Department of Education Region VI – Western Visayas Division of Capiz
LESSON PLAN IN MATHEMATICS FOR SENIOR HIGH SCHOOL (Statistics and Probabiity! Probabiity! Date: __________________________ Time: __________________________ Grade & Sec.:__________________ I. Objectie!: "t t#e end of t#e period$ students s#oud be abe to% &' dene t#e measures of centra tendency (mean$ median and mode!' )' nd t#e measures of centra tendency using t#e ungrouped data' II. S"bject Matter: A. T#$ic: *easures of Centra +endency %. Reere'ce: *at#ematics , -eader.s -eader.s *odue *odue -esson &% *easures of Centra +endency of /ngrouped Data$ pages 01&2345 C. I'!tr"cti#'a( Materia(!: aptop$ mutimedia pro6ector7teevision$ pro6ector7teevision$ activity s#eets D. )a("e Aim: "ccuracy in soving$ Cooperation 8it#in t#e group D. S*i(( F#c"!: Probem Soving and Computation S9is III. Pr#ced"re!: +. Pre,ActiitA. Reie Pay t#e game :anagram; to reca t#e concepts previousy earned by t#e cass' &' TICSTISSTA 2 is a bran branc# c# mat# mat#em emat atic ics s t#at t#at dea deas s 8it# 8it# t#e t#e coec coectio tion$ n$ cass cassic icati ation$ on$ descr descript iption ion$$ and interp interpre retat tation ion of data data obtained by t#e conduct of surveys and e
%. M#tiati#' -ead t#e cass to sing t#e :Statistics Song; 8it# actions' 1, 2, and 3 statistics; 1, 2, and 3 statistics Stat-stat-statistics, Stat-stat-statistics, Stat-stat-statistics Stat-stat-statistics 1, 2 and 3 statistics. The frst stat is solving or mean (2x)
Solve-solve or mean-mean-mean (2x) The frst stat is solving or mean. The second stat is solving or median (2x) Solve-solve or me-ed-ian (2x) The second stat is solving or median. The third stat is solving or mode (2x) Solve-solve or mode-mode-mode (2x) The third stat is solving or mode
C. Pre!e'tati#' "s9 t#e cass 8#at are t#e t#ree terms often mentioned in t#e song 8#ic# are reated in t#e study about statistics' Introduce t#e t#ree measures of centra tendency to t#e cass – mean$ median and mode' 0. Le!!#' Pr#$er A. ActiitDierentiated !nstr"ction#$oo%erative learning ' Divide t#e cass into t#ree groups' Eac# group 8i be given t#e same probem but di=erent >uestion to be ans8ered' "fter t#at$ a reporter from t#e group 8i #ave to present t#eir ans8er to t#e cass' (See attac#ed activity s#eets! %. A'a(-!i! ?uestions% a' @o8 did you nd 8or9ing t#e activityA b' @o8 did you dea it 8it# your groupA c' W#at do you t#in9 is t#e purpose of t#is activityA /se t#e second e
•
& gro"% o st"dents o'tained the olloing scores in a math "i*+ Σx
a' +o nd t#e mean of ungrouped data$ use t#e formua 1 B
N
8#ere < B t#e summation of < (sum of t#e measures! and B number of vaues of <' b' +o nd t#e median of a given set of data$ ta9e note of t#e foo8ing% &' arrange t#e data in eit#er increasing or decreasing order )' ocate t#e midde vaue' If t#e number of cases is odd$ t#e midde vaue is t#e median' If t#e number of cases is even$ ta9e t#e arit#metic mean of t#e t8o midde measures' c' +o nd t#e mode for a set of data% &' seect t#e measure t#at appears most often in t#e set )' if t8o or more measures appear t#e same number of times$ and t#e fre>uency t#ey appear is greater t#an any ot#er measures$ t#en eac# of t#ese vaues is a mode 5' if every measure appears t#e same number of times$ t#en t#e set of data #as no mode' C' Ab!tracti#'2 Ge'era(i3ati#' "s9 t#e cass of t#e foo8ing >uestions% a' W#at are t#e t#ree measures of centra tendencyA
b' @o8 do 8e nd t#e vaue of t#e meanA t#e medianA t#e modeA +#e mea' (aso 9no8n as t#e arit#metic mean! is t#e most commony used measure of centra position' It is t#e sum of measures divided by t#e number of measures variabe' )3 in a55 53 It is symboized 03 50as < (read as < bar!' )H )1 53 5, 04 +#e media' is t#e midde entry or term in a set of data arranged in eit#er 03 5, ), )1 )3 increasing or decreasing order' 5G 51 5) 0G 03 +#e m#de is t#e measure or vaue 8#ic# occurs most fre>uenty in a set of data' It is t#e vaue 8it# t#e greatest fre>uency'
D. A$$(icati#' Find t#e mean$ median$ and mode of t#e foo8ing sets of data' a' )1$ 50$ 5G$ ))$ 5,$ 04 b' 3$ H$ G$ G$ 1$ 1$ ,$ &4$ &0$ &H$ )4 I). A!!e!!me't: +#e scores of )4 students in a bioogy >uiz are as foo8s' Sove for t#e mean$ median and mode'
). A!!i4'me't2A4reeme't: $ontext"ali*ation. "s9 t#e students to reca t#eir grades for t#e 5 rd rading Period' "s9 t#em to nd t#e mean$ t#e median and t#e mode and 8rite t#eir ans8ers in a ,;<&&; (s#ort! bond paper'
Prepared by%
PHILIP 5A6SON D. FALCIS S@S +eac#er "ppicant
WJRKS@EE+ Probem &% +#e grades in *at#ematics of students are ,G$ ,0$ ,3$ ,3$ ,H and 14' a' W#at is t#e mean grade of t#e H studentsA b' E
" group of students obtained t#e foo8ing scores in a mat# >uiz% ,$ G$ 1$ &4$ ,$ H$ 3$ 0$ 5' "rranging t#e scores in increasing order% 5$ 0$ 3$ H$ G$ ,$ ,$ 1$ &4' a' +#e mean H'G 8as obtained byL b' +#e median