• • •
BY: BY: ABHISEK PANDA
3.6 3.6
SUPE SU PER R STRU STRUCT CTUR URE E DESI DESIGN GN::
3.6.1 AVAILABLE AVAILABLE DAT DATA: • Efective span o T-beam bride: !"#$$m Tota% %ent& o bride: ''m • Tota% • (%ear )idt& o carriae )a* +#'m ,I( ': !.." / I( 0: 12!34 • Kerb )idt&: 022mm ,bot& side5 pedestrians are a%%o)ed4 • Parapet: !222 mm × !'2 mm × !'2 mm 6 !#'m c7c )it& $-cast iron • • • • • • • • • • • • • • • • • • • • •
pipes as rai%in (amber: ! in !22 ,$+#' mm at center %inear%* var*in to 8ero at 9erbs4 earin coat: "2mm Kerb &ei&t above pavement: 122mm ,ins;rmo;ntab%e t*pe4 Kerb t*pe: ;%% saet* ens;red Tota% Tota% 9erb &ei&t above dec9 s%ab: 1"2 mm (%ear dept& o
rade o concrete: ?$' Desin strent&: cd cd @ 2#0+ c9 c97γ m?Pa ,Anne A1 o I( !!1: 12!!4 >rade o stee% : Ce3!' ,IS !+"0 : 12224 Desin strent& o stee% : *7!#!' @ 2#"+ * ?Pa ,c%a;se-!'#1#$#$ o I( !!1:12!!4 Poissons ratio: µ @ 2#1 ,Anne-B= B-$-! o I( !!1:12!! 4 Ana%*sis o dec9 s%ab: Piea;ds c;rve
3.6.2 DESIGN OF INTERIOR SLAB PANEL: PANEL:
T&e s%ab is s;pported on o;r sides b* %onit;dina% and cross irders )&ic& c7c spacin is as s&o)n in t&e ;re above# T&e s%ab t&ic9ness is 1'2 mm and breadt& and %ent& respective%* are 1#'m and 3#'2+' m# t&e efective span span )i%% )i%% be ta9 ta9en as t&e t&e c%ea c%earr span span o t&e t&e s%ab s%abs s sinc since e t&es t&ese e are are t&e t&e contin;o;s s%abs# So efective )idt& B ef @ @ 1#!m and efective %ent&
• • •
BY: BY: ABHISEK PANDA
B
u
v
L
4.5075m
One-wheel loaded area of vehicle
2.5 m
Fig-7 (Int!i"! S#$% P$n# &it' "n &'# " T!$)*+ V'i)#, 3.6.2.1 L"$+:
Bn+ing " "nt " t' S#$% P$n# +/ t" D D $+
ei&t o s%ab @ 2#1' × !× !× 1' @ 0#1' 9N7m1 ei&t o )earin coat @ 2#2"2 × 11 ×! ×! @ !#+0 9N7m1 ei&t o camber @ 2#3' 9N7m1 Tota% Tota% dead )ei&t @ "#30 9N7m1 As Pie;ads c;rve is ;sed in desin5 &ence K @ B7< @ 1#'73#'2+' @ 2#'' A%so dead %oad moment is to be comp;ted and &ence ;7B @ !#2 and v7< @ !#2 Fsin Pie;ads c;rve or K@2#'5 ;7B @ !#2 and v7<@!#25 m!@2#23+ and m1@2#223 A%so or K@2#05 ;7B @ !#2 and v7< @ !#25 m!@2#23+ and m1 @ 2#2!0 Ater Ater interpo%ation5 )e nd t&at m!@2#23+ and m1@2#2!3' Tota% Tota% dead %oad on t&e s%ab is iven b* @ "#30 ×1#'×3#'2+' @ .'#$$ S&ort span moment is ?B @ .'#$$ ,2#23+G2#12×2#2!3'4 @ 3#+0 9N-m
• • •
BY: BY: ABHISEK PANDA
Bn+ing "nt +/ t" Li0 L"$+:
$. IRC I RC )#$ AA t!$)*+ V'i V'i)#: )#:
T&e )&ee% is p%aced at t&e center o t&e s%ab as s&o)n in t&e ;re prev previo io;s ;s%* %*## Cor mai maim; m;m m bend bendin in mome moment nt to be occ; occ;rrred5 ed5 t&e t&e %oad %oad dispersion is ta9en to be occ;rrin t&ro;& )earin coat on%*# T&e %oad is disperses at 3'2 t&ro;& t&e )earin coat as per Anne-B o I( I( !!1:12!!# Hence / .452 .4 1.1 and 0 3.6 2 .4 3.76 Hence ;7B @ 2#323 5 v7< @ 2#"$31 and K @ B7< @ 1#'73#'2+' @ 2#''# eerrin to Pie;ads c;rve5 Cor K @ 2#'5 and or above ;7B and v7< va%;es5 m! @ 2#2"3 5 m1 @ 2#22. Simi%ar%* or K @ 2#05 )e et m! @ 2#2.' and m1 @ 2#2$ Ater Ater interpo%atin5 )e et m! @ 2#2". and m1 @ 2#2!. S&ort span bendin moment is iven b*5 ,ta9in contin;it* into acco;nt4 ?B @ 2#"×$'2×,2#2".G2#1×2#2!.4 @ 1'#."3 9N-m ?< @ 2#" ×$'2×,2#2!.G2#1×2#2".4 @ !2#$23 9N-m As per I( 0:12!25 c%a;se 12"#$5 or trac9ed ve&ic%es5 t&e impact actor is !2 or spans ;p to 32m# So ?B @ 1"#'" 9N-m and ?< @ !!#$$3 9N-m %. IRC )#$-AA )#$ -AA &'#+ 0'i)#: 0'i)# :
Co%%o)in diferent reerences and ;ides on bride enineerin5 its c%ear%* ;nderstood t&at t&o;& trac9ed ve&ic%e ives t&e severest efect a%on s&ort span7d span7dir irecti ection on b;t a%on a%on %on %on span5 span5 t&e )&ee%ed )&ee%ed ve&ic% ve&ic%e e ives ives severe severest st efect# B* oin t&ro;& Essentia%s o Bride Enineerin: D#J ictorL and #(#( desin: B#(# P;nmia5 A#K Jain and A#K JainL )e nd t&e o%%o)in %oad positionin ives t&e severest efect amon ot&er combinations#
BY: ABHISEK PANDA
• • •
1250 mm
1250 mm
W 1 = 37.5 kw
m m 5 7 . 3 5 2 2
W 2 = W3= 2.5 kw
1 15 0
2
W1
W2
300 m m m 5 7 . 3 5 2 2
3 W3 1000 mm
00 mm 4 W1
5 W2
W3
Fig-4 (L"$+ing " &'#+ 0'i)# "! 0!t )t,
A%so as per I( 0:12!3 specications5 no ot&er ve&ic%es can come on to t&e pane% d;rin t&e above arranement# Bn+ing "nt )$#)/#$ti"n +/ t" 8'# L"$+ -2:
T*re contact dimension : $22 mm × !'2 mm So ; @ 2#$G1×2#2"2 @ 2#302 m and v @ 2#!'G1×2#2"2 @ 2#$!2 m T&e va%;e o ;7B @ 2#!"3 5 v7< @ 2#20. and B7< @ 2#'' Fsin Pie;ads c;rve5 m! @ 2#11 and m1 @ 2#12 Hence ?B! @ 01#' ,2#11G2#1×2#14 @ !0#1' 9N-m and 01#',2#1G2#11×2#14 @ !'#1' 9N-m
?
@
Bendin ?oment d;e to &ee%
• • •
BY: ABHISEK PANDA 370 mm W1
0.31 m
450 mm 00 mm
W1
450 mm 00 mm
Fig-9 (Bn+ing "nt )$#)/#$ti"n +/ t" 8'# L"$+-1,
So ; @ 1,;! G 4 @ 1,2#30G2#$+4 @ !#00m and v @ 2#$!m
No) ; @ 1 @ 1×2#$+ @ 2#+3 and v @ 2#$! K @ 2#''5 ;7B @ 2#1.0 and v7< @ 2#20. Crom Pie;ads c;rve5 m! @ 2#!"3 and m1 @ 2#!". ?B @ !$#$" 9N-m and ?< @ !$#011 9N-m
Hence tota% moment is iven b*5 ?B1 @ ,12#2$ !$#$"4 ×2#' 9N-m @ $#$1' 9N-m ?<1 @ ,11#!.$ !$#0114 ×2#' 9N-m @ 3#1"' 9N-m Bn+ing "nt +/ t" 8'# L"$+-3:
No) in t&is case ; @ 1,2#30G2#++4 @ 1#30m 5 v @ 2#$! m
?B$ @ $0#!2 - $1#2!O ×2#' @ 1#23' 9N-m ?<$ @ $0#!2 - $3#'1O ×2#' @ 2#+. 9N-m
• • •
BY: ABHISEK PANDA
Bn+ing "nt +/ t" 8'# L"$+ $t - 5:
; @2#30m5 v @ 1,v!G4 @ 1,2#$! G !#23'4 @ 1#+!m
Bn+ing "nt +/ t" &'# L"$+ $t ;:
; @ 1,;!G4 @ 1,2#30G2#$+4 @ !#00m and v @ 1,v!G*4 @ 1,2#$!G!#23'4 @ 1#+!m K @ 2#''5 ;7B @ 2#003 and v7< @ 2#02! (oecient m! @ 2#2.12' and m1 @ 2#21+ Ater m;%tip%*in )it& ,; !G4,v!G*4 )it& bot& coecients5 m! @ 2#!2!' and m1 @ 2#2$23 ∗ ; @ 1 @ 1×2#$+ @ 2#+3m5 v @ 1* @ 1×!#23' @ 1#2.m K @ 2#'""5 ;7B @ 2#1.0 and v7< @ 2#303 So m! @ 2#!$3 and m1 @ 2#232' ?;%tip%*in )it& *5 )e et m!@2#2'1 and m1 @ 2#2!0 ∗ ; @ 2#+3m5 v @ 1#+!m K @ 2#''5 ;7B @ 2#1.0 and v7< @ 2#02! m! @ 2#!1 and m1 @ 2#2$ and m;%tip%*in )it& ,v!G*4 @ 2#'2!$5 m! @ 2#202 and m1@2#2!' ∗ ; @!#00 m and v @ 1#2.m K @ 2#''5 ;7B @ 2#003 and v7< @ 2#303 m! @ 2#2.' and m1 @ 2#2$" ?;%tip%*in )it& *,;!G4 @ 2#"+5 m!@2#2"$ and m1 @2#2$$ ∗
So m! @ ,2#!2!'G2#2'14-,2#202G2#2"$4O @ 2#2!2' m1 @ ,2#2$23G2#2!04-,2#2!'G2#2$$4O ≈ 2 37.5
?B3 @
0.460.31
2#2!2'G2#1×2O @ 1#+0! 9N-m
• • •
BY: ABHISEK PANDA 37.5
?<3 @
0.460.31
2#1×2#2!2'G2O @ 2#''1 9N-m
Bn+ing "nt +/ t" 8'# L"$+ $t -6:
! ; @ 1;!GO @ 12#30G2#++O @ 1#30 m and v @ 1v!GO @ 12#$!G!#23'O @ 1#+! m K @ 2#''5 ;7B @ 2#."3 and v7< @ 2#02! m! @ 2#20"5 m1 @ 2#21 ;!GOv!G*O @ !#1$×!#$'' @ !#0+ m!@2#!!$ and m1 @ 2#2$$3 ∗ 1 ; @ 1 @!#'3m and v @ 1* @ 1#2.m K@2#''5 ;7B @ 2#0!0 and v7< @ 2#303 m! @ 2#2.+5 m1 @ 2#2$" * @ 2#"23 Hence m! @ 2#2+" and m1 @ 2#2$2' ∗ $ ; @ 1;!GO @ 1#30m and v @ 1* @1#2.m K @ 2#''5 ;7B @ 2."3 and v7< @ 2#303 m! @2#2+3 and m1 @ 2#2$ *,;!G4 @ !#1"' m! @ 2#2.' and m1@2#2$" ∗ 3 ; @ 1 @ !#'3m and v @ 1,v!G*4 @ 1#+!m K @ 2#''5 ;7B @ 2#0!0 and v7< @ 2#02!1 m! @ 2#2.1 and m1 @ 2#21' ?;%tip%*in ,v!G*4 @ !#23$ )it& above coecients5 m! @ 2#2.0 and m1 @ 2#210 So na% coecients are5 m! @ ,2#!!$G2#2+"4-,2#2.'G2#2.04O @ 2 m1 @ ,2#2$$3G2#2$2'4-,2#2$"G2#2104O ≈2 T&e res;%tin moment is iven b*5 ?B0 @ ?<0 @ 2 9N-m ∗
Tota% bendin moment is iven b*5 ?B@ !0#1'G$#$1'G1#23'G$#0$'G1#+0! @ 1"#2!0 9N-m ?< @ !'#1'G3#1"'G2#+.G2#2'G2#''1 @ 12#.$ 9N-m App%*in contin;it* and impact5 B 24.16 .4 1.14 26.;5 *N- L 2.93 .4 1.14 19.76 *N-
• • •
BY: ABHISEK PANDA
T&e impact actor is ta9en as !" as per c%a;se-12"#3 o I( 0: 12!3# It can be seen t&at t&e moment a%on s&ort span or trac9ed %oad is reater )&i%e t&e )&ee% %oad bendin moment a%on t&e %oner span is severer# Hence t&e moment or trac9ed %oad )i%% be ta9en a%on s&orter direction and moment a%on %oner direction )i%% be considered rom )&ee% %oad in t&e desin o dec9 s%ab# 3.6.3 8IND LOAD ANAL
Since t&e str;ct;re is open in %onit;dina% cross section and it &as a%% possibi%ities t&at it )i%% be dro)ned inside )ater ;p to HC< %eve% d;rin storm= as t&e storm occ;rs in t&e tropica% reion especia%%* in India d;rin rain* season most o t&e times# Hence t&ere is no need to consider t&e %atera% )ind orce# B;t sti%% considerin )orst condition5 %ets ca%c;%ate t&e ;p%it orce# IS "+' ,part-III4 : !."+ )i%% be ;sed or t&is p;rpose# As per c%a;se-'#$5 IS "+' ,part - III4:!."+ sa*s t&at desin )ind speed is iven b* 5 V= V% * 1 * 2 * 3 b @ '2 m7sec ,Appendi -A4 @ !"2 9mp& ,or B&;banes)ar 8one4 As per c%a;se '#$5 t&e )ind speed is considered constant ;p to t&e &ei&t o !2m o an* str;ct;re# * 1 1.4 ,Tab%e-!45 * 2 1. ,Tab%e-15 (ateor* -15 c%ass - A4 and * 3 1 ,Q @ 225 c%a;se '#$#$#!4 Hence 8 @ !"2 × !#2" × !#22 × !#22 @ !.3#32 9mp& ≈ 1229mp& @ ''#'0 m7sec Fsin c%a;se- '#35 p8 @ 2#081 @ 2#0 × ,''#'041 @ !"'1#!' N7m1 @ !#"' 9N7m1 T&e so%idit* ratio is eM;a% to 22 in o;r case# Hence R @ 22 Crom tab%e-+ ,pae -!.45 ta9in @ 22andR @ 22 5 (! @ ,-4!#3 @ !#3 ,s;ction4 As per c%a;se 0#1#1#+ ,pae - 1+4 or over&ans s%opin ;p)ard5 (1 @ 2#+' and t&e positive sin indicates t&at t&is )i%% be actin do)n)ard# Hence tota% press;re orce per ;nit r;n on t&e s%ab )i%% be ca%c;%ated separate%* or t&e canti%ever and intermediate road )a* section#
• • •
BY: ABHISEK PANDA
1.!0 m
Wind "re##ure force
2.1 m
2.1 m
1.!0 m
400 mm
Fig-1 (8in+ #"$+ "n S/>! St!/)t/!,
T&e press;re distrib;tion is as s&o)n in t&e ;re# C;p%it7 m r ; n @ (!p8A @ !#3 × #"' × 3#1 × !"#$$7!"#$$ @ !2#"+" 9N7m Cdo)n)ard 7m r;n @ (1p8A @ 2#+' × !#"'× $#0 × !"#$$7!"#$$ @ 3#..' 9N7m ≈ '9N7m Hence it can be seen t&at t&e canti%ever section )i%% not be eperiencin an* ;p%it orce and t&e )ind press;re )i%% be in t&e same direction as t&at o t&e %ive %oad# A%so it can be noted t&at as per c%a;se 1!1#' o I( 0: 12!35 no %ive %oad )i%% be considered on t&e dec9 )&en )ind speed eceeds !$2 9mp No) t&e %onit;dina% irders can be seen as %oaded as be%o) ;re or intermediate spans#
4207.50 mm 10.!7! kw$m
Fig-11 (8in+ #"$+ $)ting L"ngit/+in$##? "n S/>! St!/)t/!,
Tota% ;p)ard orce actin on one s%ab pane% is iven b*5 !2#"+" × 3#12+' @ 3'#++ 9N .'#$$ ×2#" @ +0#103 9N ,dead %oad o s%ab
• • •
BY: ABHISEK PANDA
pane%4# Hence it can be conc%;ded t&at since ;p%it press;re is %esser t&an t&e dead )ei&t o s%ab pane% itse%5 no daner o neative s;ction and &ence )ind press;re need not be considered# A%so as t&e e%evated area o t&e s%ab pane% is M;ite %ess5 t&ere is no daner o %atera% press;re# Hence t&is can be omitted# 3.6.; S@EAR FORCE CALCULATION FOR INTERIOR SLAB PANEL: 3.6.;.1
8'# L"$+ S'$!:
Co%%o)in I(-!!1:12!! ,B-$#$5 Anne- B-$45 t&e dispersion o %oad t&ro;& )earin coat / s%ab )i%% be at 3'U# Hence dispersion o %oad is iven b* 2#"'G1,2#2"G2#1'4 @!#'!m# Cor maim;m s&ear to occ;r 5 t&e %oad dispersion s&o;%d be )it&in ace o irder# So )&ee% %oad )i%% be 9ept at %east !#'!71@2#+''m rom t&e %onit;dina% irder ace= as s&o)n in t&e ;re#
Fig-12 (L"$+ +i>!i"n t'!"/g' +)* #$%,
eerrin I(-!!1:12!!5c%a;se-B $#1,pae-1+"45
−a /¿ %24Gb!
1
be @a,
4.2075
b7%2 @
2.1
@ 1#22$ V 1#22
@1#0 %2@1#! a@2#+''m b!@$#0G1
×
be@1#0 × 2#+'', @'#2!+m
2#2"@$#+0m
−0.755 /2.1 4G$#+0
1
• • •
BY: ABHISEK PANDA
@
5.017
@ 0.#+0$
(
− 0.755)
69.763 × 2.1
?aim;m s&ear orce @
2.1
@33#0"! 9N7m S&ear orce )it& impact d;e to trac9ed ve&ic%e @ 3.#!' 9N7m 3.6.;.2 D$+ #"$+ '$!: Tota% dead )ei&t@ "#30 KN7m1 8.46 × 2.1
Tota% dead %oad s&ear@
2
@ "#""$ 9N7m
3.6.5 DESIGN BENDING OENT AND S@EAR FORCE:
Toa% ?B @ $#"!G1"#'"@$1#$. KN-m ?% @ !#"13G!.#+0@1!#'"3 KN-m Tota% s&ear orce@,"#""$G3.#!'4 KN7m @'"#2$ KN7m Since )e &ave considered %imit state met&od t&e above %oad va%;es )i%% be !#' times t&at o ca%c;%ated as per Ane A1 o I(: !!1-12!! So ?B @ 3"#'"'
'2 9N-m
?% @ $1#$+0
$$ 9N-m
; @ "+#23' 9N7m ?inim;m efective dept& as per maim;m bendin moment is iven b* d @
√(
6
50 × 10 0.36 × 35 × 0.48 × 10
3
× ( 1−0.416 × 0.48 ))
@ !2!#0$' mm As per tab%e !3#15 c%a;se !3#$#1#! ,pae !314 o I(!!1: 12!!5 (%ear cover @32G"@3" mm So5 d @ 1'2 −¿ 3" @121 mm V !2!#0$ mm ,o94 Fsin !0 mm- ∅ bars5cover or s&ort span @ 1!2 −¿ " @121mm and cover or %on span @121 −¿ !0@!"0 mm# 3.6.6 REINFORCEENT DETAILS FOR INTEROIR SLAB PANEL: (i,A!$ " t# $#"ng '"!t +i!)ti"n
• • •
BY: ABHISEK PANDA
,Ast4B @
0.5 × 35 415
× ⌊ 1−
√
6
−
4.6 × 50 × 10
1
35 × 10
3
3
2
× 202
⌋ × 10 × 202
As per c%a;se -!0#0#!#! o I(:!!1-12!! f ctm × × bd ,Ast4min @ 2#10 t f yk
Crom tab%e -0#' ,Pae-$"4o I( :!!1-12!! Cctm@1#" N7mm1 C*9@ 3!' N7mm1 Bt@!222 mm D @ 121 mm ,Ast4min@$'3#$'! mm1 A%so same c%a;se specied ,Ast4min@2#22!$btd @ 101#0mm1 ,Ast4ma@2#21'Ac @2#21' × 250 × 1000 =6250 mm1
Spacin o bars as per c%a;se-!0#0#!#!,34 o I(-12!! is5 sma 1& @ 1 × 1'2 @ '22 mm In o;r case5spacin o !0 mm S ¿
/
1000 × π 4 × 16
∅
bars is
2
716.008
@1"2#"!!mmV 1'2 mm A%so as per c%a;se-!'#1#! ,14 o I(:!!1-12!!5 T&e c%ear distance bet)een t&e para%%e% main reinorcin bars s&o;%d not be %ess t&an dG!2@12G!2@$2 mm and 12 mm 5 )&ic&ever is reater D@ areate si8e @ ass;med 12mm or s%abs5 providin !0 mm- ∅ bars 6 11'mm c7c ,,Ast4B4provided @
/
1000 × π 4 × 16
2
225
@".$#0! mm1 A%so as per c%a;se -!1#1#15 pae !12 o I(:!!1-12!!5 ;nder rare combination o %oads5t&e maim;m tensi%e stress %imits to 2#" * is to avoid ine%astic strain5 ;ndesirab%e crac9in7deormation o str;ct;re and a%so to acco;nt or %on term creep#
• • •
BY: ABHISEK PANDA
e &ave ca%c;%ated t&e stee% area ta9in *d@2#"+ *9 , as per c%-!'#1#$#$ I(:!!1-12!!4 (onsiderin t&e )orst case i#e rare combination o %oads5 additiona% stee%
−0.8
area reM;ired @!
@ 2#2"2 @ " o reM;ired stee% area#
0.87
8
So " o ,Ast4reM;ired @
100
×
+!0#22' @ '+#1" mm1
Ast to be provided@+!0#22'G'+#1"@++$#1" mm1 ".$#0! mm1 (At,B>!"0. 493.61 2 (ii, A!$ " t# $#"ng #"ng +i!)ti"n
Providin !1mm- ∅ bars5
,Ast4< @
0.5 × 35 415
,Ast4min@2#10
×
×
[ √ −
1
f ctm f yk
6
−
1
4.6 × 33 × 10 3
35 × 10
2
× 190
×b f ×d
]
3
× 10 × 190
@ 3"2#'$ mm1
, c%-!0#0#!5I(:!!1-12!!4
Cctm@ 1#" N7m1 ,tab%e-0#' o I(:!!1-12!!4 ,Ast4min @2#10
×
2.8 415
× 1000 × 190
@$$$#$2! mm1
A%so as per same c%a;se 5 ,Ast4min @2#22!$btd@13+ mm1 ,Ast4ma@ 2#21'Ac@2#21' × 250 × 1000
@01'2 mm1
Spacin o bars as per c%a;se-!0#0#!#!,3 o I(:!!1-12!! is5 Sma ¿ 1&@1 × 250=¿ '22 mm or 1'2mm , sma%%er va%;e is ta9en4
,o94
• • •
BY: ABHISEK PANDA
S@
/
1000 × π 4 × 12
2
@1$'#$0mm
480.53
Hence providin spacin o bars 6!+' mm c7c / ;sin !1mm
,,Ast4%4provided @
∅ bars
2
/
1000 × π 4 × 12 175
@030#$2 mm1
A%so as per c%a;se-!'#1#!,14 o I(:!!1-12!!5 t&e c%ear distance bet)een t&e para%%e% main reinorcin bars s&o;%d not be %ess t&an d G!2@12G!2@$2 mm or 12 mm ,%arer va%;e is ta9en4# A%so asper c%a;se-!1#1#15P-!12 o %oads 5t&e ma tensi%e stress in stee% is %imited to 2#" *9 to avoid ine%astic stain 5;ndesirab%e crac9in7deormation o str;ct;re / a%so to acco;nt or %on term creep#
−0.8 Hence more area reM;ired is @ ,!
0.87
4,Ast4reM;ired
@2#2" × 3"2#'$@$"#33 mm1
,Ast%4reM;ired or creep crac9in @3"2#'$ +¿ $"#33 @'!"#.+ mm1 030#$2 mm1 ,Ast4<#prov@030#$2 mm1 ∗
Cor detai%ed reinorcement provision5 p%ease reer to Appendi B attac&ed )it& t&is t&esis#
3.6.7 S@EAR C@EC IN INTERIOR DEC SLAB PANEL:
;"+#23' KN7m @ Ed# rdc @
[ 0.12 k (80 ρ f 1
dc @,minG2#!'
K@!G
√
) + 0.15 σ cp ] b)d
σ cp
200
d
0.33
ck
@ !G
4b)d
√
,c%a;se- !2#$#15 I(:!!1-12!!4
,minim;m4
200 250
@!#".3 1#2 ,o94
• • •
BY: ABHISEK PANDA $71
!71 c9
min@ 2#2$!K ρ1=
A st bw d
≤
@2#2$! × 1.995
3 /2
0.5
× 35
@2#3+" and
σ cp =0
2#21 @".$#0!71@330#"2 mm1
As% @, Ast4B 71
b) @!2225 d @ 121 ρ1
−3
@ 1#1! × 10
@2#2211! 2#21
,o94
[ 0.12 × 1.894 × (80 × 0.00221 × 35 ) ] × 1000 × 250 0.33
dc@
@!2$#0"3 KN7m
,dc4min@!!.#'2 KN7m So minim;m s&ear resistance isdc@ !!.#' KN7m No s&ear reinorcement is necessar* in s%abs# 3.6.4 DESIGN OF CANTILEVER SLAB:
≫
Ed @ "+#23' KN7m
• • •
BY: ABHISEK PANDA
Fig-13 (C$nti#0! >"!ti"n " S#$%, 3.6.4.1
D$+ #"$+ "nt:
Hand rai% ,%;mp s;m4@1 KN
@$#3' 9N-m
#(#( post @ 2#!' × 0.15 × 1 × 25
@2#'01 9N
@'#1' 9N
Li0 #"$+ "n !%:
<#< @322 97m1@3 KN7m1
• • •
BY: ABHISEK PANDA
<#<@3 × 2#0@1#3 KN7m
,c%- 12. o I(:0-12224
"nt +/ t" &'# #"$+:
As per I(-0:12!25 on%* I(-c%ass A / I(-c%ass-B e&ic%es can come to t&e canti%ever portion5since it can &ave a minim;m distance !'2 mm rom 9erb #
57 kw 150 mm
500 mm
0.5 m
Fig-1; (8'# #"$+ "n )$nti#0! #$%,
Fsin I(-!!1:12!!5 Anne;re:B-$,145Pae-1+.5 efective dept& ,Be 4@ !#1aGb! a@2#0' m b!@ 0.25 + 2 × 0.080
@2#3! m
• • •
BY: ABHISEK PANDA
Be @!#1 × 0.65 + 0.41 @!#!. m
√
dreM;ired @
6
119 × 10 3
0.36 × 35 × 0.48 × 10
×( 1−0.416 × 0.48 )
@!'0#"2 mm ∅ bars5
Providin 32 mm c%ear cover /!0 mm Efective dept& provided is
dprovided @322-,32G"4@$'1 mm ≫ !'0#"2
,o94
3.6.9 REINFORCEENT IN CANTILEVER SLAB:
?ain reinorcement is iven b* 0.5 × 35
,Ast4main @
415
[ √ 1
−
6
1
−
4.6 × 119 × 10 35 × 10
3
2
× 352
]
3
× 10 × 352
@.0"#32'0 mm1 Spacin o !0 mm- ∅ bars is iven b*
S
@!222
π 2 × × 16 4
@12+#0 mm
Providin !0 mm- ∅ bars 6 !.2 mm c7c5 ,Ast4main @ !2'"#11 mm1
• • •
BY: ABHISEK PANDA
Distrib;tion moment is iven b* ?dc @ !#' × [ 0.3 × 56.043 + 0.2 × 25.02 ] @$!#.3! 9N-m Distrib;tion reinorcement is ,Ast4dc @ $3.#1 mm1= Providin !1mm- ∅ bars 6 !+' mm c7c ,Ast4dcOprovided @030#1+ mm1 ¿ $3.#1 mm1
,o94
Detai%in o reinorcement is done in Appendi-B
∗
3.6.1
C@EC FOR S@EAR IN CANTILEVER PORTION:
Tota% s&ear@dead %oad s&ear G %ive%oad s&ear 5.7
@ 1$#!01 +¿ !#' × 1.19 + 2.4 = 97.411 ,)&ere !#!.@ be ,Anne-B$5I(:!!1-12!!44 Desin s&ear @ !#' × 97.41 @ !30#!!' 9N@Ed As per c%a;se-!2#$#1,14 o I(:!!1-12!!5 S&ear resistance o a str;ct;re is iven b* / dc @2#!19 (80 ρ1 f ck ) +(0.15 σ cp )¿ b w d 1 3
S;bWect to min dc@,minG2#!'
K@!G
√
200
d
@!G
√
200 400
σ cp
4b)d
@ !#+ ¿
min@2#2$!9$71 c9!71
/
/
3 2 1 2 @2#2$! × 1.71 × 35
@2#3!
1#2
,o94
BY: ABHISEK PANDA
• • •
ρ
A sl ! @ bw d
1058.22
@
1000 × 400
−3 @ 1#03' × 10
−3
dc@2#!1 × 1.71 × ( 80 × 2.645 × 10 × 35 ) ,dc4min@2#3! × 1000 × 400
1 /3
3 O × 10 × 400
@!03 9N
¿ Ed @!30#!' 9N
Xdc @!03 9N
@!'"#.$ 9N
,o94
A%so I(:!!1-12!!5c%-!2#$#1,'4 specied t&e o%%o)in criteria# ed ≤ 2#'b)dv cd
@2#0!
− f ck 310
O
−35 @2#0!
310
O@2#'$1
So 2#'b)dv cd@ 2#' × 1000 × 400× 0.532 × 0.36 × 35 @!$32#03 KN ¿ Ed
,o94
T&e %ive %oad app%ied is 2#0' m rom t&e ede o s;pport# T&e same c%a;se species t&at is t&e app%ied %oad is at av i#e 2#'d to 1d ,122mm to "22mm 45t&en t&ere )i%% be red;ction actor m;%tip%ied to ed#So in o;r case t&e dead %oad s&ear )i%% be as its i#e 1$#!01 KN B;t %ive %oad s&ear )i%% be ,!#' β @ red;ction actor@a 71d v
av@ 0'2 mm β @
650 2 × 400
@2#"!1'
×
57 1.19
4
×β
• • •
BY: ABHISEK PANDA
%s@!#'
57
×
1.19
× 0.8125
@'"#$++KN
Tota% s&ear@"3 9N ed@!10 KN
¿ !10 9N
dc@!03 KN ∗
,o94
It ma* be noted t&at t&e do)n)ard )ind orce )i%% be on%* ' × !#"@. KN aainst %ive %oad "0#11 KN# Hence5 t&ere is no need o combination o %oads ta9in )ind efect in to acco;nt#
3.6.11 DEFLECTION C@EC FOR CANTILEVER SLAB: T&e deection )i%% be c&ec9ed as per is 3'0:1222#since )e &ave diferent %oadin at diferent positions5)e &ave to consider t&em separate 3.6.11.1
Fi!t T!$i# (Ann-) " i ;56:2,:
S'"!t t! +)ti"n
,Ir4end@
b× d 12
3
3
=
1000 × 200
8
=6.67 × 10 mm
12
4
8 4 8 4 ,Ir4mid @ 22.5 × 10 mm , ( I gr ) at 0.65 m= 29.35 × 10 m m
Ccr @
0.7 √ f ck
2
=4.141 N / m m 8
,?r4end@ ,?r4mid @
4.141 × 6.67 × 10
=27.6 kN −m
100 4.141 × 22.5 × 10
8
150
=62.115 kN −m
,?r42#0'm@+3#!'" 9N-m Ec @ 5000 √ f ck =2.958 × 10 N / m m 4
5
Es @
2 × 10
2
N
E s , m= =6.76 E c mm 2
Transormed area o compression stee% @,m-!4ZAsc @$31+#.$mm1
• • •
BY: ABHISEK PANDA
Transormed area o tension stee%@mZAst @
7152.08 mm
2
1000 × x ×
2
[r
500 x
x 2
+ 3427.93 × ( x −46 )=7152.08 × (152 − x )
+ 10580.01 x −1459363.34 = 0
[r @33#3+mm 2
500 x
At mid5
+ 10580.01 x −1960008.94 = 0
\@'1#.1mm 2
At 2#0'm5
500 x
+ 10580.01 x −2158693.7 =0
\@''#.+mm 2
2
%#& = 105!mm
105! mm
200 mm
30 0 mm
2
%#c = 5'5mm
1000 mm (end)
1000 mm (mid)
2
5'5 mm
2
105! mm
327.7! mm
1000 mm (a& 0.5m)
2
5'5 mm
Fig-15 (A!$ " Rin"!)nt in +i!nt )ti"n " )$nti#0! #$%, 1
,Ir4end@ @
3
1.117 × 10
,Ir4mid @
3
2
× 1000 × ( 44.47 ) + 3427.93 × ( 44.47 −46 ) + 7152.08 × ( 152−44.47 ) 8
mm
4
8
3.1264 × 10
,Ir4at 2#0'm @
2
mm 8
5.58 × 10
4
mm
4
8@ %ever arm iend@2#.d@!$0mm58mid@110mm58at 2#0'm@1'!mm ,?4end@9erbGport/rai%inG%#d;e pedestrian@+#3"G$#3'G2#.+G3#$'G$#13@!.#3.9n-m ,?mid4@)#cG#( s%ab@!$#!19n-m
to
BY: ABHISEK PANDA
• • •
?2#0'm@)&ee% %aod@30#+29n-m i m
(
)
(¿¿ r )end z end x end b w × × 1− ( ) 1.2− ( m)end d end d end b ,Ief 4end@ @ (¿¿ r )end ¿ ¿ 8
3.67 × 10
8
1.117 × 10 1.2
−
27.6 19.49
4
mm
I I I (¿¿ gr )end ( k ) (¿¿ eff )end <¿ (¿¿ r )end <¿
¿
I
−¿ ¿ I (¿¿ r )mid (¿¿ eff )mid =¿
¿
I I 8
So
(¿¿ r )mid=3.1264 × 10 m m (¿ ¿ eff )mid=¿ ¿
4
8 4 ,Ief 4at 2#' m@ 88.84 × 10 m m >¿ ,Ir4at 2#0'm
So ,Ief 4at 2#0' m@
8
29.35 × 10
mm
4
3 10212 × ( 1800 ) wl ! 1 = =1.83 mm , 4end@ 3 E c I r 3 × ( 2.958 × 104 ) × ( 3.67 × 10 8) 3
,
! 1
(
15350 × 1800
4mid @
(
4
8 × 2.958 × 10
3
)
) × (3.1264 × 10 ) 8
=1.21 mm
×
136 152
( 1−
44.47 152
) @
• • •
,
BY: BY: ABHISEK PANDA ! 1
1
4At 2#0'm @ E c I r
[
1.15 × w × l 2
2
+
] =
wl 3
3
0.64 mm
Tota% Tota% deection d;e to s&ort tern %oadin @$#0"mm D)ti"n +/ t" '!in*$g acs@9$Ψcs%1 9$@2#',or canti%ever4 pt@2#+ 5pc@2#3 pt − pc
93@2#+1
pt √ p
=0.26 <1.0
2#1'≤ pt − p c =0.3 < 1.0 ( k ) ,Ψcs 4end@
−7 3.9 × 10
acs@2#0$mm Note-:&ere at ot&er points5t&e ]Ψcs )i%% ive m;c& %esser va%;e re%atin re%atin %east s&rin9ae deection# Deection d;e to creep Ece @
Ec 1
+"
" @!#0,or 1"-da*s strent&4
Ece @
4
1.1377 × 10
N / m m
2
m @Es7Ec @ !+#'" Transormed Transormed area or compression stee% ,m-!4Asc @ ."03#+ mm1 Transormed Transormed area or tension stee% mAst @ !"'."#.$ mm1
!222××
2
G ."03#+×,-304 @ !"'."#.$×,!'1-4
[r '221G1"30$#0$ $1"2"!$#'0 @ 2 [r @ '+#32 mm At mid: '221 G 1"30$#0$ '!32+20#'0 @ 2 [r @ +0#"'$mm At 2#0' m: '221 G 1"30$#0$ '0'+$"3#"$' @ 2 [r @ "!#0' mm
• • •
BY: BY: ABHISEK PANDA
Same %ever arm as ;sed beore )i%% be ;sed# 1 I r .end = × 1000 × (57.4)3 + '!4.70(57.4 − 4)2 + 1!5'!.'3(152 − 57.4)2 3
So Simi%ar%* Ir#mid @ +#$×!2" mm3 and Ir at 2#0'm @ .#11×!2" mm3
= ( I r .eff ) end end
I r .end M b z x 1.2 − ( r )end × ( )end × (1 − ) end × w M d d b
@ 1#$2×!2" mm3
= 5.5' × 10! mm4
So Ir#end Ief#end Ir#end ,[K4 8 4 Simi%ar%* ,Ief 4mid@ −4.17 × 10 m m < ¿ ,Ir4mid 8
,Ief 4mid @
7.3 × 10
,Ief 4at 2#0'm @
mm
4
8
29.35 × 10
mm
4
B;t in t&is case 5or ca%c;%atin perm# (reep ;sin above eM;ations / E ce5on%* permanent %oad )i%% be ta9en care o #no %ive %oad )i%% be t&ere So ,4end@9erb G#( po%/rai%in@'#1'G1#'01@+#"!1 9N7m ,4mid @#(G#( @#(G#( s%ab@!#"'G!$#'@!'#$' 9n7m ,ai#cc4perm@
( # end end ) × l
3
3 E ce × I eff
3
+
(# mid )× l
8 E ce × I eff
@,1#$.G!#$'4mm@$#+3mm S&ort term deection d;e to permanent %oad 7 $ 812 × 10
3
3
3
3
15 $ 35 × 10 × 1800 × 1800 + 4 8 @ 3 × 2 $ 958 × 10 × 3 $ 67 × 10 8 × 2 $ 958 × 104 × 3 $ 1264 × 108
ai#perm
@!#3G!#1!@1#0!mm So deection d;e to creep is iven b* $#+3-1#0!@!#!$mm Tota% Tota% deection is @$#0"G2#0$G!#!$ @'#33mm Ho)e Ho )eve verr t&is t&is dee deect ctio ion n )i%% )i%% be %ess %esser er in prac practi tica ca%% as mor more acc; acc;ra rate te ca%c;%ations )i%% revea% t&e res;%t As per c%a;se !1#3#! o I(:!!1-12!!5t&e deection s&o;%d be %imited to @ cantile%er cantile%er span 375
• • •
BY: BY: ABHISEK PANDA 1800
@
375
= 4.8 mm < 5.44 mm
N"& #t )')* it $ >! )#-23.2 " i:;56-2 s@112#1+5 pt@2#+ ?odication actor@!#1,-35p-$"4 pc@2#3 ?odication actor@!#!1 span =7 (fr cantile%er ) dept&
Basic
span dept& @+×!#!1×!#1@.#32"
?odied [;r
span dept& @ 0.#32",o94
B;t revisin t&e section as providin !0 R bars 11'mm c7c / !1mm R bars611'mm bars611'mm a%ternative a%ternative%*/r %*/rec&ec9 ec&ec9in5t in5t&e &e deection deection criteria criteria is satised# satised# 1 Hence tota% reinorcement provided is iven b* !$.0 mm # 3.6.11 3.6.11.2 .2 S)"n+ S)"n+ T!$i T!$i##- R)')* R)')*ing ing " +)t +)ti"n i"n "! C$nti#0 C$nti#0! ! S#$%(Ann ) " IS-;56:2,: S'"!t t! +)ti"n ,Ir4end@
b× d
3
12
3
=
1000 × 200 12
8
=6.67 × 10 m m
4
8 4 8 4 I gr ) .65 m= 29.35 × 10 m m ,Ir4mid @ 22.5 × 10 m m , ( I
Ccr @
0.7 √ f f ck ck
=4.141 n / m m
2
8
,?r4end@ ,?r4mid @
4.141 × 6.67 × 10
=27.6 kN −m
100 4.141 × 22.5 × 10
8
150
=62.115 kN −m
,?r42#0'm@+3#!'" 9n-m f ck =2.958 × 10 N / m m Ec @ 5000 √ f 4
5
Es @
2 × 10
n
E s , m= =6.76 E c mm 2
2
• • •
BY: ABHISEK PANDA
Transormed area o compression stee% @,m-!4ZAsc @$+12#.0mm1 Transormed area o tension stee%@mZAst @
2
9436.96 m m
1000 ×
500 x
2
x×
x 2
+ 3720.96 × ( x −46 )=9436.96 × (152− x )
+ 13157.92 x −1605582.08 =0
@@3'#21mm At mid @
500 x
2
+ 13157.92 x −2549278.08 =0
\@'.#3'mm At 2#0'm @
500 x
2
+ 13157.92 x −2811436.83= 0
\@01#.+mm 1
,Ir4end@
3
× 1000 × ( 45.02 ) + 3720.96 × ( 45.02− 46 ) + 9436.96 × ( 152 −45.02 ) 3
2
2
8 4 @ 1.38 × 10 mm
,Ir4mid @
4.2 × 10
,Ir4at 2#0'm @
8
mm
4
8
5.27 × 10
4
mm
8@ %ever arm# 8end@2#.d@!$0mm58mid@110mm58at 2#0'm@1'!mm ,?4end@9erbGport/rai%inG%#d;e pedestrian@+#3"G$#3'G2#.+G3#$'G$#13@!.#3.KN-m ,?mid4@)#cG#( s%ab@!$#!1KN-m ?2#0'm@)&ee% %aod@30#+2KN-m i m (¿¿ r )end z end × × 1.2− ( m ) d ,Ief 4end@ end end (¿¿ r )end
(
¿ ¿
−
1
xend d end
)
@
4.5 × 10
8
mm
4
to
• • •
BY: ABHISEK PANDA I I I (¿¿ gr )end ( k ) (¿¿ eff )end <¿ (¿¿ r )end <¿
¿
I
−¿ ¿ I 8
(¿¿ r )mid= 4.2 × 10 m m (¿ ¿ eff )mid =¿ ¿ ,Ief 4at 2#0' m@
4
8
54.44 × 10
4
m m <¿ ,Ir4at 2#0'm@
8
29.35 × 10
mm
4
3
wl ! 1 , 4end@ 3 E c I r =1.5 mm , , ! 1 4mid 1
E c I r
[
1.15 × w × l 2
2
+
] =
wl 3
@
0.9 mm
5
3
0.64 mm
Tota% deection d;e to s&ort tern %oadin @$#23mm D)ti"n +/ t" '!in*$g acs@9$Ψcs%1 9$@2#',or canti%ever4 pt@2#.1 5pc@2#31' 93 ¿ 0.37 < 1.0 2#1'≤ pt − p c =0.495 < 1.0 ( k ) ,Ψcs 4end@
−7 5.55 × 10
acs@2#.mm Deection d;e to creep-: Ece @
Ec 1
+"
" @!#0,or 1"-da*s strent&4
, ! 1 4At
2#0'm
@
• • •
BY: ABHISEK PANDA
Ece @
Es
N
4
1.1377 × 10
mm
5m@ E ce =17.58
2
Transormed area o compression stee% @,m-!4ZAsc @!2+!2#0"mm1 Transormed area o tension stee%@mZAst @
24541.68 mm
Dept& o ne;tra% ais at diferent section At end at mid \@0$#1mm @"'#'00mm 8
,Ir4end@ 2.80 × 10 mm
4
5
8
,Ir42#0'm@ 2.80 × 10 mm
,Ir4mid@
8
9.03 × 10
2
at 2#0'm @.!#2"mm
mm
4
4
8 4 ,Ief 4mid@ −5.63 × 10 m m <¿ ,Ir4mid 8
6.08 × 10
,Ief 4end @
,Ief 4at 2#0'm @
mm
4
47.80 × 10
8
,4end@+#"!1 9N7m5 ,ai#cc4perm@
( # end ) ×l
3
3 E ce × I eff
mm
4
= )&ic& s&o;%d not be reater t&an Ir at 2#0'm
,4mid @!'#$' 9N7m 3
+
(# mid )× l
8 E ce × I eff
@,1#1G!#!4mm@$#$mm S&ort term deection d;e to permanent %oad 3
7.812 × 10
3
3
3
15.35 × 10 × 1800 × 1800 + 4 8 @ 3 × 2.958 × 10 × 3.67 × 10 8 × 2.958 × 10 4 × 3.1264 × 10 8
ai#perm
@!#3G!#1!@1#0!mm Deection d;e to creep @ 2#0.mm ≈ 2#+2mm Hence tota% deection @ $#23 G 2#.G2#+ @ 3#03 mm 3#" mm ,o94 3.6.12
ANC@ORAGE LENGT@ OF BARS:
3.6.12.1
Int!+i$t D)* S#$% P$n#:
(i,
In '"!t +i!)ti"n:
main bars @ !0 mm ∅ 6 11' mm c7c
,%b#net4B@
' a lb ×
A st re( A st pr%ided
,pae no-!'15 c%-!'#1#3#$5 o I(:!!1-12!!4
• • •
BY: ABHISEK PANDA A st re(
716.005
A st pr%ided @ ' a
@2#"0'
893.61
@! ,or strai&t bars4
%b @9 ∅ ∅ × 0.87 f y
@
4 f bd
16 × 0.87 × 415
@
, bd@$#2 N7mm1 tab%e-!'#$ o pae
4 × 30
-!'25I(:!!1-12!!4 @3"!#3 mm A%so 9@$2
or ?$' concrete o tab%e-!'#3 o I(:!!1-12!!O
%b @ $2 × 16 @ 3"2 mm %ets ta9e %b@3"2mm ,%b#net4B @! × 480 × 0.865 @3!'#2 mm ) 312 mm %b#min @2#$%b @!33 mm
,or tension anc&orae4
%b#min @2#0%b@1"" mm
, or compression anc&orae4
%b#min@!2 ∅ @!02 mm or !22 mm %b#net ¿ %b#min (ii,
,o94
In #"ng +i!)ti"n:
A st$ re( A st $ pr%ided @
480.53 646.30
@2#+3$
2#+'
• • •
BY: ABHISEK PANDA ' a
@!
,or strai&t bars4
%b @9 ∅ @$2 × 12 @$02mm 12 × 0.87 × 415
or %b@
@ $0!#2' mm
4×
So %b @ $02 mm %b#net @! × 360 × 0.75 @ 1+2 mm %b#min @2#$%b@!2" mm
,tension anc&or4
@2#0 %b@1!0 mm
,compression anc&or4
%b#min @!2 ∅ @!12 mm or !22 mm %b#net ¿ %b#min 3.6.12.2
C$nti#0! #$%:
A st$ re(
872.56
A st $ pr%ided @ ' a
1058.22
@2#"13
,c%-!'#1#3#$ o I(:!!1-12!!4
@!
%b@9 ∅ @$2 × !1@$02 mm %b#net @2#"13 × [email protected]#03 3.6.13
$22 mm
CANTILEVER SLAB STIFFENING:
As per c%a;se -!0#0#!#3-,!4,a4/,b4 o I(:!!1-12!!5t&e ;ns;pported ede o a s%ab para%%e% to trac /be*ond t&e c%ear road )idt& /&avin var*in dept& s&a%% be stifened at an* partic;%ar point to t&e resistin moment o '22mm adWacent strip at t&at partic;%ar point# 93.61
,Ast B42#'m stripOin main s%ab bet)een irder @
2
= 446.805 mm
2
• • •
BY: ABHISEK PANDA 1396.26
,Ast B42#'m stripOin canti%ever section @
2
2
646.27
,Ast %42#'m stripOin main s%ab bet)een irder @
2
=323.135 mm
646.27
,Ast <42#'m stripOcanti%ever s%ab bet)een irder @ 3.6.1;
2
= 698.132 m m > 446.805 m m ( k )
2
2
=323.135 mm
2
DESIGN OF LONGITUDINAL GIRDER:
Efective span@!"#$$ m rid )idt&@322mm s%ab t&ic9ness@1'2 mm ?ain beam spacin@1#' m Dept& o rib @ !322 mm Tota% dept& @!322G1'2G!'2@!"22mm@D ($,
REACTION FACTOR:
(o;rbons met&od can be app%ied to o;r desin since span to dept& ratio is reater t&an 1# Arranement o c%ass-AA trac9ed %oad or maim;m eccentricit* is as iven be%o)#
* = 0.075 m
2.0 5m
% e = 1.1m
+ B
7.5 m
Fig-16 (A!!$ngnt ))nt!i)it?,
As per (o;rbons orm;%a 5
"
)#$-AA
t!$)*+
#"$+
"!
$i/
BY: ABHISEK PANDA
• • •
∑w
@
+ ∑ I
∑d
!
n
deO
2
x
@eaction actor It ma* be noted t&at A@c since t&e same %oadin can be reversed in t)o cases# 2 # 1
A@
3
3 I
!G
2 × 2.5
2
× I
× 2.5 × 1.1
O
n@ no o irders @$ d@spacin o irders@1#' m !@$'2 KN ⇒
❑ A@c@
3 × 1.1
w 3
!G
2 × 2.5
O
, @+22 9N @ tota% a%e
%oad 4 B @ 1!7$!G2O @ 1!7$ @2#$$ (%,
DEAD LOAD:
F!" )$nti#0! #$%:
ei&t o parapet rai%in@1 9N7m earin coat@2#2"2 × !#2' × 11@!#"3" 9N7m (anti%ever s%ab@2#$ × !#" × 1' @ !$#' 9N7m Kerb@2#1" × 0.75 × 25 @ '#1' 9N7m Parapet @ 2#32 9N7m Tota% dead %oad rom canti%ever s%ab @1$9N7m XTota% dec9 s%ab %oad @1 × 1$G"#30 × '#3 @.!#0"3 9N7m
• • •
BY: ABHISEK PANDA
2#3 × 1.4 × 25 @ !'#'2 9N7m Tota% )ei&t per irder @ ,$$#1$G!'#'4@3"#+" ≈
49
9N7m
C!" gi!+!:
Dead )ei&t o one cross irder is@2#$ × !#3 × 25 @!2#'2 9N7m T&is %oad epands ;p to 1#' m bot& sides on intermediate irder Hence reaction rom cross irder @ !2#'2 × 1#'@10#1' 9N T&e end cross beams )i%% not be considered since t&eir %oads )i%% be direct%* transerred to s;pport t&ro;& piers# Hence end reactions need not be considered# T&e presentation is as o%%o)s
2.25 k
2.25 k
4.5075 m
4 ,$m 2.25k
4.5075 m
2.25 k
4.5075 m
2.25 k
4.5075 m
• • •
BY: ABHISEK PANDA 2.25 k
2.25k
2.25 k
4' k$m
Fig-17 (R$)ti"n !" C!" Gi!+! "n L"ngit/+in$# Gi!+!,
?aim;m dead %oad bendin moment at center o span is5 ,?ma4dead %oad @
49 × 18.33
2
8
+
26.25 × 18.33 4
+
26.25 × 18.33 4
@1$22 9N-m
Tota% dead %oad s&ear at s;pport is 49 × 18.33
,dead4s@ (),
2
+
26.25 × 2 2
+
26.25 2
@3""#30
3".9N
LIVE LOAD BENDING OENT IN GIRDER:
Span @!"#$$ m5 Impact @!2= or maim;m bendin moment to occ;r5 t&e %ive %oad is p%aced centra%%* on t&e span as s&o)n be%o)# 3. m
700 k
a = '.15 m
= '.1 5 m
3.!2
3.!2 a = 4.5!25 e
Fig-14 (P"iti"n " C#$-AA t!$)*+ L"$+ "! $i/ %n+ing "nt,
BY: ABHISEK PANDA
• • •
1
2
,
3.6825
+ 4.5825 4^ × 700 =2892.75 *N
−m
2893 kN
Bendin
moment )it& impact / reaction actor @2#''$ × 1.10 × 2893 =1759.812 *N − m 1760 kN −m
is
iven
b*
,?%4o;ter irder
,?%4inner irder@2#$$$ × 1.10 × 2893 =1059.711060 kN −m
(+,
LIVE LOAD S@EAR:
Cor s&ear orce to be maim;m5t&e %oadin s&o;%d be arraned as s&o)n lon/i&udinal /irder +
W 1= 350 k B
3. m W2= 350 k
2.05 m 2.5 m 0.45 m
% 4.5075 m
4.5075 m
4.5075 m
4.5075 m cro## /irder
1.53 m
be%o)# 1 0.!03 %
B
1 3. m
Fig-19 (Li0 #"$+ $!!$ngnt "! $i/ '$! "!) ,
&ee% %oad p%aced at startin )i%% be ivin maim;m s&ear i#e# startin point o eit&er end= eit&er ]A or ]B # Aain one )&ee% &as to be p%aced on one irder to ive severe efect as t&e distrib;tion %oad )i%% occ;r on%* or one )&ee% %oad# eaction o ])1 on irder-B is iven b* $'2
×
0.45 2.5
@0$ 9N
• • •
BY: ABHISEK PANDA
eaction o ]1 on irder-A is iven b* $'2
×
2.05 2.50
@1"+ 9N
Tota% %oad on irder B @$'2G0$ @ 3!$ KN 413 × 16.53
?aim;m reaction on s;pport o irder ]B is @
@ $+1#33 9N
18.33
?aim;m %ive %oad s&ear inc%;din impact @!#! × 372.44 =409.68 410 kN
TABLE-;(Dign Bn+ing "nt $n+ S'$! "!) "n Gi!+! 4
Bn+ing "ntGi! +!
D.L Bn+ing "nt
L.L Bn+ing "nt
T"t$# Bn+ing "nt
Unit
[;ter >irder
1$22
!+02
3202
9N-m
Inner >irder
1$22
!202
$$02
9N-m
S'$! F"!)Gi!+ !
D.L S'$!
L.L S'$!
T"t$# S'$!
Unit
[;ter >irder
3".
3!2
"..
9N
Inner >irder
3".
3!2
"..
9N
CALCULATION ET@OD:
OF
nE I r 12
A @, π
4
2
4
EI 3 4 + ¿ &
()
π - & C @ 2 n 4 , + 4, E I r 4
¿
BENDING
OENT
USING
(, @ENDR<-AEGAR
• • •
BY: ABHISEK PANDA E I 1
c @ E I 2 @! <@ span o bride dec9 @ !"#$$ m & @ spacin o %onit;dina% irders @ 1#' m n @ n;mber o cross irders @ ' EI @ e;ra% riidit* o %onit;dina% irder (J @ torsiona% riidit* o %onit;dina% irder E E
I 1 I r
/E
I 2
@ e;ra% riidities o t&e o;ter / inner %onit;dina% irders
@ e;ra% riidit* o one cross beam # eff = 2.5 m
250 mm
1.!0 m 400 mm
Fig-2 (Si>#i+ T-%$ L"ngit/+in$#gi!+! )ti"n,
As per c%a;se +#0#!#1 o I( :!!1-12!! 5 t&e efective ane )idt& )i%% be ca%c;%ated# Bef# ! @ 2#1
×b 1+ 0.1 l 0
@2#1 × 1.05 + 0.1 × 18.33 =2.043 m
2#1%2@$#00m V 1#23$ m B)@2#3 m Bef @1 × 1#23$G2#3
,o94
• • •
BY: ABHISEK PANDA @3#3"0 m
B@ 1#' m 3#3"" m X bef @1#'m 1= m
250 mm
1.!00 mm 300 mm
Fig-21 (Si>#i+ T-%$ C!" gi!+! )ti"n,
bef#!@2#1b!G2#!%2 @2#1 × 2.1037 + 0.1 × 0.7 × 2.5
2#1%2 @2#1 × 0.7 × 2.5=0.35 > 0.596 m Xbef#!@2#$' m bef @1 × 0.35 + 0.3=1 m b @3#'2+' mV!m L"ngit/+in$# gi!+!: A 1+¿ A
2
A1 x 1 + A 2 x 2 x´ =
¿
+ 2.5 × 0.25 + 1.55 × 0.4
2.5 × 0.25 × 0.125 1.55 × 0.4 × 1.025
@ @2#'+ m
,o94
BY: ABHISEK PANDA
• • •
I<@
2.5 × 0.25
3
12
+ ( 2.5 × 0.25 ) × ( 0.448 ) + 2
0.4 × 1.55 12
3
+ ( 0.4 × 1.35 ) × 0.452 = 0.3795 m 2
4
C!" gi!+!: A1 . 1+ A 2 . 2 x´ = A 1+ A 2
¿
I r =
1 × 0.25
3
12
¿ 0.2261 m
+ 0.3 × 1.55 × 1.025 @2#+!2 m 1 × 0.25+ 0.3 × 1.55
1 × 0.25 × 0.125
2
+ 1 × 0.25 × 0.585 +
0.3 × 1.55
3
12
+ 0.3 × 1.55 × 0.315
2
4
18.33 2.5
A @
12 4
π
׿
4
$
×
5 × E × 0.2261
E × 0.3795
=144.64
3 J @ a b
b 2500 = =10 a 250 ⇒
❑ / =0.312
, Tab%e-+#$ o N# Kris&na aW; 5Desin o
Brides 4 b 1550 = = 3.875 a 400 ⇒
❑ / =0.2787 4 3 3 J @ a$ b @ 2#$!1 × 0.25 × 2.5 + 0.2787 × 0.4 × 1.55 @ 2#2$." m
BY: ABHISEK PANDA
• • •
2
C@
π 2.5 0.43 E × 0.0398 × × =0.0102 0 2 ×5 18.33 E × 0.2261
T)o etreme va%;es o ]C can be ta9en into ana%*sis i#e# C @ 2 or C @ 0 $ 1
√
( 2 √ A ) ¿ 0 − 1 ) (¿ Ta9in C @ 2 or ana%*sis 5 (3 + 2 √ A ) 1 2 = 1 3 +¿ 0
⇒
❑ 1 2 @ 1 3=¿
3 4 1 =0.83 ( 2r 5ter girder , 2 =0 ) 3
¿
1 ¿
2#$0 ,Cor inner irder5 C @ 24
Dign "nt "! t!i"! gi!+! :
Dead %oad moment @ 1$22 9N-m
@ 1".$ × 1.1 × 0.83
Tota% moment @ 3.3!#22 9N-m
@ 103!#$! 9N-m
¿ 4060 k N-m as ca%c;%ated ;sin (o;rbons
met&od Int!i"! gi!+!:
Dead %oad moment @ 1$22 9N-m
@!!3'#0$ 9N-m
−m> 3360 kN − m as ca%c;%ated b*
3446 kN
(o;rbon s met&od (, ODIFIED COURBONS ET@OD:
e : Internationa% Jo;rna% o scientic / Enineerin researc& o%;me 3 5 Iss;e $ 5?arc& 12!$ ,ISSN 111. -''!"4
• • •
BY: ABHISEK PANDA
St;d* o Efectiveness o (o;rbon ] s T&eor* in t&e Ana%*sis o T beam brides
6
B*: ?#># Ka%*an / &etti /# P# S&riram As per Wo;rna%5 t&e* &ave st;died t&e 3-%ane / 0-%ane bride o spans var*in !'m-$' or minim;m $-%onit;dina% irders var*in n;mber o irders# T&e* &ave combined (o;rbons met&od /ri%%ae met&od ,STAAD pro4 to et t&e res;%ts# As per Wo;rna%5 p n
1 +
Pi @
ned i
∑ d i 2
Z correction actor R x
∑W ∑ I × d x × e 1 + ÷÷ × Correction Factor 2 n d I × ∑ x
[r @ e &ave ca%c;%ated a @ c@[;ter irder @2#''$) b@inner irder@2#$$$) (orrection actor is iven b*5 Y@ correction actor5@ span o bride \@!"#$$m y = 0.000134 × (1!.33) 2 − 0.00'! ×1!.33 + 1.05 @ 2#.1!3 ,ro;nded ;p to 3 decima%4 A@(@ ,o;ter irder4 corrected@2#''$Z2#.1!3@2#'2.' B@, inner irder4 corrected@2#$$$Z2#.1!3@2#$20" Tota% bendin moment [;ter irder@1$22G1".$Z!#!2Z2#'2.'@$.1!#32 KN-m Inner irder@1$22G1".$Z!#!2Z2#$20"@$1+0#$$ KN-m [;t o a%% $-ana%*sis5 Hendr*-Jaear met&od ives t&e &i&est moment Desin moment[;ter %onit;dina% irder@!#'Z3++!#$!@+3!!#'2@+3!1 KN-m Intermediate irder@!#'Z$1+0@'!0. 9N-m Desin s&ear S&ear orce @"+!Z!#'@!$3"#'2 9N (g,
DESIGN OF REINFORCEENT OF OUTER GIRDER:
• • •
BY: ABHISEK PANDA
?; @2#$0Z $'Z 1'22Z ,!02241Z @!!+"!9N-m Imposed moment ca%c;%ated @+3!1 9N-m@?a ?; VV?a ,&ence ne;tra% ais %ies inside ane section4 0.5 × 35 415
× 1 − 1 −
4. × 7412 × 10 35 × 2500 × 1502
× 2500 ×150
,Ast4reM;ired @ @!$+32#12 mm1 providin $2mm dia bars as main reinorcin bars5 13740.2 (π $ 4) × 302
= 1'.43 = 20 no.
Tota% bars reM;ired @
π
4
× 30 2 = 14137.17 mm2
So ,Ast4provided@ T&e spacin bet)een %onit;dina% bars is As per IS 3'0:12225 c%a;se-10#$#15 t&e spacin s&o;%d be minim;m o o%%o)in Diameter o bars @$2mm 'mm more t&an nomina% maim;m si8e o coarse areate @12G'@1'mm [;r spacin is $'#$$ is satisactor*# ∗ Cor detai%in o reinorcement5 p%ease reer to Appendi-Battac&ed )it& t&is t&esis#
• • •
BY: ABHISEK PANDA
(', DESIGN REINFORCEENT FOR INNER GIRDER: d @ !022 mm5 D @ 1'2mm and b @ 1#'m Ass;min ne;tra% ais to be )it&in t&e anes5 ?; @ !!+" 9N-m App%ied moment @ ?; app%ied @ '!0. 9N-m ?; 0.5 × 35 4. × 51' × 10 1 − 1 − 415 35 × 2500 × 1502
× 150 × 2500
So Ast#reM @ @ .3'$#02 mm1 Providin !0- 1" mm R bars in 3- ro)s5 ,Ast4provided @ ."'1#2$ mm1 ∗ Cor detai%in o reinorcement5 p%ease reer to Appendi-B attac&ed )it& t&is t&esis# (i, CALCULATION OF ANC@ORAGE LENGT@: (%a;se -!'#1#3#$ o I(:!!1-12!! O/t! gi!+! a a (¿¿ s ) pr%ided 7lbmin
¿
' a l b ¿
A A (¿¿ st ) pr%ided @! at a section (¿ ¿ st ) re(d
¿ ¿ ' a
So
()( ) ∅
%b@
×
4
30
@
@!
4
×
f yd f bd
0.87 × 415 3
@.21#01' ) 903 mm
[r %b@9_@[email protected] %b#net @%[email protected]$mm %b#min@2#$%b@1""#.mm or !22mm or !2_@$22mm Inn! gi!+! 28
%b@
4
×
0.87 × 415 3
%b#net @"3$mm
=842.45 ) 843 mm
• • •
BY: ABHISEK PANDA 2
3
%b#net,!0#'#!#3# o I( :!!1-12!!4
@021mm,o;ter irder4 @'01mm,inner irder4 (H, BAR CURTAILENT:
As )e 9no) )&en t&e %oad is divided in t&e same ratio as t&e span is divided at a point )&ere B#?oment to be ca%c;%ated5 maim;m B#? is obtained# In I
(i, L"$+ $t /$!t! >$n $t ;.5425 !" n+ " gi!+! 0.'m
2.7m
700 k
2.74 2.74 4.5!25
13.7475 m 3.44
Fig-22.1 (B$! )/!t$i#nt-8'# #"$+ $t /$!t! >$n, T&e %oad arranement is as s&o)n in t&e ;re ta9in I
@
2
[ 3.44 +2.764 ] × 700=2171.40 kN − m
Dead %oad moment: @
488.46 × 4.5825
2
− 49 × 4.5825 × 0.5 =1724 kN −m
As per H-J met&od5 )&ee% %oad B? inc%;din impact / coecient 2171.40 ×1.10 × 0.!3 = 1'!2.5 kN − m @
(
Tota% desin moment on o;ter irder@
1.5 1982.5
Tota% desin moment on inner irder@
1.5 1724
(
+ 1724 =5560 kN −m)
+ 1.1 × 2171.40 × 0.36 ) @$"+0 9N-
m (ii, L"$+ $t $ +it$n) 6.47; !" n+ " gi!+!
• • •
BY: ABHISEK PANDA 1.35m 2.25m
3.45
3.45
4. 3
.!74 m
11.45 m
Fig-22.2 (B$! )/!t$i#nt-8'# #"$+ $t 6.47; !" n+ " gi!+!,
&ee% %oad moment@
[
700 × 3.45
+ 4.3 ] × 0.5 = 2712.5 kN −m
2 Dead%oad moment@ 488.46 × 6.874− [ 49 × 0.5 × 6.874 + 26.25 × 2.2165 ]
@1!319N-m Tota% desin b#m on o;ter irder d;e to impact and H#J coecient @
+ 2142= 6928 kN −m 1.5 ¿
2712.5 × 1.1 × 0.83
Tota% desin b#m on inner irders d;e to impact and H#J coecient@
+ 2142 =4825 kN −m 1.5 ¿
2712.5 × 1.1 × 0.36
(iii,L"$+ $t $ +it$n) 2.29125 !" n+ " gi!+!
Fig-22.3 (B$! )/!t$i#nt-8'# #"$+ $t 2.29125 !" gi!+! n+,
&ee% %oad moment@
[
+
700 × 1.6112 2.005
] × 0.5 @!1009N-m
Dead %oad moment@ 488.46 × 2.29125−49 × 0.5 × ( 2.29125 )= 991 kN −m Tota% desin moment on o;ter irder@
(
+
1.5 991 1.1 × 0.83 × 1266
)=3220.30 kN −m
BY: ABHISEK PANDA
• • •
Tota% desin moment on inner irder@
(
+
1.5 991 1.1 × 0.36 × 1266
) =2238.50 kN − m
,94 REJUIRED STEEL AREA AS PER BAR CURTAILENT: (1,L"$+ $t /$!t! >$n $t ;.5425 !" n+ " gi!+! O/t!
( A st.reqd ) o.g =
0.5 × 35 415
× 1 − 1 −
4. × 550 × 10 35 × 2500 × 150
2
gi!+!:
× 2500 ×150 = 101'2.3mm2
1 ×
π
4
× 302 = 1130'.73mm2
Providin !0-$2mm R bars 5,Ast#reMd4[#>@ Note-:3-bars are c;rtai%ed be*ond t&e section providin deve%opment %b#net etension i#e at $#0+.'m rom ends o irders# Inn! gi!+!: A st$re(
¿ ¿ ¿
@
( A st . prov ) = 12 ×
π
4
× 2!2 = 73!'.02mm2
Providin !1-1"mmdia bars 5 Note-:3-bars are c;rtai%ed be*ond t&e section providin deve%opment %b#net etension i#e at $#+$.'m rom ends o irders (2,L"$+ $t $ +it$n) 6.47; !" n+ " gi!+! O/t! gi!+! :
( A . ) = 12!04.'5mm2 st req
A st $ pr%
Providin !.-$2mm dia bars 5 @
¿ ¿ ¿
Note-:!-bars are c;rtai%ed at a distance o '#.+!m rom ends o s;pport Inn! gi!+!: A st$ re(
¿ ¿ ¿
• • •
BY: ABHISEK PANDA A st $ pr%
¿ ¿ ¿
Providin !'-1"mm dia bars@
Note-:!-bars are c;rtai%ed at a distance o 0#2$!m rom ends o s;pport (3, L"$+ $t $ +it$n) 2.29125 !" n+ " gi!+! O/t! gi!+!: A st$ re(d
¿ ¿ ¿
A st $ pr%
¿ ¿ ¿
Providin !2-$2mm dia bars5@
Note -:!2-$2mm dia bars are c;rtai%ed rom !#$""m rom ends o s;pport Inn! gi!+!: A st$ re(
¿ ¿ ¿
A st $ pr%
¿ ¿ ¿
Providin "mm R bars 5
Note -:"-1"mm R bars are c;rtai%ed rom !#33"1'm rom ends o irder (a& &hi# #ec&ion 12-30 φ ar# are ac&uall reuired a/ain#& 1-30φ ar# from fur&her calcula&ion)
'03 mm '03 mm
'.15m
'03mm = l .n e& .3!!m 10.'71 m 15.554 m
4.5!25 m
,[FTE >IDE4
'.1 5m
• • •
BY: ABHISEK PANDA (a& &hi# #ec&ion ac&uall 10-2!φ ar# will e reuired a/ain#& 12-2!φ ar# "rovided)
!4 3 mm
!43 mm
'.15m
!43 mm = l .n e&
'.15m
.2!m 10.!51 m 15.4335 m
,INNE >IDE4 Fig-23 (B$! )/!t$i#nt P!nt$ti"n "! L"ngit/+in$# Gi!+!, (#, CALCULATION OF INDUCED S@EAR AT DIFFERENT SECTIONS: (i, 8'# #"$+ $t t$!ting
Ci-13#! ,S&ear orce ca%c;%ation-&ee% %oad at startin4 350 + 350 ×
0.45 2.5
= 413kN
App%*in impact5 tota% s&ear @3'3#$9N
• • •
BY: ABHISEK PANDA 454.3 ×
1.53 1!.33
= 410kN
Aain reaction at s;pport is @ 4' ×1!.33 2
+
2.25 2
+
2 × 2.25 2
= 4!'kN
Dead %oad s&ear @ Tota% s&ear@"..9N ` .22 9N (ii, S'$! $t 9.165 !" n+ " gi!+! 0.303 0. 5
Ci-13#1 ,S&ear orce ca%c;%ation-&ee% %oad at midd%e4 1 2
0.5 + 0.303 × 413 × 1.1 = 1!2.54 kN
Trac9 s&ear orce at midd%e is @ 4!' − (4' × '.15 + 2.25) = 13.5 kN
Dead %oad s&ear@ Tota% s&ear@!.0#12'`1229N (iii, S'$! $t ;.5425 !" n+ " gi!+! 0.553 0.75
4.5!25
Ci-13#$ ,S&ear orce ca%c;%ation-&ee% %oad at M;arter span4 1
Trac9 s# at 3#'"1'm@ Dead %oad s&ear@
489
2
[ 0.75+ 0.5536 ] × 413 × 1.1 =296.113 kN
−( 49 × 4.5825 )=264.46 kN
Tota% s&ear@'0!9N (i0, S'$! $t 1.95 !" n+ " gi!+! 0.!'4
1.'5m
0.'72
• • •
BY: ABHISEK PANDA
Ci-13#3 ,S&ear orce ca%c;%ation-&ee% %oad at !#.' m rom end4 <#< s&ear@$0!#33!9N 489
D#% s&ear @
−( 49 × 1.95 )=393.45 kN
Tota% s&ear@+''9N
(0,
S'$! $t 3. !" n+ " gi!+! 0.!33 0.4
3m
Ci-13#' ,S&ear orce ca%c;%ation-&ee% %oad at $#2 m rom end4 <#< s&ear@$$'#$39N D#< s&ear@3".-,3.Z$4@$319N Tota% s&ear@0+"9N (0i, S'$! $t 6.47375 !" n+ " gi!+! 0.25 0.42!
Ci-13#0 ,S&ear orce ca%c;%ation-&ee% %oad at 0#"+$+'m rom end4 <#< s&ear@1$.#$1'9N D#< s&ear@
489
−( 49 × 6.87375 + 26.25 )=126 kN
Tota% s&ear@$00 9N (0ii, S'$! $t ;.3425 !" n+ " gi!+! 0.54 0.71
4.3!25m
Ci-13#+ ,S&ear orce ca%c;%ation-&ee% %oad at 3#$"1' m rom end4
BY: ABHISEK PANDA
• • •
Trac9 s&ear at 3#$"1' m @ 2#' 2#+0!G2#'03O×!#!2×3!$ @ $2! 9N Dead %oad s&ear @ 3". ,3.×3#$"1'4 @ 1+' 9N Tota% s&ear orce @ '+0 9N ,viii4 Ass;min bearin @3'2mm / an %i9e compression e%d at an an%e 3'5tota% dept& ;p to )&ic& s&ear reinorcement is not necessar* is iven b*5 3'2G!'02@12!2@1#2!m Hence s&ear at 1#2!m rom end o irder is 0.!'03 0.'4
2.01m
Ci-13#" ,S&ear orce ca%c;%ation-&ee% %oad at 1#2!m rom end4
(
+
413 × 1.1 × 0.5 0.8903 0.694
<#% s&ear@ D#d s&ear@
489
)= 360 kN
−( 49 × 2.01 ) =390.51 kN
Tota% s&ear@+'2#'!KN ) 751 kN (, S@EAR RESISTANCE C@EC:
¿
@
0.6 × 1560 × 2
No)
=1.872> 0.645 (k )
π 2 2 A sw =1 × × 30 =706 m m ( 5ter girder ) 4
/
1×
π 4
2
2
× 28 =615 m m ( inner girder )
As per c%a;se !2#$#$#$ o I(:!!1-12!!5 No)
% rds =
s@2#03'm
asw × z × f ywd ( ct" + ct' ) sin' s
O
• • •
BY: ABHISEK PANDA
8@2#.d@2#.Z!'02@!332mm f ywd
@2#"Z3!'@$$1 N / mm 706
(8 /ds )3 $9 @ 8 /d $ m ax
2
× 1404 × 332 × 2 ×
645
1
√ 2
=721.55 kN 2
@ ∝cw bw % 1 f cd z ( ct" + ct' )/( 1 + cot " )❑
@!Z322Z2#.Z!'02Z2#0Z2#$0Z$'Z171 @313'#0.0VV+1!#'' KN ,o94
( 8 /ds ) I $9 @
615 645
× 1404 × 332 × 2 ×
1
√ 2
@01"#'3$ 313'#0.0 9N ,o94 Desin s&ear resistance o member )it&o;t s&ear reinorcement is iven b* 0.33 dc @ [ 0.12 k ( 80 ρ1 f ck ) + 0.15 σ cp ] × b w d ( cl −10.3 .2 f I/ : 112−2011 )
σ cp
@2 3
1
2
vmin@ 0.031 k f ck 2 K@
1
+
√
200
d
=1 +
√
200 1560
=1.358 < 2 (k )
vmin@2#1.
( % min+ 0.15 σ cp ) bw d
,dc4min@
@2#1.Z322Z!'02@!"!#!2' 9N No)
ρ1=
A st bw d
Since &a% reinorcement is a%)a*s avai%ab%e t&ro;&o;t5 ,
ρ1
,
ρ1
0.5 × 14137.167
4[#>@
400 × 1560 0.5 × 9852.03
4I#> @
400 × 1560
=0.01133< 0.02
=7.89 × 10− < 0.02 3
[ 0.12 × 1.358 ( 80 × 0.01133 × 35) ] × 400 × 1560 0.33
,dc4[#> @
¿ 318 kN > % /dc$ min ( k )
BY: ABHISEK PANDA
• • •
[ 0.12 × 1.358 ( 80 × 7.89 × 10
−3
,dc4I#>@ @
0.33
× 35 )
] × 400 × 1560
> % /dc$ min (k )
282 kN
(n, S@EAR GIRDER:
REINFORCEENT
DISTRIBUTION
ON
OUTER
Tota% s&ear at ace o s;pport@ .229N Ho)ever as its simp%* s;pported / a bearin o 3'2mm is provided5a an %i9e compression ie%d )i%% eist &avin steepest an%e @3' ;p to )&ic& no s&ear reinorcement )i%% be necessar*# so t&e efective section or s&ear )i%% be at 2#3'G!#'02@1#2!m rom end o irder Tota% s&ear at 1#2!m@+'!9N Desin s&ear@!#'Z+'!@!!10#'2 9N S&ear resisted b* irder )it&o;t s&ear reinorcement @ ,dc4[#>@$!" 9N Hence desin s&ear or )&ic& s&ear reinorcement )i%% be provided@Ed @,!!10#'2-$!"4KN@"2"#'2 9N T&e s&ear resistin capacit* o avai%ab%e bent ;p bars at t&at section is +1!#'' 9N B;t as per c%a;se -!2#$#$#$,14/ c%a;se-!0#'#1,$4 o I( :!!1-12!!5on%* '2 o t&e s&ear )i%% be resisted b* t&e bent ;p bars Hence s&ear to be resisted b* %in9s7stirr;ps 808.50
B*
2
=404.25 kn
c&ec9:,as)#ma4bent 0.5 × 10 × 0.6 × 0.36 × 35 × 400 × 645 1
√ 2
@
;p
bars
=4154.21 mm > 706 mm ( k ) 2
2
× 0.8 × 415
V0!'mm1,o94
As) @
4×
4
2
2
× 8 = 201.062 m m =201 m m
2
Fsin c%a;se-!2#$#$#1 o I(:!!1-12!!5 rd#ma@
∝
cw bw % 1 f cd z
f cd
(ct" + tan" )
BY: ABHISEK PANDA
• • •
@
1 × 400 × 0.9 × 1560 × 0.6 ×
0.36 × 35 2
@1!11#"3"9NVV323#1' 9N ,o94 As per same c%a;se 5spacin o vertica% stirr;ps iven b* asw × f ywd × z× ct"
S@
% rds 201 × 0.9 × 1560 × 0.8 × 415 × 1
@
3
404.25 × 10
= 231.766 mm
0.072 × √ f ck
f yk
)#min@
=
0.072 × √ 35 415
=1.026 × 10−
3
Provided s&ear reinorcement ratio is A sw
, ρ
)4@ s × b × sin w
∝
=
201
=2.125 × 10− >¿ , ρ 200 × 400 3
4,o94
)#min
S&ear orce at 3#'"1'm rom ends o irder '0!9N# Here no bent ;p bars are avai%ab%e Desin s&ear@"3!#'9N π
,As%4o#@ ρ
¿
!
18 ×
4
2
2
× 30 =12723.45 m m
4o#@2#212$. V 2#215
8620.53
ρ
¿
(
!
4i#@
)
0.33
,vrdc4o# @
0.12 × 1.358 × 80 × 0.02 × 35
,vrdc4i# @
0.12 × 1.358 × 80 × 0.0138 × 35
(
)
400 × 1560
× 400 × 1560=383.855 ) 383 kN
0.33
× 400 × 1560 =339.615 ) 339 kN
S&ear to be resisted b* stirr;ps is ,"3!#'-$"$4 9N @3'"#' 9N d#ma@1!11#"3"V3'"#'2 9N,o94 Spacin o stirr;ps is 201 × 0.9 × 1560 × 0.8 × 415 × 1
S@
3
458.50 × 10
=0.0138 ) 0.02
= 204.344 mm
BY: ABHISEK PANDA
• • •
s@
166 × 10
3
=564.408 mm
As per c%-!0#'#1,+4 o I(:!!1-12!!5 S%ma @2#+'d,!Gcot4@2#+'Z!'02Z!@!!+2mmV'03#32"mm,o94 B;t As per c%-!0#'#$,$534 o I(:!!1-12!!5 species or torsion criteria to be satised5t&e minim;m spacin s&o;%d be $'2mm or 1 8
1
o;ter perimeter o t&e memberO@
8
× 3200 =400 m }( lesser f tw )
So provide 3-%eed -"mm R vertica% stirr;ps 6$02mm c7c in t&e midd%e strip band o %ent& 3#'"1'm Aain it s&o;%d satis* , ρ , ρ , ρ
4
@
) min
1.026 × 10
−3
201
4
) prov
@
4
) min
350 × 400
=1.436 × 10− >( ρw )min (k ) 3
(", S@EAR REINFORCEENT DISTRIBUTION ON INNER GIRDER: 2#3'G!#'0@1#2!m rom irder end Tota% desin s&ear@!!10#'29N ,dc4I#>@1"1 9N Desin s&ear or )&ic& s&ear reinorcement )i%% be provided@"33#'29n Bent ;p bars s&ear resistance is ,ds4I#> @01"#'3$ 9N 844.50
B;t it )i%% be ta9in on%*
2
=422.25 kN
est 311#1'9n )i%% be ta9en care o b* t&e vertica% stirr;ps# Providin "mm R -3 %eed stirr;ps5 2 As)@12! m m
(%-!2#$#$#1 o I(:!!1-12!! species rd#ma@1!11#"3"9N VV 311#1'9N,o94 Co%%o)in same c%a;se5 spacin o stirr;ps5
BY: ABHISEK PANDA
• • •
201 × 0.9 × 1560 × 0.8 × 415 × 1
S@
3
422.25 × 10
= 221.88 mm
Provide "mm-3%eed stirr;ps 6122mmc7c ;p to 3#$"1'm rom end o irder on bot& sides , ρ
@
4
) min
201
, ρ
4
) prov
@
1.026 × 10
−3
=2.5125 × 10− >( ρw )min (k ) 3
200 × 400
S&ear at 3#$"1'm is iven b* '+0 9N# Desin s&ear@!#'Z'+0@"039N No bent ;p bars are avai%ab%e &ere# ,dc4I#>@$$. 9N S&ear to be resisted b* stirr;ps@'1'9N d#ma@1!11#"39N VV'1'9N Spacin o stirr;ps is iven b* 201 × 0.9 × 1560 × 0.8 × 415 × 1
S@
302.50 × 10
3
=178.46 mm
Provide "mm-3%eed stirr;ps 6!02mmc7c ;p to 0#"+$+'m S&ear at 0#"+$+'m rom end o irder is= Desin s&ear@!#'Z$02@'3.9N π
16 ×
,Ast4avai%ab%e@
9852.035
ρ
¿
4
!
4I#>@
2
× 28 =9852.035 mm
400 × 1560
2
=0.016 < 0.02
,dc4I#>@$'0#023 9N S&ear to b resisted b* %in9s and7stirr;ps ,'3.-$'0#02349n@!.1#$.09n ) 193 kN Providin minim;m s&ear reinorcement spacin o $'2mm c7c5 201 × 0.9 × 1560 × 0.8 × 415 × 1
ds@
350
= 267.691 kN > 193 kn ( k )
So Provide "mm-3%eed stirr;ps 6$'2mmc7c in midd%e strip-band o %ent& 3#'"1'm , ρ
)4min @
1.026 × 10
−3
• • •
BY: ABHISEK PANDA 201
, ρ
4
) prov
(>,
@
350 × 400 × 1
=1.436 × 10− >( ρw ) min (k ) 3
SURFACE REINFORCEENT:
Fig-25 (S/!$) Rin"!)nt >!"0ii"n, S;race reinorcement )i%% be provided ta9in a s;race area o t&e cover portion o;tside o t&e stirr;ps# S;race area on one ace o irder@"+Z!322@!1!"22mm1 2#2! Act#et @!1!"mm1 e &ave side ace reinorcement o approimate%* '-!1mm dia bars )&ic& provide '0'#'mm1 Providin !2mm R bars 6!'2mmc7c5tota% stee% area provided per ;nit r;n is π
× 52 × 1355 ×
1000 150
÷ 1000 = 70'.47 mm2
@ Tota% reinorcement@!1+3#.+0V!1!"mm1,[K4 S;race area on %o)er end i#e at oot o [email protected]@$0"22 @2#2! Act#et@$0"mm1 Provision o 3-!0mm R bars )i%% be ivin 4×
π
4
× 12 = !04.25mm2
@ A%so stirr;ps )i%% be ivin π
@
× 52 × 3302 ×
1000 150
÷ 1000 = 172.7' mm2
BY: ABHISEK PANDA
• • •
Tota% area provided@.+0#1'mm1V$0"mm1,o94 ∗ A%% t&e s;race reinorcement bars are perect%* anc&ored/&ence )i%% be servin as s&ear reinorcement a%so appear same c%a;se,'4 a%so ∗ A%so side ace %onit;dina% bars )i%% be servin as side ace reinorcement or stabi%it* as per c%a;se-10#'#!#$ o IS-3'0:1222 (, C@EC FOR BAR CURTAILENT ADEJUAC< AS PER CURTAILENT OF GIRDER BARS: T&e c&ec9 )i%% be done as per c%a;se !0#'#!#$ of I(:-!!1-12!!,pae -!+04/ c%a;se-!0#'#!#3 of I(:!!1-12!!,pae -!++4 Beore c&ec9in5it ma* be noted t&at t&e %onit;dina% bar c;rtai%ment r;%e as per ;re-!0#1 o I(:!!1-12!!,pae -!++4 )i%% be ta9en care o or end sections on%* since at end o irders5t&ere is maim;m s&ear /minim;m reinorcement is actin ;pon a%% ot&er sections )i%% be o;nd saer i a;tomatica%%* i end section are o;nd saer Crs@tensi%e capacit* o reinorcement
= 0.!7 f y ast = n × 0.!7 f y × π × d 2 4
n@n;mbers o bars at ends5 d@diameter o bars ( F rs ) o. g = 10 ×
π
× 30 2 × 0.!7 × 415
4
@1''1#!!19N 8×
,Crs4I#>@
π 4
2
× 28 × 0.87 × 415 =2778.54 kN
∆ F td
T&e above Crs s&o;%d be reater t&at CsG F s = Ed ×
a1 d
+ N Ed
N Ed = 0 a1 = z (
co& θ 2
) (co& θ = 1)
0.'d 2 F s = Ed ×
0.' d 2 d
= 0.45 Ed
Efective s&ear )i%% occ;r at 1#2!m rom end /its va%;e is !!10#'29N
BY: ABHISEK PANDA
• • •
Cs@2#3'Z!!10#'2 ` '2+9N )0 ⇒
At ends ?ed ∆
Ctd@2#' Ed,
1 ed z
=0
ct" − ct'
4
@2#'Z!!10#'2Z!@'0$#1'9N A%so anot&er va%;e o Cs appear -!0#1,A4 is 1 Ed z
+ N Ed =0
∆
CsG Ctd @'0$#1'G'2+@!2+2#1'9n1''1#!!1 9n@,Cs4o# At midd%e5 1 ed z
, ,
1 ed z 1 ed z
@
1 edmax z 6
4[#>@ 4I#>@
7412 × 10
0.9 × 1560 5169 × 10
=5280 kN
6
0.9 × 1560
=3682 kN
,Cs4[#>@'1"29n5,Cs4i#@$0"19N ,∴ Ed@2/ a%so
∆
1 Edmax
Ctd
z
4
,CS4[#>@1''1#!!1×1@'!23#1139N ,CS4I#>@!++"#'3×1@$''+#2"9N As per c%a;se -!0#'#3,'4 o irc:!!1-12!!53-!0mmR bars )&ic& are provided as side ace reinorcement )i%% be servin as resistin bars or bendin o irder section# So tensi%e capacit* o tota% 3-!0mm R bars is iven b*5 4×
π
4
× 12 × 0.!7 × 415
So ,CS4[#>@'!23#113G1.2#$+3@0$.3#02 9N V,o94 ,CS4I#>@$"3+#3'39N V$0"19N ,o94 3.6.15 DESIGN OF CROSS GIRDER: Se%-)ei&t@2#$Z!#3Z1'@!2#' 9N7m S%ab %oad )i%% be distrib;ted as s&o)n be%o)
• • •
BY: ABHISEK PANDA
45
45
1.25m
2.5 m
Fig-26 (D$+ #"$+ +it!i%/ti"n !" #$% "nC!" Gi!+!, Dead %oad rom s%ab @1Z2#'Z1#'Z!#1'Z"#30@10#3$+' 26.4375
So ;d% %oad @
2.5
=10.575 kN / m
Tota% %oad ,dead )ei&t4 @1!#2+'9N7m Ass;min riid cross irder5 21.075 × 5
eaction on %onit;dina% irder is @
3
=35.125 kN
Cor ma# Bendin moment5 t&e %oads s&o;%d be 9ept at eM;a% distance rom intermediate %onit;dina% irder o bot& sides o cross irder#
• • •
BY: ABHISEK PANDA
4.5075 m
1.! m 1.! m 2.05m
4.5075 m
2.5 m
2.5 m
4.5075 m
0.' 0.'
Fig-27 (8'# #"$+ $!!$ngnt "! $i/ %n+ing "nt "n C!" Gi!+!, No) or ca%c;%atin %oad5 o%%o)in diaram ma* be provided at benecia%
@
2×
350 2
×
( 4.5075−0.9 ) 4.5078
=280.12 kN
eaction on eac& %onit;dina% irder 280.12 × 2
@
3
=186.75 kN
?a# Bendin moment on cross irder ;nder %oad @!"0#+'Z!#3+'@1+'#3'0 9N-m In c&ec9in impact5 ?c @$2$9N-m Dead %oad moment ;nder )&ee% %oad 5
• • •
BY: ABHISEK PANDA 2
@ 35.125 × 1.475−21.075 ×
( 1.475) 2
=28.884 kN −m
Tota% desin moment@$$19N-m F%timate moment @ ?; @3."9N-m Since t&e cross irder ed at intermediate irder5,-4ve moment )i%% eist# As per D#J victor5 Essentia% Brides Enineerin5 reerrin to ?orrice-
498 × 10
,Ast 4Gve@
( − 0.416 ×
0.87 × 415 × 1660 × 1
250 1600
=886.45 mm
2
)
Providin 3-12mm R bars ,Ast 4provided @!1'0#03mm1 Provision o 3-!0-mm R bars at top )i%% ive ,Ast 4-ve@"23#1'mm1V,Ast 4reM;ired @!$'#!'1mm1 Provide 3-!1mm R bars eac& ace ;niorm%* as side reinorcement# 3.6.15.1
S@EAR C@EC FOR CROSS GIRDERS:
(%-!2#$#1 o I(:!!1-12!! K@!#$$ vmin@2#1"! cp@2 ρ1
@1#0!"Z!2-$
dc@2#!1Z!#$$Z,"2Z1#0!"Z!2-$Z$'42#$$Z$22Z!022@!3+#"$! 9N dc#min@2#1"!Z$22Z!022@!$3#""2 9N Desin s&ear Ed @!#'!"0#+'G$'#!1'O@$$1#"!1' 9N Etra s&ear to be resisted b* stirr;ps is @!"3#." ) 185 kN Providin "mm dia -3 %eed stirr;ps As) @12!mm1 Spacin,s4@ '!.#3$mm5"mm R 3-%eed 6$22mm c7c Aain s&ear reinorcement ratio
BY: ABHISEK PANDA
• • •
s ×b w × sin ' ρw
@
¿
,c%-!0#'#1 o I( !!1:12224
A
¿
@!#1"..Z!2-$ ρ (¿¿ w ) @
0.072 × √ 35 415
¿
=1.026 × 10−
3
ρ
Ass;mim
¿ ¿ 4min 5 ¿
201
s@
−3 300 × 1 × 1.026 × 10
=653.021 mm> 300 mm ( k )
4 -1 m mφ an #
4-1 mmφ 12mm φ #ide face reinforcemen& 4-20 mmφ
! mm φ 4 -le // ed #&irru"# 300 mm +$+
4 -2 0m mφ ar#
4 lo//ed !mm φ 300 mm +$+
Fig-24 (Rin"!)nt +t$i#ing " C!" Gi!+!,
(%a;se -!0#'#1 o I(:!!1-12!!,05 +5 "5.54 species t&at smin@dG!2@$2mm 32mm 1_s@1Z"@!0mm Sma@2#+'d,!Gcot4@2#+'Z,!G24@!13'mm As per t&e (%a;se -!0#'#$ o I(:!!1-12!!5 T&e %in9s )i%% not to be o reater spacin o o%%o)in !7" ,perimeter o member4@3"+#'mm or $'2mm [;r provision o $22m ,o9a*4
• • •
BY: ABHISEK PANDA
3.6.16 ODIFIED ANC@ORAGE FOR BARS AT T@E ENDS OF GIRDERS: At t&e ends o irders5bearin avai%ab%e is on%* 3'2mm#&ence standard .2 bend as per !'#1 o irc:!!1-12!! )i%% be provided# So modied %b#net )i%% be %b#net @2#+Z%bZ!@2#+%b %b @.2$mm,or $2mm R bars4 %b @"3$mm,or 1"mm R bars4 ,%b#net4[#> @0$1mm ,%b#net4I#> @'.2mm
REFERENCES:
!# I(:!!1-12!!= ([DE [C PA(TI(E C[ ([N(ETE [AD BID>ES5 INDIAN [AD ([N>ESS 1# I(:0-12!3= STANDAD SPE(ICI(ATI[NS AND ([DE [C PA(TI(E C[ [AD BID>ES= SE(TI[N : II <[ADS AND STESSES $# I(:0-12!2= STANDAD SPE(ICI(ATI[NS AND ([DE [C PA(TI(E C[ [AD BID>ES= SE(TI[N : II <[ADS AND STESSES