Distribuciones de Frecuencia Trabajo a realizar de este tema: En Excel 2003 hoja 1, prepara un(os) cuadro(s) sinópticos o mapas conceptuales o mapas mentales que sinteticen éste capítulo. En la hoja 2 y en la hoja 3 del mismo libro de Excel resuelve los problemas 1 y 2 que están al final de este tema a excepción del ejercicio 4 y 6 que los realizarás a mano y los entregarás en sobre conforme al protocolo indicado. Anota las fórmulas empleadas en ambos trabajos. El nombre del archivo deberá ser: 03 DISTRIBUCIONES DE FRECUENCIA APELLIDO NOMBRE
Se calificará de la siguiente manera: + Ortografía (2 puntos) Protocolo de envío: + Asunto: mal anotado el 100% del trabajo + Nombre (1 punto) + Comentario (2 punto) + Nombre del archivo (1 punto) + Versión diferente a 2003 (7 puntos) En el trabajo solución, tanto en Excel como el trabajo escrito: Comentario o conclusión del trabajo
(2 punto) Ortografía: (1 punto)
Nombre Universidad Carrera Materia Tema Fecha
(La ausencia total o de alguna parte restará 1 punto) A continuación, y sin dejar hoja en blanco, el desarrollo del trabajo (1 punto menos de no cumplirlo). Se calificará la realización de las síntesis.
DISTRIBUCIONES DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES DISTRIBUCIONES D FRECUENCIAS.doc FRECUENCIAS.doc
1
Distribuciones de Frecuencia Estadística descriptiva Construcción de una distribución de frecuencias Presentación Gráfica Problemas
Estadística descriptiva
Como su nombre lo indica, la estadística descriptiva es la parte de la estadística que describe y resume una serie de datos. La estadística descriptiva hace énfasis en tres aspectos: 1. La forma de la distribución. Para describir como están distribuidos los datos utiliza una herramienta llamada "distribución de frecuencia" y presenta la información por medio de tablas y gráficas 2. Las "medidas de tendencia central" que resume la información a una cifra que es representativa de la serie de datos. 3. Las "medidas de variabilidad" nos indican qué tan variables son los datos respecto a las medidas de tendencia central. En esta sección se presenta una manera de elaborar una distribución de frecuencia, en las secciones siguientes se abordarán los temas de medidas de tendencia central y medidas de variabilidad.
Construcción de una distribución de frecuencias
Una distribución de frecuencias es una serie de datos agrupados en categorías, en las cuales se muestra el número de observaciones que contiene cada categoría. Los pasos para la construcción de una distribución de frecuencias son mejor explicados con un ejemplo.
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
2
Ejemplo: Los siguientes datos son el número de meses de duración de una muestra de 40 baterías para coche. 22 34 25 33 47
41 16 43 31 38
35 31 34 37 32
45 33 36 44 26
n (total de datos) = 40 [
32 38 29 32 39
37 31 33 41 30
30 47 39 19 42
26 37 31 34 35
=CONTAR(rango)]
1. El rango DtoMay (Dato mayor de la muestra) [
=MAX(rango)]
Dtomen (Dato menor de la muestra) [
=MIN(rango)]
Rango = DtoMay – Dtomen = 47 – 16 = 31 2. Número tentativo de los intervalos de clase (NIC) El número de intervalos ( nic) puede ser como mínimo 5 y como máximo 15 de acuerdo a la tabla siguiente 2 nic (Regla de Sturges ¿?) Número de intervalos de clase Número máximo de datos ( 2 (NIC) 32 5 64 6 128 7 8 256 512 9 1024 10
nic
)
En este ejercicio, puesto que tenemos 40 datos el NIC sería de 6. También se puede usar la regla de la raíz donde:
(En todos los ejercicios de este periodo escolar se usará la tabla arriba indicada)
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
3
3. Tamaño de los Intervalos de Clase (TIC) Rango
TIC =
NIC
=
31 6
= 5.16 se redondea a 5
Para facilitar la clasificación de los datos, el TIC se redondea a una cifra más o menos cerrada. [
=REDONDEAR(Rango/NIC, 0)]
4. Límite inferior (LI) Usualmente, el límite inferior del primer intervalo de clase es un múltiplo del tamaño del intervalo ( TIC) igual o menor que el dato más chico. Si el TIC es más grande que el dato menor, el primer límite inferior es cero. En este problema el TIC es de 5, entonces el primer límite inferior será el mayor múltiplo de 5 pero inferior o igual al dato menor, el 15.
[
=SI(TIC > Dtomen,0, ENTERO(Dtomen/TIC)*TIC)]
El límite inferior de los siguientes intervalos se calcula sumando el TIC al límite inferior del intervalo anterior hasta llegar a un número no mayor al dato más grande.
LIsig = LI + TIC
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
4
5. Límite superior (LS) El límite suprior se calcula con la siguiente fórmula LS = LI + TIC – 1
LI LS 15 19 20 24 25 29 30 34 35 39 40 44 45 49
6. Límite Superior Real (LSR) Los límites anteriores son los límites nominales pero no son los reales. Los límites reales son el punto medio entre el límite superior y el límite inferior del siguiente intervalo.
LSR =
LS + LIsig 2
LI LS LSR 15 19 19.5 20 24 24.5 25 29 29.5 30 34 34.5 35 39 39.5 40 44 44.5 45 49 49.5
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
5
7. Marca de clase (x) ó Punto medio del intervalo La marca de clase, también llamada punto medio del intervalo es la mitad de la distancia entre los límites inferior y superior de cada intervalo. La marca de clase es el valor más representativo de los valores del intervalo.
X=
LI + LS 2
LI LS LSR X 15 19 19.5 17 20 24 24.5 22 25 29 29.5 27 30 34 34.5 32 35 39 39.5 37 40 44 44.5 42 45 49 49.5 47
8. Clasificación de los datos y conteo de frecuencias (F) Clasificar las observaciones en los intervalos. La práctica usual es marcar con una línea ( / ) que representa una observación. En el ejemplo la observación 22 se clasifica en el intervalo 20 – 24 porque se encuentra entre el 20 y el 24 inclusive. Una vez clasificados todos los datos se cuentan las líneas de cada intervalo y el resultado es la frecuencia de cada intervalo de clase.
=FRECUENCIA(datos, grupos «LS»)]
F
[
15 19 19.5 17 //
2
datos: Rango de datos del problema grupos: Rango del LS.
20 24 24.5 22 /
1
25 29 29.5 27 ////
4
LI LS LSR X
cuenta
Termina con CTRL+SHIFT+ENTER
30 34 34.5 32 ///// ///// ///// 15 35 39 39.5 37 ///// /////
10
40 44 44.5 42 /////
5
45 49 49.5 47 ///
3
Se puede usar otro método donde las líneas van formando un cuadro cada vez que se cuente una observación y en la quinta observación se cruza una diagonal en el cuadro. =3
DISTRIBUCIONES DE FRECUENCIA
=5
0300 DISTRIBUCIONES D FRECUENCIAS.doc
=8
6
9. Distribución de frecuencia relativa (FR) Se pueden convertir las frecuencias de clase en frecuencias relativas de clase para mostrar los porcentajes de observaciones en cada intervalo de clase. Para convertir una distribución de frecuencia en una distribución de frecuencia relativa cada una de las frecuencias de clase se dividen entre el número total de observaciones ( n).
FR =
LI LS LSR X
cuenta
F n
F
FR
15 19 19.5 17 //
2
2/40=.05
20 24 24.5 22 /
1
1/40=.025
25 29 29.5 27 ////
4
4/40=.1
30 34 34.5 32 ///// ///// ///// 15 15/40=.375 35 39 39.5 37 ///// /////
10 10/40=.25
40 44 44.5 42 /////
5
5/40=.125
45 49 49.5 47 ///
3
3/40=.075
n= 40
10. Distribuciones de frecuencia acumulada (FA) Las distribuciones de frecuencia acumulada (FA) se usan cuando queremos determinar cuantas observaciones, o que porcentaje de observaciones están debajo de cierto valor. La distribución de frecuencia acumulada de cierto intervalo se calcula sumando las frecuencias de clase desde el primer intervalo hasta la frecuencia de clase del intervalo de interés. Si queremos la frecuencia acumulada del intervalo 25 – 29, sumamos las frecuencias de clase 2 + 1 + 4 = 7.
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
7
La distribución de frecuencia relativa acumulada ( FRA) de cierto intervalo se calcula dividiendo la frecuencia acumulada entre el número total de observaciones.
FRA =
LI LS LSR X
cuenta
FA n
F
FR
FA FRA
15 19 19.5 17 //
2
.05
2
.05
20 24 24.5 22 /
1
.025
3
.075
25 29 29.5 27 ////
4
.1
7
.175
30 34 34.5 32 ///// ///// ///// 15 .375 22 .25
32
.55
35 39 39.5 37 ///// /////
10
.8
40 44 44.5 42 /////
5
.125 37 .925
45 49 49.5 47 ///
3
.075 40
1
n= 40
Presentación Gráfica
Tres gráficas que nos ayudarán a representar gráficamente una distribución de frecuencias son el histograma, el polígono de frecuencia y la ojiva de frecuencia acumulada.
El histograma El histograma es una de las gráficas mas ampliamente utilizadas y una de las mas fáciles de entender. Un histograma describe una distribución de frecuencia utilizando una serie de rectángulos adyacentes donde la altura de cada rectángulo es proporcional a la frecuencia de clase que representa.
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
8
Histograma de Frecuencia P(X, F)
Histograma de Frecuencia Relativa P(X, FR) Polígono de frecuencia El polígono de frecuencia consiste de segmentos de línea conectando los puntos formados por la intersección de las marcas de clase y las frecuencias de clase.
Polígono de Frecuencia P(X, F) El polígono de frecuencia relativa es similar al anterior solo que en este se muestran porcentajes, es decir las frecuencias relativas de cada clase.
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
9
Polígono de Frecuencia Relativa P(X, FR) Ojivas de Frecuencia Acumulada Las distribuciones de frecuencia acumulada y frecuencia relativa acumulada se presentan gráficamente con las ojivas de frecuencia acumulada y frecuencia relativa acumulada, que es una gráfica de segmentos de línea que une los puntos donde se cruzan los límites reales con las frecuencias acumulada y relativa acumulada de cada intervalo de clase.
Ojiva de Frecuencia Acumulada P(LSR, FA)
Ojiva de Frecuencia Relativa Acumulada P(LSR, FRA)
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
10
Hasta este momento se ha descrito la serie de datos en función de cómo están distribuidos, y se presento la información en forma de tabla y de gráfica. En las siguientes secciones, presentaremos otras herramientas de la estadística descriptiva como las medidas de tendencia central y las medidas de variabilidad
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
11
Problemas
Elabore la distribución de frecuencias de las siguientes series de datos, con sus respectivas gráficas:
1. Los resultados siguientes representan las calificaciones del examen final de un curso de estadística elemental. 23
60
79
32
57
74
52
70
82
36
80
77
81
95
41
65
92
85
55
76
52
10
64
75
78
25
80
98
81
67
41
71
83
54
64
72
88
62
74
43
60
78
89
76
84
48
84
90
15
79
34
67
17
82
69
74
63
80
85
61
2. El gerente de una firma especializada en renta de condominios para vacacionistas, quiere saber como están distribuidas los montos de las rentas mensuales de los departamentos de la firma. Seleccionó una muestra de departamentos cuyas rentas son indicadas abajo. Rentas mensuales de los condominios 1170 1207 1581 1277 1305 1472 1077 1319 1537 1849 1332 1418 1949 1403 1744 1532 1219 1471 1399 1041 1379
821
896
1558 1118 1533 1510 1760
1826 1309 1426 1288 1394 1545 1032 1289 1440 1421 1329 1407
718
1500 1671
695
803
1457 1449 1455 2051 1677
1119 1020 1400 1442 1593 1962 1263 1788 1501 1668 1352 1340 1459 1823 1451 1138 1592
DISTRIBUCIONES DE FRECUENCIA
982
1981 1091
0300 DISTRIBUCIONES D FRECUENCIAS.doc
12
3. Los siguientes datos representan la duración de la vida en meses de 30 bombas de combustible similares. 24
36
4
40
16
5
18
6
30
60
3
72
66
78
3
28
67
72
15
3
18
48
71
22
57
9
54
4
12
72
4. Los siguientes datos representan la duración de la vida, en segundos, de 50 moscas sometidas a un nuevo atomizador en un experimento de laboratorio controlado. 17
20
10
9
23
13
12
19
18
24
12
14
6
9
13
6
7
10
13
7
16
18
8
13
3
32
9
7
10
11
13
7
18
7
10
4
27
19
16
8
7
10
5
14
15
10
9
6
7
15
5. Se aplicó una encuesta donde se les pide indicar el número de amigos o parientes que visitan cuando menos una vez al mes. Los resultados son los siguientes: 3
5
2
3
3
4
1
8
4
2
4
2
5
3
3
3
0
3
5
6
4
3
2
2
6
3
5
4
14
3
5
6
3
4
2
4
9
4
1
4
2
4
3
5
0
4
3
5
7
3
5
6
2
2
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
13
6. Una compañía de cambio de aceite tiene varias sucursales en la zona metropolitana. El número de cambios de aceite en la sucursal de la calle Roble en los pasados 20 días son: 66
98
55
62
79
59
51
90
72
56
70
62
66
80
94
79
63
73
71
85
7. El gerente de un negocio de comida rápida esta interesado en el número de veces que un cliente compra en su tienda durante un periodo de dos semanas. Las respuestas de los 51 clientes fueron: 5
3
3
1
4
4
5
6
4
2
6
6
6
7
1
1
14
1
2
4
4
4
5
6
3
5
3
4
5
6
8
4
7
6
5
9
11
3
12
4
7
6
5
15
1
1
10
8
9
2
12
8. El presidente de una agencia de viajes, quiere información sobre las edades de la gente que toma cruceros por el Caribe. Una muestra de 40 clientes que tomaron un crucero el año pasado reveló estas edades: 77
18
63
84
38
54
50
59
54
56
36
26
50
34
44
41
58
58
53
51
62
43
52
53
63
62
62
65
61
52
60
45
66
83
71
63
58
61
71
60
9. Una cadena de tiendas de artículos deportivos al servicio de esquiadores principiantes, planea hacer un estudio de cuanto gasta un esquiador principiante en su primera compra de equipo. Una muestra de recibos de sus cajas registradoras reveló esas compras iniciales. 140
82
265
168
90
114
172
230
142
86
125
235
212
171
149
156
162
118
139
149
132
105
162
126
216
195
127
161
135
172
220
229
129
87
128
126
175
127
149
126
121
118
172
126
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
14
10.- Se conduce un estudio de los efectos de fumar sobre los patrones de sueño. La medición que se observa es el tiempo, en minutos, que toma quedar dormido. Se obtienen estos datos: 69
56
22
28
41
28
47
53
48
30
34
13
52
34
60
25
21
37
43
23
13
31
29
38
26
36
30
11. Un banco seleccionó una muestra de 40 cuentas de cheques de estudiantes. Abajo aparecen sus saldos de fin de mes. 404
74
234
149
279
215
123
55
43
321
87
234
68
489
57
185
141
758
72
863
703
125
350
440
37
252
27
521
302
127
968
712
503
498
327
608
358
425
303
203
12.- Una compañía de luz seleccionó una muestra de 20 clientes residenciales. Los siguientes datos son las cuentas que se les facturó el mes pasado: 54
48
58
50
25
47
75
46
60
70
67
68
39
35
56
66
33
62
65
67
Enlaces: http://www.scribd.com/doc/4872010/DISTRIBUCIONES-DE-FRECUENCIAS
DISTRIBUCIONES DE FRECUENCIA
0300 DISTRIBUCIONES D FRECUENCIAS.doc
15