VRF, MPLS and MPBGP Fundamentals BRKCRT-2601
Jason Jas on Goo Gooley, ley, CCIEx2 CCIEx2 (RS, SP) SP) #38759 #38759 Twitter: Tw itter: @Jason_Gooley LinkedIn: http://www http://www.linkedin.com/in/jgooley .linkedin.com/in/jgooley
VRF, MPLS and MPBGP Fundamentals BRKCRT-2601
Jason Jas on Goo Gooley, ley, CCIEx2 CCIEx2 (RS, SP) SP) #38759 #38759 Twitter: Tw itter: @Jason_Gooley LinkedIn: http://www http://www.linkedin.com/in/jgooley .linkedin.com/in/jgooley
Agenda
Introduction to Virtualization
VRF-Lite
MPLS & BGP Free Core
Multiprotocol BGP (MP-BGP)
Conclusion
Q&A
Cisco Spark Questions?
Use Cisco Spark to chat with the speaker after the session
How 1.
Find this session in the Cisco Live Mobile App
2. Click “Join the Discussion” 3.
Install Spark or go directly to the space
4.
Enter messages/questions in the space
Cisco Spark spaces will be available until July 3, 2017.
cs.co/ciscolivebot#BRKCRT-2601 E.g: session ID = BRKCRT-2601
3 networks walk into a …
What is a VRF?
Enterprise Network Virtualization Key Building Blocks
Device Partitioning
Virtualized Interconnect Si
VRF VRF Global
“Virtualizing” the Routing and Forwarding o f the Device
Extending and Maintaining the “Virtualized” Devices/Pools over Any Media
Device Partioning Layer 2 vs. Layer 3 Virtualization
VRF
VRF VRF Global
VLAN—Virtual LAN
VRF—Virtual Routing and Forwarding
Virtualize at Layer 2 forwarding
Associates to one or more L2 interfaces on switch
Has its own MAC forwarding table and spanning-tree instance per VLAN
Interconnect options? VLANs are extended via a physical cable or virtual 802.1q trunk
Virtualize at Layer 3 forwarding Associates to one or more Layer 3 interfaces on router/switch Each VRF has its own Forwarding table (CEF) Routing process (RIP, EIGRP, OSPF, BGP)
Interconnect options (VRF-Lite)? 802.1q, GRE, sub-interfaces, physical cables, signaling
Path Isolation Functional Components Per VRF:
Device virtualization
Control plane virtualization
Data plane virtualization
Services virtualization
Data path virtualization
Hop-by-Hop - VRF-Lite End-to-End
Multi-Hop - VRF-Lite GRE
MPLS-VPN
MPLS VPN over IP
MPLS VPN over DMVPN
MPLS VPN o GRE/mGRE
Virtual Routing Table Virtual Forwarding Table
VRF VRF Global
802.1q
IP/MPLS
VRF-Lite
What is VRF-Lite?
Per VRF:
Functional Components
Virtual Routing Table Virtual Forwarding Table
WAN/Campus VRF VRF VRF
VRF VRF VRF
802.1q, GRE, DLCI
A VRF supports it’s own Routing Inform ation Base (RIB) and Forwarding Inf ormati on Base (FIB)
Leverages “Virtual” encapsulation for separation:
Routing protocols are “VRF aware”
Ethernet/802.1Q, GRE, Frame Relay RIP/v2, EIGRP, OSPF, BGP, static (per VRF)
Layer 3 interfaces can only belong to a single VRF
VRF-Lite
Things to Remember VLAN 10 VLAN 20
End-to-End segmentation is done on a per VRF and per hop basis
MP-BGP or control plane signaling is not required
Labels are not required (i.e. MPLS) Scaling should be limited to a small number of VRFs
VLAN 11 VLAN 21
VLAN 12 VLAN 22
IGPs VLAN 13 VLAN 23
VLAN 15 VLAN 25
VLAN 14 VLAN 24 VLAN 16 VLAN 26
VRF-Lite
Per VRF: Virtual Routing Table Virtual Forwarding Table Locally Significant
Sub-interface Example R1
Lo 1
R2 .1
Lo 1
.2 VLAN 12
1.1.1.1
VRF-R
Lo 2
.1 4 1 N A L V
4 1 1 N A L V
4 1 2 N A L V
Lo 2
VRF-E
VLAN 212
VRF-O
Lo 3
VRF-R
VLAN 112
VRF-E
2.2.2.2
VRF-O
.2
F0/0.X VLAN X 10.1.X.0/24 Sub-interface/VLAN/VRF Mapping
3 2 N A L V
3 2 1 N A L V
Lo 3
IGPs: VRF-R = RIP VRF-E = EIGRP VRF-O = OSPF
3 2 2 N A L V
.4
.3
Lo 1
Lo 1 VLAN 34
4.4.4.4
VRF-R
Lo 2
VRF-O
Lo 3
R4
VRF-R
VLAN 134
VRF-E
VLAN 234
.4
Lo 2
VRF-E
.3
VRF-O
R3
Lo 3
3.3.3.3
VRF-Lite Sub-interface Configuration Command Line Interface (CLI) Review ip vrf VRF-R rd 1:1 interf ace FastEthernet0/0.12 ip vrf forwarding VRF-R interface Loopback1 ip vrf forwarding VRF-R ip vrf VRF-E rd 2:2 interf ace FastEthernet0/0.112 ip vrf forwarding VRF-E interface Loopback2 ip vrf forwarding VRF-E ip vrf VRF-O rd 3:3 interf ace FastEthernet0/0.212 ip vrf forwarding VRF-O interface Loopback3 ip vrf forwarding VRF-O
VRF VRF VRF
VRF-Lite Sub-interface Configuration Command Line Interface (CLI) Review – VRF Definition Example vrf definition VRF-R r d 1: 1 address-family ipv 4 interf ace FastEthernet0/0.12 vrf forwarding VRF-R interface Loopback1 vrf forwarding VRF-R
vrf definition VRF-O r d 3: 3 address-family ipv 4
interf ace FastEthernet0/0.212 vrf forwarding VRF-O interface Loopback3 vrf forwarding VRF-O
VRF VRF VRF
Multiprotocol VRF Conversion Configuration Command Line Interface (CLI) Review vrf upgr ade-cli mult i-af-mode {common-policies | non-common-policies } [ vr f vrf-name] PE1(config)#vrf upgrade-cli multi-af-mode common-policies You are about to upgrade to the multi-AF VRF syntax commands. You will lose any IPv6 addresses configured on interfaces belonging to upgraded VRFs. Are yo u s ur e ? [ yes ]: Number of VRFs upgraded: 1 interf ace Ethernet0/1 vrf fo rwarding VRF ip addres s 10.1.78.7 255.255.255.0 PE1(config)#do sh run | se vrf vrf definition VRF r d 7: 1 route-target export 7:1 route-target import 5:1
VRF VRF VRF
VRF Aware RIP Configuration Command Line Interface (CLI) Review
Leverage what you already know!
router rip version 2 networ k 1.0.0.0 network 10.0.0.0 no auto-summary
router rip ! address-family ipv4 v rf VRF-R networ k 1.0.0.0 network 10.0.0.0 no auto-summary version 2 exit-address-family
VRF
RIP leverages address-family ipv4 vrf ______
VRF Aware EIGRP Configuration Command Line Interface (CLI) Review
Leverage what you already know!
router eigrp 10 netw ork 1.1.1.1 0.0.0.0 netw ork 10.1.112.0 0.0.0.255 no auto-summary router eigrp 10 (AS can be the same or diff erent as one of th e VRFs!!!) auto-summary ! address-family ipv4 v rf VRF-E netw ork 1.1.1.1 0.0.0.0 netw ork 10.1.112.0 0.0.0.255 no auto-summary autonomous-system 10 exit-address-family
VRF
EIGRP leverages address-family ipv4 vrf ______ Set unique autonomous system number per VRF
VRF Aware OSPF Configuration Command Line Interface (CLI) Review
Leverage what you already know!
router ospf 1 log-adjacency-changes netw ork 1.1.1.1 0.0.0.0 area 1 netw ork 10.1.212.0 0.0.0.255 area 0 router ospf 2 vrf VRF-O log-adjacency-changes netw ork 1.1.1.1 0.0.0.0 area 1 netw ork 10.1.212.0 0.0.0.255 area 0
VRF
OSPF leverages vrf ______ after the unique process number
Live Exploration
No Sub-interface Support? No Problem! GRE Example R1
Lo11
R2 .1
VRF-R
Lo12
Lo13
.1 4 1 l e n n u T
4 1 1 l e n n u T
VRF-R VRF-E
VRF-O
Tunnel 212
VRF-O
GRE tunnel interface is “VRF aware” .2
Tunn el X 10.1.X.0/24
4 1 2 l e n n u T
Each VRF uses a unique GRE tunnel
Tunnel 112
VRF-E
Lo 1
.2 Tunnel 12
1.1.1.1
VRF-Lite can also leverage GRE tunnels as a segmentation technology
3 2 l e n n u T
Tunnel/VRF Mapping
3 2 1 l e n n u T
Lo13
3 2 2 l e n n u T
.4
.3
Lo11
Lo11 Tunnel 34
4.4.4.4
VRF-R
Lo12
VRF-O
Lo13
R4
VRF-R
Tunnel 134
VRF-E
VRF-E
Tunnel 234
.4
.3
Lo12
3.3.3.3
VRF-O
R3
Lo13
Configuration Note: Each GRE Tunnel Could Require Unique Source/Destination IP (Platform Dependent)
VRF-Lite Tunnel Configuration Command Line Interface (CLI) Review ip vrf VRF-S rd 11:11 interface Loopback101 ip address 11.11.11.11 255.255.255.255 (Global Routing Table)
Leverage what you already know! ip route vrf VRF-S 2.2.2.2 255.255.255.255 10.1.12.2
interface Tunnel12 ip vrf forwarding VRF-S ip addres s 10.1.12.1 255.255.255.0 tunnel sourc e Loopback101 tunn el dest ination 22.22.22.22 ip vrf VRF-S rd 22:22
VRF interface Loopback102 ip address 22.22.22.22 255.255.255.255 (Global Routing Table) interface Tunnel12 ip vrf forwarding VRF-S ip addres s 10.1.12.2 255.255.255.0 tunnel sourc e Loopback102 tunn el dest ination 11.11.11.11
ip route vrf VRF-S 1.1.1.1 255.255.255.255 10.1.12.1
Layer 2 Serial Link? No Problem? Back-to-Back Frame Relay Example R1
Lo111
VRF-Lite can also leverage Frame Relay Sub-interfaces as a segmentation Lo 1 technology
R2 .1
.2 Serial1/0.12
1.1.1.1
VRF-R
Lo112
Lo113
.1 4 1 . 1 / 1 l a i r e S
4 1 1 . 1 / 1 l a i r e S
VRF-E
Serial1/0.212
VRF-O
VRF-O
sub-interface and DLCI .2
Serial1/0.X Serial1/1.X 10.1.X.0/24
4 1 2 . 1 / 1 l a i r e S
Each VRF uses a unique Frame-Relay
VRF-R
Serial1/0.112
VRF-E
3 2 . 1 / 1 l a i r e S
FR VC/VRF Mappin g
3 2 1 . 1 / 1 l a i r e S
Lo 3
Frame Relay sub-interface is “VRF aware”
3 2 2 . 1 / 1 l a i r e S
.4
.3
Lo111
Lo111 Serial1/0.34
4.4.4.4
VRF-R
Lo112
VRF-O
Lo113
R4
VRF-R
Serial1/0.134
VRF-E
Serial1/0.234
.4
Lo112
VRF-E
.3
VRF-O
R3
Lo113
Configuration Note: Leveraging Back-to-Back Frame-Relay Configuration
3.3.3.3
VRF-Lite Back-to-Back Frame Relay Configuration Command Line Interface (CLI) Review ip vrf VRF-B rd 111:111 interf ace Serial1/0 encapsulation frame-relay no keepalive Interface Serial1/0.12 point-to-po int ip vrf forwarding VRF-B ip addr ess 10.1.12.1 255.255.255.0 frame-relay interface-dlci 201
Leverage what you already know! router bgp 1 address-family ipv4 v rf VRF-B neighbor 10.1.12.2 remote-as 2 neighbor 10.1.12.2 activate no synchronization netw ork 1.1.1.1 mask 255.255.255.255 exit-address-family
ip vrf VRF-B rd 222:222 interf ace Serial1/0 encapsulation frame-relay no keepalive Interface Serial1/0.12 point-to-po int ip vrf forwarding VRF-B ip addr ess 10.1.12.2 255.255.255.0 frame-relay interface-dlci 201
VRF router bgp 2 address-family ipv4 vrf VRF-B neighbor 10.1.12.1 remote-as 1 neighbor 10.1.12.1 activate no synchronization netw ork 2.2.2.2 mask 255.255.255.255 exit-address-family
Live Exploration
VRF-Lite Summary
Create a VRF in router for RIB/FIB and interface segmentation
No MPLS, LDP, or MP-BGP required
Optimal solution when VRF count is small (~ <8)
Supports multicast and QoS solutions
Leverage current routing protocol knowledge and apply it to PE-CE VRF Routing
MPLS & BGP Free Core
What Is MPLS? Most Painful L earn Study
What Is MPLS? Multi
Multi-Protocol: The ability to carry any payload Have: IPv4, IPv6, Ethernet, ATM, FR
Protocol L abel
Uses Labels to tell a node what to do with a packet; separates forwarding (hop by hop behavior) from routing (control plane)
Switching
Routing based on IPv4/IPv6 lookup. Everything else is label switching.
MPLS Component Overview
CE routers owned by customer PE routers owned by SP P routers owned by SP
Site 1
Customer “peers” to “PE” via IP
Site 2
Exchanges routing with SP via routing protocol (or static route)* SP advertises CE routes to other CEs
Customer
Customer CE
SP Demarcation
CE
Provider PE
PE P
CE IP Routing Peer (BGP, Static, IGP)
* Labels are not exchanged with the SP
Site 3
IP Routing IGP vs. BGP •
Exchange of IP routes for Loopback Reachability •
•
OSPF, IS-IS, EIGRP, etc.
iBGP neighbor peering over IGP transport
Forwarding Table In Addr ess Label Prefix
Out Out I’face Label
Forwarding Table In Addr ess Label Prefix
Out Out I’face Label
10.2.1.1
F0/0
10.2.1.1
NA
…
…
…
…
…
…
…
…
Forwarding Table In Add ress Label Prefix
Out Out I’face Label
10.2.1.1
F0/0
…
…
F0/0
•
Route towards BGP Next-Hop
F0/0 F0/0
PE1
P
You Can Reach 2.2.2.2 Throug h Me
Routing Updates (OSPF)
10.2.1.1
PE2 BGP Update: You Can Reach 10.2.1.1 Thru Me By rout ing tow ards 2.2.2.2
You Can Reach 2.2.2.2 Thru Me
MPLS Label Switched Path (LSP) Setup with LDP Assignment of Remote Labels •
•
Local label mappings are sent to connected nodes Receiving nodes update forwarding table •
•
Forwarding Table In Add res s Out Out Label Prefix I’faceLabel
Forwarding Table
Forwarding Table
In Add res s Out Out In Ad dr ess Out Out Label Prefix I’faceLabel Label Prefix I’faceLabel 2.2.2.2 F0/0 30 20 30 10.2.1.1 F0/0 -
-
2.2.2.2
F0/0
20
-
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
Out label
LDP label advertisement happens in parallel (downstream unsolicited)
F0/0
F0/0
PE1
Use Label 20 fo r 2.2.2.2
Label Distribution Protocol (LDP)
PE2
…
…
F0/0 10.2.1.1 VRF
P
Use Label 30 for 2.2.2.2
BGP Update: You Can Reach 10.2.1.1 Thru Me
MPLS Traffic Forwarding with LDP Hop-by-hop Traffic Forwarding Using Labels •
Ingress PE node adds label to packet (push) •
•
Downstream P node uses label for forwarding decision (swap) • •
•
Via MPLS forwarding table
Forwarding Table
Forwarding Table
In Add res s Out Out In Add res s Out Out Label Prefix I’faceLabel Label Prefix I’faceLabel
-
2.2.2.2
F0/0
20
20
2.2.2.2
F0/0
30
-
…
…
…
-
…
…
…
…
…
…
…
…
…
…
…
Outgoing interface Out label
Egress PE removes label and forwards original packet (pop)
Forwarding Table
In Ad dr ess Out Out Label Prefix I’faceLabel
30
10.2.1.1
F0/0
-
…
…
…
…
F0/0
PE2
F0/0 VRF
10.2.1.1
F0/0
PE1 10.2.1.1
Data
P 20
2.2.2.2
Data
30
2.2.2.2
Forwarding based on L abel towards BGP Next-Hop (Loopback of far end ro uter)
Data
10.2.1.1
Dat a
BGP Update: You Can Reach 10.2.1.1 Thru Me By rout ing tow ards 2.2.2.2
BGP Free Core Component Overview 10.1.1.0/24
Site 2
VPNv4 iBGP Relationship
Site 1
CE2
CE1 P1
P2
PE1
PE2 P3
Redistribute IGP/Static Into BGP
P4
OSPF Area 0
1.
Always route towards BGP Next-Hop
2.
Routes will be valid on PE Routers
3.
Will label switch towards BGP Next-Hop of PE with MPLS enabled
End-to-End BGP and redistribution of routes into OSPF core not necessary!
Redistribute IGP/Static Into BGP
10.2.1.0/24
Multiprotocol BGP (MP-BGP)
Multiprotocol BGP (MP-BGP) Bringing It All Together 10.1.1.0/24
Site 1 10.1.1.0/24
10.2.1.0/24
VPNv4 iBGP Relationship
Next-Hop=CE1
Next-Hop=CE2 CE2
CE1 10.2.1.0/24 Next-Hop=PE1
VRF P1
P2
PE1
VRF
10.1.1.0/24 Next-Hop=PE2
PE2 P3
Redistribute IGP/Static Into BGP
P4
OSPF Area 0 Redistribute IGP/Static Into BGP
1.
PE receives an IPv4 update on a VRF interface (eBGP/OSPF/RIP/EIGRP)
2.
PE translates it into VPNv4 address (96-bit address) (64-bit RD + 32 bit IPv4 address) – – –
3.
Site 2
Assigns an RT per VRF configuration Rewrites next-hop attribute to itself Assigns a label based on VRF and/or interface
PE sends MP-iBGP update to other PE routers
10.2.1.0/24
Why an RD and VPNv4 Address? Use Case Cust A Site 1 10.1.1.0/24
VPNv4 iBGP Relationship 111:1:10.1.1.0/24
10.1.1.0/24 111:1:10.2.1.0/24
CE2
CE1
VRF A VRF B
Cust B Site 1 10.1.1.0/24
Cust A Site 2
10.2.1.0/24
P1
VRF A
P2
PE1
PE2 P3
CE1
Cust B Site 2
VRF B
P4
OSPF Area 0 222:1:10.1.1.0/24
10.1.1.0/24
10.2.1.0/24
CE2
10.2.1.0/24
10.2.1.0/24
222:1:10.2.1.0/24
1.
PE routers service multiple customers
2.
Once PE redistributes customer routes into MP-BGP, they must be unique
3.
RD is prepended to each prefix to make routes unique
VPNv4 prefixes are the combination of a 64-bit RD and a 32-bit IPv4 prefix. VPNv4 prefixes are 96-bits in length
Why are Route Targets Important? Use Case VRF A
Cust A Site 1 10.1.1.0/24
CE1
VRF A VRF C
Cust A Site 3 10.1.3.0/24
CE1
VPNv4 iBGP Relationship
Import 222:1
VRF B
Import 333:1
Import 111:1
Import 444:1
Export 222:1
Export 111:1 P1
PE2
Import 111:1
P3
P4
OSPF Area 0
Export 333:1
CE1
10.1.2.0/24
VRF B
P2
PE1 VRF C
Cust A Site 2
VRF D
Cust A Site 4
VRF D CE1
Import 111:1 Export 444:1
1.
Route Targets dictate which VRF will receive what routes
2.
Can be used to allow specific sites access to centralized services
3.
Cust A Site 2, Site 3 and Site 4 will not be able to exchange routes with each other
Route Targets are a 64-bit value and are carried in BGP as an extended community
10.1.4.0/24
MPLS VPN and MP-BGP Command Line Interface (CLI) Review Customer 1
CE
VRF VRF-1
P
VRF VRF-1
PE
PE
EIGRP, OSPF, RIPv2, BGP, Static
Customer 2
P
CE
VPN Backbone IGP P P
CE VRF VRF-2
CE VRF VRF-2
VRF Configuration (PE) ! PE Router – Multip le VRFs ip v rf VRF-1 rd 65100:10 route-target im port 65102:10 route-target export 65102:10 ip v rf VRF-2
MP-iBGP Confi gurati on (PE) ! PE router
MP-iBGP – VPNv4 Label Exchange
router b gp 65102 no bgp default ipv4-unicast neighbor 2.2.2.2 remote-as 65102
rd 65100:20
!
route-target im port 65102:20
address-family vpnv 4
route-target export 65102:20
neighbor 2.2.2.2 activate
!
neighbor 2.2.2.2 send-communi ty extended
Interface FastEthernet0/1.10
exit-address-family
ip vrf forwarding VRF-1 Int erface FastEthernet0/1.20 ip vrf forwarding VRF-2
! address-family ipv4 vrf VRF-1 redistribute rip
Live Exploration
MPLS VPN Technology Summary MPLS VPN Connection Model Global Address Space CE
VPN 2
VRF Green
P
P
PE
EIGRP, OSPF, RIPv2, BGP, Stat ic
PE
VPN Backbon e IGP P
VPN 1
P
VRF Blue
CE
MP-iBGP – VPNv4 Label Exchange
CE Routers
VRF Associates to one or more interfaces on PE Has its own routing table and forwarding table (CEF) VRF has its own instance for the routing protocol (static, RIP, BGP, EIGRP, OSPF)
PE Routers •
MPLS Edge routers
•
MPLS forwarding to P routers
•
IGP/BGP – IP to CE routers
•
Distributes VPN information through MPBGP to other PE routers with VPNv4 addresses, extended community, VPN labels
P Routers •
P routers are in the core of the MPLS cloud
•
P routers do not need to run BGP
•
Do not have knowledge of VPNs
•
Switch packets based on labels (swap/pop) not IP
Closing Thoughts •
Break MPLS into smaller, more manageable chunks to accelerate learning
•
Leverage current routing protocol knowledge learning PE-CE VRF routing
•
MP-BGP and traditional IPv4 BGP configuration is very similar
•
If routes are not present on CE routers check route-target import/export, communities and redistribution between IPv4 VRF address-families under IGP and BGP
•
If routes are present but you are having problems with reachability, check MPLS configuration
•
Remember on PE devices you are living in a VRF world (Ping, Traceroute etc.)
•
HAVE FUN !!!!! Remember, it’s a journey not a destination!
Order a copy of Programming and Automating Cisco Networks here: http://www.amazon.com/Programming-Automating-Cisco-Networksprogrammability/dp/1587144654/ref=sr_1_1?ie=UTF8&qid=1450796338&s r=8-1&keywords=Jason+Gooley
Complete Your Online Session Evaluation •
Give us your feedback to be entered into a Daily Survey Drawing. A daily winner will receive a $750 gift card.
•
Complete your session surveys through the Cisco Live mobile app or on www.CiscoLive.com/us. Don’t forget: Cisco Live sessions will be
available for viewing on demand after the event at www.CiscoLive.com/Online.
Continue Your Education •
Demos in the Cisco campus
•
Walk-in Self-Paced Labs
•
Lunch & Learn
•
Meet the Engineer 1:1 meetings
•
Related sessions
What Is MPLS?
Master
Share
Practice
Learn
Thank you
Live Exploration Diagrams
VRF-Lite
Per VRF: Virtual Routing Table Virtual Forwarding Table Locally Significant
Sub-interface Example R1
Lo 1
R2 .1
Lo 1
.2 VLAN 12
1.1.1.1
VRF-R
Lo 2
.1 4 1 N A L V
4 1 1 N A L V
4 1 2 N A L V
Lo 2
VRF-E
VLAN 212
VRF-O
Lo 3
VRF-R
VLAN 112
VRF-E
2.2.2.2
VRF-O
.2
E0/0.X VLAN X 10.1.X.0/24 Sub-interface/VLAN/VRF Mapping
3 2 N A L V
3 2 1 N A L V
Lo 3
IGPs: VRF-R = RIP VRF-E = EIGRP VRF-O = OSPF
3 2 2 N A L V
.4
.3
Lo 1
Lo 1 VLAN 34
4.4.4.4
VRF-R
Lo 2
VRF-O
Lo 3
R4
VRF-R
VLAN 134
VRF-E
VLAN 234
.4
Lo 2
VRF-E
.3
VRF-O
R3
Lo 3
3.3.3.3
No Sub-interface Support/No Problem GRE Example R1
Lo11
R2 .1
VRF-R
Lo12
Lo13
.1 4 1 l e n n u T
4 1 1 l e n n u T
VRF-R VRF-E
VRF-O
Tunnel 212
VRF-O
GRE tunnel interface is “VRF aware” .2
Tunn el X 10.1.X.0/24
4 1 2 l e n n u T
Each VRF uses a unique GRE tunnel
Tunnel 112
VRF-E
Lo 1
.2 Tunnel 12
1.1.1.1
VRF Lite can also leverage GRE tunnels as a segmentation technology
3 2 l e n n u T
Tunnel/VRF Mapping
3 2 1 l e n n u T
Lo13
3 2 2 l e n n u T
.4
.3
Lo11
Lo11 Tunnel 34
4.4.4.4
VRF-R
Lo12
VRF-O
Lo13
R4
VRF-R
Tunnel 134
VRF-E
VRF-E
Tunnel 234
.4
.3
Lo12
3.3.3.3
VRF-O
R3
Lo13
Configuration Note: Each GRE Tunnel Could Require Unique Source/Destination IP (Platform Dependent)
Layer 2 Serial Link/No Problem Back-to-Back Frame Relay Example R1
Lo111
VRF Lite can also leverage Frame Relay Sub-interfaces as a segmentation Lo 1 technology
R2 .1
.2 Serial1/0.12
1.1.1.1
VRF-R
Lo112
Lo113
.1 4 1 . 1 / 1 l a i r e S
4 1 1 . 1 / 1 l a i r e S
VRF-E
Serial1/0.212
VRF-O
VRF-O
sub-interface and DLCI .2
Serial1/0.X Serial1/1.X 10.1.X.0/24
4 1 2 . 1 / 1 l a i r e S
Each VRF uses a unique Frame-Relay
VRF-R
Serial1/0.112
VRF-E
3 2 . 1 / 1 l a i r e S
FR VC/VRF Mappin g
3 2 1 . 1 / 1 l a i r e S
Lo 3
Frame Relay sub-interface is “VRF aware”
3 2 2 . 1 / 1 l a i r e S
.4
.3
Lo111
Lo111 Serial1/0.34
4.4.4.4
VRF-R
Lo112
VRF-O
Lo113
R4
VRF-R
Serial1/0.134
VRF-E
Serial1/0.234
.4
Lo112
VRF-E
.3
VRF-O
R3
Lo113
Configuration Note: Leveraging Back-to-Back Frame-Relay Configuration
3.3.3.3
Multiprotocol BGP (MP-BGP) Bringing It All Together VRF Instance Site 1 10.1.1.0/24
VRF Instance
iBGP Relationship
E0/1 E0/1
CE1 E0/1
E0/2
E0/0
E0/2
10.1.1.0/24
P1
Next-Hop=R8
E0/1
PE1
P2
E0/1
E0/3
E0/2 E0/1
E0/3
P4
OSPF Area 0 R8
10.2.1.0/24 E0/3
P3
E0/3
10.2.1.0/24 CE2
E0/1
E0/2
E0/0
Site 2
PE2
Next-Hop=R6
R&S Related Cisco Education Offerings Course
Description
Cisco Certification
CCIE R&S Advanced Workshops (CIERS-1 & CIERS-2) plus Self Assessments, Workbooks & Labs
Expert level trainings including: instructor led workshops, self assessments, practice labs and CCIE Lab Builder to prepare candidates for the CCIE R&S practical exam.
CCIE® Routing & Switching
• Implementing Cisco IP Routing v2.0 • Implementing Cisco IP Switched
Professional level instructor led trainings to prepare candidates for the CCNP R&S exams (ROUTE, SW ITCH and TSHOOT). Also available in self study eLearning formats with Cisco Learning Labs.
CCNP® Routing & Switching
Interconnecting Cisco Networking Devices: Part 2 (or combined)
Configure, implement and troubleshoot local and wide-area IPv4 and IPv6 networks. Also available in self study eLearning format with Cisco Learning Lab.
CCNA® Routing & Switching
Interconnecting Cisco Networking Devices: Part 1
Installation, configuration, and basic support of a branch network. Also available in self study eLearning format with Cisco Learning Lab.
CCENT® Routing & Switching
Networks V2.0 • Troubleshooting and Maintaining
Cisco IP Networks v2.0
For more details, please visit: http://learningnetwork.cisco.com Questions? Visit the Learning@Cisco Booth