9 S
(OPE, SUS, OCC)
Where: S = specified minimum yield strength F1 = hoop stress design factor (0.50 or 0.72, see Table A842.22 of the B31.8 Code) T = temperature derating factor (see Table 841.116A of the B31.8 Code) Note: the product of S and T (i.e., the yield stress at operating temperature) is required in the SH field of the CAESAR II input Sh = (Pi – Pe) D / 2t SL = maximum longitudinal stress (positive tensile, negative compressive) Se = 2[((SL - Sh)/2) 2 + Ss2]1/2 Ss = tangential shear stress B31.11
If FAC = 1.0 (f ully restrained pipe) FAC | E α dT - υ SHOOP| + SHOOP
0.9 (Syield)
(OPE)
If FAC = 0.001 (buried, but soil restraints modeled) Fax/A - ν SHOOP + Sb + SHOOP < 0.9 (Syield) (If Slp + Fax/A is compressive)
(OPE)
Q-11
<
CAESAR II Quick Reference Guide - 5/2002
B31.11 (Continued)
If FAC = 0.0 (fully above ground) Slp + Fax/A + Sb + S HOOP (If Slp + Fax/A is compressive)
<
0.9 (Syield)
(OPE)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
(0.75) (0.72) (Syield)
(SUS)
sqrt ( Sb**2 + 4 St**2 )
<
0.72 (Syield)
(EXP)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
0.88 (Syield)
(OCC)
<
0.9 S * T
Canadian Z662
If FAC = 1.0 (Fully Restrained Pipe) |E α dT - υ Sh| + Sh
(OPE)
If FAC = 0.001 (Burried, But Soil Restraints Modeled) |Fax / A - υ Sh| + Sb + Sh
<
S*T
(OPE)
<
S*T
(OPE)
Sl = 0.5Sh + Sb
<
S*F*L*T
SE = sqrt [Sb ** 2 + 4S t ** 2]
<
0.72 S * T
(EXP)
Slp + 0.75i Ma/Z
<
Sh
(SUS)
iMc/Z
<
f (1.25 Sc + .25 Sh) + Sh - Sl (EXP)
Slpmax + 0.75i (Ma + Mb)/Z
<
1.2 Sh
(OCC)
Slp + 0.75i Ma/Z
<
f
(SUS)
iMc/Z
<
fe
(EXP)
Slp + 0.75i (Ma + Mb)/Z
<
1.2f
(OCC)
(If Fax / A - υ Sh is compressive) If FAC = 0.0 (Fully Above Ground) |Slp + Fax / A| + S b + Sh (If Slp + Fax / A is compressive) (SUS, OCC)
RCC-M C & D
Stoomwezen
CAESAR II Quick Reference Guide - 5/2002
Q-12
CODETI
Sl = Slp + Fax/A + Sb
<
Sh
(SUS)
sqrt (Sb **2 + 4St **2)
<
f [1.25 (Sl + Sh)] - Sl
(EXP)
Slp + Fax/A + iMa/Z + iMb/Z
<
Ksh
(OCC)
<
Sh
(SUS)
<
Sh + Sr - Sl
(EXP)
<
1.2 Sh
(OCC)
Sb = [ Sqrt ((iiMi)2 + (i0M0)2] /Z Norwegian
Sl = PDi2 Eff(D02-Di2)
+ .75 i Ma Z
iMc/Z 2
PmaxDi + .75i (Ma + Mb) 2 2 Eff(D0 -Di ) Z M
=
sqrt (Mx2 + My2 + Mz2)
Sr
=
Minimum of 1.25 Sc + 0.25 Sh; F rRs-F2; or Fr (1.25R1 + 0.25R 2) (The latter applies to temperatures over 370°c; 425°c for Austenitic stainless steel)
Fr
=
Cyclic reduction factor
Rs
=
Permissable extent of stress for 7000 cycles
R1
=
Minimum of Sc and 0.267 Rm
R2
=
Minimum of Sh and 0.367 Rm
Rm
=
Ultimate tensile strength at room temperature
FDBR
Sl = Slp + 0.75 i Ma / Z
<
Sh
(SUS)
i Mc / Z
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
Slp + 0.75 i Ma / Z + 0.75 i Mb / Z
<
k Sh
(OCC)
)
<
Sh
(OPE)
)
<
Sh*EH /EA
(OPE)
<
Sh*EH /EA
(OPE)
BS 7159
If Sx is tensile:
(
sqrt S2x + 4Ss2
and
(
2
2
sqrt Sφ + 4Ss
or, if Sx is compressive: Sφ − ν φ x S x
Q-13
CAESAR II Quick Reference Guide - 5/2002
BS 7159 (Continued)
and < 1.25Sh
S x
S x =
P( Dm )
( 4t )
(OPE)
sqrt ( i M ) 2 + ( i M ) 2 xi i xo o +
(
)
Z
sqrt ( i M ) 2 + ( i M ) 2 xi i xo o − F x −
(
P( Dm )
( 4t )
)
Z
A
(If F x /A > P (D m )/(4t), a nd it is compr essive)
S φ =
=
=
MP( Dm ) (2t )
MP( Dm ) ( 2t ) MP( Dm ) (2t )
(for straight pipes) 2 2 sqrt ( iφi Mi ) + (iφ o Mo ) +
Z
sqrt ( i M ) 2 + ( i M ) 2 xi i xo o +
(
)
Z
(for bends)
(for tees) ,
D m and t are always for the Run Pipe
Eff = Ratio of Eφ to Ex UKOOA σab (f 2 /r) + PDm / (4t) ≤ (f 1 f 2 LTHS) / 2.0
Where: P = Dm = t = f 1 = f 2 = b σa = r = σa(0:1) σa(2:1) LTHS
design pressure pipe mean diameter pipe wall thickness factor of safety for 97.5% lower confidence limit, usually 0.85 system factory of safety, usually 0.67 axial bending stress due to mechanical loads σa(0:1) / σa(2:1) = long term axial tensile strength in absence of pressure load = long term axial tensile strength in under only pressure loading = long term hydrostatic strength (hoop stress allowable)
CAESAR II Quick Reference Guide - 5/2002
Q-14
BS 806
Straight Pipe 2
2 s
f c = sqrt(F + 4f )
< SAOPE < SASUS < SAEXP
f s = Mt(d + 2t) / 4I F
= max (ft, f L)
f t = pd/2t + 0.5p f L = pd2 /[4t(d + t)] + (d + 2t)[sqrt(mi2 + mo2)] / 2I Bends 2
2 s
f c = sqrt (F + 4 f )
< SAOPE < SASUS < SAEXP
f s = Mt (d + 2t) /4I F
= max (ft, f L)
f t = r/I * sqrt[(miFTi)2 + (m0FTo)2] f s = r/I * sqrt[(miFLi)2 + (m0FLo)2] Branch Junctions f cb = q * sqrt[f b2 + 4f sb2]
< SAOPE < SASUS < SAEXP
f b = (d + t)*p*m/(2t) + r/I*sqrt[(miFTL)2 + (moFTO)2] Fsb = Mt (d + 2t) / 4I q
= 1.0 except for operating cases = .5 or .44 bases on d 2 /d1 ratio in operating cases
m = geometric parameter EXP SA = min[(H*Sproof ambient + H*S proof design), (H*Sproof ambient + F)] OPE SA = Savg rupture at design temperature SUS SA = min[.8*Sproof , Screep rupture]
Q-15
CAESAR II Quick Reference Guide - 5/2002
Det Norske Veritas (DNV)
Hoop Stress: Sh <= ns SMYS
(OPE, SUS, OCC)
Hoop Stress: Sh <= nu SMTS
(OPE, SUS, OCC)
Longitudinal Stress: S L <= n SMYS
(OPE, SUS, OCC)
Equivalent Stress: S e <= n SMYS
(OPE, SUS, OCC)
Where: Sh ns SMYS nu SMTS SL n
= = = = = = =
(Pi – Pe) (D – t) / 2t hoop stress yielding usage factor (see Tables C1 and C2 of the DNV Code) specified minimum yield strength, at operating temperature hoop stress bursting usage factor (see Tables C1 and C2 of the DNV Code) specified minimum tensile strength, at operating temperature maximum longitudinal stress equivalent stress usage factor (see Table C4 of the DNV Code)
Se
= [Sh2 + SL2 - ShSL + 3t2]1/2
CAESAR II Quick Reference Guide - 5/2002
Q-16
Node Locations on Bends • Bends are defined by the element entering the bend and the element leaving the bend. The actual bend curvature is always physically at the “TO” end of the element entering the bend. • The element leaving a bend must appear immediately after the element defining (entering) the bend. • The default bend radius is 1.5 times the pipe nominal OD. • For stress and displacement output the “TO” node of the element entering the bend is located geometrically at the “FAR” point on the bend. The “FAR” point is at the weldline of the bend, and adjacent to the straight element leaving the bend. • The “NEAR” point on the bend is at the weldline of the bend, and adjacent to the straight element entering the bend. • The “FROM” point on the element is located at the “NEAR” point of the bend if the total length of the element as specified in the DX, DY and DZ fields is equal to: Radius * tan( Beta / 2 ) where “Beta” is the bend angle, and “Radius” is the bend radius of curvature to the bend centerline. • Nodes defined in the ANGLE # and NODE # fields are placed at the given angle on the bend curvature. The angle starts with zero degrees at the “NEAR” point on the bend and goes to “Beta” degrees at the “FAR” point of the bend. • Angles are always entered in degrees. • By default, nodes on the bend curvature cannot be specified within five (5) degrees of one another or within five degrees of the nearest endpoint. This and other bend settings may be changed through the MAIN MENU, CONFIGURE-SETUP processor. (See pp Q5-6) • When the “FROM” node on the element entering the bend is not at the bend “NEAR” point a node may be placed at the near point of the bend by entering an ANGLE # on the bend spreadsheet equal to 0.0 degrees. (See the following figure.) • When defining a bend element for the first time in the pipe spreadsheet, nodes are automatically placed at the near and mid point of the bend. The generated midpoint node number is one less than the “TO” node num ber on the element, and the genera ted near point node number is two less than the “TO” node number on the element. A near point should always be included in the model in tight, highly formed piping systems.
Q-17
CAESAR II Quick Reference Guide - 5/2002
The top-left figure below shows the points on the bend as they would be input. The topright figure shows the actual geometric location of the points on the bend. The bottomleft figure shows the same geometry except that two nodes are defined on the bend curvature at angles of zero and forty-five degrees.
• For an animated tutorial on modeling bends, click the "animated Tutorials" option on the "Help" menu.
CAESAR II Quick Reference Guide - 5/2002
Q-18
CAESAR II Combined Index The following index is a “Combined Index”, consisting of the index entries from all three CAESAR II manuals. In this “Combined Index”, entries preceded with a “U” are referencing the “User’s Guide”, entries preceded with an “A” are referencing the “Applications Guide”, entries preceded with a “T” are referencing the “Technical Reference Manual” and entries preceded with a “P” are referencing the Preface of the “User's Guide”. Numerics
180 degree return (fitting-to-fitting 90 deg. bends) A2-6 3-D graphics U5-39 3-D space T3-5 A
About the CAESAR II documentation P-4 ABS U6-25 ABS Method U8-18 Absolute Expansion load T6-4 Method T5-72, T5-75
Acceleration Factor T5-68 Vector T5-49, T5-58 Acceptance of terms of agreement by the user P-2 Access T8-86 Access-protected data T2-29 Account number T7-2 Accounting T7-2 Menu T7-3 Summary reports T7-2 System T7-2 Accounting file T7-7 Accounting file structure T7-7 Acoustic Flow problems T5-51 Resonances T5-82 Shock T5-85 Vibration T5-4 Acoustic waves A7-29 Activate Accounting tab T7-3 Activate Bourdon effects T3-86 Actual cold loads U6-27 Actual pressure T2-21 Add T4-3
Q-19
Add f/a in stresses T2-11 Add torsion in sl stress T2-11 Added mass coefficient T6-34 Advanced U8-27, U8-32 Advanced parameters T5-79, U8-19 Advanced parameters show screen U8-10 Airy wave theory T6-30 Airy wave theory implementation T6-33 AISC 1977 database T4-47 AISC 1989 database T4-51 AISC code comparisons U12-49 AISC database U10-5 AISC output reports U12-47 AISC unity checks Allow sidesway U12-42 Allowable stress increase factor U12-41 Bending coefficient U12-42 Double angle spacing U12-46 Fixity coefficients U12-46 Form factor qa U12-42 Member type U12-44 Stress reduction factors U12-42 Structural code U12-41 Algebraic U6-24 Allow short range springs T3-33, T3-82 Allowable Load variation T3-32 Stress T2-38, T3-55, T6-42, T6-79 Allowable load variation (%) T3-32, T3-82 Allowable stress T2-38, T3-55 Allowable stress increase factor U12-41 Allowable stresses U5-15 Allowed travel limit T3-33 Alpha T4-7 Alpha tolerance T2-4, T3-8, U5-6 Alternating pressure T5-84 Ambient temperature T3-62, T3-88, U5-6 Analysis menu U4-6 Analysis type (harmonic/spectrum/modes/ time-history) T5-49
CAESAR II Quick Reference Guide - 5/2002
Analysis-statics A7-50, A9-28 Analytical model T6-68 Analyzing the dynamics job A-2 Eigensolver U8-33-34 Mode shapes U8-34 Performing a harmonic analysis Forcing frequency U8-34 Phase angle U8-34 Performing a modal analysis Frequency cutoff U8-33 Modes of vibration U8-33 Natural frequencies U8-33 Sturm sequence check U8-33 Performing a spectral analysis Mass participation factors U8-35 Selection of phase angles Harmonic results U8-35 Harmonic stress U8-35 Analyzing water hammer loads A7-28 Anchors A3-2, T3-25, T3-106 Anchors with displacements A3-3 Anchors, flexible A3-5 Angle T3-13, T4-23, T4-25 Angle field A2-2 Angle spacing, double U12-46 Angle to adjacent bend A2-3 Angular Forcing frequency T5-49 Frequency T5-57, T5-58 Stiffness T3-75 Angular gimbal A5-25 Angular-only gimballed joint A5-26 Animation Motion U7-21 Animation of dynamic results U9-14 Dynamic animation U9-14 Animation U9-15 Dynamics review options U9-15 Animation of static results U7-21 ANSI A58.1 T6-23, T6-26 B36.10 T3-6 B36.10 Steel Pipe Numbers T3-6 B36.19 T3-6 Nominal Pipe OD T3-6 ANSI B16.5 U12-24 API 560 (fired heaters for general refinery services) U12-73
CAESAR II Quick Reference Guide - 5/2002
API 605 rating tables U12-24 API 610 Load Satisfaction Criteria, API 610 U12-57 API 610 (centrifugal pumps) U12-57 API 617 (centrifugal compressors) U12-64 API 661 (air cooled heat exchangers) U12-66 API-650 Delta t T3-46 Fluid height T3-45 Nozzle height T3-45 Nozzles T3-44 Reinforcing 1 or 2 T3-45 Specific gravity T3-45 Tank coefficient of thermal expansion T3-45 Tank diameter T3-45 Tank modulus of elasticity T3-46 Tank wall thickness T3-45 Application guide P-4 Applications - Utilizing Global and Local Coordinates T6-136 Applications of CAESAR II P-2 Apply B31.8 Note 2 T2-13 Archive A8-33, U6-14 Archiving T9-16 Archiving and reinstalling P-8 Area T4-9 ASCE #7 wind loads U6-10 ASME Piping codes T6-95 Sect. III T2-12, T6-102 Sect. III Piping Code T6-102 Sect. III subsections nc and nd T6-102 Sect. VIII Division 2 T6-42 Section VIII division 2 - elastic analysis of nozzle T6-42 ASME - nozzle analysis T6-45 ASME Sect. VIII div. 2 elastic nozzle analysis T6-46 Australian 1990 database T4-59 Auto node number increment T2-14 Autorun U2-22 Autorun feature U2-2 Autorun feature, Re-enabling U2-22 Autosave Time Interval T2-28 Auxiliary
Q-20
Data T3-99 Element data T8-64, T8-65 Processors T1-2 Auxiliary data area U5-9 Auxiliary data fields Auxiliary screens U5-9 Expansion joint Effective diameter of bellows U5-10 Pressure thrust in expansion joints U5-10 Auxiliary fields Boundary conditions T3-24 Component information T3-12 Imposed loads T3-50 Piping code data T3-55 Available commands T3-66, U6-5 Available space T3-31, T3-77 Axes T2-18 Axial Bending T6-80 Elastic modulus T2-22 Expansion stress T6-105 Modulus T3-10 Restraint T3-61 Shape function T2-3 Stiffness T6-7 Strain Hoop stress T2-22 Stress T6-75, T6-79, T6-105 Axial deflection A5-4 Axial length, Unsupported U12-46 Axial member force U12-46 Axial strain Hoop Stress T2-22 Axial tensile strength T6-80, T6-118 Axis Orientation Vertical T4-4 B
B31.1 T6-94, T6-111 (post 1980) T2-12 (pre 1980) T2-11 B31.1 reduced z fix T2-13 B31.11 T6-100 B31.3 T6-95 B31.3 sustained case SIF factor T2-9 B16.9 T2-9 B31.4 T6-96 B31.4 Chapter IX T6-97
Q-21
B31.8 T6-98 B31.8 Chapter VIII T6-99 Backfill U11-12 Backfill efficiency U11-12 Background T2-18 Ball joints A6-5 Bandwidth U6-13 Bandwidth optimizer T3-94 Base hoop stress T2-10 Base pattern T4-18 Basic element data T8-62 Basic load cases U6-18 Basic loading case T6-5 Basic material yield strength T3-60 Basic operation U3-5 Batch mode T7-8 Batch run U6-2 Batch stream processing T7-8 Beams T4-28 Fix T4-29 Free T4-29 Bellows T3-79, T6-8 Allowed torsion T3-76 Application notes T3-77 Bellows angular stiffness A5-14 Bellows ID A5-2 Bellows with pressure thrust A5-3 Bellows, Simple A5-2 Bellows, Tied A5-4, A5-8 Bend Angle A2-2, A2-3 Auxiliary input A2-4 Definition A2-2 Radius A2-2 Bend data U5-9 Bend Flexibility Factor A2-14 bend flexibilty factor T3-14 Bend stress intensification factors U12-5 Bending coefficient U12-42 Bending moment, In-plane U12-47 Bending moment, Out-of-plane U12-47 Bending stiffness T6-7 Bending stress U12-14 Bends A2-1, T3-12 Axial shape T2-3 Curvature T2-15 Length attachment percent T2-15 Miter T3-13 Node T3-22 CAESAR II Quick Reference Guide - 5/2002
Radius T3-13, T6-85 Bends with trunnions U12-7 Bends, double A2-4 Bends, single-flanged A2-4 Bends, stiffened A2-4 Bends, tees T3-107 Bi-directional data transfer link T8-4 Bilinear restraints A3-47 Bilinear springs U11-10 Bilinear supports A3-47, U11-10 Block operations T3-99 Bolt tightening stress U12-23 Bolts and gasket U12-21 Bonney forge sweepolets T3-19, T6-91 Bottom-out A4-15 Bottom-out spring A4-23 Boundary conditions U5-7, U9-12 Bourdon pressure T3-86 Boxh T4-9 Boxw T4-9 Braces T4-30 Fix T4-30 Free T4-30 Branch Combined stress T6-76 Connections T3-18, T3-19 Flexibilities T6-15 Pipe spreadsheet T3-21 Stress intensification T3-21 Torsional stress T6-76 Branch error T3-86 Break T3-67 Break command A9-26, T3-66 Browse CD Rom U2-15 Browser U2-15 BS 5500 nozzles T3-46 BS 5500 radio button T3-46 BS 7159 T3-10, T3-19, T6-67, T6-75, T6-115 BS 7159 pressure stiffening T2-21 BS 806 T6-106 BS 806 17.3.1 T6-108 BS-806 U12-6 Building elements T4-15 Elem, efill, egen, edim T4-15 Building spectrum load cases T5-25 Building static load cases U6-7 Building the load cases U3-11 Builds, Version 1-6 CAESAR II Quick Reference Guide - 5/2002
Buoyancy force T6-32 Buried pipe displacements U11-4 Buried pipe example U11-14 Buried pipe restraints U11-3 Butt weld T3-19, T3-65 Button Get loads from output file A7-86 Butt-welded tees T3-19 C
Cad interfaces T8-4 Cadcentre T8-61 Cadpipe example transfer T8-8 Cadpipe interface T8-5 Cadpipe log T8-13, T8-18 Cadpipe/CAESAR II data transfer T8-17, T8-18 CADWorx/PIPE T3-69, 1-3 CADWorx/PIPE database T2-24, T3-68 CADWorx/PIPE directory T3-69 CADWorx/PIPE link T8-4 CAESAR II Fatal error processing T7-10 File guide T9-2 Initial capabilities (12/84) T10-2 Log file T8-21 Neutral file interface T8-61 Operational (job) data files T9-16 Version 1.1s features (2/86) T10-3 Version 2.0a features (10/86) T10-4 Version 2.1c features (6/87) T10-5 Version 2.2b features (9/88) T10-6 Version 3.0 features (4/90) T10-7 Version 3.1 features (11/90) T10-8 Version 3.15 features (9/91) T10-9 Version 3.16 features (12/91) T10-10 Version 3.17 features (3/92) T10-11 Version 3.18 features (9/92) T10-12 Version 3.19 features (3/93) T10-14 Version 3.20 features (10/93) T10-16 Version 3.21 changes & enhancements (7/94) T10-18 Version 3.22 changes & enhancements (4/95) T10-20 Version 3.23 changes (3/96) T10-22 Version 3.24 changes & enhancements (3/97) T10-23 Version 4.00 changes and enhance
Q-22
ments (1/98) T10-26 Version 4.10 changes and enhance ments (1/99) T10-27 Version 4.20 changes and enhance ments (2/00) T10-28 Version 4.30 changes and enhance ments (3/01) T10-29 CAESAR II interfaces T8-2 CAESAR II Technical Changes P-10 CAESAR II, About P-2 Caesar.cfg T2-2 Calculate actual cold loads T3-82 Can available space T3-31 Can design A4-8 Can design, Multiple A4-8 Can design, Single A4-4 Canadian Z184 T6-104 Canadian Z662 T6-104 Case U9-18 Center of gravity report U3-11 Tutorial U3-11 Change password T2-29 Checking the installation U2-12 Chopped strand mat T2-21, T3-12, T6-85, T6-118 Circumferential (hoop) direction T3-58 Stress T6-75 Weld T3-19 Weld joint efficiency T3-57 Weld strength factor T6-114 Class 1 Flexibility calculations T2-12 Intersection flexibilities T6-13 Class 1 branch flexibility T2-12, T6-13 Closely spaced mitered bend A2-8 Closely spaced mode criteria T5-67 CNode T3-25, T3-102, T5-46 CNodes A3-6, A3-22, A3-32 Coade technical support T1-3 Coade technical support contact information A1-2 Code B31.4 Chapter IX T6-97 B31.8 Chapter VIII T6-99 Compliance T3-56, T6-18, T6-90 Code compliance U8-5
Q-23
Code Compliance Report U7-11 Code stresses for dynamics U9-7 Code-calculated T3-21 Code-calculated stress T3-22 Code-calculated values T3-20 Codes T3-56, T6-91 Codes and databases T10-12 Code-specific notes T6-95 Codeti T6-113 Coefficient of Friction (Mu) T2-5 Cold Allowable stress T3-56, T6-97 Load case T6-89 Load design T3-29 Modulus T3-63 Spring T3-8, T3-9, T6-4 Spring element T6-5 Sustained T6-20 Cold load T3-38 Cold loads U6-27 Cold spring A6-8 Column reports U7-5 Columns T4-32 Fix T4-32 Free T4-32 Combination cases A7-30 Combination load cases U6-18 Combination Method U8-18 Combination Methods U6-24 Combined stress T6-75 Combining independent piping systems T3-94 Combining static and dynamic results T5-33 Commands T1-2, U6-5 Compressed formatting T9-9 Compression T6-71 Computation control T2-3 Computation Control tab A4-2 Computational interfaces T8-79 Computed mass flowrate T5-89, T5-93 Computervision interface T8-20, T8-21 Computervision neutral file T8-20, T8-21 Computervision/CAESAR II data transfer T8-21, T8-26 Concentrated forces U8-2 Concentric reducer modeling A6-3 Concentric reducers A6-2
CAESAR II Quick Reference Guide - 5/2002
Conclusion T6-89 Configuration T1-2, U2-12 Program T3-6 Spreadsheets T2-2 Configuration/setup A7-68 Configure /Setup T3-71, T3-108 Button T2-2 Configure-setup—geometry A2-3 Connect geometry through CNodes A4-12, T2-14 Connecting node displacements A4-10 Connecting nodes A4-10, A7-79, T2-14, T3-25, U10-20 Conservative cutoff T5-66 Constant effort hanger T6-11 Constant effort support T6-11 Constant effort support design A4-5 Constant effort supports A4-6 Constant force value T6-16 Construction design factor T6-105 Construction element U5-6 Contact information U2-18 Control Keys T3-104 Parameters T1-2 Control information T8-62 Control parameters U8-5, U8-10, U8-13, U8-19, U8-26, U8-31 Control stops, Lateral A5-17 Controlling the dynamic solution T5-3 Convergence error T2-4 Convert input to new units T2-33 Convolutions T3-77 Coordinate prompts T3-86 Core piping A6-6, A7-75 Core piping, Input A7-75 Corroded Cases T2-10 Corroded effective section modulus T6-91 Corroded pipelines, B31G Calculating corroded area U12-28 Flaw Length U12-28 Corroded stress calculations T6-96 Corrosion T2-10, T3-7 Covers T3-80 Cpu time used T7-2 Crane database T2-24, T3-68
CAESAR II Quick Reference Guide - 5/2002
Create a new units file T2-31 Create table T5-24 Creep rupture design stress value T3-61 Creep rupture stress T3-57 Critical damping T5-68 Cross section area T4-9 Crotch radius T3-19 Cryogenic piping dynamics example A7-36 Cumulative usage U9-8 Cumulative Usage Report U7-12 Current data T6-38 Current profile T6-32 Curve boundary T3-40 Curved pipe T3-19 Customizable Toolbar U5-3 Customize Toolbar U5-3 Cut long T6-5 Cut short T3-8, T6-5 Cutoff See non-conservative, conservative, and optimal T5-66 Cutoff frequency U8-10 Cyclic frequency T5-57 Cyclic reduction factor T6-86, T6-96 Cyclic reduction factor fields T3-63 Cyclic stress range U8-2 D
Damped harmonics T5-51 Damping T5-50, T5-68, U8-13 Damping (time history or dsrss) (ratio of critical) T5-68 Damping matrix T5-49 Damping ratio T5-58, T5-75 Data Directory T3-108 Files T9-4, T9-16 Set T9-5, T9-6, T9-7 Data Export Wizard T8-95 Data fields U5-3 Data matrix interface T8-53, T8-78 Data processing - stat T4-45 Database definitions T2-23 database management T8-86 Decomposition singularity tolerance T2-5, T5-79 Default code T2-7 Default restraint stiffness T2-6
Q-24
Default rotational restraint stiffness T2-6 Default spring hanger table T2-24 Default translational restraint stiffness T2-6 Defaulting to Z-AxisVertical T3-90 Defining a Model T6-130 Definition of a load case U6-16 Deformation A6-6 Delete T3-100, T4-3 Delta x T3-3 Delta y T3-3 Delta z T3-3 Dens T4-7 Densities U5-8 Density T2-37, T3-11 Depth-decay function T6-37 Design CADWorx/PIPE 1-3 Design strain T2-21, T6-75 Design stress T3-58 Det Norske Veritas (DNV) T6-120, T6-123 Diagnostics menu U4-9 Diagnostics-error review T7-10 Diagonal damping matrix T5-58 Diagonal stiffness matrix T5-58 Diameter T3-6 Diameter field T3-6 Diffraction effects T6-37 Direction T5-11, T5-14, T5-25, T5-38, T5-43 Directional combination method T5-77 DIRECTIVE DATA T5-34 Directory structure T9-2 Disable “File Open” Graphic Thumbnail T2-28 Disable Undo/Redo Ability T2-28 Discharge nozzle A9-8, A9-22 Disclaimer - CAESAR II P-4 Discontiguous systems A7-79 Disp U6-22 Disp/Force/Stress U6-22 Disp/Stress U6-22 Displaced shape T2-18 Displacement T3-49, T5-14 Components T6-48 Loads T6-4 Range T6-18 Report A7-16, A7-30 Reports T2-26
Q-25
Stress range A8-27 Vector A3-4, T5-49, T5-58 Displacement load case U6-26 Displacement submenu U7-17 Displacements T3-49, U5-12, U7-6, U9-5 Displacements, Non-zero A3-3 Distance to opposite-side stiffener or head T3-42, T3-48 Distance to stiffener or head T3-42, T3-48 DLF curves T5-85 DLF spectrum A7-12 DLF spectrum files A7-23 DLF spectrum generator U8-23 Does the vent pipe have an umbrella fitting (y/n) T5-87 Double angle spacing U12-46 Double sum method (DSRSS) T5-74 Double-acting restraint (rotational) A3-18 Double-acting restraints A3-17 Double-acting restraints (translational) A3-17 Drag coefficient T6-40 Driving frequencies U8-5 Driving frequency T5-82, T5-84 Dual gimbal A5-29 Dummy leg on bends, Horizontal A3-40 Dummy leg, Vertical A3-36 Duplicate T3-100 Duplicate dialog box T3-100 Dx T3-3 DXF Autocad interface T8-4 DXF file T8-4 Dy T3-3 Dynamic Analyses T5-61 Analysis input T5-2 Control parameters T1-2 Displacement criteria T5-82 Earthquake T6-23 Earthquake loading T3-88 Equation of motion T5-49 Example input text T2-27 Input T1-2 Input processor T5-47 Load T5-3 Load factor T5-52, T5-54, T5-63, T8-80, T8-85 Load factor spectrum T5-56
CAESAR II Quick Reference Guide - 5/2002
Loads T5-51 Problem T5-51 Dynamic amplitude U8-2 Dynamic analysis A7-58 Dynamic analysis input processor U8-6 Dynamic analysis types U8-7 Dynamic input commands U8-8 Initiating dynamic input U8-6 Prerequisites for dynamic input U8-6 Dynamic analysis of independent support earthquake excitation A7-36 Dynamic analysis of water hammer loads A7-20 Dynamic animation U9-14 Dynamic capabilities Harmonic analysis U8-2 Concentrated forces U8-2 Cyclic stress range U8-2 Dynamic amplitude U8-2 Equipment start-up U8-2 Fluid pulsation U8-2 Forcing frequencies U8-2 Phase angle U8-2 Rotating equipment U8-2 Vibration U8-2 Modal analysis U8-2 Mode shapes U8-2 Natural frequency U8-2 Spectrum analysis U8-2 Impulse analysis U8-2 Relief valve U8-2 Response spectrum method U8-2 Response vs. frequency spectra U8-2 Sustained stresses in spectrum analysis U8-2 Time history analysis U8-3 Dynamic capabilities in CAESAR II U8-2 Dynamic control parameters T5-47 Dynamic imbalance U8-12 Dynamic load case number U8-18 Dynamic load factor U8-20 Dynamic load specification U8-5 Dynamic output processor U9-2 Boundary conditions U9-12 Friction resistance U9-12 Nonlinear restraints U9-12 Forces/stresses, dynamics U9-8 Global forces, dynamics U9-7
CAESAR II Quick Reference Guide - 5/2002
Harmonic results U9-2 General results U9-3 Included mass data U9-11 % Force active U9-12 % Force added U9-12 % Mass included U9-11 Extracted modes U9-11 Missing mass correction U9-11 System response U9-11 Local forces, dynamics U9-6 Mass model U9-12 Lumped masses U9-12 Mass participation factors U9-9 Modes mass normalized U9-10 Modes unity normalized U9-10 Natural frequencies U9-10 Report types, dynamics Displacements, dynamic output U9-5 Report options U9-5 Restraints, dynamics U9-5 Maximum load on restraints U9-5 Maximum modal contribution U9-5 Mode identification line U9-5 Spectrum results U9-3 Static/dynamic combinations U9-3 Stresses, dynamics U9-7 Code stresses for dynamics U9-7 Stress intensification factors U9-7 Stress report U9-7 Time history results U9-3 Dynamic responses U8-3 Dz T3-3 E
Earthquake Effects T5-3 Load T5-53 Load magnitudes T6-23 Loads T3-88 Spectrum T5-68 Static load cases T6-23 Earthquake (spectrum) U8-14 Earthquake excitation, Independent support A7-36 Earthquake input spectrum Spectrum Defintions Response spectrum table U8-14 Shock definition U8-14
Q-26
Spectrum data U8-14 Spectrum name U8-14 Spectrum load cases Earthquake U8-16 El Centro earthquake data U8-17 Independent support motion U8-17 Spectrum load cases example U8-17 Static/dynamic combinations ABS U8-18 Combination method U8-18 Hanger sizing for dynamics U8-18 Occasional allowable stress U8-18 Occasional dynamic stresses U8-18 Occasional Stress U8-18 Piping codes for earthquakes U8-18 SRSS U8-18 Sustained static stresses U8-18 Earthquakes U8-24 Eccentric reducer modeling A6-4 Eccentric reducers A6-2 Edit menu U5-24 Eff, cf, z T2-37 Effective diameter U5-10 Effective gasket modulus U12-24 Effective ID T3-16 Efill T4-16 Egen T4-18 Eigensolution A7-4, T5-57, U8-5 Eigensolver U8-33, U8-34 Eigensolver algorithm T5-54 Eigenvalue T5-57 Eigenvalues T5-79 EJMA (expansion joint manufacturers association) U12-33 El centro U8-15 Elastic Modulus T2-38, T3-61, T3-62, T3-63, T6-84 Elastic analyses of nozzles T6-44 Elbows - different wall thickness A2-13 Elbows, pressure-balanced A5-31 Elem T4-15 Element Duplication T3-100 List T3-99 Offsets T3-5
Q-27
Rotation T3-100 Element Direction Cosines U5-4 Element information Displaying T3-106 Element length U11-4 Element lengths U5-4 Elemental volume plots T3-108 Elevation T6-28 Elevation table entry T6-26 Enable Autosave T2-28 Enable Data Export to ODBC-Compliant Databases T2-24 End connection information T4-26 End connections U10-7 Ending frequency T5-8 Endurance limit T5-52 Entering the dynamic analysis input menu U8-6 Entire agreement P-3 Entity information T8-14 Entry into the processor U9-2 Entry into the static output processor U7-2 EQP toolbar A9-10 Equation for pipe under complete axial restraint T3-62 for stress T3-61 Modeling T6-108 Equipment and component evaluation U12-2 Bend SIFs Trunnion U12-6 Bends with trunnions Trunnions U12-7 Equipment checks U12-2 Flanges attached to bend ends BS-806 U12-6 Flexibility U12-6 Ovalization U12-6 Intersection SIFs U12-3 Pressure stiffening Flexibility factor U12-6 Stress intensification factor U12-6 Stress concentrations and intensifications Peak stress index U12-7 Stress concentration factor U12-7 Trunnion U12-7
CAESAR II Quick Reference Guide - 5/2002
Equipment report A9-10 Equipment start-up U8-2 Equipment vibration T5-4 Equivalent stress failure T6-71 Equivalent wind pressure T6-26 Error checking U6-2 Commands, error checking U6-5 Errors, warnings, and notes U6-2 Error checking the model U3-10 Error code definitions T8-13, T8-14 Error handling and analyzing the job U8-33 Errors Errors and warnings U3-10 ESL U2-9, U8-33 ESL drivers U2-17 ESL installation on a network U2-20 ESL menu U4-10 Evaluating vessel stresses T6-42 Example T4-17, T4-19, T4-25, T4-29, T4-31, T4-33, T4-34, T4-36, T4-38, T4-41, T8-80, T8-82 Dynamic analysis A7-58 Dynamic analysis (nureg9) A7-58 Dynamic analysis of independent support earthquake excitation A7-36 Dynamic analysis of water hammer loads A7-20 Dynamic analysis of water hammer loads (hammer) A7-20 Harmonic analysis A7-2 Harmonic analysis (table) A7-2 Jacketed piping A7-72 Jacketed piping (jacket) A7-72 Natural frequency analysis A7-2 NEMA SM23 A7-95 Omega loop modeling A7-66 Omega loop modeling (omega) A7-66 Relief valve loads A7-7 Relief valve loads (relief) A7-7 Structural analysis A7-47 Structural analysis (frame) A7-47 WRC 107 A7-82 Example problem of a multiple load-case spring-hanger design T3-35 Example transfer T8-29 Excel T8-86
CAESAR II Quick Reference Guide - 5/2002
Excitation frequency U8-11 Exclude f2 from UKOOA Bending Stress T2-22 Exe files - required T9-3 Executing static analysis U3-13 Execution of static analysis U6-12 Existing file to start from T2-32 Exit U2-19 Exit pipe end flow conditions T5-94 Exp. coeff. T2-38 Expansion Allowable T6-95, T6-105, T6-106 Case allowable stress T3-63 Coefficient T2-38, T3-63 Load case T6-89 Stress T3-62, T6-18 Stress allowable T3-61 Stress range T6-18, T6-19 Expansion joint U5-7, U5-10, U5-28 Expansion joint design notes T3-76 Expansion joint end-types T3-77 Expansion joint rating A5-4, A5-10, U12-33 Ejma U12-33 Maximum axial movement U12-33 Maximum lateral deflection U12-33 Maximum rotation U12-33 Output U12-36 Expansion joints A5-1, A5-2, A5-6, A5-8, A5-10, T2-24, T3-16, T3-85, T6-7 Database T2-24 Model T3-71, T3-75 Modeler T3-71, T3-75 Styles T3-78 Expansion joints and rigids T3-106 Expansion load case A7-86 Expansion load cases U3-11, U6-26 Expansion stresses A8-27 Exponential format T3-4 Extended Operating conditions T3-8, T3-9 Range T3-29 External interface T8-2 External software lock A8-5 ESL updating U4-10 Local ESL U2-20 Network ESL U2-20 Extracted T2-3 Extracted mode shapes T6-47 Q-28
Extracted modes U9-11 F
T10-9 Flange leakage/stress calculations U12-19 Flange leakage U12-19 Fac T2-38, T3-61 Methodology U12-19 Factor T5-25, T5-33 Flange rating Fatal error dialog U6-3 ANSI B16.5 U12-24 Fatigue API 605 U12-24 Analysis of piping systems T6-52 Rating Tables U12-24 Analysis using CAESAR II T6-51 Leak pressure ratio Basics T6-51 Gasket Factor U12-24 Capabilities in dynamic analysis T6-62 Flange modeler U12-24 Curve data T3-65 Flange rating U12-24 Cycle T3-59 Flanged ends T3-68 Evaluations T3-65 Flanges attached to bend ends U12-6 Factor T3-59 Flaw length U12-28 Test T6-91 Flexibilities T6-46 Fatigue (FAT) U6-8, U6-17 Flexibility Fatigue curve U5-15 Analysis T3-63 Fatigue curve data U5-16 Factor T2-20, T3-10, T3-13, T6-85 Fatigue curve dialog U5-16 Matrix T6-18 Fatigue failure U9-8 Orientation T3-47 Fatigue load cases U9-8 Flexible anchors A3-5 Fatigue loadings U7-12 Flexible anchors with predefined displaceFatigue stress types U6-8, U8-11, U8-17, ments A3-6 U9-8 Flexible nozzle (WRC bulletin 297) A3-8 Fatigue-type load cases U7-12 Flexible nozzle w/ complete vessel model FDBR T6-115 A3-12 Fetch length T6-29 Flexible nozzle w/ predefined displaceFiberglass reinforced plastic T2-20, T3-10, ments A3-11 T3-12, T3-86, T6-90, T6-115 Flexible nozzles U5-19 Fiber-matrix composite T6-69 Fluid File menu U4-3, U5-22 Bulk modulus T5-93 File-Cleanup/Delete Files A9-34 Density T3-11, T5-93 Files Hammer T5-6 -Clean up T9-2 Loads T6-32 Compatibility T6-9 Fluid pulsation U8-2 Files-accounting T7-7 Fn T3-59 Fillet T3-19 Force T5-11, T5-24, T5-38, T5-58, U6-22 Fillet weld T3-65 Orthogonalization after convergence Final CAESAR II data T8-17 T5-81 Finite length expansion joints T3-16 Sets T5-59 Fitting Spectrum T5-6 Flexibility factor T2-20 Spectrum analysis T5-56 Outside radius T3-18 Spectrum name T5-23 Thickness T3-14 Force orthogonalization after convergence Fixity coefficients ky and kz U12-46 (y/n) T5-81 Fixity coefficients, AISC U12-46 Force response spectrum definitions T5-23 Flange database T3-67 Force set # T5-26, T5-39 Flange leakage and stress calculations Force sets A7-12, U8-5, U8-24, U8-28, Q-29
CAESAR II Quick Reference Guide - 5/2002
U8-30 Force spectrum methodology U8-20 Force Stress U6-22 Forces T3-50, T3-76, U5-13 Forces and moments T3-50 Forces at elbows T5-6 Forces, moments, displacements T3-107 Forces/moments submenu U7-18 Forces/moments, Conversion to WRC 107 local axes A7-83 Forces/stresses U9-8 Force-time profiles U8-28, U8-29 Forcing frequency U8-2, U8-34 Form factor QA U12-42 Free Anchor/restraint at node T3-36 Code T3-37 End connections T4-26 Free code option A4-13 French petrochemical code T6-20 Frequency U8-13 Array spaces T5-81 Cutoff T5-63, T5-65 Frequency cutoff A7-4, U8-33 Friction Angle variation T2-4 Coefficient T3-27 Normal force variation T2-4 Restraint stiffness T2-4 Slide multiplier T2-5 Stiffness T2-4 Stiffness factor T5-62 Friction effects U8-4 Friction Multiplier U6-23 Friction resistance U9-12 Friction restraints U8-4 Friction stiffness U8-4 FRP Alpha T2-22 Analysis T6-82 Coefficient of thermal expansion T3-89 Data T9-5 Laminate type T2-21, T3-89 Modulus of elasticity T2-22 Pipe density T2-22 Pipe properties T2-20 Property data file T2-21 Ratio of shear modulus/emod axial CAESAR II Quick Reference Guide - 5/2002
T3-89 FRP flexibilities T2-20 FRP sif T2-20 Ftg ro T3-18 Full run 1-9 G
G T4-7 Gap T3-27 Gas thrust load calculations A7-9 Gasket factor U12-24 Gas-specific heats T5-87 General notes T8-12 General properties T4-3 Generalized modal coordinates T6-48 Generate files U6-5 Generating input, Tutorial A8-5 Generation of the CAESAR II configuration file T2-2 Generic database T3-68 Generic neutral files T8-61 Geninc T4-19 Genincto T4-19 Genlast T4-19 Geometry directives T2-14 German 1991 database T4-57 Get loads from output Button A9-9, A9-22 Gimbal T3-79 Gimbal joint A5-23 Girth butt weld T6-91 Glass reinforced plastics T6-67 Global Editing T3-99 Level T3-34 Load vector T6-16 Stiffness matrix T6-10 X direction T3-3 Y direction T3-3 Z direction T3-3 Global element forces U7-7 Global forces U9-7 Global parameters U12-40 Global restraints - fix T4-34 Gram-schmidt orthogonalizations T5-80 Graphical output U7-16 Graphics updates T10-8 Gravitational acceleration constant T6-23 Q-30
Gravitational loading T3-88 Gravity loads - gloads T4-39 Grinnell springs T3-29 Group modal combination method T5-67 Grouping method T5-73 Grp piping T6-67 Grp piping offshore T6-75 Guides A3-20 H
Hanger U5-20, U6-27 Algorithm T6-10 Auxiliary data field T3-24 Between two pipes A4-12 Data A4-3, T3-81 Default restraint stiffness T2-6 Design A4-2, A4-11, T6-9 Design algorithm T6-10 Design control dialog T6-11 Design control spreadsheet T3-33, T3-81 Design with anchors A4-13 Design with anchors in the vicinity A4-13 Design with support thermal movement A4-11 Design with user-specified operating load A4-14 Hot loads T6-9 Run control spreadsheet T3-29 Sizing algorithm A8-26, T6-9 Supported from vessel A4-10 Table T3-28, T3-83 Travel T6-9 Type restraint T3-26 Hanger assembly, Trapeze A4-8 Hanger available space T3-31 Hanger Design U6-23 Hanger design control data U5-30 Hanger design, Simple A4-3 Hanger selection Actual cold loads U6-27 Additional hanger U6-27 Design load cases U6-27 Hanger sizing load cases U6-27 Hot load U6-26 Operating load cases U6-27 Recommended load cases U6-27 Q-31
Restrained weight U6-26 Spring hanger design U6-27 Hanger sizing U6-27, U8-18 Hanger table with text A9-29 Hangers A4-1, T3-28, T3-106 Hangers/nozzles T2-17 Hardware requirements U2-3 Harmonic T5-4, U8-11, U8-34 Analysis A7-2, A7-4, T5-49, T5-51, T5-82,T6-28 Displacements T5-14 Equation T5-49 Force data A7-5 Forces and displacements T5-11 Load T5-82, T5-83 Load vector T5-49 Loads A7-2 Method T5-4 Profile T5-4 Harmonic analysis U8-2, U8-5 Harmonic analysis input Harmonic displacements U8-12 Harmonic forces U8-11 Harmonic load definition U8-11 Excitation frequency U8-11 Phasing of harmonic loads Damping U8-13 Frequency U8-13 Harmonic control parameters U8-13 Harmonic force U8-13 Pressure wave U8-12 Reciprocating pumps U8-12 Rotating equipment U8-12 Harmonic control parameters U8-13 Harmonic displacements U8-12 Harmonic force U8-11, U8-13 Harmonic loads U8-11 Harmonic results U8-35, U9-2 Harmonic stress U8-35 Header stress intensification T3-21 Heat exchangers U12-66 HEI standard for closed feedwater heaters U12-71 Help menu U4-11 Help screen T3-4 Help screens and units T3-3 Highlight command U5-37, U5-45 Highlights T2-18, T3-107 Hinge joint, Slotted A5-20, A5-21 CAESAR II Quick Reference Guide - 5/2002
Hinged T3-78 Hinged joint A5-18 Hinges, plastic A3-52 Hoop Direction T3-58 Elastic modulus T2-22 Modulus T3-10 Stress T3-62, T6-75, T6-79 Stress value T2-11 Hoops U5-39 Hoops license grant 1-5 Horizontal thermal bowing tolerance T2-15 Horizontal threshold value T2-16 Hot Allowable stress T3-58, T3-59, T6-96 Hanger loads T3-37 Load T3-29, T6-9 Load design T3-30 Modulus T3-63 Sustained T6-20 Hot load U6-26 Html help facility U2-16 Huber-von mises-hencky criterion T6-71 Hydrodynamic loading of piping systems T6-29 Hydrodynamic loads T6-32 Hydrostatic pressure T6-118 Hydrostatic strength T6-80, T6-118 I
ID manifold piping T5-92 ID of relief valve orifice T5-86 ID of relief valve piping T5-86 ID of vent stack piping T5-86 ID relief exit piping T5-92 ID relief orifice or rupture disk opening T5-92 ID supply header T5-92 Idealized Allowable stress envelope T3-59 Envelope of combinations T6-79 Stress envelope T6-88 Identical results T2-2 IEEE 344-1975 T5-71 I-factors T6-81 IGE/TD/12 T6-119, U5-5, U5-16 IGE/tD/12 code T3-7, T3-14, T3-65
CAESAR II Quick Reference Guide - 5/2002
Ignore spring hanger stiffness T2-6 Implementation of macro-level analysis for piping systems T6-75 Importance factor T6-24, T6-27 Imposed stresses T6-68 Impulse T5-6, U8-26 Impulse analysis U8-2 Impulse profile T5-6 Inccrement T4-16, T4-19, T4-27, T4-38, T4-40 Include Missing mass components T5-76 Missing mass components (y/n) T5-76 Piping input files T3-94 Pseudostatic (anchor movement) components T5-76 Include Spring Stiffness in Hanger OPE Travel Cases T2-6 Included force T5-65 Included mass T5-63 Included mass data U9-11 Including Structural Models T3-97 Including the Spring Hanger Stiffness in the Design Algorithm T6-11 Inclusion of missing mass correction during spectral analysis results T6-47 Incmatid T4-17, T4-19 Incore numerical check T2-5 Incore solution U6-12 Increment T4-24, T5-8, T5-12, T5-44 Incsecid T4-17, T4-19 Incto T4-17, T4-19, T4-24, T4-27, T4-38, T4-41 Independent shock T5-71 Independent support motion A7-58, T5-56, T5-76, U8-17 Independent support motion applications T5-55 Independent support motion load cases T5-77 Index numbers, structural steel input U10-5 Inertia coefficient T6-40 In-plane bending moment T6-76, U12-47 In-plane large bending moment U12-47 In-plane small bending moment U12-47 In-plane stress intensification T3-22, T6-106 Input
Q-32
Constant effort supports A4-6 Data A9-6 Data cells T3-3, T3-56 Dynamic T9-16 Echo T3-103 Fields T1-2 Graphics T3-104 Review A8-20 Session A8-25 Soil T9-16 Static T9-16 Structural T9-16 Structural steel A7-48 Input items optionally effecting sif calculations T3-18 Input listing T3-102, U9-12 Input menu U4-5 Input overview based on analysis category U8-9 Input plotting T3-104 Input presentation - plot, list, stat T4-42 Insert T4-3 Insert weldolets T3-19 Installation U2-2, U2-4 Installation directory T2-2 Installation menu options U2-4 Installation process U2-4 Installed load T6-10 Installed load case T6-10 Installed weight T6-10 Insul thk T3-7 Insulation T3-7 Insulation density T3-11, U5-9 Interfaces T1-2 Interfaces added T10-12 Intergraph Data T8-42 Interface T8-26 Intergraph data after bend modifications T8-46 Intergraph data after element sort T8-39 Intergraph data after tee/cross modifications T8-40 Intergraph data after valve modifications T8-41 Intergraph interface T8-23 Intermodal correlation coefficient T5-74 Internet Explorer U2-16 Interpolation parameters T2-5 Q-33
Intersection model T3-17 Intersection stress intensification factors U12-3 Intersections T3-19 Iso T8-4 Ixx T4-9 Iyy T4-9 J
Jacket, Input A7-76, A7-80 Jacketed pipe A6-6 Jacketed piping A7-72 Jacketed piping systems A7-72 Jacobi sweep tolerance T5-79 Jacobus T8-61 JIS nominal pipe od T3-6 JIS pipe schedule T3-7 Joint endtypes T3-75 K
Kaux T3-94 Kaux menu U5-32 Kaux menu items Include Piping Input Files U5-34 Include structural input files U5-35 Review sifs U5-32 Review SIFs at Bend Node U5-32 Special execution parameters U5-32 Kaux-include structural files U10-7 Keulegan-carpenter number T6-34 K-Factor T3-14 K-factor A2-14 Kinematic viscosity T6-40 Korean 1990 database T4-62 L
Labels T2-18 Laminate Properties T6-73 Type T2-21, T3-12, T3-89, T6-85, T6-86 Last T4-17, T4-19, T4-24, T4-27, T4-38, T4-41 Lateral bearing length U11-4 Lateral deflection A5-4 Lateral force T6-23 CAESAR II Quick Reference Guide - 5/2002
Layout of nodes A7-73 Leak pressure ratio U12-24 Lease 1-9 Length of manifold piping T5-93 Length of relief exit piping T5-93 Length of the vent stack T5-86 Liberal Expansion Stress Allowable T2-10 Liberal stress allowable T3-87 License agreement, CAESAR II 1-2 License grant 1-2 License types Full run 1-9 Lease 1-9 Limited run 1-9 Lift coefficient T6-40 Lift force T6-32 Lift-off A4-15 Limit stops A3-22 Limitations of remedies 1-3 Limited run 1-9 Limited warranty 1-3 Line Pressure T5-86 Temperature T5-86 Line drawing U5-37, U5-45 Liners T3-80 LIQT interface T8-79 LIQT nodes T8-79 Liquid vent system T5-91 LISP T8-4 List T4-43 List option T3-98 List utility T3-95 List/edit facility T3-98 Listing T9-17 Load Duration T5-67, T5-75 Forcing frequency T5-68 Profiles T5-59 Range T3-29 Vector T6-48 Load case T5-33 Load case list U6-8 Load Case Options Tab U6-21 Load Case Report U7-13 Load cases U3-2, U3-14, U5-6, U5-7,
U5-20, U5-23, U6-7, U6-8, U612, U6-13, U6-14, U6-16, U6-18, U6-20, U6-26, U7-2, U7-3, U7-4, U7-12, U7-14, U7-16, U7-17, U7-20, U7-21, U8-11, U8-15, U8-26, U8-35, U9-3, U9-5, U9-8, U9-9, U9-10, U9-11, U9-15, U10-7, U10-28,U12-12 Basic load cases U3-12 Combination load cases U3-12, U6-18 Example of load cases U6-18 Expansion load case U6-26 Occasional load cases U6-26 Operating load cases U6-26 Recommended load cases U3-11 Stress category U6-16 Stress types U6-17 Sustained load case U6-26 Types of load cases U3-12 Types of loads U6-16 Load cycles U6-18 Load duration (time history or dsrss method) T5-67 Load vector Applied T5-49 Load, Ultimate U11-10 Loading conditions U5-7 Loads T4-36 Loads, Large A7-72 Local Coordinate Definitions T6-132 Local Coordinates T6-123 Local Coordinates Frequently Asked Question T6-141 Local element forces U7-8 Local flexibilities T6-13 Local forces U9-6 Local member data U12-44 Local stresses T6-42 Location factor T6-105 Log file T8-23 Longitudinal Design stress T6-86 Stress T2-11, T6-75 Longitudinal weld joint efficiency T3-56 Loop closure tolerance T2-15, T3-86 Lumped masses U8-9 M
CAESAR II Quick Reference Guide - 5/2002
Q-34
Macro-level analysis T6-73 Main menu U4-2 Analysis Menu items U4-6 File U3-2 Default data directory U4-3 Input file types U4-4 New command U4-3 Open command U4-4 Select an existing job file U4-4 Input Data entry U3-6 Input menu items U4-5 Main show menu U7-17 Major steps in dynamics input U8-5 Make units file T2-30 Manifold pipe end flow conditions T5-94 Manifold piping T5-92 Marine growth T6-37 Markl T6-112 Mass T5-43 Flowrate T5-89, T5-93 Matrix T5-49 Mass and stiffness model U8-5 Mass and stiffness model, Modifying U8-13,U8-19, U8-26, U8-28, U8-31 Mass correction, Missing U9-11 Mass model U8-9, U9-12 Mass participation factors U8-35, U9-9 Mass participation report A7-14, A7-30 Material - Add T2-35 - Delete T2-35 - Edit T2-35 Coefficient of thermal expansion T4-7 Database T2-35, T9-2 Density T4-7 Files T2-21 ID number T4-6 Identification T4-6 Name T3-9 Properties T3-10 Material elastic properties U5-8 Material fatigue curve U5-15 Material Fatigue Curves T3-65 Material name U5-8 Material number U5-8 Material yield strength U12-42, U12-46 Q-35
Materials T3-9, T3-79 Matid T4-6, T4-17, T4-19 Max U6-25 Max. no. of Eigenvalues calculated T5-62 Maximum Shear theory T2-8 Maximum allowed bend angle T2-15 Maximum allowed travel limit T3-33, T3-83 Maximum desired unity check U12-43 Maximum table frequency T5-23 Mechanical resonances T5-82 Member data, Local U12-44 Member end node U12-44 Member start node U12-44 Member type U12-44 Member weight load T4-38 Membrane stress U12-14 Memory allocated T2-27 Menu Accounting T7-3 Items T1-2 Menu commands U5-22 Methods for modeling dummy legs on bends A3-36 Miche limit T6-31 Micro -Level analysis T6-67 Scale T6-68 Mill tol % T3-7 Mill tolerance T3-7 Min U6-25 Mini-level analysis T6-72 Minimum Allowed bend angle T2-15 Angle to adjacent bend T2-15 Temperature curve T2-38 Wall mill tolerance T2-6 Yield strength T3-61 Yield stress T3-61 Minimum desired unity check U12-43 Miscellaneous T2-26, T10-9 Changes T10-12 Data group T8-71 Modifications T10-8 Missing Mass T5-63, T6-47 Mass combination method T5-77 Mass correction T5-76 CAESAR II Quick Reference Guide - 5/2002
Mass data report T6-49 Mass ZPA T2-3 Missing mass correction A7-29, U9-11 Miter points T3-13 Mitered bend, evenly spaced A2-7 Mitered bend, widely spaced A2-10 Mitered bends A2-7 Miters T3-13 Miters, closely spaced A2-7 Modal U8-9 Combination method T5-72 Combinations T5-72 Components T5-71 Extraction T5-52, T5-57 Matrix T6-47 Modal analysis U8-2 Modal analysis input Control parameters Cutoff frequency U8-10 Modes of vibration U8-10 Lumped masses U8-9 Modes of vibration U8-9 Natural frequencies U8-9 System response U8-9 Mass model U8-9 Modes of vibration U8-9 Natural frequencies U8-9 System response U8-9 Mode identification line U9-5 Mode shape T5-57, T5-60, T5-82 Mode shapes U8-2, U8-34 Model - expansion joint menu T3-72 Model menu U5-27 Model menu items Expansion joints U5-28 Hanger design control data U5-30 Title U5-29 Valve U5-28 Model modifications for dynamic analysis U8-3 Control parameter U8-5 Dynamics U8-5 Conversion from static input U8-5 Mass and stiffness model U8-5 Friction effects U8-4 Friction restraints U8-4 Friction stiffness U8-4 Nonlinear restraints in dynamics CAESAR II Quick Reference Guide - 5/2002
U8-3 Dynamic responses, nonlinear effects U8-3 Nonlinear supports U8-3 Static load case for nonlinear restraint U8-3 Specifying loads U8-5 Code compliance U8-5 Driving frequencies U8-5 Dynamic load specification U8-5 Force set specification U8-5 Harmonic analysis U8-5 Load cases U8-5 Natural frequencies U8-5 Occasional stresses U8-5 Point loads U8-5 Shock results U8-5 Static results U8-5 Model rotation, panning, and zooming T3-104 Model-break A9-26 Modeling dummy legs on bends A3-36 Modeling friction effects T6-16 Modeling plan A7-73 Modeling reducers A6-2 Modeling techniques T1-2 Modeling, Guidelines A9-12 Models, Complex A5-4 Models, Miscellaneous A6-1 Models, Simple A5-4 Modes U8-33 Modes mass normalized U9-10 Modes of vibration T5-54, U8-9, U8-10, U8-33 Modes unity normalized U9-10 Modified theories T6-37 Modifying mass and stiffness model U8-13, U8-19, U8-26, U8-28, U8-31 Modifying mass lumping T5-43 Modulus of elasticity T3-10, T6-69, T6-72 Modulus ratio T3-63 Moments T3-50, T3-76 Morrison’s equation T6-32 Motion U7-21 Movement capability T3-77 Multi-degree-of-freedom system T5-68 Multiple load case design T3-34, T3-84 N Q-36
N1 T4-13, T4-16, T4-18, T4-24, T4-26, T437, T4-40 Name T3-3, T4-8, T5-17 Name of the converted file T2-34 Name of the input file to convert T2-33 Name of the units file to use T2-33 Natural frequencies U8-5, U8-9, U8-33, U9-10 Natural frequency T5-57 Navy 505 T6-107 Near/Far Point Method A3-36 NEMA A7-95 NEMA SM23 Steam turbines Cumulative equipment calculations, NEMA SM23 U12-50 NEMA SM23 (Steam Turbines) U12-50 NEMA turbine example U12-51 Network ESLs U2-21 Neutral file T8-78 Neutral file interface T8-61 Neutral file transfer T8-2 New units file name T2-32 Nfill T4-12 Ngen T4-13 No rft/wlt in reduced fitting sifs T2-13 No. hangers at location T3-33 No. of hanger-design operating load cases T3-82 No. of iterations per shift (0-pgm computed) T5-80 No. to converge before shift allowed (0-not used) T5-80 Nodal coordinate data T8-77 Nodal degree of freedom A3-3 Nodal displacements T6-16 Node T2-15, T3-13, T3-25, T4-11, T5-38, T5-45 Number T3-3, T3-13, T3-20, T3-25 Numbers T3-107 Node fields A2-2 Node Names U5-21 Node number T3-3 Node numbers U5-3 Nodes T2-17, T3-101 Nodes in space T4-11 Nominal pipe OD T3-6
Nominal pipe schedules T3-6 Nominal pipe size U5-5 Non-conservative cutoff T5-66 Nonlinear Code compliance T6-18 Piping code compliance T6-18 Restraint T6-18 Nonlinear effects U8-3 Nonlinear restraint status U8-3 Nonlinear restraints T6-19, U6-14, U9-12 Nonlinear supports U8-3 Non-zero displacements A3-3 Norwegian T6-115 Norwegian code T6-115 Note dialog U6-5 Notes on Occasional Load Cases T6-21 Notes on Printing or Saving Reports to a File U7-14 Novell file server ESL installation U2-20 Novell workstation ESL installation U2-20 Nozzle /Vessel analysis T6-45 Auxiliary data field T3-24, T3-39, T3-44 Flexibilities T3-24 NOZZLE CALCULATIONS U12-50 Nozzle data U12-12 Nozzle diameter T3-42, T3-45, T3-47 Nozzle flexibility U12-18 Nozzle flexibility - WRC 297 T3-39 Nozzle load summation report A7-100 Nozzle loads A9-22, U12-13 Nozzle node number T3-41, T3-44, T3-47 Nozzle results for pt69m A7-99 Nozzle screen U12-17 Nozzle spreadsheet A3-12 Nozzle wall thickness T3-42, T3-45 Nozzles T3-106 NRC Benchmark problems A7-58 Spectrum example A7-58 NRC example NUREG9 A7-58 Nuclear Regulatory Guide 1.92 T5-72 Number formats T3-4 Number of points in the table T5-23 Number to converge before shift allowed T5-80 O
Q-37
CAESAR II Quick Reference Guide - 5/2002
Occasional Allowable T6-95, T6-105, T6-106 Load factor T2-7, T2-8, T6-96 Occasional dynamic stresses U8-18 Occasional load case A7-86 Occasional load cases U6-26 Occasional stress U8-2, U8-5, U8-18 Ocean currents T6-34 Ocean wave particulars T6-30 Ocean waves T6-29 ODBC T8-86, T8-93 ODBC drivers U2-15 Off-diagonal coefficients T2-5 Offset element method A3-36 Offset gimbal A5-25 Offset gimbal joint A5-27 Offsets U5-21 Offsetting T6-4 Old spring A4-9 Old spring redesign A4-9 Omega loop A7-66 Omega loop modeling A7-66 On Curvature Method A3-36 On-diagonal coefficient T2-5 Online documentation U2-19 Operating Allowable T6-105 Analysis T6-18 Case T6-9 Case vertical displacement T6-9 Load case T6-87 Load field T3-34 Loads T3-30, T3-34 Pressure T3-64 Temperature T3-62 Thermal cases T3-34 Operating conditions Temperatures and pressures U5-5 Operating load cases U6-26 Operating load, User-specified A4-14 Optimal cutoff T5-66 Ordinate T5-22 Orient T4-24 Orienting a Piping model to Z-axis Vertical T3-91 Orienting a Structural Model to Z-Axis Vertical T3-92 Orienting an Equipment Model to Z-Axis CAESAR II Quick Reference Guide - 5/2002
Vertical T3-93 Orifice flow conditions T5-94 Ortho T8-4 Orthogonal T3-27 Orthotropic material model T6-83 Other Global Coordinate Systems T6-124 Other Notes on Hanger Sizing T6-11 Out-of-core eigensolver (y/n) T5-81 Out-of-plane bending moment U12-47 Out-of-plane large bending moment U12-47 Out-of-plane small bending moment U12-47 Outplane bending moment T6-76 Outplane stress intensification T6-106 Output T9-17 Plotting U7-16 Processor T5-59 Reports by load case T2-26 Table of contents T2-26 Output from the liquid relief load synthesizer T5-93 Output menu U4-7 Output reports by load case T2-26 Output table of contents T2-26 Output Type U6-22 Output-view animation A7-4 Ovalization, bends U12-6 Overburden compaction multiplier U11-12 Overview T1-2, T4-2 P
Pad thk T3-18 Panning U5-36 Partition of y matrix T6-48 PD/4t T2-11 PDMS T8-61 Peak pressure T3-64 Peak stress index U12-7 Percent of iterations per shift before orthogonalization T5-81 Performing the analysis U8-33 Period T5-57 Phase T5-12, T5-14 Phase angle T5-12, T5-14, U8-2, U8-12, U8-34 Phasing U8-12
Q-38
Pipe Density T3-10, T3-11 Element exposed area T6-26 Element spreadsheet T3-5, T3-50, T3-51, T3-52, T3-53, T3-55, T6-7 Outside diameter T3-47 Schedules T3-7 Section data T3-6 Size T2-23 Spreadsheet T3-72, T3-80 Stress analysis T6-67 Stress analysis of FRP piping T6-67 Pipe and hanger support A4-10 Pipe modeler U11-3 Pipe nominal diameter A2-2 Pipe section properties U5-5 Pipe Stress Analysis Coordinate Systems T6-126 Pipe supported from vessel A4-10 Pipenet interface T8-84, T8-85 Pipes T2-17 Piping Codes T3-56 Element data T6-40 Input plot utility T4-42 Materials T3-9 Screen reference T1-2 Size specification T2-23 Spreadsheet T3-55 Spreadsheet data T3-2 System model T5-51 Piping codes for earthquakes U8-18 Piping dimensions U10-14 Piping input U3-5 Alpha tolerance U5-6 Ambient temperature U5-6 Construction element U5-6 Densities U5-8 Expansion joints U5-7 Input spreadsheet U5-2 Insulation density U5-9 Material name U5-8 Material number U5-8 Nominal pipe size U5-5 Rigid elements U5-6 Sif & tees U5-7 Specific gravity U5-8 Stress intensification factors U5-7 Q-39
Thermal strains U5-6 Piping input generation U3-5 Piping job U10-7 Piping material U5-8 Plant space T8-61 Plastic hinges A3-52 Plastic pipe T3-10 Plate T3-77 Plot T4-42, U5-36 Plot colors T2-17 Plot functions Highlight command U5-37, U5-45 Line drawing U5-37, U5-45 Panning, zooming, and rotating U5-36 Range of nodes to plot U5-37, U5-45 Render and wire frame plots U5-37, U5-44 Volume plot U5-37, U5-44 Plot results U7-17 Plot screen T1-2 Plotting Static output review U3-14 Tutorial U3-9 Plotting static results U7-16 Point loads U8-5 Point loads - load T4-36 Pois T4-6 Poisson effect T6-70 Poisson’s ratio T2-38, T6-84 Poisson’s ratio T2-22, T3-10, T3-62, T4-6, T6-72, T6-105 Polar moment of inertia T4-9, T4-46 Practical applications T6-81 Predefined El centro T5-55 Hanger data T3-37 Nuclear Regulatory Guide 1.60 T5-55 Uniform building code T5-55 Predefined displacements A3-6 Preparing the drawing A8-3 Pressure T3-9 Hoop stress T6-105 Peaks T5-83 Pulses A7-21, T5-82, T5-83 Rating T3-77 Stiffening T2-3, T6-96, T6-100 Stress multiplier T3-19 Thrust A5-2, T6-8 Wave A7-28 CAESAR II Quick Reference Guide - 5/2002
Pressure stiffening T2-3, U12-6 Pressure thrust U5-10 Pressure thrust, Bellows A5-3 Pressure vs. elevation table U6-9 Pressure wave U8-12 Pressure-balanced tees and elbows A5-31 Pricing factors T7-3 Primary membrane stress T6-43 Primary stress index T3-19 Print alphas and pipe properties T3-86 Print forces on rigids and expansion joints T3-85 PRINT MOTION U9-18 Printer/listing files T9-10, T9-11 Printing an input listing T3-102 Printing or saving reports to a file U9-13 Proctor number U11-12 Produced Results Data U6-22 Product demos U2-16 Product information U2-19 Program improvements 1-10 Program support 1-5 Technical support phone numbers 1-5 Training 1-5 Program support / user assistance T1-2 Program support/user assistance 1-5 PRO-ISO example transfer T8-56 PRO-ISO interface T8-53 PRO-ISO interface (standard) T8-53 PRO-ISO/CAESAR II data transfer T8-58 Prompted Auto-Save T2-28 Prompted Autosave T2-28 Proof stress T3-57, T3-61 Providing wind data U6-9 Pseudostatic Combination method T5-76 Displacement T5-56 Hydrodynamic loading T6-32 Responses T5-76 Publication dates T3-56 Pulsation T5-4 Pulsation loads T5-82 Pulse table generator T5-23 Pulse table/DLF spectrum generation U8-21, U8-28 Pulse table/dlf spectrum generator T5-57 Pump discharge loads A9-2 Pvar T3-64 Q CAESAR II Quick Reference Guide - 5/2002
Quality assurance T10-11 Quick start U3-2 R
Radius T3-12 Random T5-3 Random profile T5-3 Range T3-107, T5-22 Command T3-108 Option T3-108 Range command U5-37, U5-45 Ratio of gas-specific heats gas constant T5-87 Ratio shear modulus T2-22 Rayleigh damping T5-68 RCC-M subsection c and d T6-112 Reciprocating pumps U8-12 Recommended load cases U6-26 Recommended load cases for hanger selection U6-26 Recommended procedures U11-13 Reduced intersection T2-11, T6-90 Reduced intersection calculations T6-90 Reducers A6-2 References T6-41, T6-50, T6-88 Refractory lined pipe T3-7 Reinforcing pad T3-18, T3-42 Relief Exit piping T5-92 Valve T5-6, T5-92 Valve loads A7-7 Valve thrust load analysis T5-85 Valves A7-10 Relief load Analysis T5-85 Synthesis T5-85 Relief load synthesis U8-20 Relief load synthesis for gases greater than 15 psig T5-85 Relief load synthesis for liquids T5-91 Relief load synthesizer U8-28 Relief loads (spectrum) U8-20 Relief loads spectrum Force sets for relief loads Earthquakes U8-24 Relief valves U8-24 Skewed load U8-25 Q-40
Water hammer U8-24 Relief load synthesis Dynamic load factor U8-20 Force spectrum methodology U8-20 Relief valve U8-20 Thrust loads U8-20 Spectrum definitions DLF spectrum generator U8-23 Spectrum data U8-23 Spectrum load cases Impulse U8-26 Time history U8-26 Relief valve U8-2, U8-20, U8-24, U8-28 Relief valve example problem setup A7-10 Relief valve loading - output discussion A7-14 Relief valve or rupture disk T5-92 Relief valve thrust load analysis T5-85 Remaining strength of corroded pipelines, B31g U12-28 Remove password T2-29 Render U5-37, U5-44 Replace T4-3 Report Displacement A7-16, A7-30 Equipment A9-10 Force A7-30 Mass Participation A7-14, A7-30 Restraint A7-30 Stress A7-30 Report options U7-6 Report types U9-5 Reset plot T3-105 Resetting element strong axis - angle, orient T4-23 Re-setting loads on existing spring hangers T3-38 Residual response T6-49 Resize members U12-43 Response spectra profiles T5-17, T5-38 Response spectrum T5-22, T5-53 Response spectrum method U8-2 Response spectrum table U8-14 Response vs. frequency spectra U8-2 Restrained weight T3-37, T6-9, U6-26 Restrained weight case T6-9 Restrained weight run A4-13
Q-41
Restraint Auxiliary field T3-25 Loads T5-82 Report A7-17, A8-37 Settlement A3-28 Type T3-25 Restraint and guide, Single-directional A3-27 Restraint auxiliary data U10-21 Restraint between two pipes A3-32 Restraint between two pipes (use of CNodes) A3-32 Restraint between vessel and pipe models A3-33 Restraint summary U7-7 Restraint, Single-dimensional A3-26 Restraint, Single-directional A3-19 Restraint, Skewed double-acting A3-29 Restraint, Skewed single-directional A3-31 Restraint/force/stress reports A7-30 Restraints A3-1, T3-24, T3-106, U5-11, U7-6, U9-5 Restraints on a bend at 30 and 60 degrees A3-35 Restraints on a bend at 45 degrees A3-34 Restraints submenu U7-18 Restraints, Rotational directional A3-25 Results A7-45 Re-use last eigensolution T5-71 Review existing units file T2-30 Reynolds number T6-35 Right Hand Rule T6-124 Rigid T6-49 Body motion A7-80 Element application T6-2 Elements T3-15, T3-85 Fluid weight T6-2 Insulation weight T6-2 Material weight T6-2 Modes T5-63 Rod T3-33 Support displacement criteria T3-32, T3-83 Y restraints T3-37 Rigid elements U5-6 Rigid weight U5-10 Rigids/bends T2-17 Rod increment T2-4
CAESAR II Quick Reference Guide - 5/2002
Rod increment (degrees) T2-4 Rod tolerance T2-4 Rod tolerance (degrees) T2-4 Rotate T3-100 Rotating U5-36 Rotating equipment U8-2, U8-12 Rotating equipment report updates T10-8 Rotation rod T3-26 Rotation rods (basic model), Large A3-42 Rotation rods (chain supports), Large A3-44 Rotation rods (constant effort hangers), Large A3-46 Rotation rods (spring hangers), Large A3-45 Rotation rods (struts), Large A3-47 Rotation rods, large A3-42 Rotational directional restraints with gaps A3-25 Rotational option T3-86 Rotations T3-105 Run control data spreadsheet T3-34 Rupture disk T5-92 Rupture disk opening T5-92 Rx (cosx, cosy, cosz) or rx (vecx, vecy, vecz) T3-26 Rx, ry, or rz T3-26 S
Sample input U10-9 Sc T3-56 Scalar U6-24 Schneider T2-10, T2-12 Scratch T9-16 Screens U5-9 SE isometric view T3-106 Sea spectrum T6-29 Seam-welded T3-7, T3-14 Secid T4-8, T4-17, T4-19 Section ID T4-8 Section identification - secid T4-8 Section modulus calculations T3-14 Segment information T8-14 Segments A7-74, A7-75 Seismic Anchor movements T5-56 Loads T5-53 Spectrum analysis T5-53 Zone T6-25
CAESAR II Quick Reference Guide - 5/2002
Zone coefficient T6-24 Seismic analysis U8-2 Selection of phase angles U8-34 Serial number U2-5 Set/change password T2-29 Setting Defaults T4-10 Nodes in space T4-10, T4-11 Setting up the spring load cases T6-10 Setup option T3-100 Sh T3-58 Sh fields T3-58 Shape T4-41 Shape factor, wind U6-9 Shear modulus of elasticity T3-10, T3-89, T4-7 Shft option disabled T3-104, T3-105 Shft option enabled T3-105 Shock definition U8-14 Shock displacement T5-60 Shock load case T5-56 Shock results U8-5 Shock spectra A7-58, U8-2 Short range springs T3-33 Should caesar ii size the vent stack (y/n) T5-88 Sidesway U12-42 Sidesway, AISC U12-42 SIF T2-7, T3-10, T6-91 Curves T6-109 Factor T6-104 SIF at bend T2-9 SIFs & tees T3-17, U5-7 SIFs and stresses T2-7 SignMax U6-25 SignMin U6-25 Simple “bottomed-out” spring A4-23 Simple bellows A5-2 Simple bellows with pressure thrust A5-2 Simple hanger design A4-3 Single Directional restraint T3-33 Element insert T3-66 Gimbal expansion joint T3-79 Hinged expansion joint T3-78 Unrestrained expansion joint T3-78 Single and double flanged bends A2-4 Single and double flanged bends or
Q-42
stiffened bends A2-4 Single-directional restraint with predefined displacement A3-26 Single-directional restraints A3-19 Singular stiffness matrix A7-80 Sinusoidal forms T5-49 Skewed double-acting restraint A3-29 Skewed load U8-25 Skewed single-directional restraint A3-31 Slip Joint A5-31 Slip joint A5-23 Slipon T3-77 Slotted hinge joint A5-20, A5-21 Slotted hinge joint (comprehensive) A5-21 Slotted hinge joint (simple) A5-20 Slug flow T5-6 Specifying the load Force sets, slug flow U8-28 Force-time profile U8-28 Load cases, slug flow U8-28 Relief load synthesizer U8-28 Relief valve U8-28 Water hammer U8-28 Slug flow analysis U8-2 Snubbers T5-45, U8-10 Snubbers Active U6-23 Snubbers, static A3-51 Software revision procedures 1-6 Soil factor T6-23 Soil model U11-10 Soil model numbers U11-10 Soil properties U11-2 Soil stiffnesses U11-2 Soil supports U11-10 Sorted stresses U7-10 South African 1992 database T4-60 Spatial Combination method T5-71, T5-72 Components T5-71 Spatial or modal combination first T5-71 Special element information U5-6 Special execution parameters T3-51, T3-85, T6-2, U5-32 Specific gravity T3-11, U5-8 Specifying hydrodynamic parameters U6-11 Specifying loads, dynamics U8-5 Specifying the loads U8-9, U8-11, U8-14, U8-20, U8-28, U8-29
Q-43
Spectrum T2-3, U8-35 Spectrum analysis T5-53, T5-68, U8-2 Spectrum data U8-14, U8-23 Spectrum definitions U8-23, U8-28 Spectrum load cases U8-16, U8-25, U8-28, U9-3 Spectrum name U8-14 Spectrum results U9-3 Spectrum/time history force sets T5-38 Spectrum/time history profile T5-25 Speed of sound A7-21 Spreadsheet overview U5-2 Spring Design requirements T6-9 Forces T3-77 Rate T3-38, T6-10 Tables T3-28 Spring can characteristics A4-16 Spring can models A4-15 Spring can models with “bottom-out” and “liftoff” capability A4-15 Spring cans w/ friction, Modeling A4-24 Spring cans with friction A4-24 Spring hanger design U6-27 Spring hanger model with rods A4-19 Spring hanger model with rods, bottom-out, and lift-off A4-19 Spring hangers T3-38 Spring hangers, Existing A4-7 Spring hangers, Existing (no design) A4-7 Spring Rate field A4-9 Spring, Bottomed-out A4-23 Square root of the sum of the squares T5-72, T5-75 SRSS U6-24 Srss U8-18 Standard airy wave theory T6-33 Standard structural element connections beams, braces, columns T4-28 Start node T5-12, T5-15, T5-26, T5-43 Start run U6-2 Start, CAESAR II U3-2 Starting CAESAR II U3-2 Starting frequency T5-8 Stat T4-45 Static Analysis fatigue example T6-53 Earthquake loads T6-23
CAESAR II Quick Reference Guide - 5/2002
Load T6-49 Load case T5-61 Load case builder T6-26 Load case for nonlinear restraint status T5-61 Output processor T5-82 Seismic loads T6-23 Superposition T6-19 Thermal criteria T5-82 Static analysis A8-26 Analyze command U3-13 Static analysis output listing A8-34 Static friction coefficient T3-27 Static load case number U8-18 Static load cases Building static load cases U6-8 Limitations of the load case editor U6-7 Recommended load cases U6-7 Static output plot U10-23 Static output processor 132 column reports U7-5 Animation of static solution U7-4, U7-5 Commands in static output U7-4 Initiating the static output processor U7-2 Output options in plotted results U7-16 Plotting statics U7-5 Report options U7-2 Report titles U7-2 Show command U7-17 Table of contents U7-15 View-reports U7-4 Static output review U3-14 Plotting static output U3-14 Static results A8-29, U8-5 Static snubbers A3-51 Static solution methodology U6-12 Archive U6-14 Incore solution Bandwidth U6-13 Nonlinear restraints U6-14 Static analysis Stiffness matrix U6-12 Static/dynamic combinations U8-18, U8-26,
CAESAR II Quick Reference Guide - 5/2002
U8-28, U8-31, U9-3 Stif T3-27 Stiffness T3-27 Stiffness characteristics A4-15 Stiffness factor for friction T5-62 Stiffness matrix T5-49, U6-12 Stiffness model, Modifying U8-13, U8-19, U8-26, U8-28, U8-31 Stokes 5th order wave theory T6-30, T6-33 Stokes wave theory implementation T6-33 Stoomwezen T6-112 Stop node T5-12, T5-15, T5-44 Straight pipe T3-19 Strain continuity T6-69 Strain equilibrium T6-69 Stream function T6-34 Stream function wave theory T6-30, T6-34 Stress T2-18, U6-23 Calculation T3-62, T6-97 Cycles T3-59 Intensification factors T3-13, T3-20, T3-21, T3-22, T6-86 Intensity T6-43 Stress > level 1 T2-18 Stress > level 2 T2-18 Stress > level 3 T2-19 Stress > level 4 T2-19 Stress > level 5 T2-19 Stress category U6-16 Stress concentration factor U12-7 Stress concentrations and intensifications U12-7 Stress increase factor AISC U12-41 Stress increase f actor, Allowable U12-41 Stress intensification factor scratchpad T10-9 Stress intensification factors U5-7, U9-7 Stress intensification factors (details) T3-20 Stress intensification factors/tees U5-18 Stress level 1 T2-18 Stress level 2 T2-18 Stress level 3 T2-18 Stress level 4 T2-18 Stress level 5 T2-18 Stress reduction factors cmy and cmz U12-42 Stress reduction factors, aisc U12-42
Q-44
Stress report A7-17, U9-7 Stress stiffening due to pressure T3-88 Stress submenu U7-20 Stress types U3-12, U6-7, U6-8, U6-17, U6-18,U8-17 Stresses T6-69, U7-9, U9-7 Stresses in the fiber-matrix interface T6-71 Stresses, Allowable U5-15 Stress-strain relationships T6-72 Strong axis moment of inertia T4-9, T4-46 Structural Classification options T6-27 Database T2-23 Databases T4-46 Element keywords T4-2 Elements T4-40 Steel modeler T1-2, T4-42 Steel plot T4-42 Structural analysis A7-47 Structural capability in CAESAR II U10-2 Structural code U12-41 Structural code, AISC U12-41 Structural files, Include U5-35 Structural input files A7-39 Structural preprocessor A7-47 Structural steel A7-39 Structural steel checks - AISC U12-40 Structural steel example U10-9, U10-13, U10-25 Structural steel input U10-2 AISC database, structural steel input U10-5 Connecting pipe to structure U10-20 Connecting nodes U10-20 Displaced shape U10-22 Editing structural steel input U10-4 End connections,structural steel input U10-7 Format of structural steel input U10-3 Include in piping job U10-7 Include a structural model U10-7 Kaux-include structural files U10-7 Index numbers, structural steel input U10-5 Initiate structural steel input Structural element preprocessor U10-2
Initiating structural steel input U10-3 Help functions U10-3 Keywords in structural steel input U10-4 Running structural steel input U10-7 Static output plot U10-23 Range command U10-24 Structure T2-17 Structure dimensions U10-15 Structure nodes U10-15 Sturm sequence T5-77, T5-78 Sturm sequence check U8-33 Subsonic velocity gas T5-91 Subsonic velocity gas conditions T5-91 Subsonic vent exit T5-91 Subsonic vent exit limit T5-91 Subspace size T5-79 Suction nozzle A9-7 Supply header T5-92 Supply header pipe wall thickness T5-93 Supply overpressure T5-92 Support A1-2 Support / user assistance A1-2 Sustained Allowable T6-95, T6-105, T6-106 Analysis T6-18 Stress T3-62, T6-19, T6-96 Stress limit T3-61 Sustained load case A7-86 Sustained load cases U6-26 Sustained stresses A8-27, U8-2, U8-18 Sustained stresses and non linear restraints T6-19 Sustained sustained load cases U3-11 Swedish code T6-111 Swedish method 1 and 2 T6-111 Sy T3-60 Sy data field T3-57 System Damping T5-68 Directory name T2-24 System and hardware requirements U2-3 System directory name T2-24 System overview A8-2 System redesign A9-25 System requirements U2-3 System response U8-9, U9-11 T
Q-45
CAESAR II Quick Reference Guide - 5/2002
Tangent intersection point A7-66, T3-13 Tank node number T3-45 Tapered transitions T3-19 Task bar U2-8 Technical discussion of liqt int erface T8-79 Technical notes on caesar ii hydrodynamic loading T6-34 Technical reference manual 1-4 Technical support A1-2 Technical support phone numbers 1-5 Tee T6-91 Tees, pressure-balanced A5-31 Temperature T2-38, T3-8 De-rating factor T6-105 Differential multiplier T6-86 Ten percent method T5-73 Term 1-2 Theoretical cold load T3-38, T6-10 Thermal Bowing T2-15 Bowing delta temperature T3-87 Expansion coefficient T2-4, T2-22, T3-8, T3-61, T3-62, T3-89 Expansion/pipe weight report T6-2 Shakedown T6-4 Thermal load case U6-26 Thermal strains U5-6 Thermal support movement A4-11 Thermodynamic entropy T5-91 Thermosetting plastic material T6-67 Thicknesses, diameter, length, material number T3-107 Thrust T3-16, T5-85 Thrust at the end of the exit piping T5-93 Thrust at the end of the manifold piping T5-94 Thrust at the vent pipe exit T5-90 Thrust at valve pipe/vent pipe interface T5-89 Thrust loads U8-20 Tie bar A5-4, A5-15 Tie rod model, Comprehensive A5-17 Tied T3-78 Tied bellows (simple vs. complex model) A5-4 Tied bellows expansion joint A5-6, A5-8 Tied bellows expansion joint (complex model) A5-8 CAESAR II Quick Reference Guide - 5/2002
Tied bellows expansion joint (simple model) A5-6 Tied single expansion joint T3-78 Tied universal expansion joint T3-79 Time T5-24, T5-58 History T5-57 History analysis T5-6, T5-57, T5-59, T5-68 History animation T2-27 History load profiles T5-17 History loads T8-80, T8-85 Step T5-67 Time history U8-26, U8-29, U8-35 Force-time profiles U8-29 Vibration U8-29 Time history analysis U8-3 Time history load case U9-3 Time history load cases T5-25, U8-16, U8-31 Time history profile data point T5-22 Time history profile definitions U8-29 Time history profiles T5-17 Time history results U9-3 Time history time step T5-67 Time vs. force U8-29 Title U5-29 Title page T3-80 TO T4-13 To node number T3-3 Toolbar buttons T1-2 Tools Accounting T7-3 Material database T2-35 Multiple job analysis T7-8 Tools menu U4-8 Topographic factor parameters T6-27 Torsion T6-92 Torsional Moment T6-76 Stiffness T6-7 Stresses T6-90 Torsional R T4-9 Torsional spring rates T3-76 Training 1-5 Transforming from Global to Local T6-140 Transient Load T5-53 Load cases T5-60
Q-46
Pressure T5-90 Transient pressure rise on valve closing T5-90, T5-94 Transient pressure rise on valve opening T5-90, T5-94 Translational Option T3-86 Restraint T3-27 Stiffness T3-75 Translations T3-105 Transverse stiffness T6-7 Trapeze A4-8 Trapeze hanger assembly A4-8 Trunnion U12-6, U12-7 T-univ T3-79 Turbine trip A7-20 Tutorial A8-1, A9-1 Center of gravity report, tutorial U3-11 Plotting, tutorial U3-9 Sample model input, tutorial U3-6 Tutorial, Generating input A8-5 Type T3-12, T3-25 Type field T3-12 U
UBC T5-18 UK 1993 database T4-63 UKOOA T3-10, T6-118 UKOOA specification and recommended practice T6-67, T6-75 Ultimate tensile strength T3-61 Umbrella fitting T5-87 Unbalanced pressure force T5-5, T5-83 Underground pipe modeler U11-2, U11-3 Underground pipe/buried pipe Bilinear supports U11-10 Bilinear springs U11-10 Soil supports U11-10 Ultimate load U11-10 Yield displacement U11-10 Yield stiffness U11-10 Convert input command U11-9 Element length U11-4 Buried pipe displacements U11-4 Lateral bearing length U11-4 Meshing Lateral bearing meshes U11-7
Q-47
Overburden compaction multiplier U11-12 Backfill U11-12 Backfill efficiency U11-12 Proctor number U11-12 Soil model numbers U11-10 Spreadsheet Buried element descriptions U11-3 Underground pipe modeler U11-2 Buried pipe restraints U11-3 Soil properties U11-2 Soil stiffnesses U11-2 Zones U11-5 Lateral bearing regions U11-5 Underlying theory T6-67 Undo/Redo in the Input Module U5-2 Uniform Building code T5-18, T5-69 Load T4-38 Loads-UNIF T4-37 Support excitation T5-55 Uniform load in g’s T3-88 Uniform loads T3-51, U5-13 Uniform loads - unif T4-37 Units Conversion Data T8-76 File name T2-24 File operations T2-30 Specification - UNIT T4-4 Units conversion data T8-75 Units file name T2-24 Units file operations T2-30 Units specification - unit T4-4 Universal expansion joints A5-10 Universal expansion joints (simple models) A5-10 Universal joint (comprehensive tie rod model) A5-16 Universal joint with lateral control stops A5-17 Universal joint with lateral control stops (comprehensive tie rod model) A5-17 Unskew T3-100 Unsupported axial length U12-46 Unsupported length (in-plane bending) U12-46
CAESAR II Quick Reference Guide - 5/2002
Unsupported length (out-of-plane bending) U12-46 Untied T3-78 Untied universal expansion joint T3-79 Update history T1-2 Updates and license types 1-9 Usage factor U9-8 User assistance Technical support phone numbers 1-5 Training 1-5 User ID T2-27 User-defined T4-9 User-defined SIFs anywhere in the piping system T3-20 User-defined spectra T5-55 Using Local Coordinates T6-133 Utilities T4-42 U-univ T3-79 Ux,uy,uz T4-38 V
Valve U5-28 /Flange database T2-24 Orifice gas T5-91 Pipe/vent pipe interface T5-89 Valve orifice gas conditions T5-91 Valve/flange database T3-67 Valves and flanges T2-24 Velocity vector T5-49, T5-58 Velocity vs. elevation table U6-9 Vent Pipe exit T5-90 Pipe exit gas T5-91 Stack T5-88 Vent pipe exit gas conditions T5-91 Version 4.20 Changes and Enhancements (2/00) T10-28 Version 4.30 Changes and Enhancements (3/01) T10-29 Version and job title information T8-61 Vertical dummy leg on bends A3-36 Vertical in-line pumps U12-63 Vertical leg attachment angle A3-39 Vessel Diameter T3-42, T3-47 Material number T3-43, T3-48
CAESAR II Quick Reference Guide - 5/2002
Node T3-40 Node number T3-42, T3-47 Temperature T3-43, T3-48 Type T3-47 Wall thickness T3-42, T3-47 Vessel attachment stresses/WRC 107 Input data, WRC 107 U12-10 Nozzel loads, WRC 107 Curve Extrapolation U12-13 Interactive Control U12-13 Nozzle data, WRC 107 U12-12 Nozzle loads, WRC 107 U12-13 Reinforcing pad U12-9 Stress summations, WRC 107 Analyze-stress summation U12-14 Bending stress U12-14 Membrane stress U12-14 Vessel centerline direction cosines T3-48 Vessel centerline direction vector x, y, z T3-42 Vessel data U12-11 Vessel reinforcing pad thickness T3-42, T3-47 Vessel, Pipe and hanger supported from A4-10 Vibration U8-2, U8-29 Vibrations T5-51 View/edit file T2-32 Views T3-106 Volume plot U5-37, U5-44 Volume plotting T3-106 Von Mises theory T2-8 Vortex shedding T6-28 W
Wall thickness T2-6 Wall thickness/schedule field T3-6 Warning dialog U6-4 Water hammer A7-21, U8-24 Specifying the load Force sets, slug flow U8-28 Force-time profile U8-28 Load cases, slug flow U8-28 Relief load synthesizer U8-28 Relief valve U8-28 Slug problems U8-28 Water hammer analysis U8-2
Q-48
Water hammer loading - output discussion A7-30 Water hammer loads A7-28 Water hammer/slug flow (spectrum) U8-28 Wave Data T6-39 Spreading T6-29 Theories T6-31, T6-32 Weak axis moment of inertia T4-9, T4-46 Website U2-18 Weight analysis T3-37 Weld ID T3-19, T6-90 Weld joint efficiency T6-96 Welded T3-77 Welding Research Council Bulletin 297 U12-16 Widely spaced mitered bend A2-10 Wind Effects T5-3 Exposure options T6-27 Force T6-26 Load T3-7 Loads T4-40, T6-26 Pressure T6-26 Shape factor T3-53, T4-40, T6-26 Speed T6-26 Wind data ASCE #7 wind loads U6-10 Methods of wind loading U6-9 Pressure vs. elevation table U6-9 Shape factor U6-9 Velocity vs. elevation table U6-9 Wind/wave U5-14 Wind/wave loads T3-52 Windows A3-22 Windows server installation U2-20 Wire frame U5-37, U5-44 Wn T3-77 Woven roving construction T6-84, T6-117 WRC 107 A7-82, T2-5, T6-44, T10-8 WRC 107 (vessel stresses) U12-8 WRC 107 stress summations U12-14 WRC 297 A3-8, T6-46, T10-9, U12-16 Nozzle flexibility U12-18 Nozzle screen U12-17 WRC 329 T2-10, T2-12, T6-13, T6-90 WRC 329/330 T6-90 WRC axes orientation U12-9
Q-49
Wt/sch T3-6 X
X (cosx, cosy, cosz) or x (vecx, vecy, vecz) T3-26 X , y, or z T3-25 Xrod (cosx, cosy, cosz) or xrod (vecx, vecy, vecz) T3-26 Xrod, yrod, zrod T3-26 Y
Yield Criteria theory T2-8 Strength T4-7 Stress T2-8, T2-38, T3-57, T6-96, T6-100 Yield displacement U11-10 Yield force A3-52 Yield stiffness U11-10 Young’s modulus U12-42, U12-46 Young’s modulus of elasticity T4-6 Ys T4-7 Z
Z-Axis Vertical T2-15, T3-90, T4-4 Zero Period acceleration T5-55 -Weight rigids T6-2 Zero length expansion joint A5-18, A5-20, A5-25 Zero weight A5-20 Zero-length expansion joints T3-16 Zone definitions U11-5 Zooming T3-105, U5-36 ZPA time history output cases T5-68
CAESAR II Quick Reference Guide - 5/2002
CAESAR II Quality Assurance Manual The CAESAR II Quality Assurance Manual is intended to serve as a publicly available verification document. This manual discusses (briefly) the current industry QA standards, the COADE QA standard, a series of benchmark jobs, and instructions for users implementing QA procedures on their own hardware. The benchmark jobs consists of comparisons to published data by ASME and the NRC. Additional test jobs compare CAESAR II results to other industry software programs. For additional information on the CAESAR II Quality Assurance Manual, please contact the COADE sales department.
Mechanical Engineering News As an aid to the Users of COADE software products, COADE publishes Mechanical Engineering News several times a year. This publication contains discussions on recent developments that affect users, and technical features illustrating modeling techniques and software applications. This newsletter is sent to all users of COADE software at the time of publication. Back issues can be acquired by contacting the COADE sales staff.
Additional COADE Software Programs CADWorx - An AutoCAD based piping design/drafting program with a bi-directional data transfer link to CAESAR II. CADWorx allows models to be created in ortho, iso, 2D, or 3D modes. CADWorx template specifications, combined with built in auto routing, auto iso, stress iso, auto dimensioning, complete libraries, center of gravity calculations, and bill of materials, provides the most complete piping package to designers. CodeCalc
- A program for the design or analysis of pressure vessel components. CodeCalc capabilities include: tubesheets, rectangular vessels, flanges, nozzles, Zick analysis, and the standard internal/external thickness and pressure computations on heads, shells, and cones.
PVElite
- A comprehensive, GUI based program for the design or analysis of tall towers and horizontal vessels. Additional modules for nozzles, flanges, baserings, and WRC107 are provided.
TANK
- A program for the design or rerating of API-650/653 storage tanks. The program includes API-650 Appedices A, E, F, M, P, and S, as well as API653 Appendix B. Computations address: wind girders, conical roof design, allowed fluid heights, and remaining corrosion allowance.
CAESAR II Quick Reference Guide - 5/2002
Q-50