Design Calculations Manual
CPV Ltd Woodington Road, East Wellow Romsey, Hampshire, SO51 6DQ Tel: 01794 322884 Web: www.cpv.co.uk/hiline www.cpv.co.uk/hiline
Table of Contents
1.
Introduction ................ ........................ ................. .................. ................. ................ ................. ................. ................ ................. .................1 ........1
1.1
Subject ....................................... .................... .......................................... .................................... .............................. .............................1 ............1
1.2
Scope Of Application ................. ......................... ................. ................. ................. ................. ................ ................ ................. .............1 ....1
1.3
Construction plans and specifications................. specifications......................... ................ ................. ................. ................ ................. ..........1 .1
2.
Basic parameters ................. ......................... ................. ................. ................. ................. ................ ................ .................. .................. ..........1 ..1
2.1
Geometric properties ................ ........................ ................. ................. ................. ................. ................ ................ .................. .............1 ...1
2.2
Loads, shearing force, load bearing capacity................... capacity........................... ................ ................. ................. ...............2 .......2
2.3
Stresses and strengths ................ ........................ ................. .................. ................. ................ ................ ................. .................. ...........2 ..2
2.4
Material constants, factors and others .................. .......................... ................ ................ ................. ................. ...............2 .......2
3.
Materials and products ................. ......................... ................. .................. ................. ................ ................ ................. .................. ...........3 ..3
3.1
Carrier Carrie r pipe ........................................ .................... .......................................... ............................................ ..................................... ...............3 3
3.2
Casing pipe ................ ......................... ................. ................. ................. ................. ................. ................ ................ .................. ................3 ......3
3.3
Rigid polyurethane foam ................ ......................... ................. ................ ................. ................. ................ ................ .................3 .........3
3.4
Pipe unit ........................................ ..................... ......................................... ............................................ ......................................... ...................4 4
4.
Design input data ...................................... ................... ......................................... ............................................ ..................................5 ............5
5.
Design principles. princi ples....................... .......................................... .......................................... ......................................... ..............................6 ...........6
5.1
Dimensioning method ................ ........................ ................. ................. ................. ................. ................ ................ .................. .............6 ...6
5.2
Loads...........................................................................................................6
5.2.1
Soil-induced load on a buried pipe ................. ......................... ................. ................. ................ ................ .................. .............6 ...6
5.2.2
Friction force on side surface .................. .......................... ................ ................ ................. ................. ................. ................. .........6 .6
5.2.3
Carrier pipe axial force [n] .................. .......................... ................ ................. ................. ................ ................ .................. .............6 ...6
5.3
Forces resulting from carrier pipe internal pressure ................. ......................... ................ ................. .................7 ........7
5.4
Computed loading capacity of a carrier pipe cross section ................ ........................ ................ ................. ..........7 .7
6.
Designing CPV Hiline-ZPUM Systems................... Systems........................... .................. ........................ ....................... .................. ............8 ...8
6.1
Method 1 – natural natur al ....................................... .................... ......................................... ......................................... ..............................8 ...........8
6.1.1
Maximum straight assembly length [lmax] ................ ......................... ................. ................ ................ ................ ...............8 .......8
6.1.2
Pipeline Pipeli ne expansion expan sion.................... ....................................... ......................................... ......................................... .............................11 ..........11
6.2
Method 2 – Pre-stressed System ............... ....................... ................ ................ ................ ................. .................. ................. ........ 13
6.2.1
Elongation [δln] of an unburied pipe ................ ........................ ................. .................. ................. ................ ................ .......... 13
6.2.2
Elongation (shortening) [δlz] of an unburied pipe ................. ......................... ................. ................. ................. ......... 14
6.3
Method 2a – initial stresses if single use elongation joints are considered ................ ...................... ...... 14
6.4
Change in pipeline routing ................ .......................... .................. ................ ................ ................. ................. ................. ............ ... 15
6.4.1
Pipe route alteration by scarfing steel pipe at a joint ................ ........................ ................ ............... .............. ....... 15
6.4.2
Pipe route alteration by using preinsulated elbow units ................ ........................ ................ .................. ............ 15
6.4.3
Pipe route alteration by elastic bending of pipe........ pipe ................ ................ ................. ................. ................. ............ ... 16
6.4.4
Rerouting by means of preinsulated bend pipe ................. .......................... ................. ................ ................ ............ .... 17
7.
Elongation compensation ................. .......................... ................. ................ ................. ................. ................ ................ ............... ....... 19
7.1
The l-shape system ................ ........................ ................. .................. ................. ................ ................ ................. .................. ............. .... 19
7.2
The z-shape system ................ ........................ .................. .................. ................ ................ ................. ................. ................. ............ ... 24
7.3
The u-shape system ................ ........................ .................. .................. ................ ................ ................. ................. ................. ............ ... 26
7.4
Compensation zones.................. zones.......................... ................. ................. ................. ................. ................ ................ .................. ............ 26
8.
An actual preinsulated fixed point .................. .......................... ................ ................ ................. ................. ................. ............ ... 27
8.1
Calculation of forces affecting a fixed point ................. .......................... ................. ................ ................ ............... ....... 27
8.1.1
Relieved fixed point ................ ........................ .................. .................. ................ ................ ................. ................. ................. ............ ... 27
8.1.2
Partially relieved fixed point ................. ......................... ................. ................. ................ ................ .................. .................. ........ 28
9.
Pipe laterals and wall transitions.................... transitions............................ ................ ................ ................. ................. ................. .............31 ....31
10.
Preinsulated pipe connected to a traditional pipe (underground utilities) ................ ..................... ..... 33
11.
Steel fittings and fixtures ................ ......................... .................. ................. ................ ................ ................. .................. ............. .... 33
12.
Technical information ................ ........................ ................. .................. ................. ................ ................ ................. .................. ......... 34
13.
Trade information ................ ........................ ................. ................. ................ ................. ................. ................ ................. ............... ...... 34
Design Calculations Manual I
1.
Introduction
1.1
Subject
The purpose of this document is to provide methods of making calculations and designs of buried pre-insulated pipeline systems.
1.2
Scope of Application
Calculations and design parameters must be followed in the drawing up of piping configuration and technical specifications for systems constructed from preinsulated pipe and fittings.
1.3
Construction Plans and Specifications
Construction plans and specifications should be drawn up in accordance with the Local Building Standards/Regulations and methods presente d in the study.
2.
Basic Parameters
2.1
Geometric Properties A
carrier pipe cross section area
DN
carrier pipe nominal diameter
D z
carrier pipe external diameter
D zp
jacket pipe nominal diameter
t
carrier pipe wall thickness
t p
casing pipe wall thickness
H
pipeline axis over full height of backfill
Hp
pipeline backfill height
L, C, D compensating arm lengths L
pipeline segment length
L max
pipeline assembly length
ε
pipeline unit elongation
∆L
buried pipeline L long elongation
∆ Ln
elongation of unburied pipeline [Ln] long heated up to a temperature of [Tp], free elongation
∆ L z
buried elongation (shortening) of pipeline heated up to a temperature of [T]
L n
length of unburied pipeline
l
preinsulated pipe length
r
preinsulated pipe bend radius
β
preinsulated pipe bend angle
Hiline-ZPUM Design Calculations -- Page 1 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
2.2
Loads, Shearing Force, Load Bearing Capacity V F N N max N PS N RC p
2.3
Stresses and Strengths σ τ Re R m R r R s σ tr σ H σ x f d f dT f d ′
2.4
jacket pipe unit soil stress jacket pipe surface side friction axial force maximum axial force fixed point axial force rated load bearing capacity at compaction carrier pipe pressure
axial stress tangential stress yield point specified by manufacturer (rated) tensile strength specified by manufacturer breaking strength crushing strength compressive stress at transport hoop stress axial stress reduced rated steel strength reduced rated steel strength at increased temperatures rated steel strength
Material Constants, Factors and Others E ET v α λ γ µ ρ T T 0 T p ∆T A 5 ρS ρ PE ψ k
Young’s modulus Young’s modulus at temperature T Poisson’s ratio coefficient of linear expansion thermal conductivity load factor friction factor backfill soil density service temperature assembly temperature preheating temperature temperature difference percent of minimum elongation steel density hard polyethylene density rated cross section load reductibility ratio coefficient accounting for friction force between pipe and subgrade
Hiline-ZPUM Design Calculations -- Page 2 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
3.
Materials and Products
3.1
Carrier Pipe
In accordance with standards: DIN-1626/84, DIN-1629 mechanical properties in accordance with: PN-90/B-3200, DIN-1629 Mechanical properties Product Steel marking Re Rm A5 MPa MPa % Spiral or longitudinal seam St 37.0 350 pipe 235 25 Rolled pipe R-35 345 Rolled pipe galvanised R-35 Steel material constants:
fd´ MPa 210
E = 205 GPa
= 0,3 = 1,2 · 10 -5/ºC 3 ρS = 7850 kg/m ν
α
Other types of carrier pipe:
3.2
copper pipe polyethylene pipe polypropylene pipe post-chlorinated PVC pipe
Casing Pipe Product
Rigid polyethylene pipe
Marking
σH MPa
PEHD
4,0
PEHD material constants:
friction force between pipe and subgrade coefficient
Mechanical properties Rr RS MPa MPa 24,0
3,0
E = 1,0 GPa λ = 0,43 W/mK α t = 0,2 · 10 -5/ºC ρ PE = 950 kg/m3 µ = 0.3-0.5
Other types of casing pipe:
3.3
37,0
σtr MPa
SPIRO galvanized sheet or aluminium pipe (for overhead networks), PVC or steel pipe
Rigid Polyurethane Foam
Rigid polyurethane foam meets the requirements of standard density radial compression strength at a 10% relative strain MDI index Thermal conductivity index at λ50: CO2 foaming system (without freon) CO2/cC5 foaming system (pentane)
EN-253 total min 80 kg/m3 core min 60 kg/m3 min 0,3 MPa min 130 0,0302 W/mK 0,0268 W/mK
Hiline-ZPUM Design Calculations -- Page 3 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
3.4
Pipe Unit Pipe unit – preinsulated pipe complies with standard EN-253
thermal conductivity index at carrier pipe temperature = max 0.033 W/mK min 30 years
80ºC
expected life duration axial shear strength (at 20ºC) (at 140ºC) circumferential shear strength
min 0.12 MPa min 0.08 Mpa min 0.20 MPa
CPV Hiline-ZPUM offers preinsulated pipe up to a nominal diameter of DN 1000. Table 1 gives dimensions of preinsulated pipe up to DN 600. Unit heat losses for a preinsulated pipeline are presented in Table 2.
Preinsulated Pipe Dimensions
Table 1
Steel Carrier Pipe DN
Dext
mm
mm
welded
seamless
PEHD Jacket Pipe
PEHD Jacket Pipe
Standard insulation
Insulation Plus
g
g
Dext
gp
Dext
gp
mm
mm
mm
mm
mm
mm
20
26,9
2,6
2,9
75
3,0
90
3,0
25
33,7
2,6
2,9
90
3,0
110
3,0
32
42,4
2,6
2,9
110
3,0
125
3,0
40
48,3
2,6
2,9
110
3,0
125
3,0
50
60,3
2,9
3,2
125
3,0
140
3,0
65
76,1
2,9
3,2
140
3,0
160
3,0
80
88,9
3,2
3,6
160
3,0
200
3,2
100
114,3
3,6
4,0
200
3,2
225
3,4
125
139,7
3,6
4,0
225
3,4
250
3,6
150
168,3
4,0
4,5
250
3,6
315
4,1
200
219,1
4,5
6,3
315
4,1
355
4,5
250
273,0
5,0
7,1
400
4,8
450
5,2
300
323,9
5,6
7,1
450
5,2
500
5,6
350
355,6
5,6
8,0
500
5,6
560
6,0
400
406,4
6,3
8,8
560
6,0
630
6,6
450
457,0
6,3
10,0
560
6,0
630
6,6
500
508,0
6,3
11,0
630
6,6
710
7,2
600
610,0
7,1
-
800
7,9
900
8,7
DN – steel pipe nominal diameter;
ext
D
– external diameter
g, gp – wall thickness
Hiline-ZPUM Design Calculations -- Page 4 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Unit Heat Losses for a Preinsulated Pipeline [W.m] Soil temperature = 8ºC
Hp = 0,6 m
Table 2 Dz
DZP
mm
mm
Pipeline Temperature 150°C
130°C
110°C
90°C
70°C
50°C
26,9
75
20,2
17,3
14,5
11,7
8,8,
6,0
33,7 42,4 48,3 60,3 76,1 88,9 114,3 139,7 168,3 219,1 273,0 323,9 355,6 406,4 457,0 508,0 610,0
90 110 110 125 140 160 200 225 250 315 400 450 500 560 630 710 800
24,7 25,5 29,3 33,0 39,3 40,7 42,7 49,9 59,6 65,1 62,5 72,3 70,1 74,6 74,7 72,0 88,6
21,2 21,9 25,2 28,3 33,8 35,0 36,7 42,8 51,2 56,0 53,7 62,1 60,2 64,1 64,2 61,9 76,1
17,7 18,3 21,1 23,7 28,2 29,2 30,7 35,8 42,8 46,8 44,9 52,0 50,4 53,6 53,7 51,8 63,6
14,3 14,7 16,9 19,0 22,7 23,5 24,7 28,8 34,4 37,6 36,1 41,8 40,5 43,1 43,2 41,6 51,2
10,8 11,1 12,8 14,4 17,2 17,8 18,6 21,8 26,0 28,4 27,3 31,6 30,6 32,6 32,6 31,5 38,7
7,3 7,5 8,7 9,8 11,6 12,0 12,6 14,7 17,6 19,3 18,5 21,4 20,7 22,1 22,1 21,3 26,2
4.
Design Input Data
L ] and In the calculations of friction force [ F ], axial force [ N ], maximum assembly length [max elongations [ ∆L] for CPV Hiline ZPUM pipelines the following loads and material constants were used: pipeline depth H = 1m compacted backfill density ρ =1650 kg/m3 carrier pipe-soil friction factor µ = 0,35 passive soil pressure K = 0,6 pipeline working pressure p = 1,6 MPa reduced calculated steel strength f d = 150 MPa service temperature input T = 135ºC return T = 80ºC assembly temperature T 0 = 8ºC Young’s modulus accounted at temperature T E T = 204 GPa coefficient of linear elongation for 0-100ºC range α T = 1,2·10 -5/ºC for 0-150ºC range α T = 1,22·10 -5/ºC load factors load upper point γ = 1,1 service upper point γ = 1,0 Poisson’s ratio ν = 0,3
Hiline-ZPUM Design Calculations -- Page 5 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
5.
Design Principles
5.1
Dimensioning Method
Dimensioning is performed by means of finite element method for loads and use in compliance with standard PN-76/B-03001 showing that in service the pipeline will meet the load condition.
5.2
Loads
Buried preinsulated pipe is loaded by: • friction forces acting on the outside of the casing pipe; • soil pressure on the pipe casing; • internal carrier pipe pressure response, and is additionally subject to temperature changes inside the carrier pipe. Thus, a static system with a limited degree of free elongation, where carrier pipe temperature drops and rises, this will generate axial forces dependent on friction forces and internal carrier pipe pressure.
5.2.1
Soil-induced Load on a Buried Pipe
The unit passive soil pressure exerted on a buried pipe should be determined in accordance with standard PN-83/B-03001 from the formula : 2 V z = γ· H ·ρ· g • vertical component: [N/m ] 2 [N/m ] V x = γ· H ·ρ· g· K 0 • horizontal component: where: γ H ρ g K 0
load factor pipeline axis depth backfill density gravitational acceleration passive pressure coefficient
[m] 3 [kg/m ] 2 [m/s ]
To determine the unit soil pressure evenly distributed circumferentially an average value is taken into calculation and calculated from the formula : V = 0.5·(V z+V x )
5.2.2
Friction Force on the Outside of the Casing
Friction force per pipe length unit [F] is calculated from the formula: where:
F = µ·V ·π· D zp µ friction coefficient between casing pipe and soil V casing unit soil pressure D zp casing pipe external diameter
5.2.3
[N/m ] [m]
2
Carrier Pipe Axial Force [N]
Axial force [N] in carrier pipe of a length of [L] generated by friction forces is calculated from the formula: N = F· L
where: F friction coefficient between jacket pipe and soil L jacket pipe unit soil pressure
Hiline-ZPUM Design Calculations -- Page 6 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
2
[N/m ]
Design Calculations Manual I
5.3
Forces Resulting from Carrier Pipe Internal Pressure
It is assumed that the load generated by the heating medium is taken over by the carrier pipe, where the following stresses will appear:
(
p D z -t
•
hoop stresses:
σ H
•
axial stresses:
σ
=
2 t
(
p D z -t =
x
)
)
4⋅ t
2
[N/m ]
2
[N/m ]
where: 2
carrier pipe pressure jacket pipe external diameter carrier pipe wall thickness
p D z
t
[N/m ] [m] [m]
Axial force derived from internal pipe pressure, being the axial stress here is: N x
=
σ x
⋅ A
⋅
where: 2
carrier pipe cross section area
A
[m ]
The effect of the axial force resulting from the internal carrier pipe pressure on the computed cross section loading is minimal, therefore it can be neglected in further calculations.
Computed Loading Capacity of a Carrier Pipe Cross Section
5.4
If standard PN-90/B-03200 is to be complied with, then the pipe axial force cannot exceed the pipe computed loading capacity, namely: N − N − N ≤ x Once N = F L, N = x ·
σ · A x
[N]
RC
and N
= RC
ψ· A f ·
the resultant equation is:
d
,
F L ·
A σ x·
≤ ψ· A f d ·
where: F
unit friction force
L
pipeline section length rated cross section load reductibility ratio carrier pipe cross section reduced rated steel strength
ψ
A
f d σ x
axial stress
Hiline-ZPUM Design Calculations -- Page 7 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
[N/m] [m] 2
[mm ] [MPa] 2 [N/m ]
Design Calculations Manual I
Designing CPV Hiline-ZPUM Systems
6.
Designing consists in determining: pipeline assembly section [L
], for which the maximum axial force in a carrier pipe [Nmax] does not exceed its rated load [NRC]; pipeline extension [∆L] and its compensation in a natural way using changes in the pipe-
•
max
•
line routing (expansion joints) or
Method 1 – Natural
6.1
A pipeline having been assembled and tested is buried.
Maximum straight assembly length [L
6.1.1
]
max
In accordance with Point 5.4 the rated load of a cross section of pipe is determined by the formula: F L – σ x· A≤ψ· A f d ·
·
where: F
unit friction force
L
pipeline section length rated cross section load reductibility ratio carrier pipe cross section reduced rated steel strength
ψ
A
f d σ x
If L
=
L
equals:
[N/m] [m] 2
[mm ] [MPa] 2 [N/m ]
axial stress
and providing
ψ
= 1 (class 1 of cross section ), then the maximum assembly length [ L max
L max = =
A ⋅⋅ ( f d
+ σ x
)
F
Maximum assembly lengths [ L ] for the carrier pipe diameters and wall thickness specified in Table 3 and 4 assume that a pipeline axis is buried a t H = 1.0 m and at the initial data assumed in design. max
Hiline-ZPUM Design Calculations -- Page 8 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
]
Design Calculations Manual I
Table 3
R – 35 Carrier Pipe Dz
t
mm
mm
26,9 33,7 42,4 48,3 60,3 76,1 88,9 114,3 139,7 168,3 219,1 273,0 323,9 355,6 406,4 457,0 508,0
2,9 2,9 2,9 2,9 3,2 3,2 3,6 4,0 4,0 4,5 6,3 7,1 7,1 8,0 8,8 10,0 11,0
A mm2
219 281 360 414 574 733 965 1386 1705 2316 4212 5931 7066 8736 10992 14043 17175
Jacket Pipe Dzp
Friction Force F
Assembly Length L max
mm
N/m
m
75 90 110 110 125 140 160 200 225 250 315 400 450 500 560 630 710
1410 1410 1723 1723 1958 2193 2506 3132 3524 3916 4934 6265 7048 7831 8144 8771 9867
Hiline-ZPUM Design Calculations -- Page 9 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
24 31 32 38 46 53 61 71 79 97 140 156 168 187 211 239 260
Design Calculations Manual I
Table 4 Jacket Pipe
26,9 33,7 42,4 48,3 60,3
2,6 2,6 2,6 2,6 2,9
198 254 325 373 523
75 90 110 110 125
Friction Force F N/m 1410 1410 1723 1723 1958
76,1 88,9
2,9 3,2
667 862
140 160
2193 2506
49 55
114,3 139,7 168,3 219,1 273,0 323,9 355,6 406,4 457,0 508,0 610,0
3,6 3,6 4,0 4,5 5,0 5,6 5,6 6,3 6,3 6,3 7,1
1252 1539 2065 3034 4210 5600 6158 7919 8920 9930 13448
200 225 250 315 400 450 500 560 630 710 800
3132 3524 3916 4934 6265 7048 7831 8144 8771 9867 12530
65 72 88 104 115 137 138 158 161 162 197
St 37.0 Carrier Pipe
Dz
t
A
Dzp
mm
mm
mm2
mm
H i
Hi
The assembly length L max
and unit friction force F
Assembly Length
L max m
for a pipeline laid at a depth of H i
22 28 29 34 42
can be de-
termined from the formula: H
i L max
e.g. for:
=
Lmax
Hi
F
H i
zD = 26.9 mm
.
=
06
=
⋅
as per Table 3
F = 1 410 N/m
24
06
L max
F ⋅ H i
g = 2.9 mm
L max = 24 m
for Hi = 0.6 m
=
40 m
F
0.6
= 1410 0.6 = 846 N/m ·
.
In the case when a steel carrier pipe of a cross section area of [A] different than the dimensions specified in Tables 3 and 4 is used, L has to be changed pro rata. max
Hiline-ZPUM Design Calculations -- Page 10 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
6.1.2
Pipeline Expansion
The expansion by [∆L] of a preinsulated buried pipeline whose assembly length is [L] is defined as a difference between free thermal expansion and expansion due to friction forces, and is calculated from the formula:
∆ L = α t (T − T 0 ) ⋅ L − where:
F ⋅ L 2
2 ⋅ ET ⋅ A
[1/ºC] coefficient of linear expansion service temperature [ºC] assembly temperature [ºC] pipeline segment length [m] unit friction force [N/m] Young s Modulus at Temperature T [N/m2 ] carrier pipe cross section area [m2] Once initial data are input (see Table 4) a simplified formula determining elongation, expressed in millimetres, [ ∆ L] is obtained: 2 [ ∆ L] = 0.864· L – W · H · L [mm] for T = 80ºC [ ∆ L] = 1.548· L – W · H · L 2 [mm] for T =135ºC αT T T 0 L F ET A
'
where: 0.864 and 1.549 are constant W coefficient dependent on carrier pipe cross H L
section specified in Tables 3 and 4 pipeline buried at pipeline segment length
[mm/m] [mm/m3] [m] [m]
Hiline-ZPUM Design Calculations -- Page 11 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Table 5 Insulation STANDARD
St 37.0 Carrier Pipe
Dz
g
A
Coeffcient W
mm
mm
mm2
mm/m3
26,9 33,7 42,4 48,3 60,3 76,1 88,9 114,3 139,7 168,3 219,1 273,0 323,9 355,6 406,4 457,0 508,0
2,9 2,9 2,9 2,9 3,2 3,2 3,6 4,0 4,0 4,5 6,3 7,1 7,1 8,0 8,8 10,0 11,0
219 281 360 414 574 733 965 1386 1705 2316 4212 5931 7066 8736 10992 14043 17175
0,0144 0,0112 0,0107 0,0093 0,0076 0,0067 0,0058 0,0050 0,0046 0,0038 0,0026 0,0024 0,0022 0,0020 0,0017 0,0014 0,0013
Insulation PLUS Coefficient W mm/m3 0,0176 0,0137 0,0121 0,0105 0,0085 0,0076 0,0072 0,0057 0,0051 0,0047 0,0029 0,0026 0,0025 0,0021 0,0018 0,0016 0,0014 Table 6
Insulation STANDARD R - 35 Carrier Pipe
Dz mm 26,9 33,7 42,4 48,3 60,3 76,1 88,9 114,3 139,7 168,3 219,1 273,0 323,9 355,6 406,4 457,0 508,0 610,0
g mm 2,6 2,6 2,6 2,6 2,9 2,9 3,2 3,6 3,6 4,0 4,5 5,0 5,6 5,6 6,3 6,3 6,3 7,1
A mm2 198 254 325 373 523 667 862 1252 1539 2065 3034 4210 5600 6158 7919 8920 9930 13448
Coefficient W mm/m3 0,0158 0,0124 0,0118 0,0103 0,0083 0,0073 0,0065 0,0056 0,0051 0,0042 0,0036 0,0033 0,0028 0,0028 0,0023 0,0022 0,0022 0,0021
Hiline-ZPUM Design Calculations -- Page 12 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Insulation PLUS Coefficient W mm/m3 0,0193 0,0151 0,0134 0,0117 0,0093 0,0084 0,0081 0,0063 0,0057 0,0053 0,0041 0,0037 0,0310 0,0029 0,0025 0,0025 0,0025 0,0000
Design Calculations Manual I
6.2
Method 2 – Pre-stressed System
A pipeline having been assembled and tested prior to burying is subjected to a preheating. Once the requested elongation has been achieved, the pipeline is buried. The preheating temperature [T p] is set at such a point that when the buried pipeline is cooled down to the assembly temperature [T 0] and heated up to the service temperature [T ], the axial stress [σ ] does not exceed the computed compressive and tensile [ f d ] strength of a steel pipe.
Elongation [∆Ln] of an Unburied Pipe
6.2.1
A preheated [T 0] and unburied pipeline:
L1
∆L1
Elongation [ ∆ L] of a pipeline [Ln] long preheated to [T p], and unburied – in other words free elongation is computed according to the formula: ∆ L n = k·α1·(Tp – T 0 )· L n
where:
coefficient accounting for friction forces between k = 0,7÷0,8 pipe and soil α1 coefficient of linear expansion [1/ºC] T p preheating temperature [ºC] T 0 actual assembly temperature [ºC] L n unburied pipeline length [m] Free elongation of a preheated pipeline can be determined as a product of unit elongation [ε] and pipeline length [ L n]: ∆ L n = ε· L n [mm] k
Pipeline unit elongation: ε = α1·(T p-T 0 )
[mm/m]
Pipeline unit elongation ε [mm/m]
Hiline-ZPUM Design Calculations -- Page 13 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Graph 1
Design Calculations Manual I
6.2.2
Elongation (Shortening) [∆Lz] of an Unburied Pipe
A buried and service temperature [T ] preheated pipeline:
L
L1
∆Lz
Lmax
Elongation, or shortening [ ∆ L z], of a buried pipeline is calculated from the formula:
∆ L z = α t ⋅ (T − T p )⋅ L max −
F ⋅ L 2 max
2 ⋅ ET ⋅ A
[m]
where: α t T T p L max F ET A
coefficient of linear expansion service temperature preheating temperature pipeline assembly length unit friction force Young s Modulus at Temperature carrier pipe cross section area '
[1/ºC] [ºC] [ºC] [m] [N/m] [N/m2 ] [m2]
T
When shortening is calculated from the above presented formula, proper temperature values have to be applied, while pipeline assembly length [ L max] has to be calculated from the formula presented in Point 6.1.1.
6.3
Method 2a – Initial Stresses If Single Use Compensator Joints Are Considered
A pipeline with compensator joints on it, having been subjected to tests, is subsequently buried except for places where the joints are, and then is preheated. Spacing between joints should not exceed twice the maximum assembly length [ 2· L max] determined as specified in Point 6.1, while the distance of the joints from either the actual or virtual fixed point should not exceed the assembly length [Lmax ] calculated from the formula in 6.1.1.
L
L1
∆Lz
Lmax
Compensator joint setting, allowing the joint to accommodate pipe elongation [ ∆ z L ], once the pipe has been preheated and put into operation at [T ] is calculated from the formula :
∆ L = α t ⋅ (T − T 0 ) ⋅ L −
F ⋅ L 2
4 ⋅ ET ⋅ A
[m]
Hiline-ZPUM Design Calculations -- Page 14 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
where: α t
T T 0 L F
ET A
6.4
[1/ºC]
coefficient of linear expansion service temperature preheating temperature pipeline assembly length unit friction force
[ºC] [ºC] [m] [N/m]
Young s Modulus at Temperature T
[N/m 2 ]
carrier pipe cross section area
[m2 ]
'
Change in Pipeline Routing
Pipeline rerouting can be effected by means of: • pipe end scarfing at the joint; • assembling using preinsulated elbows; • elastic bending of pipe at the site; • preinsulated bend pipes.
Where the pipe is bent at an angle less than 10º, such section is treated as a straight one. 6.4.1
Pipe Route Alteration By Scarfing Steel Pipe At a Joint
Slight rerouting at small angles (up to 10º) is obtained by scarfing steel pipe and subsequent assembling at an angle β ≤ 3º.
A minimum distance between scarfed ends should be at least 6,0 m.
β ≤ 3°
β ≤ 3°
6. 0 m m i n
6.4.2
Pipe Route Alteration By Using Preinsulated Elbow Units
Changes in a pipeline routing by inset elbows at angles of: 15º, 30º, 45º, 60º, 75º and 90º for the whole range of diameters. Elbow radii: r Diameter Steel Grade (bend radius) DN 20÷DN 80
R–35
3×Dz
DN 100÷DN 300
St 37.0
1,5×DN
D z – steel pipe external diameter
Hiline-ZPUM Design Calculations -- Page 15 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
6.4.3
Pipe Route Alteration By Elastic Bending of Pipe
Assembled preinsulated pipe 6,00 or 12,00 m long is lowered into a trench and subjected to elastic bending. A minimum bending radius and the corresponding pipe bend angle [ β ], dependent on pipe diameter and pipe sections used, is specified in Table 7. Table 7
Steel Carrier Pipe Nominal DiExternal ameter Diameter DN Dz mm
mm
20 25 32 40 50 65 80 100 125 150 200 250 300 350 400 450 500 600
26,9 33,7 42,4 48,3 60,3 76,1 88,9 114,3 139,7 168,3 219,1 273,0 323,9 355,6 406,4 457,0 508,0 610,0
Jacket Pipe External Diameter Dzp mm
75 90 110 110 125 140 160 200 225 250 315 400 450 500 560 630 710 800
Bend Radius r m
17 20 24 28 34 42 49 65 76 97 123 153 182 200 224 251 283 343
Bend angle Pipe Length 6.00 m 12.00 m β β deg
deg
20,0 17,0 14,0 12,0 10,0 8,0 7,0 5,3 — — — — — — — — — —
— — 28,0 24,0 20,0 16,4 14,0 10,6 9,0 7,1 5,6 4,5 3,8 3,4 3,1 2,7 2,4 2,0
Hiline-ZPUM Design Calculations -- Page 16 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
6.4.4
Rerouting by Means of Preinsulated Bend Pipe
Straight preinsulated sections 6,00 and 12,00 m long are bent on special machines at a requested angle. Preinsulated bent pipes have to be used where routing optimisation is sought and can substitute elbows. The permissible minimum radius [ r min] and the corresponding bend angle [ β ] for a pipe 12,00 m long depending on steel carrier pipe diameter [ D ] and depth of trench [ H ], provided steel pipe stress does not exceed f = d 150 MPa, is presented in the Table. z
Table 8
Steel Carrier Pipe
Soil Layer Depth [m]
Nominal
External
External
Diameter
Diameter
Diameter
DN
Dz
Dzp
r
β
r
β
mm
mm
mm
m
deg
m
deg
20 25 32 40 50 65 80 100 125 150 200 250 300
*)
Jacket Pipe
26,9*) 33,7*) 42,4 48,3 60,3 76,1 88,9 114,3 139,7 168,3 219,1 273,0 323,9
0,5
0,6
0,7 r m
75 90 110 110 125 140 160
6,5 8,4 8,8 10,1 12,3 14,0 16,2
— — — — — — —
5,4 7,0 7,3 8,4 10,3 11,7 13,5
— — — — — — —
4,7 6,0 6,3 7,2 8,8 10,1 11,6
200 225 250 315 400 450
18,5 20,3 24,8 25,8 28,2 33,3
37 34 28 27 24 21
15,5 16,9 20,7 21,6 23,6 27,9
44 41 33 32 29 25
13,3 14,6 17,8 18,5 20,2 23,9
0,8
0,9
β
r
β
deg
m
deg
r
11,7 12,7 15,6 16,2 17,7 21,0
59 54 44 42 39 33
β
m deg
— 4,1 — 5,3 — 5,5 — 6,3 — 7,7 — 8,8 — 10,2 52 47 39 37 34 29
1,0 r
β
m
deg
3,6 4,7 4,9 5,6 6,9 7,8 9,0
— — — — — — —
3,3 4,2 4,4 5,0 6,1 7,0 8,1
— — — — — — —
10,4 11,4 13,9 14,4 15,8 18,7
66 61 50 48 43 37
9,3 10,1 12,4 12,9 14,1 16,7
74 68 56 53 49 41
bend radii refer to 6.0 m long pipes.
Hiline-ZPUM Design Calculations -- Page 17 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Auxiliary formulae and guidelines on pipe routing if bend pipe or elastic bending is used.
a
β
a
lg
r
β
r
The β rerouting angle is determined from the design. Tangent length is obtained from: bend radius from:
⋅ a = r tan r =
β 2
360 ⋅ l g 2 ⋅ ⋅ β ̟
[m] [m]
The pipe length [l ] g over the arch section has to be treated as a multiple of preinsulated pipe section 6.00 m long for nominal diameter of 20 and 25, and 12.00 m long for diameters 32 and more, respectively. In the case of elastic bending the arch pipe length [l g] is determined once the rerouting angle has been specified in the design.
Hiline-ZPUM Design Calculations -- Page 18 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
7.
Elongation Compensation
σ ] and pipeline elongation [∆L] when buried and operated at temperature The state of axial stress [σ [T ], and having an assembly length [Lmax] at which the carrier pipe cross section reduced rated steel strength [ f d ] is not exceeded is shown in the diagram below:
σ = f d
Lmax The length of straight pipe sections should not exceed twice the maximum length [ L max ], the elongation [∆L] being zero in the span middle, and a virtual (conventional) fixed point is set up – the pipe is fixed – and the free pipe ends will extend by [∆L].
σ = f d
σ
∆L
Lmax
Lmax
∆L
Pipe elongation is set off by pipe rerouting (natur al compensation) or by mounting elongation joints. Depending on the geometric configuration of a route, natural compensation is achieved through: • an L-shape system; • a Z-shape system; • a U-shape system.
7.1
The L-Shape System
L-Shape Systems alter a route by an angle of 45º to 90º.
≥ 45°
Elongation and compensation arm calculation Hiline-ZPUM Design Calculations -- Page 19 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
≤ 90°
Design Calculations Manual I
The L90 System – rerouting by 90º
∆L1
L1 L′1
∆L 2
L′2 L2
L1 < Lmax L2 < Lmax
Compensation arm length is calculated from:
L′1 = 1 . 2 ⋅
L 2′ = 1 . 2 ⋅
1 .5 ⋅ ET f d
1 .5 ⋅ ET f d
⋅ D z ⋅ ∆ L 2
[m]
⋅ D z ⋅ ∆ L1
[m]
where: D z f d ET ∆ L1 ∆ L 2
external carrier pipe diameter reduced rated steel strength Young s Modulus at Temperature '
[m] T
[MPa]
L1 section elongation (as per 6.1.2) [m] L2 section elongation (as per 6.1.2) [m] ’ [ L ] compensation arm lengths for carrier pipe diameters [ D z] to be used and conditions in which the pipeline is to be laid depending on elongation [∆ L] can be obtained from graph 2 (page 20).
L-45º-plus compensation: rerouting at an angle ≥ 45º
Hiline-ZPUM Design Calculations -- Page 20 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
L′1
∆1
L′2
L1 L2
∆2
The length of compensation arms [ L´ 1] and [ L´ 2], provided the reduced elongations ∆1 and ∆ 2 have been accounted for, is obtained from the formula:
L′1 = 1 . 2 ⋅
L 2′ = 1 . 2 ⋅
1 .5 ⋅ ET f d
1 .5 ⋅ ET f d
⋅ D z ⋅ ∆ 2
[m]
⋅ D z ⋅ ∆1
[m]
where: D z f d ET ∆ L1 ∆ L 2
[m]
external carrier pipe diameter reduced rated steel strength Young s Modulus at Temperature '
[MPa] T
reduced elongation of section L1 reduced elongation of section L2
[m] [m]
Reduced elongation is obtained from:
∆ L 2 ∆ L1 + tan α sin α ∆ L 2 ∆ L1 ∆ 2 = + sin α tan α ∆1 =
[mm] [mm]
where: α ∆ L1 ∆ L 2
obtuse angle L1 section elongation (as per 6.1.2) L2 section elongation (as per 6.1.2)
[m] [m]
The length of compensation arms [ L´ 1] and [ L´ 2] for applicable carrier pipe diameters [ Dz] [ 1] and [∆ 2] can be determined from graph 2. depending on reduced elongations ∆
Specific requirements A system needs no compensation if its route is altered by an angle between 8º and 45º. Such a system should be protected against overloads by means of a fixed point at a distance of maximum L = 6,0 m or by an L-90 system at a distance not exceeding 0,5·L max.
Hiline-ZPUM Design Calculations -- Page 21 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
a)
max 6.0 m m a x 6 . 0 m < 45°
b)
90° < 45° 90°
c)
90°
m a x 6 . 0 m
< 45°
L-Shape System The compensation arm length [ L´ 1] in relation to elongation [∆ L]
L
∆L E = 204 GPa f d = 150 MPa
Hiline-ZPUM Design Calculations -- Page 22 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Graph 2
Hiline-ZPUM Design Calculations -- Page 23 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
7.2
The Z-Shape System ∆L1
L1 L′1
C
L′2
∆L 2
L2
For a Z-Shape System, the length of compensation arms [C] is obtained from:
C =
1 .5 ⋅ ET f d
[m]
⋅ D z ⋅ ∆ L
where:
[m]
external carrier pipe diameter reduced rated steel strength
D z f d ET
[MPa]
Young s Modulus at Temperature T ∆ L = ∆ L1+∆ L 2 '
∆ L1 L1 section elongation (as per 6.1.2) [m] ∆ L 2 L2 section elongation (as per 6.1.2) [m] The length of [ L’] compensation arms in a Z-Shape System for applicable carrier pipe diameters and initial data depending on elongation [∆ L] can be obtained from Graph 3.
Z-Shape System The compensation arm length [C] in relation to elongation [∆ L]
∆L1 C E = 204 GPa f d = 150 MPa
∆L2
Hiline-ZPUM Design Calculations -- Page 24 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Graph 3
Hiline-ZPUM Design Calculations -- Page 25 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
7.3
The U-Shape System
A U-Shape System is seen as a system where the arms length remains within the following limits: B
∆L1
L1
- -
∆L2
L2
L′1
L′2
C B For a Z-Shape System, the length of compensation arms [D] is obtained from:
C = 0 .7 ⋅
1 .5 ⋅ ET f d
[m]
⋅ D z ⋅ ∆ L
where: D z f d ET
[m]
external carrier pipe diameter reduced rated steel strength
[MPa]
Young s Modulus at Temperature T ∆ L = ∆ L1+∆ L 2 '
∆ L1 L1 section elongation (as per 6.1.2) [m] ∆ L 2 L2 section elongation (as per 6.1.2) [m] The length of [C] compensation arms in a U-Shape System for applicable carrier pipe diameters and initial data depending on elongation [∆ L] can be obtained from Graph 3.
7.4
Compensation Zones
A compensation zone has to be seen as a space along a pipeline, limited by the length of a compensation arm [L’] and existing elongations [∆ L] where a pipeline section or elbows are to be relieved from the pressure a pipeline exerts on the soil. We suggest filling the compensation zone over a stretch equaling L = 2/3 L’
∆L L′′ L′
d
d
Hiline-ZPUM Design Calculations -- Page 26 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
We suggest: In order to have a compensation zone properly filled in with for instance mineral wool mats or foam claddings, subsequent layers have to be stepped, assuming that if one mat layer of thickness [ d ] is to take over part of elongation [∆ L] over length [ L’], then the following mat should be [ L˝ ] long equaling:
L =
8.
∆ L − d ⋅ L′ ∆ L
[m]
Preinsulated Fixed Points
Preinsulated fixed points in thermal networks are used to: • relieve other preinsulated structural members not fitted to carry loads, that is for instance preinsulated tees, wall transition sleeves, points where traditional transmission modes are replaced with preinsulated solutions; • form desired elongations within thermal networks, for example where a preinsulated elbow compensation arm, calculated basing on actual elongation does not carry over such an elongation due to topographic conditions.
8.1
Calculation of Forces Affecting a Fixed Point
8.1.1
Relieved Fixed Point
A fixed point completely and on one side relieved is such which is subjected to axial force acting on one side. A case of a one side load on a f ixed point is when there runs a straight section on one side, whilst on the other the route is altered by means of for instance a 90º elbow. It is essential that this straight section between the 90º compensation elbow [ A] and the fixed point is negligibly short, which is illustrated below:
P.S.
Tj=const N PS = T j × L
(A)
(B) L
The axial force [N PS] affecting the fixed point is expressed by : N PS = T j × L
[N]
where: T j L
unit friction force affecting preinsulated pipe [N/m] pipe length between f.p. and compensation elbow [B] [m]
Hiline-ZPUM Design Calculations -- Page 27 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Partially Relieved Fixed Point
8.1.2
A partially relieved fixed point is a one where axial force resulting from friction between a preinsulated pipe jacket and the sand surround, and affecting the fixed point: N PS1 =T × [N] j L 1 and taken over from an L1 length between the fixed point and the compensation elbow at [ B] is a partially reduced axial force which acts in an opposite direction to soil friction forces affecting the point: N PS2 =T × [N] j L 2 taken over from an L 2 length between the fixed point and the compensation elbow at [ A] This situation is shown in the diagram below:
Tj=const
P.S. N PS 2
=
T j × L2
N PS 1
=
T j × L1
(B)
(A) L2
L1
A total axial force [ N PS] affecting the fixed point is expressed as: N
N
=N PS
–N PS1
-L PS= T ×(L j 1 )2
PS2
[N] [N]
(indexes as in the previous diagram) Table 12 shows maximum dimensions of fixed point concrete blocks. Axial forces acting on a fixed point were derived from the following assumptions: pipe axis depth is below soil level H = 1,0 m; fixed point is totally relieved on one side; the section length over which axial forces affecting the fixed point were collected is , steel grade is St-3.0, insulation STANDARD; L in dimensioning concrete blocks the axial force assumed was twice that of [ N PS] due to the action of the feeding and return carrier pipe on the concrete block; in dimensioning a concrete block the unit passive soil pressure was assumed to be 150 kPa in accordance with standard PN-81/B-3020. Fixed point foundation blocks have to be designed and cast in concrete of class at least B-15, reinforced with rebars grade A-III, 34 GS. • • •
max
•
•
Hiline-ZPUM Design Calculations -- Page 28 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Fixed Point Concrete Block Dimensions A
B/2
DN
Dzp B
B/2
Fixed point stop y Pierścień oporowy collar punktu stałego
H
X X+Dzp
Hiline-ZPUM Design Calculations -- Page 29 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
Concrete Block Reinforcement L1 5
n””pieces "n" szt.
NR 1 5
4 a
10
10
a
a L3
NR 2 a a 4 5
b
NR 1
a
2 NR L2
5
L4
b
Maximum Dimensions of Fixed Point Concrete Blocks - - k x e c i E m e i a h s p D T l s i e P l l l a a n e n W e r / t e r e S t t
- r x e E t e e m p a i P i t D e l k a c n a r e J t
y k e b c c o r d l o e B F t l t e a i t e m m s r i x n c n a a r o M T C
k t c o s n l n i o o B i P e s n d t e e e r m x c i n i F o D C
Fixed Point Concrete Block Reinforcement
Dz/g
Dzp
[NPS]
A
B
H
mm/mm
mm
dN
cm
cm
cm
1
26,9/2,6
75
6030
80
50
30
2
33,7/2,6
90
7530
105
50
30
3
42,4/2,6
110
10800
110
60
30
4
48,3/2,6
110
11730
130
60
30
5
60,3/2,9
125
15870
150
70
40
6
76,1/2,9
140
20580
165
80
40
7
88,9/3,2
160
27520
170
100
50
8
114,3/3,6
200
40970
205
120
70
9
139,7/3,6
225
48430
240
125
70
10
168,3/4
250
65050
280
140
80
11
219,1/4,5
315
90760
390
150
100
o N r a b e R
r e t e m a i D
mm
y t i t n a u Q
pcs
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
8 6 8 6 8 6 8 6 10 6 10 6 10 6 10 6 10 6 12 8 10
4 5 4 6 4 5 4 5 5 6 6 7 8 7 10 8 10 9 10 11 12
2 1
8 14
15 14
12
273,0/5
315
124863
446
180
100
2
10
17
13
323,9/5,6
450
173730
541
190
150
1 2
14 10
16 20
L1 cm
70
L2 cm
20
100
20
30
155
30
60
230
60
70
435
90
Hiline-ZPUM Design Calculations -- Page 30 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
22
42
22
52
22
52
22
62
32
72
32
92
42
112
62
117
62
132
92
142
92
172
92
182
142
90
380
530
42
40
195
270
cm
20
140
160
cm
L4
20
95
120
L3
140
Design Calculations Manual I
Note: Foundation dimensions have to be customized accounting for pipeline axial force value, computational passive soil upper limit pressure and stability of the foundation-subgrade conditions as specified by standard PN-81/B-3020.
9.
Pipe Laterals and Wall Transitions
Pipelines in CPV Hiline ZPUM have to be br anched off by means of tees. Laterals are affected by mains elongation (as in the diagram); moreover, a lateral will be subject to thermal elongation, affecting this way the mains. The length of a compensation zone [L’] and elongation [∆L] are calculated as for an L-90 Compensation System.
L
∆L
L
Thermal elongation exerted by a lateral on the mains can be set off by: 1. Setting up a fixed point within the lateral no more than 9,0 m away from the mains axis:
L
∆L
L
2. Fitting in a Z-Shape Compensation System within the lateral no more than 24,`0 m away from the mains axis:
Hiline-ZPUM Design Calculations -- Page 31 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
L′ max 24.0 m
C
3. Fitting in a lateral parallel to the mains over a 2/3 L max from the fixed point (or a conventional one): L max 2/3 L max L'
∆L1
L1 Conventional fixed umowny or lubactual rzeczywisty point
punkt stały
L'
The compensation arm length [ L’] on a lateral is calculated in the same way as for the LShape Compensation, i.e. elongations [∆ L] over the section L1 are calculated and the compensation arm length [ L’] is read out from the [∆ L] axis in Diagram 2 on page 22. 4.
If a lateral makes an extension of the mains, a half of a U-Shape Compensation System should be considered in designing. mains rura
lateral rura odgałęźna
główna
D
B/2
A preinsulated section parallel to a thermal network cannot be worked out as a mains extension by means of a parallel tee. The diagram below shows an incorrectly designed thermal network section.
Hiline-ZPUM Design Calculations -- Page 32 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884
Design Calculations Manual I
lateral
rura odgałęźna
rura główna
mains
5. No shutoff, venting, strain nor preinsulated laterals can be included in compensation zones.
10.
Preinsulated Pipe Connected To a Traditional Pipe (Underground Utilities) Effect of preinsulated pipe elongation are set off by fitting in a fixed point or a Z-Shape System distanced no more than 9.0 m from the traditional pipeline axis or connection.
max 9.0 m
max 9.0 m
max 9.0 m
max 9.0 m C
11.
C
Steel Fittings and Fixtures
When designing preinsulated steel fittings and fixtures like: shutoff valves, shutoff valves with a single venting (straining) valves, shutoff valves with straining and venting functions the following should be observed: • • • •
fittings should not be located in the vicinity of compensation elbows (L-, Z-, and Ucompensating joints); shutoff vent spindle should be accessible from a street box and jacket pipe or a manhole should be built in concrete tube at least 600 mm in diameter; the spindle of a buried shutoff valve should be protected with compensation mats; straining and venting shutoff valves should be in concrete tube manholes of a diameter at least 10000 mm or in concrete chambers;
Steel shutoff fittings and fixtures are used to cut off the flow of a medium in a given section of a pipelines thermal utilities. Strain valves should be fitted in the lowest network points, while venting ones in the topmost sections and next to straining, a erating and venting shutoff valves.
Hiline-ZPUM Design Calculations -- Page 33 of 37 -- Rev no. HZ DC 2510 CPV Ltd, Woodington Mill, Woodington Road, East Wellow, Romsey, Hants, SO51 6DQ Website: www.cpv.co.uk -- Email:
[email protected] -- Telephone: +44 01794 322884