Seminar on Sustainable Future through Timber Design UITM, Dec. 16.12.2014
Design Timber Structures using Eurocode 5
Simon Aicher
Contents of lecture Basics of permissible stress and
semi-probabilistic partial factor concept
Interrelationship of - Eurocodes, - harmonized (timber) product standards, - classification standards, calculation standards and - test test standards Basics of Eurocode 5 structure and contents Design example: straight glulam beam (EC 5 vs. permissible concept) Design example: curved glulam beam (EC 5 vs. permissible concept) Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
2
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
3
100 years old glulam beams, train repair hall, Bellinzona, Italy
Olympic Ice rink Hammar, Norway, 1994 glulam truss beams, span:97m
Manufacture of timber parasols for Expo 2000, Hannover
HESS – Limitless –Verbindung (22)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
8
HESS – Limitless –Verbindung (23)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
9
7-storey timber building, Berlin, 2011
10-storey timber building, Melbourne, Australia 2013
Eurocodes and supporting product and test standards Eurocodes regulate design of timber, steel, concrete structures in conjunction with national application documents but give no provisions on material properties Harmonized product standards regulate material properties of harmonized building products (e.g. not adhesives) such as EN 14080 glulam EN 14081-1 solid timber in conjunction with national grading rules and classification standard EN 1912 and strength class standard EN 338 EN 15497 finger jointed lumber EN 16351 cross laminated timber EN 14374 LVL EN 13986 panel products in conjunction with product / production standards, e.g. EN 300 for OSB Test standards, e.g. EN 408, EN 789,….. Calculation standards, e.g. EN 14358 on characteristic values
Permissible stress concept σact = σ95
acting loads, hence resulting section forces E and stresses σ represent in general 95% quantiles of the distributions
Design verification σact ≤ σpermissible where in case of structural timber (roughly)
σpermissible = f50 /3 f50 Aicher
mean value of strength
Eurocode 5 Timber Structures
UITM 2014, Malaysia
13
Semiprobabilistic design concept with partial factors
σact = σ95
as in permissible stress concept the loads / section forces/ stress distributions represent 95% quantiles of the distributions
Design verification σd design stress
σd ≤ fd
fd design strength
σd = σact · γL γL partial factor for load (1,5 for live load; 1,35 for perm. load) f d = fk · kmod / γM fk
characteristic strength property (5% quantile)
kmod modification factor (time, climate) γM partial factor for strength (material dependant; 1,1 to 1,3) Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
14
Semiprobabilistic vs. permissible stress design concept f05 = f50 (1 - 1,64 · COV) assuming COV = 0,12 f05 = f50 (1 – 0,2) = f50 / 1,25 f05 · kmod γM
=
γL = 1,5 partial factor for load
f50 · kmod 1,25 γM
with γM = 1,3 and kmod = 0,8 f05 · kmod γM
=
f50 · 0,8 1,25 · 1,3
≈
f50 2
f05 · kmod f50 = σd = σact · γL = σact · 1,5 ≤ fd = γM 2 f50 σact ≤ f50 2 · 1,5 = 3 = σpermissible Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
15
Graphical illustration of semiprobabilistic design concept Probability density
ms fs
β · σz = mz = kmod · mR - ms fz
ms 95 pf = 10 -6 Aicher
ms 95· γs
kmod · mR 05
=
kmod · mR fR
R, s
kmod · mR 05 / γR
Eurocode 5 Timber Structures
UITM 2014, Malaysia
16
Eurocode 5: Design of Timber Structures – Part 1-1
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
17
Structural Eurocode Program comprises
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
18
Scope of EN 1995
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
19
Structure of Eurocode 5 ( = EN 1995)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
20
Subjects / Topics of EN 1995-1-1
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
21
Normative References
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
22
Normative References (continued)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
23
Normative References (continued)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
24
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
25
Section 2 of EC 5: Basis of design
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
26
Section 2.2 of EC 5: Principles of limit state design
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
27
2.2.2 Ultimate limit states
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
28
2.2.3 Serviceability limit states
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
29
2.2.3 Serviceability limit states
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
30
2.3 Basic variables
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
31
2.3.1.2 Load-duration classes
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
32
2.3.1.2 Load-duration classes
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
33
2.3.1.3 Service classes
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
34
2.3.2 Materials and product properties
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
35
2.3.2 Materials and product properties
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
36
2.4 Verification by the partial factor method
5%- quantile value (lognormal dist.)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
37
Recommended partial factors γM for material properties EC 5 – Table 2.3
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
38
2.4.2 Design values of geometrical data
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
39
2.4.2 Design value of a resistance
Example: Rk = Xk · relevant cross-sectional quantity
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
40
EC 5 –Section 3 – Materials properties
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
41
3.1.3/4 Strength and deformation modification factors
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
42
EC 5 – Table 3.1 Strength modification values kmod
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
43
EC 5 – Table 3.1 Strength modification values kmod (continued)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
44
Strength modification values kmod = f( time; moisture) short 1 min
Strength modification factor
1.2 kmod
10Jahre years50 Jahre 10 1 1 week Woche 66months Monate 10 years
Madison-Kurve
Service class 11/2 and2 Nutzungsklasse
1
0.8
Service class 3
Nutzungsklasse 3
0.6
0.4
very short
short kurz
sehr kurz
medium mittel
permanent ständig
long lang
0.2
0
0 0 .0
1
1 0 . 0
0 .1
1
10
10
0
0 10
0 1
0 00
0 10
0 00
Accumulated duration of load [hours] Aicher
Eurocode 5 Timber Structures
0 10
0
0 00
0
UITM 2014, Malaysia
45
EC 5 – Table 3.2 Deformation modification values kdef
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
46
EC 5 – Table 3.2 Deformation modification values kdef (continued)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
47
EC 5 – 3.2: Solid timber
EN 15497 Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
48
EC 5 – 3.3: Glued laminated timber
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
49
EC 5 – 3.3: Glued laminated timber
Now large finger joints are directly regulated in the harmonized product standard for glulam,
Aicher
Eurocode 5 Timber Structures
EN 14080
UITM 2014, Malaysia
50
Example of large finger joint (single joint line)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
51
Example of large finger joint (two joint lines)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
52
Example of large finger joint (two joint lines)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
53
EC 5 – 3.3: Glued laminated timber
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
54
EC 5 – 3.4: Laminated veneer lumber (LVL)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
55
EC 5 – 3.4: Laminated veneer lumber (LVL)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
56
EC 5 – 3.5: Wood-based panels
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
57
EC 5 – 3.6: Adhesives
Note: As permissible structural adhesive families and respective classifications have been profoundly changed in conjunction with introduction of one-component Polyurethane (1K-PU) and polymer isocyanate (EPI) adhesives according to EN 15425 and EN 16351 principle P (2) is no more throughout valid because of EPI definitions.
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
58
EC 5 – 3.7: Metal fasteners
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
59
EC 5 – Section 4: Durability
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
60
EC 5 – Section 4: Durability
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
61
EC 5 – Section 4: Durability
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
62
EC 5 – Table 4.1 Corrosion protection of fasteners
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
63
EC 5 - Section 5: Basis of structural analysis
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
64
5.2 Members
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
65
5.4 Assemblies
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
66
5.4 Assemblies
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
67
5.4.2 Frame structures
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
68
5.4.4 Plane frames and arches
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
69
Examples of assumed initial geometry deviations geometry of frames
initial geometry deviation corresponding to symmetrical load
initial geometry deviation corresponding to non-symmetrical load
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
70
EC 5 - Section 6: Ultimate limit states
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
71
Tension 6.1.2 Tension parallel to the grain
6.1.2 Tension perpendicular to the grain
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
72
Compression 6.1.4 Compression parallel to the grain
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
73
Compression
6.1.4 Compression perpendicular to the grain
where
σc,90,d
is the design compressive stress in the effective contact area perpendicular to the grain;
Fc,90,d
is the design compressive load perpendicular to the grain;
Aef
is the effective contact area in compression perpendicular to the grain;
Fc,90,d
is the design compressive strength perpendicular to the grain;
kc,90
is a factor taking into account the load configuration, the possibility of splitting and the degree of compressive deformation.
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
74
Compression
6.1.4 Compression perpendicular to the grain
The effective contact area perpendicular to the grain, Aef, should be determined taking into account an effective contact length parallel to the grain, where the actual contact length, ℓ, at each side is increased by 30 mm, but not more than a, ℓ or ℓ1/2, see Figure 6.2. 2. The value of kc,90 should be taken as 1,0 unless the conditions in the following paragraphs apply. In these cases the higher value of kc,90 specified may be taken, with a limiting value of kc,90 = 1,75. 3. For members on continuous supports, provided that ℓ1 ≥ 2h, see Figure 6.2a, the value of kc,90 should be taken as: – kc,90 = 1,25 for solid softwood timber – kc,90 = 1,5 for glued laminated softwood timber where h is the depth of the member and ℓ is the contact length.
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
75
Compression
6.1.4 Compression perpendicular to the grain
4. For members on discrete supports, provided that ℓ1 ≥ 2h, see Figure 6.2b, the value of kc,90 should be taken as: – kc,90 = 1,5 for solid softwood timber – kc,90 = 1,75 for glued laminated softwood timber provided that I ℓ ≤ 400 mm where h is the depth of the member and ℓ is the contact length.
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
76
6.1.6 Bending
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
77
6.1.6 Bending
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
78
6.1.7 Shear
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
79
6.1.7 Shear (crack factor issue) 2. For the verification of shear resistance of members in bending, the influence of cracks should be taken into account using an effective width of the member given as: bef = kcr b where b is the width of the relevant section of the member. NOTE: The recommended value for kcr is given as kcr = 0,67
for solid timber
kcr = 0,67
for glued laminated timber
kcr = 1,0
for other wood-based products in accordance with EN 13986 and EN 14374.
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
80
6.1.7 Shear
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
81
6.1.8 Torsion
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
82
6.2.2 Compression stresses at an angle to grain
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
83
6.2.3 Combined bending and axial tension
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
84
6.2.3 Combined bending and axial compression
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
85
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
86
6.4 Members with varying cross-section or curved shape
Figure 6.8 Single tapered beam
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
87
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
88
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
89
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
90
6.4 Members with varying cross-section or curved shape
(a)
Note: In curved beams the apex zone extends over the curved parts of the beam
Figure 6.9 – Double tapered (a) and curved (b) beams with the fibre direction parallel to the lower edge of the beam Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
91
6.4 Members with varying cross-section or curved shape Note: In pitched cambered beams the apex zone extends over the curved parts of the beam
Figure 6.9 – Pitched cambered beam (c) beam with the fibre direction parallel to the lower edge of the beam Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
92
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
93
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
94
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
95
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
96
6.4 Members with varying cross-section or curved shape
or Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
97
6.4 Members with varying cross-section or curved shape
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
98
Design examples
Design of straight glulam member - comparison of Eurocode 5 vs. DIN 1052
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
99
Straight beam design comparison – EC 5 vs. perm. stress concept
16x80 cm
q = 9 kN/m, g = 6 kN/m
GL 24 / BS 11 10 m
Geometry: l = 10 m b = 160 mm h = 800 mm S = b h²/6 = 17 ⋅ 10-6 mm³ I = b h³/12 = 6.8 ⋅ 10-9 mm4
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
100
Design comparison – EC 5 vs. perm. stress concept Property
permissible concept
semi-probabilistic concept
Bending strength
σm,perm = 11 N/mm²
fm,k = 24 N/mm²
Shear strength
τv,perm = 1.2 N/mm²
fv,k = 3.5 N/mm²
MOE
Em = 11000 N/mm²
Em,mean = 11000 N/mm²
crack factor
-
kcr = 0.67
modification factor for duration of load and moisture content
kmod = 0.6 (Service Class I/II, medium-term)
Partial factor for material properties
γM = 1.25
(glulam, EC 5)
Deformation factor
kdef = 0.8 (Service Class I)
Partial factor for permanent actions
γG = 1.35
Partial factor for variable actions
γG = 1.5
Factor for quasi-permanent value of a variable action
ψ2,1 = 0.3
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
101
Design comparison – EC 5 vs. perm. stress concept
Result
permissible concept
semi-probabilistic concept
distributed load
F = g + q = 15 kN/m
Fd = γG g + γQ q = 21.6 kN/m
bending moment M
M = F l² / 8 = 188 kNm
Md = Fd ⋅ l² / 8 = 270 kNm
bending stress
σm = M/S = 11 N/mm²
σm = Md/S = 15.8 N/mm²
utilization (bending)
11 / 11 = 1.00
fm,d = fm,k ⋅kmod /γM = 15.4 N/mm² 15.8 / fm,d = 1.03
shear force V
V = F l/2 = 75 kN
Vd = Fd l/2 = 108 kN
shear stress τv
1.5 V / (b h) = 0.88 N/mm²
1.5 Vd / (b h) = 1.89 N/mm²
1.2 / 0.88 = 0.73
fv,d = fv,k ⋅kmod /γM = 2.24 N/mm² 1.89 / fv,d = 0.84
utilization (shear)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
102
Design comparison – EC 5 vs. perm. stress concept
deflection
utilitization (deflection)
Aicher
5 𝐹 𝑙4 𝑢= = 26𝑚𝑚 384𝐸𝐸
𝑢 = 0.78 𝑙/300
Eurocode 5 Timber Structures
𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑖𝑖𝑖𝑖,𝑔 + 𝑢𝑖𝑖𝑖𝑖,𝑞= 5𝑔𝑙 4 5𝑞𝑙 4 + = 10.4 + 15.6 384𝐸𝐸 384𝐸𝐸 = 26𝑚𝑚 𝑢𝑓𝑓𝑓 = 𝑢𝑖𝑖𝑖𝑖,𝑔 (1 + 𝑘𝑑𝑑𝑑 ) + 𝑢𝑖𝑖𝑖𝑖,𝑞 (1 +ψ2,1 𝑘𝑑𝑑𝑑 )= 16.7 + 18.4 = 35.1mm 𝑢𝑖𝑖𝑖𝑖 = 0.78 𝑙/300 𝑢𝑓𝑓𝑓 = 0.53 𝑙/150
UITM 2014, Malaysia
103
Design examples
Design of curved glulam beam - comparison of Eurocode 5 vs. DIN 1052
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
104
HESS – Limitless –Verbindung (7)
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
106
Stress distributions in curved beams with const. moment
H
R
R1 < R2
H
R
R1 < R2 H/R2 = 0,09
= 0,09 RH/R 2 / H2 = 11 RH/R =2,5 0,4 1 / H1 =
tension stresses perpendicular to grain
σ ⊥ ,max Aicher
H M = 0,25 R W Eurocode 5 Timber Structures
+
H/R1 = 0,4
bending stresses parallel to grain 2 H H M σ II = 1+ 0,35 + 0,6 R R W
UITM 2014, Malaysia
107
Stress σt,90 of curved and tapered beams with line loads
stress perp. to grain h
-
+
stress perp. to grain
h
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
+
108
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
109
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
110
Curved beam design comparison – EC 5 vs. perm. stress concept
DIN 1052 BS 14: σm,permissible = 14 N/mm2 EN 14080 GL 28: fm,k = 28 N/mm2 Geometry, dimensions and quality /strength class of example beam Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
111
Curved beam design comparison – EC 5 vs. perm. stress concept
EC5
F = 23,31 kN
Design for bending:
rin/t = 200, kr = 0,96
hap / r = 0,118 k1 = 1; k2 = 0,35, k3 = 0,6 kl = 1,05 Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
112
Curved beam design comparison – EC 5 vs. perm. stress concept
F = 23,31 kN
EC5
Design for bending:
GL28: fm,k = 28 N/mm2
load duration: „medium“, kmod = 0,8
fm,d = fm,k × kmod /γm
kr = 0,96
fm,d =
glulam: γm = 1,25
17,92 N/mm2
ratio = 0,38 kl = 1,05
Map,d = γf × Map
σm,d = 6,85 N/mm2
combined loading: γf = 1,4
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
113
curved beam design comparison – EC 5 vs. perm. stress concept
EC5
Design for tension perp.:
glulam: V0 = 0,01 m3 kdis = 1,4
V = 0,691 m3
kVol = (V0/V)0,2 = 0,43
hap / r = 0,118 k5 = 0; k6 = 0,25, k7 = 0 kp = 0,0294 Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
114
Example: Curved Beam with pure moment loading F = 23,31 kN
EC5
Design for tension perp.:
glulam: ft,90,k = 0,5 N/mm2
kdis = 1,4 , kVol = 0,43,
load duration: „medium“, kmod = 0,8
ft,90,d = ft,90,k × kmod /γm
glulam: γm = 1,25
ft,90,d = 0,32 N/mm2
1,4 x 0,43 x 0,32 = 0,19 N/mm2 kp = 0,0294
Map,d = γf × Map
σt,90,d = 0,19 N/mm2
ratio = 1,0
combined loading: γf = 1,4
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
115
Curved beam design comparison – EC 5 vs. perm. stress concept
DIN 1052
F = 23,31 kN
Design for bending: σm ≤ σm,permissible
σm,permissible = 14 N/mm2
ratio = 0,33 σm = kl × 6 Map/b h2 hap / r = 0,118, kl = 1,05 Aicher
σm = 4,66 N/mm2
Eurocode 5 Timber Structures
UITM 2014, Malaysia
116
curved beam design comparison – EC 5 vs. perm. stress concept
DIN 1052
F = 23,31 kN
Design für tension perp.: σt,90 ≤ σt,90,permissible
σt,90,permissible = 0,2 N/mm2
ratio = 0,69
σt,90 = kp× 6 Map/b h2 hap / r = 0,118, kp = 0,0294
Aicher
Eurocode 5 Timber Structures
σt,90 = 0,14 N/mm2
UITM 2014, Malaysia
117
curved beam design comparison – EC 5 vs. perm. stress concept
F = 23,31 kN
bending
tension perp.
EC5
0,40
1,00
DIN 1052
0,33
0,69
no pre-stress effect Aicher
Eurocode 5 Timber Structures
no size effect UITM 2014, Malaysia
118
Now ist time to finish!
Thank you very much for your patient listening!
Aicher
Eurocode 5 Timber Structures
UITM 2014, Malaysia
119