Operations Strategy/Ris k Mitigation & Operational Hedging
5/20/15
Operations Strategy (class 4) Capacity strategy and Operational Hedging ! ! !
Capacity strategy Analyze the value of flexibility as operational hedge Explain the concept of risk management "
Case: • Seagate Technology
Common Categories of Flexibility “Flexibility measures the ability to adapt or change.” (Upton)
!"# %&'#"("&")*
+,&-.' %&'#"("&")*
/'0 12,3-4) %&'#"("&")*
The ability to produce multiple products. This may refer to “simultaneous” production, e.g., different models produced at the same time on the same assembly line, or to the ability to easily switch production from one product to another. The ability to increase or decrease the production rate of a particular product (without a significant increase in cost or decrease in performance)
The ability to introduce new products into the operating system (sourcing, production and distribution)
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 2
© Allon
1
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Obstacles to achieving flexibility !
! !
Flexibility costs more but its benefits are difficult to measure, value and convey Competition and customer perception may preclude using flexibility It is often unclear which features of a process must be changed to enhance its flexibility: – Flexibility is driven more by people and management than by process structure (policies/procedures/culture)
Operations Strategy/Risk Management & Operational Hedging
Slide 3
© Allon
Assembly and Test Operations Contribution margins
!"##$%" '((#)*+,
Cheetah: $400
dedicated resource
2#($ -%..%/01% '((#)*+, dedicated resource
Barracuda: $300 shared resource
Proposed capacity plan Cheetah Assembly: 300K units @ $30K per 1K units Barracuda Assembly: 300K units @ $20K per 1K units Test: 600K Units @ $80K per 1k units CapEx = $40M (fixed)+9M (C Assy) + 6M (B Assy) + $48M (Test) = $103M
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 4
© Allon
2
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Valuation of network capacity under uncertainty Demand D
Invest in capacity K
Market has demand D
Sales
Mismatch units and cost
Operating profit
Profit deviation from mean
Pessimistic 25%: (150, 350)
(150, 300)
(0, -50) = - $15M
$150M
-$41.25M
M os t l ik el y 5 0% : ( 30 0, 3 00 )
( 30 0, 3 00 )
( 0, 0 ) = $ 0
$ 21 0M
$ 18 .7 5M
Optimistic 25%: (450, 250)
(300, 250)
(-150,0) = -$60M
(300, 300, 600) CapEx = $103M
-$18.75M
!
$195M
$191.25M
$3.75M
$24.59M = sqrt(expected squared deviation)
E(NPV) = $191.25M - $103M = $88.25M – E(profit variability) = st.dev of operating profits = $24.59M
Operations Strategy/Risk Management & Operational Hedging
Slide 5
© Allon
Benchmark: Full Information ! ! !
“What if” capacity is built once demand is known? Capacity plan is perfect match to demand Operating profit = $300 x 300k + $400 x 300k = $210 M – NPV = $210M - $103M = $107M – ROI = 107/103 = 104%
!
What is the impact of uncertainty?
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 6
© Allon
3
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Determining the Best Capacity 9*(#.:# '/$0%+ ;#)%71
-03+1 !%4%/3$,
5.610/# %71 8#++
Based on forecast
Outcome A: Demand = Capacity No Demand/Capacity Mismatch. Sales = Demand
Based on actual demand
Outcome B: Demand < Capacity Demand/Capacity Mismatch. Sales = Demand BUT You wish you had invested in less capacity!
Outcome C: Demand > Capacity Demand/Capacity Mismatch. Sales = Capacity BUT You wish you had invested in more capacity!
<#)371( )# 6= 6:#.%># /6($
<#)371( )# 6= 071#.%># /6($
!%7673/%+ ?#@(:#716. A61#+B
Operations Strategy/Risk Management & Operational Hedging
Slide 7
© Allon
Simplification: Reduce variety or complexity: Single Product or Dedicated Test Imagine Seagate only sold the Cheetah drive Capacity cost = 30K per 1K units
Capacity cost = 80K per 1K units
!"##$%" '((#)*+,
2#($
Contribution margin $400
Would set Assembly Capacity = Test Capacity Two-resource problem equivalent to a one-resource problem Capacity cost = 30K +80K=110K per 1K units Contribution margin $400
<#(60./#
Determine optimal capacity, K* Set Assembly and Test Capacities equal to this K* Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 8
© Allon
4
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Determining the Best Capacity for a single resource: Marginal Analysis for 1D Cheetah Problem Demand Distribution
Capacity cost = $110 per unit
Demand Contribution margin $400
<#(60./#
!
Probability
Cumulative Probability
150
0.25
0.25
300
0.50
0.75
450
0.25
1.0
Should we invest one more unit above 150? – Marginal value = .5*$400 + .25*$400 = .75*$400 = Pr(shortage)*$400 – Marginal cost = $110
!
Add to investment MV > MC = as long as service level < = 1D newsvendor model
# #
Critical Fractile
290
c
u
= c
u
+ co
=
290 + 110
290 =
400
=
0.725
K* = 300 so set capacities of Cheetah Assembly and Test both at 300 With single product, optimal safety capacity = 0! •
Same for single Baracuda product.
Operations Strategy/Risk Management & Operational Hedging
Slide 9
© Allon
The real problem is more complicated
Necessity and Value of Network Analysis Contribution margins Cheetah: $400
!"##$%" '((#)*+, dedicated resource
2#($
-%..%/01% '((#)*+, dedicated resource
Barracuda: $300 shared resource
We need an “holistic” approach because Test is a shared resource #
Network analysis is needed to capture: – (shifting) bottlenecks in a multi-resource network – correlated demands – operational flexibility (substitution, rev. max) and hedging
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 10
© Allon
5
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Capacity for a Multi-Resource Network !
!
If we have multiple resources, we have multiple constraints and capacity is multidimensional! A given capacity portfolio (vector), constrains later production decisions: Capacity = K C !"##$%" '((#)*+,
Capacity = K T
Cheetah Production xC < K C
dedicated resource
Barracuda Production xB < K B
2#($
Capacity = K B
Cheetah + Barracuda Production xB + xC < K T
shared resource
-%..%/01% '((#)*+, dedicated resource
Don’t forget: we also don’t want to produce more than demand in any given scenario If Test is the bottleneck, how should we allocate its capacity between Cheetah and Barracuda? Operations Strategy/Risk Management & Operational Hedging
Slide 11
© Allon
Proposed Capacity Plan -%..%/01% 37 DCCC 073$( KCC
JCC
2#($ !%4%/3$, ICC
?6$#M *6N+#7#/O 1#4#71( 67 $"# 1#)%71 (/#7%.36 PQ("3R37>S *6N+#7#/OT
HCC
GCC
5#((3)3(U/ PCLEHT
VW4#/$#1 PCLHT
-%..%/01% '((,L FCC !%4%/3$,
94U)3(U/ PCLEHT
ECC
DCC
X#%(3*+# 5.610/U67
C DCC
ECC
FCC
GCC
!"##$%" '((,L !%4%/3$,
Operations Strategy/Risk Management & Operational Hedging
© Allon
HCC
ICC
JCC
KCC
!"##$%" 37 DCCC 073$(
2#($ !%4%/3$,
Slide 12
© Allon
6
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Newsvendor Networks: Marginal Analysis for Barracuda Assembly -%..%/01% 37 DCCC 073$(
Y7/.#%(# !%4%/3$, =.6) FCC $6 FCD 8#++ D )6.# -%..%/01% 37 5#((3)3(U/ 8/#7%.36 8#++ C )6.# 37 6$"#. (/#7%.36( AZ [ CLEH\FCC [ JH A! [ EC A%.>37%+ 4.6]$ [ JH^EC[HH 46(3U:#
KCC
JCC
2#($ !%4%/3$, ICC
Y7/.#%(# !%4%/3$, =.6) FG_ $6 FHC 8#++ D )6.# -%..%/01% 37 5#((3)3(U/ 8/#7%.36 8#++ C )6.# 37 6$"#. (/#7%.36( AZ [ CLEH\FCC [ JH A! [ EC A%.>37%+ 4.6]$ [ JH^EC[HH 46(3U:#
HCC
GCC
5#((3)3(U/ PCLEHT
VW4#/$#1 PCLHT
-%..%/01% '((,L FCC !%4%/3$,
94U)3(U/ PCLEHT
Y7/.#%(# !%4%/3$, =.6) FHC $6 FHD 8#++ C )6.# -%..%/01% 37 %++ (/#7%.36( AZ [ C A! [ EC A%.>37%+ 4.6]$ [ ^EC 7#>%U:#
ECC
DCC
X#%(3*+# 5.610/U67
C DCC
ECC
FCC
GCC
HCC
!"##$%" '((,L !%4%/3$,
Operations Strategy/Risk Management & Operational Hedging
ICC
JCC
KCC
!"##$%" 37 DCCC 073$(
2#($ !%4%/3$,
Slide 13
© Allon
Newsvendor network analysis: Marginal analysis of value of capacity in a network !
!
Adding one unit of Barracuda final assembly capacity increases expected operating profit by 25%*$300 = $75 > CapEx of $20, as long as K b < 350. Marginal profit is negative beyond 350. Similarly, adding one unit of Cheetah final assembly capacity has expected marginal value of 25%*$400 - $30 = $70, as long as K c < 350. But if we increase K c beyond 350: –
–
test is constraining us and the marginal value of an additional cheetah capacity unit is that we can make one more Cheetah drive but one less Barra drive (due to test constraint). The expected marginal value is 25%*($400-$300) = $25 < CapEx of $30, which is suboptimal . Increasing both cheetah and test capacity is also suboptimal: marginal value = 25%*$400 = $100 < $30+$80
#
Sizing of a capacity portfolio starting guideline:
#
Maximize value using marginal analysis of overage versus underage!
Operations Strategy/Risk Management & Operational Hedging
© Allon
P(resource i is bottleneck) ! Marginal cost of capacity i Marginal return of capacity i
Slide 14
© Allon
7
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Operational Capacity Hedge :
K = (350, 350, 600) !
Barracuda [1000 units] 700
What is utilization of the three capacities? – –
600
500
Pessimistic 25%
Expected 50%
400
Optimistic 25%
Original capacity proposal
100
0 0
100
200
300
400
In what sense is this capacity plan an “operational hedge?” 1. Upstream excess capacity illustrates one of the operational hedging strategies: capacity reserves mitigate demand risk 2. Less excess capacity is needed in testing, which illustrates another OH strategy: pooling mitigates demand risk 3. To exercise the switching real option embedded in test, we need upstream capacity imbalance !
300
200
Safety capacity in each scenario More upstream capacity than downstream > patently unbalanced capacity portfolio
500
600
700
Cheetah [1000 units]
Operations Strategy/Risk Management & Operational Hedging
Slide 15
© Allon
Seagate Technology :
Excel formulation and Mean-Variances Production Margin per thousand (in unit of $1000) Cheetah $ 400 Barracuda $ 300 CapEx per thousand (in unit of $1000) Cheetah $ Barracuda $ Testing $ Fixed Cost $
30 20 80 40,000
Demand Probability (In unit of thousand) Cheetah Barracuda
Scenario A 0.25
Scenario B 0.5
150 350
300 300
450 250
Contingent Production Cheetah Barracuda Sum(Cheetah+Barra) Op. Profit
(in unit of thousand) 150 350 500 $ 165,000
300 300 600 210,000
350 250 600 215,000
Probability Expected Op. Profit Std. Dev. of op. profit Investment (CapEx) Net Incom ROI
0.25 $ $ $ $
Operations Strategy/Risk Management & Operational Hedging
© Allon
$
0.5
0.25
Expected Value $ 88,250 $ 93,500 $ 94,500
ROI 86% 80% 90%
Capacity (in thousands) 350 350 600
200,000 20,310 105,500 94,500 90%
Summary comparison 3 capacity portfolios
Coordinated: Full Insurance: E(NPV)-Optimal
$
Scenario C 0.25
(300, 300, 600) (450, 350, 700) (350, 350, 600)
Slide 16
$ $ $
Std dev Mismatch cost 24,590 $ 18,750 31,820 $ 13,500 20,310 $ 12,500 © Allon
8
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Mean-Variance Analysis of Operational Hedging:
Example via Capacity Portfolio Imbalance in Seagate 10
8
NPVOptimal K *
6
Initial Sales-plan driven K
Full insurance K
!
For whom is K * optimal?
!
Reduce risk: –
What is the optimal riskreducing capacity portfolio?
–
When is “operational hedging” most effective?
4
4
0
Expected Value ($)
-4
-6
Standard deviation of value ($) Operations Strategy/Risk Management & Operational Hedging
Slide 17
© Allon
Optimal Capacity Portfolio Investment : Implementation Challenges !
The optimally installed capacity will never be all used simultaneously
!
The current sales-plan driven capacity planning practice will never lead to the optimal capacity vector
!
Which organizational changes are needed so the optimal capacity vector is chosen? Incentives: mktg-sales v. finance-ops Demand & sales planning & forecasting – Integration and coordination (ERP) – –
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 18
© Allon
9
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Demand, Production, and Capacity Planning: Pitfalls of Sales-Plan driven investments Still happens: - Tech - Medical devices - Automotive
Resource Planning & Capital Budgeting
Prod &Inv Planning
Informal Feedback
Sales Plan
Demand forecast
Master Production Scheduling
MPS
CRP CRP = How much capacity is required to produce MPS?
MRP
Mat INV
CRP &MRP Records
Shop-floor & Vendor Systems
Operations Strategy/Risk Management & Operational Hedging
Slide 19
© Allon
Learning Points from Seagate Case: Operational hedging through capacity portfolios !
Capacity portfolio investment is simultaneous investment in multiple resource types. The basic question is to determine the capacity for each resource type.
!
Don’t do sales-plan driven capacity planning – i.e., don’t build capacity for one single demand scenario
!
Explicitly capture forecast uncertainty – Agree on a demand forecast, i.e., set of scenarios, capturing correlation – Build capacity based on the forecast. – Use newsvendor logic to balance underage and overage consequences.
!
Use a portfolio approach – Best capacity for resource X depends on capacity choice for resource Y. – Network model captures moving bottlenecks and operational flexibility
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 20
© Allon
10
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Learning Points from Seagate Case: Operational hedging through capacity portfolios !
Tailor operational hedges to specific risks: 1. Adding different amounts of reserves (“insurance” or safety capacity) to different resources. 2. Flexible resources pool demand risk and need less safety capacity. This also enables them to exercise their real switching option to maximize profits.
!
The above mitigate operational risk: they reduce the expected mismatch cost and thus add value.
!
They also mitigate financial risk: profit variability is reduced.
Operations Strategy/Risk Management & Operational Hedging
Slide 21
© Allon
GM Chevy !
2 assembly plants: – Arlington, TX: 75,000 units/yr – Fairfax, KS: 200,000 units/yr
!
2 stamping plants: – Pontiac, MI – Fairfax, KS [contiguous, same location as assembly]
!
A die-set (for stamping hood, roof, etc) costs about $30 to $50M
!
Should we have one die-set in each plant, or 1 set in Fairfax (and ship to Arlington)?
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 22
© Allon
11
Operations Strategy/Risk Mitigation & Operational Hedging
5/20/15
Approach ! !
Value proposed capacity plan Consider other simple capacity investments – Give bounds on value – Build intuition
! !
Towards an value-maximizing investment Strengths and weaknesses
Operations Strategy/Risk Management & Operational Hedging
© Allon
Slide 23
© Allon
12