02/05/2012
Universidad Tecnológica Nacional Facultad Regional Delta
Departamento Departamento de Ingeniería Ingeniería Química Química Asignatura:
INTEGRACION II “Balances de materia” Cátedra:
Prof. Interino: Ing. Fernando Pablo Pablo Visintin Visintin Damian Ayr A Ayr yr Vergani Vergani Auxiliar: Ing. Damian
Primera Parte: “Balances de materia en procesos no reactivos”
1
02/05/2012
¿Qué es un balance? Según la Real Academia Española: “Estudio comparativo de las circunstancias de una situación, o de los factores que intervienen en un proceso, para tratar de prever su evolución” ev olución” Este término término se aplica en diversas áreas del conocimiento… conocimiento…
Demografía Economía Ecología Meteorología Meteorología etc…
Lo primero que hay que hacer es definir cual es el SISTEMA al cual se va a aplicar el balance!
TIPOS DE SISTEMAS
2
02/05/2012
Ecuación general de balance
[ A] = [ E ] − [ S ] + [G ] − [C ] Da cuenta de lo que sucede dentro del sistema…
ACUMULACION GENERACION CONSUMO
Y como interactúa el sistema con los alrededores…
ENTRADA SALIDA
¿A que se puede aplicar? PROPIEDADES CONSERVATIVAS:
MASA
CANTIDAD DE MOVIMIENTO
ENERGIA
PROPIEDADES NO CONSERVATIVAS:
CANTIDAD DE SUSTANCIA
VOLUMEN
ENTROPIA
3
02/05/2012
Tipos de balances BALANCE DIFERENCIAL Indica lo que ocurre en un instante determinado. Cada término del balance es una “velocidad”.
BALANCE INTEGRAL Indica lo que ocurre en un intervalo de tiempo. Cada término del balance es una “porción” de la propiedad.
Balances de materia:
BALANCE TOTAL
BALANCE DE ESPECIES ATOMICAS
BALANCE DE ESPECIES MOLECULARES
4
02/05/2012
Casos particulares
[ A] = [ E ] − [ S ] + [G ] − [C ]
En estado estacionario…
ACUMULACION = 0
[ S ] = [ E ] + [G ] − [C ]
Si la propiedad es conservativa…
GENERACION = 0 y CONSUMO = 0
[ S ]
=
[ E ]
EJEMPLO 1
Balance de benceno:
500 kg/h = 450 kg/h + m2
Balance de tolueno:
500 kg/h = m1 + 475 kg/h
Balance total:
1000 kg/h = 925 kg/h + m1 + m2
5
02/05/2012
Base de cálculo y escala del proceso Para poder resolver los balances de un proceso se requiere conocer como mínimo EL CAUDAL DE UNA CORRIENTE. Este caudal fija la ESCALA DEL PROCESO. Si el problema no indica ningún caudal es necesario tomar una BASE DE CALCULO. Consiste en adoptar el caudal de una corriente, elegida convenientemente, y resolver los balances de materia con esa base. Luego, si esa base no es satisfactoria, se puede cambiar la escala del proceso. Para ello se utiliza el “ factor de cambio de escala”.
f
escala.deseada =
base.de.calculo
EJEMPLO 1 – – cambio cambio de escala
Ahora se desea obtener 1000 kg/h de destilado… ¿Cuánta alimentación se requiere? ¿Cuánto producto de fondo se obtiene?
6
02/05/2012
GRADOS DE LIBERTAD
L I E =
−
I: número de incógnitas del diagrama de flujo
CAUDALES FRACCIONES
E: número de ecuaciones independientes
Según el signo tenemos: L = 0, el problema tiene solución única L > 0, faltan datos para resolver el problema sobre-especificado L < 0, el problema está sobre-
Ecuaciones independientes
BALANCES DE MATERIA Si el proceso tiene “n” componente se pueden escribir como máximo “n” ecuaciones de balances independientes.
SUMA DE FRACCIONES Si el proceso tiene “n” corrientes cuya composición se desconoce se pueden escribir “n” ecuaciones de suma de fracciones.
DATOS ADICIONALES Una ecuación por cada dato adicional dado, por ejemplo una proporción dada entre dos corriente o dos fracciones.
7
02/05/2012
EJEMPLO 1 – – grados grados de libertad
Ecuaciones:
2 de balances de materia independientes 0 de suma de fracciones 0 de datos adicionales Incógnitas: 2 ( m1 y m2 ) L = 2 – 2 = 0
EJEMPLO 2 Componentes:
1 = ii-propanol 2 = nn-propanol
mA y1,A y2,A
Corrientes:
A, D y F
Balance de ii- propanol: propanol:
mD y1,D y2,D mF y1,F y2,F
mA.y1,A = mD.y1,D + mF.y1,F
Balance de nn- propanol: propanol:
mA.y2,A = mD.y2,D + mF.y2,F
Balance total:
mA = mD + mF
8
02/05/2012
Balances en procesos con múltiples unidades
Recirculación y Derivación (bypass)
9
02/05/2012
EJEMPLO 3
Segunda Parte: “Balances de materia en procesos reactivos”
10
02/05/2012
La reacción química y la estequiometría
aA + bB → cC + dD ¿Reactivo limitante y en exceso?
n A n B n A n B
=
<
Los reactivos están en proporción estequiométrica
a b
El reactivo limitante es A, y B está en exceso
a b
Balances con reacción Reacciones incompletas
a) Balance Balance molecular para reacción única
ni
=
ni ° + υ iε
b) Balance Balance molecular para más de una reacción independiente
ni
=
ni ° + ∑υ ij ε j j
11
02/05/2012
Balances con reacción Reacciones incompletas a) Conversión fraccionaria del reactivo limitante:
X A
=
n A ° − n A n A °
b) Fracción de exceso:
EXC B
=
n B ° − n B ,t n B ,t
Balances en un reactor continuo
La ecuación general de balance es:
[ S ] = [ E ] + [G ] − [C ] El balance molar de un componente es:
ni , S
=
ni, E +
∑
υ ε
ij j
j
12
02/05/2012
EJEMPLO 4 En un proceso para fabricar cloro por oxidación directa de cloruro de hidrógeno con aire sobre un catalizador (para formar cloro y agua únicamente) el producto de salida se compone de: 4,4% de HCl HCl,, 19,8% de Cl2, 19,8% de H2O, 4,0% de O2 y 52,0% de N2. Calcular: a) Porcentaje de reactivo en exceso. b) Conversión del reactivo limitante.
Reacciones múltiples a) Rendimiento: Rendimiento: η b) Selectividad: Φ
El rendimiento también se puede expresar en función de las moles de reactivo limitante que se convierten en el producto deseado versus las moles que reaccionan.
13
02/05/2012
GRADOS DE LIBERTAD
L I E =
−
I: número de incógnitas del diagrama de flujo
Caudales Fracciones Una incógnita mas por cada reacción incompleta E: número de ecuaciones independientes
Según el signo tenemos: L = 0, el problema tiene solución única L > 0, faltan datos para resolver el problema sobre-especificado L < 0, el problema está sobre-
EJEMPLO 5 Se desea obtener monoclorometano en un reactor continuo continuo en el que que se producen las siguientes reacciones: CH4(g) + Cl2(g) CH3Cl(g) + HCl HCl(g) (g) CH3Cl(g) + Cl2(g) CH2Cl2(g) + HCl HCl(g) (g) La alimentación contiene 70% molar de etano y el resto de cloro. Si la conversión alcanzada es del 80% y la selectividad de 5 mol CH3Cl / mol CH2Cl2 hallar la composición completa del efluente del reactor y el rendimiento. →
→
14
02/05/2012
Tercera Parte: “Balances de materia en procesos de combustión”
Los SERVICIOS AUXILIARES Proporcionan distintos recursos
sin los cuales la planta no puede operar. No forman parte del núcleo del proceso. Intervienen en los balances de masa y energía. Son similares en procesos distintos. Cada uno posee una ubicación óptima dentro de los límites de batería de la planta.
15
02/05/2012
¿Cómo se clasifican? Según el tipo de recurso que proporcionan:
1) Servicios ENERGÉTICOS 1.A – Energético Térmicos De
calefacción De enfriamiento
1.B – Energético Mecánicos: Energía eléctrica
Fluidos mecánicos
2) Servicios OPERATIVOS
COMBUSTION Es una proceso que consiste en una o varias reacciones químicas de oxidooxido-reducción muy rápidas y altamente exotérmicas (liberan calor) en las cuales una sustancia llamada “combustible” (generalmente hidrocarburos) reacciona con otra llamada “comburente” (generalmente un agente oxidante como el oxígeno del aire) con producción de llama. Combustible + Comburente
→
Productos de combustión
Ejemplo: Gas Natural + Aire Productos de combustión →
CH4 (g) + O2 (g)
CO2 (g) + H2O (g)
→
16
02/05/2012
COMBUSTIBLES Hay tres tipos básicos de combustibles: Gaseosos: gas natural, LPG oil , gas oil oil, , fuel oil Líquidos: diesel oil, coke, , madera, desechos Sólidos: hullas, coke Para selección del combustible tener en cuenta: Poder
calorífico Aire teórico Exceso de aire requerido Tipo de quemador necesario Características de los gases de combustión
CALDERAS
17
02/05/2012
PODER CALORIFICO Para selección del combustible tener en cuenta: Poder
calorífico inferior
El agua que se produce se considera se encuentra en fase gaseosa Poder
calorífico superior
El agua que se produce se considera se encuentra en fase líquida ¿Cuál es la diferencia? La entalpía de vaporización del agua A 100 100°°C vale: 539 cal/g
PODER CALORIFICO Fórmulas empíricas: Para
un ACEITE COMBUSTIBLE:
°API: grados API PCS ( BTU / lb )
=
17887 + 57,5º API − 102, 2(% S )
Para
un CARBON:
H: fracción másica de hidrógeno O: fracción másica de oxígeno S: fracción másica de azufre PCS ( BTU / lb )
=
14544C + 62028 ( H − O / 8) + 4050 S
18
02/05/2012
Estequiometría de la combustión Si el combustible dispone de suficiente oxígeno, se produce la COMBUSTION COMPLETA: C CO2 H H2O S SO2 N N2 (salvo a altas temperaturas da NO X) → →
→
→
Si hay insuficiente oxígeno se produce la COMBUSTION INCOMPLETA, que se caracteriza por: C CO →
El monóxido de carbono es altamente toxico y posee alto poder calorífico => INDESEABLE
Ejemplos de combustión con oxígeno Combustible + O2
Productos de combustión
→
CH4 (g) + O2 (g) CO2 (g) + H2O (g) CH4 (g) + O2 (g) CO (g) + H2O (g) →
→
NO esta balanceada! Faltan los coeficientes estequiométricos… estequiométricos…
CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g) CH4 (g) + 3/2O2 (g) CO (g) + 2H2O (g) →
→
¿Qué información da la ecuación balanceada?
19
02/05/2012
Balances de masa
CH4 (g) + 2O2 (g) 1 mol 2 mol
CO2 (g) + 2H2O (g) 1 mol 2 mol
→
CH4 (g) + 3/2O2 (g) 1 mol 1,5 mol
CO (g) + 2H2O (g) 1 mol 2 mol
→
Una mol de metano consume 2 moles de oxígeno en la combustión completa y 1,5 moles de oxígeno en la incompleta
Aire teórico y aire en exceso
es la mínima cantidad de O 2 que se necesita para que todo el combustible se queme y que la única reacción que ocurra sea la combustión completa. Oxígeno teórico:
Se obtiene de la estequiometría de de la reacción Porcentaje
en exceso
Se utiliza un exceso con respecto al valor teórico para garantizar que todo el combustible entre en contacto con suficiente oxígeno. O2, A − O2,T .100 O 2 ,T
% exc =
O2, A = O2,T .1 +
% exc
100
20
02/05/2012
Composición del aire El aire seco a nivel del mar en promedio se puede Considerar para la combustión como formado por:
21% de oxígeno: O 2 79% de nitrógeno: N 2 Por lo tanto…
La relación nitrógeno/oxígeno del aire es: [ N 2 ] [O2 ]
79 =
21
=
Luego: [ N 2 ]
3,762
=
3,762.[O2 ]
Conversión y rendimiento
Conversión
No siempre se logra quemar todo el combustible, la conversión es el % del combustible que se quema: comb.quemado .100 . lim comb a entado
X =
Rendimiento
Si se produce combustión incompleta el rendimiento se refiere al % del combustible quemado que lo hace en forma completa: comb.quemado.en. forma.completa .100 comb.quemado
η =
21