TUNGSTEN ELECTRODES
G r e e n
T u r q u o i s e G r e y
w o l l Y e
W
1 0 T W
W S 2 W C 2 0
Pink
e B l u
k c a l B
2 0 T W W T 30
WC 10
2 0 L W
d R e
1 0 L W
8 Z W
e t i h W
4 Z W
Lilac
W T 4 0 O r a an g e n w o r B
2
Alloy elements Thorium oxides
Zirkonium oxides
Lanthan oxides
Cerium oxides
ThO2
ZrO2
La2O3
CeO2
Rare materials ?????????????????????
Why Tungsten Tungsten alloys? •
To improve the fusion point
•
To iim mprove ig ignition properties
•
To improve arc control
•
To avoid contamination of weld pool
3
Tungsten Chemical designation
=
W
Density
=
19.3 g/cm
Fusion point
=
3.380° C
Boiling point
=
6,000° C
3
Unalloyed Tungsten (Pure Tungsten) • •
Designation = Colour code =
W Green
Advantages •
AC welding, fine arc control
Disadvantages •
DC welding. Very poor ignition properties and arc control
•
Tendency towards dropping Tungsten particles into the weld pool in connection with ignition
4
Thorium alloy Tungsten • • • • • • • •
Designation Colour code Designation Colour code Designation Colour code Designation Colour code
= = = = = = = =
WT 10 Yellow WT 20 Red WT 30 Lilac WT 40 Orange
=
0.9 - 1.2 % thorium oxide
=
1.8 - 2.2 % thorium oxide
=
2.8 - 3.2 % thorium oxide
=
3.8 - 4.2 % thorium oxide
Advantages • DC welding • When contents of Thorium oxide increase, electrical resistance will decline whereby the electron liberation will improve • This improves ignition properties, lifetime and current load, at the same time the fusion point increases • High fusion point (approx. 3,600° C for WT 20)
Disadvantages • Poor ability to establish a shiny surface on the electrode point in traditional AC welding which means flickering arc. At the same time there is a tendency towards Tungsten particles in the weld pool • Tendency towards slagging in DC welding • Not environmentally friendly since Thorium gives off radio activity during grinding of electrodes
5
Zirconium alloy Tungsten • Designation • Colour code
= =
WZ 4 = 0.3 - 0.5 % zirconium oxide Brown
• Designation • Colour code
= =
WZ 8 = 0.7 - 0.9 % zirconium oxide White
Advantages • AC welding • No dropping of Tungsten particles into the weld pool
Disadvantages • Poorer ignition properties than pure Tungsten electrodes (W = green).
6
Lanthan alloy Tungsten • Designation • Colour code
= =
WL 10 = 0.9 - 1.2 % lanthan oxide Black
• Designation • Colour code
= =
WL 20 = 1.8 - 2.2 % lanthan oxide Blue
Advantages •
Both AC and DC welding
•
No tendency towards slagging
•
Longer lifetime than WT electrodes
•
Produces a shiny surface in AC welding
•
Higher fusion point than W-electrodes (3600°C for WL 10)
•
No dropping Tungsten particles into the weld pool in connection with AC welding ignition.
Disadvantages • WL 10 (Lanthanated) cannot be loaded as much as WC (Ceriated) electrodes as on ignition they start to drop Tungsten particles into the weld pool, since they have a lower fusion point than WC electrodes.
7
Cerium alloy Tungsten • •
Designation Colour code
= =
WC 10 = 0.8 - 1.2 % cerium oxide Pink
• •
Designation Colour code
= =
WC 20 = 1.8 - 2.2 % cerium oxide Grey
Advantages •
Both AC and DC welding
•
No tendency towards slagging
•
Fine ignition properties
Disadvantages • DC welding causes more wear on electrodes than WL 20 (blue)
8
Tungsten alloy with rare materials • •
Designation Colour code
= =
WS 2 = ? % rare materials Turquoise
Advantages •
Both AC and DC welding
•
Smaller tendency towards slagging than WT (Thoriated)
•
AC welding produces a shiny surface on the electrode point
Disadvantages •
No details on chemical content
•
DC welding causes more wear on electrodes than WL 20 (blue)
9
Grinding of Tungsten Electrode
Rest
Grinding disc
Grinding grooves must always follow the longitudinal direction of the electrode.
10
Pointing angles D larger than 2.5 mm
D smaller than 2.5 mm
Approx. 2D
Approx. 1.5D
• A small pointing angle gives a wide weld pool • A large pointing angle gives a narrow weld pool • Only for machine welding with Argon shielding gas.
11
Pointing angles
0.5 mm
For machine welding it is an advantage to grind the electrode point in order to prolong the lifetime.
12
Handling of Tungsten electrodes Breaking a Tungsten electrode by hand has always been forbidden. The electrode should always be cut or ground, a very slow and expensive process, however, which the welder has often turned his blind eye to. That is why suppliers of electrodes have tried to solve this problem. Formerly, welders were always provided with unannealed Tungsten electrodes, which are very soft (flexible). Unfortunately, there will be longitudinal cracks if the electrode is broken, which will result in a very unstable and flickering arc. In recent years it has been possible to buy annealed Tungsten electrodes which, however, are very brittle and will easily fly to pieces if you break them. The electrodes may even burst if you drop a storage cabinet with electrodes on a concrete floor or the like. Annealed electrodes are the most frequently sold type of electrode in Europe, and unless you specifically order unannealed Tungsten electrodes, you will be supplied with annealed electrodes.
13
14
Lifetime and re-ignition properties of Tungsten electrodes Test period: week 52, 1997 Participants: Niels-Jørgen Christiansen, AMU Center, Randers Stig Jensen, Migatronic
Tests were carried out on standard AC/DC machines. Please note that test results (such as current intensity, re-ignition properties (HF), (ACt-balance), (ACi-balance), (current frequency) and (electrode preheating) may be different if other welding machines and shielding gases are used.
Tests were carried out to demonstrate whether there are any types of Tungsten electrodes available that can be used as alternatives to pure Tungsten electrodes for AC welding and Thorium alloy Tungsten electrodes for DC welding (the latter give off a little radioactivity during grinding).
All AC tests were carried out on a Migatronic Commander with the following settings: ACt-balance: ACi-balance: Frequency: Electrode preheating:
We also hoped to find a type of electrode that would be suitable for both AC and DC welding which would allow welders to use just one type of electrodes instead of two or three types.
65% 0 = neutral 50 Hz 0 = neutral
This test method can be used by individual works for comparing two or more types of Tungsten electrodes by using the welding machines available and the current intensities and other settings used for the relevant welding operations.
Tests were carried out with a view to demonstrating the difference between reignition properties and lifetimes (wear of electrodes) in the case of welding stainless steel and aluminium with Tungsten electrodes of different alloys (see table).
15
16
CURRENT LOAD OF TUNGSTEN ELECTRODES Welding current: DC÷ Slope up: 0
Gas: Argon 10 l/min. Slope down: 4 secs.
Type of electrode
Electrode dia.: 1.6 mm Electrode point: 20°
Comments
Green: WP
Pure Tungsten
Drops the point at 100 amp.
Red: WT 20
2% Thorium oxide
Fusion at 180 amp.
Orange: WT 40
4% Thorium oxide
Fusion at 180 amp.
Grey: WC 20
2% Cerium oxide
Fusion at 180 amp.
Black: WL 10
1% Lanthan oxide
Fusion at 180 amp.
Blue: WL 20
2% Lanthan oxide
Fusion at 180 amp.
Turquoise: WS 2 ? % Rare materials
Drops the point at 140 amp.
17
Welding current: Shielding gas: Parent material:
AC 50 Hz Argon AIMg 2.5
Blue: WL 20 2% Lanthan oxide. Load 240 A
Red: WT 20 2 % Thorium oxide. Load 260 A
Green: WP Pure Tungsten. Load 200 A
Grey: WC 20 2% Cerium oxide. Load 280 A
Black: WL 10 1% Lanthan oxide. Load 280 A
Turquoise: WS 2 ?% Rare materials. Load 280 A
Orange: WT 40 4% Thorium oxide. Load 240 A
I llustration no. 1
18
CURRENT LOAD OF TUNGSTEN ELECTRODES Welding current: AC 50 Hz
Slope up: 0 ACt: 65% -
Gas: Argon 12 l/min.
Slope down: 4 secs. Electrode dia.: 2.4 mm
Type of electrode
Parent mat.: AIMg 2.5
Electrode point: 70 ° Elec. dist. to workpiece: 3 mm Comments
Blue: WL 20
2% Lanthan oxide
The point forms a small, shiny ball at 150 amp. A ball with dia. like elec. is formed at 180 amp. Drops Tungsten at 220 amp. Arc becomes unstable at 240 amp.
Red: WT 20
2% Thorium oxide
The point gets a coarse structure at 100 amp. Drops Tungsten at 220 amp. Arc becomes unstable at 260 amp.
Green: WP
Pure Tungsten
The point forms a small, shiny ball at 50 amp. A ball with dia. like elec. is formed at 80 amp. The ball gets a larger dia. than elec. at 140 amp. Drops Tungsten at 200 amp. Arc becomes unstable at 200 amp.
Grey: WC 20
2% Cerium oxide
The point forms a small, shiny ball at 100 amp. A ball with dia. like elec. is formed at 180 amp. Drops Tungsten at 260 amp. Arc becomes unstable at 280 amp.
Black: WL 10
1% Lanthan oxide
The point forms a small, shiny ball at 100 amp. A ball with dia. like elec. is formed at 200 amp. Drops Tungsten at 260 amp. Arc becomes unstable at 280 amp.
Turquoise: WS 2
? % Rare materials
The point forms a small, shiny ball at 100 amp. A ball with dia. like elec. is formed at 160 amp. Drops Tungsten at 260 amp. Arc becomes unstable at 280 amp.
Orange: WT 40
4% Thorium oxide
The point forms a small, shiny ball at 100 amp. The point gets a coarse structure at 140 amp. Drops Tungsten at 200 amp. Arc becomes unstable at 240 amp.
Lilac: WT 30
3% Thorium oxide
The point forms a small, shiny ball at 100 amp. A ball with dia. like elec. is formed at 160 amp. Drops Tungsten at 260 amp. Arc becomes unstable at 260 amp.
(not illustrated)
See illustration no. 1
19
Welding current: Shielding gas: Parent material:
AC 50 Hz Ar/He 70/30 AIMg 2.5
Red: WT 20 2 % Thorium oxide. Load 260 A
Green: WP Pure Tungsten. Load 180 A
Grey: WC 20 2% Cerium oxide. Load 240 A
Black: WL 10 1% Lanthan oxide. Load 220 A
Turquoise: WS 2 ?% Rare material. Load 220 A
Orange: WT 40 4% Thorium oxide. Load 260 A
Illustration no. 2
20
CURRENT LOAD OF TUNGSTEN ELECTRODES Welding current:AC 50 Hz
Slope up: 0 ACt : 65% -
Gas: Ar/He 70/30 12 l/min. Parent mat.: AIMg 2.5
Electrode point: 70 ° Elec.dist. to workpiece: 3 mm
Slope down: 4 secs. Electrode dia.: 2.4 mm
Type of electrode Red: WT 20
2% Thorium oxide
Green: WP
Pure Tungsten
Grey: WC 20
2% Cerium oxide
Black: WL 10
1% Lanthan oxide
Turquoise: WS 2
? % Rare materials
Orange: WT 40
4% Thorium oxide
Blue: WL 20
2% Lanthan oxide (not illustrated)
Comments The point gets a coarse structure at 80 amp. A ball with dia. like elec. is formed at 140 amp. Burns down on one side at 200 amp. Drops Tungsten at 260 amp. Arc becomes unstable at 260 amp. The point forms a small ball at 30 amp. A ball with dia. like elec. is formed at 60 amp. The ball gets a larger dia. than elec. at 100 amp. Drops Tungsten at 180 amp. Arc becomes unstable at 180 amp. The point forms a small ball at 90 amp. A ball with dia. like elec. is formed at 160 amp. The ball does not get a larger dia. than elec. Drops Tungsten at 220 amp. Arc becomes unstable at 240 amp. The point forms a small ball at 80 amp. A ball with dia. like elec. is formed at 160 amp. The ball does not get a larger dia. than elec. Drops Tungsten at 220 amp. Arc becomes unstable at 220 amp. The point forms a small ball at 80 amp. A ball with dia. like elec. is formed at 160 amp. The ball does not get a larger dia. than elec. Drops Tungsten at 220 amp. Arc becomes unstable at 220 amp. The point gets a coarse structure at 80 amp. A ball with dia. like elec. is formed at 140 amp. Burns down on one side at 220 amp. Drops Tungsten at 260 amp. Arc becomes unstable at 260 amp. The point forms a small ball at 70 amp. A ball with dia. like elec. is formed at 130 amp. The ball does not get a larger dia. than elec. Drops Tungsten at 200 amp. Arc becomes unstable at 240 amp. See illustration no. 2
21
Welding current: Shielding gas: Parent material: Load:
AC 200 A 50 Hz Argon AIMg 2,5 50 re-ignitions at 200 A
Blue: WL 20 2% Lanthan oxide
Red: WT 20 2 % Thorium oxide
Green: WP Pure Tungsten
Grey: WC 20 2% Cerium oxide
Black: WL 10 1% Lanthan oxide
Turquoise: WS 2 ?% Rare materials
Orange: WT 40 4% Thorium oxide
Illustration no. 3
22
C D / C A 0 2 3 R E D N A M M O C C I N O R T A G I M
s e i t r e p o r p n o i t i n g i e r n e t s g n u T
5 . 2 g M I A : . t a m t n e r a P
n o g r A : s a g g n i d l e i h S
z H 0 5 A 0 0 2 C A : t n e r r u c g n i d l e W
s t n e m m o C
f o y e r h a a a h . s c e t a t a t a t e V e t i h s t i d d t s u s u s u t e i i i i i e . n o l s d t w . s a r t h b h b h b n o s u o , , , l r c r c r c r r a o w y t c o i l i i a t e e e e e u e a t c c p h h h n t t t l f i m q d b e e l e l w e w e w e a h b e y m e l s e a l l m l m l m l l e r , e n i a p e a a i r g h a a a a a e r w t i . e l h b i b i a f s t h d d t e b d s d m h e n e a y y y e e a t e h e e c a e d a d n n n t o o t i d i d i d c b u t h t r h o 0 s o n d h h o o n o i r 8 r e t r r r s t s t c s t o i r y s t o o c c 1 f a e a c r e l n p a c a c , i u l t e p m s g e e e n e d e a a n d e t r s l s l s l e e e e e o a n e e h e l o r e d h u t c c c i o t h u e t p f b h s p h t e t u e u e r i p o , c a f d h , t t . d h t . d h t . e n o n s s n e o o o n i u o e c c c g r e i i n i o a t w i d r o m r d r n r r r r r i a a a t p p p t t t t o e s u i l i . a l 0 e t a , , , h h h e e e l h o t a 2 r c n i n t t s a T l n r m n r m n r m g d w i r a u i g b i o o o i i i e t r s . . m t e m t e d m t m i e i e e e d e g r g g a t f n e u i r y r y r y e s g i n g n m o l n i n t s n s n s o a t i a a a n e g g g f f a t e i r m i l a i l a i l a s s s i s t k a g r d y p y x e e e e e e m l r r e l l e l l e l l r e c o n a a a i t t t i t t t i t t t e a b i n t n t n t e h l e t o e e i u i i i i i i V t E p S T c w V v d m F l l F l l F l l
l a n a l u + t o F a i o t T v e
F
e h t s g n y i d l e l e m w e r h t c x t . i e c t s s e r a w m e e o l f c b a e a b t r t s n e t n u f i a o n t p a u e g b h n , t i n f s o o u i a t i e c n r , u e g i t s c r e u a n r o i F t s c
+ F
F
F
F
F
0 s 5 n o r i t e i t f n g A i
I F
I F
I F
I F
I F
I F
0 s 4 n o r i t e i t f n g A i
I F
I F
I F
I F
I F
I F
0 s 3 n o r i t e i t f n g A i
I F
I F
I F
I F
I F
I F
0 s 2 n o r i t e i t f n g A i
I F
I F
I F
I F
I F
I F
0 s 1 n o r i t e i t f n g A i
I F
e d o r t c e l e f o e p y T
n a h t n a L % 2 0 2 L W : e u l B
T D / I F
I F
I F
I F
I F
I F
m u i r o h T % 2
n e t s g n u T e r u P
m u i r e C % 2
n a h t n a L % 1
m u s i r l e a o r i a r h e T R t % a % ? m 4
P W : n e e r G
0 2 C W : y e r G
0 1 L W : k c a l B
0 2 T W : d e R
23
: e s i o u 2 q r S u W T
I F
T W : e g n a r 0 O 4
s n e l s a g h t i 0 w 0 z 8 9 : H . t n 0 o i 5 n o : : e p y l c z e n z d e o o r u n t q s c e e r a l F G E
e n i F = F n a e M n = e t s M g r n o u o T P = = m T P m 4 . . - s c 2 : e % s r e 5 5 1 t 6 : e : m e w i a c l o n f d a t e n l e a s d c t b o o r s r . p t s t c A g e n e l C a l u A G E b T a s t s p n o r C m U D A m = = p 3 m : e T a c A e U D 0 . i 0 s p 2 c k : e r t s o n 5 w e r r : o n t u . c w t o i s g d n d i e . d l p t c e l e o l W S E n o i t i n . g n I i r . m o g s / c l o a e P l S s . 0 1 = = 0 c : e 2 s y I : t i d 0 t P S : o p n i r u a e u p e q p e o s l l a d I S G
. s c . e s c e 0 s r 2 1 A : : : s e w a m i o g t l f g g e i n n r d i p l d l s i e e a h W G S
n o i t i t n n i o g P I e o n N i F = = P I F N
3 . o n n o i t a r t s u l l i e e S
Welding current: Shielding gas: Parent material: Load:
DC÷ Argon Stainless steel AISI 50 re-ignitions at 100 A
Blue: WL 20 2% Lanthan oxide
Red: WT 20 2 % Thorium oxide
Green: WP Pure Tungsten
Grey: WC 20 2% Cerium oxide
Black: WL 10 1% Lanthan oxide
Turquoise: WS 2 ?% Rare materials
Orange: WT 40 4% Thorium oxide
Illustration no. 4
24
4 0 3 I S I A l e e t s s s e l n i a t S : . t a m t n e r a P
C D / C A 0 2 3 R E D N A M M O C C I N O R T A G I n M o g r A : s a g g n i d l e i h S s e i t r e p o r p n o i t i n g i e r n e t s g n u T
A 0 0 1 ÷ C D : t n e r r u c g n i d l e W
s t n e m m o C
n o i l t a a t u o l T a v e 0 s 5 n o r i t e i t f n g A i 0 s 4 n o r i t e i t f n g A i 0 s 3 n o r i t e i t f n g A i 0 s 2 n o r i t e i t f n g A i 0 s 1 n o r i t e i t f n g A i
e d o r t c e l e f o e p y T
. t c a t n i s n i a m r . e c t r n a i e o l p b e a h t S T
F
. d e p p o r d s a . d w e . t c d n u e i . o e d m p l o r z r o e z p f o h s i e t n s s g d n a . a s l o c s e i t g m i e r e a r o n h g t e o c e i n l b w i b . m a c t e p t r d n f u s i a n o a s n e a l e u e p r e t b r e t i y a o h f n r e t g V S M T A I
F
F
S S e e I I A I l I l t F t F F t t i i U l M l A A
S e I l F t t i l A
I S F
I F
I S I A I S F M U F
I F
S e I l F t t i l A
I S F
I F
S S e e I I A I l I l t F t F F t t i i U l M l A A
S e I l F t t i l A
S e I l F t t i l A
I F
S S e e I I A I l I l t F t F F t t i i U l M l A A
I F
S e I l F t t i l A
I F
S e I I A I l t F F t M i U l A
I F
n a h t n a L % 2 0 2 L W : e u l B
F
. d e . c d u d e m o r . r t o p f c s a i e t n g d i s a l s s e n i m e a r o o c m e m b . e r . c c t t d r n n r n a a i a i e e o e o l p l p b r e b e a o h t a h t S M T S T
I F
m u i r o h T % 2 0 2 T W : d e R
M
F
F
n o y l k c i u q r e . h d t e . a c d r u d d e e . o m c d r r u e p f o d i n s e i o r t a d g s m p n a e o l s i r . i s a f l t l m m e e i n a r o t i o b d o c n p e n e g . i . m b a c n t c e i d t r f n r n k a o h l i a a a t l e n e a o l e e e l p v b s m p b r e e o s e t a o b a o h t S D a A h t S M T t u b , t n i o p e d o r t c e l e e h t
n e t s g n u T e r u P
m u i r e C % 2
n a h t n a L % 1
P W : n e e r G
0 2 C W : y e r G
0 1 L W : k c a l B
25
I F
s l e a r i a r e R t % a ? m : e s i o u 2 q r S u W T
I F
m u i r o h T % 4 : e g 0 n 4 a r T O W
s n e l s a g h t i ° w 0 8 2 : . t o i n n o : : e p y c l z e n z d e o o r u n t q s c e e r a l F G E
e n i F = F n a e M n = e t s M g r n o u o T P = = T P
m m 6 . . s c 1 : e s r e 0 t 1 e : : m e w i a c l o d n f a t e l a s d b o o r . p t t s c e C a l A G E
n e t c r s A g e n l u b T a s t s p n o r U D = = A T U D
m ÷ m C 3 D : e p c e m i p a k 0 . r o 0 s 1 c w e : t s o n 2 t e e r r : n c n u a c w t o s g d i n d i e . d l p t c e l o l e W S E
n o i t i n g I r o g o a P l S = = I P S
. n i . m s c / l e s . 0 1 0 c : 1 e s y : 0 t i d : t o p n i r u a e u p e q e p l o s a l d I S G
n o i t i n g I n a e M = I M
. s c e . s c . e 0 s r 1 1 A : : : e s a m w i o g t l f g g e i n n i r d p l d l s i e e a h W G S
n o i t i t n n i o g I P e o n N i F = = I P F N
4 . o n n o i t a r t s u l l i e e S
Welding current: DC÷ 80 A Shielding gas: Ar/H2 97.3 Parent material: Stainless steel AISI 304 Load: 6 x 5 min. at 80 A Blue: WL 20 2% Lanthan oxide
Red: WT 20 2 % Thorium oxide
Green: WP Pure Tungsten
Grey: WC 20 2% Cerium oxide
Black: WL 10 1% Lanthan oxide
Turquoise: WS 2 ?% Rare materials
Orange: WT 40 4% Thorium oxide
Illustration no. 5
26
Lifetime of Tungsten electrodes Welding current: DC÷ 80 A
FI = Fine Ignition NP = No Point
Shielding gas: Ar/H2 97/3
PI = Poor Ignition S = Slag
Type of electrode
Parent mat.: Stainless steel AISI 304
UA = Unstable Arc DT = Drops Tungsten
T = Tungsten P = Poor M = Mean F = Fine
5 min.
10 min.
15 min.
20 min.
25 min.
30 min.
evaluation
Blue: WL 20 2% Lanthan oxide
FI
FI
FI
FI
FI
FI
F+
Red: WT 20
2% Thorium oxide
FI
FI
FI
DT
FI
FI
M
Green: WP
Pure Tungsten
PI
PI/NP
PI/NP
PI/NP
PI/NP
PI/NP
P
Grey: WC20 2% Cerium oxide
FI
FI
FI
FI
PI
PI
F-
Black: WL10 1% Lanthan oxide
FI
FI-
FI-
FI-
FI-
FI-
M+
Turquoise: WS 2
FI
PI
PI/NP
?% Rare materials
Orange: 4% Thorium oxide FI FI FI/S WT 40 Welding time: 5 min. Idle period: 15 secs. Welding current: 80 amp DC÷ Gas pre flow: 1 sec. Slope down: 4 secs. Slope up: 2 secs. Shielding gas: Ar/H 2 97/3 Shielding gas quantity: 10 l/min. Electrode diameter: 1.6 mm Electrode point: 20 °
DT/NP DT/NP DT/NP
FI/S
FI/S
FI/S
Total
P
P
Gas post flow: 4 secs. Gas nozzle: no. 8 with gas lens Electrode dist. to workpiece: 4 mm Parent material: AISI 304
See illustration no. 5
27
Welding current: Shielding gas: Parent material: Load:
DC÷ 100 A Argon Stainless steel AISI 304 6 x 5 min. at 80 A
Blue: WL 20 2% Lanthan oxide
Red: WT 20 2 % Thorium oxide
Green: WP Pure Tungsten
Grey: WC 20 2% Cerium oxide
Black: WL 10 1% Lanthan oxide
Turquoise: WS 2 ?% Rare materials
Orange: WT 40 4% Thorium oxide
Illustration no. 6
28
Lifetime of Tungsten electrodes Welding current: DC ÷ 100 A
FI = Fine Ignition NP = No Point
Gas: Argon
PI = Poor Ignition S = Slag
Parent mat.: Stainless steel AISI 304
UA = Unstable Arc DT = Drops Tungsten
T = Tungsten P = Poor M = Mean F = Fine
Total evaluation
Type of electrode
5 min.
10 min.
15 min.
20 min.
25 min.
30 min.
Blue: WL 20 2% Lanthan oxide
FI
FI
FI
FI
FI
FI
F+
Red: WT 20 2% Thorium oxide
FI
PI
FI
FI
FI
FI
M
Green: WP
FI
PI
PI
PI
PI/NP UA
PI/NP UA
P
Grey: WC20 2% Cerium oxide
FI
FI
FI
FI
FI
FI
F
Black: WL10 1% Lanthan oxide
FI
FI
FI
FI
FI
FI
F+
Turquoise: WS 2
FI
PI
FI
PI
PI
PI
M
FI/S
FI/S
FI/S NP
P
Pure Tungsten
? % Rare materials
Orange: 4% Thorium oxide FI/S FI/S FI/S WT 40 Welding time: 5 min. Idle period: 15 secs. Welding current: 100 amp DC÷ Pre-gas flow: 1 sec. Slope down: 4 secs. Slope up: 2 secs. Shielding gas: Ar. Shielding gas quantity: 10 l/min. Electrode diameter: 1.6 mm Electrode point: 20 °
Post-gas flow: 10 secs. Gas nozzle: no. 8 with gas lens Electr. dist. to workpiece: 4 mm Parent material: AISI 304 See illustration no. 6
29
Welding current: Shielding gas: Parent material: Load:
AC 170 A Ar/He 70/30 AIMgSi 0.3 6 x 5 min. at 170 A
Blue WL 20 2% Lanthan oxide
Red: WT 20 2 % Thorium oxide
Green: WP Pure Tungsten
Grey: WC 20 2% Cerium oxide
Black: WL 10 1% Lanthan oxide
Turquoise: WS 2 ?% Rare materials
Orange: WT 40 4% Thorium oxide
Illustration no. 7
30
Lifetime of Tungsten electrodes Welding current: AC 170 A FI = Fine Ignition NP = No Point
Gas: Ar/He 70/30
PI = Poor Ignition S = Slag
Type of electrode
Parent mat.: AIMgSi 0.3
UA = Unstable Arc DT = Drops Tungsten
T = Tungsten P = Poor M = Mean F = Fine
5 min.
10 min.
15 min.
20 min.
25 min.
30 min.
Total evaluation
Blue: WL 20
2% Lanthan oxide
FI
FI
FI
FI
FI
FI
F+
Red: WT 20
2% Thorium oxide
FI / S DT
FI / S DT
FI / S DT
FI / S DT
FI / S DT
FI / S S
P
Green: WP
Pure Tungsten
FI
FI
FI UA
FI UA
FI UA
FI UA
F-
FI
FI
FI
Grey: WC 20
Black: WL 10
2% Cerium oxide
1% Lanthan oxide
Turquoise: WS 2
?% Rare materials
Orange: WT 40
4% Thorium oxide
Welding time: 5 min. Welding current: 170 amp AC Slope down: 5 secs. Shielding gas: Ar/He 70/30 Electrode diameter: 2.4 mm
FI
FI
FI a little S
FI a little S
UA
FI
FI
a little S a little S a little S
FI
FI
FI
a little S a little S a little S a little S a little S a little S
FI
FI UA
FI / S
FI / S
FI/UA
FI/UA
FI/UA
FI/UA
a little S a little S a little S a little S
Idle period: 15 secs. Gas pre flow: 1 sec. Slope up: 2 secs. Shielding gas quantity: 12 l/min. Electrode point: 70 °
FI / S
FI / S
FI / S
FI / S
F+
F+
M
P
Gas post flow: 10 secs. Gas nozzle: no. 8 with gas lens Electrode dist. to workpiece: 3 mm Parent material: AlMgSi 0.3 See illustration no. 7
31
Welding current: Shielding gas: Parent material: Load:
AC 190 A Argon AIMgSi 0.3 6 x 5 min. at 190 A
Blue: WL 20 2% Lanthan oxide
Red: WT 20 2 % Thorium oxide
Green: WP Pure Tungsten
Grey: WC 20 2% Cerium oxide
Black: WL 10 1% Lanthan oxide
Turquoise: WS 2 ?% Rare materials
Orange: WT 40 4% Thorium oxide
Illustration no. 8
32
Lifetime of Tungsten electrodes Welding current: AC 190 A FI = Fine Ignition NP = No Point
Gas: Argon
PI = Poor Ignition S = Slag
Type of electrode
Parent mat.: AIMgSi 0.3
UA = Unstable Arc DT = Drops Tungsten
T = Tungsten P = Poor M = Mean F = Fine
5 min.
10 min.
15 min.
20 min.
25 min.
30 min.
Total evaluation
Blue: WL 20
2% Lanthan oxide
FI
FI
FI
FI
FI
FI
F+
Red: WT 20
2% Thorium oxide
FI UA
FI/UA DT
FI/UA DT/S
FI/UA DT/S
FI/UA DT/S
FI/UA DT/S
P
Green: WP
Pure Tungsten
FI
FI UA
FI UA
FI UA
FIUA
FIUA
M
Grey: WC 20
2% Cerium oxide
FI
FI
FI
FI
FI
FI
FI
FI
FI
FI
FI
FI
FI
FI
FI / S
FI / S DT
Black: WL 10 1% Lanthan oxide
Turquoise: WS2
?% Rare materials
Orange: WT40
4% Thorium oxide
FI
FI
a little S a little S
FI
FI
a little S a little S a little S a little S
FI / S DT
FI FI Multistrike FI S S (not illustrated) Welding time: 5 min. Idle period: 15 secs. Welding current: 190 amp AC Gas pre flow: 1 sec. Slope down: 5 secs. Slope up: 2 secs. Shielding gas: Argon Shielding gas quantity: 12 l/min. Electrode diameter: 2.4 mm Electrode point: 70 °
Light blue:
a little S a little S a little S
F
F+
F
FI / S DT
FI / S DT
FI / S DT
P
FI S
FI S
FI S
F
Gas post flow: 10 secs. Gas nozzle: no. 8 with gas lens Electrode dist. to workpiece: 3 mm Parent material: AlMgSi 0,3 See illustration no. 8
33